
24 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Reliability-based topology optimization of imperfect structures considering uncertainty of load position / Habashneh, M.;
Cucuzza, R.; Aela, P.; Movahedi Rad, M.. - In: STRUCTURES. - ISSN 2352-0124. - ELETTRONICO. - 69:(2024).
[10.1016/j.istruc.2024.107533]

Original

Reliability-based topology optimization of imperfect structures considering uncertainty of load position

Publisher:

Published
DOI:10.1016/j.istruc.2024.107533

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2994035 since: 2024-10-31T13:50:39Z

Elsevier



Reliability-based topology optimization of imperfect structures considering 
uncertainty of load position

Muayad Habashneh a, Raffaele Cucuzza b, Peyman Aela c, Majid Movahedi Rad a,*

a Department of Structural and Geotechnical Engineering, Széchenyi István University, H-9026 Győr, Hungary
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A B S T R A C T

In this paper, a novel optimization technique is implemented to explore the effects of considering uncertain load 
positions. Therefore, the integration of reliability-based design into structural topology optimization, while 
considering imperfect geometrically nonlinear analysis, is proposed. By comparing the results obtained from 
perfect and imperfect geometrically and materially nonlinear analyses, this study examines the impact of 
nonlinearity on probabilistic and deterministic analyses. Concerning probabilistic analysis, the originality of this 
research lies in its incorporation of the position of the applied load as a stochastic variable. This distinctive 
approach complements the consideration of other relevant parameters, including volume fraction, material 
properties, and geometrical imperfections, with the overarching goal of capturing the variability arising from 
real-world conditions. For the assessment of uncertainties, normal distribution is assumed for all these param
eters. Normal distributions are chosen due to their advantages in terms of simplicity, ease of implementation, and 
computational efficiency. These characteristics are particularly beneficial when dealing with complex optimi
zation algorithms and extensive analyses, as is the case in our research. The proposed algorithm is validated 
according to the results of benchmark problems. Structural examples like cantilever beam, pinned-shell, and L- 
shaped beam problems are further explored within the context of imperfect geometrically nonlinear reliability- 
based topology optimization, with specific regard to the probabilistic aspect of the location of the externally 
applied loads. Moreover, the results of the suggested approach suggest that the inclusion of a probabilistic design 
strategy has influenced topology optimization. The reliability index acts as a controlling constraint for the 
resulting optimized configurations, including the mean stress values associated with the resulting topologies.

1. Introduction

A mathematical technique known as topology optimization (TO) is 
utilized to optimize performance within predetermined constraints by 
distributing material in an efficient manner within a specified domain. 
This method has undergone considerable enhancements within the 
domain of structural engineering. Moreover, its effectiveness has been 
substantiated across an array of engineering disciplines, encompassing 
civil, mechanical, and other relevant applications, ultimately enhancing 
the innovative capabilities of designers [1–4].

TO has witnessed significant enhancements, leading to the emer
gence of various developmental techniques. One such method that has 
recently undergone substantial improvements is the bi-directional 
evolutionary structural optimization (BESO) method [5] known for its 

unique ability to remove and add material based on sensitivity numbers. 
Several studies and works focused on the applications and developments 
of the BESO method, shedding light on its significance in the field of 
structural optimization [6–8]. For instance, Zhu et al.[9] presented an 
enhanced (BESO) approach for optimizing constrained layer damping, 
resulting in more rational and efficient layouts while maintaining 
damping effectiveness. Shobeiri [10] introduced an approach to 
enhance the effectiveness of numerical optimization techniques for 
nonlinear structures subjected to dynamic loads. The BESO approach 
was developed to improve contact stress uniformity by optimizing ma
terial stiffness, demonstrating its effectiveness in enhancing the contact 
stress distribution compared to interface shape optimization [11].

Regarding structural optimization, the consideration of structural 
stability has gained prominence alongside traditional factors such as 
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strength and stiffness, with a growing emphasis on ensuring stability 
under varying conditions. This evolving perspective has garnered 
considerable interest in the examination and resolution of stability 
challenges, with a specific focus on intricate and complex structures, 
reflecting the extensive body of research that has already contributed to 
this vital area [12–15]. This leads to an examination of the interplay 
between topology optimization and structural stability, including 
methods, challenges, and advancements in this critical domain. Bian and 
Fang’s [16] research concerned the optimization of three-dimensional 
structures involving buckling constraints. With the principal aim of 
optimizing the buckling load, Lindgaard et al. [17] presented an opti
mization technique for composite structures. Browne et al. [18] intro
duced a method for tackling large-scale binary programming problems 
in topology optimization with consideration of buckling constraints. 
Topology optimization approach of columns prone to stability loss by 
replacing conventional buckling load maximization with a locally 
formulated problem was proposed by Bochenek and Tajs-Zielińska [19]. 
Addressing the conflict between structural rigidity and stability re
quirements, Gao et al. [20] presented a continuation approach for 
optimizing the topology of structures.

In the field of structural engineering and design optimization, recent 
research efforts have delved into various methodologies to address un
certainties, ranging from reliability-based considerations and safety 
evaluations in straightforward engineering decisions to the optimization 
of complex components such as rotor blades and glulam beams. The 
work conducted by Papaioannou et al. [21], Drieschner et al. [22], 
Schmidt and Lahmer [23], and Schietzold et al. [24] has contributed 
significantly to the understanding of integrating polymorphic uncer
tainty frameworks, realistic uncertainty descriptions, and 
material-specific uncertainties into numerical structural designs. A to
pology optimization technique that takes hybrid uncertainties and 
manufacturing variables into account was proposed by Li et al. [25]. 
Additionally, Edler et al. [26] have explored optimization methodolo
gies that incorporate uncertain structural parameters through the use of 
random variables and interval design parameters. By taking into account 
uncertainty in the location, direction, and amplitude of the applied load 
and properties of material, Li et al. [27] presented an effective 
reliability-based concurrent topology optimization.

Utilizing reliability-based topology optimization is an essential 
component in the ever-evolving domain of structural engineering. In 
order to ensure the resilience of structures in the face of the complex 
challenges presented by real-world dynamics, it is critical to thoroughly 
account for uncertainties, including variable load positions and other 
influential factors. As the pursuit of efficient structural designs through 
topology optimization continues to evolve, the consideration of reli
ability is emerging as an indispensable aspect of the optimization pro
cess. Reliability-based design seeks to enhance the robustness and safety 
of structures by incorporating probabilistic aspects, addressing un
certainties in materials [28], loads [29], and other parameters [30,31]. 
Habashneh and Movahedi [32] integrated reliability-based analysis into 
topology optimization, specifically focusing on geometrically nonlinear 
elasto-plastic models. Furthermore, Luo et al. [33] incorporated 
reliability-based design into stress-constrained topology optimization 
problems under numerous stress-related constraints. Jung and Cho [34]
developed an optimization approach for probabilistic topology design 
problems with probabilistic displacement conditions. By considering 
three-dimensional structures, Eom et al. [35] proposed a 
reliability-based topology optimization (RBTO) approach with a focus 
on the stability of the structures.

