
24 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Throughput Prediction in Real-Time Communications: Spotlight on Traffic Extremes / Song, Tailai; Garza, Paolo; Meo,
Michela; Munafo, Maurizio Matteo. - ELETTRONICO. - (2024). (Intervento presentato al  convegno 29th IEEE
Symposium on Computers and Communications (ISCC) IEEE ISCC 2024 tenutosi a Paris (FRA) nel 26 - 29 June 2024)
[10.1109/ISCC61673.2024.10733668].

Original

Throughput Prediction in Real-Time Communications: Spotlight on Traffic Extremes

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISCC61673.2024.10733668

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2994126 since: 2024-11-04T10:59:46Z

IEEE



Throughput Prediction in Real-Time
Communications: Spotlight on Traffic Extremes

Tailai Song, Paolo Garza, Michela Meo, Maurizio Matteo Munafò
Politecnico di Torino, Turin, Italy
first.last@polito.it

Abstract—Amidst the thriving advancement of networks, fur-
ther catalyzed by the COVID-19 pandemic, we have witnessed
a marked escalation in the worldwide adoption of Real-Time
Communications (RTC) applications. In this context, there
is a compelling necessity to cultivate intelligent and robust
network infrastructures and technologies. Real-time throughput
prediction emerges as a promising candidate for this purpose
to foster network observability and provide preemptive func-
tions, supporting advanced system management, e.g., bandwidth
allocation and adaptive streaming. Nonetheless, contemporary
solutions grapple with predicting extreme conditions in traffic
throughput, notably peaks, valleys, and abrupt changes. To
address the challenges, we propose a Transformer-based Deep
Learning (DL) Neural Network (NN), leveraging solely packet-
level information and adopting a multi-task learning paradigm,
to predict short-term throughput, with an emphasis on critical
values. In particular, our work is grounded in voluminous
traffic traces procured from real video-teleconferencing sessions,
and we formulate a time-series regression problem, comparing
numerous technologies, from an adaptive filter to Machine
Learning (ML) and DL approaches. Conclusively, our method-
ology exhibits superior efficacy, especially in forecasting traffic
extremities.

Index Terms—Real-time communications, Real-time Trans-
port Protocol, throughput, packet level, machine learning, deep
learning.

I. INTRODUCTION

In recent years, real-time communications (RTC) have
solidified their position as quintessential tools in both profes-
sional and recreational domains, ushering in applications such
as video-teleconferencing, online gaming, streaming, etc. The
intensified demand for enhanced living and entertainment
experiences in the post-pandemic era, together with the
widespread embrace of remote work [1], has significantly
buoyed the prominence of RTC applications. Nowadays,
consumers are confronted with a profusion of competing ap-
plications [2] as RTC services continue to proliferate, which
can be attributed to the augmented availability of bandwidth,
the global expansion of network infrastructures, and the
cutting-edge developments in 5G technologies. Specifically,
Real-time Transport Protocol (RTP) [3] over User Datagram
Protocol (UDP) remains the foundational pillar for the major-
ity of these applications, whereas web browsers hinge on the
globally recognized standard, WebRTC [4], an open-source
framework built atop RTP.

To this end, there is a heightened impetus for developing
advanced network technologies aimed to elevate network per-
formance and enhance Quality of Experience (QoE). Notably,
bandwidth management emerges as an auspicious prospect,
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proffering pivotal functionalities encompassing bandwidth
allocation, dynamic transmission adjustments, throughput
measurement, and traffic prioritization [5], [6], [7], [8].
Within this context, the prediction of traffic throughput
assumes paramount potential, supporting an intelligent and
proactive system that engenders a manifold of advantages
such as optimized bandwidth allocation, an augmented QoE
realized through advanced adaptive streaming and transcod-
ing, efficient resource planning, and the alleviation of net-
work congestion. Nevertheless, throughput prediction re-
mains formidable, owing to the dynamic and multifarious
nature of networks. Compounding this, existing solutions for
time series problem suffer from the prediction of extreme
conditions, that are crucial in RTC traffic.

