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Abstract: A Set Membership (SM) approach is proposed to reduce the computational burden
of Nonlinear Model Predictive Control (NMPC) algorithms. In particular, a SM identification
method is applied to derive an approximation and tight bounds of the NMPC control law, using
a set of its values computed offline. These quantities are used online to reduce the dimension
and the volume of the search domain of the NMPC optimization algorithm, and to perform a
warm start, allowing a significant shortening of the computational time. The developed NMPC
methodology is tested in simulation, considering an obstacle avoidance application in a realistic
autonomous vehicle scenario. The obtained results demonstrate the effectiveness of the proposed
approach in terms of computation time, without affecting the solution quality.
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1. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) has become
a robust and flexible approach capable of imposing op-
timal trajectories over a finite time interval, handling
input/state/output constraints, and systematically man-
aging the trade-off between performance and command ac-
tivity (see, e.g., Mayne (2014) and references therein). This
control strategy has been successfully applied in various
fields, including automotive engineering, aerospace engi-
neering, chemical processes, robotics, energy, biomedicine,
and more (see, e.g., Siampis et al. (2018) and Pagone
et al. (2021)). The NMPC approach is based on an opti-
mal control problem (OCP), which must be solved online
within a short time. However, the OCP is generally non-
convex and its solution can be computationally expensive,
making unfeasible the real-time NMPC implementation.
To address this issue, different NMPC techniques have
been proposed in the literature. These techniques can
be broadly categorized into two groups: i) improving the
numerical efficiency of the optimization algorithms, and
ii) offline approximation of the control law. The former
group includes specific online algorithms that reduce the
computational burden of the underlying nonlinear pro-
gram (NLP), such as multiple shooting method (Bock
et al. (1999)), collocation methods (Biegler (2000)) and
Real Time Iteration (RTI) scheme (Diehl et al. (2002)).
These algorithms enable the development of NMPC al-
gorithms that can be used in real-time applications with
short sampling times, as demonstrated by Houska et al.
(2011) and Gros et al. (2012). The latter group considers
approximating functions, derived offline, to reproduce the
MPC/NMPC law, as seen in Parisini and Zoppoli (1995)
and Canale et al. (2006). However, these methods lack
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efficiency in presence of huge number of system states,
complex constraints and time-varying references.

Relevant issues that strongly affect the computational time
of nonlinear optimization algorithms are the following:
(i ) dimension of the search domain, i.e., the number of
decision variables; (ii ) volume of the search domain, i.e.,
the overall set where the decision variables are defined;
(iii ) starting point of the algorithm.

The main contribution of this paper is to propose a Set
Membership (SM) identification approach allowing us to
mitigate the aforementioned issues. In particular, the non-
linear Set Membership method presented in Milanese and
Novara (2004), and applied in Canale et al. (2006, 2009) to
derive offline an approximation and tight bounds of the op-
timal NMPC control law, is here used online to: (i ) reduce
the dimension of the search domain of the NMPC opti-
mization algorithm; (ii ) shrink the volume of the search
domain; (iii ) warm start the algorithm. These operations
allow a significant shortening of the computation time,
thus enabling the NMPC real-time implementation, also
in situations where a high sampling rate is required. The
resulting NMPC approach, enhanced by the SM iden-
tification method, is called Reduced Complexity NMPC
(RC-NMPC). This approach can be used in combination
with any optimization algorithm to enhance its numerical
efficiency, since it is not tailored to a specific strategy.
The idea of using approximating functions to obtain a
volume reduction and a warm start was first introduced
in Boggio et al. (2023a,b). However, these works did not
include the dimension reduction technique proposed in the
present paper, which represents a novel contribution to the
existing NMPC literature.

Another contribution of the paper consists in a simulated
case study, where an obstacle avoidance system based
on the RC-NMPC strategy is designed and tested in a
realistic autonomous vehicle scenario. The performance of
this approach is compared both with a standard NMPC
and with the NMPC developed in Boggio et al. (2023a,b),
hereinafter called Reduced Volume NMPC(RV-NMPC).
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1. INTRODUCTION

