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Abstract: Background: Inflammation is caused by an excess of Sodium ions inside the cell. This
generates a variation in the cell’s membrane electric potential, becoming a steady state from a ther-
modynamic viewpoint. Methods: This paper introduces a thermodynamic approach to inflammation
based on the fundamental role of the electric potential of the cell membrane, introducing an analysis
of the effect of heat transfer related to the inflammation condition. Results: The direct proportionality
between the reduction in temperature and the increase of Na+ outflow may ameliorate the inflamma-
tion cascade. Conclusions: Based on these ion fluxes, we suggest the consideration of a ‘companion’
electromagnetic therapeutic wave concept in support of the present anti-inflammatory treatment.

Keywords: inflammation; ELF-EMF; ion fluxes; thermodynamics of biosystems; biomagnetism;
membrane potential

1. Introduction

Based on experimental evidence of a magnetic field’s interaction with biological tis-
sues in the areas of immunology [1–3] and oncology [4–6], magnetic field therapy has
continuously attracted interest [7] as a potentially complementary treatment to control the
inflammatory response [8–10]. Depending on frequency and amplitude, electromagnetic
field therapies have been shown to restore equilibrium in reactive oxygen species (ROS); sta-
bilize cytosolic Ca2+ [7,10], decreasing calcium-transport effects [11,12]; modulate traumatic
brain injury [13]; and reduce both postoperative infections and bacterial and viral-related
inflammatory responses [14,15]. Ion fluxes across the cellular membrane are essential for
controlling the cell’s metabolism and state of activation; cells use genes encoding proteins to
regulate membrane permeability for ions that orchestrate cell–cell communication, energy
storage, and cytoskeleton assembly to address responses to environmental changes [16].
In the context of inflammation, fundamentally important ion channels include connexins,
pannexins, cell–cell channels, unopposed hemichannels, and P2 receptors (P2x, P2z). In-
deed, the progression of inflammation begins when the cell opens connexin and pannexin
(Px1) hemichannels, followed by discharge of adenosine triphosphate (ATP) into the cell’s
environment, resulting in the activation of intracellular signaling pathways concerning the
activation of purinergic type 2 receptors (P2R). While at present, the activation process is
unclear, the agonist tumor necrosis factor receptors TNFR-1 and TNFR-2 are thought to
be responsible for the cell’s membrane potential increase related to the Na+ channel [17].
Indeed, ion transport across cell membranes generates membrane potentials (Na+, K+ and
Cl− transport) and provides the osmotic gradients (Na+ and Cl− fluid transport) required
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for transmembranous and paracellular fluid transport [18]. This process of membrane
potential increase alone can explain the neuropathic effects related to inflammation.

Inflammation represents the primary response of the immune system to infection
or tissue injury [19]. Generally, an inflammatory process starts with the cell’s membrane
potential increasing; a process mediated by the Na+-channel [17]. The main passive
transport influx of Na+ is the ENaC (Epithelial Sodium Channel), while Na+/K+-ATPase
facilitates the main active transport outflow of Na+ and inflow of K+. In the inflammation
state, sensory transduction of pain [20] has been shown to depend on voltage-gated Na+,
Ca2+, and K+ channels, ligand-gated ion channels, purinergic receptors, and transient
receptor potential channels [21]. Moreover, in macrophages, high salt leads to a Na+/Ca2+-
exchanger 1 (NCX1)-dependent increase in intracellular Na+ levels [22], highlighting a
strict relation between the Na+ and Ca2+ fluxes. Furthermore, some Ca2+ channels mediate
neurotransmitter release and Ca2+-dependent enzyme activation [23]. Thus, ion channels
and transporters control the intracellular calcium concentrations [24] and the endosomal
pH [25], which impact the immune system response. Indeed, the rise in the intracellular
calcium concentration generated by SOCE (Store-Operated Ca2+ Entry) [24] is related to
downstream B- and T-cell receptors (BcR and TcR), enhanced by the transient receptor
potential cation channel TRPM7, in turn influenced by variations in Mg2+ concentrations
or the Fc receptors pathways [26]. Modification of the permeability of calcium channels or
transporters can be induced by several different mechanisms [27]:

• Engagement of Receptor-Operated Calcium Entry (ROCE), modulated by auto- or
paracrine adenosine triphosphate (ATP), adenosine diphosphate ribose (ADPR), and
multiple other chemical ligands or physical stimuli. In this context, the inositol-
phosphate 3 (IP3) receptor channel, which allows calcium fluxes into the cytoplasm,
is activated by phospholipases and is paired with the production of diacylglycerol
(DAG), which is a ligand for some receptors and channels. Intracellular phospho-
lipases, modulated by magnesium or zinc interchanges, determine signal cascades
downstream of the B- and T-cell receptor (BcR and TcR);

• Premature release of calcium from Store-Operated Ca2+ Entry (SOCE);
• Variations in Voltage-Operated Ca2+ Entry (VOCE [20]), and
• Variations in Na+ driving effects.