In this paper, we propose a novel Transformer-based DL
framework, that exclusively leverages packet-level informa-
tion for throughput prediction. The sequential progression
of packet flows mirrors the problems in Natural Language
Processing (NLP) domain, which has been revolutionized by
the Transformer [9] architecture. This congruence endows
our proposed model with the capability to adeptly discern the
dynamic and inherent intricacies of networks. Predominantly,
our attention is riveted on peak values, valley values, and
abrupt changes in throughput, and for this purpose, we deploy
a multi-task learning schema combined with an assortment of
trainable and predefined weights, stimulating the neural net-
work to learn patterns of traffic extremes. Moreover, our work
is firmly rooted in an extensive dataset of traffic, sourced
from client endpoints during multiple video-conferencing
calls with diverse network connections. We frame a time
series regression problem in two distinct manners, comparing
various techniques that either employ historical samples or
packet-level information as features. As a result, our model
outstrips the baselines, particularly showcasing prowess in
forecasting traffic extremities. In order to further validate
the enhanced performance, we conduct two ablation studies
and briefly examine the practical viability of the model. We
also make our dataset and model publicly accessible to foster
research reproducibility1.

II. RELATED WORK

In this section, we provide an overview of literature related
to throughput and packet-level prediction.

Throughput prediction or bandwidth estimation, has gath-
ered attention in academic research. [10] introduced a Re-
cursive Least Squares (RLS) filter to estimate bandwidth
for video calls in cellular networks, while [11] developed

1https://mplanestore.polito.it:5001/sharing/v9GGTvLhJ



a Random Forest (RF) approach to predict link bandwidth
in 4G Long Term Evolution (LTE) networks. The authors in
[12] employed general Internet traffic and adopted multiple
ML algorithms to predict short-term bandwidth based on
features extracted from aggregated packets. Furthermore, a
Long Short-Term Memory (LSTM) model was implemented
by [13], where mobile bandwidth prediction was performed
using Bayes model fusion to enhance the performance. Addi-
tionally, the authors in [14], [15] concentrate on Adaptive Bi-
trate (ABR) for HTTP-based video streaming, by proposing
tree-based models or DL technologies to forecast throughput,
which were then integrated into ABR algorithm to optimize
QoE. Regarding packet-level prediction, there are limited
amount of works existing. [16] aimed to predict packet-level
characteristics by utilizing packet-level information with 3
predicted and 3 exogenous parameters arranged in a sequen-
tial way. The authors investigated multiple DL approaches,
implementing a multitask learning algorithm, and compared
the performance with respect to Markov chain and RF regres-
sor. Moreover, both [17] and [18] referred to Transformer-
based NN. The former study aimed to generalize network
dynamics, based on historical packet-level information. The
authors added an extra hierarchical aggregation layer before
the encoder to condense lengthy sequence, predicting end-
to-end delay to pre-train the model, while envisioning a
replaceable decoder for other tasks. The latter work proposed
FlowFormer, an ensemble architecture with attention-based
encoders, attempting to classify real-time network flow types
— video, conference, and download. In particular, the au-
thors aggregated packets into different categorized bins, by
comparing packet-level information like payload length with
predefined thresholds, and then computed the quantities of
packets in such bins as features.

To the best of our knowledge, our work represents a pi-
oneering effort in employing Transformer-based architecture
with packet-level information to predict throughput in RTC,
focusing on traffic extremes to bolster performance. Note that
the method in [14] can capture abrupt changes based on
chunk size, which, however, is not available in RTP-based
traffic. On top of that, our model has a streamlined archi-
tecture, efficiently harnessing a minimal suite of packet-level
information as features. Consequently, the need for resource-
intensive processes such as intricate feature extraction is
eliminated.

III. PROBLEM STATEMENT

Herein, we motivate our work, and subsequently, present
the problem formulation and an overview of the dataset.

A. Motivation

Why traffic extremes: The throughput extremes constitute
critical facets in RTC traffic, affecting prediction perfor-
mance and epitomizing the nuanced and intricate network
dynamism. To provide context, the time series throughput
of a sample traffic in our data collection (details in Sec-
tion III-C) is presented in Figure 1 (top), where extremities
are highlighted. Specifically, we underscore the prediction of
extreme values for several reasons: i) Peak values embody the
zenith of transmission rates and often correspond to network
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Fig. 1: Traffic patterns.

