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A B S T R A C T

The increasing installation of structural health monitoring systems has raised the need for efficient and rapid data 
interpretation algorithms. Operational modal analysis is currently one of the most used techniques for extracting 
modal properties, and some attempts have been made to automate this procedure. However, automated tech-
niques often require manual calibration of hyperparameters and show inconsistencies across different case 
studies. This paper proposes a refined version of the automated frequency domain decomposition (AFDD) using 
the modal assurance criterion (MAC) to obtain natural frequencies and mode shapes. Sensitivity analyses were 
conducted on the ambient vibration response of the Yonghe cable-stayed bridge in China, accounting for 
influential factors including noise levels, acceleration record length, sensor layouts. A novel approach is then 
introduced to interpret the results of the sensitivity analyses. The approach consists in plotting the result of each 
analysis in a stabilization diagram and then using a Gaussian mixture model that clusters the poles into core and 
outliers. This allows to identify regions where the MAC thresholds are optimal. By comparing the results of all the 
sensitivity analyses it was possible to define a single optimal MAC threshold, avoiding the need for fixing a value 
based on the user’s experience. Three substantially different case studies were analyzed to extensively test the 
methodology: the Yonghe cable-stayed bridge, the PolyU footbridge in Hong Kong, and Moletta Tower in the 
Circus Maximus archeological site in Italy. The analysis compared the proposed AFDD algorithm to the tradi-
tional frequency domain decomposition and covariance-driven stochastic subspace identification. Specifically, 
the efficiency in identifying close frequencies, weakly excited modes, spurious peaks, and complex modes was 
evaluated for each method, which highlighted the robustness of the proposed optimized AFDD. The analysis 
showcases peculiar characteristics and drawbacks of each method when trying to identify complex vibrational 
modes of the specific case studies. It was found that the proposed AFDD procedure performs better than tradi-
tional methods despite it may misidentify complex modes due to the constraints of a narrower modal domain and 
similar geometries.

1. Introduction

Vibration-based structural health monitoring (SHM) has seen an
increasing application in civil engineering to extract modal parameters, 
which can be used to better understand the dynamics of existing struc-
tural systems [1], calibrate and update numerical models [2–4], identify 
damage [5–7], avoid catastrophic collapses [8,9], and study seismic 
retrofit solutions [10].

One of the most commonly used approaches to identify modal 
properties is the operational modal analysis (OMA). Its popularity is 
mainly due to the fact that it does not require applying external exci-
tation forces other than environmental vibrations nor measuring the 

actual exciting input. This is particularly convenient when monitoring 
building heritage, where achieving proper excitation levels through 
external forces is virtually impossible due to disproportionate costs and 
potential damage.

OMA techniques can be categorized into the time and frequency 
domains. In the time domain, stochastic subspace identification (SSI) 
[11] and auto regression moving average (ARMA) [12] have been
widely applied. When applying the ARMA algorithm, it is necessary to
estimate auto-regression and moving average coefficients using opti-
mization tools. The algorithm might encounter convergence issues when
estimating these parameters for complex structures or inputs with high
levels of noise. Furthermore, real-time monitoring is almost impossible
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due to the high computational cost associated with its iterative opti-
mization tool [13]. Conversely, the SSI exhibits superior performance 
overall, and for this reason it is often the preferred method. It has two 
primary branches denoted as covariance-driven SSI (cov-SSI) and 
data-driven SSI. The former relies on the correlation function derived 
from the input signal, while the latter processes the input directly. The 
SSI methodology involves estimating the model order, a challenging task 
in dynamically complex structures. Hence, an iterative approach is 
applied by assigning different model orders and constructing stabiliza-
tion diagrams. In a stabilization diagram, physical and spurious poles 
are distinguished by setting appropriate thresholds. Stable modes are 
identified by combining judicious reasoning with experience, consid-
ering physical poles that form vertical alignments [14].

In the frequency domain, the fact that when a structure is subjected 
to ambient vibration it exhibits higher energy around its natural fre-
quencies led to one of the first methods of OMA that is generally referred 
to as peak-picking [15]. This consists in plotting the power spectral 
density (PSD) spectrum computing the discrete Fourier transform, 
where the peaks represent the main frequencies of the structure. While 
this is a rapid frequency assessment tool, it can be effectively used only 
in case of clearly separated modes with low damping ratios. On the other 
hand, the frequency domain decomposition (FDD) is a more effective 
frequency domain technique that has been extensively used [16]. 
Derived from the general peak-picking method, the FDD rectifies its 
limitations by employing singular value decomposition (SVD) on the 
PSD. The modal properties obtained from FDD are limited to natural 
frequencies and mode shapes, while other versions of the method, such 
as the enhanced FDD, allow to estimate also damping ratios [17]. 
Overall, traditional techniques require the intervention of the user to 
select and interpret data. In some instances, this is not an easy task, even 
for experienced engineers. Furthermore, the effort required by tradi-
tional techniques for a real-time analysis of the ambient vibration 
response would be unreasonable. Therefore, many efforts have been 
directed toward automating OMA methods. The next section presents 
and discuss the main automated methods available in the literature for 
both time and frequency domains.

Despite the considerable research done in the automatic identifica-
tion of modal parameters, the application of existing methods is often 
limited and might lead to inconsistent results. This study offers new 
practical insights in the application of an automated FDD (AFDD) pro-
cedure to reduce the bias of setting calibration parameters based on 
experience. Specifically, the AFDD procedure relies on the predefinition 
of a threshold for the modal assurance criterion (MAC). Depending on 
the type of SHM data and the characteristics of the structure, this may 
substantially vary. First, the effect of various variables related to the 
SHM system, i.e., noise level, record length, number of sensors, and 
sensor layout is investigated. Their effect on the performance of the 
AFDD is evaluated for various MAC thresholds through a series of 
sensitivity analyses using real data from the Yonghe cable-stayed bridge 
in China. This benchmark was selected since there is a lack of compre-
hensive studies on damage identification and monitoring of cable-stayed 
bridges based on experimental data [18]. Then, a Gaussian mixture 
model (GMM), an algorithm belonging to the category of unsupervised 
machine learning (ML), was implemented to process the results obtained 
from the sensitivity analyses and cluster them into core poles and out-
liers. As a result, the optimal ranges of MAC were estimated for each 
variable and a common optimal threshold was identified. This novel 
approach can be easily replicated by engineers and researchers who 
would like to establish an unbiased MAC threshold that optimize results 
depending on the characteristics of structure and SHM system. None-
theless, the optimal value resulting from the sensitivity analyses on the 
the Yonghe bridge could already be valid in several applications, 
potentially removing the need for further fine-tuning. To verify this, an 
in-depth test was carried out on significantly different structures using 
the previously determined threshold. The performance was compared to 
the traditional FDD and cov-SSI. The first case study is the Yonghe 

cable-stayed bridge, which was tested using acceleration records 
different from those used to determine the optimal MAC threshold. The 
second case study is the PolyU footbridge on the Main Campus of the 
Hong Kong Polytechnic University. Footbridges are typically charac-
terized by their complex dynamics. Excessive vibration of the Millen-
nium Bridge in London, Changi Mezzanine in Singapore, Toda Park 
Bridge in Japan, and the collapse of the Vltava River bridge in Prague 
highlight the lack of monitoring and SHM studies on them [19]. The 
third application concerns the Moletta tower, a cultural heritage struc-
ture part of the Circus Maximus archeological site in Rome, Italy. Its 
exposure to various sources of excitations and the fact that it is partially 
buried under alluvial soil due to flooding events, make its dynamic 
characterization challenging [20].

Results show that the proposed AFDD method outperforms the 
traditional OMA procedures in estimating modal properties. However, 
an SHM system with proper spatial resolution should be designed when 
dealing with structures characterized by complex dynamics. This en-
sures a better distinction of modal properties since the proposed method 
is based on the geometry of mode shapes.