This biochemical evidence points to a fundamental role of ion transfer in the process
of inflammation, and it also emphasizes a concomitant variation of the cell’s membrane
potential. Specifically, the role of Na+ and Ca2+ is thought to be essential for the control
of inflammation—Na+ in particular, because this ion is the cause of the beginning of the
inflammatory state. To summarize, the aforementioned biomedical evidence allows us
to state the following:

• Energy processes involve mitochondria activities; as such, the control of energy fluxes
must be considered as a pillar of any approach to inflammation;

• Na+ flux is at the inception of inflammation; as such, a decrease in Na+ inner concen-
tration can represent a fundamental therapeutic strategy to more effectively manage if
not reduce inflammation. In this context, the role of Ca2+ appears to be important.

In this paper, we therefore analyze such ion transport based on irreversible thermo-
dynamics. We propose a novel concept for anti-inflammation therapy by controlling ion
fluxes, and consequently, electromagnetic therapy is suggested as an adjuvant tool to
improve current, conventional treatment modalities. To do so, Section 2 describes the ther-
modynamic approach, while Section 3 summarizes the results. The last section discusses
potential biomedical implications. As no experimental support is provided, the analysis
developed here is theoretical only; however, it represents a first thermodynamic approach
to the analysis of inflammation.
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2. Methods

The cell membrane presents an electric potential difference, ∆ϕ, generated by the
concentration of different ions (Na+, K+, Cl−, Ca2+, etc.): ∆ϕ is measured between the
cytoplasm and the extracellular environment in relation to the environment [28]; conse-
quently, it assumes a negative value. The membrane’s electric potential is theoretically
described by the Goldman–Hodgkin–Katz equation [29–32]:

∆ϕ =
RT
F

log10

(
PNa+ [Na+]outside + PK+ [K+]outside + PCl− [Cl−]outside

PNa+ [Na+]inside + PK+ [K]
inside + PCl− [Cl−]inside

)
(1)

where [A] is the concentration of ion A in mol m−3, R = 8.314 J mol−1K−1 is the universal
constant of ideal gasses, T stands for the absolute temperature, F is the Faraday constant,
and P denotes the relative permeability, such that PNa+ = 0.04, PK+ = 1, and PCl− = 0.45.
The concentration, chemical potential, and electric membrane potential of some ions,
in normal cells, are reported in Table 1.

Table 1. Concentration, chemical potential (in water solution), and electric membrane potential of
some ions in normal cells [33].

Ion Extracellular Intracellular Chemical Membrane
Species Concentration Concentration Potential µi Potential Ei

×10−3 [M] ×10−3 [M] ×103 [J mol−1] ×10−3 [V]

Na+ 18 150 −261.89 +56
K+ 140 5 −283.26 −89
Cl− 120 7 −131.26 −76
Ca2+ 1.2 0.1 −553.04 +125

Regarding inflammation and the definition of a cell’s membrane potential, the increase
in sodium potential can be obtained by Na+ inflow into the cell. This Na+ flux determines
the electric work corresponding to the power requirement:

This Na+ flux determines a membrane potential variation corresponding to the power
requirement:

Ẇel,Na+ = JNa+ · E 4π⟨R⟩2 dmemb (2)

where J = |J| is the flux density [A m−2], E = |E| depicts the electric field, ⟨R⟩ is the mean
value of the cell’s radius, and dmemb stands for the cell membrane depth. The electric field at
the cell membrane can be evaluated considering that the electric potential at a normal cell’s
membrane is approx. –70 mV. The thickness of the membrane is on the order of 0.004 µm,
so the electric field of the cell membrane can be approximated as −1.75 × 107 V m−1.

Now, we consider the first law of thermodynamics [34]:

Q̇ − Ẇel,Na+ =
dU
dt

(3)

where Q̇ represents the heat power, U = m c T is the internal energy, m = ρ V is the mass
of cell, ρ is the cell density, V is the cell volume, c is its specific heat, and T stands for
temperature. In the sodium inflow process, the heat power is null. Consequently:

ρ c
dT
dt

V = JNa+ · E 4π⟨R⟩2 dmemb (4)

where ρ ≈ 103 kg m−3 denotes the cell density, and c ≈ 4186 J kg−1 K−1 is the specific heat
of the cell.

