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Abstract: Virtual experiments (VEs) and digital twins (DTs), pivotal for realizing European strategic
policies on sustainability and digitalization within Industry 4.0 and the European Green Deal, simulate
physical systems and characteristics in a virtual environment, with DTs incorporating dynamic
inputs from and outputs to the real-world counterpart. To ensure confidence in their use and
outcomes, traceability and methods to evaluate measurement uncertainty are needed, topics that
are hardly covered by the literature so far. This paper provides a harmonized definition of VEs
and DTs and introduces a framework for evaluating measurement uncertainty. Furthermore, it
discusses how to propagate the uncertainty of the contributions coming from the different parts of
the DT. For the core part of the DT, the framework derived for VEs can be used. For the physical-
to-virtual (P2V) connection and the virtual-to-physical (V2P) connection, additional sources of
uncertainty need to be considered. This paper provides a metrological framework for taking all these
uncertainty contributions into account while describing a framework to establish traceability for DTs.
Two case studies are presented to demonstrate the proposed methodology considering industrially
relevant measuring instruments and devices, namely, a coordinate measuring machine (CMM) and a
collaborative robot arm (cobot).

Keywords: virtual experiment (VE); digital twin (DT); measuring instrument; uncertainty; metrology;
coordinate measuring machine (CMM); robot; collaborative robot arm (cobot)

1. Introduction

In the course of digitalization, the importance of modeling and simulating real-world
processes in a computer is rapidly increasing. For example, nowadays, simulations are
used to gain a better understanding of a corresponding real experiment or to support the
planning of new experimental set-ups. In this development, the task of metrology institutes
is to develop rules to ensure confidence in simulation results so that they can be used in a
similar way as, or in conjunction with, real measurements.

In this paper, we distinguish between virtual experiments (VEs) and digital twins
(DTs). Both are simulation models that accurately replicate physical systems and their
characteristics in a virtual environment. In contrast with VEs, DTs also include dynamic
updates of the virtual model according to the observed state of its real counterpart and
a dynamic control of the latter. Hence, they include a physical-to-virtual (P2V) connection,
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through which the physical entity is transferred into the virtual environment, and a virtual-
to-physical (V2P) connection, which implements control strategies to achieve target results in
the physical system [1].

In the literature, various definitions of the term “digital twin” can be found, covering
a wide range of applications. The term “virtual experiment”, on the other hand, is almost
exclusively used in the context of science education describing (interactive) simulations [2].
In other disciplines, the above-described simulation model without automatic data ex-
change between the physical system and the digital model (which will be called VE in
this manuscript) is referred to as virtual twin [3], computer model [4,5], digital model [6], or
simply model [7]. The following two paragraphs summarize the concepts of VEs and DTs as
described in the literature.

1.1. VEs in the Literature

In ref. [8], a VE is stated to be a numerical model of an experiment or a measurement process.
It produces virtual data whose properties reflect those of the data observed in the corresponding
real experiment. A formal mathematical description of a VE using the notation of a statis-
tical model with attention to the challenges in measurement processes is given in ref. [9].
In ref. [10], VEs are carried out to mimic the physical experiment and to investigate the
behavior of the real measurement device. Illuminating the connection between a VE and
the required digital representation of the measurement instrument, in refs. [11,12], the term
virtual instrument is used for such a scenario. In this context, one of the main goals of the
VE is to perform an uncertainty evaluation in conjunction with real measurement data,
which will also be of primary interest in this work. In other publications where specific
measurement devices and processes are modeled, similar terms describing their virtual
representation are used, like virtual coordinate measuring machine (VCMM) in refs. [12,13],
virtual flow meter in ref. [14,15], or virtual tilted-wave interferometer in ref. [10].

Another formal mathematical description of a similar concept can be found in refs. [4,5],
where the term computer model is used for the implementation of complex mathematical
models in computer codes.

In several publications, the concept that we call VE in this manuscript is only defined
in the context of DTs, mainly with the aim of distinguishing the DT from general computing
models and simulations [6]. In ref. [7], the term model is used. There, it is stated that a DT
without a physical twin is a model. Chinesta et al. [3] use the term virtual twin for emulating a
physical system by one, or more, mathematical model to describe its complex behavior. According
to their definition, such usual numerical models in engineering practice are something static
because they are not expected to be continuously fed by data so as to assimilate them [3]. In ref. [6],
where the terms digital model, digital shadow, and DT are defined, the automatic flow of data
is also the key aspect to distinguish between the three concepts. There, a digital model is a
digital version of a pre-existing or planned physical object [...] with no automatic data exchange
between the physical model and digital model. They state that this means once the digital model
is created, a change made to the physical object has no impact on the digital model either way. A
digital shadow, on the other hand, has a one-way flow between the physical and digital object.
This means that a change in the state of the physical object leads to a change in the digital object
and not vice versus. A flow of data in both directions then characterizes a DT. Here, a change
made to the physical object automatically leads to a change in the digital object and vice versa [6].

1.2. DTs in the Literature

The concept of DTs was introduced by Grieves and Vickers from NASA as a virtual rep-
resentation of a physical object also containing digital information of such product [16,17]. The DT
concept was developed in the context of product life-cycle management, and has since been
applied in many fields: predictive maintenance [18] and real-time control and monitoring
of buildings and bridges for civil engineering [19], manufacturing technologies [20–22] and
assembling [20,23] and disassembling [24] processes and related products [1], workflow
for factory logistics [25,26], healthcare [27,28], energy applications for plants to optimize
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resource production efficiency [29–31], and smart cities to control and optimize traffic and
resources within an integrated IT framework [32,33]. Subsequent definitions tailored the
concept, according to the needs of various application contexts in technological industries
and fields distinguished by high automation capabilities, as those previously mentioned
specifying, as depicted in Figure 1, that a DT includes the following:

• A physical entity, representing the entity the DT models and controls embedded in a
physical environment tasked to carry out certain physical process; and

• A virtual entity fit in a virtual environment, i.e., the digital representation of the physical
entity and its environment.

A further distinguishing element of a DT is the two-way twinning, i.e., the two-way
automatic connection and data flow, between the physical and the virtual asset. In particular,
it can be distinguished by a P2V connection, through which the physical entity is transferred
to the virtual environment by means of sensors measuring relevant quantities to represent
the current state of the entity, and a V2P connection aiming at controlling the physical entity
and the physical process. The control is performed based on a decision-making engine
embedded in the virtual environment. Specifically, the virtual process simulates and models
the physical process based on the sensed and measured state of the physical entity and
environment and predicts the next state of the system considering the task to carry out.
Accordingly, based on the predicted outcome, control strategies can be deployed, by means
of actuators through the V2P connection, to modify the state of the physical entity with the
scope of optimizing the process and/or the outcome, i.e., preventing defects, out-of-control
states, damages, etc. [1]. As a matter of fact, a DT cannot be considered as only data; rather,
it shall include algorithms describing the asset’s behavior and deciding on actions to deploy
in the process [18,34], while predicting the system’s response to unexpected events, before
they occur, and preventing faults, damages, and hazards [18,35]. Measurement, and in
particular metrology, covers a pivotal role in DTs since it ensures accurate measurement
(i.e., sensing) and deployment (i.e., actuation) throughout the twinning phases [1].

Figure 1. DT main components and scope.

Such a large adoption of DT technologies results in a massive literature, sometimes
inorganic and providing manifold definitions for DTs [36]. Recent literature reviews
[1,18,22,36,37] showed that, often, DTs are confounded with digital models, i.e., simulation or
digital representations in which data flow manually from the physical to the virtual entity,
thus being static, or with digital shadows, i.e., simulation models that are automatically
updated to reflect the current state of the physical entity and environment, but with
no automatic real-time control. The widespread interest in DTs has therefore led to the
development of standards for the unambiguous definition of the concept.

Specifically, ISO 23247:2021 defines the DT as a fit-for-purpose digital representation,
i.e., data element representing a set of properties of an observable manufacturing element (OME),
with synchronization between the element and its digital representation [38]. ISO 23247:2021
specifies an Internet of Things framework to build and deploy DTs in manufacturing tech-
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nologies. In particular, while highlighting the main features, e.g., fidelity and granularity
(i.e., the representation detail of the DT), ISO 23247:2021, although not including it in the
definition, specifies, according to the literature, the main applications, i.e., detection of
anomalies, achievement of objective by real-time correction, off-line analytics, and predic-
tive maintenance, while relying on the update rate, defined on a task-specific base, and
relying on the previous and current state of the OME to analyze the current condition or
predict its future state [38].

Similarly, ISO 30173:2023 defines the DT as digital representation, i.e., a digital entity
representing either a set of properties or behaviors or both of one or more observable elements of
a target entity, i.e., an entity providing a functional purpose in reality, with data connections
that enable convergence between the physical and digital states at an appropriate rate of synchro-
nization [39]. ISO 30173:2023 provides more general definitions of elements relevant and
distinctive of the DT and its framework going beyond the manufacturing technology scope
of ISO 23247:2021. Such generalization introduces the concept of a DT system as a system
providing functionalities for the DT composed of inter-operating target entities, digital entities,
data connections, and models, data and interfaces involved in the data connection process, and still
includes, although not as a prominent feature, the control loop used to receive data from the
target entity and issue back a signal to modify its behavior [39].

ISO standards particularly stress the difference between DTs and other typical enabling
technologies of Industry 4.0. In particular, they point out that the two-way twinning
and control loop is an essential feature of DTs, distinguishing them from VEs and other
simulation models, and that Internet of Things is an enabling technology of DTs, which on
its turn is an enabling technology for cyber-physical systems [39]. The twinning is realized
by sensors (P2V) and actuators (V2P) whose metrology is of utmost relevance to establish
traceability and guaranteed trustworthiness in the DT outcome. The standards [38,39]
introduce some performance metrics and terminology, e.g., accuracy and fidelity, and state
the relevance of performance verification and validation, which are consistent with the
literature. However, the proper metrological assessment of performances, which caters to
the concepts of traceability and measurement uncertainty, is not defined.

DTs are mostly applied to manufactured products during their mission operation [40]
or to processes that are related to either manufacturing [41,42], logistics [26] or energy [29].
When considering complex systems, the DT can be viewed as a convolution in series
and in parallel with many DTs exchanging information [43]. Thus, data exchange and
the metrological traceability and trustworthiness of the data are of utmost relevance to
associate confidence intervals with the outputs of the DT. Therefore, catering to uncertainty
in the P2V twinning (i.e., sensing) and in the V2P twinning (i.e., of the actuators) is of
utmost relevance to provide the confidence of usability of predictions, correction, and
control workflow for quality management [35,44]. This becomes even more urgent when
different systems are connected by DT technology or when the DT features and includes
quality control processes [45–47].

The literature shows that, only since 2020 and the seminal paper of Karve et al. [48],
the concept of measurement uncertainty has been introduced in DTs. Similarly, little
attention has been paid to DTs of measuring instruments, and only recently, the role
of metrology for digital twins (and vice versa) as been highlighted in [49]. Therefore,
measurement uncertainty is becoming an urgent requirement for the holistic representation
of manufacturing processes within cyber-physical systems using DT technology. The
literature, to the best knowledge of the authors, reports only two applications, one tackling
a fringe projection system [50] and another a coordinate measuring machine (CMM) [51,52].
In the latter one, also the concept of a digital metrological twin (D-MT) was introduced.
Härtig et al. [52] define a D-MT as a numerical model that depicts a specific measurement process
and indicates an associated measurement uncertainty for a specific measured value, which is traceable
to the units of the international system of units, having all parameters traceably determined and
including traceable and validated measurement uncertainty. The D-MT aims at describing a
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complete measuring process and can be used in parallel with real measurements or for
analyzing a real measurement (before or after the physical process).