bottlenecks, thereby offering insights into the prospective
bandwidth availability. Precise prediction of peaks facilitate
optimal resource allocation, which, in turn, averts packet
loss, degraded audio/video, diminished QoE, etc.; ii) Val-
ley values denote comparatively idle periods, wherein net-
work resources are underutilized, unveiling opportunities for
energy-conservation strategies, resource redistribution, and
efficacious load balancing. Furthermore, certain unexpected
troughs might herald network irregularities, supporting the
detection of traffic anomalies; iii) The ability to anticipate
abrupt changes, which highlight sudden and transient network
fluctuations, could facilitate more agile adaptive streaming
and swift bandwidth allocation, ensuring a prompt adaptation
of rapid transitions. Additionally, the depicted patterns of
critical values from 10 randomly selected traffic in Fig-
ure 1 (bottom), which illustrates the Empirical Cumulative
Distribution Function (ECDF) of throughput values (left)
and the percentage variations between successive throughput
samples (right), demonstrate that all throughput values exhibit
a steep ascent in the middle, tapering into narrow tails
for both ultra-low and high values, and the majority of
inter-variations remain below 20%. In fact, 64.8% of inter-
variations are less than 10% and 84.1% are less than 20%
for all traffic. In other words, the traffic throughput generally
experiences a globally stationary evolution, which underlines
the significance of comprehending and forecasting traffic
extremes, further rendering their prediction an intriguing and
substantive endeavor.

Why packet-level information: The rationale underpinning
the selection of packet-level information is threefold: First,
packets stand as the fundamental unit and constitute the finest
granularity within networks, encapsulating the rapidly oscil-
lating dynamics and intrinsic nature of network traffic [19].
Predictive models, when sculpted around such meticulous
features, hold a distinct advantage in discerning the under-
lying patterns, thereby yielding more accurate predictions.
Second, the acquisition of packet-level data demands minimal
exertion in terms of feature extraction, particularly in the
context of RTC with possible temporal and computational
constraints. More importantly, our model relies solely on
packet header attributes, obviating potential complexities
due to packet encryption and enabling a more streamlined
workflow with expeditious access to pertinent information.
Finally, packets are ubiquitously accessible across the net-
work, transcending the confines of client sides and thus



affording a more comprehensive network observability. This
broader vantage point enables the prospect of conducting
throughput prediction within the network, contributing to the
improvement of overarching network performance.

In this context, we select 7 elements of the RTP packet as
features: 1) Frame length, the packet total size including all
its headers and data; 2) Inter-arrival time, the time span
between the arrivals of two consecutive packets; 3) RTP
timestamp, the timestamp field in the RTP header; 4) Times-
tamp, the relative timestamp at which the packet arrives;
5) RTP marker, a single-bit field used to indicate the last
packet of a specific media unit; 6) Sequence number, a 16-
bit value that is used to identify and order the RTP packets;
7) Flow ID, a unique numerical identifier that is assigned to
an individual RTP flow. In this way, we intend to encompass
potential impact exerted by various factors, including both
spatial and temporal patterns, as well as particular RTP-
related incidents, by extracting directly from unadorned text
in packets, thereby circumventing the necessity for resource-
intensive feature engineering. Moreover, we aim to leverage
the innate capabilities of the Transformer architecture with
the multi-head attention, to intuitively and autonomously
discern the endogenous correlations interweaving the packet-
level information and traffic throughput.

B. Problem formulation

The objective is to predict the traffic throughput in a
forthcoming time window of duration ∆t, and we approach
the problem in two ways with different features but same
target: i) a conventional univariate time series problem with
historical samples as features, and ii) an irregular multivariate
one with preceding packet-level features. Assuming at a time
instant t, we formulate a regression problem as follows:

R̂t = f(X)

with X =

{
rt−∆t, rt−2∆t, ..., rt−m∆t, ..., if Problem i
xt,1, xt,2, ..., xt,n, ..., if Problem ii

,

n ∈ [1, N ],m ∈ [1,M ],

(1)

where R̂t denotes the predicted throughput in the subsequent
time window starting at time t and ending at t + ∆t, and
the input feature matrix X differs between problems. For
problem i, M historical samples are considered, and rt−m×∆t

is the previous throughput in the time window with a duration
of ∆t commencing from t−m×∆t. For problem ii, we refer
to a total number of N packets in the past, and xt,n represents
the feature vector of the nth previous packet antecedent to
time t, which includes the corresponding packet information
constituted by a tuple of the aforementioned 7 elements.
We aim at developing a model, mastering a function f(·)
to undertake the regression task and map our input feature
matrix X to the estimated throughput that converges with
the actual value, R. Additionally, we refer to the uppermost
αp (percentage) and the nadir αv (percentage) throughput
samples during each session as the peak and valley values
respectively, and define an abrupt change when the inter-
variation surpasses a threshold β (percentage), i.e., a sample
with throughput value Rt is deemed an abrupt change if
|Rt−Rt−∆t|

Rt−∆t
> β.

