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Abstract

In science and engineering, the development of complex systems involves many-
query optimization problems to identify both optimal design configurations to satisfy
competing requirements, and states of the system to monitor their health status.
The adoption of high-fidelity models for those optimization problems would be
beneficial to identify superior optimization solutions, but would prohibitively rise the
demand for computational resources and time required for every query. Multifidelity
Bayesian Optimization (MFBO) combines information from models at different
levels of fidelity to accelerate the optimization procedure: fast low-fidelity models
are massively queried to explore different combinations of optimization variables
while high-fidelity models are wisely evaluated to sparingly refine the accuracy of the
optimization solution. Most existing MFBO algorithms adopt a suboptimal greedy
approach which measures the utility of evaluating the objective function only at
the immediate next iteration, and are sequential in nature precluding the parallel
computation of high-fidelity models. Another limitation of MFBO lies in the purely
data-driven search of optimal solutions which does not include explicit information
about the physical domain of the system of interest.

In the first part of this thesis, we propose a Non-Myopic Multifidelity Bayesian
Optimization framework (NM2-BO) to grasp the long-term reward from future steps
of the optimization. Our computational strategy comes with a two-step lookahead
policy that maximizes the cumulative reward obtained measuring the improvement
in the solution over two steps ahead. We demonstrate NM2-BO for a large set of
analytical benchmark problems and an aerodynamic design optimization problem.
Moreover, we devise a Non-Myopic Multipoint Multifidelity Bayesian Optimization
(NM3-BO) which relies on a two-step lookahead policy and a local penalization
strategy to measure the future utility achieved evaluating multiple design configu-
rations simultaneously. We demonstrate NM3-BO for the multidisciplinary design
optimization of a space vehicle.
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In the second part, we propose a generalized formulation for physics-aware
MFBO (PA-MFBO) to embed forms of domain awareness during the optimization
procedure. We formalize a bias in the search that captures the physical structure of the
domain. This permits to partially alleviate the data-driven search from learning the
domain properties on-the-fly, and sensitively enhances the management of multiple
sources of information. PA-MFBO is demonstrated for an aerodynamic design
optimization and a structural health monitoring problem. In addition, we develop a
non-myopic formulation of the PA-MFBO algorithm (PA-NM2BO) which combines
a lookahead policy with the physics-aware search characterizing the PA-MFBO
algorithm. PA-NM2BO is validated against wind-tunnel data for an aerodynamic
design optimization problem.

In the third part of this thesis, we propose a computational framework to ac-
celerate diagnostics optimization problems to identify onboard incipient damages
affecting complex systems. This procedure typically requires an expensive large
amount of high-dimensional signals acquired through numerical models of the sys-
tem. We devise the FREEDOM – Fast REliability Estimate and incipient fault
Detection Of Multiphysics aerospace systems – algorithm to address such limi-
tations in diagnostics. FREEDOM combines an original two-stage compression
to compute an optimally reduced representation of the diagnostics signals for the
minimum demand of onboard resources, and a single-fidelity Bayesian optimiza-
tion scheme to infer multiple fault modes affecting the equipment. In addition, we
extend the FREEDOM methodology to incorporate high-fidelity models directly
in the diagnostics procedure, and devise the multifidelity FREEDOM algorithm
(MF-FREEDOM). MF-FREEDOM relies on a multifidelity Bayesian scheme to
identify fault parameters from the compressed signals: variable cost and fidelity
models are optimally queried for a major reduction of the overall computational
expense. The FREEDOM and MF-FREEDOM frameworks are demonstrated and
validated for aerospace electromechanical actuators for flight controls affected by
incipient multimodal faults.
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Chapter 1

Introduction

Optimization is becoming essential in science and engineering to enable the next
generation of advanced systems toward stringent requirements of safety, sustain-
ability and operational performances. Indeed, optimization procedures play a key
role to identify optimal design configurations to maximize the performance and
minimize the environmental impact of novel engineering solutions [3], and the de-
tection and identification of damages or faults to monitor the health condition of
complex systems to maximize their useful life and minimize waste of resources [4].
Depending on the specific application, the identification of optimal solutions requires
the minimization of an objective function that measures the goodness of design
configurations with respect to the requirements, or the accuracy of the estimated
health status of the system as to measurements.

The identification of optimal designs and health status of aerospace systems is no-
toriously difficult. Modern aerospace systems are characterized by a significant level
of complexity associated with the demand for high-performance while operating in
extreme environments. Those systems are characterized by technological architec-
tures consisting of a variety of heterogeneous subsystems to meet the ever-increasing
requirements of superior capabilities. The complexity of aerospace systems further
increases with the demand for technological advances to improve the efficiency
and environmental sustainability of the next generation aircraft [5, 6]. Indeed, new
lower emission solutions for green aviation consist of innovative technologies and
equipment that might complicate the overall architecture of systems currently im-
plemented onboard. This growth of technical complexity and increasing number of
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components and physical interactions pose significant challenges both in the identifi-
cation of optimal design configurations capable to satisfy competing requirements of
performance, and identification of damages to anticipate severe faults and support
high-regret decision making processes with potentially catastrophic consequences
[7].

In recent years, the advances of computing technologies and platforms allowed
the availability of advanced analysis and modeling approaches to accurately represent
the behaviour of complex systems. This is the case of high-fidelity physics-based
models for the numerical solution of governing partial differential equations as
computational fluid dynamic solvers to represent viscous fluids, and finite element
methods for the numerical analysis of mechanical structures, heath transfer and
electromagnetic phenomena. Accordingly, simulation-based optimization method-
ologies [8–10] emerged as powerful computational frameworks where the objective
function is computed through those physics-based numerical analysis that represent
the behaviour of the system of interest under a specific combination of optimization
variables – e.g. design or damage configurations.

The ambition of using high-fidelity models for optimization is shared by de-
sign and diagnostics communities. Indeed, simulation based optimization benefits
from expensive high-fidelity models capable to accurately represent the behaviour
of complex and multiphysics systems, as the aerospace systems, characterized by
physical domains and phenomena difficult to be precisely captured. However, the
extensive adoption of these high-fidelity models during the optimization procedure is
hampered by the significant computational cost and time required for their evaluation,
potentially in the order of months for a single evaluation on high performance com-
puting platforms. This issue becomes more challenging for large-scale optimization
problems – which are typically addressed in science and engineering – where the
demand for model evaluations grows exponentially with the number of optimization
variables to optimize. This makes the inclusion of high-fidelity models the major
bottleneck of the simulation-based optimization procedure. In addition, the high level
of complexity of the disciplinary analysis that characterizes multiphysics systems
precludes the adoption of popular gradient-based optimization algorithms: the com-
putation of the objective function derivatives requires a large amount of high-fidelity
simulations and significantly increases the overall computational expense. Therefore,
simulation-based optimization usually relies on a black-box approach where the
disciplinary analyses are regarded as a pure input/output relationship, whose informa-
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tion about the mathematical properties and derivatives are not available [11]. These
limitations preclude the scalability of high-fidelity simulation-based optimization
for complex multiphysics systems, and hinder the identification of optimal design
configurations and the reliable identification of complex faults affecting innovative
components.

To contain the overall computational expense, simulation-based optimization
strategies commonly adopt low-fidelity models of the system to reduce the general
complexity of the disciplinary analysis and save computational resources with respect
to the adoption of costly high-fidelity simulations. As reviewed and proposed by
Peherstorfer et al. [12], low-fidelity models range from simplified models directly
derived from the high-fidelity counterpart using expert knowledge about the specific
disciplinary analysis [13], to projection-based models identifying a low-fidelity
subspace that retains the essential features of the subsystem [14], and to surrogate-
based representations where the input-output relationships of disciplines are derived
from observations of the high-fidelity model [15]. Even if the computational cost
of these low-fidelity models could be sensitively reduced if compared with high-
fidelity representations, the former simplified models might not be adequate to depict
complex non-linear phenomena that frequently characterize the disciplinary domain,
while the latter projection-based and surrogate-based models might require a huge
amount of high-fidelity data during their construction leading to significant numerical
cost.

To address these limitations, this thesis explores surrogate modeling techniques to
efficiently approximate the responses of high-fidelity models at untried combinations
of optimization variables [16–20]. In particular, we investigate the opportunities
offered by surrogate-based optimization strategies [21–23] as computational frame-
works that seeks to alleviate the computational burden associated with high-fidelity
simulation-based optimization adopting surrogate modeling to approximate the ob-
jective function. Surrogate models are computed starting from a set of observations
of the objective function for certain combinations of optimization variables. Ac-
cordingly, the accuracy and efficiency of the resulting surrogate model are strongly
related to the sampling technique adopted to determine this set of objective function
evaluations. Among the possible sampling processes, goal-driven adaptive sampling
schemes provide resource-efficient policies that aim at efficiently select combina-
tions of optimization variables that maximize the utility of evaluating the objective
function with respect to a given goal [19, 24, 25]. This goal can be either compute
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an accurate surrogate model of the objective function over the entire domain of
interest, or compute an highly informative surrogate model to assist and inform the
optimization procedure toward the minimum of the objective function.

This thesis focuses on Bayesian Optimization (BO) frameworks as goal-driven
approaches for the optimization of expensive black-box objective functions [26–
29]. BO aims at efficiently elicit valuable evaluations of the objective function from
models of the system of interest to achieve a given goal and contain the computational
expense of the optimization procedure. The Bayesian routine iteratively computes
a surrogate model of the objective function, and defines a goal-driven sampling
process through an acquisition function computed on the surrogate information.
This acquisition function measures the merit of samples according to certain infill
criteria, and permits to select the next sample that maximizes the query utility with
respect to the given optimization goal. BO requires evaluating the objective function
several times to asses the solution of the optimization problem. This may result in
a prohibitively computational expense for engineering applications requiring the
use of time consuming high-fidelity computer-based models, and where a limited
number of evaluations of the objective are allowed to identify optimal solutions.

In many applications, scientists and engineers might rely on different models of
the objective function with different degrees of accuracy and associated demand for
computational resources. Multifidelity methods acknowledge the opportunity offered
by low-fidelity representations and offer approaches to address the research gap of
including expensive high-fidelity disciplinary analysis into the optimization process
[30, 31]. Multifidelity methods combines data extracted from a library of disciplinary
models that can be hierarchically ordered according to accuracy and computational
cost [32, 33]. The availability of multiple levels of fidelity can be exploited to support
the search procedure through a principled elicitation of information: fast low-fidelity
models are used to systematically reduce the number of high-fidelity evaluations
through a continuous trade-off between cost and accuracy [34, 35, 12, 36, 37]. In
particular, this thesis focuses on Multifidelity Bayesian Optimization methodologies
extending the BO approach to optimization scenario involving multiple representa-
tions of the objective function. Multifidelity Bayesian optimization (MFBO) provides
a computational framework for black-box optimization and leverages disciplinary
solvers at different levels of fidelity to accelerate the identification of promising
solutions [38–42]. MFBO combines the function outputs at different levels of fidelity
into a single probabilistic model, and uses this information to compute a multifidelity
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acquisition function that allows to jointly select the new set of optimization variables
and the associated level of fidelity to query. In this setting, the surrogate model
synthesizes the outcomes computed with multiple models into a unique emulator,
and the acquisition function defines a goal-driven adaptive sampling scheme that
identifies the optimal configuration and the associated level of fidelity to query at
each iteration.

1.1 Research Gaps and Thesis Objectives

The multifidelity acquisition function is a key element of the multifidelity Bayesian
optimization as defines a goal driven learning procedure that selects the next combi-
nation of optimization variables – e.g. design configuration or health status of the
system – and level of fidelity of the objective function model to be evaluated. Most
state-of-the-art acquisition functions have been proposed with the commonality that
they realize a greedy selection of combinations of optimization variables: the quan-
tification of the usefulness of evaluating the objective function with a certain level of
fidelity considers the effects over the immediate next step without considering the
future utility with respect to the given goal. The greedy nature of standard MFBO
frameworks precludes greater informative gains that can be acquired through the
measure of the long-term reward obtained at future steps of the optimization, and
might lead to suboptimal solutions if a finite computational budget is allocated as a
consequence of limited availability of computational resources. In such context, we
formalize a Non-Myopic Multifidelity Bayesian Optimization (NM2-BO) framework
that maximizes the reward over two-step ahead through a non-myopic multifidelity
policy to increase the convergence rate and accelerate the optimization procedure.
This non-myopic multifidelity learning scheme is derived formalizing MFBO as
a dynamic system under uncertainty addressed through a dynamic programming
technique, and defines an optimal policy as a sequence of decisions to maximize the
two steps ahead utility obtained evaluating a combination of optimization variables
with a model of a certain level of fidelity.

In the context of complex multidisciplinary design optimization problems, a
significant challenge is the intrinsic demand to scale associated with the need for
accurate evaluations of the objective function that can dramatically upscale during
the search for improved design solutions. Thus, the standard sequential MFBO
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search might not be computationally efficient for optimization problems where the
simulation of complex interdisciplinary relationships demands for a huge amount of
high-fidelity data and associated computational expense. Within this scenario, we
formulate the Non-Myopic Multipoint Multifidelity Bayesian Optimization (NM3-
BO) algorithm that permits to maximize the long-term reward of a batch of design
configurations and levels of fidelity to be evaluated simultaneously in parallel. NM3-
BO defines a optimal policy as a sequence of decisions that maximizes the two-step
ahead utility of a batch of paired designs and levels of fidelity to query in parallel.

A second limitation of multifidelity Bayesian optimization lies in its fully data-
driven adaptive sampling informed exclusively through probabilistic data extracted
from the surrogate model. Accordingly, the search procedure has to learn entirely
from data both the surrogate model and the characterization of the discrepancies –
frequently non-linear – between the different models over the entire physical do-
main. This can still require a large amount of high-fidelity information to depict
the modeling correlations for each level of fidelity available, and results in inten-
sive computations associated with the massive evaluations of accurate numerical
models. In the engineering context, prior knowledge about these discrepancies is at
disposal, either because it is formalized by the governing equations that represent
the physics of the system or because it derives from the know-how of experts about
the distinguishing physical phenomena characterizing the system behaviour. In these
optimization scenarios, the introduction of the physics-awareness during the search
procedure could lead to a principled and efficient use of high-fidelity data according
to the prior knowledge about the physics of the system. Given this limitation, we
propose an original Physics-Aware Multifidelity Bayesian Optimization (PA-MFBO)
that incorporates prior domain knowledge to further improve and accelerate the
optimization search in multifidelity settings. This permits to partially alleviate the
data-driven search from the characterization of the domain structure while trying to
identify the optimal combination of parameters that minimizes the objective function.
The PA-MFBO relies on a multifidelity acquisition function distinctively shaped to
combine data-driven information extracted from the surrogate model and prior/expert
knowledge about the structure of the domain encapsulated during the search through
a physics-aware utility function. In addition, we extend this physics-aware learn-
ing scheme through a non-myopic multifidelity policy to quantify the future gains
achieved by a certain pair of optimization variables and levels of fidelity. This form
of awareness allows to define an adaptive sampling scheme that efficiently manages
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different sources of information, targeting the balance between computational cost
and accuracy demanded along the optimization search.

A third limitation arises in the context of diagnostics for complex safety critical
engineering systems, and relates to the decrease of the computational efficiency
of Bayesian algorithms associated with the high dimensionality of the diagnostic
signals and the need for a massive amount of data acquired through the evaluation
of expensive numerical models in order to assess incipient multimodal damages.
This results in a computationally intensive identification of the health status of the
system unfeasible for onboard monitoring of safety critical systems that require the
fast and reliable assessment of incipient damages. To address these limitations, this
thesis proposes an efficient computational framework for fault detection and isolation
to accelerate the identification of incipient multimodal damages affecting complex
engineering systems. We name and refer to our framework as FREEDOM as the
short for Fast REliability Estimate and incipient fault Detection Of Multiphysics
complex systems. In particular, we first devise FREEDOM as a single-fidelity
computational framework implementing low-fidelity numerical models to obtain a
procedure suitable for onboard monitoring. Following the promising results achieved
with FREEDOM, we extend our computational framework through a multifidelity
methodology and devise MF-FREEDOM to include high-fidelity models directly
in the optimization: those high-fidelity data are extremely beneficial for diagnostic
procedures at large since provide an accurate and reliable representation of the sys-
tem of interest. Both FREEDOM and MF-FREEDOM adopt an original two-stage
compression strategy that computes an optimal reduced representation of the diag-
nostics signal that retains only the most informative elements sensitive to faults. Two
projection stages are used to compute this encoding map of the signal throught a
combination of Dynamic Mode Decomposition (DMD) and Self Organizing Map
(SOM). In FREEDOM, the identification of faults from those compressed signals is
addressed through a Bayesian optimization scheme implementing low-fidelity numer-
ical models to contain the computational cost of a single evaluation of the objective
function. The original combination of these features substantially accelerates the
diagnostics procedure: the Bayesian scheme leverages the informative compressed
signals to accurately identify damage parameters with contained computational re-
sources. The identification task through the MF-FREEDOM algorithm is executed
through a multifidelity Bayesian scheme, which leverages and combines multiple
models of the system at different levels of fidelity to effectively identify the health
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status of the system. The scheme is developed to embed high-fidelity simulations
during the inference stage and aims at improving the effectiveness of the diagnostics;
at the same time, lower-fidelity models are used to alleviate the computational cost
of the procedure and more efficiently explore potential faults affecting the system.

To summarize, the objectives of this thesis are:

• To develop a Non-Myopic MFBO algorithm (NM2-BO) capable to maxi-
mize the long-term reward achieved evaluating a combination of optimization
variables with a certain level of fidelity, and accelerate the search for opti-
mal solutions while including costly high-fidelity models in the optimization
procedure.

• To devise and implement a Non-Myopic Multipoint MFBO algorithm (NM3-
BO) which combines the non-myopic search with the evaluation of a batch
of combinations of optimization variables and levels of fidelity in parallel to
address many query multidisciplinary optimization problems.

• To develop a Physics-Aware MFBO algorithm (PA-MFBO) to incorporate
prior scientific/expert knowledge about the physical system of interest directly
in the optimization procedure, and alleviate the expensive data-driven learning
of specific characteristics of the physical domain and discrepancies between
levels of fidelity.

• To combine the physics-aware feature with a non-myopic multifidelity policy
and devise a Physics-Aware Non-Myopic MFBO (PA-NM2BO) to quantify
the long-term reward of solutions while including awareness about the specific
domain structures.

• To devise a computational framework FREEDOM to accelerate the identi-
fication of damage configurations of complex systems affected by incipient
multiphysics and multimodal faults.

• To extend FREEDOM to a multifidelity setting and develop MF-FREEDOM
to accelerate the diagnostics of incipient multiphysics and multimodal faults
while efficiently including high-fidelity numerical model of the system of
interest.
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1.2 Thesis Outline

The reminder of this thesis is organized as follows. In Chapter 2, we discuss the
general mathematical formalization of optimization problems typically addressed
in science and engineering, such as design optimization, multidisciplinary design
optimization, and diagnostics of complex multiphysics systems. Chapter 3 provides
a general methodological background on Bayesian optimization and multifidelity
Bayesian optimization, and illustrates popular state-of-the-art formulations of the
acquisition function for both single-fidelity and multifidelity scenario. In Chapter 4,
we devise our Non-Myopic Multifidelity Bayesian Optimization (NM2-BO) method-
ology through the formalization of an optimal multifidelity policy for MFBO and
illustrate how to robustly approximate it through a Monte Carlo technique. In addi-
tion, we propose a multiple decision making strategy to enable parallel computations
of a batch of designs and associated levels of fidelity, and develop a Non-Myopic
Multipoint Multifidelity Bayesian Optimization (NM3-BO) Algorithm. In Chapter
5, we present our Physics-Aware Multifidelity Bayesian Optimization methodology
and formalize a physical bias that embeds the available prior scientific and expert
knowledge about the structure of the physical domain during the search procedure.
In addition, we formalize a non-myopic physics-aware policy and develop a Physics-
Aware Non-Myopic Multifidelity Bayesian Optimization (PA-NM2BO) methodology
to measure the long-term reward of optimization solutions incorporating the aware-
ness about the physics and the structures of the domain of interest. In Chapter
6, we devise a computational framework FREEDOM for diagnostics optimization
problems and illustrate the original combination of a novel two-stage compression
strategy to reduce the dimensionality of the diagnostics signals, and a Bayesian
optimization scheme to identify damages affecting complex systems, In addition,
we extend the FREEDOM capabilities to incorporate high-fidelity models directly
in the diagnostics procedure, and devise the MF-FREEDOM algorithm where a
multifidelity Bayesian scheme leverages the compressed signals to identify the faults
affecting the system. In Chapter 7, we demonstrate the performance of the proposed
algorithms for challenging aerospace design optimization problems, while Chapter
8 investigates and validates the capabilities of our computational frameworks for
aerospace diagnostics and health monitoring applications. Finally, we summarize
the thesis contributions in Chapter 9.



Chapter 2

Problem Statement

In this thesis, we consider a general decision-making problem in which we seek
to minimize an objective function f (x) : X → R by deciding iteratively a certain
combination of optimization variables x ∈X within their bounds and subject to
constraints. Mathematically, this decision-making problem is formalized as follows:

minimize f (x)

with respect to xL ≤ x≤ xU

subject to c(x)≤ 0

h(x) = 0

(1.1)

where xL and xU are the bounds of the optimization variables, and c(x) and h(x) are
the equality and inequality constraints, respectively.

This general formalization is representative of a variety of optimization problems
in science and engineering; those include the support to engineering tasks such as
the identification of the best design configurations to maximize the performance
and minimize the environmental impact of novel engineering solutions, and the
detection and identification of damages or faults to monitor the health condition of
complex systems to maximize their useful life and minimize waste of resources. We
emphasize that, in spite of the specific application in design or diagnostics, we are
always solving optimization problems.
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The values of the objective and constraints functions are typically computed
through numerical models or real-world experiments of the system of interest. In
this thesis, we focus on black-box representations of the objective and constraints
functions depicted according to a pure input/output relationship whose information
about the mathematical properties and derivatives are not available. This black-box
approach is typical in real-world applications where computer codes or test-benches
operate independently and define relationships between inputs and outputs while
hiding the procedure associated with the discipline analysis.

In the following section, we detail the formalization of two major families
of optimization problems frequently addressed in science and engineering, namely
design optimization (Section 2.1) and multidisciplinary design optimization problems
(Section 2.2) for the identification of the best combination of design parameters
to maximize systems performance, and fault detection and identification problems
(Section 2.3) for the non-destructive identification of systems damages or faults.

2.1 Design Optimization

In engineering design optimization, the objective function f (x) : X → R represents
a quantity of interest that determines if one design is better than another, and is
computed for a given set of design variables x ∈X that describe the engineering
system of interest. This design variables are typically bounded through the design
space X to guarantee design configurations within the specifications of the design
problem and avoid nonphysical designs. Accordingly, the design optimization prob-
lem seeks to identify the best combination of design variables within the design space
that minimizes the objective function subject to constraints, and is mathematically
formalized as follows:

minimize f (x)

with respect to xL ≤ x≤ xU

subject to c(x)≤ 0

h(x) = 0

R(x) = 0

(1.2)
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where is required the solution of governing disciplinary equations of the system
of interest in residual form R(x) to compute the values of the objective and con-
straints functions. This formalization of the design optimization problem involves
the identification of optimal designs for a single physical domain/discipline. The
resulting design optimization process is conducted through a sequential approach
where each component representative of a specific discipline is optimized separately,
which might lead to suboptimal designs.