The paper is organized as follows. Section 2 discusses the main 
automated OMA procedures available in the literature. Section 3 out-
lines a brief mathematical background of the GMM algorithm chosen to 
determine the optimal MAC threshold, the OMA techniques used in this 
study, and the proposed methodology. The results of the sensitivity 
analyses of factors affecting modal estimations are presented in Section 
4. In Section 5, the AFDD with optimal MAC threshold is tested on the 
three case studies, and the results are compared with traditional FDD 
and cov-SSI methodologies. Finally, the concluding remarks and limi-
tations of the proposed procedure are presented in Section 6.

2. Existing automated OMA procedures

The main challenge in automating the SSI procedure is the inter-
pretation of the stabilization diagram, since the distinction between 
physical and non-physical modes is not always obvious. To tackle this 
issue, Li et al. developed a time-discrete state-space model that connects 
the second order blind identification (SOBI) and cov-SSI algorithms 
[21]. The methodology identifies the model order directly by SOBI and 
exploits the cov-SSI afterward to avoid building stabilization diagrams. 
In addition, the source signals are analyzed to help selecting physical 
modes. The physical modal responses obtained from SOBI exhibit si-
nusoidal decay in the time domain and a spectral peak in the frequency 
domain. Despite its reduced reliance on expert intervention, the pro-
cedure cannot be considered fully automated.

Existing automated procedures in the time domain mainly rely on ML 
algorithms for segmenting and clustering the poles of the stabilization 
diagrams [14,22]. In a seminal study by Magalhaes et al. [23], the 
cov-SSI procedure was automated using a hierarchical clustering algo-
rithm to analyze poles within the stabilization diagram. Clusters with a 
certain number of points were identified as physical modes, while others 
were regarded as spurious and discarded based on a predefined cutoff 
threshold. A robust approach to estimate the cutoff threshold was 
implemented by Zini et al. [24], who analyzed the distribution of the 
distance between poles related to consecutive model orders and then 
suggested to take the 80th percentile value as cutoff. However, meth-
odologies based on statistical analysis could present some drawbacks 
when identifying closely spaced dynamic modes. To overcome the lim-
itation of having to set the number of clusters a priori, Romanazzi et al. 
proposed an iterative procedure for hierarchical clustering that has the 
advantage of inferring the number of clusters [25]. Despite the pro-
cedure is sensitive to the weighting coefficient used to estimate the 
distance between poles, the simulations and experimental validation 
demonstrated stability and robustness. In another SSI automation 
attempt by Rosso et. al [26], a procedure was developed to analyze the 
stabilization diagram through kernel density estimation instead of 
traditional clustering techniques. The method involves a nonparametric 
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estimation of probability density functions from the physical poles in the 
stabilization diagram and the hyperparameters are handled through 
Maximum Likelihood and Sheather–Jones algorithms which result in a 
significant computational effort.

In another work, Ye et al. [27] introduced innovative stabilization 
diagrams derived from combining NExT/ERA [28] procedures and hi-
erarchical clustering analysis. The stabilization diagram was built from 
filtered modes, and hierarchical clustering was applied to automate the 
analysis. During the clustering process, the Tau test was also utilized to 
exclude data with discrete damping ratios denoted as outliers. None-
theless, the procedure necessitates expert supervision due to the sig-
nificant number of parameters that need to be set in advance.

Furthermore, the identification of modes corresponding to close 
frequencies, lightly excited modes, and generalization for different 
structural systems is still an open issue. The work conducted by 
Dederichs et al. [29] highlighted the limitations in the performance of 
automated time domain approaches using clustering algorithms. It 
demonstrated the ability of six techniques to extract modal properties 
automatically from the Hardanger suspension bridge in Norway. Their 
performance was evaluated in terms of mode detection rate, false mode 
detections, and duplicate modal detections. The detection rate derived 
for these methodologies spanned from 39.8 % to 81.2 %, demonstrating 
variable reliability depending on the chosen method. Time domain ap-
proaches also show limitations in extracting modal properties of systems 
under narrowband excitation. For instance, the study conducted by Sun 
et al. [30] discloses the challenge in distinction between harmonic ac-
tion produced by bell and natural frequencies of the system.

In the frequency domain, in a study by Kim et al. [31], the auto-
mation consists in detecting peak regions in the SV spectrum using a 
Faster R-CNN convolutional neural network and subsequent 
post-processing to identify vibration modes. The network was trained by 
generated numerical models related to an MDOF system. It out-
performed the automated SSI described by Magalhães et al. [23] in the 
modal identification of various case studies, achieving an F1 score of 
0.92 with less computational effort. Yet, the main limitation of the 
neural network lies in the distinction of closely spaced modes with high 
damping and points located at the boundaries of the peak regions in the 
SV spectrum. In another study by Jeong et al. [32], a deep learning 
network was trained and validated for automatic peak picking in the SV 
spectrum to estimate the tension force of bridge cables. The study 
revealed the robustness of automated methods in the frequency domain, 
suitable for application in various fields of SHM. The benefit of using ML 
algorithms is their independence from frequency range selection or 
fixing predefined thresholds. However, they are highly affected by the 
training data set and their hyperparameter tuning. Consequently, the 
use of ML algorithms for automating FDD needs further research.

The AFDD methodology, based on the geometry of mode shapes, was 
proposed by Brincker et al. [33] to identify closely spaced modes and 
reduce the expert intervention. It was based on identifying a domain 
around an SV peak using a modal domain and coherence function. 
Magalhães et al.[34] further adopted this technique using the MAC, 
which successfully distinguished physical and non-physical modes in the 
monitoring of the Infante D. Henrique Bridge in Portugal. In that study, 
the MAC threshold was fixed at 0.4 by experience, and it was recom-
mended to perform a preliminary analysis to establish the appropriate 
thresholds, accounting for various factors influencing modal character-
istics. While using AFDD with MAC has proven to be effective, several 
factors can influence its accuracy and there are significant limitations. 
For instance, previous studies struggled in identifying frequencies that 
are close to each other and complex dynamic modes. Additionally, when 
analyzing structures with different characteristics, one may need to 
subjectively define a different threshold for each case.

3. Methodology

3.1. Gaussian Mixture Model (GMM)

The Gaussian mixture model (GMM) is an unsupervised ML tech-
nique used for clustering. It models complex data sets into separate 
clusters by combining multiple normal distributions named Gaussian 
components. In addition, by modeling the normal behavior of datasets, 
any data point deviating significantly from the learned distribution can 
be identified as an anomaly. A GMM for a data point present in the 
vector x with the dimension of D is defined by a weighted sum of K 
Gaussian components expressed as: 

p(x) =
∑K

k=1
πk⋅Ω(xn|μk,Σk) (1) 

where Ω represents the Gaussian distribution, and each Gaussian 
component is characterized by its mean (μk), covariance matrix (Σk), 
and mixing coefficient (πk) [35,36]. To estimate the parameters of the 
Gaussian components that best describe the input dataset, the maximum 
likelihood estimation is exploited. The likelihood function is defined as 
the product of the probability density functions of the individual 
Gaussian components, each weighted by its mixing coefficient. Its log-
arithmic form for the input matrix of X = {x1, x2, …, xN} is: 

ln p

(

X|π,μ,Σ

)

=
∑N

n=1
ln

{
∑K

k=1

πk⋅Ω(xn|μk,Σk)

}

(2) 

Expectation-Maximization is a robust algorithm to maximize this 
likelihood solution, which determines μk, Σk, πk iteratively [37]. As the 
name suggests, it consists of two main steps, expectation (E) and 
maximization (M). In the E-step, the posterior probability (γ (znk)), i.e., 
the probability of data point xn belonging to Gaussian component k, is 
computed as shown in Eq. (3). 

γ(znk) =
πkΩ(xn|μk,Σk)

∑K

j=1
πjΩ
(

xn|μj,Σj

) (3) 

In the M-step, GMM parameters are updated using the posterior 
probabilities calculated in the E-step: 

μnew
k =

1
Nk

∑N

n=1
γ(znk)xn (4) 

Σnew
k =

1
Nk

∑N

n=1
γ(znk)

(
xn − μnew

k
)(

xn − μnew
k
)T (5) 

πnew
k =

Nk

N
(6) 

Nk =
∑N

n=1
γ(znk) (7) 

In Eqs. (4–7), N is the total number of data points, NK is the sum of 
posterior probabilities for component k, and znk represents the latent 
variable, indicating the GMM component assignment for data point xn. 
Once the new parameters are obtained, they are used in the likelihood 
function to check its convergence.