C. Dataset introduction
We employ two RTC applications, Webex and Jitsi Meet,

to collect traffic traces during 71 real video-teleconferencing
calls, each comprising 2 to 6 participants connected to either
WiFi, mobile, or Ethernet. We collect the traffic from client
sides with a total duration of nearly 70 hours, concentrating
on incoming streams and storing the data in pcap format.
In alignment with the problem formulation, we construct
the dataset for each session, calculating traffic throughput
in successive time windows following chronological order,
by aggregating the frame lengths of all packets within each
window. Importantly, each time window (target throughput) is
accompanied with the packet-level features of the preceding
N packets and the historical throughput samples from the
previous M time windows. In our work, we compute and
predict the throughput in time windows of ∆t = 500 ms, and
resort to M = 10 prior windows (5 s) for problem i, while
considering previous N = 1024 packets, that translates to an
average span of roughly 3.8 s for problem ii. Furthermore,
we devise that αp = 10%, αv = 10%, and β = 20%.
Noteworthily, all these selections are modifiable hyperpa-
rameters (e.g., a larger time window of ∆t = 1000 ms
or considering more large values, αp = 20%), and our
preliminary experiments vouch for consistent performance,
for which we earmark the details for future work.

IV. METHODOLOGY

In this section, we delineate our proposed DL model
and other comparative methodologies. Then, we explain the
model development as well as evaluation process.

A. Introduction of proposed model
We propose a Transformer-based DL framework that uti-

lizes packet-level information and incorporates a multi-task
learning paradigm, as elucidated in Figure 2. Specifically,
the sequence of packet features are injected into a packet
embedding layer to enrich the features, creating feature em-
bedding. After superimposing the trainable positional encod-
ing, that automatically assimilates optimal positional insights,
the resultant sequence of embedded features is fed into a
single layer of Transformer encoder to generate the sequence
of encoded features, employing multi-head attention mecha-
nism to unearth latent patterns and apprehend network fate.
Afterwards, we compute the mean value of each sequence
and apply layer normalization, distilling feature essence and
consummating the feature extraction phase.

Imperatively, we elaborately conceive an innovative multi-
task learning strategy, augmented with multifunctional
weights, to further incentivize the model to discern traffic
extremes. In addition to the primary regression module, we
integrate two auxiliary learning blocks: a binary classification
component and a trainable multiplier. The former block aims
to predict and identify whether the target throughput signifies
an abrupt change with respect to the preceding sample, a
feat deemed attainable due to the granular and domain-
specific packet-level features, often absent in conventional
time-series scenarios. The latter block operates as a calibrator
that amplifies or attenuates the regression output upon the
classification outcome, adjusting the final predictions to better
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accommodate dramatic variations. As a result, we meticu-
lously train the neural network in a way such that normal
values are regularly satisfied, while abrupt changes are me-
thodically compensated. Meanwhile, we implement learnable
weights [20] that automatically determine the importance of
different tasks to systematically and optimally combine losses
output by different blocks as follows:

Lfinal = e−w1 · Lclass + w1 + e−w2 · Lreg + w2

with Lclass = ℓwBCE(y, ŷ;wclass),

Lreg = ℓwMAE(R, R̂;wreg),

R̂ = R̂′ · M, M =

{
M′, if ŷ = 1

1, if ŷ = 0
,

(2)

where Lfinal represents the final loss, computed by melding
the classification (Lclass) and regression (Lreg) losses through
trainable weights (parameters) — w1 and w2. Moreover,
both regression and classification blocks are associated with
weighted losses during training phase. On the one hand, the
classification loss is calculated by weighted Binary Cross
Entropy (BCE) loss function ℓwBCE(·), with higher weights
wclass granted to the minority samples of abrupt changes to
tackle the problem of class imbalance. On the other hand,
the weighted Mean Absolute Error (MAE) loss function
ℓwMAE(·) is employed for regression, with larger weights
wreg assigned to peaks and valleys to accentuate the model’s
sensitivity to such scenarios. Both y and R are ground
truths of classification and regression tasks, and ŷ symbolizes
the label predicted by classification block, while R̂ is the
final forecasted throughput, ascertained by modulating the
regression output (R̂′) with the intervention of trainable
multiplier (M = M′). Notably, when the classification
indicates a normal transition (ŷ = 0), the multiplier remains
neutral (M = 1), leaving the regression output unaltered.