As we navigate the intricate landscape of topology optimization (TO) 
and its integration with reliability-based design (RBD), we confront a 
pivotal factor that has the potential to influence structural performance 
– the inherent load uncertainties significantly. Acknowledging the 
probabilistic nature of applied loads, characterized by their stochastic 
variations and complex interactions with the structural response, be
comes paramount to truly designing robust and reliable structures. This 

focus area has garnered extensive research and investigation [36,37]. 
Bruggi et al. [38] introduced an optimization approach for composite 
structures incorporating homogenization-based topology optimization 
and addressing load uncertainty. Moreover, by considering random 
loads and a probabilistic compliance constraint, Lógó [39] presented a 
stochastic optimal topology design method. Gao et al. [40] introduced 
an effective approach for assessing load uncertainty in robust 
multi-material topology optimization problems.

Building on our prior research [41], the present work introduces an 
innovative refinement to the Bi-directional Evolutionary Structural 
Optimization (BESO) method. This work presents a novel computational 
algorithm that incorporates the probabilistic nature of load positions, 
leading to the formulation of a reliability-based topology optimization 
method tailored for geometrically nonlinear analyses of imperfect 
structures. The proposed methodology represents a significant 
advancement over existing techniques by not only addressing load po
sition uncertainty but also extending the framework to include addi
tional random variables, such as geometric imperfections, material 
properties, and volume fraction (Vf ). In practical engineering applica
tions, exact load positions are often unknown, necessitating their 
treatment as uncertain variables. This inherent uncertainty induces 
variability in the structural response, potentially affecting the optimal 
designs derived through conventional topology optimization tech
niques. The numerical examples presented herein serve to illustrate the 
significant influence of load position uncertainty on the final optimized 
layouts of the structure, underscoring the importance of addressing this 
aspect in reliability-based design methodologies. The mentioned 
random variables are modeled with mean values and standard de
viations, conforming to a normal distribution. The numerical examples 
explored serve to underscore the remarkable effectiveness and efficiency 
of the proposed methodology, highlighting its potential to make sub
stantial contributions in the domain of topology optimization.

The subsequent sections of this manuscript are structured as follows: 
In Section 2, we present an overview of the theoretical foundation un
derpinning the proposed algorithm and the expanded BESO method. 
Section 3 provides a presentation of the numerical examples explored in 
this study. Lastly, Section 4 encompasses the conclusion, remarks, and 
future perspectives.

2. Theoretical framework: concepts and principles

In this section, a comprehensive overview of the problem back
ground is presented laying the foundation for topology optimization. In 
order to account for material and geometric nonlinearity, this paper 
investigates both perfect and imperfect analyses utilizing shell bending 
theory. With a focus on stability-oriented design, the proposed work 
employs nonlinear finite element analysis to address imperfections in 
structures. The computational efficacy of the ABAQUS [42] software is 
utilized to address the sensitivity of imperfection. In the following 
subsections, methodologies for deterministic elasto-plastic topology 
optimization and probabilistic topology optimization are detailed. 
Following this, the algorithm that is suggested for implementation using 
the BESO method is presented, providing a succinct comprehensive 
manual for the development of designs that are both deterministic and 
probabilistic.

2.1. Overview of the finite element approach

This study explores the field of topology optimization by examining 
two distinct analyses. The first analysis, labeled perfect analysis that is 
materially and geometrically nonlinear (GMNA), hinges on the appli
cation of shell bending theory. Within this framework, a perfect struc
ture is assumed, incorporating nonlinear large displacements and a law 
of completely nonlinear elasto-plastic hardening. In parallel, the sec
ondary analysis, materially and geometrically nonlinear with imper
fections (GMNIA) also draws from shell bending theory. GMNIA 
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accounts for elasto-plastic relationships and large displacements, intro
ducing initial geometric imperfections in the proposed model as nodal 
displacements. It is important to note that geometric nonlinearity be
comes significant in structures experiencing large deformations, espe
cially in applications involving flexible or deformable materials, where 
the structural behavior deviates noticeably from linear models. Conse
quently, linear assumptions may lead to imprecise predictions. Simi
larly, the presence of material nonlinearity, resulting from the nonlinear 
relationship between stress and strain in materials, can have a sub
stantial impact on the structural response, particularly beyond the point 
of yielding. This impact may lead to alterations in stiffness and defor
mation patterns. Understanding and accounting for these nonlinear ef
fects is paramount for achieving a more reliable representation of the 
structural response under varying loading conditions.

In order to address the initial imperfections that emerge during the 
manufacturing process, stability-focused design necessitates the utili
zation of nonlinear finite element analysis. Predicted by Koiter’s theory 
[43], experimental imperfection sensitivity patterns guide this consid
eration. Once the flawless structure has been scrutinized, the method of 
integrating imperfection during the post-analysis is demonstrated to be 
computationally efficient, thereby offering a cost-effective imperfection 
sensitivity analysis as well as low computational effort.

The utilization of ABAQUS [42] software enables this methodology, 
which assumes imperfections to be a linear eigenvectors combination 
derived from the linear buckling problem. The presented methodology 
does not purport to compute the minimum value of a collapsing load as 
resulting by an incremental analysis. Conversely, its emphasis is on 
investigating the response of an imperfect structure to topology opti
mization under probabilistic and deterministic conditions. Though the 
quest for evaluating the collapsing load value with imperfection remains 
an open topic in structural engineering as demonstrated by the 
numerous works presented in the literature [44,45], this work provides 
a unique perspective on topology optimization challenges.

The initiation of imperfect geometrically nonlinear and nonlinear 
material analysis in ABAQUS requires a structured approach. Begin by 
defining the geometric and material properties, incorporating parame
ters for nonlinear material behavior. Introduce initial geometric im
perfections through nodal displacements, simulating real-world 
deviations. Crucially, precede the analysis with a linear buckling anal
ysis to assess the structure’s vulnerability to global buckling modes. This 
initial step establishes a foundation for subsequent nonlinear analyses, 
providing insights into potential modes of failure. Following the linear 
buckling analysis, leverage ABAQUS capabilities for geometrically 
nonlinear analysis, ensuring the model accurately represents large de
formations. In nonlinear finite element analysis, the combined effects of 
material and geometric nonlinearities are accounted for. Rigorous 
validation against theoretical expectations and experimental data so
lidifies the comprehensive understanding of the structure’s behavior 
under the influence of both geometric and material imperfections. It is 
imperative to emphasize that the detailed discussion regarding the 
model encompassing material nonlinearity will be expanded upon in 
Section 3.