3.2. Covariance-driven stochastic subspace identification (cov-SSI)

The SSI technique exploits a state-space model to reformulate a 
second-order partial differential equation in terms of two separate first- 
order state and observation problems. Through the cov-SSI identifica-
tion, the following discrete-time state space model is proposed, where 
the input is assumed to be a white noise signal. Eq. (8) describes the 
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model, where xk and yk are the state and recorded output vectors at time 
instant k, respectively. 

xk+1 = A⋅xk + wk
yk = C⋅xk + vk

(8) 

The discrete state and output matrices are A and C, where the modal 
properties are extracted from. The vector wk represents the model in-
accuracy, while vk describes the sensor measurement bias. The analysis 
begins by estimating the output covariance (Ri) from the correlation 
between ambient vibration responses as shown in Eq. (9): 

Ri =
1

N − i
∑N− i− 1

k=1

yk+i⋅y
T
k (9) 

where N is the length of the discrete output, i is the time lag parameter, 
and yT

k is the output’s transpose. The Toeplitz matrix T1|i is then 
computed from the output covariance (Ri) as indicated in Eq. (10). 

T1|i =

⎡

⎢
⎢
⎣

Ri Ri− 1 ⋯ R1
Ri+1 Ri ⋯ R2

⋮ ⋮ ⋱ ⋮
R2i− 1 R2i− 2 ⋯ Ri

⎤

⎥
⎥
⎦ (10) 

The cov-SSI is a stochastic realization problem aiming at building an 
observable and controllable model [11]. To build the model, for a sys-
tem with order n, it is necessary to obtain the observability matrix O and 
the controllability matrix Γ with rank equal to n. Matrices O and Γ are 
estimated from the singular value decomposition (SVD) of the Toeplitz 
matrix: 

T1|i = OiΓi = U1Σ1VT
1

Oi = U1Σ1/2
1 М

Γi = М− 1Σ1/2
1 VT

1

(11) 

In Eq. (11) U1 and V1 are orthogonal matrices consisting of singular 
vectors, Σ1 contains the singular values arranged in ascending order, and 
М is assumed to be an identity matrix. After determining matrices O and 
Γ, many algorithms can be used to determine the discrete state and 

Fig. 1. Flowchart of the AFDD algorithm.
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output matrices (A and C) [38]. Once the components of the state space 
model are determined, the natural frequencies and mode shapes are 
obtained by performing Eigen value decomposition.

In the cov-SSI analysis, two main parameters should be defined. The 
first parameter is the time lag. This can be chosen by analyzing the PSD 
diagram and identifying the system’s fundamental frequency [39]. 
Based on the sampling frequency (fs) and fundamental frequency (ff ), 
the time lag i is defined as shown by Eq. (12). 

i = 1.5
fs

ff
(12) 

The second parameter is the order of the model. This parameter 
cannot be univocally quantified. Typically, a value within the range of 4 
to 30 times the desired number of mode shapes is suggested [40].

Finally, to identify stable poles it is necessary to define limitations on 
frequency, damping ratio, and mode shape. In this research, the limi-
tations suggested by Lee et al. [41] are adopted. They have been used by 
several researchers and compared to other values that can be found in 
the literature they are stricter, which enhances the accuracy of the sta-
bilization diagrams. These limitations are reported in Eq. (13): 

Frequency :

⃒
⃒f (p+1) + f (p)

⃒
⃒

f (p)
× 100% < 1%

Dampingratio :

⃒
⃒ξ(p+1) + ξ(p)

⃒
⃒

ξ(p)
× 100% < 5%

Modeshape :
(
1 − MAC

(
ϕp,ϕp+1))× 100% < 3%

(13) 

where f ,ξ and ϕ are the natural frequencies, damping ratios, and mode 
shapes, respectively. The parameter p denotes the system order, and 
MAC is the modal assurance criterion between the mode shapes. The 
MAC of two vectors (a, b) can be calculated as shown in Eq. (14). 

MAC

(

a,b

)

=
|aTb|2

(aTa)
(
bTb

) (14) 

In the current study, a MATLAB script was written to perform the 
cov-SSI analysis based on the procedure described by Otto [42].

3.3. Proposed automated frequency domain decomposition (AFDD) 
algorithm

In the FDD technique, the first step is to analyze the power distri-
bution in the frequency domain by estimating the PSD matrix. This is 

derived from the Fourier transform of auto and cross-correlations. After 
some mathematical manipulation, the PSD of the output can be written 
at discrete frequencies (iω) as shown in Eq. (15): 

Gyy

(

iω
)

=
∑

k∈sub(ω)

(
dkϕkϕT

k
iω − λk

+
d∗

kϕ∗
kϕH

k
iω − λ∗

k

)

(15) 

where d is a scalar value obtained from the Fourier transform of the 
Dirac’s function, ϕ is the mode shape vector, and ϕH

k is the complex 
conjugate of its transpose. λk, λ∗

k denote the poles of modes n and its 
conjugate, respectively. Poles indicate complex numbers that are part of 
the transfer function’s denominator. In the output PSD, each peak, a 
point with high energy, represents the dominance of a mode or its 
combination with those in proximity. The singular value decomposition 
(SVD) technique is typically used to obtain the modal properties near the 
peak. Being Gyy the PSD at discrete frequencies, its SVD is calculated as 
per Eq. (16): 

Gyy
(
iω
)
= UiSiVH

i (16) 

In this relation, S is a diagonal matrix formed by singular values in 
descending order. U and V are matrixes built from the corresponding 
first singular vectors [16]. From the resultant SV spectrum, it is possible 
to identify peaks representing the modes of vibrations.

Fig. 1 shows a flowchart that summarizes the proposed AFDD pro-
cedure. After processing the acceleration records via PSD and SVD, the 
user defines a certain frequency range and the number of modes that 
they would like to get. From this point, the algorithm selects the point 
with the largest SV value as the first peak. Then it calculates the MAC 
between the first peak mode shape and all the other mode shapes within 
the frequency range. To verify that the selected peak corresponds to a 
physical mode, a modal domain assessment is carried out, checking that 
the average MAC between the selected peak and neighbor points is 0.6 
or higher, as suggested by Magalhães et al. [34]. If this condition is not 
satisfied, the second largest point should be selected as peak and the 
verification repeated. Then, to select other peaks representative of valid 
modes, a MAC threshold (α) should be defined. This ensures that SV 
points with similar mode shapes can be excluded. Assuming the α 
threshold is known, the SV points with a MAC value above the threshold 
are excluded from the selection of the next peak. Among the remaining 
points, the next possible peak is always the one with the largest value, 
provided that is a physical mode. The process is iterated until the desired 
number of peaks is matched and the frequencies and mode shapes can be 
extracted. However, the process might end before if there are no more 

Fig. 2. Interpretation of a stabilization diagram through a GMM.
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points in the SV diagram to be selected as peaks. This could happen if the 
user selects a number of peaks that exceed the dynamic range of the 
structure or if the modes are too similar according to the chosen α 
threshold. Compared to the traditional FDD, where typically the user 
selects only the most prominent peaks (i.e., those with large amplitudes 
in the SV spectrum), this procedure allows to identify relevant mode 
shapes even when frequencies show lower amplitudes in the SV 
spectrum.

