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Tn-INVARIANT KÄHLER-EINSTEIN MANIFOLDS IMMERSED IN

COMPLEX PROJECTIVE SPACES

GIANNI MANNO AND FILIPPO SALIS

Abstract. We give a complete list, for n ≤ 6, of non-isometric T
n-invariant Kähler-Einstein

manifolds immersed in a finite dimensional complex projective space endowed with the Fubini-

Study metric. This solves, in the aforementioned case, a classical and long-staying problem

addressed among others by Calabi and Chern.

1. Introduction

1.1. Description of the problem. Holomorphic and isometric immersions (from now on

Kähler immersions) into complex space forms, i.e. Kähler manifolds with constant holomor-

phic sectional curvature (see also Example 1.4 below), have been investigated starting from S.

Bochner’s work [7]. The general problem can be stated as follows:

Problem 1. To determine whether a Kähler manifold can be Kähler immersed into a complex

space form.

Despite E. Calabi found in [8] some criteria that allow, at least from a theoretical point of

view, to treat the Problem 1, we are in fact far from having an overall classification. Even

in special cases of great interest, such as the Kähler-Einstein manifolds1, a complete solution

of Problem 1 is still lacking so far. Indeed, for Kähler-Einstein manifolds, Problem 1 can be

considered as solved only in the case of immersions either into hyperbolic or Euclidean spaces

(see [36]), instead it is still open for Kähler-Einstein manifolds which are Kähler immersed into

a complex projective space CPN . Partial results are contained, e.g., in [13, 15, 32] and also in

[9], where S. S. Chern proved that the 1-codimensional Kähler-Einstein submanifolds of CPN

are either totally geodesics or the complex hyperquadrics, later extended by Tsukada [35] in

the case of codimension 2.

The above considerations motivate the following definition.

Definition 1.1. A Kähler manifold (M,g) is called projectively induced, if (M,g) can be

Kähler immersed into a (finite dimensional) complex projective space CPN endowed with the
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2 GIANNI MANNO AND FILIPPO SALIS

Fubini–Study metric gFS, namely the metric associated to the Kähler form given in homoge-

neous coordinates by

i

2
∂∂̄ log

(

|Z0|
2 + . . .+ |ZN |2

)

. (1)

Taking into account that all the explicit examples of projectively induced Kähler-Einstein

manifolds hitherto known are homogeneous manifolds (cfr. [33]), some conjectures have been

put forward to justify this phenomenon (see e.g. [23, Chap. 4]):

Conjecture 1. A n-dimensional complex manifold endowed with a projectively induced Kähler-

Einstein metric is an open subset of a complex flag manifold, i.e. a compact simply-connected

Kähler manifold on which its holomorphic isometry group acts transitively.

Remark 1.2. If n = 1, Conjecture 1 is true. Indeed, by the Uniformization Theorem, the only

1-dimensional Kähler-Einstein manifolds are open subsets of complex space forms. Moreover,

the only complex space forms that admit a Kähler immersion into (CPN , gFS) are complex

projective spaces endowed with an integer multiple of the Fubini-Study metric (see [8]).

1.2. Description of the main result. In the present paper we focus our attention to Con-

jecture 1 in the case of Tn-invariant Kähler-Einstein manifolds (which includes the remarkable

class of the toric manifolds, see Example 1.5 below). In order to better describe our main

result, we need some further definitions.

Definition 1.3. A connected Kähler manifold (M,g) is called Tn-invariant if there exists an

effective, biholomorphic and Hamiltonian action on M of the n-dimensional real torus Tn with

at least one fixed point.

The following examples provide some important classes of Tn-invariant Kähler manifolds.

Example 1.4 (Complex space forms). Let z = (z1, . . . , zn) be complex holomorphic variables

on Cn.

• Complex Euclidean spaces

(Cn, geuc),

where geuc is the metric associated to the Kähler form i∂∂̄‖z‖2,

• complex hyperbolic spaces

(Dn, ghyp) ,

where Dn = {z ∈ Cn | ‖z‖2 < 1} and ghyp is the metric associated to the Kähler form

− i
2∂∂̄ log(1− ‖z‖2) and

• complex projective spaces

(CPn, gFS) ,

where gFS is the metric associated to the Kähler form i
2∂∂̄ log

(

1 + ‖z‖2
)

, cfr. (1),

are examples of Tn-invariant Kähler manifolds.

Example 1.5 (Toric Kähler manifolds). Toric n-dimensional Kähler manifolds are remarkable

examples of Tn-invariant Kähler manifolds. We recall that the former are defined as compact n-

dimensional Kähler manifolds where it is defined an effective, biholomorphic and Hamiltonian
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action of the n-dimensional real torus Tn. As a consequence of the Atiyah and Guillemin-

Sternberg’s theorems (see [1, 11, 12]), a toric n-dimensional manifold has at least n + 1 fixed

points with respect to the Tn-action. Complex projective spaces CPn are basic examples of toric

manifolds.

As we said, the main object of the present paper will be Tn-invariant Kähler-Einstein man-

ifolds. In particular, in this context, Problem 1 can be translated into the following one.

Problem 2. Classify all the projectively induced Tn-invariant Kähler-Einstein manifolds.

Since complex projective spaces are the only irreducible Tn-invariant flag manifolds and since

only the integer multiples of the Fubini-Study metric are projectively induced (see [8, 23]), in

the specific case of Tn-invariant Kähler metrics, Conjecture 1 reads as:

Conjecture 2. The only projectively induced Tn-invariant Kähler-Einstein manifolds are open

subsets of CPn1 × . . .× CPnk , with n1 + . . .+ nk = n, endowed with the Kähler metric

q (c1gFS ⊕ . . .⊕ ckgFS) ,

where k and q ∈ Z+, ci =
1

Gk−1

∏

j 6=i(nj + 1) for i = 1, . . . , k and G = gcd(n1 + 1, . . . , nk + 1),

namely the greatest common divisor between n1 + 1, . . . , nk + 1.

Our main goal consists in proving Conjecture 2 for n ≤ 6, i.e., the following theorem.

Theorem 1.6. Conjecture 2 is true for n ≤ 6.

We note that Conjecture 2 has been already proved2 in the case n = 2 in [25] and in the

case n ≤ 4 for toric manifolds in [3]. In both papers the results have been achieved thanks to

a careful analysis of a family of real Monge-Ampère equations, that required some demanding

computations. The approach we adopt in the present paper is slightly different: our main

analytical object is a single Monge-Ampère equation whose we study the gradient map of its

solutions. A central role will be played by the closure of the image of such maps, which in

the context we are dealing with, turn out to be the so-called Delzant polytopes. Some further

explanations are contained in Section 2.1 below.

