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ABSTRACT Behavioral factors play a crucial role in the emergence, spread, and containment of human
diseases, significantly influencing the effectiveness of intervention measures. However, the integration
of such factors into epidemic models is still limited, hindering the possibility of understanding how to
optimally design interventions to mitigate epidemic outbreaks in real life. This paper aims to fill in this
gap. In particular, we propose a parsimonious model that couples an epidemic compartmental model with a
population game that captures the behavioral response, obtaining a nonlinear system of ordinary differential
equations. Grounded on prevalence-elastic behavior —the empirically proven assumption that the disease
prevalence affects the adherence to self-protective behavior— we consider a nontrivial negative feedback
between contagions and adoption of self-protective behavior. We characterize the asymptotic behavior of the
system, establishing conditions under which the disease is quickly eradicated or a global convergence to an
endemic equilibrium is attained. In addition, we elucidate how the behavioral response affects the endemic
equilibrium. Then, we formulate and solve an optimal control problem to plan cost-effective interventions
for the model, accounting for their healthcare and social-economical implications. Numerical simulations
on a case study calibrated on sexually transmitted diseases demonstrate and validate our findings.

INDEX TERMS epidemics, nonlinear control systems, optimal control, game-theory

I. INTRODUCTION
The spread of epidemic diseases has always been one of the
most severe threats to mankind. Hence, the design of efficient
plans and interventions for the containment of epidemic
diseases is a task of paramount importance in our societies.
However, designing such plans is extremely challenging
from several perspectives, ranging from healthcare to the so-
cial and economic impact of the interventions. In particular,
in most cases, only a set limited amount of resources is
available to plan interventions. Hence, the study and design
of optimal policies is a crucial aspect. In recent decades, the
development of mathematical models of epidemic spreading
has provided new tools to predict the evolution of epidemic
outbreaks and test what / if scenarios [1]–[5]. In particular,
the growing interest in epidemic modeling within the systems
and controls community has triggered the development of
novel model-informed control strategies [6]–[17], to help
assist public health authorities in their complex decisions
concerning the planning of intervention policies.

§Current address: Sorbonne Université, INSERM, Pierre Louis Institute
of Epidemiology and Public Health (IPLESP), 75013 Paris, France

Recent epidemic outbreaks, such as Ebola in West Africa
and the global COVID-19 pandemic, have highlighted human
behavior and individual responses as fundamental factors in
shaping the course of an outbreak. Understanding human
behavior is also crucial for designing effective strategies
to control infectious diseases [18]. In fact, especially when
pharmaceutical interventions and treatments are insufficient
or impractical, the collective adoption of self-protective
behaviors becomes essential for controlling outbreaks [19].

In this context, there is an urgent need for epidemic
models that integrate social and behavioral dynamics, cap-
turing the complex interplay between disease evolution and
population behavior [19]. In recent years, the integration
of behavioral responses into mathematical models for epi-
demics has gained considerable attraction within the scien-
tific community [20], [21], addressing the issue from various
perspectives. Awareness-based models examine the spread
of the disease in conjunction with information and concern
about it [22]–[25]. Other approaches explicitly model human
behavior through additional states [26], or use co-evolving
dynamics based on opinion dynamics [27]. Game-theoretic
frameworks consider factors like social influence, perceived
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infection risk, accumulating fatigue, social and economic
costs, bounded rationality, and government-mandated inter-
ventions [28]–[33]. Based on these approaches, some control
methods have been developed to design intervention policies
with the final goal of reducing the number of infections [34],
[35]. Despite these efforts, many key questions related to the
control of such mathematical frameworks remain mostly un-
explored, in particular concerning the design of intervention
policies that seek to optimize both the healthcare and social-
economical impact of the control.

Here, our objective is to advance the growing body of
research in epidemic–behavioral models [28]–[35], by pro-
viding insights into optimal control policies for these types of
models. Given the limited knowledge and lack of consensus
on the mechanisms governing human behavior, we develop a
parsimonious, yet general, model that captures the feedback
loop between the disease spreading and individual choices. In
particular, we pair a susceptible–infected—-susceptible (SIS)
compartmental epidemic model [3] with a game-theoretic
mechanism [36]. The former emulates the diffusion of the
pathogen within the population, while the latter captures the
behavioral responses to the spreading of the epidemic.

The game-theoretic approach effectively captures the com-
plexity of collective human behavior considering that indi-
viduals make decisions to maximize their utility function.
We based such a utility function on the idea of “prevalence
elastic behavior” [37], where disease prevalence influences
adherence to self-protective behavior. Simply put, higher
infection rates make self-protection more appealing, while
lower rates reduce the incentive. For instance, during the
AIDS outbreak in the US, an increased demand for condoms
was registered [38]. The coupling between epidemic and
behavioral creates a feedback between contagion and adop-
tion of self-protective behavior. This feedback can make the
implementation of policies nontrivial: favoring the adoption
of self-protective behavior leads to less new infections,
which, in turn, decreases the incentives for adopting self-
protective behavior, increasing new infections.

Technically, we formulate the model as a planar system
of coupled nonlinear ordinary differential equations (ODEs).
Then, our main contribution is threefold. First, through the
analysis of such a system, we characterize its asymptotic
behavior. In particular, we establish an epidemic threshold:
if the contagion rate is below such a threshold, the system
converges to a disease-free equilibrium, i.e., the epidemic
disease is quickly eradicated. Above such a threshold, the
system converges to an endemic equilibrium. Different en-
demic equilibria are possible, and the model parameters
determine which of these is globally asymptotically stable.
Second, we incorporate in the model an explicit control
action in terms of an input that represents the incentives (or
disincentives) implemented by public health authorities to fa-
vor the adoption of self-protective behavior. For instance, for
STIs, such a term can capture free condom distributions [39]
or the implementation of awareness campaigns [40]. We use

the model to design the control input to optimally trade-off
between the healthcare impact of the disease and the social
and economical impact of the interventions while steering
the system to a desired state. We establish a method to
design such an optimal policy by leveraging the Pontryagin’s
Maximum Principle [41], [42]. Third, using the developed
framework, we validate our approach in a case study inspired
by the spread of sexually transmitted infections (STIs). In
summary, our method provide novel control-theoretic insight
into the spread of epidemic disease and the possibility to
steer a population’s behavioral response to mitigate the
outbreak. In particular it demonstrates that, even in parsimo-
nious models, nontrivial strategies may emerge as optimal,
when considering the interdependence between epidemic
spreading and human behavioral response.

We organize the rest of the article as follows. Section II
introduces the epidemic–behavioral model, which is studied
in Section III. In Section IV, we formulate and analyze the
optimal control of the model. In Section V, we discuss a case
study on STIs. Section VI concludes the paper and outlines
avenues for future research.