To avoid pre-defining the α threshold based on user’s experience, it is 

proposed to carry out sensitivity analyses involving multiple variables 
on a benchmark with known modal properties to use as targets. For each 
variable, different relevant scenarios can be imagined. For instance, if 
the variable is the length of the acceleration records, one can investigate 
the effect of having 10-minute long vs. 1-hour long records. In each 
scenario, the AFDD analysis is performed varying the α threshold from 
0 to 1, obtaining the desired frequencies and mode shapes that the 
method is able to determine under those premises. The results of each 
AFDD analysis are used to generate a stabilization diagram where it is 

Table 1 
Description of the algorithm used to define the optimal α values.
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possible to visualize the results corresponding to each α value. The 
stabilization diagram is interpreted through a GMM that clusters the 
results into core poles and outliers. The output of the GMM is illustrated 
with an example in Fig. 2 that simulates a possible outcome of a sensi-
tivity analysis. The vertical line represents the target frequency, which 
could be known from a finite element (FE) model, while the scatter 
points denote simulated AFDD results. These are classified into core 
poles and outliers based on the distance to the target frequency. Points 
exceeding a 0.1 Hz distance are included in the outlier cluster. In 
addition, the output of GMM allows to define optimal, suboptimal, and 
unstable regions in the diagram, meaning that different ranges of α 
values lead to different accuracy of the results. It is considered that if for 
a fixed α all the AFDD estimates fall inside the core cluster, then the α is 
optimal. On the other hand, if the selected α leads to having one pole in 
the outlier cluster, then it is regarded as suboptimal. Finally, the un-
stable region includes all α values leading to two or more outliers. This 

entire procedure is summarized by the algorithm in Table 1. Once the 
unstable, sub-optimal, and optimal regions are defined for each scenario 
of all considered variables, it is possible to select an α threshold that 
consistently fits within the optimal regions.

A MATLAB script was developed based on the above formulation and 
the procedures described in [33] and[34]. The extracted modal prop-
erties are limited to the natural frequencies and mode shapes.

4. Optimization of the AFDD

Although the AFDD methodology has proven to be effective in 
several research works, there are still some factors that can greatly affect 
the accuracy of the results. In this section, a series of sensitivity analyses 
is performed to evaluate the influence of different factors and establish 
when the optimal performance is achieved. The analyses were carried 
out using the experimental data from the Yonghe cable-stayed bridge to 

Fig. 3. (a) Yonghe cable-stayed bridge, (b) ambient vibration response recorded by sensor 14, (c) sensor layout.

Fig. 4. FE model of Yonghe cable-stayed bridge.
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acquire AFDD’s optimal performance.

4.1. Description of the benchmark for the sensitivity analyses

The Yonghe cable-stayed bridge is located in the port of Tianjin, 
Hebei Province, China. The total length of the bridge is 510 m, and the 
deck width is 11 m. It consists of a 210 m main span and two 125 m 
secondary spans. The deck is connected to the north and south towers by 
88 pairs of 5 mm cables. During retrofit interventions in 2005–2007, the 
infrastructure was instrumented with an innovative SHM system that 
included more than 150 sensors, 14 of which being uniaxial acceler-
ometers mounted on the deck [43], as illustrated in Fig. 3.

Li et al. [43] developed an FE model in ANSYS Mechanical APDL 
[44] and they kindly provided it to us. The main girders and towers were 
modeled using the three-dimensional beam element (BEAM 44), while 
the mass elements and linear elastic links (LINK 10) were assigned to the 
transverse beams and cables, respectively. All boundary conditions were 
defined accordingly, including the rubber supports (Fig. 4). The model 
had already been calibrated through a long-term monitoring campaign. 
Therefore, it was possible to perform the modal analysis directly on 
ANSYS model, obtaining the target frequencies for vertical modes, i.e., 
the relevant direction since the sensors measured only the vertical ac-
celerations. At the same time, the modal coordinates of the middle 
longitudinal axis were extracted from the software. Specifically, the ones 
aligned with the sensor grid were considered to compare the mode 
shapes obtained from AFDD and cov-SSI analyses.

The records considered through all the sensitivity analyses, unless 
otherwise stated, are the actual ambient vibrations recorded from 
8:00 p.m. to 12:00 a.m. of January 17, 2008.

4.2. Preprocessing of acceleration records

The raw acceleration time histories were preprocessed with Hunning 
window filtering to remove spikes and irregular trends. Additionally, the 
records were filtered through a six-order Butterworth bandpass with low 
and high-frequency cuts of 0.1 Hz and 30 Hz [45]. A baseline correction 
was then performed using OpenSeismosignal [46].

Depending on the type of sensors used, the recorded signals of 
ambient vibrations might exhibit significant noise. To reduce the noise, 
a method based on the SVD was exploited, where a matrix of rank r 
comprised of the noisy signals is truncated, assuming the presence of 
singular values equal to zero, as shown in Eq. (17). 

Y = [Ur,Um− r]

[
Sr 0
0 0

][
VT

r

UT
n− r

]

= UrSrVT
r (17) 

In this formula Ur and Vr are orthogonal matrices related to singular 
vectors, and Sr is its corresponding matrix with singular values in the 
principal diagonal. The methodology consists of the following steps:

Step 1. Generating a Hankel matrix Y with dimensions (m,n) from the 
signal y: 

Ym,n =

⎡

⎢
⎢
⎣

y1 y2 … yn
y2 y3 … yn+1
⋮ ⋮ ⋱ ⋮
ym ym+1 … yN

⎤

⎥
⎥
⎦ (18) 

Step 2. Dividing the Hankel matrix into a healthy (Xm,n) and a noisy 
subspace(Nm,n): 

Ym,n = Xm,n +Nm,n (19) 

Step 3. Reducing the noise by decomposing the structured Hankel 
matrix Y using the SVD combined with subsequence truncation of small 
SVs: 

Ym,n =
∑m

i=1
siuivT

i =
∑l

i=1
siuivT

i +
∑m

i=l+1
siuivT

i = Xm,n +Nm,n (20) 

s1 > s2 > … > sl≫sl+1 = sl+2 = … = sm ≈ 0 

where si,ui,vT
i are the SVs and corresponding singular vectors, while l 

and m are two calibration parameters.
Step 4. Generating the de-noised signal vector with xi elements from 

the non-Hankel de-noised matrix using arithmetic averaging of anti- 
diagonal elements [47]: 

Xm,n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂1 x̂2 … x̂n

x̂2 x̂3 … x̂n+1

⋮ ⋮ ⋱ ⋮

x̂m x̂m+1 … x̂N− 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

x1 =
1

k − l + 1
∑k

j=l

Xi− j+1,j

l = max(1, i − m + 1)

k = min(n, i)

(21) 

For the two calibration parameters, it was considered m= 300 and 
l= 5 % of the first singular value for optimal performance, according to 
[48].

4.3. Investigation of the optimal performance

To establish AFDD’s optimal performance, an effective MAC’s 
threshold (α) should be defined to distinguish different mode shapes. In 
addition, several factors could significantly impact the accuracy and 
reliability of the modal identification. This research considered the ac-
celeration record length, noise level, sensor’s spatial resolution, the 
number of required modes within the predefined frequency range, and 
evaluated their impact on the modal identification through sensitivity 
analyses. These factors are commonly present in any SHM data acqui-
sition campaign done with accelerometers and were chosen because 
operators can control them. Several other factors could have an impact 
on modal identification such as temperature, humidity, wind, heavy 
traffic, creep, shrinkage, material degradation, etc. To properly consider 
these factors, periodic or continuous monitoring data is needed. The use 
of existing benchmark datasets imposes certain limitations on the 
number and types of factors that can be included in the sensitivity 
analysis. In this research, the effect of using different MAC thresholds 

Fig. 5. The effect of α variation on the AFDD outcomes.
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Fig. 6. The effect of α variation vs. the noise level: SVD denoising parameter (a) l= 0.05, (b) l= 0.20, (c) l= 0.35, (d) l= 0.50, (e) l= 0.75.

A. Cardoni et al.                                                                                                                                                                                                                                Engineering Structures 323 (2025) 119210 

9 



was investigated through several sensitivity analyses on the Yonghe 
cable-stayed bridge benchmark. The available data was related to a 
relatively short time window, which does not allow for considering the 
abovementioned additional factors. The acceptable ranges of MAC’s 
threshold that result in optimal performance are obtained through sta-
bilization diagrams comparing the AFDD’s outputs to the FE model 
reference values of frequencies and modal shapes. First, the frequency 
range of interest and number of modes are defined. According to the 
outputs of the FE model, 7 frequencies and mode shapes should be 
identified in the 0–1.5 Hz frequency range. In each diagram, based on 
the number of misidentified modes, three different regions are identi-
fied, namely unstable, sub-optimal, and optimal. This was done utilizing 
a GMM algorithm to define a core and an outlier cluster in each stabi-
lization diagram, as described in sections 2.1 and 2.3.