Notation and conventions. If I = (I1, . . . , In) ∈ Nn is a multi-index, then the length of I is

defined as |I| :=
∑n

α=1 Iα. If w = (w1, . . . , wn), then w
I denotes the monomial in n variables

∏n
α=1 w

Iα
α .

2. Proof of Theorem 1.6

In Sections 2.1–2.5.1 we obtain results for arbitrary dimension n. In Sections 2.5.2–2.5.7 we

used the results obtained in the previous sections in the case n ≤ 6 to prove Theorem 1.6.

2We also note that Conjecture 2 is true if we replace the assumption of Tn-invariance with the more restrictive
one of U(n)-invariance (cfr. the results achieved in [20] thanks to some techniques based on the Calabi’s diastasis
function developed in [22]).
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2.1. Strategy of the proof and description of the paper. The first step for the proof

of Theorem 1.6 consists in constructing a bijective correspondence between Kähler-Einstein

metrics object of Problem 2 and polynomial solutions of a certain class of Monge-Ampère

equations depending on the Einstein constant. More precisely, we are going to describe in Sec-

tion 2.2 how such bijective correspondence is realized by means of a particular Kähler potential,

namely the Calabi’s diastasis function. In a suitable coordinate system x = (x1, . . . , xn), after

a suitable normalization of the Einstein constant (such normalization can be assumed without

loosing of generality), the above bijective correspondence is obtained in terms of solutions of

the n-dimensional Monge-Ampère equation

detD2u = e−u, u(x) = u(x1, . . . , xn) (2)

of the type

u(x) = log
∑

I∈I

aIe
I·x −

n
∑

i=1

xi, (3)

where I is a finite subset of Nn containing every multi-indices I = (I1, . . . , In) such that aI ≥ 0

and aI = 1 for |I| ≤ 1. Furthermore, taking into account what we said above, Conjecture 2

can be reformulated in simpler way, see Conjecture 3.

The second step is contained in Section 2.3 and it concerns the study of the gradient map

of the solutions to Monge-Ampère equation (2). In particular, by considering [10] and [26]

together with some technical lemmas, we prove that the closure of the gradient image has to be

the dual of a smooth Fano polytope, in particular it is a reflexive polytope, having the origin

as barycenter. Conversely, any convex polytope having the origin as barycenter is the closure

of the image of the gradient map of a convex solution to (2) (see [6]), not necessary of type (3).

Section 2.3 ends by proving that decomposable convex polytopes are associated to solutions

to the n-dimensional Monge-Ampère equation (2) if and only if they are cartesian products of

polytopes associated to solutions to lower dimensional Monge-Ampère equations of type (2).

The third step is contained in Section 2.4. Taking into account the results of [25], we find

some constraints on the shape of polytopes associated to solutions of type (3) to the Monge-

Ampère equation (2).

Finally, in Section 2.5, we conclude the proof of Theorem 1.6 through a case-by-case analysis

of the few polytopes satisfying all the properties identified in the previous sections. In partic-

ular, we exploit the classification of reflexive polytopes by M. Øbro [30] in order to prove that

the only polytopes associated to solutions of the equation (2) of type (3) are either the simplex

or a cartesian product of lower dimensional simplices.

2.2. Reduction of Problem 2 to the existence of polynomial solutions of a n-dimensional

Monge-Ampère equation. Since Kähler potentials of the Fubini-Study metric gFS are real

analytic functions, a Kähler potential Φ of a Kähler metric defined as holomorphic pullback of

gFS is forced itself to be real analytic. Thus, considering a holomorphic system of coordinates

on U ⊆ Cn

z = (z1, . . . , zn),
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Φ is equal to its power expansion around the origin:

Φ(z) =
∑

I,J∈Nn

aIJz
I z̄J . (4)

The function (4) can be complex analytically extended to a function Φ̃ on a neighborhood of

the diagonal in U × U , where U is the conjugate of U , thus defining the diastasis function

D0 : U → R for g:

D0(z) = Φ̃(z, z̄)− Φ̃(z, 0) − Φ̃(0, z̄) + Φ̃(0, 0).

Moreover, for any Kähler manifold with real analytic metric, there exists a coordinates

system, that we will still denote by z = (z1, . . . , zn), in a neighbourhood of each point, such

that

D0(z) =

n
∑

α=1

|zα|
2 + ψ, (5)

where ψ is a power series with degree ≥ 2 in both z and z̄.

Definition 2.1. Coordinates (z1, . . . , zn) for which (5) holds true are called Bochner’s coordi-

nates for the metric g.

Bochner’s coordinates are uniquely determined up to unitary transformations (cfr. [7, 8, 14,

15, 34]).

Lemma 2.2. Let (M,g) be a projectively induced Tn-invariant Kähler manifold. Let z =

(z1, . . . , zn) be Bochner’s coordinates for g centered at a fixed point p of the toric action. Then

the diastasis function D0(z) can be written as

D0(z) = log (P (z)) , (6)

where

P (z) =
∑

I∈I

aI |z
I |2 (7)

with aI > 0 and aI = 1 for every |I| ≤ 1. Here I is a finite subset of Nn.

Proof. Let Z0, . . . , ZN be homogeneous coordinates on CPN , with N ≥ n. Let ζj =
Zj

Z0
be the

affine coordinates around the point [1, 0 . . . , 0] on U0 = {Z0 6= 0}. Let f : M → CPN be a

Kähler immersion. Up to a unitary transformation of CPN and, if necessary, by restricting f

to an open neighborhood V of p, we can assume that f(p) = [1, 0 . . . , 0] and f(V ) ⊂ U0.

By [8, Theorem 7], there exist Bochner’s coordinates on U0 such that the restriction of f to

an open neighborhood of p ∈M where are defined Bochner’s coordinates z = (z1, . . . , zn) for g

can be written in coordinates as the graph of a holomorphic function:

z = (z1, . . . , zn) 7→ (z1, . . . , zn, fn+1(z), . . . , fN (z)),

where

fj(z) =
∑

I∈Nn

αjIz
I , j = n+ 1, . . . , N.
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Since one can check that the affine coordinates ζj on U0 are Bochner’s coordinates for the

Fubini–Study metric gFS and by considering also that the diastasis function is hereditary (see

[8, Prop. 6]) in the sense that the diastasis function of the Kähler immersed manifold is given

by the composition of the diastasis of the ambient space, that in our case is log(1+
∑N

j=1 |ζj|
2),

with the Kähler immersion, we get

D0(z) = log



1 +

n
∑

j=1

|zj |
2 +

N
∑

j=n+1

|fj(z)|
2



 .