Nonlinear Model Predictive Control (NMPC) has become
a robust and flexible approach capable of imposing op-
timal trajectories over a finite time interval, handling
input/state/output constraints, and systematically man-
aging the trade-off between performance and command ac-
tivity (see, e.g., Mayne (2014) and references therein). This
control strategy has been successfully applied in various
fields, including automotive engineering, aerospace engi-
neering, chemical processes, robotics, energy, biomedicine,
and more (see, e.g., Siampis et al. (2018) and Pagone
et al. (2021)). The NMPC approach is based on an opti-
mal control problem (OCP), which must be solved online
within a short time. However, the OCP is generally non-
convex and its solution can be computationally expensive,
making unfeasible the real-time NMPC implementation.
To address this issue, different NMPC techniques have
been proposed in the literature. These techniques can
be broadly categorized into two groups: i) improving the
numerical efficiency of the optimization algorithms, and
ii) offline approximation of the control law. The former
group includes specific online algorithms that reduce the
computational burden of the underlying nonlinear pro-
gram (NLP), such as multiple shooting method (Bock
et al. (1999)), collocation methods (Biegler (2000)) and
Real Time Iteration (RTI) scheme (Diehl et al. (2002)).
These algorithms enable the development of NMPC al-
gorithms that can be used in real-time applications with
short sampling times, as demonstrated by Houska et al.
(2011) and Gros et al. (2012). The latter group considers
approximating functions, derived offline, to reproduce the
MPC/NMPC law, as seen in Parisini and Zoppoli (1995)
and Canale et al. (2006). However, these methods lack
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Relevant issues that strongly affect the computational time
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Notably, the results demonstrate significant computational
time improvements with respect to both the standard
NMPC and the RV-NMPC. These outcomes validate
the rationale behind implementing additional algorith-
mic modifications to the previously developed RV-NMPC.
Moreover, concerning the quality of the solution found, all
three strategies yield similar results.

The paper is organized as follows. Section 2 introduces
the mathematical formulation of NMPC. In Section 3, the
Nonlinear Set Membership Approximation is described.
Section 4 presents the developed RC-NMPC approach.
The obtained results and the comparison with respect to
standard NMPC and RV-NMPC are shown in Section 5.
Finally, the conclusions are drawn in Section 6.

2. NONLINEAR MODEL PREDICTIVE CONTROL

Consider a Multiple-Input-Multiple-Output (MIMO) non-
linear continuous-time dynamic system characterized by
the following equations:

ẋ =f(x, u)

y =h(x, u)
(1)

where x ∈ Rnx is the state, u ∈ Rnu is the command
input and y ∈ Rny is the output; f : Rnx+nu → Rnx and
h : Rnx+nu → Rny are two functions defining the system
dynamics and output variables, respectively. It is assumed
that the state is measured in real-time at discrete intervals
with a sampling time Ts, given by:

x(tk), tk = Tsk, k = 0, 1 . . . . (2)

In cases where the state cannot be directly measured, an
observer or a model of (1) in input-output form needs to
be employed.

NMPC is built upon two fundamental operations: predic-
tion and optimization. At each time t = tk, the system
state and output are predicted over the time interval
[t, t + Tp], where Tp ≥ Ts is referred to as the prediction
horizon. The prediction is obtained by integrating the
equations (1). For any time instant τ within the time
interval [t, t+ Tp], the predicted output ŷ (τ) is a function
of the “initial” state x(t) and the input signal, as expressed
by the equation:

ŷ (τ) ≡ ŷ (τ, x(t), u(t : τ)) (3)

where u(t : τ) represents a generic input signal within the
interval [t, τ ]. The fundamental concept behind NMPC (as
well as most predictive approaches) involves the search
for an input signal denoted as u∗(t : τ), at each time
instant t = tk, such that the prediction ŷ (τ, x(t), u∗(t : τ))
exhibits the desired behavior in the time interval [t, t+Tp].
The notion of desired behavior is formalized by introducing
the objective function, defined as

J (u(t : t+ Tp))
.
=

∫ t+Tp

t

(
∥ep(τ)∥2Q + ∥u(τ)∥2R

)
dτ+∥ep(t+ Tp)∥2P

(4)

where ep(τ)
.
= r(τ)− ŷ(τ) is the predicted tracking error,

r(τ) ∈ Rny is the reference to track, and ∥·∥∗ is a weighted
Euclidean norm. As an example, when Q is a positive
definite weight matrix, the norm of a column vector w
is formally defined as ∥w∥2Q

.
= w⊤Qw.

The input signal u∗(t : t + Tp) is chosen by minimizing
the objective function J (u(t : t+ Tp)). Specifically, at each
time instant t = tk, for τ ∈ [t, t + Tp], the following
nonlinear OCP is solved:

u∗(t : t+ Tp) = argmin
u(·)

J (u(t : t+ Tp))

subject to:
˙̂x(τ) = f (x̂(τ), u(τ)) , x̂(t) = x(t)
ŷ(τ) = h (x̂(τ), u(τ))
x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, u(τ) ∈ Uc

. (5)

The first two constraints in this problem guarantee that
the predicted state and output are consistent with the
system equations (1). The sets Xc and Yc encompass
additional constraints that may hold for the predicted
state/output, such as those associated with obstacles or
barriers. The set Uc accounts for input constraints, includ-
ing input saturation.

The optimization problem (5) is typically non-convex.
Moreover, optimizing a function with respect to a signal,
as is the case with u(·), can be inherently challenging. To
overcome this issue, the prediction interval [tk, tk+Tp] can
be divided into sub-intervals [tk + τi, tk + τi+1] ⊆ [tk, tk +
Tp], i ∈ {1, 2, . . . , ns}, where the τi’s are called the nodes,
and u and r remain constant on each sub-interval. Hence,
we use the notation uki and rki to represent the command
and reference values at time k in the ith sub-interval,
and the reference sequence for the prediction interval is
denoted as rk

.
= (rk1, . . . , rkns). This approach trans-

forms the optimization problem into a finite-dimensional
problem, which can be efficiently solved using numerical
optimization algorithms.