In the first sensitivity analysis, the MAC threshold α varies from 0 to 
1, with a 0.02 increment. The frequencies identified by the AFDD al-
gorithm are compared to the FE results in the stabilization diagram of 
Fig. 5. In the graph, AFDD estimates are reported on the horizontal axis, 
while the vertical axis represents the selected MAC’s thresholds. Target 
frequencies obtained from the FE model are 0.42 Hz, 0.6 Hz, 0.88 Hz, 
1.04 Hz, 1.09 Hz, 1.21 Hz, 1.44 Hz and they are indicated by vertical 
solid lines. The AFDD estimates that are included into the core cluster 
are scattered by solid circles. As it can be seen, the 0.42 Hz, 0.88 Hz, and 
1.44 Hz target frequencies could be identified for almost any value of α. 

On the other hand, 1.04 Hz and 1.09 Hz frequencies were affected by the 
MAC threshold variation as other frequencies were picked by the algo-
rithm, especially for α larger than 0.6. In this sensitivity analysis, the 
optimal area, where almost all frequencies are accurately estimated, 
falls within the range of α from 0.10 to 0.34. Notably, the value of 
α = 0.4, suggested by [34], highlighted in the graph with a horizontal 
dashed line, falls within the suboptimal region and would have led to 
neglecting the 0.6 Hz frequency. It is also worth noting that the algo-
rithm is able to clearly distinguish frequencies that are closely spaced as 
long as the selected α value falls within the optimal area.

In the second sensitivity analysis, the effect of different noise levels 
was investigated. Increasing the l parameter leads to higher noise levels 
in the output. Five cases were considered, setting the l parameter to 
0.05, 0.20, 0.35, 0.50, and 0.75. Fig. 6 reveals that the regions of optimal 
and sub-optimal shrink as the noise level increases. In fact, when l= 0.50 
and l= 0.75, it is no longer possible to define an optimal region. Modes 
with target frequencies of 0.88 Hz and 1.04 Hz were the most affected 
by noise and α variation. When l= 0.05, optimal noise reduction is 
achieved, and the optimal region is delimited by a MAC threshold 
ranging from 0.10 to 0.34 with the most accurate results within 0.18 to 
0.22 Hz.

The third sensitivity analysis investigates the effect of the accelera-
tion record length. In the literature different recommendations can be 
found. Cantieni (2005) recommended to consider a signal length 

Fig. 7. The effect of α variation and signal length: Input duration of (a) 5 min, (b) 1 h, (c) 4 h, and (d) 12 h.
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exceeding 1000–2000 times the first natural period of the system [49]. 
For the Yonghe cable-stayed bridge, the natural period is approximately 
2.40 s. This implies a record length between 40 and 80 min. Other 
studies argue that 15 to 60 min signals generally lead to accurate results 
[50]. In the seminal book by Brincker and Ventura [51] it is suggested to 
use signal durations greater than the ratio 10/(ξfmin), where ξ is the 

damping ratio and fmin the lowest natural frequency of the system. In our 
case the lowest natural frequency is 0.42 Hz, and the corresponding 
damping ratio is 6.84 % as reported in [43]. Thus, the signal length 
should be greater than 3480 s or 58 min.

Based on these recommendations, the effect of α variation is 
analyzed for signals with length of 5 min, 1, 4, and 12 h (Fig. 7). 

Fig. 8. The effect of α variation with the number of sensors and their layout: (a) original layout, (b) layout 1, (c) layout 2, (d) layout 3, (e) layout 4, (f) sensors layout.
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Commonly, longer signal durations offer a finer resolution to capture the 
dynamic characteristics of a structure, leading to more reliable fre-
quency estimations. Indeed, the optimal region widens as the signal 
length increases and the most inaccurate results correspond to a 

duration of 5 min. However, anomalies might still occur. For instance, as 
seen in Fig. 7b and Fig. 7c, although the optimal region widens, the 
precision of estimating the target frequency of 0.59 Hz decreases. This 
could be attributed to peculiar characteristics of the ambient vibrations 

Fig. 9. Mode shapes obtained from layout L3 with α = 0.24.
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and their intensity at the moment of recording. Nonetheless, the analysis 
shows that selecting an appropriate α value, it is possible to obtain ac-
curate results with 1-hour records. This approach could be helpful to 
designing monitoring campaigns, potentially reducing their cost by 
determining a proper duration. It is worth mentioning that record length 
is here intended as a parameter that allows to carry out a single analysis, 
showing the modal properties related to a specific time and date. To fully 
assess the long-term stability of the bridge, this assessment should be 
repeated over a long time through periodic or continuous monitoring. 
Any significant deviations of the modal parameters from the baseline 
values could indicate changes in the global dynamic behavior.

In the fourth sensitivity analysis, the effect of reducing the number of 
sensors and changing their location was evaluated. Sensor location is 
extremely important to be able to identify correct mode shapes. The 
number of sensors and their layout are usually well studied before 
starting a monitoring campaign. If sensors are not well positioned, the 
results that can be obtained from OMA are inevitably going to be 

incomplete. To investigate this aspect, five different sensor layouts were 
considered as shown in Fig. 8f. In the original layout, used during the 
monitoring campaign, 7 sensors were placed on each side of the bridge 
deck. Layouts 1 to 4 consider different combinations with a lower 
number of sensors. Fig. 8 shows that the optimal region varies greatly 
depending on the sensor placement and when only three sensors were 
considered (layout 4) an optimal region could not be identified. None-
theless, it is worth noting that across all layouts, the modes with target 
frequencies 0.42 Hz and 1.44 Hz are less affected by the sensor spatial 
resolution and could always be detected given that these modes have 
higher mass participation factors.

Changing the number of sensors and their layout has an effect not 
only on the ability of detecting frequencies, but also on the quality of the 
mode shapes. To further discuss this point, an additional series of ana-
lyses were carried out. Based on the general rule that sensors placed 
nearby the maximums and minimums of the mode shapes have more 
chance of capturing the structural dynamics, three layouts where sensors 
are located close to the maximums and minimums of the first three 
modes were investigated. It was chosen to keep the layouts symmetric 
with respect to the middle axis to account for possible differences in the 
excitation levels at the two sides of the bridge deck. The top alignment is 
referred to as alignment A and the bottom one as alignment B. The 
location of maximums and minimums was extracted from the reference 
FE model. The first layout included sensors no. 1, 2, 7, 8, 13, 14. The 
stabilization diagram obtained iterating the AFDD analysis varying the α 
threshold showed that all α values were unstable except for a suboptimal 
scenario for α = 0.34. The seventh frequency equal to 1.44 Hz could not 
be identified. Except for the first mode, the obtained deformed shapes 
were far from the actual ones. Even when the modal coordinates are 
comparable to those coming from the FE model, the lack of sensors leads 
to neglecting peaks of deformation in between the sensors. In this case, a 
high MAC value alone is not indicative of a good matching with the 
actual mode shape. Similar results were achieved when considering the 
second mode shapes, which shows four peaks. In this case, sensors no. 1, 
2, 5, 6, 9, 10, 13, 14 were part of the second layout. The AFDD was now 
able to detect the 7 frequencies for α ranging from 0.21 to 0.24. How-
ever, several issues appeared by looking at the mode shapes. Given the 
malfunctioning of sensor no. 10 in alignment A, the only mode shape 
that was well captured by alignment B was the one of the second mode. 

Fig. 10. Ratio of correct estimation for each α value.

Fig. 11. The sub-optimal/optimal ranges derived from sensitivity analysis for each case.
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The third mode is characterized by 5 peaks, thus two alignments with 5 
sensors each were considered (no. 1, 2, 5, 6, 7, 8, 9, 10, 13, 14). Effec-
tively, the third layout (L3) is a superimposition of the first two. How-
ever, the sixth and seventh modes could not be identified at the same 
time, meaning that only sub-optimal regions were found. The mode 
shapes corresponding to a suboptimal α = 0.20 are plotted in Fig. 9. The 
improvement that is seen with this sensor layout is that the first three 
modes shapes are captured quite reasonably.