2.2. Deterministic elasto-plastic topology optimization

In the context of plastic ultimate limit analysis, we address the 
evolution of elasto-plastic structure that is impacted by a steadily 
increasing force Fi. This one-parameter loading is expressed as: 

Fi = miF0 (1) 

Here, F0 denotes the initial applied force, and mi is a scalar parameter 
known as the load multiplier. The gradual increase of mi leads to the 
expansion of plastic zones within the body, eventually reaching a state of 
unrestricted plastic flow at extremely high intensities. The plastic limit 
state is achieved when the elastic limit load F0 is multiplied by the 
plastic ultimate load mp, yielding Fp. The condition mi − mp ≤ 0 ensures 

non-negativity of work done by external forces, aligning with the plastic 
limit state concept [46]. At the plastic limit state, the stresses and 
external forces are able to maintain the static equilibrium of the body. 
Therefore, the equilibrium equations will be used. In this analysis, we 
will examine the stress σij in a body that is in quasi-static equilibrium 
with the plastic limit load.

Fi = mpF0. Additionally, we will consider an arbitrary statically 
admissible stress and force σs

ij and Fis = miF0 that satisfy the yield con
dition [46]: 

f(σs
ij, k) ≤ 0. (2) 

In this case, k denotes the material’s plastic properties. The principle 
of virtual velocities can be applied to the stress and force fields under 
consideration by utilizing the kinematically permissible strain rate ε̇ij 

and velocities vi and contemplating a deformable body with volume V 
and loading surface Sq: 
∫

V

σijε̇ijdV = mp

∫

Sq

F0vidS. (3) 

∫

V

σs
ijε̇ijdV = mi

∫

Sq

F0vidS. (4) 

Upon subtracting these two equations, the following expression is 
obtained: 
∫

V

(σij − σs
ij)ε̇ijdV =

(
mp − mi

)
∫

Sq

F0vidS. (5) 

The normality rule and the convexity of the yield surface dictate that, 
at each location within the body: 

(σij − σs
ij)ε̇ij ≥ 0. (6) 

Eq. (5) therefore produces: 

(mp − mi)

∫

Sq

F0vidS ≥ 0. (7) 

Considering structural stability in optimization, the formulations of 
topology optimization for continuum structures based on elasto-plastic 
limit analysis is stated as follows: 

Minimize : C =
1
2
fTu = uTKu. (8.a) 

Subject to : V∗ −
∑N

i=1
Vixi = 0. (8.b) 

xi ∈ {0,1}. (8.c) 

λj ≥ λ > 0. (8.d) 

mi − mp ≤ 0. (8.e) 

Here, mean compliance, denoted as C, is quantified as the external 
work performed by applied loads or the total strain energy of the 
structure, u signifies the displacement vector, K denotes the global 
stiffness matrix, and f represents the vector of force. Variables like Vi, V∗, 
and xi contribute to the constraints, reflecting element volume, total 
structure volume, and binary design considerations, respectively. The 
constraint (mi − mp ≤ 0) emphasizes that the load multiplier mi must be 
statically acceptable and equal to or less than the plastic ultimate load 
multiplier mp corresponding to the entire domain. Moreover, Eq. (8.d) 
illustrates the constraint on buckling load factors, where λj represents 
the j − th buckling load factor associated with the provided load cases 
while λ represents the minimum buckling load factor value.
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For a comprehensive understanding of the BESO method, detailed 
descriptions and applied extensions are available in the existing litera
ture [47–49]. This section also provides insights into path-dependent 
nonlinear problems and the incremental technique used for solving 
them. Sensitivity numbers, crucial for optimization, are modified iter
atively. The procedure involves the extraction of a solid element, 
resulting in variations in overall strain energy or mean compliance, 
captured by the elemental sensitivity number (αe

i ) [50]: 

αe
i = ΔCi =

1
2
ui

TKiui. (9) 

Here, ui represents the nodal displacement, and Ki stands for the 
stiffness matrix of the i − th element. Initial values of zero are assigned to 
the sensitivity of void elements.

The following terms characterize nodal sensitivity values (αn
j ) for 

nodes: 

αn
j =

∑M

i=1
wiαe

j , (10) 

where the number of elements coupled to the j − th node is denoted as M, 
and the weight factor wi is expressed by: 

wi =
1

M − 1

⎛

⎜
⎜
⎜
⎝

1 −
rij

∑M

i=1
rij

⎞

⎟
⎟
⎟
⎠
, (11) 

where rij represents the distance between the j − th node and the center 
of the i − th element. Based on the aforementioned weight factor, the 
nodal sensitivity number is more significantly influenced by the 
elemental sensitivity number in proximity to the node. It will then be 
possible to convert the aforementioned nodal sensitivity values to 
averaged elemental sensitivity values. The process of conversion occurs 
via the projection of nodal sensitivity values onto the design domain.

To address issues related to checkerboard patterns in achieving 
optimal structures, a filter scheme is introduced [51]. The identification 
of nodes potentially affecting the sensitivity of the i − th element is 
facilitated by the utilization of rmin. The enhanced elemental sensitivity 
number is determined as follows: 

αi =

∑B

j=1
w(rij)αn

j

∑K

j=1
w(rij)

. (12) 

where B represents the quantity of nodes contained in the sub-domain 
Ωi, while the linear weight w(rij) factor is calculated as follows: 

w
(
rij
)
= rmin − rij. (13) 

To ensure stability in the evolutionary process, an averaging scheme 
is employed [52]: 

αi =
αk

i + αk− 1
i

2
. (14) 

where k represents the current iteration number, and subsequently, αk
i =

αi for the succeeding iteration.
The equation utilized to calculate the target volume Vk+1 for the 

subsequent iteration is: 

Vk+1 = Vk(1 ± ER). (15) 

The value of ER denotes the evolutionary ratio, the selection of which 
is contingent upon the particular problem at hand and the intended 
degree of precision. This ratio regulates the rate of change between 
optimization process generations and can fluctuate depending on the 
nature of the problem and the optimization algorithm employed [50].