B. Model comparison, development and evaluation
We also refer to a broad range of domains, implement-

ing multiple other technologies as benchmarks, as listed
in Table I. Note that 7 and 3 models are developed for
problem i and ii, respectively, as annotated by the footnotes.
Specifically, RLS is a lightweight adaptive filter algorithm
that recursively updates its coefficients to minimize the

TABLE I: Model summary

Category Model

Naive baseline* Moving Average (MA)1 [21]

Adaptive filter Recursive Least Squares (RLS)1 [22]

ML method Random Forest (RF)1 regressor [23]
XGBoost (XGB)1 regressor [24]

DL method

Multi Layer Perceptron (MLP)1 [25]
Long- and Short-term Time-series network (LSTNet)2 [26]
Long Short-Term Memory (LSTM)1,2 [27]
N-BEATS network1 [28]

* It calculates the average value of past throughput samples as the prediction.
1 Problem i, univariate time series prediction.
2 Problem ii, multivariate packet level prediction.

weighted linear least square errors. Both ML methods are
tree-based ensemble models, wherein RF constructs parallel
trees and XGB relies on sequential trees. MLP, also known as
a deep neural network (DNN), is a simple and traditional DL
model. LSTM represents one of the most successful sequence
modelling NNs, comprising LSTM cells and overcoming
the vanishing gradient problem prevalent in conventional
recurrent neural network (RNN). LSTNet and N-BEATS are
two popular time series DL models, in which the former
is a multivariate model that integrates convolutional neural
networks (CNNs) with RNNs, and the latter is a univariate
one composed of multiple blocks with fully connected layers
and residual connections. Moreover, we deliberately segment
the 71 pcap files into 3 independent groups (50, 10, 11) to
construct training (358,386 samples of throughput), valida-
tion (62,413), and test (65,698) datasets, aiming to derive a
generalized solution and preclude data contamination among
traffic. To evaluate the performance, we gauge 4 metrics:
Mean Squared Error (MSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and coefficient of
determination (R2 score). Alongside, we also measure the
identification accuracy for peaks and valleys:

Accpeak =
Numpredicted value>peak value×0.9

Numpeak
× 100%,

Accvalley =
Numpredicted value<valley value×1.1

Numvalley
× 100%,

(3)



TABLE II: Model results: performance comparison of overall throughput, peaks, valleys, and abrupt changes.

Problem Problem i Problem ii

Feature Historical throughput samples Packet-level features

Model MA RLS RF XGB MLP LSTM N-BEATS LSTM LSTNet Ours

Overall
value

MSE ↓ 0.0841 0.0735 0.0481 0.0518 0.0519 0.0525 0.0490 0.0503 0.0533 0.0466
MAE ↓ 0.1462 0.1284 0.1121 0.1183 0.1224 0.1209 0.1122 0.1163 0.1208 0.1128

MAPE ↓ 14.1% 12.1% 11.3% 10.9% 14.6% 14.8% 10.7% 11.6% 11.2% 10.7%
R2 ↑ 0.8686 0.8851 0.9248 0.9191 0.9189 0.9179 0.9234 0.9215 0.9169 0.9273

Peak
value

MSE ↓ 0.2362 0.2349 0.1714 0.1898 0.1756 0.1813 0.1759 0.1839 0.1965 0.1630
MAE ↓ 0.3036 0.2694 0.2532 0.2710 0.2653 0.2672 0.2558 0.2648 0.2691 0.2360

MAPE ↓ 14.7% 13.3% 12.2% 13.3% 13.3% 13.2% 12.7% 13.1% 12.9% 11.8%
R2 ↑ 0.7570 0.7584 0.8237 0.8048 0.8194 0.8136 0.8191 0.8095 0.7964 0.8311

Accuracy ↑ 51.3% 60.3% 59.6% 51.6% 57.6% 55.1% 55.5% 59.6% 56.6% 65.1%

Valley
value

MSE ↓ 0.0893 0.0475 0.0324 0.0300 0.0395 0.0384 0.0273 0.0269 0.0285 0.0216
MAE ↓ 0.1324 0.0946 0.0877 0.0803 0.0961 0.0945 0.0772 0.0762 0.0784 0.0708

MAPE ↓ 27.9% 22.4% 20.5% 18.7% 28.6% 30.2% 19.7% 19.4% 18.5% 16.1%
R2 ↑ -0.0956 0.4178 0.6026 0.6320 0.5143 0.5287 0.6645 0.6666 0.6458 0.7316

Accuracy ↑ 57.8% 68.1% 60.0% 61.4% 56.6% 58.2% 59.0% 60.8% 65.7% 67.9%

Abrupt
change

MSE ↓ 0.3119 0.3507 0.2749 0.2881 0.2846 0.2845 0.2884 0.2742 0.2800 0.2668
MAE ↓ 0.3730 0.3965 0.3654 0.3764 0.3823 0.3790 0.3767 0.3677 0.3740 0.3627

MAPE ↓ 42.5% 44.0% 41.1% 39.7% 44.9% 45.0% 38.8% 39.5% 38.9% 37.2%
R2 ↑ 0.5883 0.5371 0.6371 0.6197 0.6243 0.6245 0.6194 0.6369 0.6291 0.6466

in which, we introduce a tolerance margin of 10% to identify
the quantity of predictions proximate to their corresponding
ground truths (exceed/beneath the relaxed peaks/valleys). The
accuracy proffers an insight into the performance from a
classification standpoint, yet for overall values and abrupt
changes, such a notion is not available.