The NMPC closed-loop command is obtained according to
a so-called receding horizon strategy (RHS). At each time
instant t = tk, the input signal u∗(t : t+ Tp) is computed
by solving (5). Subsequently, only the first optimal input
value, denoted as u(τ) = u∗(tk), is applied to the plant and
kept constant ∀τ ∈ [tk, tk+1]. This complete procedure is
repeated at the subsequent time steps t = tk+1, tk+2. . . .

3. NONLINEAR SM IDENTIFICATION

Finding the optimal NMPC command in real-time can be
computationally expensive, as it requires solving a non-
trivial optimization problem. To address this issue, an
approximation and tight bounds of the NMPC control
law are derived using the Nonlinear Set Membership (SM)
Identification method of Milanese and Novara (2004).

According to the formulation of Section 2, the NMPC
control law is a static nonlinear function ϕ(·) of the
regressor wk

.
= (xk, rk), where xk

.
= x(tk) is the current

state and rk
.
= (rk1, . . . , rkns) is the reference sequence.

The NMPC command uki at time tk in the ith prediction
sub-interval is thus given by

uki = ϕ(wk). (6)
For simplicity, in this section we assume that nu = 1.
The generalization to the case nu > 1 is trivial and can
be accomplished by applying the SM method to each
component of uk, see also the paragraph “RC-NMPC
online algorithm” in Section 4. In general, due to the
complexity of the OCP (5), it is not possible to write the
function ϕ in closed-form. To overcome this issue, we derive
an approximation of ϕ, based on the offline computation
of its values at a given number of points.

Let W ⊂ Rn, n = nx + nsny, be a bounded region where
the regressor wk can evolve, and assume that the function
ϕ is Lipschitz continuous on W. A number M of values of
ϕ are generated by solving offline the OCP (5), considering
different values w̃k ∈ W, k = 1, . . . ,M , so that

ũk = ϕ(w̃k), k = 1, . . . ,M, (7)
where the tilde is used to indicate the collected data. From
these values of ũk and w̃k, the known properties of ϕ,
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complexity of the OCP (5), it is not possible to write the
function ϕ in closed-form. To overcome this issue, we derive
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of its values at a given number of points.

Let W ⊂ Rn, n = nx + nsny, be a bounded region where
the regressor wk can evolve, and assume that the function
ϕ is Lipschitz continuous on W. A number M of values of
ϕ are generated by solving offline the OCP (5), considering
different values w̃k ∈ W, k = 1, . . . ,M , so that

ũk = ϕ(w̃k), k = 1, . . . ,M, (7)
where the tilde is used to indicate the collected data. From
these values of ũk and w̃k, the known properties of ϕ,

and the input limitations u ≤ ũk ≤ u, an approximation
of ϕ and tight function bounds are derived using the
nonlinear SM approach of Milanese and Novara (2004).
These functions will be key elements of the NMPC method
proposed in Section 4.

The nonlinear SM approach of Milanese and Novara (2004)
is now briefly summarized (in particular, its “local” version
is presented here). Let us define the following functions:

b(H, γ,w)
.
=min[u, min

k=1,...,M
(hk + γ∥(w − w̃k)∥)]

b(H, γ,w)
.
=max[u, max

k=1,...,M
(hk − γ∥(w − w̃k)∥)]

(8)

where H = {hk}Mk=1, hk ∈ R, γ ∈ R and w ∈ W. Define
also the functions

ϕg(w)
.
=

(
b(Hϕ, γϕ, w) + b(Hϕ, γϕ, w)

)
/2

ϕ(w)
.
= ϕg(w) + b(H∆, γ∆, w)

ϕ(w)
.
= ϕg(w) + b(H∆, γ∆, w)

ϕc(w)
.
=

(
ϕ(w) + ϕ(w)

)
/2

(9)

where Hϕ
.
= {ũk}Mk=1, H∆

.
= {ũk−ϕg(w̃k)}Mk=1; γϕ and γ∆

are the Lipschitz constants of ϕ and ϕ− ϕg on W, respec-
tively. These constants can be systematically estimated
using the validation procedures in Milanese and Novara
(2004) and Canale et al. (2006). The following theoretical
properties are proven in Milanese and Novara (2004): (i )
ϕ and ϕ are optimal bounds of ϕ: they are the tightest
upper and lower bounds that can be guaranteed from the
data and the available prior information on the function.
(ii ) ϕc is an optimal approximation of ϕ: it minimizes
the so-called worst-case identification error, defined as the
maximum error given by all possible approximations that
are compatible with the prior information and the data.