It is not hard to see that the Diastasis function centered at a fixed point of the toric action

depends only on the moduli of the coordinates z (see e.g. [2]). Hence, fj’s needs to be

monomials in z and formula (6) follows. �

Lemma 2.3. The Einstein constant of a projectively induced Tn-invariant Kähler-Einstein

manifold is a positive rational number.

Proof. Let z = (z1, . . . , zn) an arbitrary holomorphic coordinates system. A Kähler metric g

with diastasis function D0(z) is Einstein if and only if there exists λ ∈ R such that

λ
i

2
∂∂̄D0 = −i∂∂̄ log det(gαβ̄).

Hence, by the ∂∂̄-lemma, there exists a holomorphic function ϕ such that

det(gαβ̄) = e−
λ
2
(D0+ϕ+ϕ̄). (8)

Let now set Bochner’s coordinates, that we keep denoting by z. By comparing the series

expansions of both sides of the equation (8), we get that ϕ + ϕ̄ is forced to be zero (cfr. e.g.

[15, 31]).

In particular, since D0 is the diastasis of a projectively induced Tn-invariant Kähler metric,

by taking into account Lemma 2.2, the equation (8) reads as an equality between polynomials

of real variables

xα := |zα|
2,

more precisely:

det
[(

P ∂2P
∂xα∂xβ

− ∂P
∂xα

∂P
∂xβ

)

xα + P ∂P
∂xα

δαβ

]

1≤α,β≤n

Pn−1
= P−λ

2
+n+1. (9)

Hence, λ needs to be a rational number. Moreover, by comparing the degrees of both sides of

(9), we get λ ≥ 2 n
deg P > 0. �

Remark 2.4. In view of Lemma 2.3, we have λ = 2 s
q
∈ Q+, where we are assuming gcd(s, q) =

1. Let P (|z1|
2, . . . , |zn|

2) be a polynomial solution of type (7) to (9). Since gcd(2nq, s) = 1, P

is forced to be the q-th power of a polynomial, namely

P (|z1|
2, . . . , |zn|

2) = P (x1, . . . , xn) =
∑

I∈I

aIx
I , with aI = 1 if |I| ≤ 1, (10)
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must be equal to

R

(

x1
q
, . . . ,

xn
q

)q

where R(x1, . . . , xn) is a polynomial of type (10). One can easily check that R
(

|z1|
2, . . . , |zn|

2
)

=

R (x1, . . . , xn) is a solution to the equation

det
[(

R ∂2R
∂xα∂xβ

− ∂R
∂xα

∂R
∂xβ

)

xα +R ∂R
∂xα

δαβ

]

1≤α,β≤n

Rn−1
= Rn+1−s. (11)

Moreover, if a polynomial R(x1, . . . , xn) of type (10) is a solution of (11) for some s ∈ N, then

P (x1, . . . , xn) = R
(x1
s
, . . . ,

xn
s

)s

is a polynomial solution of the same type to the equation

det
[(

P ∂2P
∂xα∂xβ

− ∂P
∂xα

∂P
∂xβ

)

xα + P ∂P
∂xα

δαβ

]

1≤α,β≤n

Pn−1
= Pn. (12)

Lemma 2.5. Without loss of generality, in the sense we clarified in Remark 2.4, in (9) we can

assume λ/2 = 1.

In view of Lemma 2.5, we give a refinement of Conjecture 2.

Conjecture 3 (Refinement of Conjecture 2). The only projectively induced Tn-invariant Kähler-

Einstein manifolds (M,g) such that Ric(g) = 2g are open subsets of CPn1 × . . . × CPnk, with

n1 + . . .+ nk = n, endowed with the Kähler metric

(n1 + 1)gFS ⊕ . . .⊕ (nk + 1)gFS .

We now sum up the results of the present section obtained so far, to arrive to Proposition

2.6 below, which plays a central role in the proof of Theorem 1.6, i.e. Conjecture 3 for n ≤ 6.

Every Kähler metric admits an infinite number of local potentials defined in the same open

subset, but, in the real analytic case, there exists only one whose power expansion does not

contain any term in z or z̄: the Diastasis function D0(z). If (M,g) is a projectively induced

Tn-invariant Kähler manifold and p is a fixed point of the toric action, chosen a holomorphic

coordinate system z = (z1, . . . , zn) centered at p, then D0(z) needs to read as (6), as seen in

Lemma 2.2. If we in addition also assume that (M,g) is a Kähler-Einstein manifold, then

its diastasis function D0 can be obtained from a solution P to the equation (12) in the way

described in Remark 2.4.

Proposition 2.6. There exists a bijective correspondence between projectively induced Tn-

invariant Kähler-Einstein metrics defined in a neighborhood of a fixed point and the solutions

of the real n-dimensional Monge-Ampère equation (2) of type (3).

Proof. As we have already explained above, projectively induced Tn-invariant Kähler-Einstein

metrics can be obtained by finding solutions of type (10) to (12), and vice versa. Moreover,

taking into account the replacement

xi 7→ exi
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one realizes that (10) is a solution to (12) if and only if (3) is a solution to (2). �

Note that, in the 1-dimensional case, (2) reads as

u′′ = e−u

and the unique solution of type (3) to this equation is

log

(

1 +
ex

2

)2

− x. (13)

By substituting x with |z|2 in (13), we get a local Kähler potential in the affine coordinate z

for the metric 2gFS on CP1, according to Remark 1.2 and to Conjecture 3.

2.3. Gradient maps of the solutions to the Monge-Ampère equation (2): Momentum

maps and Delzant polytopes.

Lemma 2.7. Let u be a function reading as (3). Then the closure P of the image Du(Rn)

of the gradient map Du of u is the convex hull of I translated by −1 = (−1, . . . ,−1) and, if

d = maxI∈I |I|,

P ⊆

{

(u1, . . . , un) ∈ Rn
∣

∣

∣u1 ≥ −1, . . . , un ≥ −1,

n
∑

i=1

ui ≤ d− n

}

. (14)

In particular, P is a lattice polytope, namely a polytope having all the vertices with integer

coordinates.