In addition, high-fidelity representations of the objective function can provide a
remarkable contribution to enhance the search and identification of optimal design
configurations. Unfortunately, the extensive adoption of these high-fidelity models
during the optimization procedure is hampered by the significant computational
cost and time required for their evaluation, potentially in the order of months for a
single evaluation on high performance computing platforms. This issue becomes
more challenging for many-query engineering optimization problems where the
demand for model evaluations grows exponentially with the number of parameters
to optimize.

2.2 Multidisciplinary Design Optimization

In many real-world applications, most engineering systems are multidisciplinary in
nature. Multidisciplinary Design Optimization (MDO) relates to the development
of computational methodologies for the design and optimization of complex sys-
tems taking into account the interactions of multiple disciplines [43, 44]. Those
interactions can span different strength and width of the cross disciplinary couplings
[45, 46]. The main benefit of this multidisciplinary approach is the optimization of
design variables simultaneously: accounting for the various disciplines and minimiz-
ing an objective function that reflects a metric of goodness of the complete system
permits to identify the design configuration that automatically provides the optimal
trade-off between disciplines.

The general formulation of the MDO problem is formalized as follows [46]:
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minimize f0(x,z)+
D

∑
i=1

fi(x0,xi,zi)

with respect to x,z, z̄

subject to c0(x,z)≤ 0

ci(x0,xi,zi)≤ 0 for i = 1, ...,D

Ri(x0,xi,z, z̄i) = 0 for i = 1, ...,D

(1.3)

The goal is to identify a set of design variables x that minimizes an objective func-
tion f subject to design constraints. We refer to design variables x = [x0,x1, ...,xD]

as variables of the MDO problem that are controlled by the optimizer during the
optimization procedure, and consists of design variables x0 that affect all the D
disciplines and the design variables xi that concern the single i-th discipline. The
optimizer searches for an improved design configuration that must satisfy the design
constraints imposed for the single discipline ci and for all the disciplines at once c0.
Each discipline is characterized by a simulation or model that permits to represent
the domain of the specific discipline through a set of governing equations in residual
form Ri(x0,xi,z, z̄i) which depend on the coupling variables z in output from simu-
lations and the state variables z̄i associated with the specific discipline. In particular,
the coupling responses z depict the interactions between the disciplines in the form
of output variables that are required to be exchanged between disciplines to solve
the governing equations.

The identification of optimal design configurations that satisfy the couplings
between disciplines demand for a large amount of data extracted from high-fidelity
disciplinary solvers to closely depict the behaviour of the whole system. These
high-fidelity representations are generally in the form of large scale computer-based
models for the numerical solution of partial differential equations, and require
prohibitive computational cost for their evaluation. This makes the inclusion of
high-fidelity models the major bottleneck of the MDO procedure.



14 Problem Statement

2.3 Fault Detection and Isolation

Model-based Fault Detection and Identification (FDI) permits to infer the fault
condition of a system from measurements of signals sensitive to damages. The health
assessment task is addressed solving an inverse problem: the actual damages affecting
the system minimize the discrepancy between the diagnostic signal measured from
the real system and the same signal simulated with a monitoring model [47–49].
Accordingly, the FDI problem targets the identification of the health status x =

[x1, ...,xnk ] of the system as the combination of nk faults parameters that minimizes
the discrepancy f between the output reference signal of the real system y and
the signal computed with a numerical model of the system yM. Accordingly, the
model-based FDI procedure is mathematically formalized as follows:

minimize f (x) = ||y(x∗)− yM(x)||

with respect to xL ≤ x≤ xU

subject to c(x)≤ 0

h(x) = 0

R(x) = 0

(1.3)

where the solution of the optimization problem determines x∗ = argminx∈X f (x)
the actual health status affecting the system.

The effectiveness of the FDI procedure closely relates to the accuracy of the
monitoring model and the associated monitoring signal. In principle, the optimal
setting is achieved adopting a monitoring model capable to exactly represent the
dynamical behaviour of the damaged system. This would guarantee identical output
and monitoring signals when the damaged configuration of the system is identified;
conversely, modeling discrepancies between reference and monitoring signals might
determine errors in the identification process and reduced accuracy of the health
status identification. However, this favourable condition is usually unfeasible in
practice: the acquisition of accurate monitoring signals requires the evaluation of
expensive numerical models that heavily impact the computational burden of the
diagnosis. Moreover, the identification of incipient multiphysics and multimodal
faults affecting engineering systems – which is essential for safety critical systems
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– further amplifies the demand for high-fidelity simulations to accurately capture
the almost imperceptible alterations of the system behaviour during operations. In
addition, this scenario is complicated by the high-dimensionality of the diagnostic
signals, which are measured with an high acquisition frequency to ensure representa-
tiveness of the system health status. The ambition of using high-fidelity monitoring
is shared by diagnostics and prognostics communities. However, these limitations
preclude the scalability of model-based FDI methodologies for complex multiphysics
systems, and hinder the reliable identification of complex faults affecting innovative
components.



Chapter 3

Methodological Background

In science and engineering, the use of high-fidelity models to solve optimization
problems and identify both optimal designs and health status of complex systems is
notoriously difficult. Indeed, the adoption of those highly accurate representations
leads to a significant bottleneck: the demand for resources to evaluate the objective
function for all the combinations of optimization variables is difficult to be adequately
satisfied. Indeed, the acquisition of data from these high-fidelity models involves
huge non-trivial computational and economical costs that could arise from the
computation of the objective function and its derivatives over ideally the entire
optimization domain.

This motivates the growth of interest for the capabilities of surrogate models
to efficiently approximate the output of expensive computer codes and real-world
experiments at untried testing configurations [16–18]. Accordingly, Surrogate-Based
Optimization (SBO) leverages surrogate modeling to efficiently approximate the
distribution of the objective function over the domain and speed-up the search for the
optimum. SBO is of particular interest for applications where the high-fidelity evalu-
ation of the objective function leads to an unfeasible computation burden required for
the optimization procedure. Across different application fields, it has been observed
that SBO permits to alleviate the cost of the search task through surrogate models of
the objective functions: this reduces its evaluation cost for different combinations of
optimization variables to efficiently support the identification of optimal solutions.
Examples of SBO applications include, but are not limited to, the identification of
optimal designs in aerospace [50] and marine [51] engineering, states identification
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for medical applications [52] and autonomous systems [53], identification of opti-
mal parameters for material design [54] and quantum computing [55]. Queipo et
al. [21] discuss the adoption of surrogate models to reduce the computational cost
associated with expensive optimization problems motivated by the application to
the multidisciplinary design of complex aerospace systems. Wang and Shan [22]
overview a variety of surrogate models techniques dedicating particular attention to
global optimization and multi-objective optimization problems in engineering design.
Haftka et al. [23] detail strategies for global optimization using surrogate models,
and focus mainly on criteria for local and global searches from the perspective of
parallelization to alleviate the computational burden of design in engineering.

Surrogate models are computed on evaluations of the objective function acquired
through computer codes and/or physical experiments of the system: these sources
of information are mostly treated as purely input/output black-box relationship
whose analytical form is unknown and not directly accessible to the optimizer.
Thus, the accuracy and efficiency of the resulting surrogate are highly dependent on
the sampling approach adopted to select informative combinations of optimization
variables for the acquisition of data. Among the numerous sampling schemes
available in literature, it is possible to identify two major families: one-shot, and
sequential schemes. The one-shot strategy defines a grid of samples over the domain
all at once. Examples include Latin Hypercube [56], factorial and fractional factorials
designs [57, 58], Placket-Burmann [59], and D-optimal [60]. However, it is very
hard to identify a priori the best design of those experiments to efficiently compute
the most informative surrogate. To overcome these limitations, sequential sampling
selects samples over the domain through an iterative process [61, 62]. Among
these, adaptive sampling [63] provides resource-efficient techniques that seek to
reduce as much as possible the evaluations of the objective function, and target the
improvement of the fitting quality across the domain and/or the acceleration of the
optimization search [19, 24, 25].

This thesis focuses on goal-driven learning schemes as adaptive sampling proce-
dures in which a learner informed by the available evaluations about the objective
function directs the acquisition of new evaluations to maximize their utility with
respect to a given goal. In particular, we focus on Bayesian optimization and Multi-
fidelity Bayesian optimization as goal-driven methodologies to address black-box
optimization problems characterized by the expensive evaluation of the objective
function. In this chapter, we recognize that the popular paradigms for Bayesian
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optimization show substantial synergy with active learning schemes which has not
been explicitly discussed and formally described in literature to date. Accordingly,
we propose the explicit formalization of this synergy through an original perspective
of Bayesian optimization and active learning as symbiotic expressions of adaptive
sampling schemes. The aim of this unifying viewpoint is to support the use of those
methodologies, and point out and discuss the analogies via their mathematical for-
malization. This unified interpretation is based on the formulation and demonstration
of the analogy between the Bayesian infill criteria and the active learning criteria
as the elements responsible for the decision on how to learn from samples to reach
the given goal. In support of this unified perspective, this chapter first clarifies the
concept of goal-driven learning (Section 3.1), and proposes a general classification of
adaptive sampling methods that recognizes Bayesian optimization and active learn-
ing as methodologies characterized by goal-oriented search schemes (Section 3.2).
Then, we provide an overview Bayesian optimization and multifidelity Bayesian
optimization (Section 3.3), and elucidate the synergy between Bayesian optimization
and active learning mapping the Bayesian learning features on the active learning
properties (Section 3.4). The mapping is discussed through the analysis of three
popular Bayesian frameworks for both the case of a single information source, and
when a spectrum of multiple sources are available to the search. This chapter is
based on the article [64] also available as preprint version [65].

3.1 Goal-Driven Learning

Goal-driven learning is a decision-making process in which each decision is made
to acquire specific information about the system of interest that contribute the most
to achieve a given goal [66–71]. This learning goal can be the increase of the
knowledge of the system behaviour over all the domain of application, or acquire
specific knowledge to enhance and accelerate the identification of optimization
solutions. Accordingly, a goal-driven learner selects what to learn considering
both the current knowledge and information needed, and determines how to learn
quantifying the relative utility of alternative options in the current circumstances.

This thesis focuses on Bayesian optimization and active learning as goal-driven
procedures where a surrogate model is built to accurately represent the behaviour
of a system or effectively inform an optimization procedure to minimize given
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objectives. This goal-driven process is guided by learning principles that determine
the "best" location of the domain to acquire information about the system, and refine
the surrogate model towards the goal – improve the accuracy of the surrogate or
minimize an objective function over the domain. Formally, these surrogate based
modeling and optimization problems can be formulated as a minimization problem
of the following form:

x∗ = arg min
x∈X

f (R(x)) (3.1)

where f (R(x)) denotes the objective function evaluated at the location x ∈X of
the domain X . The objective function is of the general form f = f (R(x)), where
R(x) represents the response of the system of interest evaluated through a model –
e.g. computer-based numerical simulations or real-world experiments. In surrogate
based modeling, the objective function can be represented as the error between the
approximation of the surrogate model and the response of the system: the goal is to
minimize such error to improve the accuracy of the surrogate over all the domain.
In surrogate based optimization, the objective function represents a performance
indicator dependent on the system response: the goal is to minimize this indicator to
improve the capabilities of the system according to given performance requirements.
Goal-driven techniques address Equation (3.1) through a decision-making iterative
process where learning principles tailor the acquisition of specific knowledge about
the objective function – evaluation of f at certain domain location x – currently
needed to update the surrogate and inform the learner towards the given goal.

In this context, the goal-driven learner is the agent that makes decisions based
on the current knowledge of the system of interest, and acquires new information
to accomplish a given goal while augmenting the awareness about the system itself.
In practice, the learner queries the sample that maximizes the utility to achieve the
desired goal: specific learning principles quantify this utility based on the surrogate
estimate and in response to information needs. At the same time, the surrogate model
is dynamically updated once new information are acquired, and informs the learner
to focus and tailor on the fly the elicitation of samples to further overarching the goal.
Thus, the distinguishing element of a goal-driven learning procedure is represented
by the mutual exchange of information between the learner and the surrogate model:
the learner assimilates the information from the surrogate to make a decision aimed
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Fig. 3.1 Citations of Bayesian Optimization (BO), Active Learning (AL), Adaptive
Sampling (AS) and the three terms combined (BO+AL+AS).

at achieving the goal, and the approximation/prediction of the surrogate is enriched
by the result of this decision.

3.2 Adaptive Sampling Classification

Bayesian optimization and active learning realize adaptive sampling schemes to
efficiently accomplish a given goal while adapting to the previously collected infor-
mation. In recent years, there has been a profusion of literature devoted to the general
topic of adaptive sampling but arguably a blurring of focus: many contributions
from different field provided a deal of interesting advancements, but also led to
some degree of confusion around the concepts of adaptive sampling, active learning
and Bayesian optimization. Figure 3.1 illustrates the use of the words "adaptive
sampling", "active learning", and "Bayesian optimization" from 1990 to 2022. In
addition, we report the combined use of all the three words over the same period
of time. It can be appreciated both the general increasing trend of use of the three
techniques and the associated increase of the use of the three terms combined. Many
times the three concepts have been used as complete synonyms, with some growing
abuse motivated by the difficulties to map the (shaded) boundaries.

Stemming from these considerations, we recognize that adaptive sampling is
not always superimposable with active learning and Bayesian optimization. Figure
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Fig. 3.2 Where adaptive sampling and active learning meet: this thesis focuses on the
synergies between Bayesian optimization and active learning as goal-driven learning
procedures driven by common learning principles.

3.2 illustrates the relationships between those three methodologies. We propose
a classification of adaptive sampling techniques in three main families, namely
adaptive probing (Section 3.2.1), adaptive modeling (Section 3.2.2) and adaptive
learning (Section 3.2.3). This classification is based on the concept of goal-driven
learning as the distinctive element of adaptive learning methodologies: the learner
assimilates the information from the surrogate model to make a decision aimed
at achieving a goal, and the surrogate is enriched by the result of this decision
following a mutual exchange of information. Conversely, adaptive probing and
adaptive modeling classes do not realize a goal-driven learning: the former does not
rely on a surrogate model to assist the sampling procedure while the latter computes
a surrogate model that is not used to inform the search task. This classification
permits to clarify the reciprocal positions between adaptive sampling, active learning
and Bayesian optimization.

Accordingly, adaptive sampling and active learning do not completely overlap.
Active learning strategies are categorized into population-based and pool-based
algorithms according to the nature of the search procedure [72, 73]. In population-
based active learning, the distribution of the objective function is available: the
learner seeks to determine the optimal training input density to generate training
points without relying on a surrogate model of the objective function. Conversely,
pool-based active learning computes a surrogate model of the unknown objective
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function that is used to inform the learner toward a given goal, and is updated during
the procedure to refine the informative content supporting the learning procedure.
Thus, pool-based active learning methods realize goal-driven learning schemes
and can be collocated in the adaptive learning class while population-based active
learning techniques can not be considered as adaptive samplings. Following the
proposed classification, Bayesian optimization represents the logic intersection
between active learning and adaptive sampling since (i) BO realizes an adaptive
sampling scheme towards a given goal, and (ii) the BO goal-driven learning procedure
is guided by learning principles also traceable in active learning schemes. This
synergy between Bayesian optimization and active learning is the main focus of
this chapter, and the following sections are dedicated to formalize and discuss this
dualism. To support this discussion, we provide additional details of the proposed
classification for adaptive sampling, and review some popular approaches for each
of the three classes. The literature on adaptive sampling is vast, and a complete
review goes beyond the purpose of this thesis. Although our discussion will not be
comprehensive, the objective is to highlight the distinguishing features of each class
and clarify the relative positions of adaptive sampling, active learning and Bayesian
optimization.

3.2.1 Adaptive Probing

Adaptive probing schemes exploit the observations of previous samples without
computing any surrogate model. These sampling procedures are informed exclu-
sively from the collected data to guide the selection of the next location to query, and
exclude the adoption of emulators to support the search. Several adaptive probing
frameworks have been developed based on the Monte Carlo method [74, 75]. Among
these, adaptive importance samplings [76–78] and adaptive Markov Chain Monte
Carlo samplings [79, 80] represent popular methodologies adopted in different prac-
tical scenarios, from signal processing [81, 82] to reliability analysis of complex
systems [83, 84]. Adaptive importance sampling uses previously observed samples
to adapt the proposal densities and locate the regions from which samples should be
drawn; this strategy permits to iteratively improve the quality of the samples distri-
bution and enhance the accuracy of the relative inference from these observations.
Adaptive Markov Chain Monte Carlo (MCMC) determines the parameters of the
MCMC transition probabilities on the fly through already collected information. This
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adaptively generates new samples from an usually complex and high-dimensional
distribution, and enhances the overall computational efficiency and reliability of the
procedure. In the next paragraph, we report the mathematical formulation of adaptive
importance sampling to illustrate the properties of adaptive probing methodologies
and the elements that differentiate them from active learning paradigms.

Adaptive Importance Sampling Adaptive Importance Sampling (AIS) usually
considers a generic inference problem characterized by a certain probability density
function (pdf) π̃(x) of a dx-dimensional vector of unknown statistic real parame-
ters x ∈X . AIS frameworks aim to provide a numerical approximation of some
particular moment of x:

I( f ) = Eπ̃ [ f (x)] =
∫

f (x)π̃(x)dx (3.2)

where f : X → R can be any function of x integrable with respect to the pdf
π̃(x)

The integral I( f ) is representative of different mathematical problems, from
Bayesian inference [85] to the estimate of rare events [86]. In many practical
scenarios, the integral I( f ) can not be computed in closed form. Adaptive importance
sampling provides an algorithmic framework to efficiently address this problem.

Let us define a proposal probability density function q(x) to simulate samples
under the restriction that q(x) > 0 for all x where π̃(x) f (x) ̸= 0. AIS provides an
iterative procedure that improves the quality of one or multiple proposals q(x) to
approximate a non-normalized non-negative target function π(x). At the beginning,
AIS initializes N proposals {qn(x|θn,1)}N

n=1 parameterized through the vector θn,1.
Then, the procedure simulates K samples from each proposal x(k)n,1, n = 1, ...,N, k =
1, ...,K, and assigns to each sample an associated importance weight formalized as
follows:

wn =
π(xn)

q(xn)
, n = 1, ...,N (3.3)

These importance weights measure the representativeness of each sample sim-
ulated from the proposal pdf q(x) with reference to the distribution of random
variables π̃(x).
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At this point, this set of N weighted samples {x(k)n,1,w
(k)
n,1}, n = 1, ...,N, k =

1, ...,K are used to define a self-normalized estimator:

ÎN( f ) =
N

∑
n=1

w̄n f (wn) (3.4)

where w̄n =wn/∑
N
j=1 w j are the normalized weights. This permits to approximate

the target function distribution as follows:

π̃
N(x) =

N

∑
n=1

w̄nδ (x−xN) (3.5)

where δ represents the Dirac measure.

Finally, AIS realizes the adaptation phase and updates the parameters of the n-th
proposals from θn,1 to θn,2 using the last set of drawn parameters [87] or all the
parameters evaluated so far [88]. The whole procedure is repeated until a certain
termination criteria is met (e.g. maximum number of iterations).

This adaptive policy permits to gradually evolve the single or multiple proposal
densities to accurately approximate the target pdf. The generation of new samples
is uniquely driven by the measurement of the importance of previous samples
(weighting) that supports the updating of the proposal parameters (adaptation). Thus,
AIS adaptively locates promising regions to query without gaining benefits from an
overall quantification of the goodness of all the spectrum of samples available in
the domain – e.g. through the construction of a surrogate model. On this basis, AIS
and the general class of adaptive probing strategies are not considerable a learning
procedures since the adaptation phase is not informed by a surrogate model updated
on the fly during the procedure, and is not guided by a "learner" that assimilates
information from this emulator and adapts the next queries to achieve a given goal.

3.2.2 Adaptive Modeling

Adaptive modeling paradigms sample the domain supported by the information from
previous queries, and use the collected data to build a surrogate model. However,
the informative content encoded in the emulator is not used to guide the sampling
and decide the next point to evaluate. Adaptive modeling approaches have been
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extensively developed for the reliable propagation and quantification of uncertainties
[89, 90], analysis of ordinary or partial differential equations [91, 92], and inverse
problems [93, 94]. One common approach is represented by adaptive stochastic
collocation methodologies, which use an adaptive sparse grid approximation scheme
to construct an interpolant polynomial in a multi-dimensional random space [95, 96].
The adaptive selection of collocation points is driven by an error indicator [97] or
estimator [98] that evaluates a certain number of sparse admissible subspaces of the
domain: the subspace that exhibits the higher error is included in the grid and the
new set of subspaces is identified. Other well-known adaptive modeling approaches
are residual-based samplings distribution [99]. This family of techniques is mostly
applied to improve the training efficiency of Physics-Informed Neural Networks
(PINN) surrogate models. Residual-based approaches enhance the distribution of
residual points by placing more samples according to certain properties of the residu-
als during the training of PINN. This decision can be made on the basis of locations
where the residual of the partial differential equation is large [100], according to a
probability density function of the residual points [101], and hybrid approaches of
the above [99]. This permits to achieve better accuracy of the final PINN surrogate
model while containing the computational burden associated with computations.
Both stochastic collocation and residual based samplings are intended to build an
efficient and accurate surrogate model over the domain of samples. However, the
sampling procedure is adapted uniquely to previous evaluated samples without a
learning procedure from data: the surrogate model is not used to inform the decision
on where to sample, and is not progressively updated with previous information. In
the following, we provide general mathematical details about adaptive stochastic
collocation to analyze the peculiarities of the adaptive modeling class, and underline
the absence of a learning process during the construction of the surrogate model.

Adaptive Stochastic Collocation Adaptive Stochastic Collocation (ASC) builds
an interpolation function to approximate the outputs from a model of interest. This
emulator is constructed on the evaluations of the model at valuable collocation points
of the stochastic inputs to obtain the moments and the probability density function
of the outputs.

Consider any point x contained in the random space Γ ⊂ RN with probability
distribution function ρ(x). The goal of ASC is to find an interpolating polynomial
I ( f ) to approximate a smooth function f (x) : RN → R:
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I ( f )(xk) = f (xk) , 1≤ k ≤ q (3.6)

for a given set of points {xk}q
k=1. The selection of the collocation points majorly

influences the capability of the interpolating polynomial to be close to the original
function f . For multivariate problems, the interpolation function is defined as follows
using the tensor product grid:

I ( f ) = (U i1⊗·· ·⊗U iN )( f ) =
ni1

∑
j1=1
· · ·

niN

∑
jN=1

f (xi1
j1 , ...,x

iN
jN ) · (L

i1
j1 ⊗·· ·⊗L iN

jN )

(3.7)

where U ik is the univariate interpolation function for the level ik in the k-th coor-
dinate, xik

jm is the jm-th node, and L jk are the Lagrange interpolating polynomials.

Equation 3.7 demands for ni1×·· ·×niN nodes, which indicate an exponential rate
of computational cost growth with the number of dimensions. Adaptive stochastic
collocation targets the reduction of this computational effort through an adaptive
sparse grid of collocation points: the objective is to wisely place more points of the
grid in the important directions to prioritize the collection of highly informative data.
This adaptive sparse grid is defined through a subset of the full tensor product grid
as follows:

Aq,N( f )= ∑
|i|≤q

(∆U i1⊗·· ·⊗∆U iN )( f )=Aq−1,N( f )+ ∑
|i|=q

(∆U i1⊗·· ·⊗∆U iN )( f )

(3.8)

where i = (i1, ..., iN) ∈ RN , |i|= i1 + ...+ iN , q is the sparseness parameter, and
the difference formulas are defined by U 0 = 0 and ∆U i = U i−U i−1.