Following the fulfillment of the volume constraint, subsequent iter
ations do not affect the structural volume, as indicated by the expres
sion: 

Vk+1 = V∗. (16) 

Then, the sorting of the elements is done based on their sensitivity 
numbers. Solid elements are deleted, while void elements are added 
according to the thresholds of their sensitivity values.

The convergence criteria that dictate the optimization procedure in 
BESO are defined in the subsequent manner: 

error =
|
∑N

i=1
(Ck− i+1 − Ck− N− i+1 )|

∑N

i=1
Ck− i+1

≤ τ. (17) 

In this context, the variable (k) denotes the current iteration number, 
(C) is the objective function, τ represents the allowable convergence, 
which ensures that the optimization process halts when further itera
tions provide negligible improvements in the objective function, and (N) 
is an integer value. Conventionally, the parameter N is set to 5, signi
fying that the observed change in mean compliance over the preceding 
10 iterations is deemed acceptably small [50].

2.3. Probabilistic topology optimization

Considering uncertainties, especially in load positions, is critical for 
practical applications where structural responses must accommodate 
variations. This becomes particularly challenging when aiming for de
signs that can withstand these uncertainties. Several studies have delved 
into the challenging domain of topology optimization under un
certainties, addressing the complexities introduced by variations in load 
positions and environmental conditions [53,54]. Building upon the 
groundwork laid by previous studies in topology optimization under 
uncertainties, we delve into a specific scenario depicted in Fig. 1, where 
the applied load’s position variability is a critical factor. As illustrated in 
the schematic diagram, the external load F is assigned to be applied in a 
manner where the position follows a random variable conforming to a 
Gaussian distribution characterized by a mean value μ and standard 
deviation σ. Considering that Γ represents the boundary of structural 
domain Ω. Thus, while the magnitude and direction of the external load 
F remain constant, it may adjust or move slightly within the boundary 
when applied precisely at a specific point.

The current technique of structural topology optimization should 
provide a layout design that is more reliable in order to eliminate or 
withstand variations in load positions. This will ensure that all applied 
forces are successfully transmitted to the restraint bounds. Evidently, 
this design optimization challenge is more challenging than the classic 
one with fixed load positions.

In reliability-based optimization, the probability of failure (Pf) and 
the reliability index (β) are critical indicators for assessing structural 

Fig. 1. Continuum structure under external force F applied at uncertain posi
tion within the boundary Γ.
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performance under uncertainty. The reliability index, β, is a measure of 
the safety margin between the mean performance and the failure 
threshold, and it is inversely related to Pf , the probability that the 
structure will fail under specified conditions. The relationship between 
these two indicators is expressed as: 

β = − Φ− 1(Pf) (18) 

where Φ− 1 is the inverse of the cumulative distribution function (CDF) 
of the standard normal distribution. A higher β value corresponds to a 
lower Pf , indicating a more reliable structure. By estimating the prob
ability of failure (Pf), the reliability index (β) is determined utilizing the 
Monte Carlo simulation procedure. The Monte Carlo simulation, as a 
general principle, solves problems by sampling realizations x from the 
probability function fX(x) of the random vector X, relying on the concept 
of randomization. As a result, it is possible to estimate the Pf by esti
mation of the ratio of points inside the failure domain to the number of 
the total produced points [55]. An estimated value of the Pf ranging 
from 10− 7to10− 4 necessitates N = 106to109 samples in order to ascer
tain the benefits (simplicity) of the Monte-Carlo simulation in order to 
derive the coefficient of variation ≈ 0.1. Our method as a whole does not 
require a substantial amount of computational time, notwithstanding 
the time-consuming simulations involved. Therefore, N = 109 samples 
have been chosen for our Monte Carlo simulation, we aimed to ensure a 
thorough exploration of the parameter space and achieve a reliable 
estimation of the coefficient of variation. This extensive sample size was 
chosen to maintain a robust representation of the underlying probability 
distribution [56].

Probabilistic approaches involve relevant parameters such as the 
position of the applied loads, material properties, imperfections, and Vf , 
in the form of random variables with mean and standard deviation. It is 
important to mention that this research adopts the Gaussian distribution 
model, also known as the normal distribution, which has been selected 
for its straightforwardness. It enables the calculation of the entire dis
tribution using only two parameters: the mean and standard deviation. 
Furthermore, this distribution model is particularly well-suited for our 
study due to its widespread use in engineering and scientific contexts. 
Following this, by developing the β, it is possible to enforce the reli
ability constraint, which is related the Vf parameter as follows: 

βtarget − βcalc ≤ 0. (19) 

To calculate βtarget and βcalc: 

βtarget = − Φ− 1( Pf,target
)
. (20) 

βcalc = − Φ− 1( Pf,calc
)
. (21) 

By incorporating structural reliability indicators directly into the 
optimization formulation, uncertainties in the input variables are 
accounted for, resulting in designs that are reliable under probabilistic 
conditions. Therefore, the optimization problem is formulated as 
follows: 

Minimize : C =
1
2
fTu = uTKu. (22.a) 

Subject to : V∗ −
∑N

i=1
Vixi = 0 (22.b) 

xi ∈ {0,1} (22.c) 

λj ≥ λ > 0 (22.d) 

mi − mp ≤ 0 (22.e) 

βtarget − βcalc ≤ 0 (22.f) 

Eqs. (22.a), (22.b), (22.c), (22.d), and (22.e) serve the same purpose 

as Eqs. (8.a), (8.b), (8.c), (8.d), and (8.e) respectively. Additionally, Eq. 
(22.f) represents the reliability constraint related to Vf .

2.4. The proposed algorithm utilizing BESO method

The BESO approach, renowned for its efficacy, shows itself to be a 
pragmatic option for topology optimization. The algorithm’s overall 
performance is greatly enhanced by its distinctive capability to optimize 
according to sensitivity values. Subsequent to a succinct summary of the 
mathematical attributes of the novel problem, the algorithmic proced
ure illustrated in Fig. 2 can be utilized to formulate designs that are both 
deterministic and probabilistic.

The finite element simulations were conducted using ABAQUS, with 
MATLAB employed to handle the optimization process and data inter
action. MATLAB calls the ABAQUS solver through system commands, 
utilizing an input file that contains the FE model’s geometry, boundary 
conditions, and load cases. After running the simulation in ABAQUS, the 
output data, stored in an output database file, is processed by MATLAB. 
Custom MATLAB scripts were developed to extract relevant response 
variables such as stresses, displacements, and reaction forces from the 
ABAQUS output database. These values are then fed back into the 
optimization loop to adjust the parameters for subsequent simulations.