Proof. Via a straightforward computation, we see that the valuesDu(x) of the gradient function

are (up to translations) convex combinations of the elements of I:

Du(x) =
1

∑

I∈I aIe
I·x

∑

I∈I

aIe
I·xI − 1. (15)

Thus, we get that P + 1 is the convex hull of I. Moreover, since for any I ∈ I ⊂ Nn we have

that |I| ≤ d, then for any (u1, . . . , un) ∈ P + 1 we have
∑n

i=1 ui ≤ d. �

Remark 2.8. If u is of type (3), then

{(−1, . . . ,−1), (0,−1, . . . ,−1), (−1, 0,−1, . . . ,−1), . . . , (−1, . . . ,−1, 0)} ⊂ P.

When u is a solution of (2), some additional geometric properties of its associated polytope

P can be obtained by using the theory of toric manifolds. In order to better introduce such

properties we need some extra definitions coming from the context of convex polytopes.

Definition 2.9. Let u : Rn → R be a solution of type (3) to the Monge-Ampère (2). The (con-

vex) polytope P defined as the closure of Du(Rn) is going to be called the polytope associated

to u.

Definition 2.10. An n-dimensional convex polytope is called a Delzant polytope if and only if

all the following properties are fulfilled

simplicity: at each vertex p, n edges li meet and
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rationality: li = p+ tvi, where t ∈ R+ and (v1, . . . , vn) ∈ Zn,

smoothness: in particular (v1, . . . , vn) is a Z-basis for Zn.

Definition 2.11. An n-dimensional lattice polytope P containing 0 = (0, . . . , 0) as an interior

point is called reflexive if and only if

P = {y ∈ Rn | Ay ≤ 1}, (16)

where A ∈ Zm,n and 1 is the column of length m with all entries equal to 1.

Remark 2.12. A reflexive polytope possesses a unique interior point with integer coordinates,

which is forced to be origin in view of Definition 2.11.

In order to prove that polytopes associated to solutions of type (3) to Monge-Ampère equa-

tion (2) are in particular Delzant (see Proposition 2.15 below), we need the following two

Lemmas.

Lemma 2.13. A projectively induced Tn-invariant Kähler-Einstein manifold is an open subset

of a compact, simply connected and complete manifold M .

Proof. D. Hulin proved in [14] that every Kähler-Einstein manifold Kähler immersed into a

complex projective space can be extended to a complete Kähler-Einstein manifold, that is also

Kähler immersed into the same complex projective space. Therefore, since λ is positive by

Lemma 2.3, in view of the Bonnet-Myers’ theorem, M has to be compact. Moreover, every

compact Kähler manifold with positive definite Ricci tensor is simply connected by a well

known result due to Kobayashi [17]. �

Lemma 2.14. A projectively induced Tn-invariant Kähler-Einstein manifold M is an open

subset of a toric Kähler manifold.

Proof. In view of Lemma 2.13, we can assume without loss of generality, that M is a compact,

simply connected and complete Kähler-Einstein manifold. Let z = (z1, . . . , zn) be Bochner’s

coordinates centered at a fixed point of the toric action and let D0(z) be the diastasis function.

Let u : U ∩ (C \ {0})n → R such that

u(log |z1|
2, . . . , log |zn|

2) = D0

(

|z1|
2, . . . , |zn|

2
)

. (17)

Chosen any branch of the complex logarithm, we set holomorphic coordinates wi = log zi.

Hence, the Kähler form reads locally as

ω =
i

2
∂∂̄u =

i

2

∑

k,j

∂2u

∂wk∂w̄j
dwk ∧ dw̄j =

∑

k,j

∂2u

∂rk∂rj
drk ∧ dθj, (18)

where wk = rk + iθk.

Being M simply connected and real analytic, each Killing vector field ∂θk can be extended

to a unique Killing vector field defined on the whole manifold M (see [28] theorems 1 and 2).

Let Xk be the global extension of ∂θk . Therefore, since every Killing vector field on a compact

Kähler manifold is real holomorphic (see e.g. [27] prop. 9.5) and being M complete, we get a
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holomorphic and isometric action of R on M by means of the flows of the each Killing vector

field Xk.

Furthermore, for any 1 ≤ k, j ≤ dimM , [Xk,Xj ] is a Killing vector field vanishing on U .

Since Killing vector fields (different from the identically zero vector field) vanish on totally

geodesic submanifolds of real codimension at least 2 (cfr. [18]), the commutator [Xk,Xj ] needs

to vanish everywhere on M . Therefore, we have a transitive holomorphic and isometric action

G of Rn on M .

Let V ⊂ M be the subset where at least a Killing vector field Xk vanishes. By considering

that M \V consists of and only of maximal dimensional orbits of the action G, such action can

be restricted to M \ V . We easily see that Zn is the stabilizer of G in (M \ V ) ∩U . Hence, we

have a holomorphic and isometric action of the real torus Rn/Zn on M \V . Since stabilizers of

G in points belonging to V contain Zn, this toric action can be extended to the whole manifold

M .

Every Killing vector field on a compact and simply connected Kähler manifold M is Hamil-

tonian. Indeed, since these vector fields are also real holomorphic because M is compact, they

need to be symplectic too, i.e. iXk
ω is closed. Being M simply connected, H1

dR(M) = 0.

Therefore, iXi
ω needs to be also exact.

The existence of such effective Hamiltonian action allows us to conclude that M is a toric

Kähler manifold. �

Proposition 2.15. If a function u of type (3) is a solution to the Monge-Ampère equation

(2), then its associated polytope P is Delzant and reflexive.

Proof. By considering Lemma 2.14, u can be seen as a local Kähler potential defined on an

open dense subset of an n-dimensional toric Kähler-Einstein manifold M (see (17)). Let ω be

the Kähler form of M . Since, by considering (18), we have

i∂θjω = −d

(

∂u

∂rj

)

a momentum map

µ :M → t
∗ ∼= Rn

is given by the gradient of u (we are denoting the dual of the Lie algebra of Tn with t
∗).

By the results of T. Delzant (see e.g. [10]), µ(M) ⊂ Rn is forced to satisfy the properties in

the Definition 2.10.

Furthermore, since u is a solution of the Monge-Ampère equation (2), the Ricci form ρ

of M is equal to 2ω (see also proof of Lemma 2.3 and Remark 2.4). Then, the first Chern

class c1(M) = 1
2π [ρ] of M is equal to 1

π
[ω]. By taking into account also that P = µ(M) is

a lattice polytope (see Lemma 2.7), it follows from D. McDuff’s result [26] that P contains

only one interior point with integer coordinates. By (14), such interior point is forced to be 0.