Equation 3.8 leverages the previous results to extend the interpolation from level
q−1 to q through the evaluation of the multivariate function on the sparse grid:

Hq,N =
⋃
|i|≤q

(∆ϑ
i1×·· ·×∆ϑ

iN ) = Hq−1,N +
⋃
|i|=q

(∆ϑ
i1×·· ·×∆ϑ

iN ) (3.9)
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where ∆ϑ i = ϑ i\ϑ i−1 are the newly added set of univariate nodes ϑ ik for level
ik in the k-th coordinate.

This scheme adapts the sampling procedure through the knowledge acquired
on the fly, and efficiently leverages data to improve the quality of the interpolation
function. In this case, the selection of the collocation points is intended to compute
an emulator of the target function, but the adaptive sampling is not driven by the
information acquired from this emulator. In addition, the acquisition of data is not
used to learn and update the surrogate model. These considerations on ASC can be
extended to the general class of adaptive modeling methods: even if the sampling
scheme is conceived to construct surrogate models, the selection of promising
locations to query is not delegated to a goal-driven learner that leverages a mutual
exchange of information with the surrogate.

3.2.3 Adaptive Learning

Adaptive learning methodologies realize goal-driven learning processes characterized
by the mutual exchange of information between the surrogate model and the goal-
driven learner: the former is updated and refined after new evaluations of samples
while the latter decides the next query based on the updated approximation given by
the emulator. Bayesian optimization and pool-based active learning belong to this
specific class of adaptive sampling techniques. Bayesian frameworks constitute a
learning process driven by the mutual informative assimilation between an acquisition
function – learner – and a surrogate model [27, 29]. The acquisition function
commensurates the benefit of evaluating samples based on the prediction of the
surrogate model, and selects the most useful sample to query towards the given goal
– either improve the accuracy of the surrogate over the domain or effectively inform
the optimization search; at the same time, the emulator is enriched with the data
from the new query, and is updated to refine the approximation of the objective
function over the domain. Similarly, pool-based active learning methods search the
domain through a goal-driven learner informed by a classification model of samples
[102, 103]. This process is characterized by the reciprocal flow of information
between the learner and the emulator: the classification model is updated through
the new evaluations of unsampled locations, and the learner uses this information
to select the next query. Mathematical details about pool-based active learning are
provided in the following section to better clarify the distinction between this class
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of adaptive learners, and the other classes which do not realize a goal-driven learning
procedure.

Pool-Based Active Learning Pool-based active learning commonly defines an
optimal sampling strategy to improve the accuracy of a surrogate model adopted to
classify data-points from a target distribution of labels over the domain of samples
X . Considering this general classification task, pool-based active learning routine
is grounded on a probabilistic estimate of the distribution of features f over the
entire domain X through a surrogate model f̂ . This emulator is trained on a
set of collected data-points, and maps features to labels fN(xn) = f̂n through a
predicted probability pN( fn = f |xn) that estimates the distribution of features over
the domain. Suppose we have collected from a large pool of unlabelled data X the –
small– dataset DN{xn, f (xn)}N

n=1 observing the label values f (xn) in output from an
observation model or oracle at some informative locations xn. Based on this dataset,
the goal-driven procedure learns a surrogate model f̂N whose predictive framework
emulates the behaviour of samples over the domain based on the previous collected
information.

At this point, an utility function acts as the goal-driven learner informed by the
surrogate model, and identifies the most promising sample to be labelled by the oracle
according to a measure of utility with respect to the given goal – improve the accuracy
of the classifier. The next query augments the dataset DN+1 = DN

⋃
{xN+1, fN+1}

and the surrogate model is updated. This utility function defines a learning policy
that maps the current predictive distribution to a decision/action on where to sample
in the next iteration as follows:

xN+1 = arg maxU(pN( fn = f |xn)) (3.10)

Equation (3.10) mathematically formalizes the concept of goal-driven learning
procedure: the learner leverages the predicted probability of the surrogate pN(yn =

y|xn) to make an action xN+1; at the same time, the decision is used to enrich the
dataset D{xn, f (xn)}N+1

n=1 and update the predicted probability pN+1. This mutual
exchange and assimilation between the learner and the surrogate represents the key
aspect that defines a goal-driven learning process and the whole class of adaptive
learning sampling schemes.
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3.3 Bayesian Frameworks

Bayesian optimization constitutes the mid-point between adaptive sampling and
active learning. This intersection represents the focal point of this thesis, and
motivates the substantial synergy between Bayesian optimization and active learning
as adaptive sampling schemes capable to learn from data and accomplish a certain
learning goal. The remaining of this section is dedicated to the general overview of
Bayesian optimization considering both a single source of information (Section 3.3.1)
and when multiple sources are available to the learning procedure (Section 3.3.2).
This will guide the reader into the next sections that make explicit the symbiosis
between Bayesian frameworks and active learning through our original perspective of
Bayesian optimization as a way to actively learn with acquisition functions (Section
3.4).

3.3.1 Bayesian Optimization

The birth of Bayesian optimization can be retraced in 1964 with the work of Kushner
[104] where unconstrained one-dimensional optimization problems are addressed
through a predictive framework based on the Wiener process surrogate model, and
a sampling scheme guided by the probability of improvement acquisition function.
Further contributions have been proposed by Zhilinskas [105] and Mockus [106],
and the methodology has been extended to high dimensional optimization problems
in the works of Stuckman [107] and Elder [108]. Bayesian optimization achieved
resounding success after the introduction of the Efficient Global Optimization (EGO)
algorithm by Jones et al. [109]. EGO uses a Kriging surrogate model to predict
the distribution of the objective function, and adopts the expected improvement
acquisition function to measure the improvement of the optimization procedure
obtained evaluating unknown samples.

The EGO methodology paves the way to the application of Bayesian optimization
over a wide range of problems in science and engineering. These research fields de-
mand for the efficient management of the information from black-box representations
of the objective function – the procedure is only aware of the input and output without
a priori knowledge about the function – to guide the optimization search. Engineering
has been a pioneer in the adoption of Bayesian optimization: the design optimiza-
tion of complex systems is frequently characterized by computationally intensive
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black-box functions which require efficient global optimization methods. Early
applications relate to engineering design optimization [110], computer vision [111]
and combinatorial problems [112]. Nowadays, the Bayesian framework becomes
widely adopted in many fields including and not limited to engineering [113–116],
robotics and reinforcement learning [117–119], finance and economics [120, 121],
automatic machine learning [122, 123], and preference learning [124, 125].

Given a black-box expensive objective function f : X → R, Bayesian opti-
mization seeks to identify the input x∗ ∈minx∈X f (x) that minimizes the objective
f over an admissible set of queries X with a reduced computational cost. To
achieve this goal, Bayesian optimization relies on an adaptive learning scheme based
on a surrogate model that provides a probabilistic representation of the objective
f , and uses this information to compute an acquisition function U(x) : X → R+

that drives the selection of the most promising sample to query. Let us consider
the available information regarding the objective function f stored in the dataset
DN = {(x1,y1), ...,(xn,yn)} where yn ∼N ( f (xn),σε(xn)) are the noisy observa-
tions of the objective function and σε is the standard deviation of the normally
distributed noise.

At each iteration of the optimization procedure, the surrogate model depicts possi-
ble explanations of f as f ∼ p( f |DN) applying a joint distribution over its behaviour
at each sample x∈X . Typically, Gaussian Processes (GPs) have been widely used as
the surrogate model for Bayesian optimization [126, 127]. In GP regression, the prior
distribution of the objective p( f ) is combined with the likelihood function p(DN | f )
to compute the posterior distribution p( f |DN) ∝ p(DN | f )p( f ), representing the
updated belief about f . The GP posterior is a joint Gaussian distribution p( f |DN) =

N (µ(x),κ(x,x′)) completely specified by its mean µ(x) = E [ f (x)] and covariance
(also referred as kernel) function κ(x,x′) = E [( f (x)−µ(x))( f (x′)−µ(x′))], where
µ(x) represents the prediction of the GP model at x and κ(x,x′) the associated
uncertainty. More details about the Gaussian process regression are provided in the
following.

BO uses this statistical belief to make the decision of where to sample assisted by
an acquisition function U , which identifies the most informative sample xnew ∈X

that should be evaluated via maximization xnew ∈maxx∈X U(x). Then, the objective
function is evaluated at xnew and this information is used to update the dataset
DN = DN ∪ (xnew,y(xnew)). Acquisition functions are designed to guide the search
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for the optimum solution according to different infill criteria which provide a measure
of the improvement that the next query is likely to provide with respect to the current
posterior distribution of the objective function. In engineering applications, we could
retrieve different implementations proposed for the acquisition function, which differ
for the infill schemes adopted to sample pursuing the optimization goal. Examples
include the Probability of Improvement (PI) [128], Expected Improvement (EI)
[109], Entropy Search (ES) [129] and Max-Value Entropy Search (MES) [130],
Knowledge-Gradient (KG) [131], and non-myopic acquisition functions [132, 133].

The Probability of Improvement (PI) acquisition function encourages the se-
lection of samples that are likely to obtain larger improvements over the current
minimum predicted by the surrogate model, while the Expected Improvement (EI)
considers not only the PI but also the expected gain in the solution of the optimization
problem achieved evaluating a certain sample. Other popular schemes are entropy-
based acquisition functions such as the Entropy Search (ES) and Max-Value Entropy
Search (MES), which rely on estimating the entropy of the location of the optimum
and the minimum function value, respectively, to maximize the mutual information
between the samples and the location of the global optimum. Knowledge-gradient
sampling procedures are conceived for applications where the evaluations of the
objective function are affected by noise, recommending the location that maximizes
the increment of the expected value that would be acquired by taking a sample
from the location. Through the adoption of non-myopic acquisition functions, the
learner maximizes the predicted improvement at future iterations of the optimization
procedure, overcoming myopic schemes where the improvement of the solution is
measured at the immediate step ahead.

The most widely used acquisition functions determine a greedy and sequential
adaptive sampling scheme that considers only the immediate effect of evaluating
the objective function for a single design, and do not consider the potential gains
introduced in future evaluations. To address this type of greedy limitation, BO has
been formalized as a partially observable Markov decision process [134], and several
works [127, 135–137] provide solutions to this process and formalize non-myopic
multifidelity acquisition functions. In addition, multipoint formulations of the BO
framework have been proposed to evaluate in parallel multiple designs with a single
level of fidelity of the disciplinary model [138, 139, 71]. However, the combination
of non-myopic and multipoint formulations in literature are conceived exclusively
for a single-fidelity framework only: the optimization process relies on the responses
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of disciplinary models at one single fixed level of fidelity. In the MDO context,
this single fidelity approach could hinder the expensive high-fidelity disciplinary
models to be interrogated directly during the search, which otherwise would result
in prohibitive computational costs. In addition, the computational cost becomes
unmanageable as it scales exponentially when the disciplinary couplings are also
considered during the process: the identification of an optimal design that satisfies
all the interactions and couplings across the disciplines would require massive
evaluations of high-fidelity disciplinary models with the associated growth of the
computational demand.

Gaussian Process

Gaussian process (GP) regression is a flexible and efficient framework to approximate
the objective function f through a non-parametric kernel-based statistical model
[126, 140, 141]. GP allows to predict the values of this objective function across the
domain X based on its observations at previous evaluated points, and quantifies the
uncertainty associated with the prediction. In the following, we briefly summarize
the theoretical formulation of GP.

Let DN = {xn,y(xn)}N
n=1 denote the dataset of N paired combinations of op-

timization variables xn ∈X ⊆ RD and noisy observations of the objective func-
tion y(xn) ∼ N ( f (xn),σε), where σε is the standard deviation of the normally
distributed noise. GP is a non parametric model characterized by its mean func-
tion µ(x) : X → R and the covariance function also defined as kernel function
κ(x,x′) : X ×X → R. We assume that the observations of the objective func-
tion ∆∆∆ = { fn}N

n=1 are jointly Gaussian, and the output FFF = {y(xn)}N
n=1 is normally

distributed given f :

∆∆∆ | x∼N (µ,K) (3.11)

FFF |∆∆∆,σ2
ε ∼N (∆∆∆,σ2

ε I) (3.12)

where µ := µ(xn), and Ki, j =: κ(xi,x j).

Using the Bayesian inference principle, the GP regression combines the prior
belief about the objective p( f ) with the likelihood function p(DN | f ) to compute the
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posterior distribution p( f |DN) ∝ P(DN | f )P( f ), representing the updated surrogate
model of the objective function. Assuming the prior of the objective as a GP:
f ∼ GP(0,κ(x,x′)) with zero mean function µ(x) = 0, the posterior distribution is
a GP completely defined by its mean µ and variance σ2:

µ(x) = κi(x)T (K+σεI)−1FFF (3.13)

σ
2(x) = κ(x,x)−κi(x)T (K+σεI)−1

κi(x) (3.14)

where κi is defined as κi(x)
.
= (κ(x,x0), · · · ,κ(x,xi)). The posterior mean µ

represents the maximum a posteriori probability estimate of the objective function
f , and the posterior standard deviation σ quantifies the uncertainty of the surrogate
model. These information are used to compute the acquisition function that guides
the search towards the optimal solution of the optimization problem of interest.

In addition, the estimate of the uncertainty σ associated with the prediction
µ of the objective function through the kernel function κ represents a significant
property that potentially confers to BO a form of intrinsic reliability. Indeed, kernel
functions form a reproducing kernel Hilbert space in which the objective function f
has bounded norm [142]. This provides reliable confidence intervals on the objective
function that determine a measure of the prediction and therefore reliability of the
Gaussian process surrogate model.

3.3.2 Multifidelity Bayesian Optimization

The evaluation of black-box functions in engineering and science frequently requires
time-consuming lab experiments or expensive computer-based models, which would
dramatically increase the computational burden for the optimization procedure. This
is the case of many-query problems such as design exploration and optimization
[3], or the parametric analyses of complex system performance for trade off studies,
diagnostics, and prognostics [143], where the evaluation of the objective function for
enough samples can not be afforded in practice. In many real-world applications, the
objective function can be computed using multiple representations at different levels
of fidelity { f (1), ..., f (L)}, where the lower the level of fidelity the less accurate but
also less time-consuming the evaluation procedure. Multifidelity methods recognize
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that different representative levels of fidelity and associated cost can be used to accel-
erate the optimization process, and enable a flexible trade-off between computational
cost and accuracy of the solution. In particular, multifidelity optimization leverages
low-fidelity data to massively query the domain, and uses a reduced number of
high-fidelity observations to refine the belief about the objective function toward the
optimum [35, 12, 37].

Accordingly, Multifidelity Bayesian Optimization (MFBO) learns a surrogate
model that synthesizes through stochastic approximation the multiple levels of fi-
delity available, and uses an acquisition function as the learner that selects the most
promising sample and associated level of fidelity to interrogate. This learning proce-
dure provides potential accelerations of the optimization procedure that is reflected
in the likely improvement of the surrogate accuracy. According to Godino et al. [32],
the improvement in performance occurs usually if the acquisition of large amount of
high-fidelity data is hampered by the computational expense, the correlation between
high-fidelity and low-fidelity data is high, low-fidelity models are sufficiently inex-
pensive; Under different circumstances, multifidelity optimization might not deliver
substantial accelerations and quality of the surrogate. In recent years, multifidelity
Bayesian optimization has been successfully adopted for optimization problems
ranging from engineering design optimization [144, 145, 71, 146, 147], automatic
machine learning [148–150], applied physics [151, 152], and medical applications
[153, 154].

Multifidelity Bayesian optimization determines a learning procedure informed
by a multifidelity surrogate model which defines an approximation of the objec-
tive f (l) ∼ p( f (l)|(x, l),DN) at different level of fidelity, and represents the be-
lief about the distribution of the objective function over the domain X based on
data. A popular practice for MFBO is to adopt an autoregressive scheme to ex-
tend the Gaussian process surrogate model to a multifidelity setting and formal-
ize a multifidelity Gaussian process surrogate model [155]. The posterior of the
multifidelity Gaussian process is completely specified by the multifidelity mean
function µ(l)(x, l) = E

[
f (l)(x)

]
that represents the approximation of the objective

function at different levels of fidelity, and the multifidelity covariance function
κ(l)((x, l),(x′, l)) = E

[
( f (l)(x, l)−µ(l)(x, l))( f (l)(x′, l)−µ(l)(x′, l))

]
that defines

the associated uncertainty for each level of fidelity. The following section pro-
vides specific details about the formalization of the multifidelity Gaussian process
surrogate model.
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The availability of multiple representations of the objective function poses a
further decision task that has to be accounted by the learner during the sampling of
unknown locations: the selection of the most promising sample is effected with the
simultaneous designation of the information source to be evaluated. This is obtained
through a learner represented by the multifidelity acquisition function U(x, l) that
extends the infill criteria of Bayesian optimization, and selects the pair of sample
and the associated level of fidelity to query (xnew, lnew) ∈maxx∈X ,l∈L U(x, l) that
is likely to provide higher gains with a regard for the computational expenditure.
Among different formulations, well known multifidelity acquisition functions to
address optimization problems are the Multifidelity Probability of Improvement
(MFPI) [156], Multifidelity Expected Improvement (MFEI) [38], Multifidelity Pre-
dictive Entropy Search (MFPES) [157], Multifidelity Max-Value Entropy Search
(MFMES) [42], and non-myopic multifidelity expected improvement [70]. These
formulations of the acquisition function define adaptive learning schemes that retain
the infill principles characterizing the single-fidelity counterpart, and account for the
dual decision task balancing the gains achieved through accurate queries with the
associated cost during the optimization procedure.

Multifidelity Gaussian Process

In the multifidelity scenario, the GP regression synthesizes the simulations from
the models at different levels of fidelity [ f (1), f (2), ..., f (L)] into a unique predictive
framework. The Multifidelity Gaussian Process (MFGP) is formalized through an au-
toregressive relation between adjacent levels of fidelity [155]. Let us assume we have
collected paired input/output observations in the dataset DN = {xn,y(ln)(xn), ln}N

n=1,
where the output y = {y(ln)(xn)}N

n=1 is normally distributed given ∆∆∆ = { f (ln)n }N
n=1:

y |∆∆∆,σ2
ε ∼N (∆∆∆,σ2

ε I) (3.15)

assuming the same variance of the measurement noise σ2
ε for each level of

fidelity. The MFGP relies on the linear autoregressive information fusion proposed
by Kennedy and O’Hagan to approximate the objective function function [158]. This
scheme assigns a GP prior to the lower fidelity model f (1) ∼ GP(0,κ1 (x,x′)) with
mean function µ(l) = 0 and kernel function κ1 (x,x′), and defines recursively the
higher-fidelity levels as follows:
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f (l) = ρ
(l−1)(x) f (l−1) (x)+ζ

(l) (x) l = 2, ...,L (3.16)

where the scale factor ρ(l−1)(x) models the correlation between the outputs
of adjacent levels of fidelity, and ζ (l) ∼ GP(0,κ(l) (x,x′)) represents the modeling
discrepancy between two adjacent levels of fidelity as a Gaussian process with mean
function µ(l) = 0 and kernel function κ(l) (x,x′).

Following the Bayesian inference principle, the MFGP regression combines
the prior belief about the objective P( f (l)) with the likelihood function P(DN | f (l)),
and computes the updated posterior distribution of the objective function function
P( f (l)|DN) ∝ P(DN | f (l))P( f (l)). This multifidelity posterior is a Gaussian process
completely specified by its mean function µ(l) and variance function σ2(l):

µ
(l)(x) = κ

(l)
N (x)T (K+σεI)−1 y (3.17)

σ
2(l)(x) = κ ((x, l) ,(x, l))−κ

(l)
N (x)T (K+σεI)−1

κ
(l)
N (x) (3.18)

where κ
(l)
N is defined as κN(x)

.
= (κ ((x, l) ,(x1, l1)) , · · · ,κ ((x, l) ,(xN , lN))), and

K is the kernel matrix defined as follows:

K =

(
κ(l−1)(x,x′)K(l−1)

ρκ(l−1)(x,x′)K(l−1)

ρκ(l−1)(x,x′)K(l−1)
ρ2κ(l−1)(x,x′)K(l−1)+κ(l)(x,x′)K(l)

)
(3.19)

where K(l−1)(i, j) = κ
(
(xi, l−1) ,

(
x j, l−1

))
and K(l)(i, j) = κ

(
(xi, l) ,

(
x j, l

))
.

The mean function µ(l)(x) represents the prediction of the objective function
f (l)(x) over the possible combinations of optimization variables in the domain X ,
and σ2(l)(x) quantifies the associated uncertainty.

3.4 An Active Learning Perspective

Bayesian frameworks and Active learning schemes exhibit a strong synergy: in
both cases the learner seeks to design an efficient sampling policy to accomplish
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the learning goal, and is guided by a surrogate model that informs the learner and
is continuously updated during the learning procedure. Active learning literature
is vast an include a multitude of approaches [159–165, 73]. According to the well
accepted classification proposed by Sugiyama and Nakajima [72], active learning
strategies can be categorized in population-based and pool-based active learning
frameworks according to the nature of the sampling scheme defined by the learner.
Population-based active learning targets the identification of the best optimal density
of the samples for training known the target distribution. Conversely, pool-based
active learning defines an efficient sampling scheme to improve the efficiency of a
surrogate model of the unknown target distribution over the domain of samples.

This section explicitly formalizes and discusses Bayesian frameworks as an active
learning procedure realized through acquisition functions. In particular, pool-based
active learning shows in essence a strong dualism with Bayesian frameworks. We
emphasize this synergy through the dissertation on the correspondence between
learning criteria and infill criteria; the former drive the sampling procedure in
pool-based active learning, while the latter guide the search in Bayesian schemes
through the acquisition function. This symbiosis is evidenced for the case of a single
source of information adopted to query samples, and when multiple sources are at
disposal of the learner to interrogate new input. Accordingly, we review and discuss
popular sampling policies commonly adopted in pool-based active learning, and
discern the learning criteria to accomplish a specific learning goal (Section 3.4.1).
Then, the attention is dedicated to the identification of the infill criteria realized
through popular acquisition functions in Bayesian optimization (Section 3.4.2). The
objective is to explicitly formalize the synergy between Bayesian frameworks and
Active learning as adaptive sampling schemes guided by common principles. The
same avenue is followed to formalize this dualism for the case of multiple sources
of information available during the learning procedure. In particular, we identify
the learning criteria adopted in pool-based active learning with multiple oracles
(Section 3.4.3), and compare them with the infill criteria specified by well-established
multifidelity acquisition functions in multifidelity Bayesian optimization (Section
3.4.4). The objective is to clarify the shared principles and the mutual relationship
that characterize the two adaptive learning schemes when the decision of the sample
to query requires also the selection of the appropriate source of information to be
evaluated.
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3.4.1 Learning Criteria

Pool-based active learning determines a tailored sampling policy to ensure the
maximum computational efficiency of the adaptive sampling procedure – limited
and well selected amount of samples to query. This adaptive learning demands for
principled guidelines to decide whether or not evaluate a certain sample based on a
measure of its goodness. Learning criteria permit to establish a metric for quantifying
the gains of all the possible learner decisions, and prescribe an optimal decision
based in information acquired from the surrogate model. The vast majority of the
literature concerning pool-based active learning identifies three essential learning
criteria: informativeness, representativeness and diversity [166–168, 73, 169, 103]:

1. Informativeness measures the amount of information encoded by a certain
sample. This means that the sampling policy is driven by the maximum likely
contribution of queries that would significantly benefit the objective of the
learning procedure.