The flow chart can be concluded by the following steps: 

1. Establishing BESO parameters.
2. Specifying probabilistic parameters for relevant random variables.
3. Model specification, encompassing load conditions and boundary 

parameters.
4. Implementing finite element simulation: performing linear buckling 

analysis, followed by incorporating model imperfections.
5. Calculating nodal and elemental sensitivities, followed by the 

application of enhancement schemes.
6. Specifying the βtarget for probabilistic designs or the volume required 

for subsequent iterations, respectively, in the case of deterministic 
designs.

7. Estimating Pf and βtarget values, by choosing N = 109 samples for our 
Monte Carlo simulation to ensure a comprehensive exploration of the 
parameter space and to achieve a reliable estimation of the coeffi
cient of variation.

8. Iterate through steps 3–7 until the defined constraints are met and 
convergence criteria, as specified in Eq. (17), are satisfied.

3. Numerical examples

This section provides an analysis of three numerical examples to 
demonstrate the effectiveness of the proposed reliability-based GMNA 
and GMNIA optimization algorithm which considers the position of the 
applied load, material properties, Vf , and geometrical imperfections as 
random variables following normal distribution. The first two examples 
are slender cantilever and slender shell problems which are considered 
as benchmark problems that have been done by Movahedi et al. [41], 
while the third example is an L-shape beam problem.

The Monte Carlo simulation is employed to model the probabilistic 
nature of the problem. The presented method illustrates the suitability of 
the provided algorithm in obtaining reliable results with relative ease.

Stimulating imperfections with linear buckling modes allows for the 
consideration of both local and global buckling effects. The choice of 
buckling modes during the optimization procedure can have a sub
stantial impact. When a structure reaches its critical load, it exhibits 
distinct deformation patterns known as buckling modes. The optimiza
tion procedure may struggle to converge towards an optimal solution if 
the selected buckling modes do not accurately represent the structural 
behavior.

In this study, the finite element analysis was conducted using ABA
QUS software, employing the (S4) elements for mesh discretization. The 
(S4) elements are a type of quadrilateral plane stress element, commonly 
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used for modeling thin structures subjected to in-plane loading. These 
elements are characterized by their capability to accurately capture 
bending and membrane effects, making them well-suited for applica
tions in structural and mechanical engineering. The (S4) elements offer a 
balance between computational efficiency and accuracy, making them a 
suitable choice for the numerical simulations for the purpose of the 
current research. Additionally, we examine the impact of mesh size 
variations on the sensitivity of our optimization outcomes, given the 
pivotal significance of this parameter in determining the precision, 
convergence, and reliability of our simulations. Therefore, each instance 
examined in our research includes justifications for the selected element 
mesh size.

In the context of the GMNA and GMNIA models, to analyze the 
nonlinear stress-strain characteristics of aluminum alloy, the Ramberg- 
Osgood formulation is utilized, as suggested by Yun et al. [57]. This 
formulation is encapsulated in Eqs. (23–24): 

ε =
σ
E
+ 0.002

(
σ
fy

)n

forσ ≤ fy (23) 

ε = 0.002+
fy

E
+

σ − fy

Ey
+ εu

(
σ − fy

fu − fy

)m

forfy < σ ≤ fu (24) 

Here, σ denotes stress, and ε signifies strain. The parameters include 
yield (0.2 % proof) stress ( fy), ultimate stress (fu), Young’s modulus (E), 
strain hardening exponents (n and m, representing the first and second 
values, respectively), and ultimate strain (εu). The tangent modulus (Ey)

at the yield stress is defined by: 

Ey =
E

1 + 0.002n E
fy

(25) 

Within the scope of this paper, we focus on a specific curve of stress 
and strain for a grade of aluminum alloy (6061 − T6) in the context of 
numerical examples. The material properties are set as follows [58]:

E = 70,200N/mm2, fu = 222N/mm2, n = 15, and fy = 192N/mm2.

The values for εu and m are determined using Eqs. (26) and (27), 
respectively. Furthermore, to introduce an element of reliability, we 
depart from deterministic and treat material property parameters as 
random variables, incorporating them as mean values with standard 
deviation value of 5% into the analysis. 

εu = 1 −
fy

fu
(26) 

m = 1+3.5
fy

fu
(27) 

3.1. Example #1: slender cantilever

The study commences by illustrating a numerical example of topol
ogy optimization. In this example, a shell cantilever is considered with 
fixed boundary conditions at the left end, ensuring that no displacement 
or rotation is allowed at that point. The optimization employs the 
GMNIA approach, incorporating the BESO technique for both deter
ministic and probabilistic designs.

The results of this example are validated according to Movahedi et al. 
[41], then evaluating the outcomes of the suggested algorithm by taken 

Fig. 2. The process of the proposed algorithm.
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into account the additional random variable which is related to the 
uncertainty of the position of the applied load. The thickness of the 
considered slender cantilever is 25 mm. Fig. 3 illustrates the design 
domain of the considered problem. Furthermore, for the finite element 
analysis, a detailed mesh division is applied to the design domain. The 
thickness of the slender cantilever is 25 mm, and the dimensions of the 
cantilever are 1000 mm in length and 250 mm in width. The design 
domain is discretized into 10,000 elements of S4 shell elements, which 
are chosen for their ability to accurately model the bending and twisting 
behaviors of shell structures. A mesh element size of 5 mm is utilized, 
ensuring a refined representation of the geometry and accurate results in 
the optimization process.

The beam’s initial specified load is equal to F0 = 20kN. The load 
multiplier under consideration is mi = 2, whereas the load multiplier for 
the plastic limit is mp = 4.05. As shown in Fig. 3, the acting force F =
miF0 = 40kN is therefore deemed to be responsible for the plastic stress. 
This force is spread within the elements by means of plastic analysis. 
Taking into account that the ultimate load is Fult = mpF0 = 81 kN.

Furthermore, loads are distributed across multiple elements or nodes in 
order to prevent local yielding.

The following BESO parameters are taken into account for this 
problem: ER = 1%, a prescribed maximum volume addition ratio 
(ARmax = 1%), rmin = 20 mm and τ = 0.5%. The Vf is 62%. 
Furthermore, the GMNIA algorithm takes into account the imperfection 
value as L/1000 for the initial linear buckling mode and b/250 for the 
second mode. The eigenmodes themselves are normalized such that the 
maximum absolute value of the mode shape is set to unity. The Monte- 
Carlo technique is employed here. For the purpose of reliability assess
ment, the position of the applied load, geometric imperfection, material 
properties, and Vf are considered stochastic variables to capture the 
probabilistic nature of the analysis. Furthermore, Fig. 4 shows the 
considered normal distribution of the uncertain load position. Also, N =
109. The initial two eigenmodes depicted in the benchmark problem are 
shown in Fig. 5. Table 1 shows the additional considered random 
variables.