Hyperpolarization (see Figure 1) determines the activation of the Ca2+-K+ channel [35,36],
with the consequence that the Ca2+-K+ channel emerges as a fundamental control lever of
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the membrane’s electric potential. In this context, water influx has been shown to be critical as
well [35,37].

Figure 1. The process of inflammation, from sodium inflow excess to inflammation inception
that determines the membrane’s electric potential variation, with a consequent stationary state
of inflammation.

Next, proteins play a fundamental role in ion transport; those in the cytosol can
be modified with regard to their functions by phosphorylation or dephosphorylation.
An ion actively crosses the membrane against its electrochemical potential, whereby the
necessary energy is derived either from the hydrolysis of ATP or from the movement
of a co-transported or coupled ion along its electrochemical gradient. In this context,
the role played by the H+-ATPase is essential, because it moves positive charges into the
cell while generating a large membrane voltage as well as a pH gradient [38–41]. Protein
phosphorylation is an important cellular regulatory mechanism because many enzymes
and receptors [42–44] are activated or deactivated by phosphorylation [45–48].

This implies the activation of ion fluxes of potassium, chlorine and calcium by Na+-
K+-ATPase, cAMP, and CFTR:

dU
dt

= −∇ · J V = −V ∑
Cl− ,K+ ,Ca2+

∇ · JCl− ,K+ ,Ca2+ (5)

with a related variation in the cell’s membrane electric potential:

∆ϕNa+ = ∆ϕCl− + ∆ϕK+ + ∆ϕCa2+ (6)

Moreover, Equation (4) states the direct proportionality between the increase in tem-
perature, i.e., dT/dt > 0, and the increase in Na+ ions inside the cell. Thus, a cell must
export heat power to decrease its temperature:

δQ̇ = −α (T − T0) dA (7)

where α ≈ 0.023 Re0.8Pr0.35λ/⟨R⟩ denotes the coefficient of convection, with λ ≈
0.56 W m−1K−1 denoting conductivity, Re ≈ 0.2 denoting the Reynolds number, and
Pr ≈ 0.7 denoting the Prandtl number [49]. A is the area of the cell membrane, V stands for
the cell volume, and ⟨R⟩ = dV/dA ≈ V/A is the mean radius of the cell.

3. Results

Our analysis focuses on the thermophysical consequences of the aforementioned ion
fluxes in inflammation processes. In particular, we determine how ion fluxes induce the



Biomedicines 2024, 12, 2534 5 of 11

need for heat transfer and restoration of the healthy cell’s membrane electric potential by
inducing new ion fluxes. Indeed, considering Equation (7), we can see that if an increase in
heat outflow is induced, a Na+ outflow follows, as expressed in Equations (2) and (4):

Q̇ = −α (T − T0) A =
dU
dt

= ρ c
dT
dt

V = JNa+ · E 4π⟨R⟩2 dmemb (8)

which implies:
δQ̇ < 0 ⇒ JNa+ < 0 (9)

The approach developed here highlights, for the case of inflammation, the strict
relation between the temperature increase as a consequence of an excess of Na+ inflow.
Consequently, in such an inflamed milieu, a cell generates a change in ion fluxes, i.e., Cl−,
K+, and Ca2+, and thermal outflow.

Furthermore, such ion fluxes then emphasize the need for membrane potential control,
with all the biophysical consequences for cell behavior. Now, considering that the variation
in the electric membrane potential ϕ can be expressed as [33]:

nF dϕ = dH − T0 dS − 2.3 n RT0 d(pH) = dH − δQ − 2.3 n RT0 d(pH) (10)

where n is the number of moles of ion charges considered, dH is the the enthalpy variation,
T0 is the environmental temperature of the cell, dS is the the entropy variation, R and F are
the universal ideal gas and the Faraday constants, respectively, and dpH is the variation in
the pH between the two membrane surfaces. While the variation in the membrane electric
potential is caused by the Na+ and K+ fluxes, the membrane voltage regulation, however,
is controlled by the Cl− flux, so changes in membrane voltage cause a flux of Cl− to restore
normal conditions.