II. MODEL
We consider the spread of an infectious disease in a popula-
tion of constant size. At each time t ≥ 0, the state of the pop-
ulation is described by the fraction of infected individuals,
denoted by I(t) ∈ [0, 1], and the fraction of individuals who
adopt self-protective behavior, denoted by P (t) ∈ [0, 1] —
the fractions of susceptible individuals and individuals who
do not adopt self-protective behavior are equal to 1 − I(t)
and 1−P (t), respectively. We define an epidemic–behavioral
model by coupling the dynamics of the two state variables
I(t) and P (t). Specifically, the adoption of self-protective
behavior influences the disease progression by affecting the
infection rate; while, following the assumption of prevalence-
elastic behavior [37], the adoption of self-protective behavior
depends on the fraction of infected individuals.

A. EPIDEMIC DYNAMICS
We build our dynamics on a deterministic population SIS
model [3], which describes the evolution of the fraction of
infected individuals I(t) as governed by the following ODE:

İ = δ(1− I)I − γI, (1)

where δ ≥ 0 is the infection rate and γ > 0 is the
recovery rate. Briefly, the rate of change of the fraction of
infected individuals in Eq. (1) comprises two terms. The
first one is a positive contribution that accounts for new
infections and is proportional to the infection rate δ and
to the interaction rate between susceptible individuals and
infected ones, which is given by the product (1 − I)I .
The second term, which accounts for recovered individuals,
is negative and is proportional to the fraction of infected
individuals who recover, according to the recovery rate.
More details of the formulation of the SIS model can be
found in recent survey papers [3], [5]. Without any loss in
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generality, we can re-scale the time variable to set γ = 1,
thus reducing the parameters of the epidemic model to just
the (normalized) infection rate β > 0 (obtained as β = δ/γ),
which coincides with the well-known concept of the basic
reproduction number of the disease [5].

We model the adoption of self-protective behavior through
a modification of the infection rate. Hence, we rewrite β as
a time-varying function that depends on time through the
fraction of adopters of self-protective behavior, i.e., β(t) =
β(P (t)), obtaining the following dynamics:

İ = β(P )(1− I)I − γI. (2)

B. BEHAVIORAL DYNAMICS
We formulate the individuals’ choice on whether to adopt
self-protective behavior or not as a population game [36].
Such a game is characterized by two strategies, S = {p, u},
where p and u represent the choice of adopting self-
protective behavior and not adopting them, respectively.

Each strategy is associated with a utility function πp(t)
and πu(t), respectively, which represents the reward that
a generic individual would receive by choosing strategy p
or u at time t, respectively. Here, we assume that these
utility functions depend on the current number of infected
individuals in the population, i.e., πp(t) = πp(I(t)) and
πu(t) = πu(I(t)). Note that, unlike classical population
games, here we are assuming that the utility functions depend
on the state of the population through an external variable
(I(t)), rather than through the behavioral variable P (t).

As time unfolds, individuals have the opportunity to
revise their strategies to adhere to more successful ones
implemented by some of their peers. Notably, each in-
dividual compares their utility functions with the one of
other individuals, selected uniformly at random within the
population. If the randomly selected individual has a higher
utility, the individual switches to the superior strategy with
probability proportional to the difference between the two
utility functions. This revision protocol is usually referred to
as pairwise proportional imitation [36], [43].

For large-scale populations, such an individual-level re-
vision protocol can be captured by letting the overall rate
at which individuals change their strategy from u to p to
be proportional to the product of i) the fraction of adopters
of u, ii) the fraction of adopters of p, and iii) the positive
part of the difference between the two utility functions, i.e.,
max{πp−πu, 0}. Similar, the overall rate of strategy change
from p to u is proportional to the product of p, u, and
the positive part of the opposite difference between the two
utility functions, i.e., max{πu − πp, 0}. Assuming that the
revision process occurs at a constant rate ε > 0, which
captures the relative velocity of the behavioral evolution with
respect to the epidemic spreading, then through a mean-
field approximation we obtain the well-known replicator
equation [36], which can be written as the following ODE:

Ṗ = ε(πp(I)− πu(I))P (1− P ) = εα(I)P (1− P ), (3)

where we denote α(I) := πp(I) − πu(I) as the difference
between the two utility functions associated with strategy
u and p, which captures the advantage that an individual
perceives for adopting self-protections when the fraction of
infected population is equal to I . We term such a function
as the perceived advantage of self-protective behavior.

Remark 1. In this model, the behavior of individuals is not
affected by their health state. This assumption is reasonable
for many endemic infectious diseases such as many STIs,
where infected individuals are actually unaware of being
infected for most of the time of infection, and as soon as they
get aware of their health status, the recovery is extremely
fast compared to the time needed to discover the disease.
For this reason, we can assume that infected individuals and
susceptible individuals have the same behavior.

C. COUPLED EPIDEMIC–BEHAVIORAL SYSTEM
By coupling the epidemic dynamics in Eq. (2) and the
behavioral dynamics in Eq. (3), we obtain the following
planar system of autonomous nonlinear ODEs:{

İ = β(P )(1− I)I − I

Ṗ = εα(I)P (1− P ).
(4)

As stated in the introduction, the most interesting and
realistic setting contemplates the coupling of the disease and
behavioral dynamics through a negative feedback, whereby
β(P ) is a decreasing function of P and α(I) is an increasing
function of I . Before discussing this assumption in detail (in
the next section), we conclude this section by presenting an
explanatory example of the coupled dynamical system.

Example 1 (Linear scenario). Linear functions are an easy
choice for setting α(I) and β(P ). In fact, in many scenarios
it is plausible to assume that self-protective behavior reduce
the probability of contracting the disease for those who adopt
them. Let β0 ≥ 0 be the basic reproduction number of
the disease (i.e the infection rate in the absence of self-
protective behavior), and a ∈ [0, 1] the efficacy of self-
protective behavior, we can write the infection rate at the
population level as a linear combination of β0 and aβ0,
respectively weighted by the fraction of population that does
not adopt self-protective behavior and the fraction that does
not make such an adoption, obtaining the following linear
expression for the infection rate:

β(P ) = β0

(
(1− P ) + (1− a)P

)
. (5)

Similarly, one can hypothesize that the utility function as-
sociated with the adoption of self-protective behavior (up(I))
increases linearly with the number of infected individuals
as a response to an increasing concern about the epidemic
spreading, according to a prevalence elastic behavior [37].
This has been observed, e.g., in the context of measles
vaccination [44]. We can adopt a proportionality coefficient
w ≥ 0 that captures the reactivity of the population’s behav-
ioral response. The utility function associated with a lack of
adoption of self-protective behavior remains constant and

VOLUME 00 2021 3

This article has been accepted for publication in IEEE Open Journal of Control Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCSYS.2024.3488567

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



F. PARINO ET AL.: Optimal control of endemic epidemic diseases with behavioral response

equal to c > 0. This captures, e.g., the costs associated with
the adoption of self-protective behavior (e.g., the economic
costs of medical devices). Hence, we obtain

πp = wI, πu = c, α(I) = wI − c. (6)

that is, the difference in the utility functions α(I) increases
linearly with the number of infected individuals as a response
to increasing concern about the epidemic spreading.