Furthermore, in [26], it is shown that the condition c1(M) = 1
π
[ω] implies that the polytope P

is reflexive. This has been seen by proving that what the author called the affine distance of

the integer interior point (in our case 0) from any facet is equal to 1. �
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Although it is widely known that the existence of Kähler-Einstein metrics on toric manifolds

is related to the position of the barycenter of the image of the momentum map related to the

symplectic structure (see e.g. [24, 6, 37]), we prove the following for the sake of self-consistency.

Lemma 2.16. Let u be a solution of type (3) to the Monge-Ampère equation (2). Then its

associated polytope P has the barycenter at the origin 0.

Proof. The α-th component of the barycenter of P reads

∫

P

uα du1 . . . dun =

∫

Rn

∂u

∂xα
detD2u dx =

∫

Rn

∂u

∂xα
e−u dx = −

∫

(R+)n−1

∫

R+

∂

∂yα

(

yα
P (y1, . . . , yn)

)

dyαdy,

where yi = exi and y = (y1, . . . , yα−1, yα+1, . . . , yn). Since 0 is an interior point of P (see

Proposition 2.15),

lim
yα→+∞

yα
P (y1, . . . , yn)

= 0,

so all the previous integrals needs to vanish. �

Actually we have also a converse of Lemma 2.16, that holds in the more general setting of

convex bodies.

Proposition 2.17 ([6]). If P is a convex body containing 0 in its interior, then there exists a

smooth convex function φ satisfying the Monge-Ampère equation (2) and such that the closure

of the image of the gradient map Dφ of φ is P if and only if 0 is the barycenter. The solution

φ is uniquely determined up to the action of the additive group Rn by translations.

It is natural to ask the relationship between separability of solutions to the equation (2),

i.e. solutions of type u(x1, . . . , xk)+v(xk+1, . . . , xk+h), and decomposability of their associated

polytopes, i.e. polytopes which are cartesian product of lower dimensional ones. This aspect

is clarified by the following propositions.

Proposition 2.18. Let u(x1, . . . , xk) and v(xk+1, . . . , xk+h) be respectively a solution of type

(3) to the k and h dimensional Monge-Ampère equation (2), with associated polytopes P and

Q. Then, u + v is a solution of type (3) to k + h dimensional Monge-Ampère equations (2),

whose associated polytope is P ×Q.

Proof. It follows straightforwardly. �

Conversely, we have the following

Proposition 2.19. If u is a solution of type (3) to the Monge-Ampère equation (2) whose

associated polytope can be decomposed as a cartesian product of a k-dimensional polytope P

and a h-dimensional polytope Q, then the k and h dimensional Monge-Ampère equations (2)

admit solutions of type (3) whose associated polytope are respectively P and Q.

Proof. Since u is a solution of type (3) to the k+ h Monge-Ampère equation (2), Du(Rk+h) =

P ×Q is a reflexive polytope (see Proposition 2.15). Hence, it is easily to see that both P and
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Q needs to be reflexive. Moreover, by considering that the origin of Rk+h is the barycenter of

P × Q (see Lemma 2.16), the barycenter of P and Q is forced to be their only interior point

with integer coordinates. Therefore, in view of Proposition 2.17 we have convex solutions f1

and f2 respectively to k and h dimensional Monge-Ampère (2), whose associated polytope is

respectively P and Q. By taking into account again Proposition 2.17, we have that

u(x1, . . . , xk+h) = f1(x1 + c1, . . . , xk + ck) + f2(xk+1 + ck+1, . . . , xk+h + ck+h)

with (c1, . . . , ck+h) ∈ Rk+h. Then f1(x1+ c1, . . . , xk + ck) and f2(xk+1+ ck+1, . . . , xk+h+ ck+h)

are functions of type (3). �

2.4. Some technical results. For practical reasons, in the following Lemma we refer to the

Monge-Ampère (12) instead of the equation (2), keeping always in mind the equivalence ex-

pressed by Proposition 2.6. The following Lemma follows from Lemma 2.8 in [25] and it will

be useful for determining the shape of the polytopes associated to the solutions of type (3) to

the Monge-Ampère equation (2).

Lemma 2.20. Let P be a solution of type (10) to the Monge-Ampère equation (12). Then the

restriction P (0, . . . , 0, t, 0, . . . , 0) of P to the i-axis is

P (0, . . . , 0, t, 0, . . . , 0) =

(

1 +
t

ki

)ki

(19)

and the restriction ∂P
∂yj

(0, . . . , 0, t, 0, . . . , 0) of ∂P
∂yj

to the i-axis, where j 6= i, is

∂P

∂yj
(0, . . . , 0, t, 0, . . . , 0) =

(

1 +
t

ki

)hij

, (20)

for some ki ∈ Z+ and hij ∈ N. Moreover,
∑

α6=i

hiα = ki(n− 2) + 2 (21)

and

hij
ki

=
hji
kj

(22)

for any i and j.

Proof. Formula (19) is formula (13) in [25] with s = 1, where s denotes the constant λ/2 with

λ the Einstein constant. Therefore, it can be put equal to 1 in view of Lemma 2.4.

Concerning the formula (20), the formula (15) of [25] with s = 1 gives

∏

j 6=i

∂P

∂yj
(0, . . . , 0, t, 0, . . . , 0) =

R
∏

α=1

(

1 +
t

ri

)ki(n−2)+2

for some R ∈ Z+ and ri ∈ R+. In the same Lemma 2.8 of [25], it has been proved that the

only possibility is R = 1 and r1 = ki. Hence,

∏

j 6=i

∂P

∂yj
(0, . . . , 0, t, 0, . . . , 0) =

(

1 +
t

ki

)ki(n−2)+2

.
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Then, formulas (20) and (21) follow straightforwardly.

Formula (22) follows from Cauchy-Schwarz Lemma by evaluating the first derivative of (20) at

the origin. �

2.4.1. A geometric interpretation of the constants ki and hij . Let u be a function of type (3),

namely a function reading as

u(x) = log
∑

I∈I

aIe
I·x −

∑

α

xα, aI = 1 if |I| ≤ 1, (23)

whose gradient image is equal to the interior of a given polytope P.

Considering (15), a direct computation shows that the limit of ∂u
∂xj

for every xα different from

xi tending to −∞, is






Li(xi) =
1∑

I∈Î
aIeI·x

∑

I∈Î
aIe

I·xIi − 1, if j = i

−1, otherwise

where Î = {I = (I1, . . . , In) ∈ I | Iα = 0 ∀α 6= i}. Therefore the limit of the gradient of u, for

every xα different from xi tending to −∞, provides a parametrization for the interior of the

edge li of P starting from −1 and parallel to the i-axis. Furthermore, we have that

lim
xi→+∞

Li(xi) = max
I∈Î

|I| − 1.