4. REDUCED COMPLEXITY NMPC

This section outlines how the computational complexity
of the NMPC algorithm is reduced by using the nonlinear
SM identification method. The following steps summarize
the procedure.

Data Collection. Offline simulations are performed, ei-
ther in open-loop or closed-loop. Using Monte Carlo cam-
paign simulations, a set of state data x̃k and reference val-
ues r̃k, with k = 1, . . . ,M , are generated, and the regressor
w̃k

.
= (x̃k, r̃k) is formed. For each w̃k, the corresponding

optimal control command is computed, on the basis of (5),
giving rise to a set of command data ũk, k = 1, . . . ,M .

Clustering. A clustering procedure is carried out to
reduce the number of data used to derive the SM ap-
proximation of the NMPC control law ϕ. The K-Medoids
approach is used, applying the CLustering LARge Appli-
cations (CLARA) algorithm to deal with large data sets
(see Kaufman and Rousseeuw (2009)). At the end of the
clustering analysis, a reduced database is obtained, given
by the set of medoids. The size of this database is reduced
by at least 10 times with respect to the original one. This
means that K ≤ M

10 , where K is the number of medoids
(and corresponding clusters). The set of medoids is used
to identify the function ϕ by means of the SM approach.

Set Membership Approximation. Following the cluster-
ing process, the resulting dataset comprises K regressors
w̃mk and commands ũmk, where the subscript m denotes
the medoids of the clusters identified in the previous step.
Using the data w̃mk, ũmk, k = 1, . . . ,K, the SM approach
described in Section 3 is employed to compute the optimal

bounds ϕ and ϕ, as well as the approximated control law
ϕc. If the command u is multi-dimensional, and u and r
are non constant (over the prediction horizon), the SM
approach is applied to each component of ũmk and for
each sub-interval of the entire prediction time interval.

RC-NMPC online algorithm. As discussed in Section 2,
in order to make the optimization problem (5) numerically
tractable, the prediction interval [tk, tk + Tp] is divided
into sub-intervals [tk + τi, tk + τi+1] ⊆ [tk, tk + Tp], i ∈
{1, 2, . . . , ns}, where the τi’s are called the nodes. Then,
u and r are assumed constant on each sub-interval. In
particular, uki and rki denote their values at time k in
the ith sub-interval. Similarly, ϕc

i , ϕi and ϕ
i
denote the

SM optimal approximation and bounds of the NMPC
command in the ith sub-interval. If the command is of
dimension nu > 1, then ϕc

i , ϕi and ϕ
i
are vectors with

components ϕc
ji, ϕji and ϕ

ji
, j = 1, . . . , nu. Each of

these components is obtained using the SM approximation
method described in Section 3. The RC-NMPC online
algorithm is formally presented below (Algorithm 1).

Algorithm 1 RC-NMPC online algorithm.

Input: xk, rk
.
= (rk1, . . . , rkns

)
Output: uk = u(τ), τ ∈ [tk, tk + τ1]

1: Define U1
.
=

∏
j

Uj1

Uj1
.
= {u ∈ R : ϕ

j1
(wk) ≤ u ≤ ϕj1(wk)}

where wk
.
= (xk, rk) and

∏
j is the Cartesian product.

2: Solve the following OCP:

uk = arg min
u1∈U1

J (u)

subject to:
˙̂x(τ) = f (x̂(τ), u(τ)) , x̂(t) = x(t)
ŷ(τ) = h (x̂(τ), u(τ))
x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc

u = (u1, ϕ
c
2(w̃k), . . . , ϕ

c
ns
(w̃k))

(10)

where the initial guess of u1 is ϕc
1(w̃k).

The key features of the algorithm are now presented.

Dimension Reduction. According to the RHS strategy,
the first optimal input value is the most important decision
variable, since it is the one actually applied to the plant.
The idea is thus to reduce the number of variables to be
optimized to those of the first node u1, keeping the others
fixed and equal to the optimal values computed through
the approximated control law ϕc

2, . . . , ϕ
c
ns
. This reasoning

leads to the formulation of the new OCP (10). Ongoing
research activity is dedicated to develop a method to
optimally choose the nodes to consider for optimization. In
standard NMPC and RV-NMPC algorithms, the number
of decision variables is proportional to the number of nodes
in which the prediction interval is divided (see Section
2). Since the computational complexity of Quasi-Newton
methods based on single shooting algorithms is propor-
tional to O((nsnu)

2), increasing the number of nodes re-
sults in a quadratic worsening of the performance of both
algorithms. Instead, for the RD-NMPC, where ns = 1, this
complexity remains constant with the number of nodes and
only proportional to nu. Future investigations will explore
possible benefits for multiple shooting approaches.
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Volume Reduction. The input constraint set U1 is de-
fined by the optimal bounds ϕ

j1
(wk) and ϕj1(wk), which

produce a shrinking of the volume of U1. As shown in
the example presented below, this shrinking is quite rele-
vant. This results in fewer cost function evaluations, thus
shortening the computation time required to find uk. This
type of volume reduction is not typically implemented in
standard NMPC algorithms.