Combining Eq. (6) and Eq. (5), the dynamical system
with linear infection rate and perceived advantage of self-
protective behavior takes the form:{

İ = β0

(
(1− P ) + (1− a)P

)
(1− I)I − I

Ṗ = ε̃(I − d)P (1− P ),
(7)

where without any loss in generality, we have re-scaled
the parameters in the second equation by introducing a
parameter d = c/w that captures the “difficulty” in adopting
self-protective behavior as a trade-off between costs and
perceived risks, and re-scaling ε̃ = wε.

III. ANALYSIS
We analyze the general dynamical system described in
Eq. (4), focusing on the realistic scenario of a negative
feedback described in the previous section. However, before
making this assumption, we will first present some general
properties of the coupled systems, which hold for any
choice of the functions α and β that satisfies some minimal
regularity assumptions, summarized in the following.

Assumption 1. The functions α and β are continuously
differentiable in [0, 1] and take real and nonnegative real
values, respectively, i.e., α : C1([0, 1]) → R and β :
C1([0, 1]) → R+.

Under this regularity assumption, we prove that the cou-
pled system is biologically well-posed, i.e., that the trajec-
tories of the system are confined in the region [0, 1]× [0, 1].
Moreover, we rule out the existence of limit cycles. These
results are formally summarized in the following lemmas.

Lemma 1. The domain [0, 1]× [0, 1] is positively invariant
for Eq. (4) under Assumption 1.

Proof: The domain [0, 1]× [0, 1] is compact and convex and
the vector field in Eq. (4) is Lipschitz-continuous, since both
α(I) and β(P ) are continuously differentiable functions.
Hence, Nagumo’s Theorem can be applied [45]. We need to
ascertain the direction of the vector field at the boundaries of
the domain. We observe that Ṗ = 0 for P = 0 and P = 1,
while İ = 0 for I = 0 and İ = −1 for I = 1. This imply
that any trajectory such that (P (0), I(0)) ∈ [0, 1]× [0, 1] has
(P (t), I(t)) ∈ [0, 1]× [0, 1] for any t ≥ 0.

Lemma 2. Under Assumption 1, the system in Eq. (4) does
not admit any nonconstant periodic solutions in [0, 1]×[0, 1].

Proof: Using the Bendixson–Dulac criterion [46], we
introduce the differentiable Dulac function φ(I, P ) =

1
I(1−I)P (1−P ) , and we verify that

∂(φİ)

∂I
+

∂(φṖ )

∂P
= − 1

(1− I)2(1− P )P
+ 0 ̸= 0 (8)

almost everywhere in the domain [0, 1] × [0, 1]. Hence, by
the Bendixson-Dulac criterion, we conclude that there is no
closed orbit for the system in Eq. (4).

In the rest of this section, we study the equilibrium
points of Eq. (4) and derive a global convergence result
for the coupled system. As previously stated, we focus on
a realistic scenario by making some assumptions on the
perceived advantage of self-protective behavior α(I) and on
the infection rate β(P ). In particular, we will assume that
α(I) is an increasing function of the fraction of infected
individuals, reflecting the fact that an increase in the number
of infected makes more appealing to adopt self-protective
behavior. We will further enforce that not to adopt self-
protective behavior is the preferred strategy in the absence of
any disease, while the adoption is felt as advantageous when
the entire population is infected. Finally, we will assume
that the infection rate β(P ) is a decreasing function of the
fraction of individuals who use self-protective behavior P ,
which intuitively captures the effectiveness in adopting self-
protections in preventing contagion. We formally summa-
rize these conditions in the following assumption, which is
stricter than Assumption 1.

Assumption 2. The function α : C1([0, 1]) → R is such that
α′(I) > 0 for all I ∈ [0, 1], α(0) < 0, and α(1) > 0. The
function β : C1([0, 1]) → R+ is such that β′(P ) < 0 for all
P ∈ [0, 1].

Under these assumptions, we can perform a complete
analysis of the system. We start with a classification of all
the equilibria of the coupled system and their local stability.
To present our results, we first introduce some notation.

Definition 1. Given an equilibrium point of Eq. (4) x∗ =
(I∗, P ∗), we say that x∗ is a disease-free equilibrium (DFE)
if I∗ = 0; otherwise, if I∗ > 0, we refer to it as an endemic
equilibrium (EE).

The classification of all the equilibria of Eq. (4) is sum-
marized in the following statement.

Proposition 1. Under Assumption 2, the system in Eq. (4)
has at most five equilibria, denoted as x(i) = (I(i), P (i)),
i ∈ {1, 2, 3, 4, 5}. Specifically,

1) x(1) = (0, 0), which is a DFE with no adoption of self-
protective behavior. This equilibrium is (locally) stable if
β(0) < 1 and an (unstable) saddle point if β(0) > 1.

2) x(2) = (0, 1), which is a DFE where the entire popula-
tion adopts self-protective behavior. This equilibrium is
always unstable (it is a saddle point if β(1) < 1 or a
fully unstable point if β(1) > 1).

3) x(3) = (1 − 1
β(0) , 0), which is an EE with no adoption

of self-protective behavior. This equilibrium exists if and
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only if (iff) β(0) > 1; it is stable if β(0) < (1−α−1(0))−1

and a saddle point otherwise.

4) x(4) = (1− 1
β(1) , 1), which is an EE where the entire pop-

ulation adopts self-protective behavior. This equilibrium
exists iff β(1) > 1; it is stable if β(1) > (1−α−1(0))−1,
and a saddle point otherwise.

5) x(5) = (α−1(0), β−1( 1
1−α−1(0) ), which is an EE with

partial adoption of self-protective behavior. This equilib-
rium exists if β(1) < (1 − α−1(0))−1 < β(0); when it
exists, it is always stable.

Proof: We compute the equilibria by setting the two ODEs
in Eq. (4) to zero. From the first equation in Eq. (4), we
obtain that the equation is equal to zero if either I = 0 or
β(P )(1− I) = 1. Imposing I = 0 in the second equation of
Eq. (4), since α(0) < 0, we observe that the equation is equal
to zero iff either P = 0 or P = 1, yielding the equilibria x(1)

and x(2). To study their stability, we compute the Jacobian
matrix at a generic point, obtaining

Jh(I, P ) =

[
β(P )(1− 2I)− 1 β′(P )I(1− I)
εα′(I)P (1− P ) εα(I)(1− 2P )

]
. (9)

In x(1), Eq. (9) reduces to a diagonal matrix with eigenvalues
α(0) < 0 and β(0) − 1, which yields stability condition
β(0) < 1. In x(2), the Jacobian matrix in Eq. (9) reduces to
a diagonal matrix with eigenvalues −α(0) > 0 and β(1)−1.
Hence, the equilibrium is always unstable.