These results suggest that a sparse sensor grid with a limited number 
of sensors might be enough to get most of the predominant frequencies 
of the structure. Nonetheless, the mode shapes related to those fre-
quencies contain only partial information and by assuming them as 
correct the understanding of the structural dynamics would be consid-
erably compromised. Strategic sensor placement is essential and a pre-
liminary analysis to determine where the maximums and minimums 

deformation points could be located is always desirable.
The sampling frequency of the sensors and the number of output 

frequencies are additional factors that were considered in the sensitivity 
analyses. The sampling frequency should be chosen based on an 
adequate number of cycles of the fundamental or target modes to ensure 
that the dynamic response of the structure is accurately represented. 
According to Brincker and Ventura [51], it is advisable to select a 
sampling frequency at least 2.4 times greater than the maximum fre-
quency of interest. For the Yonghe cable-stayed bridge, the frequency 
range 0–1.5 Hz is enough to cover the main structural dynamics, 
including the fundamental and higher modes. Therefore, the sampling 
frequency should be greater than 3.6 Hz. However, it is common prac-
tice to use commercial sensors with much higher sampling frequencies. 
In this application, the original records were sampled at 100 Hz. To 
simulate the use of different sensors, these were downsampled at 20 Hz 

Fig. 12. AFDD analysis of the cable-stayed bridge for 1-hour signal: (a) selected peaks in the SV spectrum, and (b) MAC evaluation for the first selected peak and 
modal domain assessment.

Fig. 13. 3D deformed configuration of the Yonghe cable-stayed bridge.
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and upsampled at 150 Hz, 200 Hz, 300 Hz, and 400 Hz. Predictably, it 
was found that the optimal region is barely affected by the sampling 
frequency change. Therefore, even a 20 Hz sampling sensor would be 
enough to obtain comparable results, without the need for more 
expensive sensors sampling at higher frequencies.

As far as the number of output frequencies is concerned, the sensi-
tivity analysis considered 3, 5, 7, and 9 output values. Results showed 
that when the number of outputs is set to a value lower than the actual 
number of frequencies, the optimal region expands, and the algorithm 
identifies modes with higher mass participation factors. However, when 
9 outputs are selected, modes with zero-valued natural frequency are 
observed for an α value lower than 0.2.

A plot illustrating the accuracy of AFDD estimates across all analyses 
is presented in Fig. 10. For each value of α in the horizontal axis, AFDD 
outcomes are compared to the target frequencies and deemed correct if 
the difference is less than 0.1 Hz. Then, the number of correct estima-
tions is divided by the total AFDD analyses performed to get the ratio of 
correct estimations for each α value. It can be observed that the optimal 
performance could be achieved with a MAC in the range of 0.18 - 0.24.

In addition, Fig. 11 summarizes the optimal, suboptimal, and un-
stable regions for all the performed sensitivity analyses. It is seen that 
the horizontal line with the MAC= 0.2 cross high number of optimal 

regions. Therefore, in the following sections, the proposed AFDD 
methodology is applied to three case studies considering a MAC 
threshold α = 0.2. This value differs from the previous findings of 
Magalhães et al. [34], where the suggested MAC threshold was 0.4. 
Furthermore, in the rest of this study, a modal domain assessment is 
conducted to verify that the selected peak in the SV spectrum is asso-
ciated with a physical mode. The verification is done by considering 7 
points in the spectrum and checking that the mean MAC is 0.6 or higher.

5. Validation of the AFDD procedure

In this section, the optimized AFDD procedure is tested on three 
inherently different case studies. To validate the methodology, cov-SSI, 
and traditional FDD are applied to each case study, and the results are 
compared in terms of modal properties.

5.1. Case Study 1: Yonghe cable-stayed bridge

The first case study is the previously described Yonghe cable-stayed 
bridge. The vertical acceleration records, plotted in Fig. 3b, collected 
from 03:00 a.m. to 04:00 a.m. on January 17, 2008, were used to test 
and validate the AFDD procedure. Considering the 0–1.3 Hz frequency 
range, the number of desired outputs was set to 6, as the number of 
frequencies resulting from the FE model. Fig. 12a. shows the peaks 
automatically selected in the SV spectrum and the corresponding iden-
tified modal frequencies after performing the AFDD analysis. The MAC 
variation is illustrated for the first identified peak in Fig. 12b.

The modal domain assessment considers six SV points in the selected 
domain around the identified peak. Modes are considered physical if the 

Fig. 14. Stabilization diagram of the cov-SSI analysis of the Yonghe cable- 
stayed bridge for 1-hour record.

Fig. 15. (a) AFDD analysis of the cable-stayed bridge (12 h), (b) Stabilization diagram of the Yonghe cable-stayed bridge (12 h).

Table 2 
Comparison of the Yonghe cable-stayed bridge frequencies obtained through 
different methods.

FE 
model 
[Hz]

FDD, Li et al. 
[43]
[Hz]

Cov-SSI 
(1 h) 
[Hz]

AFDD 
(1 h) 
[Hz]

Cov-SSI 
(12 h) 
[Hz]

AFDD 
(12 h) 
[Hz]

0.42 0.42 0.39 0.41 0.39 0.41
0.59 0.59 0.56 0.59 0.58 0.59
0.88 0.89 0.90 0.90 0.90 0.89
1.04 1.04 1.03 1.04 1.02 1.05
1.09 1.10 1.08 1.08 1.08 1.09
1.21 1.27 1.28 1.25 1.26 1.26
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Fig. 16. Comparison of derived mode shapes for Yonghe cable-stayed bridges (1-h duration), (a) 1st mode, (b) 2nd mode, (c) 3rd mode, (d) 4th mode, (e) 5th mode, 
(f) 6th mode.,.
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mean MAC computed from the SV points exceeds the predefined 
threshold of 0.6. In this case study, the mean MAC is significantly larger 
than the applied threshold. Since in the proposed AFDD method the 
identification of dynamic modes is not only based on amplitude in the SV 
spectrum but also on the geometry of the mode shape, it is possible to 
identify even low-amplitude frequencies that are relevant to the dy-
namics of the structure. The 3D vertical mode shapes obtained from the 
AFDD are illustrated in Fig. 13. The mode shapes were drawn through a 
spline interpolation between the sensor locations.

Subsequently, the cov-SSI analysis was performed. The time lag was 
set to 366, and the model order to 120 following the recommendations 
by Zhou et al. [39]. Fig. 14 shows the stabilization diagram, which 
features six clear alignments of poles. These poles are referred to as 
stable and highlighted in red. The corresponding frequencies are f1 
= 0.39 Hz, f2 = 0.56 Hz, f3 = 0.90 Hz, f4 = 1.03 Hz, f5 = 1.08 Hz, f6 
= 1.28 Hz.

The analysis was repeated for an additional signal recorded from 
01:00 a.m. to 12:00 p.m. on January 17, 2008, using the same param-
eters described for the 1-hour record. The automatically selected peaks 
and identified frequencies are presented in Fig. 15a. Here, since the 
record length increases, the windows segmentation and the number of 
points used for the Fast Fourier Transform of the input signal to derive 
the PSD increase, leading to a denser SV spectrum with more chances of 
selecting non-physical modes. Nonetheless, the AFDD performed accu-
rately. On the other hand, from the cov-SSI analysis it was possible to 
clearly identify 5 stable modes with frequencies f1 = 0.39 Hz, f2 
= 0.58 Hz, f3 = 0.90 Hz, f5 = 1.08 Hz, f6 = 1.26 Hz, and one semi-stable 
mode with frequency f4 = 1.02 Hz (Fig. 15b).

The comparison among previous research, OMA methodologies, and 
FE modal analysis is presented in Table 2. Within the frequency range of 
0–1.3 Hz, all methodologies were able to identify six frequencies with 
similar values. Regarding the 1-hour record, the AFDD results were 
closer to the FE model frequencies compared to those obtained from the 

cov-SSI approach. In the case of the 12-hour signal, the AFDD also 
performed slightly better.