1.3. Scope of the Work

The complex framework and incoherent literature of VEs and DTs have mostly focused
either on developing enabling technologies (e.g., sensors, actuators, models, control algo-
rithms) or, more recently, on implementing applications [1,18,22]. Conversely, awareness on
the need to establish traceability and discuss the implications of measurement uncertainty
on the different building elements has just recently risen [35,45,48,49,52]. The existing
ISO 23247:2021 series establishes a framework and recommendations for implementing DTs
in manufacturing. However, it does not encompass the aspects of verification, validation,
and uncertainty quantification (VVUQ). The potential addition of a new section to ISO
23247:2021 focusing on this subject could offer guidance and methodologies for quantifying
uncertainty, conducting DT testing, selecting or creating a credibility assessment framework
for VVUQ activities, and evaluating the credibility of the developed DTs [53]. The European
Union recently funded the international research project trustworthy virtual experiments
and digital twins (ViDiT) [54] to advance metrological research on these topics and to fill
the gaps mentioned above. To cope with that aim, and in response to the shortcomings
highlighted in the literature, this work proposes a definition of VEs and DTs in such a way
that these concepts are ready for use in metrological frameworks.

Specifically, this work presents a novel, formalized and harmonized definition of VEs
and DTs for measuring and manufacturing equipment in technological industry applica-
tions as developed in the ViDiT project. Additionally, exploiting the proposed definition, a
framework for the measurement uncertainty of VEs and DTs is proposed and discussed. In
particular, the most relevant uncertainty influence factors, the requirements to establish
traceability, and the main methodologies to evaluate measurement uncertainties are pre-
sented and discussed. Section 2 introduces the concepts of VEs and DTs mathematically and
discusses them with respect to the reviewed literature. Section 3 discusses the main meth-
ods to evaluate the uncertainty of VEs and DTs, while highlighting the main challenges for
traceability and uncertainty propagation. In Section 4, the uncertainty evaluation methods
introduced above are applied to two test cases of industrial relevance, namely, a CMM (as
an example for a VE) and an industrial robot (as an example for a DT). Lastly, Section 5
concludes on the findings and provides an outlook on future metrological research.

2. A Novel and Harmonized Definition of VEs and DTs

In the following, VEs and DTs are formally defined in such a way that they allow for
uncertainty evaluation. Furthermore, the definitions are harmonized so that a VE can be
seen as a core part of a corresponding DT. Hence, uncertainty evaluation methods for VEs
can directly be applied to the corresponding part of a DT.

2.1. Definition of VEs

VEs are defined as mathematical/numerical models simulating, in a virtual environ-
ment, how the measurement data x, observed in a real experiment, are generated. To
this end, the VE combines a deterministic mapping of certain input values with statistical
elements that reflect the variability observed in a real experiment. Formally, we may write,
following [9], a VE as a statistical model.

x = G(y, z, ϵ), ϵ ∼ F(E). (1)

Here, y denotes a specific value for the measurand Y, which is the quantity of in-
terest in a measurement and for which, ultimately, an uncertainty evaluation has to be
performed. For example, in a CMM, Y denotes, e.g., the a priori unknown radius of a
sphere that corresponds to the measurements of a spherical surface. The values z of the
usually also multivariate parameter Z represent a variety of elements, e.g., parameters
representing physical quantities, characteristics of the measurement instrument, variances
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of error sources, and hyperparameters. In a real measurement, the actual parameter Z is
unknown but fixed under repeated measurements. In contrast, ϵ, which is a realization of a
random variable E with the distribution F, is a statistical parameter that varies in repeated
measurements. These random influences additionally enter the mapping G, which reflects
the real measurement process on a computer, and may influence the resulting virtual
measurements x at any stage of the computation. Here, the mapping G might represent
complex physical processes such as scatterometric principles in terms of the solution of
partial differential equations, or it might model the effect of temperature deviations onto a
measurement sensor.

While this general structure of a VE in (1) offers a much more flexible modeling
approach, it also challenges the applicability of well-known approaches for uncertainty
evaluation, such as the uncertainty evaluation framework of the guide to the expression of
uncertainty in measurements (GUM) [55] or the Monte Carlo sampling approach defined in
its supplements (JCGM 101 and JCGM 102) [56,57], which is due to the following difference.

The crucial difference to common uncertainty evaluation frameworks in metrology is
that a VE takes values for the measurand as an input, whereas a measurement model [55],
here also denoted by data analysis (DA), defines the (somewhat) inverse operation of the VE.
In particular, the measurand quantity Y is the output of the DA, given the values for the
measured (observed) quantity X and the model parameter Z. Since a measurement model
is a mapping between quantities, one usually expresses the functional relationship by

Y = f (X, Z), (2)

where f is sometimes called the “evaluation function” or “inverse model”. The latter is,
however, misleading, since a measurement model in metrology might not be invertible.
Moreover, given a VE as in (1), the choice of a measurement model is ambiguous, which has
already been discussed for simple regression models in metrology [58], where the choice
of the Euclidean norm for the optimization might not be sufficient for a corresponding
measurement model. This is also discussed in ref. [59] for the CMM, where the impact of
the choice of the measurement model is analyzed. In some cases, there might be no actual
dependence on Z when applying the evaluation function to the quantity X, e.g., when
fitting a sphere to measured coordinates. In other cases, there can be a dependence on
Z; e.g., in scatterometry, the wavelength of the light is needed to calculate the critical
dimension of the sample from the measured light intensity [60]. Moreover, it is possible
that the evaluation function depends on additional parameters that are not used in the VE
but required for the DA, e.g., the degree of a polynomial that is fitted during the evaluation
of the measurand [61].

In this work, we aim for a harmonized notation and definition of a VE and a DT to
perform uncertainty evaluation for the measurand Y. While we define a VE in the general
form (1) as a statistical model, which is to favor in a statistical setting, we employ in this
work the simplified notation below to reduce the notation overhead when introducing the
dynamics of a DT:

X = g(Y, Z). (3)

With this notation, we absorb the statistical deviations and unknown but fixed param-
eter into the quantity Z and overall identify values and realizations with their quantity,
denoted by uppercase letters. This means that X denotes the quantity corresponding to the
measurements x, and the function g is therefore a mapping between quantities. Sometimes
Equation (3) is referred to as observation equation [62].

Several approaches for uncertainty evaluation in the presence of a VE, a DA, and real
measurement data have been proposed in the literature, notably [8,9] present approaches
that are also in accordance with the GUM standards in metrology [56]. In this work, we
will recall in Section 3.1 several uncertainty evaluation procedures for this purpose, and in
Section 4.1, we demonstrate their feasibility for the VE of a CMM.
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2.2. Definition of DTs

A DT is defined as a simulation model that accurately replicates a physical system in a virtual
environment and that includes automated dynamic updates of the virtual model according to the
observed state of its real counterpart to achieve an as-automated-as-possible physical control of the
latter. The DT, according to the literature, consists of four parts:

• A physical environment, which embeds the physical entity(ies) to which the DT refers;
• A virtual environment with the virtual entities that models the considered physical asset(s);
• A P2V connection between the physical and virtual environments;
• A V2P connection that implements prevention and control strategies to achieve the

target accuracy in the physical system, thus establishing a bi-directional data flow.

It is particularly interesting to notice the relationship with VEs, as defined in Section 2.1.
Accordingly, a DT based on the data collected in the physical environment, fed to the virtual
twin by the P2V twinning, estimates and predicts by the virtual asset of the state of the
physical entity, and if needed, it deploys control strategies through the V2P connection.
Then, if needed, the model can be updated to match the control; henceforth, the VE becomes
time dependent, and as such, the virtual entity can be viewed as

X = g(Y, Z, t). (4)

The time dependency underlays the re-calibration of the physical/virtual entity, up-
date of the model domain (e.g., when considering self-learning machine learning ap-
proaches [63,64]), change of model due to modified control strategies, etc.

The DT definition introduced above is compliant with ISO 23247:2021 and ISO
30173:2023, while better clarifying the DT scope of control of the physical entity by means
of the closed-loop feedback control and highlighting that a DT goes beyond a mere simula-
tion and relies on automated data flow exchange, thus posing a clear distinction from the
terms digital model and digital shadow. Furthermore, it is in line with the definition by
Grieves [16,65], and it provides greater detail than the published ISO standards by stressing
the three components of the DT, i.e., the physical entity, the virtual entity, and the twinning.
In this context, it is relevant to point out that Grieves’s concept of a DT, here adhered to by
the definition in Section 2.2, is interpreted by ISO 30173:2023 as a DT system. Finally, as dis-
cussed previously, such definition finds a practical relevance in manufacturing technology
and measurement fields, capable, at least in line with the principle, of great automation.

2.3. Connection between VEs and DTs

According to the previous discussion, both DTs and VEs involve a mathematical/
software model of a certain physical entity, e.g., a measuring instrument. However, certain
fundamental differences can be distinguished:

• A DT virtually mimics a real device by processing incoming sensor data in real time
and can influence the real device by sending commands to its actuators, also in real
time. A VE is conceptually something different. It simulates how measurement
data are generated based on a simulated artifact and knowledge of the measurement
instrument. However, the virtual entity of a DT can contain a VE, which is then
modeling a measuring instrument, for example.

• A VE is especially useful when the relationship between a measurand and measured
data is complex and/or indirect. The measurements performed for a DT might be
straightforward to interpret by the DT model, or they may be indirect as well. The
usefulness of a DT lies in the continuous monitoring and predictive maintenance and
correction of physical systems, even when they are easy and simple to model.

• A DT shows the current state of several parts, as transmitted by auxiliary sensors, as
well as the the result of the system’s target operation, e.g., the measured quantity for a
measuring instrument, the position for a machine tool, or process key performance
indicators (KPIs) for a manufacturing system. In a VE, on the contrary, usually, only



Metrology 2024, 4 344

the final measurement data are used. Therefore, the vector of measured data X is
much longer for a DT.

• A DT must involve a dynamic, time-dependent, state-space model. A VE, on the other
hand, assumes that the model does not change over time. It models either the current
state of a measuring instrument (in case of a direct measurement) or the complete
dataset that resulted from the entire measurement (in case of an indirect measurement).
If the settings change, a new VE needs to be performed. Hence, a VE can be the “inner
part” of a DT, which models the whole (time-dependent) process.

In summary, a VE can be used as sub-system of a DT. For example, it can be used to
process (part of) the sensor data and estimate a measurand and its uncertainty, especially
if there is a complex relationship. This measurement result can then be used by the DT
model. A VE can also be used to estimate the main quantity of interest and its uncertainty.
For example, a DT of a CMM gives the complete state of the machine in real time, whereas
a VE is used to evaluate the complete dataset for a specific configuration, which does not
change over time, and to calculate, e.g., the radius of a circle and its uncertainty based on
all measured coordinates.

3. Uncertainty Evaluation for VEs and DTs

As mentioned in the introduction, establishing the traceability and evaluating the mea-
surement uncertainty of VEs and DTs is essential to provide users with confidence in their
exploitation. This section reviews the state-of-the-art methods to evaluate measurement
uncertainty and to establish traceability for VEs and DTs. In particular, the main challenges
will be highlighted, and approaches to overcome these will be proposed.

3.1. Uncertainty Evaluation Involving VEs

Uncertainty evaluation denotes the task of obtaining an estimate of the value of a mea-
surand and its associated uncertainty, e.g., in terms of a standard uncertainty or a coverage
interval, which describes the dispersion of the values being attributed to the measurand.
The usual steps in metrological applications for uncertainty evaluation are the following:
(1) Define a measurement model that relates all quantities involved in the measurement,
and account for all systematic effects and instrument errors, e.g., in an explicit form as (2) or
implicitly. (2) Values and uncertainties are assigned to relevant parameters and quantities.
(3) A suitable propagation method for the uncertainties is chosen and applied, and the
resulting estimate and associated uncertainty for the measurand are summarized. There are
numerous possibilities to incorporate a VE into this process. The deterministic mapping of a
VE that models the data generation process can be used as a forward model, and a Bayesian
inference [66] for the measurand can be performed [61]. Assumptions on the forward
model and a specific choice of the prior may ensure equivalence of a Bayesian inference
to the JCGM 101 Monte Carlo approach, cf., e.g., ref. [67]. Additionally, refs. [8,9] perform
uncertainty evaluation with equivalent results to the JCGM 101 uncertainty framework,
using only the VE instead of a measurement model. Alternatively, the VE can be used to
generate different measurement scenarios and analyze the effect of different parameters to
assign realistic and relevant uncertainties [10]. In another approach, the data generation
process of a VE can be used repeatedly in a Monte Carlo simulation study to enrich a small
set of real measurements and analyze the resulting spread of the virtual measurements [68].
Finally, also the properties of uncertainty evaluation methods can be assessed using a VE.
For a more in-depth overview of several methods for uncertainty evaluation, we refer,
e.g., to ref. [59].