We now look for equilibria with I > 0. The second
equation in Eq. (4) is equal to zero if one of the following
conditions is verified: 1) P = 0, 2) P = 1, or 3) α(I) = 0.

1) For P = 0, from the condition for the first equation,
β(P )(1 − I) = 1, we obtain β(0)(1 − I) = 1, i.e., I =
1− 1

β(0) , yielding equilibrium x(3). Such a point belongs
to the domain iff β(0) > 1. From Eq. (9), we observe that
the Jacobian of the system evaluated in the equilibrium
point has a negative eigenvalue equal to 1−β(0), and an
eigenvalue equal to εα(1 − 1

β(0) ), which is negative iff
β(0) < (1− α−1(0))−1.

2) For P = 1, from the condition for the first equation,
β(P )(1 − I) = 1, we obtain β(1)(1 − I) = 1, i.e.,
I = 1 − 1

β(1) , yielding equilibrium x(4). Such a point
belongs to the domain iff β(1) > 1. From Eq. (9), we
observe that the Jacobian of the system evaluated at the
equilibrium has a negative eigenvalue equal to 1− β(1)
and an eigenvalue equal to −εα(1 − 1

β(1) ), which is
negative iff β(1) > (1− α−1(0))−1.

3) From the condition α(I) = 0, we obtain the condi-
tion I = α−1(0), which exists and is unique due to
Assumption 2. By plugging this condition in the first
equation, we obtain β(P )(1 − α−1(0)) = 1, which
yields the condition P = β−1(1/(1 − α−1(0))). Notice
that such a condition can be satisfied by P ∈ (0, 1)
iff β(1) < (1 − α−1(0))−1 < β(0). This equilibrium
point coincides with x(5). We can check that, such an

equilibrium exists, then it is always stable. In fact, from
Eq. (9), we observe that the product of the off-diagonal
terms is always negative, due to the properties of α′

and β′. Hence, the eigenvalue equation for the Jacobian
evaluated in x(5) reduces to

λ
(
λ+

α−1(0)

1− α−1(0)

)
= −A, (10)

where A is a strictly positive quantity, equal to the
product of the off-diagonal terms of Eq. (9), with a
negative sign. It is straightforward to observe that the
solutions of Eq. (10), and thus the eigenvalues of the Ja-
cobian evaluated in the equilibrium point, are necessarily
negative. Hence, when it exists, the equilibrium point is
always stable.

Based on these local stability results and on Lemma 2, we
formulate the main result of this section that characterizes
the asymptotic behavior of Eq. (4).

Theorem 1. Consider the coupled system in Eq. (4) un-
der Assumption 2. Then, for almost every initial condition
x(0) = (I(0), P (0)), the following four mutually exclusive
and exhaustive scenarios can occur:

1) if β(0) < 1, then the dynamics converges to the DFE
x(1);

2) if 1 < β(0) < (1 − α−1(0))−1, then the dynamics
converges almost everywhere (a.e.) to the EE x(3);

3) if β(0) > (1 − α−1(0))−1 and β(1) < (1 − α−1(0))−1,
then the dynamics converges a.e. to the EE x(5);

4) if β(1) > (1 − α−1(0)−1, then the dynamics converges
a.e. to the EE x(4),

where the equilibria x(1), x(3), x(4) and x(5) are defined in
Proposition 1.

Proof: To prove the convergence we use the Poincaré–
Bendixson Theorem [46] and the result of Lemma 2, where
we have ruled out the existence of periodic orbits in the
region [0, 1]× [0, 1]. We consider the four different cases in
the statement:

1) If β(0) < 1, Lemma 1 guarantees that Eq. (4) has
only two equilibria: x(1), which is locally asymptotically
stable, and x(2), which is fully unstable. The Poincaré–
Bendixson theorem ensures that the ω-limit set reduces
to the unique locally stable equilibrium x(1).

2) We split the case 1 < β(0) < (1 − α−1(0))−1 in two
sub-cases:

a) If β(1) < 1, Lemma 1 concludes that Eq. (4) has three
equilibrium points: the locally asymptotically stable
x(3), and two saddle points x(1) and x(2). The stable
manifold of the two saddle points x(1) and x(2) is
given by I = 0 and P = 1, respectively. Hence,
for any initial condition in the region (0, 1] × [0, 1),
the Poincaré–Bendixson Theorem guarantees global
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asymptotic stability of x(3). This yields global con-
vergence for almost every initial condition.

b) If β(1) > 1, Lemma 1 guarantees that Eq. (4) has
four equilibria: the locally asymptotically stable x(3),
two saddle points x(1) and x(4) with stable manifolds
I = 0 and P = 1, respectively, and the fully
unstable equilibrium x(2). The same argument used in
the above applies also to this scenario, guaranteeing
global convergence for almost every initial condition.

3) If β(0) > (1 − α−1(0))−1 and β(1) < (1 − α−1(0))−1,
then from Lemma 1 we observe that x(5) is the only
locally asymptotically stable equilibrium point, while the
others fixed points are either fully unstable equilibria or
saddle points. Specifically, the stable manifolds of such
saddle points are the regions P = 0, P = 1 and I = 0.
Hence, using the Poincaré–Bendixson Theorem we guar-
antee convergence to x(5) from any initial condition in
(0, 1]× (0, 1), and thus for almost every initial condition
in the domain.

4) If β(1) > (1−α−1(0)−1), then from Lemma 1 the system
has four equilibria: x(4), which is locally asymptotically
stable, x(1) and x(3), which are saddle points, and x(2),
which is unstable. The stable manifolds of the saddle
points are P = 1 and I = 0. Again, Poincaré–Bendixson
Theorem yields convergence.

Remark 2. As a consequence of Theorem 1, the sole quantity
β(0) determines the epidemic threshold of the model. In fact,
for β(0) < 1, the DFE is globally asymptotically stable; for
β(0) > 1, the system converges a.e. to an EE. The functions
α and β, instead, determines which EEs is reached above
the epidemic threshold.

A. LINEAR CASE
We consider a specialization of our model to illustrate the
findings presented in Theorem 1. Specifically, we focus on
the case introduced in Example 1, where β(P ) and α(I) are
linear functions, and the system reduces to Eq. (7). Focusing
on the equilibria of the system and following the results of
Sec. III, we obtain the following corollary, which provides
an explicit expression for all the equilibria of the system.

Corollary 1. The system in Eq. (7) has at most the following
five equilibria:

1) the DFE x(1) = (0, 0), which is (locally) stable if β0 < 1
and an (unstable) saddle point if β0 > 1;

2) the DFE x(2) = (0, 1), which is always unstable;

3) the EE x(3) = (1− 1
β0
, 0), which exists iff β0 > 1 and is

stable iff d > d(3) = 1− 1
β0

;

4) the EE x(4) = (1 − 1
(1−a)β0

, 1), which exists iff β0 >

1/(1− a) and it is stable iff d < d(4) = 1− 1
(1−a)β0

;

5) the EE x(5) =
(
d, β0(d−1)−1

aβ0(d−1)

)
, which exists and is stable

iff β0 > 1 and either (a) (1− a)β0 ≤ 1 and d < d(3), or
(b) (1− a)β0 ≥ 1 and d(4) < d < d(3).