V. EXPERIMENTAL RESULT

In this section, we present the experimental outcomes for
overall and critical values, as showcased by Table II.

We commence with the overall performance outlined in the
first part of the table. Generally, our proposed model mani-
fests commendable efficacy, securing the highest ranks across
most numerical metrics. Although certain models (such as
RF, XGB, N-BEATS, LSTM-ii, LSTNet) produce outcomes
that are ostensibly on par, e.g. N-BEATS yields similar
MAPE of 10.7%, they invariably fall short in other metrics,
like LSTNet’s declined R2 score of 0.9169. Intriguingly, our
model does not unilaterally outshine its counterparts in terms
of MAE, which could stem from our dedicate pursuit of
prioritizing the forecast of edge cases, imposing marginally
aggressive predictions for several normal values, and thus
resulting in a slightly inferior MAE of 0.1128. However,
the degradation is arguably minuscule, being merely 0.0006
greater than the premier MAE of 0.1121, which is further
consolidated by the best MAPE, suggesting that predictions
deviating from true values do so in a rather benign manner.
As for plateaus and troughs, our solution demonstrates sig-
nificant improvement compared to others. For peak values,
our model stands unrivaled, boasting the preeminent R2

score (the only one above 0.83) as well as unparalleled
identification accuracy (4.8% higher than the subsequent
best), and lowest errors (e.g., the only MAPE beneath 12%),
representing accurate forecasting rather than mere overes-
timation. Meanwhile, the supremacy becomes even more
pronounced for valley values. Our model delivers markedly
diminished errors and remarkable coherency, as evidenced by
a MAPE that is reduced by 2.4% and an R2 score augmented

by 0.065 relative to their respective second-best values. It is
pivotal to underline that RLS attains the highest accuracy and
LSTNet claims the third rank, but their numerical metrics are
unacceptably deficient, illustrating a propensity for them to
simplistically undervalue valleys, while our model with the
second-highest accuracy of 67.9% is deemed reliable given
other decent numerical indicators. Moving forward to abrupt
changes, our model persistently outperform the others with
optimal performance across the board, exemplified by being
the sole model with an MSE under 0.27. However, it remains
intrinsically challenging to precisely predict such rapid and
sudden transitions, given the relatively subpar performance
regardless of the models. The non-ideal result originates from
the inherent complexities entwined within the problem per
se. Instantaneous fluctuations of throughput in the context of
RTC could be spurred by a plethora of factors, like emergent
traffic flows or network disruptions, elements which might
not manifest conspicuously in the packet flows received by
end-users, rendering them elusive and daunting to be detected
by the models. Yet, against this backdrop of challenges,
our approach adeptly leverages granular packet-level insights
coupled with a meticulously designed model architecture,
enabling it to adapt to abrupt changes to a commendable
extent, thus proffering results that, while not stellar, remain
respectable.

Additionally, Figure 3 provides a vivid visual representa-
tion, juxtaposing ground truth values against model predic-
tions with MAE, both for traffic entirety (bottom) as well
as extremes (4 zoomed-in blocks). In general, all models
seem capable of tracing the basic traffic evolution. Regarding
the abrupt changes (A), our model can swiftly and pre-
cisely adapts to the sudden rises, excelling the others and
obtaining the minimal error. However, each model exhibits
a latency in response to the initial abrupt transformation,
reaffirming the notion that it is barely possible to predict
drastic transitions, which remains an open problem in con-
ventional time series prediction. Concurrently, even though
the overall traffic patterns are generally stable (Figure 1),
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Fig. 3: Throughput Time Series: Example Traffic in Test Dataset and Predictions (use MAE in parentheses for performance
comparison when predictions are visually indistinct).

it is inevitable to experience localized perturbations (B).
Such capricious variations pose formidable challenges, but
our solution still generates superior performance, delivering
adept predictions that strike a balance between being neither
aggressive (LSTM-ii) nor conservative (MLP). Furthermore,
our model continues to outperform its peers, with the lowest
error regarding peaks and valleys. In example C, the majority
of models tend to underestimate the peaks, while in example
D, our model presents greater fidelity to the fluctuations,
although performance disparities are relatively subtle. It is
important to recognize the intrinsic complexity of predicting
throughput in RTC, especially when it concerns traffic ex-
tremities, because they represent the minority in throughput
characteristics, which resembles the dilemmas in imbalanced
ML problems [29].