Warm Start. The optimization algorithm is initialized
with the optimal initial condition ϕc

1(w̃k) which is com-
puted using the SM approximated control law. This can
help accelerate convergence, since it provides initial values
closer to the optimal solutions. In contrast, many standard
NMPC algorithms employ the so-called shift initialization
strategy. This technique sets the initial guess for the de-
cision variables in the current optimization problem to
match the solution obtained in the preceding time step.
Shift initialization is particularly advantageous when the
changes between consecutive time steps are small or when
the system operates within similar regimes over succes-
sive iterations. However, if the system dynamics change
abruptly or if the current optimal solution significantly
deviates from the previous one, initializing the optimiza-
tion problem with the previous solution may lead to poor
suboptimal solution.

5. CASE STUDY: OBSTACLE AVOIDANCE
FOR AUTONOMOUS VEHICLES

In the last decades, a remarkable amount of research and
progress has been made towards creating intelligent tech-
nologies for autonomous vehicles. Significant developments
include adaptive cruise control, lane-keeping assist, and
decision-making algorithms. These technologies are de-
signed with a fundamental objective: enabling autonomous
vehicles to track given reference trajectories, efficiently
avoiding obstacles and ensuring safety. Indeed, as vehicles
become increasingly autonomous, the need for effective ob-
stacle avoidance mechanisms becomes crucial, with these
systems playing an essential role in enhancing the safety
of passengers, pedestrians, and other road users.

In this context, we consider the scenario depicted in
Fig. 2, featuring a rural road with two lanes, one for each
direction, along with an obstacle at the exit of a curve
due to roadworks and a truck traveling in the opposite
direction on the other lane. The vehicle’s objective is to
avoid the construction site and return to its lane before
the arrival of the truck. This is done by designing safety
ellipses around the obstacles as follows:

(x− xv1)
2/a21 + (y − yv1)

2/b21 ≥ 1, (11)

(x− xv2)
2/a22 + (y − yv2

)2/b22 ≥ 1, (12)

where equation (11) describes the roadworks obstacle cen-
tered at xv1 and yv1 , with major and minor axes repre-
sented by a1 and b1, respectively, represented with the red
ellipse in Fig. 2. On the other hand, equation (12) pertains
to the obstacle posed by the truck, represented with the
blue ellipse in Fig. 2. In order to create a critical scenario
for the vehicle, forcing it to return promptly to its lane, the
truck is considered to be in motion at a speed of 20 km/h.
To account for this during optimization, a prediction of its
position is performed, instant by instant, by using a rough
estimate of the truck velocity. This implies that the center
characterized by xv2 and yv2 is not fixed but changes at
every time instant. Note that equations (11)-(12) will be
included as constraints within the optimization problems
(5) and (10).

5.1 Vehicle models

Two models were developed/used.

Plant model. For simulating the real vehicle, the Matlab
Dual-Track Vehicle Body 3DOF block described in MAT-
LAB (2018) is used. The block implements a rigid two-axle
vehicle body model that computes longitudinal, lateral,
and yaw motion. It accounts for body mass, aerodynamic
drag, and weight distribution between the axles due to
acceleration and steering. The main physical parameters
of the model and their values are as follows: mass m =
1575 kg; moment of inertia Iz = 4000 kg*m

2
; distances

CoG-front/rear wheels lf = 1.2m and lr = 1.6m, respec-
tively. The aerodynamic parameters and other details can
be found in MATLAB (2018). The main variables of the
model are the following: X and Y are the coordinates of
the vehicle in an inertial frame, ψ is the yaw angle, vx and
vy are the longitudinal and lateral speeds, respectively, and
ω is the yaw rate. The command inputs of the model are
the vehicle longitudinal acceleration ax and the steering
angle δf .

NMPC internal prediction model. A classical Dynamic
Single-Track (DST) Model is used in the NMPC opti-
mization algorithm to predict the future behavior of the
system. This model considers simplified equations of the
lateral and longitudinal dynamics of a vehicle. The state
equations of the DST model are as follows:

Ẋ = vx cosψ − vy sinψ

Ẏ = vx sinψ + vy cosψ

ψ̇ = ω

v̇x = vyψ̇ + ax

v̇y = −vxψ̇ + 2 (Fyf + Fyr) /m

ẇ = 2 (lfFyf − lrFyr) /Iz

(13)

where the variables and parameters are the same as those
of the Plant. Note however that the prediction model
is a simplified version of the plant, not accounting for
aerodynamic forces and weight distribution between the
axles due to acceleration and steering. Fyf and Fyr are the
lateral forces between the wheels and the vehicle, given by
Fyf = −cfβf , Fyr = −crβr where cf = 2.7·104 N/rad and
cr = 2 · 104 N/rad are the front/rear cornering stiffnesses.