Then, we can apply Theorem 1, which guarantees that
the dynamics converges a.e. to a stable equilibrium point.
Specifically, we observe that the difficulty of adopting self-
protective behavior d is a key parameter to determine which
equilibrium is stable, together with the basic reproduction
number β0 and the efficacy of self-protective behavior a, as
summarized in the following corollary. A graphic represen-
tation of the equilibria by varying d is depicted in Fig. 1.

Corollary 2. The following four asymptotic behaviors are
possible for the system in Eq. (7):

1) If β0 < 1, then the system converges to the DFE x(1).

2) If β0 > 1 and d > d(3) the system converges to the EE
x(3), i.e., the difficulty of the behavior prevents from its
adoption.

3) If β0 > 1 and d < d(3), then

a) if (1− a)β0 < 1 or (1− a)β0 > 1 and d > d(4), the
system converges to the EE x(5), in which part of the
population adopts self-protective behavior;

b) if (1 − a)β0 > 1 and d < d(4), then the system
converges to the EE x(4) where the whole population
adopts self-protective behavior.

Remark 3. From Corollary 2, we observe that d has a key
role. In fact, when above the epidemic threshold β0 > 1,
decreasing the difficulty of adopting self-protective behavior
allows to switch from the EE x(3) to x(5), in which there
are less infected individuals. Moreover, if aβ0 > 1, a further
decrease of d could lead to the EE x(3), in which the fraction
of infected individuals is further decreased.

IV. CONTROL
We study the problem of designing optimal policies to con-
trol our epidemic–behavioral model. In particular, we focus
on the linear scenario in Example 1. We consider policies
that promote safe practices by reducing the difficulty of
adopting self-protective behavior, captured by the parameter
d. These policies include increasing the availability of pro-
tection devices, reducing their costs, or raising awareness. To
model such interventions, we modify the term α in Eq. (7) by
splitting the term d into two contributions, i.e., d = dN −u,
where dN is a baseline difficulty to adopting self-protective
behavior in the absence of any interventions, and u captures
instead the effect of containment regulations and should be
interpreted as a control parameter. Hence, we obtain

α(I) = I − (dN − u). (11)

We observe that the control parameter u can theoretically
take both positive and negative values (greater than −dN ),
which corresponds to incentives or disincentives to engage in
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FIGURE 1. Equilibria in the linear case. In (A), we illustrate the equilibria in the space (I, P ) by varying d for β0 > 1 and αβ0 < 1 (blue) or αβ0 > 1

(orange). Steady state value of I and P for different values of d for αβ0 < 1 are reported in (B,C), respectively; and for αβ0 > 1 in (D,E), respectively.

self-protective behavior. Hence, the controlled system under
investigation ultimately reads as{

İ = β0

(
(1− P ) + (1− a)P

)
(1− I)I − I

Ṗ = ε̃(I − dN + u)P (1− P ).
(12)

From Theorem 1, we observe that the control input u does
not affect the stability of the DFE, which is fully determined
by the infection rate β. However, as we shall see, it yields
a change in the EE to which the system converges to, when
above the epidemic threshold. Hence, a proper choice of u
may lead to effective containment policies to contrast the
spreading of the epidemic. For this reason, in the rest of this
paper we will focus on scenarios in which β0 > 1, and the
system converges to an EE. Since the stable EE is unique
and fully determined by the model parameters, in our setting
it will be function of the control input, and we will refer to
it as x∗(u) = (I(u), P (u)), for which an explicit expression
can be found using Corollaries 1 and 2.

In order to formalize the optimal control problem, we
start by defining a cost function. The purpose of epidemic
management is to design interventions to reduce the num-
ber of infected individuals while balancing the social and
economical impact of the interventions implemented. In
particular, to a control input u, we associate a cost function
that accounts for these two critical factors by taking a convex
combination of two quadratic terms: one in the number
of infected individuals, the other in the effort placed in
interventions. Hence, we obtain the following cost function:

Jh(u) = hI(u)2 + (1− h)u2, (13)

where the two summands are weighted by the parameter
h ∈ [0, 1], which captures the relative weight given to reduc-
ing the healthcare impact with respect to the economic cost
associated with the implementation of the interventions. The
use of quadratic terms in Eq. (13) is the simplest and most
common choice in mathematical epidemiology [47], since it
captures the nonlinear increase of the burden for the health-
care system associated with the number of infections [48],
and the fact that interventions are often characterized by
diminishing marginal returns [49].

A. STATIC INTERVENTION POLICIES
We start by investigating optimal static intervention policies.
Given a certain cost function Jh(u) (defined by the trade-
off parameter h), our aim is to determine the optimal
intervention strategy u∗ and the associated steady state that
minimize this cost x∗. Intuitively, placing more emphasis
on the healthcare impact by increasing h would result in
an increase in the control effort u∗ and less infections at
the steady state. However, as demonstrated below, due to
threshold effects, the impact of these interventions may not
always yield the desired outcome.

We evaluate Jh at the EE, which we know to be either
x(3), x(4), or x(5) (see Corollary 2). Evaluating the cost
function at such stable equilibrium by varying u result in a
piecewise continuous function composed by three pieces:

Jh(u) =


h
(

β0−1
β0

)2

+ (1− h)u2 if u < dN − d(3),

h
(

(1−a)β0−1
(1−a)β0

)2

+(1− h)u2 if u > dN − d(4),

u2 − 2hdNu+ hd2N otherwise.
(14)
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In the case of of static intervention policies, our goal is
to identify the optimal control input that minimizes the
cost function in Eq. (13), i.e., u∗ := argminuJh(u). To
analytically solve this problem, we compare the local minima
of the cost function in each of the three pieces. This
comparison results in different scenarios depending on the
system equilibrium without interventions (i.e., u = 0), as
summarized in the following result.