Table 2 displays a comparison of the deterministic design findings for 
optimized layouts and mean stresses of the model between GMNA and 
GMNIA. The insights derived from the data presented in Table 2
demonstrate that when considering deterministic designs, the mean 
stress values for GMNIA are greater than those for GMNA. Specifically,
the mean stress is elevated by 2.52% from 67.70 MPa in the case of 
GMNA to 69.45 MPa in the case of GMNIA.

Based on the final optimized forms of the two scenarios (GMNA and 
GMNIA), it can be concluded that there is little change in the optimum 
topological shapes when considering Vf = 0.62.

The results of incorporating reliability-based topology optimization 
are presented in Fig. 6 by considering βtarget = 3.14, Pf,target = 8 • 10− 4. 
Additionally, it is important to highlight that this comparison in
corporates the consideration of uncertain load positions, building upon 
the work conducted by Movahedi et al. [41]. In the deterministic 
framework, the design process relies on the assumption of a fixed, pre
cisely known load application point. This simplification, while conve
nient, introduces a trade-off in the design. On one hand, it tends to lead 
to conservative designs as it does not explicitly account for potential 

variations in load position due to uncertainties, inaccuracies, or 
real-world conditions. On the other hand, the designs may also be more 
sensitive to variations that are not taken into account. This dual nature 
of the simplification highlights the complexity in balancing conserva
tism and sensitivity in the design process. Conversely, the 
reliability-based approach, as employed in our study, adopts a more 
realistic viewpoint by acknowledging that the load position is subject to 
variability and uncertainty, allowing for a more comprehensive assess
ment of structural performance. As it can be seen from the results from 
Fig. 6, The resulting optimized layouts under the reliability-based 
framework exhibit variations that are a direct consequence of this 
broader perspective.

The results in Table 3 indicates another comparison that is made 
based on the values of the mean stress of the optimum layout resulting 
from the proposed algorithm in addition to the resulted topologies 
which were done according to Movahedi et al. [41]. The results of the 
proposed algorithm reveal a 3.79% increase in mean stress, rising from 
65.90MPa in the case of GMNA to 68.40MPa in the case of GMNIA. In 
essence, when accounting for stochastic variables such as material 
properties, applied load position, geometric imperfections, and Vf , the 
disparities between the outcomes of GMNA and GMNIA scenarios 
become more pronounced, surpassing the differences observed in 
deterministic design results. This increment in mean stress signifies the 
substantial influence of incorporation of the previously mentioned 
random variables into the optimization problem. The higher mean stress 
observed with the proposed GMNIA method (68.40 MPa) compared to 
the results of Movahedi et al. [41] for GMNIA (67.88 MPa), it is essential 
to emphasize the advantages of the GMNIA approach within a proba
bilistic framework. While both methods account for uncertainties, the 
increase in mean stress signifies a more effectively optimized design that 
strategically allocates material to withstand variations in load positions 
and material properties. This optimization leads to layouts that exhibit 
enhanced structural resilience and material efficiency, allowing the 
design to better accommodate real-world operational conditions. 
Furthermore, as illustrated in Fig. 6, the higher stress values can be 
interpreted as a result of strategically placing material in regions where 
it can best resist applied forces, optimizing material usage while 
ensuring the structure’s integrity under operational conditions.

3.2. Example #2: thin shell problem

The second numerical example focuses on the optimization of a thin 
shell. The shell is anchored at both extremities’ centers, and the 
boundary conditions are set to prevent any movement or rotation at 
these anchor points. Also, as mentioned earlier in previous examples, 
Monte-Carlo simulation is used. For the purpose of reliability assess
ment, material properties, the position of the applied load, geometric 
imperfection, and Vf are considered stochastic variables to capture the 
probabilistic nature of the analysis.

For the finite element analysis, the design domain is discretized into 
6400 S4 shell elements. These elements are selected due to their ability 
to accurately capture the bending, shear, and membrane behavior 
inherent in thin shell structures. The S4 element is a four-node, shell Fig. 3. Slender cantilever problem.

Fig. 4. Normal distribution of the loading position.
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finite element that allows for the representation of complex geometries 
while maintaining computational efficiency. The mesh is generated with 
a size of 5 mm, which is a critical parameter for ensuring sufficient detail 
in the numerical analysis. This element size balances computational cost 
and solution accuracy, allowing for precise modeling of stress distribu
tion and deformation patterns under applied loads.

Fig. 7 illustrates the design domain of the considered shell. 
Furthermore, the length of the considered example is 800 mm and the 
width is 200 mm. The shell’s initial specified load is equal to F0 = 15kN. 

Fig. 5. Slender cantilever’s linear buckling modes: (a) first mode (b) second mode.

Table 1 
Considered random variables.

Parameter Mean value COV

Vf 0.62 5.00%
L/1000 (mm) 1.00
E(MPa) 70,200

Table 2 
Optimization results under deterministic conditions for the slender cantilever.

Fig. 6. The resulted optimal topologies in the case of βtarget = 3.14: (a) GMNA [41] (b) GMNIA [41] (c) GMNA – proposed algorithm (d) GMNIA – Pro
posed algorithm.
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The load multiplier under consideration is mi = 4, whereas the load 
multiplier for the plastic limit is mp = 4.05. As shown in Fig. 3, the 
acting force F = miF0 = 60kN is therefore deemed to be responsible for 
the plastic stress. This force is spread within the elements by means of 
plastic analysis. Taking into account that the ultimate load is Fult = mpF0 

= 60.75 kN. The following BESO parameters are taken into account for 
this problem: ER = 1%, ARmax = 1%, rmin = 20mm and τ = 0.5%. 
The considered value of Vf is 62%. Furthermore, the GMNIA algorithm 
takes into account the imperfection value as L

1000 for the initial linear 
buckling mode and b

300 for the second mode. The Monte-Carlo technique 
is employed here. For the purpose of reliability assessment, material 
properties, the position of the applied load, geometric imperfection, and 
Vf are considered stochastic variables to capture the probabilistic nature 
of the analysis. Furthermore, Fig. 4 shows the considered normal dis
tribution of the uncertain load position. N is considered 109. The initial 
two eigenmodes depicted in the benchmark problem are shown in Fig. 8. 
In Table 4, the additional random variables under consideration can be 
found.

As described in Section (3.1), the first two eigenmodes are consid
ered for both global and local buckling in the linear buckling analysis. 