Now, in keeping with our goal to see if electromagnetic field therapies may be able to
support current conventional medical strategies to combat inflammation, and considering
Equations (6) and (10), it follows:

nNa+ F dϕ − dHNa+ + 2.3 nNa+ RT0d(pH)Na+ = −δQin f l (11)

That is, under normal conditions, the temperature difference T − T0 remains constant,
but during inflammation, it increases, so this ‘extra’ outflow of heat −Qin f l is required to
alleviate inflammation and restore ‘normal’ conditions. This last relation highlights the link
between the membrane’s electric potential and cross-membrane heat transport, which em-
phasizes the control of the cell’s energy generation, i.e., the mitochondria activity. From this
last equation, it is possible to evaluate the fluxes of Na+ ions that generate inflammation:

∆nNa+ =
ρ c (Thigh − T)V

F ∆ϕNa+ − ∆hNa+ + 2.3 RT ∆(pH)Na+
(12)

where T = 37.4 ◦C is the temperature of the cell under normal conditions, and T0 = 37.0 ◦C
the cell’s environmental temperature.

The Na+ variation determines a change in the membrane’s electric potential. Moreover,
temperature determines changes in the heat flux, so we expect that a change in sodium
flux occurs as well. Experimentally, this means that during inflammation, temperature
variation must determine changes in the electric membrane potential. We have numerically
simulated this effect for a range in temperature [19–40] ◦C, as represented in Figure 2.
As stated in the Introduction section, while we have not yet performed experimental works
ourselves, in comparing our results with experimental data reported in literature, we find
good agreement: e.g., at 19 ◦C, a decrease in potential of 3.36 mV is reported (compared
with the results of ref. [50] of (2.0 ± 2.1) mV), while for 25 ◦C, a decrease in the potential of
2.27 mV is reported (compared with the results of ref. [50] of (1.6 ± 2.2) mV) and at 31 ◦C,
a decrease of potential of 1.17 mV is reported (compared with the results of ref. [50] of
(0.8 ± 2.0) mV).
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Figure 2. Membrane electric potential variation in relation to temperature variation, evaluated using
Equations (7) and (10).

Our results are also confirmed in ref. [51], which reports that under complete Freund’s
adjuvant (CFA)-induced peripheral inflammation, the electric membrane potential changes
from (−37.7 ± 1.5) mV in the control to (−42.5 ± 1.1) mV under inflammation.

Now, to introduce a possible thermodynamic approach for an electromagnetic therapy
to reduce inflammation, we consider that electromagnetic waves generate a radiation
pressure [52]:

p =
ε E2

2
=

B2

2 µ
(13)

where E and B are the amplitudes of the electric field and magnetic field components,
respectively, µ is the magnetic permeability, and c = 1/

√
µ0ε0 ≈ 3 × 108 m s−1 is the

velocity of light, with ε0 = 8.854 × 10−12 A s N−1m−1 being the electric permittivity and
µ0 = 4π × 10−7 H m−1 being the magnetic permeability in a vacuum, respectively. As a
consequence of this pressure, the membrane is subjected to an elastic force [53]:

F =
ε E2

2
A 2π r (14)

where A is the surface of the membrane that the electromagnetic wave hits, while r repre-
sents the mean value of the internal cell radius. Due to the membrane surface deformation
caused by this force, the membrane’s electric potential is affected by local variation:

∆ϕ = E A =

√
Fel A
π ε r

(15)

forcing the ion channels to open for inflows and outflows. As such, since in our quest to
mitigate inflammation, we need to force Na+ outflow only, we must find the values of E
and B.

To show a use case example of this approach, we consider nano-mechanical responses
to elastic perturbations [53,54]. Therefore, concerning, e.g., osteocytes ,we can summarize
the following properties:

• Diameter in the range of 20–100 µm
• Membrane depth in the range of 5–10 nm
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To validate the current model, we start with the experimental results obtained in
ref. [55]. Considering the previous radius, we can obtain the range of frequencies use-
ful to reduce inflammation, i.e., (13.5 ± 1.4) Hz for 20 µm with its harmonic frequen-
cies and (0.6 ± 0.1) Hz for 100 µm with its harmonic frequencies. In particular, some
harmonic frequencies are in the ranges of (1.9 ± 0.2) Hz, (4.5 ± 0.5) Hz, (13.5 ± 1.4) Hz,
(26.9 ± 2.7) Hz, (53.8 ± 5.4) Hz, (80.7 ± 8.1) Hz, etc. The experimental findings in ref. [55]
reveal the following:

• 2 Hz affects inflammation by downregulating TNF-α and IL-1β
• 4 Hz reduces oxidative stress;
• 12 Hz improves local microcirculation;
• 15 Hz increases alkaline phosphatase activity (ALP) and chondrogenesis;
• 30 Hz affects inflammation by downregulating IL-10;
• 50 Hz impacts inflammation by reducing chemokine production;
• 75 Hz upregulates A2A and A3 adenosine receptors and induces anti-inflammatory

effects.