VI. DISCUSSION

In this section, we provide supplementary analyses, per-
forming ablation experiments, and investigating model prac-
ticality.

A. Ablation study

To substantiate the efficacy of particular designs within
the model architecture, we undertake two ablation tests:
1) we substitute the Transformer-based component with an
LSTM neural network to extract features, channelling the
output into subsequent multi-task learning blocks, and 2) we
omit the multi-task learning schema, exclusively retaining the
regression task to forecast throughput.

Table III presents the results, revealing that the original
model generally surpasses both scenarios, albeit with several
minor exceptions. Firstly, the LSTM-based model in test 1
encounters performance degradation, especially concerning
valleys and abrupt changes, while yielding comparable out-
comes for peaks, which unequivocally illustrates the supe-
riority of Transformer architecture. On top of that, it also

TABLE III: Result of ablation study.

Scenario Ablation 1 Ablation 2 Original*

Overall
values

MSE ↓ 0.0503 0.0500 0.0466
MAE ↓ 0.1170 0.1195 0.1128

MAPE ↓ 10.9% 11.6% 10.7%
R2 ↑ 0.9216 0.9220 0.9273

Peak
values

MSE ↓ 0.1584 0.1497 0.1630
MAE ↓ 0.2406 0.2253 0.2360

MAPE ↓ 12.3% 11.5% 11.8%
R2 ↑ 0.8359 0.8449 0.8311

Accuracy ↑ 65.1% 65.6% 65.1%

Valley
values

MSE ↓ 0.0251 0.0314 0.0216
MAE ↓ 0.0738 0.0841 0.0708

MAPE ↓ 16.8% 19.8% 16.1%
R2 ↑ 0.6884 0.6099 0.7316

Accuracy ↑ 63.1% 67.5% 67.9%

Abrupt
changes

MSE ↓ 0.2802 0.2807 0.2668
MAE ↓ 0.3732 0.3757 0.3627

MAPE ↓ 38.4% 39.6% 37.2%
R2 ↑ 0.6290 0.6282 0.6466

* The identical result is retrieved from Table II for a straightforward
comparison.

transcends the vanilla LSTM model with packet-level features
in Table II, thereby affirming the applicability as well as com-
petence of multi-task learning blocks. Secondly, the removal
of multi-task learning paradigm in test 2 results in noteworthy
performance drop, as evidenced by a decrement of 0.1217
in R2 score for valleys, which indicates an underestimation
even the identification accuracy remains similar. Interestingly,
we obtain a slightly improved result regarding peak values,
potentially stemming from the fact that the Transformer
architecture with packet features innately advocates for traffic
pinnacles.

B. Model practicality

Although it is challenging to evaluate the real-world im-
plementation of our model at this point, we nonetheless
envision its feasibility. To provide context, the execution of
a single prediction merely requires 14.8ms ± 1.05ms in



TABLE IV: Result of 512 packets as features.

Scenario MSE MAE MAPE R2 Accuracy

Overall values 0.0475 0.1142 10.9% 0.9259 -
Peak values 0.1676 0.2432 12.2% 0.8263 63.3%

Valley values 0.0225 0.0748 17.1% 0.7200 66.3%
Abrupt changes 0.2705 0.3696 37.7% 0.6417 -

a CPU environment (Intel(R) Xeon(R) Gold 6140), devoid
of GPU acceleration, which does not even incorporate any
possible optimizations, such as efficient Transformer archi-
tectures [30] and well-established network pruning technolo-
gies [31].

To consolidate the concept, we examine the possibility of
employing even less packets as features to further curtail the
model complexity. In particular, we adhere to the general
architecture while halving the original quantity from 1024
to 512 packets prior to a target, leading to a reduction of
roughly 70% in the overall parameter count. As delineated
by the result in Table IV, our model equipped with fewer
features continues to generate decent performance with only
marginal decline versus the original one, still boasting the
highest rank in Table II with respect to other models, and
thus reaffirming the practicality and feasibility.