2. Representativeness quantifies the similarity of a sample or a group of samples
with respect to a target sample representative of the target distribution. Thus,
the sampling policy exploits the structure underlying the domain to direct
the queries in locations where a sample can represent a large amount of
neighbouring samples.

3. Diversity estimates how well the queries are disseminated over the domain of
samples. This is reflected in a sampling policy that selects samples scattering
across the full domain, and prevents the concentration of queries in small local
regions.

Figure 3.3 illustrates a watering optimization problem that attempts to clarify the
peculiarities of each learning criteria. This simple toy problem requires identifying
the areas of a wheat field where the crop is ripe and where it is still unripe for irriga-
tion purposes. The learning goal is formalized as the identification of the area where
the wheat is lower, which means an unripe cultivation and maximum requirements
for irrigation. We assume that the learner can explore a maximum of five sites on the
field during the procedure. A learner driven by the pure informativeness criterion
(Figure 3.3(a)) would place observations in regions where the height of the wheat is
minimum. This maximizes information on where it is strictly necessary to irrigate,
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(a) Informativeness (b) Representativeness (c) Diversity

Fig. 3.3 Learning criteria: watering optimization problem.

but nothing is known about the regions where the grain is higher. Conversely, a
purely representative sampling (Figure 3.3(b)) would probe the field by agglomer-
ating observations to ensure the representativeness of the samples. This allows to
partially know even areas where copious irrigation is not necessary, but increases the
overall uncertainty given the small amount of samples for each agglomeration. If the
learner pursues only the diversity of queries (Figure 3.3(c)), samples would scatter
the field minimizing the maximum distance between measurements. Although this
allows the queries to be distributed across the entire domain, the uncertainty is high
as only one sample covers a respective area of the field.

The remaining of this section is dedicated to the revision and discussion of
popular pool-based active learning schemes. We aim to provide a broad spectrum
of approaches that exemplify the implementation of different learning criteria both
individually and in combination. This permits to highlight the driving principles of
learning procedures, and will help to better clarify the existing synergy between active
learning and Bayesian optimization accounted in the following sections. Figure 3.4
summarizes the relationship between the methodologies reviewed in the following
and the three learning criteria.

Informativeness-Based Learning procedures characterized by a pure informative
criterion can be traced in uncertainty-based sampling policies. These approaches
make the query decision based on the predictive uncertainty of the surrogate model,
and seek to improve the density of samples in regions that exhibit the largest un-
certainty with respect to a specific learning goal. Popular uncertainty-based active
learning algorithms are uncertainty sampling and query-by-committee methods. Un-
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Fig. 3.4 Mapping methodologies to learning criteria.

certainty sampling algorithms probe the domain to improve the overall accuracy
of the surrogate model according to a measure of the predictive uncertainty. Ex-
amples include the quantification of the uncertainty associated with samples [170],
and its alternatives as margin-based [171], least confident [172] and entropy-based
[173] approaches. Other strategies define sampling policies which promote the mini-
mization of the surrogate model predicted variance [174] to maximize, respectively,
the decrease of loss augmenting the training set [102], and the gradient descend
[175]. Other uncertainty-based strategies are query-by-committee sampling schemes
[160, 176], where the most informative sample to query is selected through the max-
imization of the disagreement between the predictions of a committee of surrogate
models computed on subsets of the locations.

Representativeness/Diversity-Based Other pool-based active learning algorithms
relies exclusively on representativeness and diversity learning frames: usually these
learning criteria are implemented at the once in the learning procedure to drive the
domain probing. This blend is justified by the mutual complementary relationship
between representativeness and diversity: pure representativeness might concentrate
the sampling in congregated representative domain regions without a proper disper-
sion of queries, while pure diversity might lead to the over-query of the domain and
divert the learning procedure from the actual goals. The combination of both the
learning criteria permits on one hand to leverage the representativeness of samples
to accomplish a certain learning goal, on the other hand prevents the selection of
redundant samples and high densities of queries only in circumstanced regions of
the domain. Representative/diversity-based algorithms include a multitude of ap-
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proaches that are commonly classified in two main schemes: clustering methodology
and optimal experimental design. The former clustering algorithms identifify the
most representative locations exploiting the underlying structures of the domain:
the utility of samples is obtained as a function of their distance from the cluster
centers. Popular examples include hierarchical clustering and k-center clustering.
The former identifies a hierarchy of clusters based on the encoded information, and
selects samples closer to the cluster centers [177]; the latter determines a subset
of k congruent clusters that together cover the sampling space and whose radius is
minimized, and the best sample minimizes the maximum distance of any point to
a center [178]. Optimal experimental design defines a sampling policy based on a
transductive approach: the learning procedure conducts the queries through a data
reconstruction framework that measure the samples representativeness based on the
capacity to reconstruct the training dataset. The selection of the most representative
sample comes from an optimization process that maximizes the local acquisition of
information about the parameters of the surrogate model [179–181].

Hybrid Recent avenues explore the combination of both informativeness and rep-
resentativeness/diversity learning criteria to combine the goal oriented query of the
first, and the use of underlying structures preventing over-density of the second.
Accordingly, combined-based algorithms integrates multiple learning criteria to im-
prove the overall sampling performance. Those approaches are commonly classified
into three main classes [182, 103]: serial-form, criteria selection, and parallel-form
approaches. Serial-form algorithms use a switching approach to take advantages
from all the three learning criteria: informativeness-based techniques are used to
select a subset of highly informative samples, and then representativeness/diversity
techniques identifies the centers of the clusters on this subset as the querying loca-
tions [167]. Criteria selection algorithms rely on a selection parameter informed by a
measure of the learning improvement that suggests the appropriate learning criteria to
be used during the procedure [183]. Both serial-form and criteria selection strategies
combine the three learning criteria through a sequential approach where each criteria
is used consecutively during the learning procedure. Parallel-form methods combine
simultaneously multiple learning criteria: the utility of each sample is judged by
weighting informativeness and representativeness/diversity at the same time; then,
valuable samples are selected through a multi-objective optimization of the weights
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to maximize at the same time the improvement in terms of learning goals and the
exploitation of potentially useful structures of the domain [184–186].

3.4.2 Acquisition Functions and Infill Criteria

The synergy between active learning and Bayesian optimization relies on the sub-
stantial analogy between the learning criteria driving the active learning procedure
and the infill criteria that characterize the Bayesian learning scheme. Infill criteria
provide a measure of the information gain in terms of utility acquired evaluating a
certain location of the domain. In Bayesian optimization, the acquisition function is
formalized according to a certain infill criterion: this permits to quantify the merit of
each sample with respect to a specific learning goal. Accordingly, the sample that
maximizes the querying utility is observed to enrich the learning procedure towards
this goal.

In particular, Bayesian learning schemes rely on two main infill criteria: global
exploration ad local exploitation toward the optimum. The former exploration
criterion concentrates the samples in regions of the domain where the uncertainty
predicted by the surrogate is higher; this enhances the global awareness about the
distribution of the objective function over the domain, but the resources might not
be directed toward the goal of the procedure – e.g. minimum of the objective
function. The latter exploitation criterion condensates the samples on regions where
the surrogate model indicates that the objective is likely to be located – e.g. minimum
of the Gaussian process mean function; exploitation realizes a goal-oriented sampling
procedure that privileges the search for the objective without a potentially accurate
knowledge of the overall distribution of interest.

The dilemma between exploration and exploitation represents a key challenge to
be carefully addressed. On one hand, a learning procedure based on pure exploration
might use a large amount of samples to improve the overall accuracy of the surrogate
model without searching toward the learning goal. On the other hand, an exploitation-
based learner might anchor a high density of samples to a suboptimal local solution
as a consequence of information from an unreliable surrogate model. These extreme
behaviours demonstrate the need to find a compromise between exploration and
exploitation criteria.
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Fig. 3.5 Mapping of the learning criteria in active learning and infill criteria in
Bayesian optimization.

In principle, infill criteria in Bayesian optimization are strongly related to the
learning criteria commonly adopted in active learning. In particular:

• The concept of exploration is close to the representativeness/diversity crite-
rion: both this learning schemes leverage underlying structures of the target
distribution predicted by an accurate surrogate model to improve the awareness
about the objective over the domain.

• The concept of exploitation is close to the informativeness criterion: the
learner directs the selection of samples toward the believed objective without
considering the global behaviour of the objective over the domain.

Figure 3.5 summarizes the mapping between infill criteria and learning criteria.
The following sections discuss the formalization of (infill) active learning criteria
for three most popular formulations of Bayesian acquisition functions, namely the
expected improvement, probability of improvement, and max-value entropy search.

Expected Improvement

The Expected Improvement (EI) acquisition function quantifies the expected value
of the improvement in the solution of the optimization problem achieved evaluating
a certain location of the domain [109]. EI at the generic location x relies on the
predicted improvement over the best solution of the optimization problem observed
so far. Considering the Gaussian process as the surrogate model for Bayesian
optimization, EI can be expressed as follows:
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UEI(x) = σ(x)(I(x)Φ(I(x)))+N (I(x);0,1) (3.20)

where I(x) = ( f (x̂∗)−µ(x))/σ(x) is the predicted improvement, x̂∗ is the current
location of the best value of the objective sampled so far, Φ(·) is the cumulative
distribution function of a standard normal distribution, µ is the mean function and
σ is the standard deviation of the GP. The computation of UEI(x) requires limited
computational resources and the first-order derivatives are easy to calculate:

∂UEI(x)
µ(x)

=−Φ(I(x)) (3.21)

∂UEI(x)
σ(x)

= φ(I(x)). (3.22)

Both Equation (3.21) and Equation (3.22) demonstrate that UEI(x) is monotonic
with respect to the increase of both the mean and the uncertainty of the GP surrogate
model. This highlights a form of trade-off between exploration and exploitation: the
formulation of the EI permits to balance the sampling in locations of the domain
where is likely to have a significant improvement of the solution with respect to the
current best solution, and the observations of regions where the improvement might
be contained but the prediction is highly uncertain. In principle, it is possible to state
that EI is driven by a combination of informativeness and representativeness/diversity
criteria adopted in active learning. On one hand, the learner seeks to direct the
computational resources towards the maximization of the learning contribution and
achievement of the goal – informativeness; on the other hand, the learner pursues the
awareness of the objective distribution over the domain to improve the quality of the
prediction and better drive the search – representativeness/diversity. The predictive
framework of the surrogate model regulates the learning thrusts privileging the one
over the other on the basis of the information about the objective function acquired
over the iterations.
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Probability of Improvement

The Probability of Improvement (PI) acquisition function targets the locations char-
acterized by the highest probability of achieving the goal, based on the information
from the current surrogate model [128, 187]. PI measures the probability that the
prediction of the surrogate model at the generic location is lower than the best obser-
vation of the objective function so far. Under the Gaussian process surrogate model,
the PI acquisition function is computed in closed form as follows:

UPI(x) = Φ(I(x)) (3.23)

where Φ(·) is the cumulative distribution function of a standard normal distribu-
tion and x∗ is the current location of the best value of the objective. Similarly to EI,
also UPI(x) is inexpensive to compute and the evaluation of the first-order derivatives
requires simple calculations:

∂UPI(x)
∂ µ(x)

=− 1
σ(x)

φ (I(x)) (3.24)

∂UPI(x)
∂σ(x)

=− I(x)
σ(x)

φ (I(x)) (3.25)

where φ is the standard Gaussian probability density function. As demonstrated
by Equation (3.24), regions of the input space characterized by lower values of
the posterior mean of the GP are preferred for sampling, at fixed uncertainty of
the surrogate. Moreover, Equation (3.25) shows that if µ(x) < f (x∗) the regions
characterized by lower uncertainty are preferred and, conversely, PI increases with
uncertainty. Overall, the PI acquisition function can be considered as an exploitative
scheme that determines the most informative location as the one that potentially
produces a larger reduction of the minimum value of the objective function observed
so far. This is achieved sampling regions where the surrogate model is reliable and
characterized by lower levels of uncertainty. In principle, this sampling scheme
makes PI in accordance with the informativeness criterion: the search toward the opti-
mum is uniquely directed in regions of the domain that exhibit the higher probability
of achieving the goal according to the emulator prediction.
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Entropy Search and Max-value Entropy Search

The Entropy Search (ES) acquisition function measures the differential entropy
of the believed global minimum location of the objective function, and targets
the reduction of uncertainty selecting the sample that maximizes the decrease of
differential entropy [129]. The ES acquisition function is formulated as follows:

UES(x) = H(p(x∗|D))−E f (x)|D [H(p(x∗| f (x),D))] (3.26)

where H(p(x∗)) is the entropy of the posterior distribution at the current iteration
on the location of the minimum of the objective function x∗, and E f (x)[·] is the
expectation over f (x) of the entropy of the posterior distribution at the next iteration
on x∗. Typically, the exact calculation of the second term of Equation (3.26) is not
possible and requires complex and expensive computational techniques to provide
an approximation of UES(x).

The Max-value entropy search (MES) [130] acquisition function is derived from
the ES acquisition function and allows to reduce the computational effort required to
estimate Equation (3.26) measuring the differential entropy of the minimum-value
of the objective function:

UMES(x) = H(p( f |D))−E f (x)|D [H(p( f | f ∗,D))] (3.27)

where the first and the second term are now computed on the minimum value
of the objective function f ∗. This permits to simplify the computations and to
approximate the second term through a Monte Carlo strategy [130]. The analysis of
the derivatives is not possible for the MES acquisition function since the formulation
of the second term of Equation (3.27) is intractable.

As reported by Wang et al. [130] in their experimental analysis, MES targets
the balance between the exploration of locations characterized by higher uncertainty
of the surrogate model, and the exploitation toward the believed optimum of the
objective function. However, Nguyen et al. [188] demonstrate that MES might
suffer from an imbalanced exploration/exploitation trade-off due to noisy observa-
tions of the objective function, and to the discrepancy in the computation of the
mutual information in the second term of Equation (3.27). As a result, MES might
over-exploit the domain in presence of noise in measurements, and over-explore
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when the discrepancy in the evaluation issue determines a pronounced sensitivity
to the uncertainty of the surrogate model. Overall, the adaptive sampling scheme
determined by the MES acquisition function follows both the informativeness and the
representativeness/diversity learning criteria: the most promising sample is ideally
selected targeting the balance between the search toward the believed minimum pre-
dicted by the emulator, and the decrease of uncertainty about the objective function
distribution.

3.4.3 Learning Criteria with Multiple Oracles

Most of the active learning paradigms rely on a unique and supposed omniscient
source of information about the target distribution. This oracle is iteratively queried
by the learner to evaluate the value of the distribution at certain locations, and is
assumed that its estimate is exact. In many other scenarios, the learner can elicit
information from multiple imperfect oracles at different levels of reliability, accuracy
and cost. Accordingly, the active learning community introduces a multitude of
annotator-aware algorithms which are capable to efficiently learn from multiple
sources of information. This require to make an additional decision during the
learning procedure: the learner has to select at each iteration the most useful sample
and the associated information source to query. In this context, the original learning
criteria of informativeness and representativeness/diversity (Section 3.4.1) evolve
and extend to quantify the utility of querying the domain with a certain level of
accuracy and associated cost:

1. Informativeness seeks to maximize the amount of information from deciding
the sample and information source to query. Thus, the learner might privilege
the evaluations from accurate and yet costly oracles to capitalize from high-
quality information and potentially reach the objective.

2. Representativeness attempts to identify underlying structures of the domain
to better inform the search procedure. In this case, the decision making process
might prefer to interrogate less expensive sources of information to contain
the required effort, especially if cheap predictions of the target distribution
exhibit good correlation with the estimate of the accurate oracle.
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3. Diversity scatters the sampling effort over the domain to pursue a proper
distribution of evaluations and augment the awareness about the target distribu-
tion. This might be favored by a major use of less accurate predictions of the
target distribution, which are more likely to well address the cost/effectiveness
trade-off during the diversity sampling.

The remaining of this section provides an overview of different multiple oracles
active learning methodologies to present and further clarify popular extensions of
the learning criteria to a multi-oracle setting.

Typically, active learning paradigms are extended to the multiple-oracle setting
through relabeling, repeating-labeling, probabilistic and transfer knowledge, and
cost-aware algorithms. Relabeling approaches query samples multiple times using
the library of sources of information available, and the final query is obtained
via majority voting [189]. Popular methodologies following this scheme pursue
the identification of a subset of oracles according to the proximity of their upper
confidence bound to the maximum upper confidence bound, and apply the majority
voting technique only considering the queries of this informative subset [190]. Other
multi-oracle active learning methods use a repeating-labeling procedure: the learner
integrates the repeated – often noisy – prediction of the oracles to improve the quality
of the evaluation process and the accuracy of the surrogate model learned from
data [191]. Both relabeling and repeating-labeling approaches share a common
drawback: the same unknown sample is evaluated multiple times with different
oracles, which results in a sub-optimal usage of the available sources of information.
Probabilistic and transfer learning methodologies attempt to overcome this limitation.
Probabilistic frameworks rely on surrogate models specifically conceived for the
multi-source scenario that provide a predictive framework to estimate the accuracy
of each oracle in the evaluation of samples over the domain [192, 193]. Transfer
knowledge approaches enhance the simultaneous selection of the most informative
location to sample and the associated most profitable source to query; this is achieved
through the transfer of knowledge from samples not evaluated in auxiliary domains to
support the estimate of the oracle reliability [194]. Recent advancements in multiple
oracles active learning are cost-effective algorithms, where the cost of an oracle is
evaluated considering both the overall reliability of the prediction and the quality of
samples in specific locations [195–197]. The cost-effectiveness property enhances
the use of computational resources for the evaluation of samples, and targets the
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search toward the learning objectives while guarantees an optimal trade-off between
evaluation accuracy and computational cost.

From the examined literature, the three learning criteria appear frequently cou-
pled together during the learning procedure with multiple sources to query. This
appears as a natural evolution of what has already been observed in the literature
for active learning with single information source: the overall learning procedure
usually benefits from a balanced learning scheme driven by informativeness and rep-
resentativeness/diversity. In particular, informativeness permits to direct the search
toward the learning goal, while representativeness/diversity augments the learner
awareness about the target distribution over the domain; the combination of these
learning criteria – in different measures – contributes to improve the performance of
the active learning algorithms by using efficiently the computational resources and
the information from multiple oracles.

3.4.4 Multifidelity Acquisition Functions and Infill Criteria

This section further investigates and highlights the synergy between active learning
and Bayesian optimization for the specific case of multiple source of information
used to accomplish the learning goal. Similarly to the single source setting, this
symbiotic relationship is revealed through common principles characterizing the
infill criteria in multifidelity Bayesian optimization and the learning criteria in active
learning with multiple oracles. The multifidelity scenario imposes an additional
decision to be made: the learner has to identify the appropriate information source to
query according to an accuracy/cost trade-off. This is reflected in the formalization
of infill criteria capable to define an efficient and balanced sampling policy, targeting
either the wise selection of the samples and the level of fidelity which ensure the
maximum benefits with the minimum cost. Accordingly, the multifidelity acquisition
function formalizes an adaptive sampling scheme based on one or multiple infill
criteria to quantify the utility of querying a location of the domain with a specific
level of fidelity.

Based on this considerations, the exploration and exploitation infill strategies are
extended according to the peculiarities of the multifidelity setting:

• Exploration is close to the representativeness/diversity criterion and de-
fines a sampling policy that incentives the overall reduction of the surrogate
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uncertainty. Accordingly, the selection of the appropriate level of fidelity is
driven by a trade-off between accuracy and evaluation cost. This might be
accomplished through less-expensive low-fidelity information to contain the
demand for computational resources during exploration.

• Exploitation is close to the informativeness criterion: concentrates the sam-
pling process in the regions of the domain where optimal solutions are likely
to be located. For this purpose, the learner might emphasize the use of ac-
curate evaluations of the target function to refine the solution of the learning
procedure toward the specific goal.

Similarly to the acquisition functions in Bayesian optimization (Section 3.4.2),
the symmetry between informativeness and exploitation criterion, and between rep-
resentativeness/diversity and exploration criterion is preserved in the multifidelity
setting. The following sections are dedicated to the revision and discussion of
popular multifidelity acquisition function, namely the multifidelity expected im-
provement (Section 3.4.4), multifidelity probability of improvement (Section 3.4.4)
and multifidelity max-value entropy search (Section 3.4.4). The goal is to highlight
the equivalent principles driving both the learning schemes, and further clarify the
elements that encode the symbiotic relationship that exists between multifidelity
Bayesian optimization and multi-oracle active learning.

Multifidelity Expected Improvement

The Multifidelity Expected Improvement (MFEI) extends the expected improvement
acquisition function to define a learning scheme in the multifidelity setting as follows
[38]:

UMFEI(x, l) =UEI(x,L)α1(x, l)α2(x, l)α3(x, l) (3.28)

where UEI(x,L) is the expected improvement depicted in Equation (3.20) evaluated
at the highest level of fidelity L, and the utility functions α1, α2 and α3 are defined
as follows:

α1(x, l) = corr
[

f (l), f (L)
]

(3.29)
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α2(x, l) = 1− σε√
σ2(l)(x)+σ2

ε

(3.30)

α3(l) =
λ (L)

λ (l)
. (3.31)

The first element α1 is the posterior correlation coefficient between the level of
fidelity l and the high-fidelity level L, and accounts for reduction of the expected
improvement when a sample is evaluated with a low fidelity model. This term reflects
a measure of the informativeness of the l-th source of information at the location
x, and balances the amount of improvement achievable evaluating the high-fidelity
level L with the reliability of the prediction associated with the level of fidelity l.
Accordingly, α1 modifies the learning scheme by adding a penalty in the formulation
that reduces the UMFEI when 1≤ l < L: this includes awareness about the increase
of uncertainty associated with a low-fidelity prediction. The second element α2

is conceived to adjust the expected improvement when the output at the l-th level
of fidelity contains random errors. This is equivalent to consider the reduction of
the uncertainty on the Gaussian process prediction after a new evaluation of the
objective function is added to the dataset D . This function allows to improve the
robustness of UMFEI when the representation of f (l) at different levels of fidelity
is affected by noise in the measurements. The third element α3 is formulated as
the ratio between the computational cost of the high-fidelity level L and the l-th
level of fidelity. This permits to balance the informative contributions of high-
and a lower-fidelity observation and the related computational resources required
for the evaluation. The effect of this term is to encourage the use of low-fidelity
representations if almost the same expected improvement can be achieved with a
high-fidelity evaluation. This directs wisely the use of computational resources to
achieve the representativeness/diversity of samples, and prevents a massive use of
expensive accurate queries during exploration phases.