These two modes of the illustrated example are depicted in Fig. 9.
Table 5 displays a comparison of the deterministic design findings for 

optimized layouts and mean stresses of the model between GMNA and 
GMNIA. The findings from Table 3 demonstrate that when considering 
deterministic designs, the mean stress values for GMNIA are greater than 
those for GMNA. Specifically, the mean stress is elevated by 1.94% from 
77.63 MPa in the case of GMNA to 79.14 MPa in the case of GMNIA. 
Based on the final optimized forms of the two instances (GMNA and 
GMNIA), it can be concluded that there are observable changes in the 
optimum topological shapes when considering Vf = 0.60.

The results of incorporating reliability-based topology optimization 
are presented in Fig. 10 by considering βtarget = 3.18, Pf,target = 9 • 10− 4. 
It should be noted that in addition to what was previously done by 
Movahedi et al. [41], the results of considering uncertain load position is 
considered in this comparison also. In the deterministic framework, the 
design process hinges on the assumption of a fixed, precisely known load 
application point. This simplification, while convenient, tends to lead to 
conservative designs, as it does not account for potential variations in 
load position due to uncertainties, inaccuracies, or real-world condi
tions. Conversely, the reliability-based approach, which has employed, 
adopts a more realistic viewpoint by acknowledging that the load po
sition is subject to variability and uncertainty. As it can be seen from the 
results from Fig. 10, The resulting optimized layouts under the 
reliability-based framework exhibit variations that are a direct conse
quence of this broader perspective.

The results in Table 6 indicates another comparison that is made 
based on the values of the mean stress of the optimum layout resulting 
from the proposed algorithm in addition to the resulted topologies 
which were done according to Movahedi et al. [41]. It can be noticed 
that the results of the proposed algorithm indicate that the mean stress is 
increased by 8.68% from 72.40 MPa in case of GMNA to 78.69 MPa in 
case of GMNIA. In other words when material properties, the position of 
the applied load, geometric imperfection, and Vf are considered sto
chastic variables, The differences in the outcomes of both GMNA and 
GMNIA scenarios are more substantial when compared to the deter
ministic design results. This increment in mean stress signifies the sub
stantial influence of incorporation of the previously mentioned random 
variables into the optimization problem.

3.3. Example #3: L-shaped beam

The third numerical example addresses a topology optimization 
problem for an L-shaped beam. The beam is fixed at the top end, 
imposing constraints to restrict any displacement or rotation at that 
specific location. The results of this example in the case of deterministic 
and probabilistic GMNA are validated according to Movahedi et al. [59], 
then the results of the proposed algorithm of GMNA and GMNIA by 
considering additional random variable which is related to the uncer
tainty of the position of the applied load is discussed.

Fig. 11 depicts the design domain of the considered problem, which 
is discretized into 3900 S4 shell elements, that are particularly well- 
suited for modeling the L-shaped beam due to their capacity to accu
rately represent complex geometries and capture bending and shear 
effects. The S4 elements are four-node shell elements that facilitate 
efficient computations while ensuring high fidelity in the analysis. A 
5 mm mesh size is selected to strike a balance between computational 
efficiency and solution accuracy. This size allows for a detailed repre
sentation of the stress distribution and deformation patterns, critical for 

Table 3 
The obtained values of mean stress of the slender cantilever model.

Algorithm Model Mean stress (MPa)

Movahedi et al. [41] GMNA 58.50
GMNIA 67.88

The proposed work GMNA 65.90
GMNIA 68.40

Fig. 7. Thin shell problem.

Fig. 8. The considered normal distribution of the loading position.

Table 4 
Considered random variables.

Parameter Mean value COV

Vf 0.62 5.00%
L/1000 (mm) 0.80
E(MPa) 70,200
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an accurate optimization process. The uniformity and quality of the 
mesh are essential, particularly in regions where stress concentrations 
are expected, such as at the constraints and load application points. 
Furthermore, the length of the considered example is 1000 mm and the 
width is 250 mm. The initial magnitude of the applied load on the beam 
is equal to F0 = 4kN while yield stress equals σy = 110MPa and the 
Poisson’s ratio was considered to be 0.3 for the elasto-plastic analysis. 
The plastic limit load multiplier mp = 4.25, for the whole design 
domain. For the whole design domain, the plastic ultimate load 

Fig. 9. Thin shell’s linear buckling modes: (a) first mode (b) second mode.

Table 5 
Optimization results under deterministic conditions for the thin shell.

Fig. 10. The resulted optimal topologies in the case of βtarget = 3.18: (a) GMNA – without considering uncertain load position [41] (b) GMNIA – without considering 
uncertain load position [41] (c) GMNA – proposed algorithm (d) GMNIA – Proposed algorithm.

Table 6 
The obtained values of mean stress of the slender cantilever model.

Algorithm Model Mean stress (MPa)

Movahedi et al. [41] GMNA 73.92
GMNIA 78.54

The proposed work GMNA 72.40
GMNIA 78.69
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multiplier mp = 4.25. Hence, the operating force under consideration 
that is accountable for the plastic stresses is F = miF0 = 12kN, as 
demonstrated by the application of plastic analysis, which distributes it 
among the elements as it is shown in Fig. 11. The ultimate force is Fult =

mpF0 = 17 kN. Thickness of 10 mm are assumed. The BESO parameters 
taken into consideration for this problem are as following: ARmax =

1%, τ = 0.1%, rmin = 18 mm, and ER = 1%. Also, the value that is 
being considered for Vf is 40%.

Moreover, the GMNIA algorithm takes into account the imperfection 
value as L/1000 for the initial linear buckling mode. The Monte-Carlo 
technique is employed here. For the purpose of reliability assessment, 
material properties, the position of the applied load, geometric imper
fection, and Vf are considered stochastic variables to capture the prob
abilistic nature of the analysis. Furthermore, Fig. 12 illustrates the 
chosen distribution for the uncertain load position, modeled as a trun
cated normal distribution with constraints on the left side, taking into 
consideration that N = 109. The initial eigenmode depicted in the 
problem is shown in Fig. 13. The random variables considered addi
tionally are presented in Table 7.

The considered eigenmode in the linear buckling step of the L-shaped 
problem is illustrated in Fig. 13. Table 5 presents a comparison between 
deterministic and probabilistic design results for the GMNA of the 
optimized shapes. The findings in Table 8 indicate significant differences 
in the resulting optimized shapes between deterministic and probabi
listic designs. Additionally, the region containing the yielded elements 
in the optimal shape has been significantly reduced in the case of 

probabilistic designs compared to that in deterministic designs.
The results of incorporating reliability-based topology optimization 

by considering GMNA and GMNIA are presented in Fig. 14 by consid
ering βtarget = 3.79. Taking into consideration that the load position, Vf ,

geometrical imperfections and material properties are assumed to be 
random variables following normal distribution.