Indeed, if Î ∈ Î is such that |Î| = max
I∈Î

|I|, then the coefficient a
Î
cannot be 0 in view of

the bijective correspondence between I and integer points of P expressed by Lemma 2.7. By

working with the polynomial

P (x) =
∑

I∈I

aIx
I , aI = 1 if |I| ≤ 1,

instead of the function u (23) (this choice is justified by Proposition 2.6) we have that the

degree of the restriction to i-axis of P is max
I∈Î

|I|, which is in turn equal to the length of the

edge li of P.

Moreover, by means of very similar considerations as above that we skip for the sake of brevity,

we get that the degree of restriction to the i-axis of the derivative of P with respect to the

j-th variable, is an integer value between 0 and the length of the intersection of P ∩ ℓij, where

ℓij denotes the straight line parallel to the i-axis and passing through the point having all its

coordinates equal to −1 except for the j-th one, which is equal to 0.

2.5. Classification of smooth reflexive polytopes: final steps of the proof of Theorem

1.6. M. Øbro developed an algorithm (see [29]) that has been used to completely classify

smooth reflexive polytopes up to dimension 7. Indeed, until then a classification only up to size

5 was known ([4, 38, 5, 16]). However, we are going to consider only polytopes up to dimension

6 because only in this case is present a description [30] in terms of the matrix A, see (16).

Let

k = (k1, . . . , kn)
T (24)
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and

Hij =







hij if i 6= j

0 if i = j
(25)

where ki and hij are those defined in Lemma 2.20.

By Propositions 2.15, 2.16 and 2.18, we can consider only Delzant reflexive polytopes with

barycenter at 0 that cannot be decomposed as a cartesian product of lower dimensional poly-

topes.

In the subsequent subsections we will use some tables containing the matrix A, defined by

(16), and the vector k and the matrix H, defined respectively by (24) and (25), that we have

computed by considering what seen in Section 2.4.1. Notice that we consider only the case

where each entry of H attains the maximum value predicted in the aforementioned section,

because we are going to realize that only in this case the condition (21) is satisfied.

2.5.1. Simplex. The n-simplex with the following n+ 1 vertices

(−1, . . . ,−1), (n,−1, . . . ,−1), (−1, n,−1 . . .), . . . , (−1, . . . ,−1, n)

is Delzant and reflexive and, as such, there exists a unique convex solution of the Monge-Ampère

(2) associated to it. The aforementioned simplex is described by Table 1.

A k H

(

−Idn×n

1

)









n+ 1
...

n+ 1









Hij = n− nδij

Table 1: n-dimensional simplex with barycenter at the origin.

In Table 1, Idn×n is the n-dimensional identity matrix and 1 is the row whose entries are 1.

We note that the values contained in the table do not contradict (21) and (22). Indeed, in this

case we have the unique solution

u(x1, . . . , xn) = log

(

1 +

n
∑

i=1

exi

n+ 1

)n+1

−

n
∑

i=1

xi, (26)

that, in view of Proposition 2.6, is the solution associated to

(CPn, (n + 1)gFS) , (27)

in accordance with Conjecture 3.

2.5.2. 1-dimensional case. As we have already seen in the very end of Section 2.2, the only

solution in this case is (13), that leads to (27) for n = 1. In particular, we notice that the

associated polytope is the segment from −1 to 1, namely a 1-dimensional simplex, according

to Section 2.5.1.
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2.5.3. 2-dimensional case. As we have already seen in Section 2.5.1, in this case we have the

solution associated to the 2-simplex, namely (26) for n = 2. Furthermore, in view of the

Proposition 2.18 and Section 2.5.2, we have also the solution

log
(

1 +
x1
2

)2
+ log

(

1 +
x2
2

)2
− x1 − x2,

whose associated polytope is the square with vertices (−1,−1), (−1, 1), (1,−1) and (1, 1),

namely the cartesian product of the segment {(t,−1) | −1 ≤ t ≤ 1} and the segment {(−1, t) | −

1 ≤ t ≤ 1}. This is the only reflexive Delzant polytope that can be decomposed as a cartesian

product of 1-dimensional ones. In view of Proposition 2.6, this solution leads to

(CP1 × CP1, 2gFS ⊕ 2gFS),

cfr. Conjecture 3. There exists another reflexive Delzant polytope with barycenter at the

origin, namely the one given by Table 2.

A k H




−1 0
0 −1
1 −1
−1 1
1 0
0 1



 ( 11 ) ( 0 2
2 0 )

Table 2: Undecomposable 2-dimensional smooth reflexive

polytopes with barycenter at the origin (2-simplex excluded).

The polytope described by Table 2 is the hexagon E with vertices (−1,−1), (−1, 0), (0,−1),

(0, 1), (1, 0), (1, 1). It is easy to realize that such polytope satisfies conditions (21) and (22).

The most general function u of type (3) such that the closure of Du(R2) is equal to E reads as

log
(

1 + ex1 + ex2 + a(1,1)e
x1+x2 + a(2,0)e

2x1+x2 + a(0,2)e
x1+2x2 + a(2,2)e

2x1+2x2
)

− x1 − x2.

If such u is a solution of the Monge-Ampère (2), then it needs to satisfy (19) and (20). Hence

u(x1, x2) = log
(

1 + ex1 + ex2 + 2ex1+x2 + e2x1+x2 + ex1+2x2 + a(2,2)e
2x1+2x2

)

− x1 − x2.

We can easily compute that

lim
x1→−∞

lim
x2→−∞

∂2

∂x1∂x2

(

eu detD2u
)

6= 0

independently of a(2,2). Therefore there is no a(2,2) ∈ R for which u is a solution of (2).