These frequencies are in agreement with the ones obtained using our model. Another
confirmation of our thermodynamic approach is the evaluation of Fe2+ fluxes developed in
ref. [56], whose results concur with the values of iron accepted in medicine.

4. Discussion and Conclusions

This paper introduces a thermodynamic approach to inflammation based on the fun-
damental role of the cell membrane’s electric potential. It highlights how heat transfer and
ion transport allow the cell to control the membrane’s electric potential. Moreover, we
suggest a ’companion’ electromagnetic therapy in support of the present anti-inflammatory
treatment by proposing a possible mechanism of action, which up until now has not been
fully understood. Supporting our conjecture, we cite ref. [57], which used conducting poly-
mer microwires to control the resting membrane potential of Escherichia Coli cells, with the
aim of providing a new, non-invasive, cellular-scale tool to control this membrane potential
with a high spatial precision. This paper demonstrates how the ability of controlling the
membrane potential allows us to induce cells to pump out ions in response to changes in
polarization. As such, we believe that accelerating Na+-outflow to curtail inflammation,
as proposed here, may eventually become technically feasible. Next, experimental data con-
firming the effects of electromagnetic fields are summarized in Table 2; some of them refer
to clinical studies such as ref. [7] which, for instance, reported a reduction in inflammation
in osteoarthritis related to the use of a 1.5 mT magnetic field (75 Hz). Table 2 highlights
immunological studies that clearly demonstrate that low-frequency magnetic field therapy
effectively interacts with cells and tissues. This therapeutic modality may therefore present
not only a viable alternative but also a powerful complementary approach to existing treat-
ments, delivering a faster reduction of the inflammatory response. The growing interest
in magnetic field therapy is well-founded, as published research strongly indicates that
this non-invasive and cost-effective method may surpass the safety of drugs and surgical
procedures in reducing inflammation [55,58,59].

Table 2. Examples of evidence of possible use of ELF-EMF in medicine from the literature [7].

Disease Frequency [Hz] Key Finding Reference

Arthritis 60 Reduction in pain and inflammation [8]
Back pain 64 Statistically significant for reducing pain [60]
Carpal tunnel 20 Statistically significant pain reduction ∗ [61]

* short- and long-term.

In a literature review, ref. [62], ELF-EMF therapy (ELF—extreme low frequency; EMF—
electromagnetic field) in orthopaedic practice was examined for its ability to enhance tissue
repair and growth, in addition to both a chemical approach [63–65] and a possible alter-
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native therapeutic approach. Pre-clinical studies have indicated that biophysical stimuli
interact with cell membranes, hence agreeing with our findings. This therapy has been
shown to increase the proliferation, synthesis, and release of growth factors in bone tissue.
In particular cells, EMFs have been found to have anti-inflammatory and chondropro-
tective effects. In animal studies, this treatment nearly doubled the mineralization rate
of newly formed bone, inhibited the progression of osteoarthritic cartilage degeneration,
and preserved cartilage quality. Biophysical stimulation has been successfully used in
clinical settings to promote the healing of fractures and non-unions, as well as to improve
joint function and reduce inflammation in periarticular tissues. The effects of pulsed ra-
diofrequency electromagnetic fields (PRF-EMFs) exposure were studied in ref. [66] on the
inflammatory, antioxidant, cell proliferation, and wound healing characteristics of human
primary dermal fibroblasts collected from patients with venous leg ulcers. The results
emphasized the ability of PRF-EMFs to modulate the TGFβ, COX2, IL6, IL1β, and TNFα
gene expression in exposed ulcers. This reduced the related inflammation and confirmed
that exposure to PRF-EMFs can represent a strategy to help tissue repair, regulating me-
diators involved in the wound healing process. Concerning the effects of EMF on bone
and joint formation, maintenance, and regeneration, the results reviewed in ref. [67] point
out that EMFs stimulate chondrocyte proliferation, differentiation, and extracellular matrix
synthesis via the release of anabolic morphogens such as bone morphogenetic proteins
and anti-inflammatory cytokines by adenosine receptors A2A and A3 in both in vitro and
in vivo investigations.

In summary, our thermodynamic approach to inflammation modeling highlights the
pivotal role of the cell membrane’s electric potential as well as the direct correlation be-
tween temperature elevation and the increase in Na+ ions within the cell. This suggests
that therapeutically facilitating Na+ outflow could potentially alleviate the inflammatory
burden. Cautiously extrapolated, as a result of these ion exchanges, we propose con-
sidering an accompanying electromagnetic therapeutic wave concept to bolster current
anti-inflammatory interventions.
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