To evaluate the consistency of the mode shapes extracted by the 
different methods, they were plotted in Fig. 16, separating the results 
corresponding to sensor alignments A and B. In each plot, the modal 
coordinates are normalized by the maximum magnitude and the hori-
zontal axis specifies the sensor location. The MAC values were calcu-
lated between the obtained modes and the FE counterparts for each 
sensor alignment and OMA methodology. Notably, larger MAC values 
characterize the mode shapes resulting from the AFDD analysis 
compared to cov-SSI estimates. This is particularly pronounced for the 
fourth mode Fig. 16d. While the obtained mode shapes exhibit reason-
able coherence, some unusual deviations can be observed. On one hand, 
the distortions seen around sensor No.10, located at 350 m, are clearly 
due to a malfunction, visible from the raw data both in the time and 
frequency domains. Moreover, differences could be due to the fact that 
the FE model considers the longitudinal middle axis of the bridge, 
whereas the sensors are placed on the sides of the deck.

This application showed that the optimized AFDD produced accurate 
results, and the risk of selecting spurious peaks in identifying vertical 
modes of vibration decreased compared to the cov-SSI method.

5.2. Case Study 2: PolyU Footbridge

The PolyU footbridge is an irregular structure with butterfly-shaped 
steel tube arches located at Hong Kong Polytechnic University. It con-
sists of a primary and two side spans with a length of 84.24 m and 
64.26 m, respectively, supported by hangers connected to two inclined 
arches. An SHM system was installed on the footbridge during the 
construction phase and started acquiring data on September 28, 2019. 
The system includes three-axial and uniaxial accelerometers, spatially 
distributed optic sensors, FBG sensors, and a global navigation system. 
The accelerometers, with a sampling frequency of 50 Hz, are mounted 

Fig. 16. (continued).
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on the sides of the deck along two alignments, as illustrated in Fig. 17. 
The sensors placed along alignment B are three-axial, whereas those 
along alignment A can record only vertical accelerations.

A 3D FE model of 8785 elements was developed to simulate the 
dynamics of the bridge and calibrated according to the modal properties 
acquired from the SSI method. The FE analysis revealed the presence of 
combined vertical and torsional mode shapes [19]. The modal proper-
ties obtained through the FE modal analysis and SSI were compared to 
the results obtained with the proposed AFDD methodology. The ambient 
vibrations recorded from 00:00 a.m. to 01:00 a.m., November 1, 2019, 
were used. For the AFDD analysis, the frequency range of interest was 
fixed to 0–3.2 Hz and the number of desired outputs to 6. Fig. 18
highlights the six frequencies automatically detected by the AFDD pro-
cedure. It is worth noting that thanks to the implemented features of the 
algorithm, it is possible to select relevant frequencies even when there 
are not obvious peaks, like in the case of f2 = 1.67 Hz and f4 = 1.80 Hz. 
This would not be possible with the traditional FDD technique.

Fig. 19 presents the 3D mode shapes identified using AFDD. The 
modes at 1.54 Hz, 1.75 Hz, and 1.80 Hz result from combinations of 
lateral and vertical dynamic modes. The mode at 1.67 Hz is a torsional 
mode, and the one at 2.76 Hz combines transversal and torsional 
deformations.

In the cov-SSI analysis, the system order was set to 100 following the 
work done by Xia et al. [19], while the time lag was set to 65 since the 
fundamental frequency is 1.16 Hz. The stabilization diagram is plotted 
in Fig. 20, which shows the presence of 5 stable modes, although not all 
of them formed clear vertical alignments, corresponding to the following 
natural frequencies: f1 = 1.5 Hz, f2 = 1.75 Hz, f3 = 1.78 Hz, f4 
= 1.91 Hz, f5 = 2.75 Hz. It is worth noting that many factors, such as 

Fig. 17. (a) PolyU footbridge, (b) cross-section, (c) side view and sensor layout.

Fig. 18. The automatically selected peaks in the SV spectrum by the 
AFDD algorithm.
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noise, signal quality, and data preprocessing, can introduce small vari-
ations that prevent perfect vertical alignments from occurring. More-
over, as described in Section 3.2, the chosen stabilization criteria are 
quite stringent. While this approach helps in filtering out spurious 
modes, it also increases the likelihood of rejecting modes that may 
otherwise appear stable under less stringent conditions. In Fig. 20, it is 
possible to see a single pole appearing around 3.3 Hz. This is most likely 
a mode with a weak energy contribution to the overall system response. 
Hence, it was not considered in the analysis.

Table 3 reports the frequencies obtained from AFDD and cov-SSI and 
those from the 2019 study of Xia et al. [19]. The characteristics and 
direction of each mode shape are also clarified based on the 3D 
deformed geometry. In the 2019 study, four mode shapes were identi-
fied within the 1.8–3.10 Hz frequency range. The current study pro-
duced different results. The AFDD analysis identified 6 modes and the 
cov-SSI analysis identified 5 stable modes. The cov-SSI encountered 
limitations in capturing two modes: (i) the deck torsion with frequency 
of 3.10 Hz encountered both in the previous study and AFDD, (ii) the 

torsional mode with frequency of 1.67 Hz, detected by the AFDD anal-
ysis. Conversely, the AFDD excluded the deck torsional mode with fre-
quency of 1.94 Hz. It was found that the torsional mode is not identified 
since its shape is similar to the vertical mode with a frequency of 
1.80 Hz. Indeed, the MAC calculated between them is 0.74. A viable 
solution to this issue would using more sensors and a better placement.

The AFDD and cov-SSI analyses revealed the presence of respectively 
3 and 2 new modes below 1.80 Hz, which was the first frequency based 
on the FE model. Since the acceleration records are not the same used in 
the previous work, the newly identified modes might be associated with 
an additional vibration source. However, this would require further 
investigation, which is beyond the scope of the current study. The mode 
shapes obtained through the AFDD and cov-SSI methods for alignments 
A and B are plotted in Fig. 21 where the x-axis corresponds to sensor 
locations, and the y-axis to modal values normalized by the highest 
magnitude. In this case, it was not possible to compare the results to the 
FE model for confidentiality reasons. Therefore, the MAC was calculated 
only between the modal vectors obtained through AFDD and cov-SSI. 
The consistency observed for the modes with frequencies below 

Fig. 19. 3D mode shapes of the PolyU footbridge identified through AFDD.

Fig. 20. Stabilization diagram for the PolyU footbridge.

Table 3 
Comparison of the PolyU footbridge frequencies obtained through different 
methods.

FE 
[Hz]

SSI 
(2020) 
[Hz]

Description AFDD 
[Hz]

Description Cov- 
SSI 
[Hz]

1.80 1.88 Deck vertical 1.54 Combination of vertical 
and lateral on the half of 
the bridge

1.50

2.04 1.94 Deck torsional 1.67 Deck torsional, 
symmetrical is x-dir, skew 
sym. in y-dir

-

2.81 2.63 In-plane 
bending 
lateral

1.75 Combination of vertical 
and lateral and torsional

1.75

2.97 3.10 Deck torsion 1.80 Vertical, skew 
symmetrical

1.78

_ - Deck torsional 1.91
2.76 Transversal and torsional 2.75
3.10 Torsional -
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1.8 Hz further indicates they are not attributable to a miscalculation or 
noise in the input signal. Overall, the highest consistency was observed 
for the 2.76 Hz mode.

In conclusion, when identifying torsional modes using the optimized 
AFDD, there are two main aspects to consider. First, the modal domain, 

where a gradual change of MAC occurs, is narrower for torsional modes. 
In other words, in the automated peak piking algorithm, there is a rapid 
transition in the MAC value that might go from 0.2 to 1 around a peak 
associated with a torsional mode. This means that the method demands 
flexibility in setting the threshold regarding the number of SV points and 

Fig. 21. Comparison of extracted mode shapes from PolyU footbridge, (a) first mode, (b) second mode, (c) third mode, (d) fourth mode.
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MAC mean in the modal domain assessment. For this reason, a narrow 
modal domain with six SV points and a MAC mean value of 0.6 were 
predefined in the methodology to prevent errors in neglecting torsional 
modes. Secondly, the identification of modes that combine torsion and 
translation may be challenging because of the similarity of their geom-
etries. Therefore, it requires optimal sensing strategies and sensor 
placement to be able to capture the proper dynamics of the structure.