Multifidelity Probability of Improvement

The Multifidelity Probability of Improvement (MFPI) acquisition function provides
an extended formulation of the probability of improvement suitable for the multifi-
delity scenario as follows [156]:

UMFPI(x, l) =UPI(x,L)η1(x, l)η2(l)η3(x, l) (3.32)
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where the PI acquisition function (Equation (3.23)) is computed considering the
highest-fidelity level L available, and the utility function η1, η2 and η3 are defined
as follows:

η1(x, l) = corr
[

f (l), f (L)
]

(3.33)

η2(l) =
λ (L)

λ (l)
(3.34)

η3(x, l) =
nl

∏
i=1

[
1−R

(
x,x(l)i

)]
. (3.35)

The first term η1 shares the same formalization of the utility function α1 in
Equation (3.29), and accounts for the increase of uncertainty associated with low-
fidelity representations 1≤ l < L if compared with the high-fidelity output L. This
reduces the probability of improvement if a low-fidelity representation is queried at
a specific location of the input space x. As already highlighted for the multifidelity
expected improvement, η1 incentives a form of informativeness learning where the
information source is selected according to its capability to accurately represent the
objective function. Similarly, the second utility function η2 is also included in the
multifidelity expected improvement in Equation (3.31) as the α3 term. This element
balances the computational costs and the informative contributions achieved through
the l-th level of fidelity. This prevents the rise of computational demand produced
by the over-exploitative nature of the probability of improvement (Section 3.4.2):
η2 encourages the use of fast low-fidelity data if the discrepancy between the l-th
level of fidelity and the high-fidelity L – quantified by η1 – is not significant. The
third element η3 is the sample density function and is computed as the product of
the complement to unity of the spatial correlation function R(·) [198] evaluated for
the nl samples considering the l-th level of fidelity. This term reduces the probability
of improvement in locations with an high sampling density – over exploitation of
the domain – to prevent the clustering of data. Accordingly, η3 promotes a form
of representativeness/diversity learning scheme and encourages the exploration to
augment the awareness about the domain structure.
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Multifidelity Entropy Search and Multifidelity Max-Value Entropy Search

The Multifidelity Entropy Search (MFES) acquisition function is formulated extend-
ing the entropy search acquisition function to query multiple sources of information
[157]

UMFES(x) = H(p(x∗|D))−E f (l)(x)|D [H(p(x∗| f (l)(x),D))] (3.36)

where the expectation term E f (l)(x)[·] considers multiple levels of fidelity l =
1, ...,L. Similarly to the entropy search acquisition function, the computation of
the expectation in Equation (3.36) is not possible in closed-form and requires an
intensive procedure to provide a reliable approximation.

The Multifidelity Max-Value Entropy Search (MFMES) acquisition function can
be formulated extending the max-value entropy search to a multifidelity setting as
follows [42]:

UMFMES(x) =
[
H(p( f (l)|D))−E f (l)(x)|D [H(p( f (l)| f ∗(L),D))]

]
/λ

(l) (3.37)

where the differential entropy is measured on the minimum value of the objective
function f ∗(L) considering the high-fidelity representation L. In this case, the approx-
imation of the expectation term in Equation (3.37) relies on a Monte Carlo strategy
that allows to contain the computational cost if compared with the procedure used
for the MFES acquisition function [42].

In the multifidelity scenario, the MFMES acquisition function measures the
information gain obtained evaluating the objective function f (l)(x) at a certain
location x and associated level of fidelity l with respect to the global minimum of
the objective function. This can be interpreted as an informativeness-driven learning
based on the reduction of the uncertainty associated with the minimum value of the
objective f ∗L through the observation f (l)(x), where this uncertainty is measured as
the differential entropy associated with the l-th level of fidelity. At the same time,
the information gain is also sensitive to the accuracy of the surrogate predictive
framework, and realizes a form of representativeness/diversity balancing to improve
the awareness about the distribution of the objective function over the domain. The
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sensitivity to the computational cost λ (l) of the l-th level of fidelity is introduced in
Equation (3.37) to balance the quality of the source – quantified by the information
gain – and the demand for computational resources.



Chapter 4

Non-Myopic Multifidelity Bayesian
Optimization

In this section, we present and formalize an original non-myopic multifidelity
Bayesian optimization framework to sensitively accelerate the optimization search,
and efficiently include high-fidelity responses to enhance the identification of su-
perior optimization solutions. The proposed Non-Myopic Multifidelity Bayesian
Optimization (NM2-BO) algorithm grasps the long-term reward from future steps of
the optimization obtained evaluating the objective function with a certain level of
fidelity. This is realized through the formalization of a two-step lookahead multifi-
delity acquisition function that maximizes the cumulative reward obtained measuring
the improvement in the solution of the optimization problem over two steps ahead.

In addition, we propose the extension of the NM2-BO sequential adaptive sam-
pling to enable multiple queries that can be issued in parallel. This is particularly
attractive to address large scale multidisciplinary design optimization problems in
science and engineering, where the demand for high-fidelity evaluations of the ob-
jective function leads to an intractable demand for computational resources. Accord-
ingly, we formalize the Non-Myopic Multipoint Multifidelity Bayesian Optimization
(NM3-BO) framework to enable the parallel evaluation of multiple information
sources with different fidelities. NM3-BO selects a batch of promising combinations
of optimization variables to be evaluated in parallel, and quantifies the expected
long-term improvement at future steps of the optimization. The NM3-BO learning
scheme leverages an original acquisition function based on the combination of a
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two-step lookahead policy and a local penalization strategy to measure the future
utility achieved evaluating multiple configurations simultaneously.

In this context, the non-myopic optimal solution strategy for multifidelity Bayesian
optimization is derived from the formulation of MFBO as a dynamic programming
instance. We provide a general overview of the dynamic programming approach
(Section 4.1) and develop the connection between multifidelity Bayesian optimiza-
tion and dynamic programming. This permits to formalize the two-step lookahead
multifidelity acquisition function (Section 4.2) solving the specific MFBO dynamic
programming problem. The solution of our acquisition function requires an approxi-
mation of its intractable formulation for which we adopt the Monte Carlo approach
(Section 4.3). The lookahead strategy is then combined with a Bayesian approach
for multifidelity optimization into our non-myopic MFBO scheme (Section 4.4). In
addition, we extend the optimal non-myopic policy for MFBO to a multiple decision
making strategy and enable parallel computations of a batch of combinations of
optimization variables and associated levels of fidelity (Section 4.5), and present and
discuss the NM3-BO algorithmic framework (Section 4.6). Finally, we numerically
investigate the proposed NM2-BO algorithm over a comprehensive set of benchmark
problems specifically defined to stress test an validate goal-driven methods (Section
4.7). This chapter is based on the articles [199, 200, 70].

4.1 Dynamic Programming Problem

This section is dedicated to the general overview of Markov decision processes and
dynamic programming as strategies to address the optimal decision making process
for dynamic systems under uncertainty.

Markov Decision Processes (MDPs) are discrete-time stochastic control pro-
cesses that permit to model the sequential decision making process under uncertainty
[201]. The objective of MDP frameworks is to determine an optimal strategy as a
set of decisions to achieve given objectives over the time. To address this setting,
MDPs rely on three main ingredients: (i) a Markov chain model represents the
transitions of the system to future states given an initial state, (ii) a decision-making
model implements an action at each sequential state transition, and (iii) an objective
formalized as an utility function measures the utility from the current state of the
system, and alters the opportunities to gain utility in the future.
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The solution of MDPs involves the statistical inference on the behaviour of the
system at future states, and requires a dynamic model to represent the transitions
of the dynamic system from one state to the other after exploring every possible
decision. Dynamic Programming (DP) offers an optimization strategy to address the
solution of MDPs partitioning the problem in simpler sub-problems defined through
a recursive approach across several transitions [202]. Accordingly, DP addresses the
MDP decision making process formalizing an optimal policy as a sequence of rules
that, regardless of the initial state and the decision, makes the remaining decisions
optimal over time with respect to the state resulting from the first decision. Thus, the
current decision produces an effect on the dynamic of the system that contributes to
both the current utility and to future utility through its effects on the evolution of the
system at future states.

Let us consider a generic dynamic system fully characterized at each stage z
by a state sz ∈Sz, where Sz denotes a set of states that represent all the possible
configurations of the system at each time step. The objective of the DP strategy is
the maximization of an utility function over a time horizon T which quantifies the
gains obtained applying an action cz ∈ Cz to a certain state. The dynamic system
evolves according to a transition model depicted as a Markov process in which the
future state sz+1 depends on the current state sz and the action adopted cz:

sz+1 = Fz(sz,cz,dz) (4.1)

where Fz : Sz×Cz×Dz is the dynamic of the system at the stage z, and dz ∈
Dz(sz,cz) is a random disturbance modelled as a random variable with probability
distribution P(·|sz,cz).

DP seeks to construct an optimal policy that maximizes the chance of achieving
the objective over a certain time horizon. A policy πππ = {π1, ...,πT} is defined as a
sequence of rules πz : Sz→ Cz that maps each state sz to the action cz applied at
that state. At each stage z, it is possible to define the value function Jπππ

z (sz) as the
expected reward obtained using the generic policy πππ at the state sz:

Jπππ
z (sz) = E

[
β

T+1rT+1(sT+1)+
T

∑
z=1

β
z−1rz(sz,πz(sz),dz)

]
(4.2)
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where rz : Sz×Cz×Dz is the stage reward function that quantifies the immediate
reward of applying an action cz to a state zz under the disturbances dz, and β is
the discount factor representing the relative reward gained in the next period with
reference to the current time. Equation (4.2) includes two elements: the discounted
terminal reward rT+1 which is a function of the state sT+1 acquired by the system
after the last decision, and the sum of the discounted utilities from stage z to the
horizon T .

Considering a set of admissible policies Π, the optimal policy πππ∗ is determined
assuming that the last action cT taken at the horizon time T is optimal, and conditions
the actions at the previous stages. Thus, the optimal value function Jπππ∗

z is defined
maximizing the long-term expected reward:

Jπππ∗
z (sz) = max

πππ∈Π
Jπππ

z (sz) (4.3)

Following the DP backward iteration algorithm, it is possible to define a recursive
relationship that identifies for each state a value function Jz(sz) for the stage z, given
that stage Jz+1(sz+1) has already been solved:

Jπππ∗
z (sz) = max

cz∈Cz
E [rz(sz,cz,dz)+βJz+1(Fz(sz,cz,dz))] (4.4)

Then, the procedure is initialized by setting JT+1(sT+1) = rT+1(sT+1) and the solu-
tion is determined working backward from z = T to z = 1.

4.2 Optimal Decision Making Process over Two-Step
Ahead

Multifidelity Bayesian optimization can be regarded and formalized as a dynamic
programming (DP) problem. DP permits to address the MFBO problem representing
the decision making process under uncertainty as a dynamic system characterized by
a dynamics consisting of a sequence of decisions to achieve a specific given goal [202,
203]. In particular, we consider MFBO as a dynamic system governed by a discrete
stage dynamics. Accordingly, the associated DP problem is formalized through three
main elements: (i) the probabilistic surrogate model represents the dynamic system
operating under uncertainty, and synthesizes the multifidelity representations of the
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(a) Myopic MFBO (b) Non-Myopic MFBO

Fig. 4.1 Bayesian networks describing the myopic (Figure 4.1(a)) and the non-
myopic (Figure 4.1(b)) multifidelity Bayesian scheme. The shaded nodes (Dz) are
known, and the diamond nodes are the results of a decision. In the non-myopic
scheme, the two f nodes are correlated under the multifidelity Gaussian process
model (Section 3.3.2).

objective function over the entire domain, (ii) a system dynamics that describes the
update of the surrogate model after a new observation of the objective function with
a certain level of fidelity is collected, and (iii) a goal that measures the information
gains achieved over two-step ahead as the long-term improvement of the quality of
the optimization solution achieved evaluating a specific combination of optimization
variables with a certain level of fidelity.

DP addresses the MFBO decision making process through the formalization of
an optimization policy that determines the optimal sequence of decisions given the
current information about the state of the MFBO dynamic system. In the remaining
of this section, we formalize an optimal policy for MFBO that allows to identify the
combination of optimization variables and the associated level of fidelity to query that
maximizes the benefits two steps ahead with respect to the optimization goal. Figure
4.1 summarizes the main differences between the decision making process realized
by the standard myopic MFBO (Figure 4.1(a)) and the proposed non-myopic MFBO
paradigm (Figure 4.1(b)). The myopic procedure makes a sub-optimal decision with
respect to the current knowledge of the system without considering possible future
scenarios. Conversely, the non-myopic multifidelity scheme do not ignores the future
decision that will be made by the algorithm in the future step, and capitalizes from
these information to maximize the utility of the decision.
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Let us consider the generic stage z of the MFBO dynamic system, and define the
combination of optimization variables x and the associated evaluation of the objective
function f (l) at the l-th level of fidelity, where the levels of fidelity can be in principle
extended to any finite number. The MFBO system is fully characterized by a state sz

corresponding to the training dataset Dz = {xn, f (ln), ln}N
n=1 of N observations, and

an action cz = {xz+1, lz+1} that activates the dynamics of the system. Thus, a policy
πz is defined as a function that maps the state sz to an action cz = πz(sz).

Given the state and the action of the system, we introduce the disturbances to
represent a simulated value of the objective function at {xz+1, lz+1}, defined as a
random variable d(l)

z ∼N (µ
(l)
z (xz+1),σ

2(l)
z (xz+1)) characterized with the mean and

variance of the multifidelity Gaussian process (Section 3.3.2). At the new stage z+1,
the system evolves to a new state sz+1 following its dynamics, corresponding to the
augmented dataset Dz+1 = Dz∪{xz+1, f (lz+1), lz+1}:

Dz+1 = F (xz+1, f (lz+1), lz+1,Dz) (4.5)

The disturbances dz+1 are then characterized using the multifidelity Gaussian process
conditioned on Dz+1. We define a stage reward function to measure the benefits of
applying the action cz to a state sz subject to the disturbances dz. For the MFBO
dynamic system, we formulate the stage reward function as the reduction of the
objective function achieved at the stage z+1 with respect to z:

rz(xz+1, f (lz+1), lz+1,Dz) = ( f ∗(L)z − f (L)z+1)
+ (4.6)

where f ∗(L)z is the minimum value of the objective function at z evaluated at the
highest level of fidelity. Thus, we can formulate the two-step lookahead multifidelity
acquisition function at a generic stage z as the expected reward:

Uπππ
z (xz+1,lz+1,Dz) =

E[rz(xz+1, f (lz+1), lz+1,Dz)+

+ Jz+1(F (xz+1, f (lz+1), lz+1,Dz))]

(4.7)

where the expectation is taken with respect to the disturbances, Jz+1(F (·)) is
the long-term expected reward, and E [rz(·)] =UMFEI(xz+1, lz+1) is the multifidelity
expected improvement (Equation (5.1)).
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Following the DP principle, the objective is to maximize the long term reward
defining an optimal policy π∗z . For the case of our two-step lookahead multifidelity
acquisition function, the optimal policy is the one that identifies the optimal combi-
nation of optimization variables and the associated level of fidelity to query at the
second future step to minimize the cumulative expected loss. Thus, we define the
long term reward Jz+1 as the maximum of the multifidelity expected improvement
conditioned on the training set Dz+1:

Jz+1 = max(UMFEI(xz+2, lz+2)) (4.8)

Combining Equation (4.7) with Equation (4.8), we formalize the two-step lookahead
multifidelity acquisition function:

Uπππ∗
z (xz+2, lz+2,Dz+1) =

UMFEI(xz+1, lz+1)+

E [max(UMFEI(xz+2, lz+2))]

(4.9)

Figure 4.2 shows the results for a synthetic optimization problem comparing three
iterations of our non-myopic multifidelity search with the standard myopic coun-
terpart based on the multifidelity expected improvement. The myopic acquisition
function concentrates the high-fidelity samples near a local optimum of the objective
function, without exploring the domain with accurate evaluations. This provides
a relatively small improvement of the global solution of the optimization problem:
the algorithm might use several queries of the objective function to depart from the
suboptimal valley and move towards the global solution. Conversely, the non-myopic
methodology uses high-fidelity queries to significantly explore the domain during
the first iterations. Those information are beneficial for future evaluations: the
exploration provides awareness about the distribution of the objective function and
its local optimum that is used to maximize the future gains and place the last sample
near the actual global optimum – third iteration.
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Fig. 4.2 Illustration of the searches conducted through a non-myopic MFBO and my-
opic MFBO for the toy example of the minimization of a 1-dimensional multifidelity
synthetic function. Each row represents an iteration of the optimization procedure,
and reports the high-fidelity queries together with the corresponding acquisition
function for myopic MFBO (first two columns) and non-myopic MFBO (last two
columns).

4.3 Robust Approximation of the Optimal Decision
Making Process

The evaluation of the non-myopic multifidelity acquisition function (Equation (4.9))
demands for the solution of nested expectations and maximizations computationally
intractable. We adopt the Monte Carlo approach to estimate Uπ∗

z as illustrated in
Figure 4.3, using the reparameterization strategy proposed by Wilson et al. [204] to
formulate the value of the objective function at the first step ahead with l-th level of
fidelity:

f (l) (xz+1) = µ
(l)
z +C(l)

z (xz+1)Z (4.10)

where C(l)
z is the Cholesky decomposition of the covariance matrix Kz, and Z

is an independent standard normal random variable. Then, we use Equation (4.10)
to compute the mean and variance of the multifidelity Gaussian process at the step
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Fig. 4.3 Monte Carlo approximation of the relationship between the future stage z+2
and the stage z+1. The shaded nodes (Dz) are known, and the diamond nodes are the
results of a decision. Compare with Figure 4.1(b), the nested maximization problems
required for each pair xz+1, lz+1 and xz+2, lz+2 are now address approximating our
acquisition function Uπ∗

z through the Monte Carlo strategy.

z+1 for the generic input x:

µ
(l)
z+1(x) = µ

(l)
z (x)+H(l)

z (x)Z (4.11)

σ
(l)
z+1(x) = σ

(l)
z (x)−H(l)

z (x)H(l)
z (x)T (4.12)

where H(l)
z (x) = κ

(l)
z (x)C(l)−1

z (x).

Equation (4.11) and Equation (4.12) are used to estimate the multifidelity ex-
pected improvement at the step z+1:

UMFEI(xz+2, lz+2)∼ ÛMFEI(xz+2, lz+2,Z) (4.13)

To approximate the expectation term of Equation (4.9), we sample the random
variable Z and compute E[Ûπ∗

z (xz+2, lz+2,Dz+1,Z)] averaging over many realiza-
tions of the two-step lookahead multifidelity acquisition Ûπ∗

z evaluated using Equa-
tion (4.13).

This Monte Carlo approach requires evaluations of Ûπ∗
z of the order of thou-

sands to provide a reliable approximation of the non-myopic acquisition function.
However, we emphasize that the proposed Monte Carlo technique is based on the
evaluation of Equation (4.11) and Equation (4.12) which are inexpensive to compute.
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Algorithm 1 NM2-BO: Non-Myopic Multifidelity Bayesian Optimization

Input: Feasible set X ∈ RD, multifidelity objective function f (l)(x) and the multi-
fidelity Gaussian process prior GP(0,κ(l)(x,x′))

Output: f ∗ = min f (x)
1: D0←{xn, f (ln), ln}N0

n=1 collect initial observations
2: µ

(l)
0 ,σ

2(l)
0 ← learn the initial multifidelity GP

3: i← 1
4: repeat
5: Load xi and associated li
6: Evaluate f (li)(xi)
7: Di←Di−1∪{xi, f (li), li}
8: µ

(l)
i ,σ

2(l)
i ← update the multifidelity GP

9: z← i
10: Compute UMFEI(xz+1, lz+1)
11: for j← 1,NMC do
12: Z j←N (0,1)
13: µ

(l)
z+1,σ

2(l)
z+1 ← estimate the multifidelity GP

14: Compute ÛMFEI(xz+2, lz+2,Z j)
15: end for
16: return Û

π∗

z = {Ûπ∗
z j
}NMC

j=1

17: Uπ∗
i = E

[
Û

π∗

z

]
18: [xi+1, li+1]←max(Uπ∗

i )
19: i+1← i
20: until Bi ≤ Bmax
21: return x∗ that minimize f (x) over Di

Thus, the overall computational cost associated with the approximation of the two-
step lookahead multifidelity acquisition function is negligible if compared with the
computational cost of real-world optimization problems in science and engineering
applications, where usually the evaluation of the objective function requires the query
of expensive high-fidelity physics-based models.

4.4 NM2-BO Algorithm

The Algorithm 3 and the Figure 4.4 provide details about the Non-Myopic Multi-
fidelity Bayesian Optimization (NM2-BO) routine, and illustrate the integration of
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Fig. 4.4 Schematic representation of the NM2-BO framework. In orange are reported
the distinguishing processes of NM2-BO with respect to a standard multifidelity
Bayesian optimization framework.

our non-myopic multifidelity acquisition function (Equation (4.9)) into a multifidelity
Bayesian framework. The optimization procedure begins with the definition of the
D-dimensional domain X ∈ RD assembled through a Latin Hypercube design of
experiments [205], together with the library of the objective function representa-
tions at different levels of fidelity f (l), and the multifidelity Gaussian process prior
GP(0,κ(l)(x,x′)). The algorithm computes an initial subset of feasible combinations
of optimization variables {xn}N0

n=1 and associated levels of fidelity {ln}N0
n=1, where
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N0 is the number of points sampled at the beginning of the optimization. Contex-
tually, observations of the objective function { f (ln)}N0

n=1 are collected and adopted
to determine the initial state of the MFBO dynamic system D0 = {xn, f (ln), ln}N0

n=1.
The multifidelity GP prior together with the initial state D0 induce the multifidelity
Gaussian process posterior with mean µ(l) and variance σ2(l): this represents the
first approximation of the objective function based on the initial observations.

Let us now consider the generic iteration i of the optimization search. The
NM2-BO algorithm selects the domain location xi along with the associated level
of fidelity li at the previous step i−1, and evaluates the objective function f (li)(xi).
This information is used to augment the state Di = Di−1∪{xi, f (li), li} and update
the multifidelity Gaussian process prediction conditioned on Di.

At the same iteration i, we compute the two-step lookahead multifidelity acqui-
sition function to determine the next combination of optimization variables xi+1 to
evaluate and the associated representation of the objective function li+1 to query. We
indicate with z = i the current step of the optimization and with z+1 and z+2 the
first and second step ahead, respectively. The first term of the acquisition function
(Equation (4.9)) is computed on the current state Dz = Di, while the second term is
estimated using the Monte-Carlo approach discussed in Section 4.3. Considering
the j-th Monte Carlo simulation, the NM2-BO procedure samples independently the
normally distributed random variable Z j, and estimates the mean µ

(l)
s+1 and variance

σ
2(l)
s+1 of the multifidelity GP computing Equation (4.11) and Equation (4.12). Then,

we evaluate the second term of the acquisition function through Equation (4.13) and
compute Ûπ∗

z j
. The Monte Carlo algorithm iterates till a maximum number of simu-

lations NMC is reached and returns the realizations of the approximated acquisition
function {Ûπ∗

z j
}NMC

j=1 . This allows to estimate the two-step multifidelity acquisition
function Ui as the expectation taken over the Monte Carlo simulations.

At this point, we maximize Uπ∗
i and determine the next combination of optimiza-

tion variables to evaluate xi+1 and the associated level of fidelity li+1. The NM2-BO
algorithm is iterated until a maximum computational budget Bi = Bmax is reached,
where Bi is the cumulative computational cost expended until iteration i.
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4.5 Enabling Multiple Decisions

The non-myopic multifidelity sampling scheme defined through Equation (4.9)
sequentially identifies the most promising combination of optimization variables
and the respective level of fidelity that maximizes the cumulative informative gains
over two steps ahead. However, complex multidisciplinary design optimization
problems open major challenges for the intrinsic demand to scale: the required
accurate evaluations of the objective function can dramatically upscale during the
search for improved design solutions.