In this work, we focus on two example methods that apply either the Law of Propagation
of Uncertainty (LPU) or the Propagation of Distributions (PoD) approach using Monte Carlo
sampling. We will highlight for both approaches how a VE might be incorporated.



Metrology 2024, 4 345

3.1.1. LPU-via-VE

“LPU-via-VE” stands for LPU evaluated using the VE. It assumes that the measure-
ment model (or data analysis model) (2) is of the following form:

Y = f (X, Z) = argminY′∥X − g0(Y′, Z)∥2
2, (5)

where X = g0(Y, Z) denotes the VE without the addition of random measurement noise;
i.e., the subscript 0 is used to indicate that a deterministic “forward model” is used instead
of the model X = g(Y, Z), which includes simulated random measurement noise. The
estimate resulting from (5) is a (possibly local) optimum of the least-squares functional,
and in this case, some algebraic manipulations based on the implicit function theorem can
be performed to compute the associated uncertainty in terms of a covariance matrix ([57],
clause 6.3).

UY = J−1
Y JX,ZUJT

X,Z J−T
Y . (6)

Here, UY is the covariance matrix of the measurand Y, JY is the Jacobian of −g0(Y, Z)
with respect to Y, and JZ id the Jacobian of −g0(Y, Z) with respect to Z. The matrix JX,Z
is a block-diagonal matrix containing the identity matrix of the same dimension as X and
JZ. If JY is rectangular, having more rows than columns but of full rank, J−1

Y denotes the
Moore–Penrose left-inverse matrix (JT

Y JY)
−1 JT

Y and J−T
Y denotes its transpose. U denotes

the covariance matrix of the vector (X, Z), i.e., of both measurement data having the
covariance matrix UX and additional parameters Z having the covariance matrix UZ. A
schematic overview of this method is shown in Figure 2. It is also possible to split up
the computation in separate terms addressing the uncertainty in X (“type A uncertainty”)
and the uncertainty in Z (“type B uncertainty”) when X and Z are uncorrelated. This
procedures is used in, e.g., ref. [69].

Figure 2. Schematic overview of the LPU-via-VE uncertainty evaluation method.

It is possible to extend this approach beyond the simple least-squares structure in (5)
by accounting for the variability of the actual random parameter in the VE and adapting
the functional appropriately. This might be realized by a maximum likelihood estimation
or a Bayesian approach, which is, however, out of scope for this work.

3.1.2. PoD-via-VE

“PoD-via-VE” stands for PoD using the VE. The idea of this method is to use the VE
to simulate how measurement data are affected by the error sources of the measurement
process. This method can also be used to predict an uncertainty without any real measure-
ments using purely simulated measurements. In Figure 3, a schematic overview of the
method is shown for the case that real measurement data are available.

Based on the observed measurement data x(real) and an estimate z(est) of the parameter
Z, an estimate y(sim) of the measurand is calculated, together with some additional param-
eters relating to the artifact needed to run the VE. These parameters are then kept fixed.
Then, the VE is repeatedly run using different random realizations z(j) of the uncertain
parameter Z and of the measurement noise. This results in samples of simulated measure-
ment data x(j). The data analysis function f can now be applied to x(j) and z(est), resulting
in samples y(j). From these samples, a distribution for the measurand can be derived, as
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well as an estimate, a standard uncertainty, and a coverage interval. This procedure is used
in, e.g., ref. [70].

Figure 3. Schematic overview of the PoD-via-VE uncertainty evaluation method.

3.2. Uncertainty Evaluation for DTs

As far as measurement uncertainty and metrological characteristics of DT are con-
cerned, only few papers, derived from the seminal work of Karve et al. [48], explicitly
address and develop the issue of uncertainty evaluation in DT applications. Table 1 shows
the main literature contributions, highlighting the distinctive features, incremental advance-
ments provided by the work, and most relevant shortcomings. The literature distinguishes
the uncertainty contributions as pertaining to the following three different categories:

• Uncertainty of the diagnosis, i.e., errors and uncertainties related to the sensors
devoted to measuring the current state of the system;

• Uncertainty of the prognosis, i.e., errors and uncertainties related to the simulative
model (e.g, VE) embedded in the virtual asset;

• Epistemic errors, i.e., errors to modeling strategy, which by extension include the
fidelity and the twinning rate.

Such contributions are shared with uncertainty modeling for VEs, as discussed in
the previous section. Additionally, for DTs, due to the automated bi-directional data
flow, communication protocols quality and synchronization might induce further errors.
The literature, in sparse additional cases [37,44], mentions the relevance of evaluating
measurement uncertainty, but no quantitative examples are provided, and no methodology
is reported. As shown in Table 1, the literature mostly resorts to Bayesian methods. In fact,
although PoD [56] (abiding with conventional approaches [55]) or simulative methods are
other viable approaches, dynamic Bayesian networks [48] and Bayesian statistics inherently
allow automatic model updates to reflect the change of the state of the physical entity sensed
by the sensors and/or induced by the actuators. However, how to include the stochastic
nature of the control, thus catering to the feedback loop, in dynamic Bayesian networks, has
not been discussed. The literature, indeed, remarks on the essential need to calibrate the
diagnostic and prognostic model and states the need to propagate the uncertainty to cater
to traceability. However, explicit methods used to propagate the uncertainty of several
contribution and influence factors are not clearly reported, and some critical aspects are not
explicitly remarked and discussed.

According to the literature, three main questions can be highlighted, as follows:

• How to establish traceability for a DT;
• How to define the uncertainty and accuracy of the P2V model;
• How to include the V2P correction and related uncertainty in the physical measure-

ment of metrological characteristics and uncertainty.



Metrology 2024, 4 347

Table 1. Literature review of papers discussing the evaluation of measurement uncertainty for DTs.

Authors and
Year

Scope of the DT Methodology for Uncertainty
Evaluation

Limitations

Karve et al.
[48]

Inspection planning for predic-
tive maintenance and repair of
fatigue loaded component

Bayesian approach to diag-
nose and predict (progno-
sis) defect formation to plan
operation parameters

The method caters to systematic modeling
errors and measurement uncertainty (even
though not explicated). It does not discuss
the issue of continuous update and closed-loop
feedback control.

Nath and
Mahadevan
[71]

DT of a selective laser melting
process

Dynamic Bayesian model to
update the model prediction er-
ror, Gaussian process for the
surrogate simulation model

The effect of the closed-loop control on the qual-
ity of the prediction is not discussed, nor uncer-
tainty is evaluated.

Sisson et al.
[72]

DT to predict stress in rotor-
craft and plan mission

Bayesian approach for uncer-
tainty and surrogate models to
simplify physics modeling

The problem of the control looping on the un-
certainty is not present because the control and
prediction are not on the measured variable.

Ye et al. [73] Reliability prediction Data-driven approach based on
a dynamic Bayesian network

Exteroceptive sensors to avoid update propaga-
tion of uncertainty due to the close-loop feed-
back control, but their uncertainty is not consid-
ered in the dynamic Bayesian network.

Thelen et al.
[74]

Reviews the role of uncertainty
and optimization of sensor
placement

Detailed review of methods to
estimate the uncertainty and
methods to optimize the place-
ments of sensors

The review highlights a lack of discussion in
the literature on the correlation between the
sensed state and the correction strategy (due to
the iterative control) as well as the closed-loop
feedback control correction typical of DT.

Huang et al.
[75]

Introduces a framework for a
holistic DT: innovatively men-
tions quality controls and mea-
surements for DTs in the chain

Hybrid modeling and physics-
informed machine learning

The contribution is essential, for it innovatively
tries to include a D-MT in a DT of a larger pro-
cess, but it provides a qualitative discussion and
does not delve much on how to treat, estimate,
and propagate measurement uncertainty.

This work attempts to reply to such questions and to motivate the need for the last
point, i.e., the introduction of the uncertainty contribution due to the stochastic control,
regardless of the method to estimate the uncertainty, e.g., Monte Carlo sampling [56] or
Bayesian inference [48].

3.2.1. Problem Statement

According to definitions and notation introduced in Section 2, let us state and general-
ize the control problem associated with a DT. Let the physical asset (P) respond to a set of
inputs W (environmental and external and internal describing the system state and thus
controllable) to reach a target state Y measured by quantities X.

For example, let us consider a collaborative robot arm (cobot), whose Cartesian posi-
tion in the working environment is the measurand Y, which is measured (X) by its angular
encoders through Denavit–Hartenberg’s parameters, and depends also on the speed and
type of the motion, these describing W. In the case of a measuring instrument, the in-
strument would respond to a certain measurand Y, under a set of measurement control
variables and influence factors W, with a set of measurements X. For example, a surface
topography measuring instrument will generate an electromagnetic surface X associated
with a certain measurand surface Y, depending on measurement parameters W, e.g., light
intensity, resolution, objective magnification, and the working principle.
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Accordingly, the response X can be exploited to provide an estimate of the system
state or of the measurand Y, i.e., Ŷ, by means of any DA function f . Thus, a P2V twinning
can be established such that

X = g(Y, W, t; θ), (7a)

Y = f (X, Z, t) = f (X, W, t; θ), (7b)

where the parameters Z of Equation (4) are now expanded to include control and input
parameters W and modeling parameters θ, which are the parameters of the mathematical
function f .

Let us now assume that the physical system response is biased (YP), which can
also be representative of a condition such that the physical system state YP is system-
atically different from the target Y aimed at by the control parameters W. In such a
condition, the measured quantities XP present a systematic error and, consequently,
f (XP, W, t; θ) = YP ̸= Y. Let this systematic error be EX and EY, respectively, and sup-
pose to have a calibrated external observer (C-EO) capable of estimating the measurement
error EX, and f (XC-EO, W, t; θ) = YP. Then,

EX = XP − X = XC-EO − EX,C-EO − X, (8)

or, equivalently, the system state error EY

EY = YP − Y = YC-EO − EY,C-EO − Y. (9)

For the sake of generality, the previous equations consider also the measurement errors
of the calibration external observer E•,C-EO, where • indicates any of the measurement X
and the measurand Y. In general, the external observer should be calibrated and have
E•,C-EO ≪ E•, which could then be considered negligible.

For example, in the case of the robot arm depending on motion parameters W and
even the position itself (i.e., the measurand Y), a systematic error in the positioning (e.g., a
very high speed or a completely extended arm inducing poorer control) can be generated,
which is typically measured only by a calibrated external observer. Similarly, in the case of
a surface topography measuring instrument based on coherence scanning interferometry,
a step height artifact Y will typically induce systematic errors at the step edges of the
measured topography (X), the severity of which depends on the objective magnification
(W) and the spacing of the steps (Y).

A DT is developed that aims at predicting E• and deploying some control strate-
gies acting on controlling parameters W such that the error is minimized, leading to
YP = Y + o(Y) ∼ Y and, consequently, XP = X + o(X) ∼ X. By calibrating a suitable
model to estimate the systematic error E•, it is possible to correct the physical entity re-
sponse. This is typically done by means of the DT loop involving the P2V connection, the
prediction of the simulation (the virtual entity), and the control deployed in the V2P con-
nection. To achieve that scope, the role of the calibrated external observer (C-EO) is pivotal.
In fact, with {W, θ} leading to the system state YP( ̸= Y), it measures XC-EO, estimating the
actual system state YP, which allows achieving an unbiased response from the system as

Xcorr = XP − EX = XP − ge(Y, W, t; θ). (10)

The correction term represented by ge is the P2V twinning, representing a time-varying
VE, which depends on the interaction of the system with the measurand Y, the environ-
mental and control parameter W, and modeling parameters θ. Accordingly, it is worth
noticing that the error is dependent on the input variables and also, in general, on the target
response. The latter case is well exemplified by the position error of an industrial arm robot
aiming to reach a certain position in the Cartesian working space. In such a case, the error
depends on W, given by the payload, speed, type of motion, temperature, vibration, etc.,
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but also on the target state Y, given by the position to be reached due to the non-infinite
stiffness of joints and the arm length (the farther from the base in the horizontal direction,
the larger the error).