In the deterministic framework, the design process hinges on the 
assumption of a fixed, precisely known load application point. This 
simplification, while convenient, tends to lead to conservative designs, 
as it does not account for potential variations in load position due to 
uncertainties, inaccuracies, or real-world conditions. Conversely, the 
reliability-based approach, which has employed, adopts a more realistic 
viewpoint by acknowledging that the load position is subject to vari
ability and uncertainty. As it can be seen from the results from Fig. 14, 
The resulting optimized layouts under the reliability-based framework 
exhibit variations that are a direct consequence of this broader 
perspective.

The results in Table 9 indicates another comparison that is made 
based on the values of the mean stress of the optimum layout resulting 
from the proposed algorithm. It can be noticed that the results of the 
proposed algorithm indicate that the mean stress is increased by 8.27% 
from 47.40 MPa in case of GMNA to 51.32 MPa in case of GMNIA. Put 
simply, the disparities between the outcomes of the two scenarios 
(GMNA and GMNIA) become more pronounced when you take into 
account material properties, uncertain load position, Vf , and initial 
geometric imperfection random variables. The observed increase in 
average stress indicates that the inclusion of the aforementioned sto
chastic variables in the optimization problem had a significant impact.

3.4. Results overview and computational efficiency

The results uncovered in this research, which clarify the discrep
ancies between probabilistic and deterministic structural designs, have 
significant implications for the discipline of structural engineering. By 
analyzing the distinctions between probabilistic and deterministic de
signs in the contexts of a thin shell, slender cantilever, and L-shaped 
beam, the research highlights the profound effect that implementing a 
reliability-based methodology can have. Adapted to load position un
certainties, material property uncertainties, and geometric imperfec
tions, the algorithm represents a paradigm shift in topology 
optimization.

Engineers and designers in pursuit of reliable and practical optimized 
structures will find the presented algorithm to be a potent instrument 
due to its adaptability to a wide variety of structural configurations.

Fig. 11. L-shaped problem.

Fig. 12. The considered truncated normal distribution of the loading position.

Fig. 13. Linear buckling mode for the L-shaped beam.

Table 7 
Considered random variables.

Parameter Mean value COV

Vf 0.40 5.00%
L/1000 (mm) 0.40
E(MPa) 70,200
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Although the algorithm demonstrates remarkable effectiveness in 
various structural configurations, it is crucial to moderately recognize its 
limitations. Future research efforts should prioritize the refinement of 
the algorithm’s complexities, which acknowledges the necessity for a 
more thorough discourse on its limitations.

Since computational efficiency criteria play a significant role in the 
optimization process, it is noteworthy to mention that the topology 
optimization was executed on a personal computer equipped with an 
Intel® Core™ i7–7700HQ @2.80 GHz processor and 16.0 GB RAM. The 
CPU time required for each model in the proposed reliability-based to
pology optimization method is detailed in Table 10.

4. Conclusions

In this paper, a novel reliability-based structural topology optimi
zation algorithm was developed, integrating the concepts of perfectly 
structures considering geometrically and materially nonlinear analysis 
(GMNA) and imperfectly structures considering geometrically and 
materially nonlinear analysis (GMNIA). The algorithm extends its ca
pabilities by considering the position of the applied load, treating it as a 
stochastic variable within the framework of probabilistic analysis. Our 
algorithm’s effectiveness is showcased across a diverse range of struc
tural configurations, including slender cantilevers, shells, and L-shaped 
beams. This versatility underscores its potential applicability to a broad 
spectrum of engineering designs. Furthermore, the consideration of Vf in 
our algorithm not only impacts structural efficiency but also holds eco- 
friendly implications. The optimization process inherently promotes 
resource conservation by minimizing material usage while maintaining 
structural integrity.

The essential findings constituting the conclusion of this study 
include: 

• The incorporation of uncertain load positions and other random 
variables reveals substantial changes in optimized shapes and mean 
stresses. Therefore, it can be said that sensitivity to uncertainties is 
notably highlighted in the probabilistic design, with variations 
becoming more pronounced compared to deterministic design.

• The introduction of reliability-based design, considering random 
variables such as position of the applied load, Vf , geometric imper
fections, and material properties, results in remarkable differences 
between GMNA and GMNIA outcomes.

• This approach offers practical and robust solutions for structural 
topology optimization, surpassing the conservatism observed in 
deterministic designs.

The outcomes of the proposed algorithm highlight the significance of 
considering uncertainties in topology optimization. The deterministic 
designs, while useful, tend to be conservative. In contrast, the reliability- 

Table 8 
Optimized results of L-shaped beam.

Fig. 14. The resulted optimal topologies in the case of βtarget = 3.79, Pf,target =

7 • 10− 5. : (a) GMNA – without considering uncertain load position (b) GMNIA 
- without considering uncertain load position (c) GMNA – proposed algorithm 
(d) GMNIA – Proposed algorithm.

Table 9 
The obtained values of mean stress of the L-shaped problem.

Algorithm Model Mean stress (MPa)

Without considering uncertain load position GMNA 48.20
GMNIA 50.47

The proposed work GMNA 47.40
GMNIA 51.32

Table 10 
Computation time required.

TO problem CPU time for the whole optimization process (second)

GMNA GMNIA

Slender cantilever problem 7560 7740
Thin shell problem 3840 4020
L-shaped beam problem 5400 5700
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based approach, with its consideration of uncertain load positions and 
other variables, offers practical and robust solutions for structural to
pology optimization. The presented algorithm demonstrates its versa
tility across different structural configurations, making it a valuable tool 
for engineers and designers seeking efficient and reliable optimized 
structures. Furthermore, the interdisciplinary nature of our research 
positions the reliability-based algorithm as a valuable asset not only in 
structural engineering but also in related fields. Its adaptability could 
extend to disciplines like aerospace, automotive, and beyond. While this 
study successfully introduced a reliability-based algorithm for structural 
topology optimization, future research could delve into refining and 
expanding the algorithm’s capabilities. Further investigations may 
include the consideration of additional uncertainties, optimization 
under dynamic loads, and the application of the algorithm to more 
complex structures. Future research could include cross-validation 
through industry case studies, allowing the algorithm’s real-world per
formance to be tested in diverse engineering applications. This step 
would further validate its reliability and effectiveness in practical set
tings. Furthermore, future research could focus on extending our 
methodology to accommodate uncertainties in Dirichlet boundary 
conditions, such as uncertain displacement values or fixation positions.
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