To address this complex multiphysics optimization scenario, we extend the
optimal policy πππ∗ to enable multiple decisions in a single iteration of the optimization
procedure. Accordingly, this policy defines a decision making process where a
batch of informative combinations of optimization variables and associated levels of
fidelity Bnb

i = [(xi,1, li,1), ...,(xi,nb , li,nb)] are iteratively selected while improving the
optimization solutions over future iterations. The potential of multipoint formulations
has been illustrated by [206] for a greedy single-fidelity Bayesian framework, and
motivates our proposal of a multipoint sampling strategy for the non-myopic MFBO
in multidisciplinary settings.

Accordingly, the formulation of our non-myopic multifidelity acquisition function
Uπππ∗

z is extended through a local penalization maximization strategy as follows:

xi,k, li,k = max

[
Uπππ∗

z (xz+2, lz+2,Dz+1)
k−1

∏
j=1

ψ(x,x j)

]
(4.14)

where (xi,k, li,k) ∈Bnb
i , and ψ is the local penalty function which quantifies the

probability that a point in the optimization domain x is a potential minimum not
belonging to the hypersphere {x ∈X : ||x j−x||≤ ( f̂ ∗− f L(x j))/L}:

ψ(x,x j) =
1
2

er f c

 1√
2σ2(L)(x j)

(
L||x j−x||− f̂ ∗+µ

(L)(x j)
) (4.15)

where er f c is the complementary error function, f̂ ∗ = minx∈X µ(L)(x) is the
minimum predicted by the surrogate model, and L = maxx∈X ||µ

(L)
∇

(x)|| is the
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Gaussian process Lipschitz constant [206] defined as the maximum of the surrogate
gradient.

The formalization of the penalty function ψ allows to locally penalize the non-
myopic acquisition function and creates exclusion zones whose amplitude is de-
termined by the Lipschitz constant L. Thus, larger exclusion zones are created in
regions of the search domain where the mean function µ(L) is far from the predicted
minimum f̂ ∗. Conversely, small sized exclusion zones are determined by values of
the mean function µ(L) closer to the predicted minimum f̂ ∗. The objective of this
penalization strategy is to mimic an adaptive sampling scheme over multiple itera-
tions that would have been achieved by a sequential scheme considering available
the previous evaluations of the combinations of optimization variables in the batch.

In addition, we provide an adaptive batch size formulation that identifies the
number of domain points in a batch nb(i) = 1 + ϖ/(

√
2i) as a function of the

optimization iterations i and the initial batch size ϖ . This strategy targets the efficient
use of computational resources during the optimization procedure: the number of
evaluations of the objective function increases at the beginning of the optimization
to improve the awareness about the distribution of the unknown objective function
over the entire domain, and is progressively reduced to catalyze the resources toward
the analyses of believed optimal solutions.

4.6 NM3-BO Algorithm

Algorithm 2 illustrates the numerical implementation of the Non-Myopic Multipoint
Multifidelity Bayesian Optimization (NM3-BO) scheme. The computations are
initialized through the same approach described in Section 4.4 for the NM2-BO
algorithm.

For a generic iteration i of the NM3-BO algorithmic flow, the surrogate model
is updated through the collected observations of the objective function f (li,k)(xi,k)

at each nb(i) pair of combination of optimization variables xi,k and levels of fi-
delity li,k that constitutes the batch B

nb(i)
i selected at the previous iteration i− 1.

This represents the updated state of the MFBO dynamic system Di = Di−1 ∪
{xi,k, f (li,k)(xi,k), li,k}

nb(i)
k=1 . At this stage, the NM3-BO algorithm computes and maxi-

mizes the non-myopic multipoint acquisition function Uπππ∗
z to select next batch of
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Algorithm 2 NM3-BO: Non-Myopic Multipoint Multifidelity Bayesian Optimization

Input: Design space X ∈RD, multifidelity models of the objective function f (l)(x)
and the multifidelity Gaussian process prior GP(0,κ(l)(x,x′))

Output: f ∗ = min f (x)
1: D0←{xn, f (ln), ln}N0

n=1 collect initial observations
2: µ

(l)
0 ,σ

2(l)
0 ← learn the initial multifidelity GP

3: i← 1
4: repeat
5: Load the k pairs of xi,k and associated li,k from the batch B

nb(i−1)
i−1

6: Evaluate f (li,k)(xi,k) ∀nb(i−1)
7: Di = Di−1∪{xi,k, f (li,k)(xi,k), li,k}

nb(i)
k=1

8: µ
(l)
i ,σ

2(l)
i ← update the multifidelity Gaussian process

9: z← i
10: Compute UMFEI(xz+1, lz+1)
11: for j← 1,NMC do
12: Z j←N (0,1)
13: µ

(l)
z+1,σ

2(l)
z+1 ← estimate the multifidelity GP

14: Compute ÛMFEI(xz+2, lz+2,Z j)
15: end for
16: return Û

πππ∗

z = {Ûπππ∗
z j
}NMC

j=1

17: Uπππ∗
i = E

[
Û

πππ∗

z

]
18: for k← 1,nb(i) do
19: xi,k, li,k = max

[
Uπππ∗

z (xz+2, lz+2,Dz+1)∏
k−1
j=1 ψ(x,x j)

]
20: end for
21: return B

nb(i)
i = [(xi,1, li,1), ...,(xi,nb(i), li,nb(i))]

22: i+1← i
23: until Bi ≤ Bmax
24: return x∗ that minimize f (x) over Di

domain points and model of the objective function B
nb(i+1)
i+1 to evaluate. Let now

indicate with z = i the current step of the optimization and with z+1 and z+2 the
first and the second step ahead, respectively. The first element of Uπππ∗

z is determined
using the information extracted from the surrogate model updated at the current
state of the MFBO system Dz = Di. The second element requires our Monte Carlo
technique to approximate the intractable nested expectation and maximization, and
measure the informative reward at future iterations. Similarly to the NM2-BO algo-
rithm, NM3-BO samples independently a random variable Z j normally distributed
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for the j-th Monte Carlo realization, and simulates the future optimization scenario
through the estimate of the mean µ

(l)
z+1 and variance σ

2(l)
z+1 of the surrogate model

by the computation of Equation (4.11) and Equation (4.12). This provides an ap-
proximation of the multifidelity acquisition function Ûπππ∗

z j
as the expectation taken

over the realizations {Ûπππ∗
z j
}NMC

j=1 . Then, the penalized maximization of the acquisition

function determines the next batch B
nb(i+1)
i+1 of design configurations and the levels of

fidelity to be evaluated in parallel at the next iteration. This optimization procedure
iterates until a maximum computational budget Bi = Bmax is reached, where Bi is the
cumulative computational cost adopted until iteration i.

4.7 Numerical Experiments

In this section, we illustrate and discuss the proposed NM2-BO algorithm in compari-
son with popular MFBO approaches over a set of well accepted benchmark problems
specifically conceived to stress-test multifidelity methods [207, 208]. This permits
to investigate the performance of the NM2-BO framework over challenging math-
ematical properties of the objective function frequently encountered in real-word
applications, such as global and local non-linearity, discontinuity, multimodality,
oscillatory behaviours, and noise in the measurements. As competing algorithms, we
adopt and implement three standard MFBO frameworks based on multifidelity ex-
pected improvement (MFEI) [38], multifidelity probability of improvement (MFPI)
[41], and multifidelity max-value entropy search (MFMES) [42]. All the competing
algorithms are initialized adopting the same initial settings: we define the number
of points n(l)0 for each l-th fidelity level that characterize the initial dataset D0 deter-
mined through a Latin Hypercube Sampling [209]. In addition, we set the maximum
computational budget Bmax for each benchmark problem computed as the sum of the
computational costs associated with observations of the objective function at the l-th
level of fidelity. The initial evaluations of the objective function at different levels
of fidelity are used to compute the first surrogate model as depicted in Section 4.4.
We use the square exponential kernels for all the multifidelity GP covariances, and
optimize the hyperparameters of the kernel and mean functions of the multifidelity
GP via Maximum Likelihood Estimation [210].
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Function n(4)0 n(3)0 n(2)0 n(1)0 Bmax λ (4) λ (3) λ (2) λ (1)

Forrester 1 2 3 5 100 1 0.5 0.1 0.05
Jump Forrester - - 2 5 100 - - 1 0.2
Rastrigin - 10 20 30 200 - 1 0.065 0.0039
ALOS 1D - - 2 5 100 - - 1 0.2
ALOS 2D - - 5 10 30 - - 1 0.2
ALOS 3D - - 7 14 300 - - 1 0.2
Rosenbrock 2D - - 5 10 200 - - 1 0.5
Rosenbrock 5D - - 15 30 500 - - 1 0.5
Rosenbrock 10D - - 50 250 1000 - - 1 0.5
Paciorek - - 5 10 200 - - 1 0.2
Mass Spring - - 4 10 400 - - 1 1/60
Borehole - - 100 500 800 - - 1 0.5

Table 4.1 Summary of the experiments setup

4.7.1 Analytical Benchmark Problems

The mathematical formalization of the benchmark problems is illustrated in the fol-
lowing and includes the Forrester function standard and discontinuous, the Rastrigin
function shifted and rotated, the ALOS functions, the Rosenbrock function, the
Paciorek function, a mass spring system optimization problem, and the Borehole
function. This set of functions is specifically selected to emulate mathematical
characteristics that are frequent in physics-based optimization problems, keeping
contained the computational expense associated with their evaluation [207, 208].
Table 4.1 summarizes the experimental setup for each test function.

Forrester Function

The Forrester function [210] is a one-dimensional multimodal function well accepted
as a benchmark test for multifidelity algorithms:

f (4)(x) = (6x−2)2 sin(12x−4) (4.16)

The optimization problem is defined over the domain X = [0,1] with the minimum
of the objective located at x∗ = 0.7572 and given by f ∗ = −6.0207. We define a
total of three lower-fidelity levels as follows:
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Fig. 4.5 Forrester function benchmark problems

f (3)(x) = (5.5x−2.5)2 sin(12x−4) (4.17)

f (2)(x) = 0.75 f1(x)+5(x−0.5)−2 (4.18)

f (1)(x) = 0.5 f1(x)+10(x−0.5)−5. (4.19)

Figure 4.5(a) reports the four levels of fidelity for the Forrester function over the
search domain.

Jump Forrester Function

The jump Forrester function [211] problem introduces a discontinuous behaviour in
the formulation of the Forrester function in order to assess the performance of the
algorithms in presence of objective functions that are not continuous in all the input
space. The high-fidelity jump Forrester is defined as follows:

f (2)(x) =

(6x−2)2 sin(12x−4) 0≤ x≤ 0.5

(6x−2)2 sin(12x−4)+10 0.5 < x≤ 1
(4.20)

The input ranges is defined as X = [0,1] and the optimum equal to f ∗=−0.9863
at x∗ = 0.1426. The low-fidelity function is formulated as:
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(a) Rastrigin f (3), f (2) (b) Rastrigin f (3), f (1)

Fig. 4.6 Rastrigin function shifted and rotated benchmark problem

f (1)(x) =

0.5 f (2)(x)+10(x−0.5)−5 0≤ x≤ 0.5

0.5 f (2)(x)+10(x−0.5)−2 0.5 < x≤ 1
(4.21)

Figure 4.5(b) reports the two levels of fidelity available during the search proce-
dure.

Rastrigin Function Shifted and Rotated

The Rastrigin function is commonly used as test function to represent real-world ap-
plications where the objective function might present an high multimodal behaviour.
We adopt a benchmark problem based on the original formulation of the Rastrigin
function shifted and rotated as follows (Figure 4.6):

f (l)(x) = v2
2 + v2

1− cos(10πv2)− cos(10πv1)+2 (4.22)

where
v = R(ϑ)(x−x∗) (4.23)

with

R(ϑ) =

[
cos(ϑ) −sin(ϑ)

sin(ϑ) cos(ϑ)

]
(4.24)
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where R is the rotation matrix, ϑ = 0.2 is the rotation angle. The optimization
problem is defined in X = [−0.1,0.2]2 and the minimum is located at x = [0.1,0.1]2

given by f ∗ = 0 To obtain the levels of fidelity, we define a resolution error [212]:

e(v,ϕ) =
2

∑
i=1

θ(ϕ)cos2(10πΘ(ϕ)vi +0.5πΘ(ϕ)+π) (4.25)

where Θ(ϕ) = 1−0.0001ϕ . We assign the value ϕ = 10000 for the high-fidelity
model (l = 3), ϕ = 5000 for the intermediate level of fidelity (l = 2), and ϕ = 2500
for the low fidelity model (l = 1).

ALOS functions

The Agglomeration of Locally Optimized Surrogate (ALOS) models are a set of func-
tions conceived to evaluate the capability of multifidelity optimization in presence
of objective function characterized by oscillatory phenomena at different frequency
along the domain. The high-fidelity ALOS functions are defined for one and two
dimensions [213], and extended to three dimensions as follows [207]:

f (2)(x1) = sin [30(x1−0.9)4]cos [2(x1−0.9)]+(x1−0.9)/2 (4.26)

f (2)(x1,x2) = f (2)(x1)+2x2
2 sin(x1x2) (4.27)

f (2)(x1,x2,x3) = f (2)(x1,x2)+3x3
3 sin(x1x2x3) (4.28)

The domain of the input is defined as the interval [0,1]D where D = 1,2,3 is the
dimensionality of the problem. The optimum is f ∗ = −0.62489 located at x∗ =
0.2746 for D = 1, f ∗ = −0.56271 corresponding to the input x∗ = [0, ...,0]D for
D = 2,3. The low-fidelity ALOS functions are derived through bridge functions:

f (1)(x1) = ( f (1)(x1)−1+ x1)/(1+0.25x1) (4.29)
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Fig. 4.7 ALOS function benchmark problems over the D = 1 and D = 2 dimensional
domain

f (1)(x1,x2) = ( f (1)(x1,x2)−2+ x1 + x2)/(5+0.25x1 +0.5x2) (4.30)

f (1)(x1,x2,x3) = ( f (1)(x1,x2,x3)−2+ x1 + x2 + x3)/(5+0.25x1 +0.5x2−0.75x3)

(4.31)

Figure 4.7 illustrates the high and low-fidelity ALOS function for D = 1 (Figure
4.7(a)) and D = 2 (Figure 4.7(b)).

Rosenbrock Function

The Rosenbrock function [214] is a popular non-convex D-dimensional optimization
benchmark problem defined in the interval X = [−2,2]D as follows:

f (2)(x) =
D−1

∑
i=1

100(xi+1−x2
i )

2 +(1−xi)
2 (4.32)
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Fig. 4.8 Rosenbrock function benchmark problem over the D = 2 dimensional
domain

The minimum of Equation (4.32) is located at x∗ = [1, ...,1]D corresponding to
f ∗ = 0. We consider as the low fidelity level the linear mapping defined as follows:

f (1)(x) =
D−1

∑
i=1

50(xi+1−x2
i )

2 +(−2−xi)
2−

D

∑
i=1

0.5xi (4.33)

In the experiments, we consider D = 2,5,10 to investigate the performances of
the algorithms as the dimension of the design space increases. Figure 4.8 illustrates
the library of two levels of fidelity for the D = 2 Rosenbrock function.

Paciorek Function with Noise

This multifidelity problem considers the Paciorek function [215] with a noise term as
the high-fidelity model, and uses a noisy low-fidelity representation that permits to
simulate real-world applications where the measurements of the objective function
are affected by noise [207]. The noisy high-fidelity Paciorek function is defined as
(Figure 4.9):

f (2)(x) = sin
(

1
x1x2

)
+ rand.normal(0,0.0125) (4.34)

where a uniformly distributed random noise parameter is included to simulate
the noise. Across the input domain X = [0.3,1]2 the optimum is equal to f ∗ =−1
and located in a belt of equal-minimum input points. The noisy low-fidelity function
is formulated as follows:
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Fig. 4.9 Paciorek function benchmark problem

f (1)(x) = f (2)(x)−2.25cos
(

1
x1x2

)
+ rand.normal(0,0.075) (4.35)

Mass Spring System

This benchmark problem consists of a coupled mass spring system, where two
masses are connected by two springs. We consider a friction-less dynamic along an
horizontal plane, where the masses are treated as point masses concentrated at their
center of gravity and the elastic force of the springs is modeled through the Hooke’s
law. Assuming that the system is connected to an ideal wall through the first spring,
its equations of motion are given by:

m1 p̈1(t) =−k1 p1(t)+ k2[p2(t)− p1(t)] (4.36a)

m2 p̈2(t) =−k2[p2(t)− p1(t)]− k1 p2(t) (4.36b)

where m1,m2 are the masses, k1,k2 are the Hooke’s constants of the springs
and p1(t), p2(t) are the positions of the masses as a function of time t. We use the
fourth-order Runge-Kutta method to solve the system of first-order ODEs (4.36),
setting the time-step size dt = 0.01 for the high-fidelity and dt = 0.6 for the low-
fidelity analysis. The optimization task consists of determining the input variable
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x = [m1,m2,k1,k2] that minimizes p1(t = 6) over the design space X = [1,4]4, with
initial conditions of motion p1 = 1, p2 = 0, ṗ1 = ṗ2 = 0.

Borehole Function

The Borehole function models the water flows through a borehole. We adopt the
following multifidelity setting to compute the water flow rate [216]:

f (2)(x) =
2πx3(x4− x6)

log(x2/x1)
(

1+ 2x7x3
log(x2/x1)x2

1x8
+ x3

x5

) (4.37)

f (1)(x) =
5x3(x4− x6)

log(x2/x1)
(

1.5+ 2x7x3
log(x2/x1)x2

1x8
+ x3

x5

) (4.38)

where x1 ∈ [0.05,0.15] is the radius of the borehole, x2 ∈ [100,50000] is the
radius of influence, x3 ∈ [63070,115600] is the trasmissivity of upper aquifer,
x4 ∈ [990,1110] is the potentiometric head of lower aquifer, x5 ∈ [63.1,116] is
the trasmissivity of lower aquifer, x6 ∈ [700,820] is the potentiometric head of lower
aquifer, x7 ∈ [1120,1680] is the lenght of the borehole, and x8 ∈ [9855,12045] is
the hydraulic conductivity of the borehole. The minimum of the Equation (4.37) is
f ∗ = 9.1884 m3/yr corresponding to the design x∗ = [0.0504,3584,87130,1007,
112.3,813.2,1.658,9.858].

4.7.2 Results and Discussion

In the following, the results are observed and discussed in terms of difference error
normalized in the domain of the objective function:

∆ f =
f (x∗i )− f ∗

fmax− f ∗
(4.39)

where f (x∗i ) is the minimum value of the objective function identified by the
algorithm at the i-th iteration, f ∗ is the analytical solution of the optimization
problem and fmax = maxx∈X f (x). The error ∆ f is represented as a function of
the computational Budget B to compare the optimization results achieved by the
competing algorithms. To quantify and compensate the influence of the random
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initial design of experiments, we run the optimization tasks 25 times considering a
random initialization for each benchmark problem, and reported the result in terms
of median values of the error together with the values falling in the interval between
the 25-th and 75-th percentiles.

Figure 4.10 illustrates the results achieved with the competing multifidelity
Bayesian optimization algorithms for the proposed set of analytical benchmark
problems (Section 4.7.1). The outcomes reveal that the proposed Non-Myopic
Multifidelity Bayesian Optimization (NM2-BO) achieves superior optimization
performance both in terms of reduction of the error and resource efficiency, and
outperforms the baseline competing multifidelity Bayesian frameworks (MFEI-
MFPI-MFMES) for all the benchmark problems.

The results achieved for the Forrester function (Figure 4.10(a)) considering a
library of four levels of fidelity suggest the acceleration of the convergence to the
optimum solution achieved by NM2-BO (∆ f = 0) with a significant reduction of the
computational budget if compared with the baseline MFBO algorithms. In addition,
the capabilities of the proposed algorithm are confirmed for the case of the Jump
Forrester problem (Figure 4.10(b)). Indeed, the non-myopic property of the NM2-BO
algorithm permits to identify the optimum with a fraction of the allocated compu-
tational budget, while the competing algorithms demand for significantly higher
computational resources: MFPI requires almost double the resource expenditure
and both MFMES and MFEI demand for more than triple the cost of NM2-BO to
converge.

Another remarkable outcome is the performance of our non-myopic multifi-
delity framework for the optimization of the highly multimodal Rastrigin function
(Figure 4.10(c)) considering a total of three levels of fidelity. We note a step-like
reduction of the error with the computational budget: this behaviour occurs when
the optimizer identifies a local minimum of the multimodal objective function that
leads to a constant error until the search procedure identifies a new minimum. It is
possible to observe that the myopic baseline MFBO methods are characterized by
an emphasized step-like convergence of the error, while is almost not appreciable
for the NM2-BO convergence history. This suggests that the non-myopic property
improves the convergence performance in presence of marked multimodality of the
objective function. A possible explanation for these outcomes might be attributed to
an efficient form of exploration depicted in Section 4.2, where the observation of
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(a) Forrester (b) Jump Forrester (c) Rastrigin

(d) ALOS 1D (e) ALOS 2D (f) ALOS 3D

(g) Rosenbrock 2D (h) Rosenbrock 5D (i) Rosenbrock 10D

(j) Paciorek (k) Mass spring system (l) Borehole

Fig. 4.10 Error of the minimum of the objective function obtained with the NM2-
BO algorithm and compared to the baseline MFBO algorithms over the analytical
benchmark problems.



4.7 Numerical Experiments 81

high-uncertainty regions of the search domain improves future evaluations and leads
to an effective exploitation toward the optimum. This is in agreement with what
observed by Ginsbourger and LeRiche [134] for their non-myopic single-fidelity
optimization algorithm.

The outcomes achieved for the ALOS benchmark problem confirm the substantial
acceleration of the optimization convergence adopting our NM2-BO algorithm,
which outperforms the standard MFBO frameworks for the one- (Figure 4.10(d)),
two- (Figure 4.10(e)) and three- (Figure 4.10(f)) dimensional ALOS problem. The
performance of the non-myopic algorithm might be explained with the computation
of an efficient multifidelity Gaussian process surrogate model that effectively assists
and informs the non-myopic search toward the optimization goal even in presence of
objective functions with oscillatory nature at different frequencies.

The experiments for the Rosenbrock function are conducted increasing the num-
ber of the optimization variables (D = 2,5,10) to investigate the capabilities of the
competing algorithms for various dimensionality of the search domain. Considering
the case of D = 2 optimization variables (Figure 4.10(g)), NM2-BO permits to
identify the optimum of the objective function with a fraction of the computational
cost demanded by the standard MFBO algorithms. This confirms the substantial ac-
celerations of the optimization procedure through non-myopic multifidelity policies.
Increasing the number of optimization variables D = 5 (Figure 4.10(h)), MFEI identi-
fies sub-optimal solutions with an error ∆ f > 0 while the other multifidelity methods
are capable to minimize the error and identify the optimum solution. However,
our NM2-BO algorithm exhibits the lower demand for computational resources to
accurately identify the optimum. For an higher dimensionality of the domain D = 10
(Figure 4.10(i)), all the algorithms fail to identify the optimum of the Rosenbrock
function, and converge to sub-optimal solutions. This undesirable performance is
due to the difficulties of the multifidelity Gaussian process to accurately represent
high dimensional objective functions. After the initial stages, the error decreases
only with large computational expense for both the non-myopic and the standard
MFBO schemes. We observed that the algorithms here mostly query the low-fidelity
model to contain the computational expense during a secondary exploration phase.