Theorem 2. The optimal control policy for Eq. (12) with
the cost function in Eq. (13) is attained with control input
equal to

u∗ =


dNh if Ω1 holds,
dN − d(4) if Ω2 holds,
0 otherwise,

(15)

where Ω1 :=
{
d(3) < dN < (d(3))2

d(4) and 1 −
(
d(3)

dN

)2 ≤ h ≤

1 − d(4)

dN
; or d(4) ≤ dN ≤ d(3) and h ≤ 1 − d(4)

dN

}
and

Ω2 :=
{
d(3) < dN < (d(3))2

d(4) and h > 1 − d(4)

dN
; or dN >

(d(3))2

d(4) and h ≥ (dN−d(4))2

(d(3))2+d2
N−2dNd(4) ; or d(4) ≤ dN ≤

d(3) and h > 1 − d(4)

dN

}
, yielding the controlled epidemic–

behavioral system in Eq. (7) to converge to the EE:

x∗ =



x(3) if dN > d(3) and h ≤ 1−
(
d(3)

dN

)2
,

x̃ if d(3) < dN < (d(3))2

d(4)

and 1−
(
d(3)

dN

)2 ≤ h ≤ 1− d(4)

dN
,

or d(4) ≤ dN ≤ d(3) and h ≤ 1− d(4)

dN
,

x(4) otherwise,
(16)

where x(3) and x(4) are defined in Corollary 1 and

x̃ =
(
(1− h)dN ,

β0 − 1− β0(1− h)dN
β0((1− h)dN − 1)(a− 1)

)
. (17)

Proof: First, we observe some properties of the cost function
in Eq. (13). In the first and last open intervals, the cost is a
quadratic function in u, thus increasing in the absolute value
of u. In addition we observe that these two open intervals
correspond to the conditions for stability of x(3) and x(4),
respectively. In the compact interval u ∈ [dN − d(3), dN −
d(4)], the cost is instead a convex function, and this interval
corresponds to the conditions for stability of x(5).

We focus now on the local minima of the cost function.
Since the function is convex in u ∈ [dN − d(3), dN − d(4)],
then it has a unique local minimum in that compact set. This
minimum is either at û = dNh, if û ∈ [dN −d(3), dN −d(4)],
or at one of its boundaries. Whether the function has other
local minima in the two unbounded intervals depends on the
interval to which u = 0 belongs. If 0 ∈ [dN−d(3), dN−d(4)],
i.e., dN ∈ [d(4), d(3)], then the function is monotonically
increasing with |u| in both regions, yielding that the infimum
is attained in the limits u → dN − d(3) and u → dN − d(4).
Continuity of the function guarantees that the function has
its unique local minimum in the compact set [dN−d(3), dN−
d(4)], which is thus global (see Fig. 2A).

In the following, we will thus consider three scenarios
depending on the interval u = 0 belongs to. If dN > d(3),
then the function has a local minimum at u = 0, which is
in the first region of the piecewise function in Eq. (13) (see
Figs. 2B–C). Then, we observe that in the compact interval
[dN−d(3), dN−d(4)], the candidate local minimum û = dNh
belongs to the interval iff

dN−d(3) ≤ hdN ≤ dN−d(4) ⇐⇒ 1−d(3)

dN
≤ h ≤ 1−d(4)

dN
.

(18)
Being d(4) < d(3) < dN , the region in Eq. (18) is always
well defined. If h < 1 − d(3)

dN
, then the local minimum is

attained at the boundary point ũ1 = dN−d(3); if h > 1− d(4)

dN
,

the local minimum is attained at the boundary point ũ2 =
dN − d(4).

The global minimum is determined by comparing the cost
at u = 0, which is equal to Jh(0) = h(d(3))2 with the
cost at the other local minimum. For h < 1 − d(3)

dN
, it is

straightforward to observe that, due to the continuity of the
cost function, Jh(0) < Jh(ũ1). For 1− d(3)

dN
≤ h ≤ 1− d(4)

dN
,

we obtain Jh(û) = h(1− h)d2N , obtaining the condition

Jh(û) ≤ Jh(0) ⇐⇒ h ≥ 1−
(d(3)
dN

)2

, (19)

which yields a nonempty set when coupled with h ≤ 1− d(4)

dN

iff dN < (d(3))2

d(4) . If h > 1− d(4)

dN
, the other local minimum is

ũ2 = dN−d(4), and the associated cost is equal to Jh(ũ2) =
h(d(4))2 + (1− h)(dN − d(4))2, obtaining the condition

Jh(ũ) ≤ Jh(0) ⇐⇒ h ≥ (dN − d(4))2

(d(3))2 + d2N − 2dNd(4)
. (20)

We observe that such a condition is more restrictive than
h > 1− d(4)

dN
iff dN > d(3)

d(4) .
If dN ∈ [d(4), d(3)], then the global minimum is the unique

minimum in the compact interval [dN − d(3), dN − d(4)],
which is u∗ if such a candidate belongs to the interval, i.e.,
if hdN < dN − d(4) =⇒ h < 1− d(4)/dN , and is equal to
ũ = dN − d(4), otherwise.

If dN < d(4), then the function has another local minimum
at u = 0, which is in the third region of Eq. (13). In this
scenario, the global minimum is determined by comparing
the cost at u = 0, which is equal to Jh(0) = h( (1−a)β0−1

(1−a)β0
)2,

and the cost at the local minimum in the compact set, which
is always attained at ũ = dN − d(4). From the comparison,
it is straightforward that Jh(0) < Jh(ũ).

Finally, we complete the proof by computing, for each
control, the corresponding EE, obtaining Eq. (16).

Theorem 2 provides an insightful characterization of the
optimal control input, depending on the model parameters
and on the cost trade-off h, as discussed in the following.

Remark 4. The baseline difficulty of adopting self-protective
behavior dN has a key role. In fact, if dN is larger than d(3),
the population would not adopt self-protection in the absence
of any control, yielding the EE x(3). In the controlled
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system, the trade-off parameter h yields a threshold behavior.
Namely, if h is small, the optimal solution would be to not
apply any control, remaining in x(3); if h is sufficiently
large, the optimal control is not null and reaches an EE
with less infected individuals with respect to the uncon-
trolled case. The value of the threshold is a function of the
model parameters. As dN decreases,an intermediate regime
is reached, where in the application of a nonzero control
input to decrease the number of infections is always optimal.
Finally, unsurprisingly, if dN is even smaller, then the entire
population would adopt self-protection even in the absence
of any control, making the control input unnecessary.

To conclude, in the first scenario described of self-
protections difficult to adopt (large dN ), it is worth noticing
from Fig. 2B that starting from u = 0 there is an initial
increase in the cost, due to nonconvexity of the cost function,
discouraging intervention implementation, before notice the
advantage of the interventions, highlighting the nontriviality
of the results in Theorem 2.

B. DYNAMIC INTERVENTION POLICIES
In the previous section, we have analyzed the problem of de-
termining an optimal control input to trade-off the healthcare
impact and economic cost of an endemic disease in a steady-
state scenario. We now focus on a different problem, i.e., to
determine the optimal, possibly varying, intervention policy
u(t) in a dynamically-evolving environment, i.e., when the
system is in a transient phase.