It is relevant to remind that the internal observer in the system does not see the error it
commits; thus, for the internal observer, the actual measurement and measurand are always
equal to the target or the theoretical one. Thus, the role of the P2V twinning calibration by
means of the calibrated external observer is again essential to allow a practical application
of Equation (10), which can be rewritten as

Xcorr = XP − EX = XC-EO − ge(YC-EO, W, t; θ). (11)

To achieve further generalization in this discussion, it is relevant to consider the
application of DT to any given system, e.g., cobots. These are most typically controlled
by motion parameters W. Therefore, the operation made explicit in Equation (11) aimed—
ultimately—at implementing the condition

Y = YP − EY = YP − ( f (XP, W, t; θ)− f (Xcorr, W, t; θ))

= YP − ( f (XC-EO, W, t; θ)− f (Xcorr, W, t; θ)). (12)

This entails controlling the system such that it targets YP − EY. Such condition can be
obtained, indirectly, by combining Equations (11) and (12), or directly by finding a set of
control parameters W∗ capable of realizing such a condition. Here, it is worth remarking
that how to make the system target YP − EY, i.e., how to find W∗ , is problem dependent and
task specific (for motion and position control of a robot, numerical or analytic approaches
can be deployed, an inverse problem solution can be considered, etc.).

3.2.2. Establishing Traceability for a DT

Establishing traceability for a DT is a pivotal aspect to ensure the credibility, reliability,
and accuracy of both virtual and physical systems in industrial applications. In the follow-
ing, the key approaches to establish traceability in a DT environment are summarized.

Carmignato et al. [76] address the need for traceability by introducing dimensional
artifacts as a link between the virtual and physical realms. These artifacts are essentially
physical objects whose dimensions are known to have a high degree of accuracy, enabling
them to serve as reference points for calibration in both digital and physical systems. For
example, the assemblies with internally calibrated features are suggested to be used as
dimensional artifacts in additive manufacturing processes. By focusing on the need for
these artifacts to be calibrated to SI units and detailing how they should have well-defined
measurands and uncertainties, the authors lay the groundwork for establishing traceability
in advanced manufacturing environments involving DTs. Dahlem et al. [77] tackle the issue
of traceability by introducing a holistic model for on-machine measurements. The novelty
here lies in the model’s capacity to use live process and environmental data to perform
systematic error compensation and predict measurement uncertainty. This is achieved
through a combination of novel spline-based models, data-driven thermal monitoring,
and hybrid models that can adapt to both transient and static conditions. The paper is a
comprehensive attempt to introduce traceability into live manufacturing settings. It even
discusses future paths, like ISO standardization and the integration of machine learning,
to make the system more robust and traceable. Jaganmohan et al. [78] turn their attention
to optical measuring systems, particularly stereo vision systems. Using a standard test
procedure (VDI/VDE 2634-1) as their foundation, they assess its sensitivity in detecting
systematic errors. This is pivotal for establishing traceability as it offers a regulatory
framework to adhere to. The authors simulate the effect of errors in camera parameters
using a pinhole model, comparing these simulations with real-world measurements that
were taken using a CMM as a benchmark. By proposing alternative, more sensitive, model-
based lines, the study offers ways to improve performance evaluation and, by extension,
traceability in DTs involving optical measurement systems.
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In general, the traceability of a DT is established by the following:

• Calibrating the sensors with traceable material standards;
• Calibrating the model response by means of a comparison with traceable measure-

ments with associated lower uncertainty and better accuracy; and
• Calibrating the actuators.

According to the discussion in Section 3.2.1, an essential step towards traceability is
the availability of an external observer to enable the evaluation of the correction model
ge(YC-EO, W, t; θ). The calibration of such an external observer guarantees the traceability
of the error correction.

3.2.3. Definition of Uncertainty and Accuracy of the P2V Model

The evaluation of the metrological characteristics of a DT is a concept poorly in-
vestigated in the literature. Metrological characteristics [79], like accuracy or precision,
require an operative definition for the application to the DT framework, to cope with its
time-dependent nature.

The literature reports several examples of evaluation methods for P2V twinning.
Specifically, several methods have been made available and are discussed in the literature
that resort either to Monte Carlo methods or to Bayesian approaches. The latter have
gained quite a relevant role in allowing for a continuous update of the model, thanks
to dynamic Bayesian networks. These networks also have the advantage to update the
(prior) distribution of input-independent quantities on new observations that are taken
at the twinning rate. For instance, Haitjema et al. [80,81] delve into the development
of virtual measurements using calibration data from physical models. The Monte Carlo
methods are used to simulate the effects of uncertainties in input quantities and to calculate
the uncertainty of the measurand. Notably, they emphasized the need to preserve the
autocorrelation function of deviations when simulating geometrical errors, such as scale
and probe imperfections. In a similar vein, Ramu et al. [82] focus on the development
of a virtual machine and a parametric model for a five-axis multi-sensor CMM. They
incorporated calibrated artifacts and inverse kinematics to evaluate and correct geometric
errors. Monte Carlo routines were applied for estimating task-specific uncertainties, thereby
validating the effectiveness of their error correction algorithms. Dahlem et al. [77] propose
an integrated framework that combines different modeling approaches to improve the
accuracy and reliability of on-machine measurements. They introduced the concept of
an abstracted physical body model to handle transient geometric errors under thermal
loads. A data-driven framework for real-time thermal state prediction was also developed,
emphasizing the need for a holistic approach that considers machine, workpiece, and
environmental factors. In a more targeted approach, Vlaeyen et al. [83] showcase the
development of a DT of an optical measurement system. The uncertainty was estimated
by considering the error contributions from each component, such as the CMM, probe
head, and laser line scanner. The model was validated using calibrated ring gauges. Lastly,
Iñigo et al. [84] outline a methodology for simulating and analyzing the error mapping
and compensation processes of a machine tool using a DT. Monte Carlo simulations were
utilized to estimate the model’s uncertainty, incorporating considerations like geometric
errors and thermal variations.

In general, the P2V connection and the virtual entity represent sensing and simulation,
i.e., a VE aiming at prognosis (i.e., predicting the system behavior) based on the diagnosis
(i.e., the sensors). According to the literature, the model can be either analytical, data
driven, or hybrid. Traceability—as discussed in Section 3.2.2—is established by calibrating
the measurement instruments (i.e., sensors) required to gather the data for the model and
by validating and testing the model. Evaluating the uncertainty of the model and of the
P2V connection requires propagating the following four classes of contributions:

• The traceability of the sensors (coming from calibration certificates);
• The task-based influence factors to the measurement uncertainty of the sensors (i.e., the

reproducibility, resolution);
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• The model metrological performances (i.e., accuracy and precision); and
• Environmental conditions.

With a suitable experimental setup, involving proprioceptive sensors (i.e., internal
sensors measuring xP) and environmental sensors, it is possible to collect a set of data
{xP, w}; similarly, relying on proprioceptive, environmental, and exteroceptive (i.e., exter-
nal) sensors, it is possible to collect {xP, xC-EO, w}. Note that we now use lowercase letters
for realizations of the corresponding quantities, indicating actual measurements. Let X̂ be
the output of the simulation model (or VE), i.e., the estimate, prediction, and prognostic of
the virtual entity model g; then an estimate of the actual state Y can be written as

Ŷ = f (x, w, t; θ̂) = f (g(yC-EO, w, t; θ̂), z), (13)

where w is the traceable system control input, θ̂ is the estimate of the VE model param-
eters, and z includes both system control inputs and some DA model parameters. Simi-
larly, through the calibration external observer, the response error can be predicted and
estimated as

ÊX = ge(yC-EO, w, t; θ̂), (14)

where ge is a function of the system state.
The model can be estimated by any statistic or machine learning approach that is

mathematically and physically consistent with the problem at hand and with the constraint
of the DT (e.g., model fidelity and modeling strategy). As usual, in statistics, the model
parameters can be estimated by relying on collected data {xP, xC-EO, w}. The uncertainty of
the simulation model (i.e., of the P2V connection and the virtual asset) can be evaluated
by relying on methods to estimate measurement uncertainty of the modeling strategy. For
an analytical model, this can be done by LPU; for data-driven approaches, simulative
approaches as PoD [56] or non-parametric methods as Bootstrap [85] can be exploited.

The metrological characteristics of the P2V connection (i.e., focusing on accuracy
and precision) can be evaluated by validating and testing the simulation model against a
calibrated target, softgauge, etalon, higher precision measurement, etc. Precision can be
evaluated by estimating the root mean square error of the model and by combining the
variance of replicated measurements in reproducibility condition according to LPU.

At a certain time instant t, the accuracy of the physical system, as per the International
Vocabulary of Metrology (VIM) [79], is defined as Acc(Y, W, t; θ) = ge(Y, W, t; θ). The DT
aims at correcting any systematic error by means of the two-way interaction. Accordingly,
data flow to the VE model in the P2V twinning to predict the expected error and correct
it. Indeed, for the P2V twinning that is based on a stochastic model, a residual error
ϵ ∼ N (0, σ2

ϵ ) will result from the estimation of the model parameters θ and shall be
considered in Equation (11). The calibration and evaluation of the accuracy of the P2V
connection allows for establishing a traceable error mapping as a function of the considered
input parameters of the DT. Accordingly, once the correction is deployed (at the time
instant t + ∆t with 1/∆t being the twinning rate), the accuracy of the physical system is
Acc(Y, W, t + ∆t; θ) = ϵ(Y, W, t; θ). Nominally, the expected bias from the P2V twinning
after the correction is E[Acc(Y, W, t + ∆t; θ)] = 0.

Similarly, precision can be assessed in terms of reproducibility and repeatability. Once
more, if the effect of error correction is considered, the P2V twinning expects a reproducibil-
ity of the physical entity after the implementation of the control of

√
Var[ϵ(Y, W, t; θ)],

i.e., the root mean square error of the residuals of the VE.

3.2.4. Effect of Closed-Loop Feedback Control on Measurement Uncertainty

Once the simulation embedded in the virtual entity predicted the response and the
correction, the actuators should deploy the control strategy. Therefore, the metrological
characteristics of the actuators introduce an additional source to the overall measure-
ment uncertainty. Furthermore, the control loop and the presence of additional sensors
(i.e., exteroceptive sensors) in the loop to enable real-time observation shall be catered
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to. Another contribution to measurement uncertainty is given by sensor fusion, which is
applied to monitor and predict redundancies in the system.

Overall, several influence factors, pertaining both to the physical and to the virtual
entity, as well as to sensors, actuators, and the control strategies, shall be catered to, as
depicted in Figure 4.

Figure 4. Main influence factors contributing to the uncertainty of DTs.

As highlighted in the literature review discussed in Section 1.2 and summarized
in Table 1, the literature mostly resorts to Bayesian approaches to evaluate measure-
ment uncertainty. Indeed, Bayesian statistics is inherently capable of managing time-
dependent model updates. In particular, using the notation introduced in Equation (11),
i.e., ÊX = ge(yC-EO, w, t; θ̂), once fixing the functional model of ge and having a traceable
external observer to gather yC-EO and w, the problem is finding an estimate of the model
parameters, θ̂. Karve et al. [48] suggest resorting to Bayesian statistics so that, given prior
assumption on the θ distribution, i.e., pprior(θ), and an empirically determined likelihood
L(yC-EO|θ), it results in the posterior

ppost(θ|yC-EO) ∝ L(yC-EO|θ) · pprior(θ). (15)

Indeed, there are also alternatives to Bayesian approaches; more traditional regression
methods can also be exploited. However, since DTs perform iterative control of the physical
entity and the model, in the most general case, they need continuous updates of the func-
tional form and the model parameters [86]. The use of traditional approaches might lead
to cumbersome updating methods, while Bayesian approaches inherently allow dynamic
updates of model parameters. The knowledge of estimates of the model parameters θ and
their distribution ppost(θ) is essential to enable uncertainty propagation of the expected
measurement (or system state) of the physical entity after the control by the VE. The un-
certainty evaluation can be done by following any applicable method, e.g., LPU [55,56], to
Equation (11). This, according to Figure 4, shall then be combined with the uncertainty of
the actuators.