The tire slip angles are defined as βf = atan
(

vy+lf ψ̇
vx

)
−δf

and βr = atan
(

vy−lrψ̇
vx

)
.

The model state is x = (X,Y, ψ, vx, vy, ω), while the longi-
tudinal acceleration and the steering angle are the control
variables: u = (ax, δf ). The model output is (X,Y ). Note
that, although simple, the DST model captures the main
aspects of the vehicle dynamics and, for this reason, is
suitable to be used inside NMPC algorithms.

5.2 Closed-loop system

A closed-loop system has been implemented in Simulink,
consisting of the plant controlled in feedback by a NMPC
block. The input of the plant is the command u =
(ax, δf ) provided by the NMPC block, which computes
this command on the basis of the plant state and the
reference trajectory. The NMPC block can be either a
standard NMPC, a RV-NMPC algorithm or a RC-NMPC
algorithm. These three algorithms are described below.

5.3 Standard NMPC algorithm

A standard NMPC algorithm was designed, finalized at
lateral and longitudinal control of the vehicle dynamics.
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Volume Reduction. The input constraint set U1 is de-
fined by the optimal bounds ϕ

j1
(wk) and ϕj1(wk), which

produce a shrinking of the volume of U1. As shown in
the example presented below, this shrinking is quite rele-
vant. This results in fewer cost function evaluations, thus
shortening the computation time required to find uk. This
type of volume reduction is not typically implemented in
standard NMPC algorithms.

Warm Start. The optimization algorithm is initialized
with the optimal initial condition ϕc

1(w̃k) which is com-
puted using the SM approximated control law. This can
help accelerate convergence, since it provides initial values
closer to the optimal solutions. In contrast, many standard
NMPC algorithms employ the so-called shift initialization
strategy. This technique sets the initial guess for the de-
cision variables in the current optimization problem to
match the solution obtained in the preceding time step.
Shift initialization is particularly advantageous when the
changes between consecutive time steps are small or when
the system operates within similar regimes over succes-
sive iterations. However, if the system dynamics change
abruptly or if the current optimal solution significantly
deviates from the previous one, initializing the optimiza-
tion problem with the previous solution may lead to poor
suboptimal solution.

5. CASE STUDY: OBSTACLE AVOIDANCE
FOR AUTONOMOUS VEHICLES

In the last decades, a remarkable amount of research and
progress has been made towards creating intelligent tech-
nologies for autonomous vehicles. Significant developments
include adaptive cruise control, lane-keeping assist, and
decision-making algorithms. These technologies are de-
signed with a fundamental objective: enabling autonomous
vehicles to track given reference trajectories, efficiently
avoiding obstacles and ensuring safety. Indeed, as vehicles
become increasingly autonomous, the need for effective ob-
stacle avoidance mechanisms becomes crucial, with these
systems playing an essential role in enhancing the safety
of passengers, pedestrians, and other road users.

In this context, we consider the scenario depicted in
Fig. 2, featuring a rural road with two lanes, one for each
direction, along with an obstacle at the exit of a curve
due to roadworks and a truck traveling in the opposite
direction on the other lane. The vehicle’s objective is to
avoid the construction site and return to its lane before
the arrival of the truck. This is done by designing safety
ellipses around the obstacles as follows:

(x− xv1)
2/a21 + (y − yv1)

2/b21 ≥ 1, (11)

(x− xv2
)2/a22 + (y − yv2

)2/b22 ≥ 1, (12)

where equation (11) describes the roadworks obstacle cen-
tered at xv1 and yv1 , with major and minor axes repre-
sented by a1 and b1, respectively, represented with the red
ellipse in Fig. 2. On the other hand, equation (12) pertains
to the obstacle posed by the truck, represented with the
blue ellipse in Fig. 2. In order to create a critical scenario
for the vehicle, forcing it to return promptly to its lane, the
truck is considered to be in motion at a speed of 20 km/h.
To account for this during optimization, a prediction of its
position is performed, instant by instant, by using a rough
estimate of the truck velocity. This implies that the center
characterized by xv2 and yv2 is not fixed but changes at
every time instant. Note that equations (11)-(12) will be
included as constraints within the optimization problems
(5) and (10).

5.1 Vehicle models

Two models were developed/used.

Plant model. For simulating the real vehicle, the Matlab
Dual-Track Vehicle Body 3DOF block described in MAT-
LAB (2018) is used. The block implements a rigid two-axle
vehicle body model that computes longitudinal, lateral,
and yaw motion. It accounts for body mass, aerodynamic
drag, and weight distribution between the axles due to
acceleration and steering. The main physical parameters
of the model and their values are as follows: mass m =
1575 kg; moment of inertia Iz = 4000 kg*m

2
; distances

CoG-front/rear wheels lf = 1.2m and lr = 1.6m, respec-
tively. The aerodynamic parameters and other details can
be found in MATLAB (2018). The main variables of the
model are the following: X and Y are the coordinates of
the vehicle in an inertial frame, ψ is the yaw angle, vx and
vy are the longitudinal and lateral speeds, respectively, and
ω is the yaw rate. The command inputs of the model are
the vehicle longitudinal acceleration ax and the steering
angle δf .