2.5.4. 3-dimensional case. As said in Section 2.5.1, we have the solution associated to the 3-

simplex, namely (26) for n = 3. Furthermore, in view of the Proposition 2.18 and Section 2.5.2,

we have also the solutions

log
(

1 +
x1
2

)2
+ log

(

1 +
x2
2

)2
+
(

1 +
x3
2

)2
− x1 − x2 − x3



16 GIANNI MANNO AND FILIPPO SALIS

and, up to variables renaming,

log

(

1 +
x1 + x2

3

)3

+ log
(

1 +
x3
2

)2
− x1 − x2 − x3,

which, in view of Proposition 2.6, lead respectively to

(CP1 × CP1 × CP1, 2gFS ⊕ 2gFS ⊕ 2gFS)

and

(CP2 × CP1, 3gFS ⊕ 2gFS),

cfr. Conjecture 3. We can easily see that the associated polytopes are respectively, the cube

with vertices

(−1,−1,−1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1), (1, 1, 1),

namely the cartesian product of the three segments {(−1,−1, t) | −1 ≤ t ≤ 1}, {(−1, t,−1) | −

1 ≤ t ≤ 1} and {(t,−1,−1) | − 1 ≤ t ≤ 1},

and the prism with vertices

(−1,−1,−1), (−1, 1,−1), (1,−1,−1), (−1,−1, 1), (−1, 1, 1), (1,−1, 1)

namely the cartesian product of the 2-simplex whose vertices are (−1,−1,−1), (−1, 1,−1), (1,−1,−1)

and the segment {(−1,−1, t) | − 1 ≤ t ≤ 1}. By taking into account Proposition 2.19, we have

no more decomposable polytopes to take into account. Indeed, even if there exists another

decomposable reflexive Delzant polytope with barycenter at the origin, namely the prism with

vertices

(−1,−1,−1), (−1, 0,−1), (0,−1,−1), (0, 1,−1), (1, 0,−1), (1, 1,−1),

(−1,−1, 1), (−1, 0, 1), (0,−1, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1),

we can see directly that it is a cartesian product of an hexagon and a segment. In view of

Proposition 2.19, there are no solutions of type (3) associated to such polytope, since there are

no 2-dimensional solutions of type (3) associated to the hexagon.

Finally, there is another undecomposable reflexive Delzant polytope with barycenter at the

origin, namely the one given by Table 3.

A k H




−1 0 0
0 −1 0
0 0 −1
1 0 −1
0 0 1
0 1 1





(

1
3
2

) (

0 1 2
3 0 2
2 2 0

)

Table 3: Undecomposable 3-dimensional smooth reflexive

polytopes with barycenter at the origin (3-simplex excluded).

Note that the values contained in Table 3 do not satisfy the condition (22). Therefore we

cannot have solutions of type (3) related to such polytope.
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2.5.5. 4-dimensional case. As said in Section 2.5.1, we have the solution associated to the 4-

simplex, namely (26) for n = 4. Moreover, in view of the Proposition 2.19, Proposition 2.18

and taking into account the results of Sections 2.5.2 - 2.5.4, the only solutions whose associated

polytope can be decomposed as a cartesian product of lower dimensional polytopes are

log
(

1 +
x1
2

)2
+ log

(

1 +
x2
2

)2
+
(

1 +
x3
2

)2
+ log

(

1 +
x4
2

)2
− x1 − x2 − x3 − x4,

log

(

1 +
x1 + x2

3

)3

+
(

1 +
x3
2

)2
+ log

(

1 +
x4
2

)2
− x1 − x2 − x3 − x4,

log

(

1 +
x1 + x2

3

)3

+ log

(

1 +
x3 + x4

3

)3

− x1 − x2 − x3 − x4,

log

(

1 +
x1 + x2 + x3

4

)4

+ log
(

1 +
x4
2

)2
− x1 − x2 − x3 − x4.

In view of Proposition 2.6, these solutions respectively lead to

(CP1 × CP1 × CP1 × CP1, 2gFS ⊕ 2gFS ⊕ 2gFS ⊕ 2gFS),

(CP2 × CP1 × CP1, 3gFS ⊕ 2gFS ⊕ 2gFS),

(CP2 × CP2, 3gFS ⊕ 3gFS),

(CP3 × CP1, 4gFS ⊕ 2gFS),

cfr. Conjecture 3. Beside the 4-simplex, there exists also three further undecomposable reflexive

Delzant polytope with barycenter at the origin, namely the ones given by Table 4. Only the

first polytope in such table satisfies both conditions (21) and (22). Nevertheless, if we assume

the existence of a solution of type (3) to the Monge-Ampère equation (2) associated to such

polytope, we get a contradiction. Indeed, by taking into account (19) and (20), we obtain after

long computations that

lim
x1→−∞

lim
x2→−∞

lim
x3→−∞

lim
x4→−∞

∂2

∂x1∂x3

(

eu detD2u
)

> 0.

2.5.6. 5-dimensional case. As already seen in Section 2.5.1, we have the solution associated

to the 5-simplex, namely (26) for n = 5. Moreover, in view of Proposition 2.18 and 2.19,

we can obtain all the solutions associated to decomposable polytopes (as a cartesian product

of lower dimensional ones) by taking into account the results of Sections 2.5.2-2.5.5. Beside

the 5-simplex, there are also seven further undecomposable reflexive Delzant 5-polytope with

barycenter at the origin (see Table 5). Nevertheless, none of them satisfies the condition (22).

2.5.7. 6-dimensional case. As already seen in Section 2.5.1, we have the solution associated

to the 6-simplex, namely (26) for n = 6. Moreover, in view of Proposition 2.18 and 2.19,

we can obtain all the solutions associated to decomposable polytopes (as a cartesian product

of lower dimensional ones) by taking into account the results of Sections 2.5.2-2.5.6. Beside

the 6-simplex, there are also twelve further undecomposable reflexive Delzant 6-polytope with

barycenter at the origin, but only one (the first polytope in the Table 6) satisfies both the

condition (21) and (22). Nevertheless, if we assume the existence of a solution of type (3) to

the Monge-Ampère equation (2) associated to such polytope, we get a contradiction. Indeed,
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by taking into account (19) and (20), we can consider a linear system

lim
x1→−∞

lim
x2→−∞

lim
x3→−∞

lim
x4→−∞

lim
x5→−∞

lim
x6→−∞

∂2

∂xα∂xβ

(

eu detD2u
)

= 0

where α, β = 1, . . . , 6, having the third degree coefficients of the polynomial P = eu+
∑6

i=1 yi |yi=log xi

as variables. By considering that any coefficient of P cannot be negative, we obtain that such

system admits a unique solution. Thus, this result puts us in the position to get, after long

computations,

lim
x1→−∞

lim
x2→−∞

lim
x3→−∞

lim
x4→−∞

lim
x5→−∞

lim
x6→−∞

∂3

∂x21∂x2

(

eu detD2u
)

> 0,

that clearly contradicts (2).
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A k H














−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 1 −1 −1
−1 −1 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1















(

1
1
1
1

) (

0 0 2 2
0 0 2 2
2 2 0 0
2 2 0 0

)













−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 1 −1 −1
0 −1 1 0
−1 0 0 1
1 1 0 0
0 0 1 1













(

1
1
1
1

) (

0 0 2 2
0 0 2 2
1 2 0 1
2 1 1 0

)















−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 0 0 −1
0 1 0 −1
0 −1 0 1
0 1 0 0
0 0 0 1
0 0 1 1















(

1
1
3
1

) (

0 1 1 2
1 0 1 2
3 3 0 2
1 2 1 0

)

Table 4: Undecomposable 4-dimensional smooth reflexive
polytopes with barycenter at the origin (4-symplex excluded).