Accordingly, once the control loop has been closed, the uncertainty of the measurement
Xcorr (or the system state Y) is a combination of the uncertainties of the control prediction
(i.e., the time-dependent VE ge(Y, W, t; θ) realizing the virtual entity), the actuators, and the
sensing instruments (e.g., an external calibrated observer). Here, for the sake of simplicity,
these uncertainties are propagated according to the LPU as follows:

u2(Xcorr) = u2
ge + u2

actuator + u2
C-EO, (16)

where uncertainty contribution of the actuator and of the external observer sensors include
both traceability and metrological characteristics, and the uncertainty due to the VE, i.e.,
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u2
ge , depends on the functional model and, hence, includes contributions of the input data,

u2(YC-EO); control and environmental parameters, u2(W); and model parameters, u2(θ).

3.3. Challenges

It is relevant to stress some shortcomings of the uncertainty evaluation approaches
for DTs that can be found in the literature. First, when the system is in use, not always a
calibrated external observer is exploited. This strongly challenges both model parameter
estimation, as per Equation (15), and the uncertainty propagation, as per Equation (16).
In fact, in both cases, the input data of the calibrated external observer yC-EO would be
replaced by data from an internal observer that are in generally biased (see Section 3.2.1)
and more uncertain. This issue is currently not addressed in the relevant literature dis-
cussing uncertainty evaluation of DTs, although, in most applications, no sensor fusion of
external observers is leveraged. Second, it is worth stressing that, under such conditions,
the management and evaluation of measurement uncertainty catering to subsequent cor-
rections of the physical system based on the stochastic model (the virtual entity, i.e., the
VE embedded in the DT) are not discussed in the literature. Although the problem can be
highly application specific, a general framework is still missing, which allows for coupling
the sensor fusion with measurement uncertainty evaluation methods, e.g., LPU, Markov
chain Monte Carlo, or Bayesian approaches.

4. Applications

In this section, the uncertainty evaluation methods introduced in Section 3 are applied
to two test cases of industrial relevance. The first test case, which is an example for a
VE, evaluates the uncertainty of a CMM by applying LPU-via-VE and PoD-via-VE. The
second test case, which is an example for a DT, applies the uncertainty evaluation methods
introduced in Section 3.2 to a cobot.

4.1. VE of a CMM

In this section, we present an example of a metrological application in which the
uncertainty of the measurand is evaluated using a VE of the form (3). The general ideas of
the uncertainty evaluation methods presented in Section 3.1 will be adapted such that the
methods can be applied in the CMM context.

4.1.1. Description of the Application

The application of interest is the evaluation of the radius R and roundness Pv of
an approximately circular shape based on a set of n measured two-dimensional point
coordinates (x1,i, x2,i), 1 ≤ i ≤ n, measured by means of a CMM. These coordinate data
together constitute the observed value of the measured quantity X in Equations (2) and (3).
The roundness is quantified by the so-called peak-to-valley value, in short, pv-value, Pv,
which equals the maximum distance from the rim of the fitted circle (peak) minus the
minimum (signed) distance (valley) from the circle rim of the measured points [87]. This
quantity is also equal to the difference of the maximum and minimum point distances to
the fitted circle center.

The VE of the CMM models how the measured coordinates are generated based
on an assumed shape of the artifact being measured. In such a simulation, many more
parameter values are needed than just the assumed values for the measurand. In this case,
the following parameters are required:

yve = (r, c1, c2, ϕ1, . . . , ϕn, nlobes, ϕlobes, alobes)
T. (17)

Here, r denotes the circle radius, (c1, c2) are the coordinates of the circle center, and the
angles ϕ1 to ϕn denote the angular position of the measured points on the circle. To simulate
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an imperfect circle, nlobes lobes were included by adding a sine-wave-based perturbation to
the radius. This means that the distance of the point i to the circle center is given by

ri = r + alobes sin(nlobesϕi + ϕlobes), (18)

where alobes denotes the amplitude of the lobes and ϕlobes denotes an offset angle. The
simulated artifact shape by the VE should be sufficiently close to the shape of the real
artifact, though this correspondence might not be exact. Note that there is no value
corresponding to the second component Pv of the measurand included in yve, although
it holds that Pv = 2alobes in this simple model. The true simulated artifact coordinates
(xart,i, yart,i) are given by (

xart,i
yart,i

)
=

(
c1
c2

)
+ ri

(
cos ϕi
sin ϕi

)
. (19)

The additional parameters of the VE corresponding to the quantity Z in (1) are given by

zve = (sx, sy, sxy, σ)T. (20)

Here, sx denotes a linear scale error of the x-axis of the CMM, sy denotes a linear
scale error of the y-axis, sxy models the squareness error between x- and y-axis [88], and σ
denotes the standard deviation of the measurement noise. The first three error sources can
be combined in a matrix.

A =

(
1 + sx 0

(1 + sx)sxy 1 + sy

)
. (21)

Besides these systematic errors, the measured coordinates of point i are affected by
measurement noise ϵ1,i and ϵ2,i, which are independent and identically distributed with a
Gaussian distribution with mean zero and standard deviation σ. The relationship between
true coordinates xtrue,i of point i, expressed in a Cartesian reference coordinate system, and
its measured coordinates xmeas,i, as returned by the CMM, is given by

xmeas,i = Axtrue,i +

(
ϵ1,i
ϵ2,i

)
. (22)

By combining the equations of this section, the VE function g and its noise-free version
g0 can be deduced. For specific values of the variables, this then leads to xmeas = g(yve, zve).
An example of a simulated lobed circle with a relatively large lobe amplitude alobes for
better visibility is shown in Figure 5.

Figure 5. Example of simulated lobed circle by means of the VE.
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In the next two sections, we will discuss how this VE can be used to evaluate the
measurement uncertainty using two different methods.

4.1.2. LPU-via-VE

To use LPU-via-VE, first, an estimate ẑve is required, which we set to (0, 0, 0)T in this
example. Then by a least-squares circle fit routine applied to the measured data x, estimates
of r, c1, and c2 can be determined. Using these estimates and the data, also estimates
of ϕ1, . . . , ϕn, nlobes, ϕlobes, and alobes can be obtained, which solve Equation (5) in good
approximation and result in a ŷve. Using ŷve, ẑve, and the derivatives of g0, the (relevant
part of the) covariance matrix UY can be computed following Equation (6). From this
computation follows the standard uncertainty u(r̂) of the radius estimate r̂. An estimate
p̂v of the value of Pv is obtained from the difference of the maximum and minimum point
distances to the fitted circle center, i.e., p̂v = max1≤i≤n r̂i − min1≤i≤n r̂i with the distances
r̂i calculated based on the estimated circle center, i.e., r̂i = ∥xi − (ĉ1, ĉ2)

T∥. This is preferred
over the alternative of deriving an estimate from the fitted shape given by ŷve directly
in order to allow for a real shape that somewhat deviates from a sine-based-lobed shape.
The standard uncertainty u( p̂v) follows from applying the LPU, whereby the calculated
uncertainties of the center coordinates are used.

4.1.3. PoD-via-VE

We now describe the implementation of the method PoD-via-VE for the CMM ap-
plication. As a first step, an estimate ŷve of the VE parameters is determined in the same
way as for LPU-via-VE in the preceding section. This fixes the artifact shape that is being
used in the VE. As a next step, a Monte Carlo method is applied, in which samples z(j) are
drawn for the VE parameters based on the provided distributions, as well as samples ϵ

(j)
1,i

and ϵ
(j)
2,i modeling the measurement noise for each of the points i with 1 ≤ i ≤ n, based on

the provided σ. Using the VE, samples of simulated measurement data x(j) can now be
calculated. By applying the circle fit routine to each simulated dataset, samples r(j) and p(j)

v
of the radius and pv-values are obtained, from which a statement of the uncertainty can
be obtained.

4.1.4. Numerical Results

We performed a numerical experiment using the VE for the CMM as described in
Section 4.1.1 and applied the LPU-via-VE and PoD-via-VE methods. For this purpose,
measurement data were simulated with parameter values as listed in Table 2.

Table 2. Parameter values used for generating simulated measurement data.

Parameter n r / mm c1 / mm c2 / mm nlobes ϕlobes / rad

Value 1000 3.01764 0.00100 0.00245 3 1

Parameter alobes / mm sx sy sxy / rad σ / mm

Value 0.05000 0.00005 0.00011 0.00020 0.00050

The standard uncertainties of the error sources (input quantities) that were used in the
uncertainty evaluation are shown in Table 3.

Table 3. Standard uncertainties of the error sources used for the uncertainty evaluation.

Parameter u(sx) / rad u(sy) / rad u(sxy) / rad σ / mm

Value 0.00012 0.00012 0.00012 0.00050

In Table 4, the calculated estimates and standard uncertainties according to the
two methods are shown for a single simulation. In the PoD-via-VE method, 100,000 samples
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were used when applying the Monte Carlo method. For the radius, the results are identical.
For the pv-value, the results differ somewhat, which is due to the fact that the calculated
pv-value typically increases in the presence of CMM errors. The employed DA for evaluat-
ing the pv-value is thus somewhat biased when comparing it with the ground truth value
of the simulation. This effect is more pronounced in the PoD-via-VE method. In Figure 6,
the calculated distributions for the radius and pv-value are shown for the two employed
methods. The distributions are virtually identical for the radius, but not for the pv-value.
In the case of LPU-via-VE, a Gaussian distribution with the calculated mean and standard
deviation is used.

Table 4. Estimates and standard uncertainties for the radius and pv-value for the LPU-via-VE and
PoD-via-VE methods.

Method r̂ / mm u(r̂) / mm p̂v / mm u(p̂v) / mm

LPU-via-VE 3.01787 0.00025 0.10022 0.00032
PoD-via-VE 3.01787 0.00025 0.10045 0.00027

Figure 6. Distributions for the radius (left) and pv-value (right) calculated according to two different
uncertainty evaluation methods involving the VE.

4.2. DT of a Cobot

In this section, we present an application of a metrological and traceable DT for a cobot.
The case study is demonstrated on an industrial cobot, Yaskawa MOTOMAN HC20DTP,
with a maximum payload of 20 kg equipped with a gripper. The task that the DT aims
at monitoring and controlling is the accurate and precise positioning of the end effector,
i.e., the gripper, while holding a weight of 5 kg. An accurate and repeatable positioning of
components is essential to allow efficient and effective collaboration in a manufacturing
environment to improve ergonomics and avoid assembling errors [24,89,90]. A typical
acceptable positioning error is within ±0.5 mm.

The measurement of the position of the end effector can be performed by relying on
internal angular encoders, which, although calibrated at the factory level, could present
bias. In this work, a DT is developed to improve the position accuracy and correct system-
atic errors. In particular, an external set of eight cameras, namely, OptiTrack PrimeX 22,
working on infrared wavelength and capable by a proprietary machine vision algorithm of
recognizing passive retro-reflectors, is exploited to monitor in real time the actual position
of the cobot end effector. The machine vision system (MVS) has a resolution of 5 µm
in the working volume and was calibrated with a laser tracker showing a measurement
uncertainty of 0.150 mm, i.e., uC-EO = 0.075 mm. Figure 7 shows the experimental setup at
the MInd4Lab at Politecnico di Torino.
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Figure 7. Yaskawa cobot and OptiTrack cameras (black cubes with a blue ring in the picture) used for
the DT case study.