The results achieved for the Paciorek benchmark function (Figure 4.10(j)) show
that the NM2-BO algorithm provides superior accelerations of the optimization
procedure even in presence of noise in measurements if compared with the competing
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algorithms. In addition, the superior performance of NM2-BO is confirmed also
for the optimization problem of the mass spring system (Figure 4.10(k)) and of the
Borehole function (Figure 4.10(l)), where the non-myopic property permits to obtain
results consistent with the one obtained for the other benchmark functions.

The experiments on the analytical set of benchmark problems reveal the capabil-
ities of the proposed non-myopic multifidelity strategy: NM2-BO leads to overall
better performance and accelerations with respect to the standard multifidelity set-
tings over a variety of challenging mathematical properties of the objective function.
In particular, those results demonstrate the remarkable impact on the search perfor-
mance obtained maximizing the reward over two steps ahead of the optimization
procedure: the non-myopic optimizer effectively explores the search domain with
contained computational resources and leverages the acquired resources to direct
resources for the local exploitation toward the optimum.



Chapter 5

Physics-Aware Multifidelity Bayesian
Optimization

In this section, we propose and formalize an original Physics-Aware Multifidelity
Bayesian Optimization (PA-MFBO) framework that incorporates prior scientific
and expert knowledge about the domain of the objective function to improve and
accelerate the optimization search in multifidelity settings. The goal is to partially
alleviate the purely data-driven search of standard Bayesian frameworks from the
characterization of the domain structure on the fly while searching for the optimal
combination of optimization variables that minimizes the objective function.

The proposed PA-MFBO framework relies on a physics-aware multifidelity ac-
quisition function conceived to wisely combine (i) data-driven information extracted
from the multifidelity surrogate model of the objective function and (ii) prior knowl-
edge about the structure of the domain encapsulated during the search through a
physics-aware utility function. This formalizes a sort of physics-aware search that
introduces a bias during the learning procedure and influences the selection of spe-
cific numerical models – from the library of models at different levels of fidelity –
targeting the balance between the computational cost required to evaluate the objec-
tive function and the accuracy demanded for specific combinations of optimization
variables along the optimization search.

In addition, we extend the proposed physics-aware multifidelity acquisition
function through the non-myopic formulation proposed in Chapter 3: this permits to
formalize an acquisition function that is capable to (i) unlock the improvement of the
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solution quality obtainable through a coordinated action across future evaluations
through the lookahead multifidelity property, and (ii) select the appropriate level of
fidelity of the objective function model combining data-driven and physics-based
information through the physics-aware formulation.

The next section is dedicated to the formalization of the physics-aware mul-
tifidelity acquisition function (Section 5.1). Then, building on the non-myopic
formulation developed in Chapter 3, we formalize the non-myopic physics-aware
multifidelity acquisition function in Section 5.2. This chapter is based on the articles
[217, 147, 146, 218, 219].

5.1 Physics-Aware Multifidelity Acquisition Function

The physics-aware multifidelity Bayesian optimization framework incorporates the
prior scientific and expert knowledge about the physical phenomena and the specific
structure of the optimization domain through the original physics-aware multifidelity
acquisition function UPA(x, l) based on the multifidelity expected improvement [38]:

UPA(x, l) =UEI(x)α1(x, l)α2(x, l)α3(l)α4(ψψψ, l) (5.1)

where UEI(x) is the expected improvement acquisition function evaluated at the
highest level of fidelity [220]:

UEI(x) = σ(x)(I(x)Φ(I(x)))+N (I(x);0,1) (5.2)

where I(x) = ( f (L)(x̂∗)− µ(x))/σ(x) is the predicted improvement, x̂∗ is the
current location of the best value of the objective sampled so far, Φ(·) is the cumula-
tive distribution function of a standard normal distribution, while the terms α1, α2

and α3 are formalized as follows:

α1(x, l) = corr
[

f (l), f (L)
]
=

κ((x, l),(x,L))√
σ2(l)σ2(L)

(5.3)

α2(x, l) = 1− σε√
σ2(l)(x)+σ2

ε

(5.4)
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α3(l) =
λ (L)

λ (l)
. (5.5)

α1 is defined as the posterior correlation coefficient between the l-th level of
fidelity and the highest-fidelity available at the same location of the domain. This
utility function reflects the reduction of the acquisition function when samples are
evaluated with lower-fidelity models, and accounts for the decrease of the accuracy
associated with a low-fidelity representation of the objective function. Accordingly,
the use of a high-fidelity model is solicited when a low-fidelity estimate might
produce unreliable observations of the objective function. α2 considers the reduction
of the uncertainty associated with the prediction of the multifidelity Gaussian process
after a new observations of the objective function with a certain level of fidelity
is added to the dataset DN . This permits to consider the stochastic nature of the
objective function during the optimization, and prevents the systematic sampling
in already explored regions of the domain characterized by lower uncertainty. α3

is formulated as the ratio between the computational cost λ (L) associated with
the evaluation of the high-fidelity model and the computational cost λ (l) required
to compute the l-th fidelity model. This utility function is conceived to include
awareness about the computational resources required for the evaluation of the
objective function adopting the l-th level of fidelity. The purpose of this term
is to privilege the selection of lower-fidelity queries when similar improvements
of the solution are obtained from higher-fidelity observations, and balance the
computational cost and the informative contribution of different fidelity levels.

α4(ψψψ, l) is the physics-aware utility function that embeds a source of prior
knowledge represented by a set of physical variables ψψψ relevant for the specific
optimization problem of interest. The goal of this element of to introduce a learning
bias that captures the scientific knowledge and expertise underlying the physical
domain of the system. The formulation of the physics-aware utility function is con-
ceived to incorporate any form of prior knowledge about the optimization problem.
Without limiting the informative content that can be embedded during the search
procedure, we identify two major sources of prior knowledge in the form of scientific
and expert knowledge. Scientific knowledge refers to the general body of rules
formalized and validated adopting the scientific method such as conservation laws,
physical principles or phenomenological behaviors that depict the physics of interest.
Examples include the Navier-Stokes partial differential equations in fluid dynamics
to model the motion of viscous fluids, and numerical methodologies to approximate
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the solution of the governing equations as the finite element method in structural
mechanics. Expert knowledge represents the information that is held by a community
of experienced specialists and validated implicitly over several years of experience
in a specific field. Examples include the common knowledge within the engineering
or physics community resulting from training, research and personal experience.

5.2 Toward Physics-Aware Non-Myopic Multifidelity
Bayesian Optimization

In this section, we define an optimal optimization policy which permits to include the
awareness about the physical domain of the system of interest while maximizing the
long-term reward over two steps ahead of the optimization procedure. The proposed
approach naturally combines the non-myopic formalization of the multifidelity
acquisition function presented in Section 4.2 with the physics-aware utility function
illustrated in Section 5.1. We refer to this multifidelity framework as Physics-Aware
Non-Myopic Multifidelity Bayesian Optimization (PA-NM2BO).

Following the dynamic programming recursive strategy formalized in Section
4.2, we define the physics-aware expected reward at the generic step z:

Jπππ
z (xz+1, lz+1,Dz) =

E[rz(xz+1,y(lz+1), lz+1,Dz)+

Jz+1(F (xz+1,y(lz+1), lz+1,Dz))]

(5.6)

where E [rz(·)] = UPA(xz+1, lz+1,ψψψz+1) is now the physics-aware multifidelity
acquisition function, and Jz+1(F (·)) is the long-term expected reward. Accordingly,
we formalize the two-step lookahead physics-aware multifidelity acquisition function
through an optimal policy πππ∗ that maximizes the cumulative expected reward over
two-step ahead of a pair of combination of optimization variables xz+2 and level of
fidelity lz+2:

Uπππ∗
z (xz+2, lz+2,Dz+1) =

UPA(xz+1, lz+1,ψψψz+1)+

E
[
max(UPA(xz+2, lz+2,ψψψz+2))

] (5.7)
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where we define the long term reward Jz+1 = max(UPA(xz+2, lz+2)) as the max-
imum of the physics-aware multifidelity acquisition function conditioned on the
dataset Dz+1.



Chapter 6

FREEDOM: Fast Reliability Estimate
and Incipient Fault Detection of
Multiphysics Systems

In this section, we propose and formalize a novel computational framework for Fault
Detection and Isolation (FDI) to accelerate the identification of incipient damages of
complex multiphysics systems. We aim to obtain an efficient procedure capable to
monitor the health status of complex systems and innovative technologies onboard
to potentially ease the transition towards the adoption of greener technologies. We
name and refer to our framework as FREEDOM as the short for Fast REliability
Estimate and incipient fault Detection Of Multiphysics aerospace systems. The main
features of the FREEDOM computational framework are: i) a Bayesian scheme for
the inference of damage reduces the demand for costly evaluations of numerical
models of the system of interest, ii) a novel two-stage highly informative compres-
sion strategy reduces the dimensionality of the diagnostics signals while retaining a
high-quality informative content, and iii) the original combination of both Bayesian
inference and two-stage compression accelerates the identification of incipient dam-
ages affecting the system: the highly informative compressed diagnostic signals are
leveraged during the Bayesian inference procedure to reduce the dimensionality of
the fault detection and isolation problem to accurately identify damage parameters
with contained computational resources.
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FREEDOM is conceived to adopt an unique monitoring model of the system
of interest with a fixed level of fidelity. The testing and validation reported in
Section 8.2.5 reveal that FREEDOM achieves satisfactory performances in terms of
the accuracy of the incipient damages inference adopting low-fidelity monitoring
models. For the case of an high-fidelity monitoring model, FREEDOM identifies
the exact health status of the system with a total computational cost not suitable
for on-board monitoring of innovative technologies. Indeed, the effectiveness of
the FDI procedure closely relates to the accuracy of this monitoring model and the
associated monitoring signal. In principle, the optimal setting is achieved adopting
a monitoring model capable to exactly represent the dynamical behaviour of the
damaged system. This would guarantee identical output and monitoring signals
when the damaged configuration of the system is identified; conversely, modeling
discrepancies between reference and monitoring signals might determine errors in
the identification process and reduced accuracy of the health status identification,
as observed in [221]. However, this favourable condition is usually unfeasible in
practice: the acquisition of accurate monitoring signals requires the evaluation of
expensive high-fidelity numerical models that heavily impact the computational
burden of the diagnosis. Moreover, the identification of incipient damages – which is
essential for safety critical systems – further amplifies the demand for high-fidelity
simulations to accurately capture the almost imperceptible alterations of the system
behaviour during operations.

To address this scenario, we extend the FREEDOM algorithm and formalize a
multifidelity FREEDOM computational framework that embeds a library of moni-
toring models at different levels of fidelity. This permits to efficiently incorporate
high-fidelity monitoring models in model-based FDI procedures for complex multi-
physics systems, where the reliable identification of complex faults affecting innova-
tive components might be hindered by a single-fidelity Bayesian inference scheme.
Multifidelity FREEDOM is based on the original combination of i) the two-stage
highly informative compression also adopted in the FREEDOM algorithm to contain
the dimensionality of the FDI procedure, and ii) a multifidelity Bayesian scheme for
inversion leverages and combines multiple models of the system at different levels
of fidelity to effectively identify the health status of the system. Thus, multifidelity
FREEDOM includes high-fidelity simulations during the inference stage and aims
at improving the effectiveness of the diagnostic procedure; at the same time, lower-
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fidelity monitoring models permits to alleviate the overall computational cost of the
procedure and more efficiently explore potential faults affecting the system.

In the remaining of this chapter, Section 6.1 introduces the proposed framework
FREEDOM including the two-stage compression strategy (Section 6.1.1) and the
Bayesian scheme for inference (Section 6.1.2). Then, we formalize the multifidelity
FREEDOM computational framework in Section 6.2 and detail the multifidelity
Bayesian inference procedure for damage identification (Section 6.2.1). This chapter
is based on the articles [222–224, 221].

6.1 FREEDOM: Methodology and Computational
Framework

This section illustrates FREEDOM as a methodology and computational framework
for fault detection and isolation to accelerate the identification of incipient damages
affecting complex multiphysics systems. The main methodological procedures
consist of: i) an offline two-stage compression strategy to compute a synthesized
representation of the diagnostics signals – encoding the dynamics of the system
of interest – and reduce the amount of data to be stored and processed during the
inference of damages, and ii) an online inference process based on a Bayesian
optimization scheme to accurately infer the health status of the system containing
the evaluations of numerical models and computational expense.

The FREEDOM computational framework is schematically illustrated through
the diagram in Figure 6.1. Let us consider a generic complex system characterized
by a certain output signal y(x,m) of ne elements that encodes its dynamics and is
sensitive to its health status x = [x1, ...,xnk ] defined as a combination of nk faults
modes, and measured in certain locations m. The output signal is typically measured
with an high acquisition frequency to guarantee the sensitivity to the damages
affecting the dynamics of the system.

In the offline phase, we compute a reference dataset using a scaled Latin Hyper-
cube sampling process [225] to determine a set of ns health conditions X= [x1, ...,xns]

that are used to compute the output signals Y =
[
y0(x0,m), ...,yns

(xns,m)
]
. This

scaled design of experiments methodology augments the density of the sampled
health conditions close to the nominal condition to enhance the informative content
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Fig. 6.1 Schematic representation of the proposed FREEDOM framework.

about the behaviour of the system under incipient damages. The dataset Y is obtained
by evaluating a high-fidelity accurate model or through a real-world test bench of the
system, and is considered the ground truth reference dataset of the system. Those
information are usually high-dimensional and demand for intensive computations
to be stored and processed during FDI. Therefore, we propose an original two-step
signal compression based on two projection methods to determine a synthesized
representation of the signal ŷ(x,m̂) and retain only the highly informative nw << ne

data.

Online, the fault detection and isolation procedure is based on a Bayesian scheme
for damage inference to identify the health status of the system. This is formalized
as an inverse problem where the damage condition affecting the system minimizes
the discrepancy between the output signal of the real system and the signal computed
with a fast monitoring model. In this stage, we use the compressed informative
map (m̂, ŷ) to place measurement points and reduce the dimension of the output
signal. Specifically, the Bayesian routine uses the Gaussian process surrogate model
(Section 3.3.1) to approximate the discrepancy between the real-world measurements
and numerical responses. This predictive framework informs an adaptive sampling
scheme realized by the acquisition function that quantifies the utility of querying the
fault domain, and directs the computational resources towards the health assessment
of the system.
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The following Sections describe in detail the two main elements that characterize
FREEDOM. Specifically, Section 6.1.1 deals with the original two steps signal
compression strategy, and Section 6.1.2 illustrates the FDI procedure adopting the
Bayesian scheme for inference.

6.1.1 Two-Stage Highly Informative Compression Map

A two-stage highly informative compression technique is proposed to be conducted
offline and consists of two main stages: i) Dynamic Mode Decomposition (DMD)
is used to identify a set of dominant coherent structures explaining the dynamic
behaviour of the system, and ii) a Self Organizing Map (SOM) is adopted to project
those coherent structures into a lower-dimensional space and compute a map that
encodes the overall dynamic of the system. The procedure is inspired by the two-
stage compression proposed by Mainini [226] and Mainini and Willcox [227] where
Proper Orthogonal Decomposition and Self Organizing Maps jointly identify the
optimal sensor placement in structural health monitoring applications, and applied
by Berri et al. [225] for the FDI of aircraft electromechanical actuators.

Dynamic Mode Decomposition

The first stage of our compression strategy adopts the Dynamic Mode Decomposition
(DMD) technique to extract the dynamical features of the system in the form of
dynamic modes [228, 229]. From a general perspective, a dynamical system affected
by damages could be considered as a non-linear system ψ whose output signal
y(x,m) ∈Rne is sensitive to the health status x of the system and to the measurement
locations m. DMD seeks to identify the dynamical properties of this system as the
dominant eigenvalues and eigenvectors of the informative matrix Ã ∈ Rne×ne such
that:

ÃỸ = Ỹ′ (6.1)

where

Ỹ = [ỹ(x0,m) ỹ(x1,m) ... ỹ(xns−1,m)] ∈ Rne×ns
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Ỹ′ = [ỹ(x1,m) ỹ(x2,m) ... ỹ(xns,m)] ∈ Rne×ns

are the snapshot matrices. Those snapshots are computed offline through an
high-fidelity representation of the system ψ , and collect a series of ns paired high-
fidelity output signals ỹ(x j−1,m) and ỹ(x j,m) computed for incipient fault conditions
{x j} j=ns

j=1 assembled via scaled Latin hypercube sampling scheme [225].

The computation of the informative matrix Ã is usually unfeasible: the direct
solution of Equation (6.1) is hampered by the significant computational cost required
for large snapshot matrices – frequently encountered in many real-world applications
in science and engineering. A popular approach to overcome this issue adopts the
Singular Value Decomposition (SVD) technique [230] to identify a set of nw << ns

informative modes B ∈ Cne×ns . This permits to retain a large fraction of information
embedded in the snapshot matrices, and quantifies this informative content as the
cumulative sum ∑

nw
i=1 λi/∑

ns
i=1 λi of the eigenvalues λ associated to the considered

modes. As a result, the snapshot matrices Ỹ and Ỹ′ can be projected onto the first nw

modes, and compute the matrices Y and Y′:

Y = B∗Ỹ ∈ Rnw×ns , Y′ = B∗Ỹ′ ∈ Rnw×ns (6.2)

where B∗ is the Hermitian transpose of B. Accordingly, the DMD problem
(Equation (6.1)) becomes manageable and the information matrix can be computed
as follows:

A = Y′Y+ (6.3)

where Y+ is the Moore-Penrose pseudoinverse of Y. The eigendecomposition
of the informative matrix A yields the dominant eigenvalues and eigenvectors that
encode the fundamental properties of the underlying dynamical system in the form
of dynamic modes ϒϒϒ = [υυυ1, ...,υυυnw ].

Self Organizing Map

In the second stage of compression, a Self Organizing Map (SOM) projects the DMD
modes ϒϒϒ into a lower-dimensional space, and computes an efficient compression
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map of the output signal ŷ(x,m̂) that preserves the topological properties of those
modes. This representation retains only the highly informative elements nw << ne

of the output signal, and is used in the online phase to alleviate the computational
burden of the FDI procedure.

Self-organizing map (SOM) is a competitive artificial neural network trained with
unsupervised learning paradigms to produce a low-dimensional representation of the
input space of the training samples [231, 232]. Considering a non-linear damaged
system ψ , the training set T consists of the dynamic modes of the system ϒϒϒ and the
measurement locations m of the output signal:

T = [m,υυυ1, ...,υυυnw ] (6.4)

During the SOM training process, each row τττ i of T is presented to the network
and the node that shows greater similarity to this input is selected to be the winner.
The weight of this winning node is updated towards the input vector, and the weights
of the other nodes are influenced according to their topological distances from the
winner. In particular, the winning neuron is selected as the one that minimizes the
distance between the associated weight vector wl and the current training point τττ i:

l = argmin
j

(
||τττ i−w j||

)
(6.5)

where ||·|| denotes the L2 norm.

In the final layout of a trained SOM, adjacent nodes have an high similarity to
each other and are dissimilar to nodes that are located far apart. The resulting net
represents a non-linear projection of the training set T to the lower dimensional
space of the neurons, and the weight vectors in the input space encode representative
vectors for clusters of self-similar points [233, 226, 227]. This permits to extract
the latent structure of the training input and compute the efficient compression map
ŷ(x,m̂).

6.1.2 Bayesian Scheme for Damage Inference

The goal of the online FDI stage is to infer the combination of fault parameters x∗

that minimizes the discrepancy f between the output signal y(x∗,m) measured in the



6.1 FREEDOM: Methodology and Computational Framework 95

Algorithm 3 Bayesian scheme for the inference of damage parameters
Input: Definition of the faults domain X ∈ RD, discrepancy function f (x,m̂) and

the Gaussian process surrogate model prior GP(0,κ(x,x′))
Output: Actual damage configuration affecting the system x∗ = argmin f (x,m̂)

1: D0←{xn, f (xn,m̂)}N0
n=1 collect initial N0 noisy observations of the discrepancy

function f (xn)∼N ( f (xn,m̂),σε)
2: µ0,σ0 ← compute the initial mean and standard deviation of the Gaussian

process surrogate model
3: i← 1
4: repeat
5: Load the new combination of damage parameters xNi

6: Compute the observation of the discrepancy function f (xNi,m̂)
7: Di←Di−1∪{xNi, f (xNi,m̂)} update the dataset of observations
8: µi,σi ← update the mean and standard deviation of the Gaussian process

surrogate model
9: Compute the acquisition function U(x |Di) on the updated dataset Di

10: Maximize the acquisition function to select the next damage configuration to
query xNi+1 = argmaxx∈X U(x |Di)

11: i+1← i
12: until Convergence criteria is met
13: return Combination of damage parameters x∗ that minimizes the discrepancy

function f (xn,m̂) over the faults domain X

locations m from the physical system and the same signal yM(x,m) computed with a
numerical model. This problem may be challenging to be solved with a contained
computational cost since the output signals y and yM encode a significant number
of measurements. To reduce the dimensionality of the problem, we leverage the
compression mask ŷ(x,m̂) computed with our two-step compression strategy and
formalize the FDI task as follows:

x∗ = argmin
x∈X

f (x,m̂) (6.6)

where f (x,m̂) = ||ŷ(x∗,m̂)− ˆyM(x,m̂)||.

To solve this identification problem, we use a Bayesian optimization scheme
based on the Gaussian process surrogate model to approximate the discrepancy func-
tion f , and on an acquisition function to iteratively select the combination of fault
parameters that is likely to reduce – ideally minimize – the objective/discrepancy
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function. Algorithm 3 illustrates the main steps of the inverse Bayesian FDI frame-
work. BO sequentially collects noisy observations of f and learns the probabilistic
Gaussian process surrogate model to quantify the current belief about the discrepancy
between the response of the real system and the outcome of the monitoring model.
At this point, the acquisition function uses the surrogate information to measure the
utility of making any given evaluation of f . The process iterates until a maximum
number of evaluations of the monitoring model are reached to contain the total
computational expense.

6.2 Multifidelity FREEDOM: Methodology and Com-
putational Framework

This section extends the FREEDOM methodology to a multifidelity setting where
a library of monitoring models of the system is available during the online FDI
procedure. Accordingly, we propose and formalize the multifidelity FREEDOM
computational strategy to efficiently combine data from multiple representations of
the monitoring signal: fast low-fidelity models are adopted to improve the awareness
about possible damage configurations, and contained high-fidelity evaluations are
used to improve the accuracy of the identified health status of the system. The
objective is to efficiently include high-fidelity simulations during the FDI without
negatively affect the overall computational cost of the process.

In particular, the multifidelity FREEDOM methodology combines two constitu-
tive phases: the first one aims to optimize the informative content of the diagnostic
signals minimizing the computational burden associated with their management
through the two-stage highly informative compression strategy presented in Section
6.1.1); the second one seeks to efficiently include high-fidelity models to support the
accurate inference of incipient faults through a multifidelity Bayesian scheme for
inference (Section 6.2.1).

Figure 6.2 illustrates the main features of our multifidelity fault detection and
isolation framework. Similarly to the single-fidelity FREEDOM algorithm, the
procedure starts collecting offline a reference dataset of measurements obtained
computing the output signal y(x,m) for different incipient fault conditions {x j} j=ns

j=1

determined through a scaled Latin hypercube sampling scheme [225]. This permits
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Fig. 6.2 Schematic representation of the proposed multifidelity FDI framework.

to increase the probability distribution of samples near the nominal condition and
augment the informative content about the behaviour of the system under incipient
damages. The dataset is collected evaluating an high-fidelity accurate representation
of the system – e.g. accurate numerical model or physical test-bench of the system –
and is considered as the ground truth reference data.