NMPC internal prediction model. A classical Dynamic
Single-Track (DST) Model is used in the NMPC opti-
mization algorithm to predict the future behavior of the
system. This model considers simplified equations of the
lateral and longitudinal dynamics of a vehicle. The state
equations of the DST model are as follows:

Ẋ = vx cosψ − vy sinψ

Ẏ = vx sinψ + vy cosψ

ψ̇ = ω

v̇x = vyψ̇ + ax

v̇y = −vxψ̇ + 2 (Fyf + Fyr) /m

ẇ = 2 (lfFyf − lrFyr) /Iz

(13)

where the variables and parameters are the same as those
of the Plant. Note however that the prediction model
is a simplified version of the plant, not accounting for
aerodynamic forces and weight distribution between the
axles due to acceleration and steering. Fyf and Fyr are the
lateral forces between the wheels and the vehicle, given by
Fyf = −cfβf , Fyr = −crβr where cf = 2.7·104 N/rad and
cr = 2 · 104 N/rad are the front/rear cornering stiffnesses.

The tire slip angles are defined as βf = atan
(

vy+lf ψ̇
vx

)
−δf

and βr = atan
(

vy−lrψ̇
vx

)
.

The model state is x = (X,Y, ψ, vx, vy, ω), while the longi-
tudinal acceleration and the steering angle are the control
variables: u = (ax, δf ). The model output is (X,Y ). Note
that, although simple, the DST model captures the main
aspects of the vehicle dynamics and, for this reason, is
suitable to be used inside NMPC algorithms.

5.2 Closed-loop system

A closed-loop system has been implemented in Simulink,
consisting of the plant controlled in feedback by a NMPC
block. The input of the plant is the command u =
(ax, δf ) provided by the NMPC block, which computes
this command on the basis of the plant state and the
reference trajectory. The NMPC block can be either a
standard NMPC, a RV-NMPC algorithm or a RC-NMPC
algorithm. These three algorithms are described below.

5.3 Standard NMPC algorithm

A standard NMPC algorithm was designed, finalized at
lateral and longitudinal control of the vehicle dynamics.

The algorithm is based on the optimization problem (5)
and uses equations (13) as the internal prediction model.
The inputs of the algorithm are the plant state and the ref-
erence trajectory. The output is the command u = (ax, δf ),
used to track the reference trajectory, allowing the vehicle
to accomplish the lane keeping task, and to avoid poten-
tial obstacles along the path, while maintaining a desired
speed. This command was parametrized considering four
nodes, i.e., ns = 4, implying that, in the prediction interval
[t, t+Tp], there are a total of 8 command samples: 4 for the
longitudinal acceleration ax and 4 for the steering angle δf .
The values of the NMPC parameters were chosen through
a trial-and-error procedure and are listed in Table 1.

Table 1. NMPC design parameters

Parameter Value
Ts 0.1 s
Tp 3 s
Q diag(1, 1)
R diag(0.01, 1)

Upper bounds [3m/s2, π/4, 3m/s2, π/4]

Lower bounds [−3m/s2,−π/4,−3m/s2,−π/4]

5.4 RC-NMPC and RV-NMPC algorithms

Data Collection. A campaign of 500 simulations of the
closed-loop system with the standard NMPC algorithm
was carried out, considering rural roads with slightly
different curvatures and assuming a speed of 60 km/h.
This simulation campaign provided a database of about
M = 2 · 105 samples. Note that here the database was
constructed by means of closed-loop simulations but it
is also possible to generate it in “open-loop”, just by
evaluating the output of the NMPC law for different values
of the regressor.

Clustering. To reduce the size of the database obtained
in the previous step a clustering procedure was used. The
K-medoids clustering method with the CLARA algorithm
was employed. A reduced set of 104 data was derived,
giving an optimal compromise between amount of data,
memory usage and exploration of the control law domain.

Set Membership Approximation. The clustering process
reduced the database from 2 · 105 to 104 samples, which

were collected in the set {w̃mk, ũmk}10
4

k=1. Using these data,
the SM approach described in Section 3 was applied
to derive the approximated control law ϕc, as well as
the corresponding bounds ϕ and ϕ. The optimal SM
approximation and the bounds for one of the steering angle
commands are shown in Fig. 1. It can be observed that the
interval between the bounds is reduced more than 10 times
compared to the original one.

RV-NMPC online algorithm. The RV-NMPC consists in
solving the OCP (5) where the warm start ustart = ϕc(wk)
is used and the command domain is given by Uc = {uk ∈
Rnsnu : ϕ(wk) ≤ u ≤ ϕ(wk)} where “≤” are element-wise
inequalities (see Boggio et al. (2023a,b) for more details).