Typically, the positioning of the cobot is intuitively and indirectly programmed by
indicating the end position of the Tool Center Point (TCP) as a set of Cartesian coordi-
nates TCP = (TCPx, TCPy, TCPz) with respect to the base of the cobot. Here, it is worth
remarking that the system state, i.e., the measurand, is the position of the TCP, which can
be measured in terms of its Cartesian coordinates (TCPx, TCPy, TCPz). The positioning
accuracy can be expressed as the error of the actual position TCPeff with respect to the
nominal position TCPnom. This error can, in terms of Cartesian distance, be written as

de = ∥TCPeff − TCPnom∥2 (23)

=
√
(TCPxeff − TCPxnom)

2 + (TCPyeff − TCPynom)
2 + (TCPzeff − TCPznom)

2 (24)

Accordingly, the actual position for the internal encoders, i.e., TCPint, is always equal
to the nominal position TCPnom such that de = ∥TCPint − TCPnom∥2 = dint − dnom = 0,
where dint and dnom indicate the distance of the corresponding TCP from the origin
of the relevant coordinate reference system. Thanks to external sensors, the posi-
tion error, on the other hand, can be evaluated in this case by the MVS such that
de = ∥TCPeff − TCPnom∥2 = ∥TCPMVS − TCPnom∥2. The P2V twinning is established by
evaluating the positioning error as a function ge(Y, W, t; θ), where the measurand Y is the
actual position of the TCP, which can be measured (X) as its Cartesian coordinates, and
system parameters W are influence factors and motion control parameters, e.g., the type of
motion and the motion speed. Model parameters θ have to be estimated by appropriate
statistical modeling. In this work, a Gaussian process regression (GPR) is used to model ge.
To train the model, 21 points were considered in the motion volume of the cobot. Positions
were measured with internal angular encoders and the MVS, thus enabling the evaluation
of the accuracy. To cater to the reproducibility of the actuators, nine replications were per-
formed. The 21 × 9 randomly spaced points were then replicated three times considering,
according to the literature [89], as most relevant factors the motion speed on three levels
v = [20%, 60%, 90%]Vmax, and only considering the linear joint motion. In this work, a
simplified condition that does not consider the effect of different payloads is considered.
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The MVS camera system allows for identifying the positioning distance error of the
system as is. Figure 8 shows the initial conditions (red circles), which present an average
error de of 2.012 mm and a standard deviation s(de) of 0.256 mm.

Figure 8. TCP positioning error of the cobot as is (red circles) and after the implementation of the DT
(black crosses).

The P2V model results in estimating the ge(YC−EO, W, t; θ) = ge(TCPeff, v, t; θ). In this
case study, considering the spatial correlation of the errors due to the finite compliance of
the system, which is also increasing with the distance d of the TCP from the base, a GPR
model was selected. In particular, the GPR modeling the error was a function of the system
state Y represented by the TCP position, the control parameters W being the motion speed v
and model parameters θ = (β, σ2

y , σ2
l )

T , consistent with a linear basis function with an esti-

mated matrix β = [2, 1.897, 0.164] and a squared exponential kernel R = σ2
y exp(− 1

2
(hT

ij hij)

σ2
l

)

modeling the covariance with hij = ((di, vi) − (dj, vj))
T and estimated variance of the

process σ2
y = 1.374 mm2 and a location scale parameter σl = 24.89 mm. In this case study,

the parameters θR of the GPR and the specific basis and kernel function were optimized
by a Bayesian procedure to test multiple alternatives by means of an operator-agnostic

way [86]. The residuals of the model de,res presented a mean de,res = d̂e − de of 0.4 µm and
a standard deviation s(de,res) of 9.3 µm.

The P2V twinning allows for correcting the position of the cobot. In fact, given a
certain nominal destination dnom and motion speed v, the P2V GPR predicts the positioning
error d̂e = ge(d, v, θ). Figure 8 shows the residual errors after the implementation of the
V2P twinning, realizing the DT control.

Measurement uncertainty is then estimated to assess the statistical relevance of the
control withing a metrological framework. In this case study, a GUM–LPU approach is
applied, consistent with Equation (16). In particular, it is interesting to notice that the
uncertainty contributions of the actuators u2

actuator are estimated inherently by means of the
implemented experiment, and henceforth, they are implicitly included in the variance of
the measured positioning error. Furthermore, to assess the effectiveness of the implemented
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DT, the uncertainty of the positioning can be evaluated for the system as is and after the
DT application in a new {d∗, v∗}, thus being

u(d) =
√

u2
acc + u2

trac + u2
reprod , (25a)

u(das-is(d∗, v∗)) =

√
de

2

3
+ u2

C-EO + s2(de) , (25b)

u(dcorr(d∗, v∗)) =

√
de,res

2

3
+ u2

C-EO + u2(ge), (25c)

where the reproducibility variance contribution u2
reprod is estimated by means of u(ge),

i.e., the standard deviation associated with the prediction interval of the GPR model,
which is introduced here to cater to the prediction error including the GPR estimated
parameter variability and the residual variability; the traceability contribution u2

trac is
estimated as the combined variance of the calibrated external observer, i.e., the MVS,
u2

C−EO; the accuracy contribution u2
acc is estimated considering the average error as half-

range variability and assuming a uniform distribution [91]. Here, it is worth remarking
that the uncertainty evaluation of the VE, as detailed in Section 3.1, is performed according
to LPU-via-VE to estimate the uncertainty of the reproducibility as a prediction interval
of the model. Then, further metrological characteristics are added to cater to the accuracy
and the presence of the exteroceptive sensor traceability. Future work will investigate the
application of other approaches, e.g., PoD-via-VE, to include the uncertainty of the VE
embedded in the DT. Expanded uncertainty is evaluated with a coverage factor k = 2,
resulting in U(das-is(d∗, v∗)) = 2.384 mm, dominated by the systematic error, and in
U(dcorr(d∗, v∗)) = 0.254 mm, thus showing a reduction in uncertainty, thanks to the
systematic error correction and the real-time monitoring by means of the MVS, of one order
of magnitude, compliant with the target typical error range.

5. Conclusions

Modeling physical systems and characteristics in a virtual environment is key for
realizing European strategic policies on sustainability and digitalization. This trend is also
reflected by the increasing number of publications on DTs and related topics. However,
in order to trust the outcomes of VEs and DTs, traceability and methods for uncertainty
evaluation need to be provided.

In this paper, we formally defined VEs and DTs in such a way that the following
are fulfilled:

1. The two definitions clearly distinguish between static VEs and time-varying DTs;
2. The definitions are harmonized, allowing for using an VE as a core part (digital model)

within a DT, for example, by means of a common mathematical framework; and
3. The definitions allow for considering uncertainties constituting a basis for trustworthy

and traceable VEs and DTs.

Furthermore, our definition of a DT is compliant with ISO 23247:2021 and ISO
30173:2023, while better clarifying the DT scope of control of the physical entity by means
of the closed-loop feedback control. Our definition of a VE, on the other hand, poses a
clear distinction from the terms digital shadow (allowing for automatic updates of the
digital model in case that the physical entity changes) and DT (where a change made to the
physical entity automatically leads to a change in the digital model and vice versa).

This paper also showed how commonly used uncertainty evaluation methods can be
applied in the context of VEs, illustrated by means of the two example methods, LPU and
PoD. For DTs, not only the uncertainty of the simulation model (i.e., the virtual part of the
DT) needs to be considered, but also the errors and uncertainties related to the sensors
(that measure the current state of the system) and the ones related to the actuators (that
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control the system). This paper discusses how these contributions can be combined to
derive traceability for DTs.

How the uncertainty evaluation methods can be used in industrial applications is
shown by means of two test cases, a CMM (as an example for a VE) and a cobot (as an
example for a DT). This paper demonstrates the applicability of the metrological frame-
work. Employing a VE in the context of a CMM allows for the calculation of task-specific
uncertainties, which is much harder if only the methods of the GUM are being used. By
employing a common framework, the way uncertainties are calculated is universal and
comprehensible to people not directly involved in the application. The usage of the frame-
work also fosters comparability of measurement results. The DT application allowed the
real-time control of the cobot by means of MVS while improving by one order of magnitude
the positioning accuracy (from 2.384 mm to 0.254 mm of expanded uncertainty).

For more complex applications, this framework can be adapted and further extended.
Within the ViDiT project, this will be done for the following applications: tilted-wave inter-
ferometer, virtual flow meter, nanoindentation, highly accurate cylindricity measurement,
optical measurements integrated on robot arms, and electrical measurements (see ref. [54]).

Author Contributions: Conceptualization, G.M., M.M., and S.S.; methodology, G.K., G.M., M.M.,
and S.S.; software, M.v.D., and G.M.; validation, B.A.C., G.G., G.K., and P.P.; formal analysis, M.v.D.,
G.K., and G.M.; investigation, M.v.D. and G.M.; resources, M.G., and G.K.; data curation, M.v.D., and
G.M.; writing—original draft preparation, G.K., G.M., M.M., and S.S.; writing—review and editing,
B.A.C., M.v.D., J.F., G.G., M.G., and P.P.; visualization, G.K., and G.M.; supervision, M.G., and S.S.;
project administration, S.S.; funding acquisition, S.S., M.G., G.K., P.P., and B.A.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was carried out within the project 22DIT01 ViDiT, which received funding
from the European Partnership on Metrology, cofinanced by the European Union’s Horizon Europe
Research and Innovation Programme and by the Participating States.

Data Availability Statement: Dataset available on request from the authors.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf.

Sci. Technol. 2020, 29, 36–52. [CrossRef]
2. Flegr, S.; Kuhn, J.; Scheiter, K. When the whole is greater than the sum of its parts: Combining real and virtual experiments in

science education. Comput. Educ. 2023, 197, 104745. [CrossRef]
3. Chinesta, F.; Cueto, E.; Abisset-Chavanne, E.; Duval, J.L.; Khaldi, F.E. Virtual, Digital and Hybrid Twins: A New Paradigm in

Data-Based Engineering and Engineered Data. Arch. Comput. Methods Eng. 2020, 27, 105–134. [CrossRef]
4. Kennedy, M.C.; O’Hagan, A. Bayesian Calibration of Computer Models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2001, 63, 425–464.

[CrossRef]
5. Bayarri, M.; Berger, J.; Cafeo, J.; Garcia-Donato, G.; Liu, F.; Palomo, J.; Parthasarathy, R.; Paulo, R.; Sacks, J.; Walsh, D. Computer

model validation with functional output. Ann. Stat. 2007, 35, 1874–1906. [CrossRef]
6. Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020,

8, 108952–108971. [CrossRef]
7. Wright, L.; Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci 2020, 7, 13.

[CrossRef]
8. Wübbeler, G.; Marschall, M.; Kniel, K.; Heißelmann, D.; Härtig, F.; Elster, C. GUM-Compliant Uncertainty Evaluation Using

Virtual Experiments. Metrology 2022, 2, 114–127. [CrossRef]
9. Hughes, F.; Marschall, M.; Wübbeler, G.; Kok, G.; van Dijk, M.; Elster, C. JCGM 101-compliant uncertainty evaluation using

virtual experiments. arXiv 2024, arXiv:2404.10530.
10. Scholz, G.; Fortmeier, I.; Marschall, M.; Stavridis, M.; Schulz, M.; Elster, C. Experimental Design for Virtual Experiments in

Tilted-Wave Interferometry. Metrology 2022, 2, 84–97. [CrossRef]
11. Jing, X.; Wang, C.; Pu, G.; Xu, B.; Zhu, S.; Dong, S. Evaluation of measurement uncertainties of virtual instruments. Int. J. Adv.