A k H








−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
1 1 0 0 −2
0 0 0 0 1
0 0 1 1 2









(

1
1
5
5
2

) (

0 0 1 1 3
0 0 1 1 3
5 5 0 4 3
5 5 4 0 3
2 2 2 2 0

)















−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
1 1 0 −1 −1
−1 −1 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 1 1















(

1
1
4
1
1

) (

0 0 1 2 2
0 0 1 2 2
4 4 0 3 3
2 2 1 0 0
2 2 1 0 0

)



















−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
1 0 0 0 −1
0 1 0 0 −1
0 −1 0 0 1
0 1 0 0 0
0 0 0 0 1
0 −1 1 0 1
0 1 0 1 0



















(

1
1
2
3
1

) (

0 1 1 1 2
1 0 1 1 2
2 3 0 2 1
3 2 3 0 3
1 2 1 1 0

)

A k H














−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
1 0 0 0 −1
0 1 0 0 −1
0 0 0 0 1
0 0 1 0 1
0 0 0 1 1















(

1
1
3
3
2

) (

0 1 1 1 2
1 0 1 1 2
3 3 0 3 2
3 3 3 0 2
2 2 2 2 0

)













−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
1 0 0 0 −1
0 1 0 −1 0
0 0 0 1 1
0 0 1 1 1













(

1
1
4
3
3

) (

0 1 1 1 2
1 0 1 2 1
4 4 0 3 3
3 3 3 0 2
3 3 3 2 0

)









−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
1 1 0 0 −1
0 0 0 0 1
0 0 1 1 1









(

2
2
4
4
2

) (

0 1 2 2 3
1 0 2 2 3
4 4 0 3 3
4 4 3 0 3
2 2 2 2 0

)

Table 5. Undecomposable 5-dimensional smooth reflexive polytopes with
barycenter at the origin (5-symplex excluded).
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A k H






















−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 1 1 −1 −1 −1
−1 −1 −1 1 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



























1
1
1
1
1
1









0 0 0 2 2 2
0 0 0 2 2 2
0 0 0 2 2 2
2 2 2 0 0 0
2 2 2 0 0 0
2 2 2 0 0 0























−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 1 1 −1 −1 −1
0 −1 −1 1 1 0
0 1 1 0 −1 0
−1 0 −1 1 1 1
1 0 1 0 0 0
0 0 0 0 1 1























1
1
1
1
1
2









0 0 0 2 2 2
0 0 0 2 2 2
0 0 0 2 2 2
1 2 2 0 0 1
1 2 2 0 0 1
3 2 3 1 1 0























−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 1 1 −1 −1 −1
0 0 −1 1 0 0
0 −1 0 0 1 0
−1 0 0 0 0 1
1 1 1 0 0 0
0 0 0 1 1 1























1
1
1
1
1
1









0 0 0 2 2 2
0 0 0 2 2 2
0 0 0 2 2 2
1 1 2 0 1 1
1 2 1 1 0 1
2 1 1 1 1 0























−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 1 0 0 0 −2
0 0 1 0 0 −1
0 0 −1 0 0 1
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 1 2























1
1
1
5
5
1









0 0 1 1 1 3
0 0 1 1 1 3
1 1 0 1 1 2
5 5 5 0 4 3
5 5 5 4 0 3
1 1 2 1 1 0























−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 1 0 0 −1 −1
0 −1 1 −1 1 0
−1 0 −1 1 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 0 1 1























1
1
1
1
1
1









0 0 1 1 2 2
0 0 1 1 2 2
1 2 0 2 0 1
2 1 2 0 1 0
1 2 0 2 0 1
2 1 2 0 1 0



























−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 1 0 0 −1 −1
0 0 1 0 0 −1
−1 −1 0 0 1 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 1



























1
1
1
3
1
1









0 0 1 1 2 2
0 0 1 1 2 2
1 1 0 1 1 2
3 3 3 0 3 2
2 2 1 1 0 0
2 2 1 1 0 0





A k H














−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 1 0 0 −1 −1
−1 −1 0 0 1 1
1 1 1 0 0 0
0 0 0 1 1 1



















1
1
4
4
1
1









0 0 1 1 2 2
0 0 1 1 2 2
3 3 0 4 4 4
4 4 4 0 3 3
2 2 1 1 0 0
2 2 1 1 0 0























−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 1 0 0 −1 −1
0 0 0 0 1 −1
0 0 0 0 −1 1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 1 1 1























1
1
5
5
1
1









0 0 1 1 2 2
0 0 1 1 2 2
5 5 0 4 4 4
5 5 4 0 4 4
1 1 1 1 0 2
1 1 1 1 2 0



















−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 1 0 0 −1 −1
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 1 1 1



















1
1
5
5
2
2









0 0 1 1 2 2
0 0 1 1 2 2
5 5 0 4 4 4
5 5 4 0 4 4
2 2 2 2 0 2
2 2 2 2 2 0



























−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 −1
0 1 0 0 0 −1
0 0 1 0 0 −1
0 0 −1 0 0 1
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1



























1
1
1
3
3
1









0 1 1 1 1 2
1 0 1 1 1 2
1 1 0 1 1 2
3 3 3 0 3 2
3 3 3 3 0 2
1 1 2 1 1 0



























−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 −1
0 1 0 0 0 −1
0 −1 1 0 0 0
0 −1 0 0 0 1
0 1 0 0 0 0
0 0 0 0 0 1
0 1 0 1 0 0
0 0 0 0 1 1



























1
1
1
3
3
1









0 1 1 1 1 2
1 0 1 1 1 2
1 2 0 1 1 1
3 2 3 0 3 3
3 3 3 3 0 2
1 2 1 1 1 0























−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
1 0 0 0 0 −1
−1 0 0 0 0 1
1 0 0 0 0 0
0 1 1 0 0 −1
0 0 0 0 0 1
0 0 0 1 1 1























1
2
2
4
4
1









0 1 1 1 1 2
2 0 1 2 2 3
2 1 0 2 2 3
4 4 4 0 3 3
4 4 4 3 0 3
2 1 1 1 1 0





Table 6. Undecomposable 6-dimensional smooth reflexive polytopes with
barycenter at the origin (6-symplex excluded).
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