RC-NMPC online algorithm. The RC-NMPC consists
in applying online Algorithm 1.

In RV-NMPC and RC-NMPC, equations (13) are used as
the internal prediction model. The design parameters are
the same as those of the standard NMPC, see Table 1.
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Fig. 1. Set Membership approximation of δf .

5.5 Comparison between the NMPC algorithms

A Monte Carlo (MC) campaign of 100 trials was carried
out, considering rural roads with different curvatures com-
pared to those used during the Data Collection phase. The
reference velocity was 60 km/h.

The simulations were run on a Dell Precision 5820 (Proces-
sor: Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz). The op-
timization problems were solved using uniquely the Mat-
lab function fmincon with the Sequential Quadratic Pro-
gramming (SQP) algorithm. It should be noted that the
proposed approach can be combined with any optimization
algorithm to improve its numerical efficiency. However, the
most significant advantages are observed when it is used
with the single shooting method, where the optimization
variables are only the command inputsu.

The performance of the three NMPC algorithms was
compared using the following indexes:

(1) Number of evaluated cost functions (Eval. Cost.
Funct.) for finding the minimum;

(2) NMPC total computational time (NMPC Time);
(3) Optimization computational time (Opt. Time);
(4) Root-Mean-Square (RMS) Error both for the Lateral

Error (Lat.E.) and the Orientation Error (Orient.E.);
(5) Minimum distance from the obstacles (Min.Dist.).

Note that “NMPC total computational time” refers to the
time elapsed between when the NMPC receives inputs
and when it produces the commands. This means that
this time takes into account not only the optimization
part but also the entire pre-processing phase. Specifically,
in the case of RC-NMPC and RV-NMPC, it includes
also the use of the SM functions to obtain the warm
start and the bounds. On the other hand, “Optimization
computational time” only considers the time required by
the solver (fmincon) to find the optimal command. Table 2
shows the mean value of the performance indexes for the
three NMPC algorithms. The Mean Value represents the
average number of evaluated cost functions, computational
times, RMS errors and minimum distances throughout
the Monte Carlo simulations. To compute the RMS error,
only the reference tracking phase has been taken into
consideration, discarding the overtaking part where the
vehicle must move away from the reference. Indeed, to
make the scenario challenging, the same reference, i.e., the
center of the road, has always been considered, leaving
the NMPC to autonomously avoid the obstacle. Note that
this is more challenging than just imposing a reference



222 Mattia Boggio  et al. / IFAC PapersOnLine 58-15 (2024) 217–222

change to obtain the overtaking. Clearly, the RMS, being
referred to the center of the first road, becomes very large
during the obstacle avoidance phase. Finally, the minimum
distance from the obstacle highlights that throughout the
entire overtaking maneuver, a safe distance was always
maintained from all obstacles. Fig. 2 shows an example of
an obstacle avoidance using the RC-NMPC algorithm.

Table 2. Comparison of the NMPC algorithms

St-NMPC RV-NMPC RC-NMPC

Mean Value Mean Value Mean Value

Eval. Cost Funct. 194.65 16.64 4.52

NMPCTime [s] 0.0926 0.0146 0.0091

Opt. Time [s] 0.0918 0.0102 0.0049

RMSLat. E. [m] 0.2105 0.2179 0.2256

RMSOr. E. [rad] 0.0135 0.0137 0.0142

Min.Dist. [m] 2.814 2.806 2.792
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Fig. 2. Example of obstacle avoidance using RC-NMPC

From these results, we can observe that: i) The RC-NMPC
reduces the number of function evaluations by a factor
of approximately 50 compared to the standard NMPC
and 4 with respect to the RV-NMPC. ii) The RC-NMPC
improves the computational time of 5 ms compared to
the RV-NMPC and about 10 times with respect to the
Standard NMPC. The discrepancy between this result
and the one obtained for the cost functions is due to the
fact that the RC-NMPC algorithm requires the evaluation
of the SM approximated control law before performing
optimization, which is not present in the standard NMPC.
This operation implies additional computation time. Re-
search activities are currently being dedicated to reduce
this additional time. iii) Regarding the times required to
solve the OCP with fmincon, compared to the previous
index, more pronounced improvements are obtained both
with respect to the Standard NMPC (a factor of 20) and
to the RV-NMPC (a factor of 2). In particular, a quadratic
computational speedup is expected, see the paragraph
“Dimension Reduction” in Section 4. iv) Finally, the RMS
errors and the minimum distances are quite similar for all
the NMPC algorithms.

6. CONCLUSIONS

The paper has proposed a data-aided approach to improve
the numerical efficiency of NMPC algorithms, based on
the Set Membership approximation method. The approach

has been tested in a simulated case study, concerned
with an obstacle-avoidance maneuver in an autonomous
driving scenario. The obtained results demonstrate its
effectiveness, in terms of computation time, with respect to
both the standard NMPC and the RV-NMPC strategies.
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