Manuf. Technol. 2005, 27, 1202–1210. [CrossRef]
12. Kok, G.; Wübbeler, G.; Elster, C. Impact of Imperfect Artefacts and the Modus Operandi on Uncertainty Quantification Using

Virtual Instruments. Metrology 2022, 2, 311–319. [CrossRef]

http://doi.org/10.1016/j.cirpj.2020.02.002
http://dx.doi.org/10.1016/j.compedu.2023.104745
http://dx.doi.org/10.1007/s11831-018-9301-4
http://dx.doi.org/10.1111/1467-9868.00294
http://dx.doi.org/10.1214/009053607000000163
http://dx.doi.org/10.1109/ACCESS.2020.2998358
http://dx.doi.org/10.1186/s40323-020-00147-4
http://dx.doi.org/10.3390/metrology2010008
http://dx.doi.org/10.3390/metrology2010006
http://dx.doi.org/10.1007/s00170-004-2293-2
http://dx.doi.org/10.3390/metrology2020019


Metrology 2024, 4 361

13. Heißelmann, D.; Franke, M.; Rost, K.; Wendt, K.; Kistner, T.; Schwehn, C. Determination of measurement uncertainty by Monte
Carlo simulation. In Advanced Mathematical and Computational Tools in Metrology and Testing XI; World Scientific: Singapore, 2018;
pp. 192–202. [CrossRef]

14. Straka, M.; Weissenbrunner, A.; Koglin, C.; Höhne, C.; Schmelter, S. Simulation Uncertainty for a Virtual Ultrasonic Flow Meter.
Metrology 2022, 2, 335–359. [CrossRef]

15. Weissenbrunner, A.; Ekat, A.K.; Straka, M.; Schmelter, S. A virtual flow meter downstream of various elbow configurations.
Metrologia 2023, 60, 054002. [CrossRef]

16. Grieves, M. Digital twin: Manufacturing excellence through virtual factory replication. White Pap. 2014, 1, 1–7.
17. Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In

Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches; Kahlen, F.J., Flumerfelt, S., Alves, A., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 85–113. [CrossRef]

18. Errandonea, I.; Beltrán, S.; Arrizabalaga, S. Digital Twin for maintenance: A literature review. Comput. Ind. 2020, 123, 103316.
[CrossRef]

19. Yoon, S.; Koo, J. In situ model fusion for building digital twinning. Build. Environ. 2023, 243, 110652. [CrossRef]
20. Zhang, C.; Sun, Q.; Sun, W.; Shi, Z.; Mu, X. Performance-oriented digital twin assembly of high-end equipment: A review. Int. J.

Adv. Manuf. Technol. 2023, 126, 4723–4748. [CrossRef]
21. Liu, L.; Zhang, X.; Wan, X.; Zhou, S.; Gao, Z. Digital twin-driven surface roughness prediction and process parameter adaptive

optimization. Adv. Eng. Inform. 2022, 51, 101470. [CrossRef]
22. Cimino, C.; Negri, E.; Fumagalli, L. Review of digital twin applications in manufacturing. Comput. Ind. 2019, 113, 103130.

[CrossRef]
23. Pang, J.; Zheng, P.; Li, S.; Liu, S. A verification-oriented and part-focused assembly monitoring system based on multi-layered

digital twin. J. Manuf. Syst. 2023, 68, 477–492. [CrossRef]
24. Verna, E.; Puttero, S.; Genta, G.; Galetto, M. Toward a concept of digital twin for monitoring assembly and disassembly processes.

Qual. Eng. 2024, 36, 453–470. [CrossRef]
25. Magnanini, M.C.; Tolio, T.A. A model-based Digital Twin to support responsive manufacturing systems. CIRP Ann. 2021,

70, 353–356. [CrossRef]
26. Mengke Sun, Z.C.; Zhao, N. Design of intelligent manufacturing system based on digital twin for smart shop floors. Int. J.

Comput. Integr. Manuf. 2023, 36, 542–566. [CrossRef]
27. Kononowicz, A.A.; Woodham, L.A.; Edelbring, S.; Stathakarou, N.; Davies, D.; Saxena, N.; Car, L.T.; Carlstedt-Duke, J.; Car,

J.; Zary, N. Virtual Patient Simulations in Health Professions Education: Systematic Review and Meta-Analysis by the Digital
Health Education Collaboration. J. Med. Internet Res. 2019, 21, e14676. [CrossRef] [PubMed]

28. Cellina, M.; Cè, M.; Alì, M.; Irmici, G.; Ibba, S.; Caloro, E.; Fazzini, D.; Oliva, G.; Papa, S. Digital Twins: The New Frontier for
Personalized Medicine? Appl. Sci. 2023, 13, 7940. [CrossRef]

29. Kasper, L.; Birkelbach, F.; Schwarzmayr, P.; Steindl, G.; Ramsauer, D.; Hofmann, R. Toward a Practical Digital Twin Platform
Tailored to the Requirements of Industrial Energy Systems. Appl. Sci. 2022, 12, 6981. [CrossRef]

30. Fathy, Y.; Jaber, M.; Nadeem, Z. Digital twin-driven decision making and planning for energy consumption. J. Sens. Actuator
Netw. 2021, 10, 37. [CrossRef]

31. Ghenai, C.; Husein, L.A.; Al Nahlawi, M.; Hamid, A.K.; Bettayeb, M. Recent trends of digital twin technologies in the energy
sector: A comprehensive review. Sustain. Energy Technol. Assess. 2022, 54, 102837. [CrossRef]

32. Deng, T.; Zhang, K.; Shen, Z.J.M. A systematic review of a digital twin city: A new pattern of urban governance toward smart
cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [CrossRef]

33. Dani, A.A.H.; Supangkat, S.H.; Lubis, F.F.; Nugraha, I.G.B.B.; Kinanda, R.; Rizkia, I. Development of a Smart City Platform Based
on Digital Twin Technology for Monitoring and Supporting Decision-Making. Sustainability 2023, 15, 14002. [CrossRef]

34. Boschert, S.; Rosen, R. Digital Twin—The Simulation Aspect. In Mechatronic Futures: Challenges and Solutions for Mechatronic
Systems and Their Designers; Hehenberger, P., Bradley, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016;
pp. 59–74. [CrossRef]

35. Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. Shaping the digital twin for design and production engineering. CIRP Ann.
2017, 66, 141–144. [CrossRef]

36. Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst.
2021, 58, 346–361. [CrossRef]

37. VanDerHorn, E.; Mahadevan, S. Digital Twin: Generalization, characterization and implementation. Decis. Support Syst. 2021,
145, 113524. [CrossRef]

38. ISO 23247-1:2021; Automation Systems and Integration—Digital Twin Framework for Manufacturing. Part 1: Overview and
General Principles. International Organization for Standardization: Geneva, Switzerland, 2021.

39. ISO/IEC 30173:2023; Digital Twin—Concepts and Terminology. International Organization for Standardization and International
Electrotechnical Commission: Geneva, Switzerland, 2023.

40. Tang, W.; Xu, G.; Zhang, S.; Jin, S.; Wang, R. Digital Twin-Driven Mating Performance Analysis for Precision Spool Valve.
Machines 2021, 9, 157. [CrossRef]

http://dx.doi.org/10.1142/9789813274303_0017
http://dx.doi.org/10.3390/metrology2030021
http://dx.doi.org/10.1088/1681-7575/ace7d6
http://dx.doi.org/10.1007/978-3-319-38756-7_4
http://dx.doi.org/10.1016/j.compind.2020.103316
http://dx.doi.org/10.1016/j.buildenv.2023.110652
http://dx.doi.org/10.1007/s00170-023-11457-3
http://dx.doi.org/10.1016/j.aei.2021.101470
http://dx.doi.org/10.1016/j.compind.2019.103130
http://dx.doi.org/10.1016/j.jmsy.2023.05.008
http://dx.doi.org/10.1080/08982112.2023.2234017
http://dx.doi.org/10.1016/j.cirp.2021.04.043
http://dx.doi.org/10.1080/0951192X.2022.2128212
http://dx.doi.org/10.2196/14676
http://www.ncbi.nlm.nih.gov/pubmed/31267981
http://dx.doi.org/10.3390/app13137940
http://dx.doi.org/10.3390/app12146981
http://dx.doi.org/10.3390/jsan10020037
http://dx.doi.org/10.1016/j.seta.2022.102837
http://dx.doi.org/10.1016/j.jmse.2021.03.003
http://dx.doi.org/10.3390/su151814002
http://dx.doi.org/10.1007/978-3-319-32156-1_5
http://dx.doi.org/10.1016/j.cirp.2017.04.040
http://dx.doi.org/10.1016/j.jmsy.2020.06.017
http://dx.doi.org/10.1016/j.dss.2021.113524
http://dx.doi.org/10.3390/machines9080157


Metrology 2024, 4 362

41. Zhao, Z.; Wang, S.; Wang, Z.; Wang, S.; Ma, C.; Yang, B. Surface roughness stabilization method based on digital twin-driven
machining parameters self-adaption adjustment: A case study in five-axis machining. Int. J. Comput. Integr. Manuf. 2022,
33, 943–952. [CrossRef]

42. Modoni, G.E.; Stampone, B.; Trotta, G. Application of the Digital Twin for in process monitoring of the micro injection moulding
process quality. Comput. Ind. 2022, 135, 103568. [CrossRef]

43. Xin, Y.; Chen, Y.; Li, W.; Li, X.; Wu, F. Refined Simulation Method for Computer-Aided Process Planning Based on Digital Twin
Technology. Micromachines 2022, 13, 620. [CrossRef] [PubMed]

44. De Ketelaere, B.; Smeets, B.; Verboven, P.; Nicolaï, B.; Saeys, W. Digital twins in quality engineering. Qual. Eng. 2022, 34, 404–408.
[CrossRef]

45. Guo, Y.; Klink, A.; Bartolo, P.; Guo, W.G. Digital twins for electro-physical, chemical, and photonic processes. CIRP Ann. 2023,
72, 593–619. [CrossRef]

46. Franciosa, P.; Sokolov, M.; Sinha, S.; Sun, T.; Ceglarek, D. Deep learning enhanced digital twin for Closed-Loop In-Process quality
improvement. CIRP Ann. 2020, 69, 369–372. [CrossRef]

47. Bergs, T.; Biermann, D.; Erkorkmaz, K.; M’Saoubi, R. Digital twins for cutting processes. CIRP Ann. 2023, 72, 541–567. [CrossRef]
48. Karve, P.M.; Guo, Y.; Kapusuzoglu, B.; Mahadevan, S.; Haile, M.A. Digital twin approach for damage-tolerant mission planning

under uncertainty. Eng. Fract. Mech. 2020, 225, 106766. [CrossRef]
49. Wright, L.; Davidson, S. Digital twins for metrology; metrology for digital twins. Meas. Sci. Technol. 2024, 35, 051001. [CrossRef]
50. Zheng, Y.; Wang, S.; Li, Q.; Li, B. Fringe projection profilometry by conducting deep learning from its digital twin. Opt. Express

2020, 28, 36568–36583. [CrossRef]
51. Poroskun, I.; Rothleitner, C.; Heißelmann, D. Structure of digital metrological twins as software for uncertainty estimation.

J. Sensors Sens. Syst. 2022, 11, 75–82. [CrossRef]
52. Härtig, F.; Kniel, K.; Heißelmann, D. Das Virtuelle Koordinatenmessgerät—ein Digitaler Metrologischer Zwilling. TM-Tech. Mess.

2023, 90, 548–556. [CrossRef]
53. Shao, G.; Hightower, J.; Schindel, W. Credibility consideration for digital twins in manufacturing. Manuf. Lett. 2023, 35, 24–28.

[CrossRef]
54. Trustworthy Virtual Experiments and Digital Twins—ViDiT. Available online: https://www.vidit.ptb.de (accessed on 13 March

2024).
55. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in

Measurement; JCGM 100:2008; Joint Committee for Guides in Metrology: Sèvres, France, 2008.
56. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression

of Uncertainty in Measurement”—Propagation of Distributions Using a Monte Carlo Method; JCGM 101:2008; Joint Committee for
Guides in Metrology: Sèvres, France, 2008.

57. BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Supplement 2 to the “Guide to the Expression
of Uncertainty in Measurement”—Extension to any Number of Output Quantities; JCGM 102:2011; Joint Committee for Guides in
Metrology: Sèvres, France, 2011.