Specifically, in the previous section we showed how, given
the cost function Jh(u) in Eq. (13), we can calculate the
optimal (static) intervention policy û and the corresponding
steady state x∗. Here, we consider a system with initial
conditions at t = t0 that are not optimal with respect to
such cost function, namely x0 ̸= x∗. Our goal is to steer the
system to the desired optimal final steady state x∗ within
a time-horizon of duration T , while minimizing the cost
function along the entire system trajectory. To this aim, we
naturally extend the definition of the cost function in Eq. (13)
to a dynamically-evolving setting, with quadratic cost at time
t equal to Jh(x(t), u(t)) = hI2(t) + (1 − h)u2(t), where
x(t) = (I(t), P (t)) is the state of the epidemic-behavioral
system at time t, which evolves according to the following
nonautonomous, nonlinear system:{

İ = β0

(
(1− P ) + (1− a)P

)
(1− I)I − I

Ṗ = ε̃(I − dN + u(t))P (1− P ).
(21)

We can now define an optimal control problem, which
takes the form of the nonlinear quadratic regulator

min
u(t)

∫ T

t0

Jh(x(t), u(t))dt+ ϕ(x(T )),

subject to Eq. (21)

x(t0) = x0,

ul ≤ u(t) ≤ uu.

(22)

Notably, we seek for a control function u(t), bounded
between a lower and an upper bound [ul, uu] ⊆ R, which
minimizes the integrated cost function along the entire
trajectory plus an terminal cost ϕ(x(T )) computed at the
final time T . Since our primary goal is to control the transient
behavior of the system while steering it toward the desired
state x∗ at the time T , we use a terminal cost to penalize
control inputs that result in the system being far from the
desired state at the final time, i.e.,

ϕ(x(T )) = φ ∥x(T )− x∗∥2 . (23)

The parameter φ ≥ 0 is a constant that weights the con-
tribution of the terminal cost and should be set to obtain a
trajectory that ends close enough to x∗ [50]. We observe that
we do not enforce a hard constraint on the final system state.
Therefore, the optimal control policy does not guarantee that
the system reaches the equilibrium point precisely at time
T , but it guarantees that the system approaches its target by
penalizing deviations, avoiding issues related to infeasibility.
Then, if one wants to enforce convergence to the desired
target state, one can leverage Corollary 1 and (if feasible)
set u(t) = dN − I∗ for all t ≥ T , ensuring convergence of
the epidemic prevalence to I∗ by Corollary 2.

The control problem in Eq. (22) can be solved using the
Pontryagin’s Maximum Principle (PMP) [41], whose result
is summarized in the following proposition.

Proposition 2. The optimal control for the problem in
Eq. (22) satisfies the following necessary condition:

u(t) = min

{
ul,max

{
uu,−

λ2(t)(P (t)− 1)P (t)ε

2(h− 1)

}}
,

(24)
where λ(t) := [λ1(t), λ2(t)]

⊤ is the two co-state variable
that evolves according to

λ̇ = −∇x

(
H(t,x, u,λ)

)
, (25)

with

H(t,x, u,λ) = Jh(x(t), u(t)) + λ1(t)İ(t) + λ2(t)Ṗ (t).
(26)

Proof: According to PMP, the necessary condition for a
control u(t) to be optimal is that the Hamiltonian function
in Eq. (26) attains its minimum value. The co-state variables
vector λ(t) evolves alongside the state variable defining a
two-point boundary value problem that couples Eq. (21) and
Eq. (25), with boundary conditions x(t0) = x0 and λ(T ) =
∇x(T )ϕ(xT ). The optimal control u(t) can be obtained by
solving u(t) = argminu H(t,x, u, λ), which is equivalent
to solve the equation ∂H(t,x,u,λ)

∂u = 0, which inserted in the
Hamiltonian in Eq. (26), yields u∗(t) = −λ2(t)(P (t)−1)P (t)ε

2(h−1) .
Since the control is bounded, the unconstrained minimizer
of the Hamiltonian u∗(t) may fall out of the constant
u(t) ∈ [uu, ul]. Following the derivation in [42], we saturate
it to the value of the lower and upper bound, finally obtaining
the expression in Eq. (24).
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FIGURE 2. Examples of cost functions. In (A), the steady state x(5) is stable without interventions. In (B) and (C), in the absence of control, the
equilibrium point is x(3). In (B), the optimal cost is located in the convex part of the function, while, in (C), it is û = 0.

From a practical point of view, the two-point boundary
value problem that couples Eq. (21) and Eq. (25), is solved
numerically over the time horizon [t0, T ] and the solution is
inserted into Eq. (24). The time-horizon T may be imposed
by public authorities, or obtained by solving an optimization
problem, which can be either independent, or solved jointly
with the optimal control problem. For more details, see [42].

While our approach employs established techniques from
optimal control theory, interesting insights are gained in the
next section when applying this framework to a case study.

V. CASE STUDY: APPLICATION TO STI
We demonstrate our approach by applying it to a case study
based on STIs —a class of diseases that are endemic in
the population, whose spread is significantly influenced by
human behavior. Despite the fact that STIs are typically not
fatal, they constitute a serious threat to healthcare and the
economy worldwide. Remarkably, the WHO estimated 374
million people got infected with an STI in 2020, and the
19.7 million cases in 2008 in the US had an estimated direct
medical cost of roughly $15.6 billion. These figures highlight
the importance of the design of an optimal control strategy
to incentivize the adoption of self-protective behavior.

A. EPIDEMIC PARAMETERS
We calibrate our model to gonorrhea, for which condoms
are the most widely used equipment for self protection, with
an estimated average efficacy of a = 0.87, considering also
usage errors [51]. From a survey study conducted in 1999 in
the US, condoms were used in 62% of occurrences between
casual partners [52]. Lower fractions were reported in a more
recent study (37%) [53]. Here, we set an intermediate values
of P0 = 0.5. In an epidemiological study carried out in the
US in 2018, it was estimated that the prevalence of gonorrhea
infections is of 190 infections per 100, 000 population [54].
Based on this data, we set the initial fraction of infections
at I0 = 0.0019. From these parameters, assuming that the
disease is at steady state, we use the explicit expression of
x(5) in Corollary 1 to derive d = 0.019 and β0 = 1.77.

Note that our estimation of the basic reproduction number is
consistent with estimations based on clinical data, available
in the literature [55].

As the data we use for this calibration refer to a system
in which some intervention policies (e.g., awareness cam-
paigns) are already implemented, to reduce our setting to
the one in Sec. A we split d in the sum of a baseline value
dN and initial control input u(0). To this aim, we assume
that in absence of control policies (u = 0) the cost of using
protection and the risk perceived by individuals is such that
only a negligible fraction of the population would adopt self-
protective behavior, i.e., we assume that dN = d(3) and the
system steady state in the absence of control settles at x(3).
This further assumption yields dN = β0−1

β0
= 0.436074 and

u(0) = d− dN = 0.434174.