5.3. Case study 3: Moletta tower

The third case study is the Moletta tower, a medieval tower part of 
the Circus Maximus archaeological site in Rome, Italy. The Circus 
Maximus was built in the first half of the sixth century BC and hosted 
ancient Roman chariot-racing tournaments. The original track level is 
buried under 9 m of soil, creating a complex soil-structure interaction. 
Nowadays, the venue hosts concerts and entertaining events, such as the 
Rolling Stones concert in 2014 and more recently the Bruce Springsteen 
concert in 2023 with an estimated attendance of over 70,000 people. 

Fig. 22. Aerial view of the Circus Maximus and drawings of the Moletta tower.

Fig. 23. Sensor placement on the Moletta tower.
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Fig. 24. SV spectra and automatically selected frequencies by the AFDD algorithm in (a) x-direction and (b) y-direction.

Fig. 25. Mode shapes of the Moletta tower.
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Thus, anthropic vibrations could potentially be a source of damage. The 
Moletta tower is located on the south-east part of the Circus Maximus, as 
illustrated in Fig. 22. In this figure, the x and y axes denote the spatial 
reference system used to orient the SHM sensors. The structure has an 
irregular plan with varying wall sections and in 2013 it was retrofitted 
through steel rings and rods, stairs connected to the external walls, and 
reinforcement of the foundations. The tower was monitored using Wi-Fi 
tri-axial accelerometers located at various elevations (Fig. 23). The ac-
celeration records were acquired on October 21, 2022, from 9:15 a.m. to 
10:45 a.m. UTC. In the AFDD analysis, the frequency range is fixed be-
tween 0 and 6 Hz, and the number of required outputs is set to 3.

Fig. 24 illustrates the automatically selected frequencies in the SV 
spectrum. Three dynamic modes were identified in each of the two 
principal directions. It can be observed that some of the selected values 
do not correspond to clear peaks. In the traditional FDD analysis, the 
frequencies corresponding to the three main visible peaks would be 
chosen, i.e., f1 = 2.95 Hz, f2 = 3.13 Hz, f3 = 5.55 Hz in both directions. 
On the other hand, the AFDD algorithm selected a slightly different 
second mode in the y-direction (3.01 Hz) and quite different third modes 
in both x and y directions (5.23 Hz and 5.86 Hz respectively). Slight 
differences in frequency estimation maybe due to the large number of 
points considered in the calculation of the SV spectrum. Further analysis 
revealed that the 5.55 Hz peak was filtered out because the MAC be-
tween this and the selected 3.14 Hz frequency was equal to 0.57 which 
exceeds the threshold of 0.2. In the y-direction, an analogous situation 
occurs. The third selected mode has a frequency equal to 5.86 Hz. The 
mode at 5.55 Hz is discarded because its MAC with the second identified 
mode (f=3.01 Hz) is 0.71. Fig. 25 illustrates the 3D mode shapes ob-
tained from AFDD analysis. The top views highlight the rotation of the 
tower in the modes with frequencies 2.95 Hz and 3.01 Hz, which could 
be due to the stairs added in the 2013 retrofit interventions.

In the cov-SSI analysis, the order was set to 60 and the time lag to 125 
based on Eq.12 [35,36]. The resulting stabilization diagrams in x and y 

directions are presented in Fig. 26, where it can be seen that only two 
stable modes were detected in each direction and that the cov-SSI al-
gorithm failed at selecting a mode around the 5.55 Hz peak.

The extracted modal properties are summarized in Table 4 and 
compared to the study carried on by Puzzilli et al. [20]. Overall, a 
reduction in the frequency estimates can be noticed, which could indi-
cate the dynamics of the structure might have changed. Despite the 
AFDD performed better than the cov-SSI, both methodologies delivered 
inconsistent results. Given the torsional behavior of the structure, a 
different sensor layout with two or more sensors on the same level could 
provide better results.

6. Conclusions

This research presented an optimized AFDD methodology based on 
MAC for modal identification to process SHM acceleration data. The 
optimization process involved a series of sensitivity analyses to deter-
mine the optimal MAC threshold. The influence of noise levels, record 
length, and SHM spatial resolution was explored using the Yonge cable- 
stayed bridge as case study. Stabilization diagrams were generated using 
the results obtained from the AFDD and FE target values. Through 
sensitivity analyses, GMM was applied to obtain a robust range for the 
MAC threshold, reducing the need for expert intervention and pre-
liminary studies. The first outcome of this research is that a MAC 
threshold of 0.2 consistently led to optimal results.

The proposed methodology was tested on three case studies, namely 
the Yonghe cable-stayed bridge, the PolyU footbridge, and the Moletta 
tower. This approach allowed to evaluate its robustness and limitations 
when applied to structures with significantly different dynamics, which 
would not be evident considering only a single case study.

The conclusions that can be made from the analysis of each case 
study are the following. 

• In the analysis of the Yonghe cable-stayed bridge, the clear differ-
ences in the vertical modes made the modal identification task 
relatively easy. The AFDD showed better performance in detecting 
the actual modal properties and handling spurious modes compared 
to cov-SSI.

• In the modal identification of the PolyU footbridge, the AFDD pro-
cedure could accurately identify frequencies but struggled to detect a 
complex torsional mode. This limitation is due to the fact that the 
AFDD relies on the geometry of mode shapes, and the torsional mode 
was filtered out because similar other modes.

• The Moletta tower, was selected as an example of cultural heritage 
structure with large uncertainties in material properties, 

Fig. 26. Obtained stabilization diagrams. (a) x-direction, (b) y-direction.

Table 4 
Comparison of the Moletta tower frequencies obtained through different 
methods.

Method FDD, Puzzilli 
et al. (2021)

FDD (2023) AFDD 
(2023)

Cov-SSI 
(2023)

Direction x y x y x y x y

Identified 
Frequencies 
[Hz]

3.25 3.00 2.95 2.95 2.95 2.95 3.02 2.95
5.80 5.80 3.13 3.13 3.14 3.01 3.11 3
- 5.55 5.55 5.23 5.86 -
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construction techniques, ageing, damage, effect of retrofit in-
terventions. The optimized AFDD performed better than the cov-SSI 
and successfully identified changes in the dynamic performance of 
the Moletta tower over time. This can be viewed as an indication of 
damage or stiffness reduction. Therefore, the method could be a 
valuable tool for long-term monitoring of heritage structures. How-
ever, since mode shapes are low sensitivity structural properties, it is 
recommended to thoroughly verify the accuracy of the actual shape 
by adopting a proper sensor layout.

Overall, from the application of the method to multiple case studies, 
the following conclusions can be made: 

• The α = 0.2 threshold was effective in all three case studies, sug-
gesting that it can be applied to a wide spectrum of structures.

• The AFDD outperforms cov-SSI in estimating vertical and transversal 
modes, and overcomes the challenging task of interpreting ambig-
uous stabilization diagrams.

• The method may struggle to identify modes with complex geometries 
and to distinguish between modes with similar geometries, for which 
it is recommended to use a sensor layout with higher spatial 
resolution.

• The method could be beneficial for researchers and professional 
engineers to help owners and managers developing strategic plans 
for early damage detection and optimal maintenance, extending the 
operational lifespan of critical and cultural heritage structures.

In conclusion, it is observed that finding an approach that could be 
applied consistently and invariably, i.e., without having to calibrate any 
parameters, remains still a challenge. Existing automated OMA pro-
cedures may work flawlessly for simple structures, but in complex cases 
it could be necessary to re-define some calibration parameters. The 
proposed procedure is intended as a practical tool that considers 
different crucial variables to optimize the selection of the MAC 
threshold. While this approach represents a step forward, it is worth 
noting that further research is needed to reach a full automation of OMA 
using SHM data. The development of new algorithms and applications to 
a vast range of substantially different structures could help in achieving 
the objective of a fully automated data-driven procedure.
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