VII. CONCLUSION

In this paper, we intend to predict the RTC traffic through-
put with the emphasis on traffic extremes, namely peaks,
valleys, and abrupt changes. We propose a novel DL solution
with Transformer-based architecture, which incorporates a
multi-task learning approach and exclusively utilizes RTP
packet-level information. To reinforce the model universality
and resilience, our work anchors on ample RTC traffic
collected under various scenarios, and we compare our model
against numerous technologies. Our proposed framework
provides the merits of ease of feature extraction and delicate
model architecture to tackle the constraints in RTC. As a re-
sult, we obtain satisfactory overall performance with preem-
inent outcomes for traffic extremes, highlighting the salience
of packet-level information and illustrating the feasibility of
modelling traffic dynamics. Future work could consist of
reducing the complexity and introducing explainability for
our model. Furthermore, we remain open to incorporating
exogenous factors, such as the router queue length when pre-
dictions are executed at the edge node, potentially improving
the performance.

REFERENCES

[1] C. Athanasiadou and G. Theriou, “Telework: systematic literature
review and future research agenda,” Heliyon, vol. 7, no. 10, p. e08165,
2021.

[2] A. Nistico, D. Markudova, M. Trevisan, M. Meo, and G. Carofiglio, “A
comparative study of RTC applications,” in 2020 IEEE International
Symposium on Multimedia (ISM), pp. 1–8, IEEE, 2020.

[3] R. Frederick, S. L. Casner, V. Jacobson, and H. Schulzrinne, “RTP: A
transport protocol for real-time applications.” RFC 1889, Jan. 1996.

[4] S. Loreto and S. P. Romano, Real-time communication with WebRTC:
peer-to-peer in the browser. ” O’Reilly Media, Inc.”, 2014.

[5] J. R. Wilcox, Videoconferencing: The whole picture. Taylor & Francis,
2017.

[6] C. Liang, M. Zhao, and Y. Liu, “Optimal bandwidth sharing in
multiswarm multiparty p2p video-conferencing systems,” IEEE/ACM
Transactions On Networking, vol. 19, no. 6, pp. 1704–1716, 2011.

[7] B. Jansen, T. Goodwin, V. Gupta, F. Kuipers, and G. Zussman,
“Performance evaluation of webrtc-based video conferencing,” ACM
SIGMETRICS Performance Evaluation Review, vol. 45, no. 3, pp. 56–
68, 2018.

[8] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen,
“Video streaming using a location-based bandwidth-lookup service
for bitrate planning,” ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), vol. 8, no. 3, pp. 1–19,
2012.

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[10] E. Kurdoglu, Y. Liu, Y. Wang, Y. Shi, C. Gu, and J. Lyu, “Real-
time bandwidth prediction and rate adaptation for video calls over
cellular networks,” in Proceedings of the 7th International Conference
on Multimedia Systems, pp. 1–11, 2016.

[11] C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang, and W. Wei, “Linkforecast:
Cellular link bandwidth prediction in lte networks,” IEEE Transactions
on Mobile Computing, vol. 17, no. 7, pp. 1582–1594, 2017.
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[19] A. Dainotti, A. Pescapé, P. S. Rossi, F. Palmieri, and G. Ventre, “Inter-
net traffic modeling by means of hidden markov models,” Computer
Networks, vol. 52, no. 14, pp. 2645–2662, 2008.

[20] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using un-
certainty to weigh losses for scene geometry and semantics,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 7482–7491, 2018.

[21] R. J. Hyndman, “Moving averages.,” 2011.
[22] A. H. Sayed, Fundamentals of adaptive filtering. John Wiley & Sons,

2003.
[23] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,

2001.
[24] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen,

R. Mitchell, I. Cano, T. Zhou, et al., “Xgboost: extreme gradient
boosting,” R package version 0.4-2, vol. 1, no. 4, pp. 1–4, 2015.

[25] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[26] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and
short-term temporal patterns with deep neural networks,” in The 41st
international ACM SIGIR conference on research & development in
information retrieval, pp. 95–104, 2018.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[28] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-beats:
Neural basis expansion analysis for interpretable time series forecast-
ing,” arXiv preprint arXiv:1905.10437, 2019.

[29] H. Kaur, H. S. Pannu, and A. K. Malhi, “A systematic review on
imbalanced data challenges in machine learning: Applications and
solutions,” ACM Computing Surveys (CSUR), vol. 52, no. 4, pp. 1–
36, 2019.

[30] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers:
A survey,” ACM Comput. Surv., vol. 55, dec 2022.

[31] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning
and quantization for deep neural network acceleration: A survey,”
Neurocomputing, vol. 461, pp. 370–403, 2021.