B. OPTIMAL INTERVENTIONS
We consider the scenario in which public health authori-
ties need to reevaluate their interventions reflecting, e.g.,
a change in the price associated with protection devices,
or in the healthcare, social, and economical cost associated
with infected individuals. Formally, at t = 0, we consider
the system in its current steady state x∗

0, with respect to
a given cost function Jh0 . Then, we introduce a new cost
function Jh1 , with its associated steady state x∗

1. The goal
is to find the optimal intervention u(t) to transition to the
new optimal steady state x∗

1. We notice that x∗
1 and x∗

0

are related to the optimal steady interventions u∗
1 and u∗

0,
respectively, which define the initial and final values for the
control variable. The case h1 > h0 represents an increase of
the relative cost of infected individuals with the consequent
increase in the containment policies to reduce the number
of infected. On the other hand, h1 < h0 reflects uplifting
some containment measures. We use as x∗

0, h0, and u∗
0 the

values of the calibrated model obtained in Sec. V. We test six
scenarios where x∗

1 has ±10%,±20%, and ±50% fraction
of infected individuals. The value of ul and uu are such that
u(t) can exceed the initial and final control u0 and u1 by
50% of the total variation |u∗

0−u∗
1|. Following [42], the time-
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FIGURE 3. Simulation results of the STIs case study. In (A), the optimal trajectory for different desired end points x∗
1 are illustrated; the black dot is the

starting point of the system x∗
0. In (B, C), the optimal control inputs for the corresponding scenarios in panel (A) are reported. In (D,E), the temporal

evolutions of the state variables I(t) and P (t) are reported, respectively.

horizon T is selected as the minimum time that allows the
controlled system to reach the desired final state x∗

1 with a
certain tolerance (set to 10−5), and is computed numerically
by solving the problem for increasing values of T , until one
that satisfies the constraint is obtained.

The optimal policies u(t) are found using Proposition 2
and plotted in Fig. 3. Our simulations suggest that the op-
timal interventions are piecewise constant. An initial period
entails implementing strong interventions in case u∗

1 > u∗
0, or

relaxing them if u∗
1 < u∗

0. Then, the opposite action is taken
and, finally, at t = T , it is set u(T ) = u∗

1, so that the desired
ending point becomes an equilibrium. From a practical point
of view, the devised optimal strategy is straightforward to
implement, as only two actions with constant effort must be
implemented. Proposition 2 is key to understand the right
time of switching between the two actions. From Fig. 3, we
observe that the timing and trajectories are not symmetric
between increasing or decreasing the policy of intervention.

Finally, we explore the effect of the parameter ε̃ using
the case study from the previous example, which involves
a 50% reduction in disease prevalence. The parameter ε̃
measures the population’s reactivity in changing behavior
and is defined as ε̃ = wε, where ε represents the rate
at which the revision process occurs (see Eq. (3)), and w
is a proportional coefficient capturing the reactivity of the
population’s behavioral response (see Eq. (6)). Small values
of ε̃ characterize a population that changes the behavior
slowly in response to the spreading of the disease, while
large values indicate fast-reacting populations. In Fig. 4, we
compute the optimal control policy for different values of
ε̃. In all cases, the number of infected individuals remains
between the initial and final states during the whole transient,
and the optimal strategy is a two-action piecewise constant
strategy as previously discussed. However, we observe that,
for larger values of ε̃, the system is faster in reaching the
desired final state, but larger oscillations in the transient are
observed.
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FIGURE 4. Simulation results of the STIs case study, exploring the impact of parameter ε̃. In (A), we illustrate the optimal trajectory for different values
of ε̃. In (B, C), we report the temporal evolution of the state variables I(t) and P (t) for different values of ε̃, respectively.

VI. CONCLUSION
We presented an epidemic-behavioral model aimed at de-
vising optimal intervention strategies that encourage the
adoption of self-protecting behaviors. Our model takes into
account both healthcare and socio-economic factors to ensure
comprehensive control measures. Specifically, we employed
an SIS-like epidemic dynamics and a population game
dynamics, and we coupled them in a feedback scheme that
captures i) the impact of the epidemic spreading on the
risk perception that pushes people to adopt self-protective
behavior, and ii) the impact of human behavior on the
infection rate. We formalized our model as a planar nonlinear
system of ODEs, which can match a variety of scenarios
by conveniently selecting the shape of the two feedback
functions. Under reasonable assumptions, we performed a
theoretical analysis of the model, characterizing all its five
steady states and proving global convergence to one equilib-
rium, which depends on the model parameters. Interestingly,
the system exhibits a double-threshold behavior. Whether the
system converges to the DFE is determined by an epidemic
threshold that is independent of human behavior. However,
above such a threshold, a second threshold determines the
EE reached, depending on the difficulty of adopting self-
protective behavior. This phenomenon relates to many typical
epidemiological phenomena, where the onset of the epidemic
depends on intrinsic epidemiological parameters, and the
spontaneous adoption of self-protective behavior cannot fully
eradicate the disease, but it can mitigate it.

Further, we used the model to investigate the control of
epidemic diseases. Specifically, we focused on the scenario
where the feedback functions are linear, which is amenable to

thorough analytical treatment. After having introduced a con-
trol input, we formalized the problem of designing optimal
interventions by defining an objective function that trades-
off the healthcare and social-economical costs. The study
of the objective function at the equilibrium provided insight
into the characterization of the steady-state optimal control
input, while the Pontryagin maximum principle was used
to design optimal control strategies. Through the analysis
of a real-world case study inspired by STIs, we observed
that the optimal solutions are piecewise constant, suggesting
that our tool can be used to determine the optimal switching
time between different policies. The optimality of piecewise
control inputs is consistent with what has been observed in
the literature on optimal interventions in epidemic processes,
e.g., in SIS and SIR models with isolation of infected or
health/vaccination campaigns [56]–[58].

Our work is not exempt from limitations. First, we pro-
posed our framework in the scenario of a homogeneous fully-
mixed population. Extending this work to heterogeneous
and structured scenarios is a key extension. In particular,
considering meta-population structures is relevant for the
study of sub-population at high risk of infection, called
core population in the STI literature [59]. Technically, such
extension can be performed by embedding the model onto
a network, for which, e.g., monotonicity properties may be
used [60]. Second, we built our framework using epidemic
and behavioral models. The epidemic model can be readily
tailored to more complex progression dynamics by simply
adding some equations to the system, which are not directly
in feedback with the behavioral dynamics (see, e.g., the
models used for COVID-19 [15], [61] or Ebola [62]). Third,
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the main results related to epidemic control are limited to
cases where the basic reproduction number and the perceived
advantage of self-protective behavior are linear functions
of the state variables. Extending our theoretical results to
nonlinear scenarios is nontrivial, as the proofs of Theorem 2
and Proposition 2 rely on the explicit form of these functions.
Addressing this challenge is a key objective for future
research. Finally, the approach and results proposed in this
paper can serve as a foundation for improved models that
incorporate more complex behavioral dynamics, such as
delays in behavioral response, biased risk perceptions, and
imperfect information on epidemic prevalence. Additionally,
more realistic settings can be explored by integrating online
data into the control algorithm. These enhancements may
enable our paradigm to provide optimal control solutions
for real-world epidemic outbreaks, thereby supporting public
health authorities in planning effective interventions.
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