58. Elster, C. Bayesian uncertainty analysis compared with the application of the GUM and its supplements. Metrologia 2014, 51, S159.
[CrossRef]

59. van Dijk, M.; Kok, G. Comparison of uncertainty evaluation methods for virtual experiments with an applciation to a virtual
CMM. In Proceedings of the IMEKO XXIV World Congress, Hamburg, Germany 26–29 August 2024.

60. Kok, G.; van Dijk, M.; Wübbeler, G.; Elster, C. Virtual experiments for the assessment of data analysis and uncertainty
quantification methods in scatterometry. Metrologia 2023, 60, 044001. [CrossRef]

61. Marschall, M.; Fortmeier, I.; Stavridis, M.; Hughes, F.; Elster, C. Bayesian uncertainty evaluation applied to the tilted-wave
interferometer. Opt. Express 2024, 32, 18664–18683. [CrossRef]

62. Possolo, A.; Toman, B. Assessment of measurement uncertainty via observation equations. Metrologia 2007, 44, 464–475.
[CrossRef]

63. Verna, E.; Genta, G.; Galetto, M.; Franceschini, F. Zero defect manufacturing: A self-adaptive defect prediction model based on
assembly complexity. Int. J. Comput. Integr. Manuf. 2023, 36, 155–168. [CrossRef]

64. Wu, T.; Yang, F.; Farooq, U.; Li, X.; Jiang, J. An online learning method for constructing self-update digital twin model of power
transformer temperature prediction. Appl. Therm. Eng. 2024, 237, 121728. [CrossRef]

65. Grieves, M.W. Digital Twins: Past, Present, and Future. In The Digital Twin; Crespi, N., Drobot, A.T., Minerva, R., Eds.; Springer
International Publishing: Cham, Switzerland, 2023; pp. 97–121. [CrossRef]

66. Gelman, A.; Carlin, J.B.; Stern, H.S.; Rubin, D.B. Bayesian Data Analysis; Chapman and Hall/CRC: New York, NY, USA, 1995.
67. Kyriazis, G.A. Comparison of GUM Supplement 1 and Bayesian analysis using a simple linear calibration model. Metrologia 2008,

45, L9. [CrossRef]
68. Balsamo, A.; Di Ciommo, M.; Mugno, R.; Rebaglia, B.; Ricci, E.; Grella, R. Evaluation of CMM uncertainty through Monte Carlo

simulations. CIRP Ann. 1999, 48, 425–428. [CrossRef]

http://dx.doi.org/10.1007/s10845-020-01698-4
http://dx.doi.org/10.1016/j.compind.2021.103568
http://dx.doi.org/10.3390/mi13040620
http://www.ncbi.nlm.nih.gov/pubmed/35457924
http://dx.doi.org/10.1080/08982112.2022.2052731
http://dx.doi.org/10.1016/j.cirp.2023.05.007
http://dx.doi.org/10.1016/j.cirp.2020.04.110
http://dx.doi.org/10.1016/j.cirp.2023.05.006
http://dx.doi.org/10.1016/j.engfracmech.2019.106766
http://dx.doi.org/10.1088/1361-6501/ad2050
http://dx.doi.org/10.1364/OE.410428
http://dx.doi.org/10.5194/jsss-11-75-2022
http://dx.doi.org/10.1515/teme-2023-0066
http://dx.doi.org/10.1016/j.mfglet.2022.11.009
https://www.vidit.ptb.de
http://dx.doi.org/10.1088/0026-1394/51/4/S159
http://dx.doi.org/10.1088/1681-7575/acd6fd
http://dx.doi.org/10.1364/OE.524241
http://dx.doi.org/10.1088/0026-1394/44/6/005
http://dx.doi.org/10.1080/0951192X.2022.2081360
http://dx.doi.org/10.1016/j.applthermaleng.2023.121728
http://dx.doi.org/10.1007/978-3-031-21343-4_4
http://dx.doi.org/10.1088/0026-1394/45/2/N02
http://dx.doi.org/10.1016/S0007-8506(07)63218-1


Metrology 2024, 4 363

69. Germer, T.A.; Patrick, H.J.; Silver, R.M.; Bunday, B. Developing an uncertainty analysis for optical scatterometry. In Proceedings
of the Metrology, Inspection, and Process Control for Microlithography XXIII, San Jose, CA, USA, 23–26 February 2009; Allgair,
J.A., Raymond, C.J., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2009; Volume 7272, p. 72720T.
[CrossRef]

70. van Dorp, B.W.; Haitjema, H.; Delbressine, F.; Bergmans, R.H.; Schellekens, P.H.J. Virtual CMM using Monte Carlo methods based
on frequency content of the error signal. In Proceedings of the Recent Developments in Traceable Dimensional Measurements,
Munich, Germany, 20–21 June 2001; Decker, J.E., Brown, N., Eds.; International Society for Optics and Photonics: Bellingham, WA,
USA, 2001; Volume 4401, pp. 158–167. [CrossRef]

71. Nath, P.; Mahadevan, S. Probabilistic Digital Twin for Additive Manufacturing Process Design and Control. J. Mech. Des. 2022,
144, 091704. [CrossRef]

72. Sisson, W.; Karve, P.; Mahadevan, S. Digital twin for component health- and stress-aware rotorcraft flight control. Struct.
Multidiscip. Optim. 2022, 65, 318. [CrossRef]

73. Ye, Y.; Yang, Q.; Zhang, J.; Meng, S.; Wang, J. A dynamic data driven reliability prognosis method for structural digital twin and
experimental validation. Reliab. Eng. Syst. Saf. 2023, 240, 109543. [CrossRef]

74. Thelen, A.; Zhang, X.; Fink, O.; Lu, Y.; Ghosh, S.; Young, B.D.; Todd, M.D.; Mahadevan, S.; Hu, C.; Hu, Z. A comprehensive
review of digital twin—Part 2: Roles of uncertainty quantification and optimization, a battery digital twin, and perspectives.
Struct. Multidiscip. Optim. 2023, 66, 1. [CrossRef]

75. Huang, Z.; Fey, M.; Liu, C.; Beysel, E.; Xu, X.; Brecher, C. Hybrid learning-based digital twin for manufacturing process: Modeling
framework and implementation. Robot.-Comput.-Integr. Manuf. 2023, 82, 102545. [CrossRef]

76. Carmignato, S.; De Chiffre, L.; Bosse, H.; Leach, R.; Balsamo, A.; Estler, W. Dimensional artefacts to achieve metrological
traceability in advanced manufacturing. CIRP Ann. 2020, 69, 693–716. [CrossRef]

77. Dahlem, P.; Emonts, D.; Sanders, M.P.; Schmitt, R.H. A Review on Enabling Technologies for Resilient and Traceable on-Machine
Measurements. J. Mach. Eng. 2020, 20, 5–17. [CrossRef]

78. Jaganmohan, P.; Muralikrishnan, B.; Lee, V.; Ren, W.; Icasio-Hernández, O.; Morse, E. VDI/VDE 2634-1 performance evaluation
tests and systematic errors in passive stereo vision systems. Precis. Eng. 2023, 79, 310–322. [CrossRef]

79. JCGM 200:2008; International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM). Joint
Committee for Guides in Metrology—International Organization for Standardization: Geneva, Switzerland, 2008.

80. Haitjema, H. Uncertainty Estimation in Dimensional Metrology. Int. J. Precis. Technol. 2011, 2, 226. [CrossRef]
81. Haitjema, H.; van Dorp, B.W.; Morel, M.; Schellekens, P.H.J. Uncertainty estimation by the concept of virtual instruments. In

Proceedings of the Recent Developments in Traceable Dimensional Measurements, Munich, Germany, 20–21 June 2001; Decker,
J.E., Brown, N., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2001; Volume 4401, pp. 147–157.
[CrossRef]

82. Ramu, P.; Yagüe, J.; Hocken, R.; Miller, J. Development of a parametric model and virtual machine to estimate task specific
measurement uncertainty for a five-axis multi-sensor coordinate measuring machine. Precis. Eng. 2011, 35, 431–439. [CrossRef]

83. Vlaeyen, M.; Haitjema, H.; Dewulf, W. Digital Twin of an Optical Measurement System. Sensors 2021, 21, 6638. [CrossRef]
[PubMed]

84. Iñigo, B.; Colinas-Armijo, N.; López de Lacalle, L.N.; Aguirre, G. Digital twin-based analysis of volumetric error mapping
procedures. Precis. Eng. 2021, 72, 823–836. [CrossRef]

85. Maculotti, G.; Genta, G.; Galetto, M. An uncertainty-based quality evaluation tool for nanoindentation systems. Measurement
2024, 225, 113974. [CrossRef]

86. Maculotti, G.; Genta, G.; Galetto, M. Optimisation of laser welding of deep drawing steel for automotive applications by Machine
Learning: A comparison of different techniques. Qual. Reliab. Eng. Int. 2024, 40, 202–219. [CrossRef]

87. ISO 12181-2:2011; Geometrical Product Specifications (GPS)—Roundness—Part 2: Specification Operators. International
Organization for Standardization: Geneva, Switzerland, 2011.

88. Nafi, A.; Mayer, R. Identification of scale and squareness errors on a CMM using a step gauge measured based on the ASME
89.4.10360.2-2008 standard. In Proceedings of the 38th Annual North American Manufacturing Research Conference, Kingston,
ON, Canada, 25–28 May 2010; Volume 38, pp. 325–332.

89. Maculotti, G.; Genta, G.; Aliev, K.; Galetto, M. Metrological integration and automation of surface topography measuring
instruments on cobots. In Proceedings of the 17th CIRP Conference on Intelligent Computation in Manufacturing Engineering,
Ischia, Italy, 12–14 July 2023.

90. Verna, E.; Puttero, S.; Genta, G.; Galetto, M. A Novel Diagnostic Tool for Human-Centric Quality Monitoring in Human–Robot
Collaboration Manufacturing. J. Manuf. Sci. Eng. 2023, 145, 121009. [CrossRef]

91. ISO 14253-2:2011; Geometrical Product Specifications (GPS)—Inspection by Measurement of Workpieces and Measuring Equip-
ment Part 2: Guidance for the Estimation of Uncertainty in GPS Measurement, in Calibration of Measuring Equipment and in
Product Verification. International Organization for Standardization: Geneva, Switzerland, 2011.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1117/12.814835
http://dx.doi.org/10.1117/12.445616
http://dx.doi.org/10.1115/1.4054521
http://dx.doi.org/10.1007/s00158-022-03413-8
http://dx.doi.org/10.1016/j.ress.2023.109543
http://dx.doi.org/10.1007/s00158-022-03410-x
http://dx.doi.org/10.1016/j.rcim.2023.102545
http://dx.doi.org/10.1016/j.cirp.2020.05.009
http://dx.doi.org/10.36897/jme/122768
http://dx.doi.org/10.1016/j.precisioneng.2022.11.005
http://dx.doi.org/10.1504/IJPTECH.2011.039461
http://dx.doi.org/10.1117/12.445615
http://dx.doi.org/10.1016/j.precisioneng.2011.01.003
http://dx.doi.org/10.3390/s21196638
http://www.ncbi.nlm.nih.gov/pubmed/34640958
http://dx.doi.org/10.1016/j.precisioneng.2021.07.017
http://dx.doi.org/10.1016/j.measurement.2023.113974
http://dx.doi.org/10.1002/qre.3377
http://dx.doi.org/10.1115/1.4063284

	Introduction
	VEs in the Literature
	DTs in the Literature
	Scope of the Work

	A Novel and Harmonized Definition of VEs and DTs
	Definition of VEs
	Definition of DTs
	Connection between VEs and DTs

	Uncertainty Evaluation for VEs and DTs
	Uncertainty Evaluation Involving VEs
	LPU-via-VE
	PoD-via-VE

	Uncertainty Evaluation for DTs
	Problem Statement
	Establishing Traceability for a DT
	Definition of Uncertainty and Accuracy of the P2V Model
	Effect of Closed-Loop Feedback Control on Measurement Uncertainty

	Challenges

	Applications
	VE of a CMM
	Description of the Application
	LPU-via-VE
	PoD-via-VE
	Numerical Results

	DT of a Cobot

	Conclusions
	References