The output signal y is typically high-dimensional and unpractical to store and
process, which results in a computationally intensive FDI task unfeasible for onboard
applications. The first phase of the proposed strategy adopts the two-stage compres-
sion strategy (Section 6.1.1) applied offline on the reference dataset to determine
a compressed map ŷ(x,m̂) that retains only the highly informative elements of the
original signal.

The second phase is the online damage inference; this step attempts to identify the
specific health status of the system x∗ with contained computational resources, and
aims at including expensive high-fidelity simulations to improve the overall accuracy
of the inference procedure. During the online phase, the informative map computed
offline (m̂, ŷ) is used to reduce the dimensionality of the FDI problem and improve
the efficiency of the inference step. We consider a spectrum of representations of
the output monitoring signal at different levels of fidelity {y(1)M , ...,y(L)M }, where the
higher the level of fidelity l the more accurate and costly the acquisition of the signal
y(l)M . A multifidelity Bayesian scheme for damage inference is adopted to solve
the fault detection and isolation task. This multifidelity technique approximates
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the discrepancy f between the real and monitoring signals using a multifidelity
Gaussian process surrogate model (Section 3.3.2); then, the multifidelity acquisition
function is computed using the prediction of the surrogate, and iteratively selects the
combination of fault parameters and level of fidelity that is likely to minimize f and
identify the health status of the system.

6.2.1 Multifidelity Bayesian Scheme for Damage Inference

The informative compressed map ŷ(x,m̂) computed with the two-stage compression
strategy (Section 6.1.1) is used to reduce the dimensionality of the FDI problem:

x∗ = argmin
x∈X

f (l)(x,m̂) (6.7)

where f (l)(x,m̂) = ||ŷ(x∗,m̂)− ˆyM
(l)(x,m̂)|| is now evaluated only for the nw in-

formative elements of the reference compressed signal ŷ and monitoring compressed
output ˆyM. To address this inverse problem, we adopt a multifidelity Bayesian
scheme to leverage queries of the discrepancy function [ f (1), f (2), ..., f (L)] at differ-
ent levels of fidelity and accelerate the inference of the damages affecting the system
[33, 234, 71, 37].

Algorithm 4 describes the main methodological stages of the multifidelity FDI.
The damage inference procedure is dynamically conducted online through an iterative
process and relies on two key elements: the multifidelity Gaussian process surrogate
model and the multifidelity acquisition function. The surrogate approximates the
discrepancy function based on collected information, and provides a predictive
framework that synthesizes the data from multifidelity models into a unique emulator.
At each iteration, the acquisition function informed by this predictive distribution
is maximized to select the damage configuration that is likely to actually affect the
system together with the associated fidelity of the representation to query. Meanwhile,
the new observation is used to update the posterior distribution of the emulator, and
the above process is repeated until a convergence metric is met.
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Algorithm 4 Multifidelity Bayesian scheme for the inference of damage parameters

Input: Definition of the faults domain X ∈ RD, discrepancy function f (l)(x,m̂),
the multifidelity Gaussian process surrogate model prior GP(0,κ(l)(x,x′)), and
the library of monitoring models of the discrepancy function at different levels
of fidelity [ f (1), f (2), ..., f (L)]

Output: Actual damage configuration affecting the system x∗ = argmin f (L)(x,m̂)

1: D0←{xn, f (ln)(xn,m̂)}N0
n=1 collect initial N0 noisy observations of the discrep-

ancy function f (ln)(xn,m̂)∼N ( f (ln)(xn,m̂),σε) at different levels of fidelity
2: µ

(l)
0 ,σ

(l)
0 ← compute the initial mean and standard deviation of the multifidelity

Gaussian process surrogate model
3: i← 1
4: repeat
5: Load the new combination of damage parameters xNi and associated level of

fidelity lNi

6: Compute the observation of the discrepancy function f (lNi)(xNi,m̂)

7: Di←Di−1∪{xNi, f (lNi)(xNi,m̂)} update the dataset of observations
8: µ

(l)
i ,σ

(l)
i ← update the mean and standard deviation of the multifidelity Gaus-

sian process surrogate model
9: Compute the multifidelity acquisition function U(x | Di) on the updated

dataset Di
10: Maximize the multifidelity acquisition function to select the next dam-

age configuration and associated level of fidelity to query xNi+1, lNi+1 =
argmaxx∈X U(x |Di)

11: i+1← i
12: until Convergence criteria is met
13: return Combination of damage parameters x∗ that minimizes the discrepancy

function f (xn,m̂) over the faults domain X



Chapter 7

Experiments and Discussion: Design
Applications

In this chapter, we investigate the performance of the proposed algorithms for
aerospace engineering design optimization problems. In particular:

• Section 7.1 investigates the capabilities of the NM2-BO methodology for an
aerodynamic shape optimization problems.

• Section 7.2 demonstrates the optimization performance of the PA-MFBO
algorithm for a cross-regime aerodynamic shape optimization problem.

• Section 7.3 illustrates the results achieved with the PA-NM2BO, PA-MFBO,
and NM2-BO for a cross-regime aerodynamic design optimization problem.

• Section 7.4 demonstrates the capabilities of the NM3-BO and PA-MFBO
algorithms for the multidisciplinary design optimization problem of a re-entry
space vehicle.

7.1 Aerodynamic Shape Optimization Problem

This section illustrates and discusses the results achieved with the Non-Myopic
Multifidelity Bayesian Optimization (NM2-BO) framework (Chapter 4) for an aero-
dynamic shape design optimization problem. This design optimization problem
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has been specifically selected and conceived by an international community of ex-
perts in multifidelity methods to stress-test multifidelity algorithms over challenging
engineering test-cases [235].

Specifically, this aerodynamic shape optimization problems aims at identify
the optimized airfoil geometrical shape that minimizes the drag coefficient Cd of a
RAE 2822 airfoil, subject to maintaining a constant lift coefficient Cl . Additional
constraints include the pitching momentum Cm, the flight conditions, and the ge-
ometry of the airfoil. The geometry of the RAE 2822 airfoil is modified through
the code WG2AER developed by [236], where the initial geometry of the airfoil is
linearly combined with shape modification functions through the weights w. Specifi-
cally, we use six shape modification polynomial functions and assign the weights
w = [w1, ...,w6] at each function to modify the shape of the RAE 2822 airfoil. The
design optimization problem is formulated as follows:

min
x∈X

Cd(x)

x = [w1, ...,w6] (7.1a)

s.t. Cl = 0.824 (7.1b)

−0.1≤Cm ≤−0.01 (7.1c)

M = 0.734 (7.1d)

h = 10000m (7.1e)

t/c = 0.1211 (7.1f)

r ≥ 0.007c (7.1g)

τ ≥ 5◦ (7.1h)

t85/c≥ 0.02 (7.1i)

X = [−1,1]6 (7.1j)

where M is the flight Mach number and h is the flight altitude, t represents the
thickness of the airfoil, c is the chord, τ is the trailing edge angle, and t85 is the
thickness of the airfoil at the 85% of the chord. The search for the optimal airfoil
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shape aims at identifying the combination of design variables, namely the weights of
the shape modification functions w, that minimizes the drag coefficient Cd(x) over
the design space X defined by the move limits for the weights Iw = [−1,1]6. The
constraint on the lift coefficient is satisfied considering the angle of attack α as a
free parameter in the CFD simulations and the constraint on the maximum thickness
is automatically satisfied scaling the airfoil after the geometry modifications. The
remaining constraints are considered formalizing the corresponding unconstrained
optimization problem through the quadratic penalty functions as follows:

min
x∈X

Cd + c1g+(Cm,−0.1)+ c1g−(Cm,−0.01)+

c2g+(t/c,0.007)+ c3g+(τ,5◦)+c4g+(t85/c,0.02)
(7.2)

where g+ and g− are the quadratic penalty functions [236], and c1 = 1000, c2 = 5000,
c3 = 10, and c4 = 30.

7.1.1 Aerodynamic Models

The flow-field modeling consists of two levels of fidelity that are assembled using an
open-source computational tool for aerodynamic analysis [236]. Both the aerody-
namic models take in input the airfoil geometry modified through the assignment
of the weights w together with the flight altitude h, the Reynolds number Re and
the free-stream Mach number M, and return the drag coefficient Cd and the pitching
moment coefficient Cm. We assume the flow-field in a fully turbulent condition
and model the aerodynamic domain through the Reynolds Averaged Navier-Stokes
(RANS) equations. The software numerically solves the RANS equations using a
finite volume method, with an automatic procedure to generate a specific mesh for
each modified shape of the RAE 2822. The differential formulation of RANS is
mathematically expressed as follows:

R(U) =
∂ (U)

∂ t
+∇ ·Fc−∇ ·Fv−Q = 0 in Ω, t > 0 (7.3)

where Ω is the computational domain, R are the numerical residuals, Q is the
source term, U = (ρ,ρv,ρE) are the conservative variables, namely the air density
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(a) (b)

Fig. 7.1 (a) High-fidelity discretization of the computational domain with 90000
elements, and (b) high-fidelity pressure coefficient contours for the unmodified RAE-
2822 airfoil.

ρ = ρ(h), the free-stream velocity v and the total energy E, and Fc and Fv are the
convective and viscous fluxes, respectively:

Fc =

 ρv
ρv⊗ v+ Ip
ρEv+ pv

 (7.4)

Fv =

 ·
τττ

τττv+ k∇T

 (7.5)

where T = T (h) is the free-stream temperature, p = p(h) is the free-stream static
pressure, k = k(h) is the thermal conductivity and τττ is the tensor of viscous stresses.

We determine the level of fidelity of the aerodynamic simulation by modifying the
element scale factor ES that defines the density of the computational mesh, where the
lower the element scale the more refined is the discretization of the flow-field. For the
optimization problem in Equation (7.1), two levels of fidelity are considered for the
aerodynamic modeling: we set ES = 2.5 for the high-fidelity model corresponding to
a grid of about 90000 cells, and ES = 12 for the low-fidelity model with about 30000
cells. Figure 7.1 illustrates the high-fidelity computational grid (Figure 7.1(a)) and
the corresponding distribution of the pressure coefficient (Figure 7.1(b)) computed
with the high-fidelity aerodynamic model, while Figure 7.2 provides details about
the low-fidelity mesh (Figure 7.2(a)) and correlated distributions of the pressure
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(a) (b)

Fig. 7.2 (a) Low-fidelity discretization of the computational domain with 30000
elements, and (b) low-fidelity pressure coefficient contours for the unmodified RAE-
2822 airfoil.

coefficient (Figure 7.2(b)) in output from the low-fidelity aerodynamic model; all
those outcomes are obtained considering the unmodified RAE-2822 airfoil. The
flow solver leverages for all the levels of fidelity the finite-volume code SU2 v6.2.0
to compute numerical solutions of the RANS equation using the Spalart-Allmaras
turbolence model, a II order monotone upstream-centered scheme and an adaptive
CFL number [237]. We require a computational residuals minor than 10−6 as the
convergence criteria, with a fixed maximum number of iterations of 20000. The
computational grid is generated through the GMSH software v4 where an automated
procedure allows to determine an hybrid grid of triangles and quadrangles elements,
balancing the accuracy and efficiency of the CFD computation with the robustness
of the grid generation when the airfoil geometry is modified [238].

7.1.2 NM2-BO Results and Discussion

We present the results achieved with our NM2-BO framework for the aerodynamic
constrained shape optimization of the RAE 2822 airfoil. The NM2-BO capabilities
are compared against standard multifidelity Bayesian optimization methodologies
implementing different acquisition function, namely the Multifidelity Expected
Improvement (MFEI) [38], Multifidelity Max-Value Entropy Search (MFMES)
[42], and Multifidelity Probability of Improvement (MFPI) [41]. The outcomes are
discussed in terms of:
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Fig. 7.3 Minimum drag coefficient C∗d obtained with the NM2-BO algorithm and the
baseline MFBO algorithms.

C∗d = min(Cd(x)) (7.6)

The minimum drag coefficient C∗d provides a measure of the improvement of the
design solution and allows to assess the accuracy of the optimal shape configuration
identified by the competing methods. We consider a statistics over 25 experiments
for each methodology starting from different initial samples determined through a
Latin hypercube design of experiments [209]. The objective of this experimental
setting is to measure and compensate the influence of the random initialization during
the assessment of the performance of the competing algorithms. In particular, the
multifidelity searches are initialized with 30 initial design configurations, of which
n(1)0 = 25 samples are observed with the low-fidelity aerodynamic model and n(2)0 = 5
are computed with the high-fidelity aerodynamic model.

Figure 7.3 illustrates the values of the minimum drag coefficient C∗d as a function
of the computational budget B to compare the optimization outcomes achieved by
the competing algorithms. The results are reported in terms of median values of the
minimum drag coefficient together with the associated statistics in between the 25-th
and 75-th percentiles. It is possible to notice that the optimization procedure for all
the algorithm has been initialized with design configurations that score worse than the
baseline solution (C∗d >0.020475): the algorithms progressively identify improved
design solution through the evaluation of the aerodynamic models and reduce the
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B C∗d MFEI C∗d MFPI C∗d MFMES C∗d NM2-BO

15 0.02062 0.02064 0.02065 0.01925
25 0.02062 0.02036 0.02001 0.01872
50 0.01895 0.01917 0.01993 0.01727

100 0.01875 0.01876 0.01825 0.01727

Table 7.1 Comparison between NM2-BO and standard MFBO algorithms median
values of the minimum drag coefficient C∗d .

Method w1 w2 w3 w4 w5 w6

NM2-BO −0.9875 0.9755 −0.1987 0.3927 0.8424 −0.9451
MFEI −0.3785 −0.1015 −0.4479 0.3031 0.2993 −0.4426
MFPI −0.4580 0.4574 0.2391 0.4266 0.4096 −0.2365

MFMES −0.4752 0.4857 0.2124 −0.1824 0.3324 −0.1692

Table 7.2 Comparison between the best design solutions evaluated with the NM2-BO
and the standard MFBO algorithms.

minimum drag coefficient C∗d below the baseline design. We can observe that our
non-myopic multifidelity framework provides larger reduction of the drag coefficient
and remarkable accelerations of the optimization process: NM2-BO converges to an
optimal combination of optimization variables with a fraction of the computational
cost required by the baseline MFBO algorithms to identify sub-optimal design
solutions.

Table 7.1 reports the convergence history for the competing algorithms in terms
of specific median values that characterize the distribution of the multifidelity ex-
periments at B = 15, 25, 50 and 100. In particular, the NM2-BO algorithm achieves
a median value of the drag coefficient equal to C∗d = 0.01872 for B = 25 which
corresponds to a design improvement of the 8.6% if compared with the baseline
solution, and converges to an optimal median value of C∗d = 0.01727 with a de-
sign upgrade of the 15.7% consuming a budget of just B = 32.7. The second best
performing algorithm is the MFMES, which scores C∗d = 0.01825 and provides a
design improvement of the 10.9% with respect to the baseline airfoil adopting a
computational budget B = 93.6.

Table 7.2 reports the optimal design solutions identified by the competing algo-
rithms. We observe that our NM2-BO identifies an aerodynamic design configura-
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tion capable to deliver a drag coefficient of C∗d = 0.01723, which corresponds to an
upgrade of the 15.9% with respect to the baseline solution. These outcomes demon-
strates the remarkable accelerations and superior design solutions achieved by our
NM2-BO algorithm: the capability to capitalize from the two-step ahead informative
gains enhances the wise selection of optimization variables and aerodynamic models
to query while balances resource expenditure and accuracy of the design solution.

Figure 7.4 illustrates the best optimal airfoil geometries obtained with the com-
peting algorithms compared with the baseline RAE2822 airfoil, and the related
distributions of the pressure coefficient. In particular, the optimal airfoil computed
with our non-myopic algorithm allows to efficiently expand the flow at the upper
surface leading edge while reducing the intensity of the shock waves that occur at
transonic speed; indeed, the corresponding distribution of the pressure coefficient
(Figure 7.4(e)) shows that the shock wave on the upper surface is reduced in intensity,
and the supersonic bubble evolves with an almost constant pressure plateau. These
outcomes are achieved through the reduction of the adverse pressure gradient which
results in the substantial decrease of the drag coefficient.

7.2 Cross-Regime Aerodynamic Shape Optimization
Problem

In this section, we consider an aerodynamic shape optimization problem within
a cross-regime scenario: the fluid regime and the associated physical phenomena
evolve during the optimization process according to the combination of design
variables considered. This defines a robust optimization procedure that potentially
ensures to obtain optimal airfoil shapes for different operational conditions, without
limiting the improvement of performance to a single application context [239, 240].
We address this specific aerodynamic problem through our physics-aware multi-
fidelity Bayesian optimization framework (Chapter 5) given the capability to in-
corporate the prior scientific knowledge about the structure of the domain related
to the transition of the fluid dynamic regimes during the optimization. Thus, the
physics-aware utility function is formalized to bias the search procedure according
to the evolution of the physical domain (Section 7.2.2).
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Fig. 7.4 (a) Optimal airfoils geometry and associated pressure coefficient contours
obtained with (b) MFEI, (c) MFPI, (d) MFMES, and (e) our NM2-BO algorithm.

The Mach number M is the main physical variable that captures the evolution
of the fluid domain, and constitutes a measure of the compressibility effects that
modify the fluid structure. According to the fluid mechanics theory [241, 242], the
flow-field around streamlined bodies is defined subsonic for values of the Mach
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number lower than 0.8, and represents a condition characterized by the absence
of discontinuities and the fluid properties vary continuously. As the Mach number
approaches the sonic condition, discontinuities in the form of local shock waves start
to appear in the fluid domain with the consequent separation of the viscous boundary
layer. This mixed subsonic-supersonic flow field emerges for values of the Mach
number between 0.8 and 1.2, and is commonly referred as the transonic regime. The
interactions between shock waves and boundary layer determine an increase of the
drag force, and unsteady effects generated by a shift of the center of pressure of the
aerodynamic body. Therefore, the cross-regime scenario poses significant challenges
associated with the modeling of complex physics. On one hand, the subsonic regime
can be represented adopting simplifications in the aerodynamic modeling due to the
smooth evolution of the flow field; on the other hand, the transonic regime requires
the implementation of accurate and robust modeling techniques to capture non-linear
phenomena in the unsteady mixed subsonic-supersonic flow.

The cross-regime aerodynamic design optimization problem consists in the
identification of the optimal combination of design parameters that minimizes the
drag coefficient Cd of a transonic airfoil, subject to a variety of aerodynamic and
geometric constraints. For this demonstrative test-case, we adopt the RAE 2822
transonic airfoil that is modified through the code WG2AER developed by [236].
The aerodynamic design optimization problem is formulated as follows:

min
x∈X

Cd(x)

x = [w1, ...,w6,M] (7.7a)

s.t. Cl = 0.824 (7.7b)

−0.1≤Cm ≤−0.01 (7.7c)

t/c = 0.1211 (7.7d)

r ≥ 0.007c (7.7e)

τ ≥ 5◦ (7.7f)

t85/c≥ 0.02 (7.7g)

X = Iw× IM (7.7h)
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where the design parameters x= [w1, ...,w6,M] consist of six weights wi assigned
to the shape modification polynomial functions and the Mach number M. The
feasibility of the design configuration is subject to obtain certain aerodynamic
performances in terms of lift coefficient Cl and pitching momentum coefficient Cm,
and the modified geometry must accomplish the constraints on the airfoil thickness
t, chord c, trailing edge angle τ , and thickness of the airfoil at the 85% of the
chord t85. The search for optimal design configuration is limited to the domain X

bounded by the move limits imposed for the weights Iw = [−1,1]6 and for the Mach
number IM = [0.6,0.99]. This allows for the exploration of different aerodynamic
configurations, and improves the robustness of the optimization procedure in presence
of an evolution of the fluid domain from the low subsonic to the transonic regime.

The constraints of this cross-regime optimization problem (Equation 7.7) are
handled formalizing the corresponding unconstrained optimization problem through
the quadratic penalty functions as follows:

min
x∈X

Cd + c1g+(Cm,−0.1)+ c1g−(Cm,−0.01)+

c2g+(t/c,0.007)+ c3g+(τ,5◦)+c4g+(t85/c,0.02)
(7.8)

where g+ and g− are the quadratic penalty functions [236], and c1 = 1000, c2 = 5000,
c3 = 10, and c4 = 30, while the constraint on the maximum thickness is satisfied
through an automatic procedure that scales the modified geometry, and the constraint
on the lift coefficient is satisfied considering the angle of attack α as a free parameter
in the CFD simulations.

7.2.1 Aerodynamic Models

The distribution of the pressure field around the RAE 2822 is represented through
a library of three numerical models at different accuracy and related CPU time
associated with their evaluation. The aerodynamic models return the drag coefficient
Cd and the aerodynamic constraints on lift Cl and pitching momentum coefficients
Cm given the selected configuration of optimization variables in terms of weights w
and Mach number M.
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We model the aerodynamic domain through the numerical solution of the RANS
equations (Equation (7.3)) adopting a Computational Fluid Dynamic (CFD) solver.
This permits to obtain a finite-dimensional approximation of the pressure coefficient
over the fluid domain. We use the SU2 v6.2.0 CFD code based on the finite-volume
method to discretize the RANS partial differential equations considering a fully
turbulent flow-field [237]. To ensure the robustness of the aerodynamic outcomes,
the convergence criteria is set for a computational residuals minor than 10−6 with
a fixed maximum number of 20000 iterations. The fluid domain is discretized
through a computational mesh generated using the GMSH software v4 [238] where
an automated procedure embedded within the adopted computational tool adapts the
hybrid grid of triangles and quadrangles elements with the modified geometry of the
airfoil. This permits to target the balance between accuracy and efficiency of the
CFD computations.

The fidelity of the aerodynamic simulations is determined controlling the gran-
ularity of the computational mesh through the associated element scale factor ES
where the higher the value of ES the coarser the discretization of the fluid domain.
Specifically, three levels of fidelity are considered for the aerodynamic modeling:
we set ES = 2.5 for the high-fidelity model corresponding to a grid of about 90000
cells, ES = 12 for the mid-fidelity model with about 30000 cells, and ES = 20 for
the low-fidelity model consisting of a mesh with 15000 cells.

The high-fidelity model achieves an accurate representation of complex aerody-
namic phenomena that occurs at higher regimes of speed including discontinuities,
shock-waves and unsteadiness of the flow-field. This provides a close prediction of
the mixed subsonic-supersonic fluid domain that characterizes the transonic regime.
The mid-fidelity model reduces the demand for CPU if compared with the high-
fidelity model by decreasing the number of cells that discretize the fluid domain.
This produces a reliable estimate of the aerodynamic coefficients for Mach number
regimes far from the sonic condition where the unsteady phenomena have marginal
effects, and a reduced accuracy for discontinuous flows that occur at the transonic
regime. The low-fidelity model further decreases the number of elements adopted
to discretize the fluid domain, and leads to an inaccurate representation of the com-
pressibility effects that characterize the more turbulent flows at higher Mach values
(M > 0.65). However, the coarser discretization reduces the computational cost
required for its evaluation of the 65% with respect to the cost associated with the
high-fidelity model.
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(a) (b)

Fig. 7.5 (a) high-fidelity discretization of the computational domain, and (b) high-
fidelity pressure coefficient contours for the RAE-2822 airfoil.

(a) (b)

Fig. 7.6 (a) mid-fidelity discretization of the computational domain, and (b) mid-
fidelity pressure coefficient contours for the RAE-2822 airfoil.

(a) (b)

Fig. 7.7 (a) low-fidelity discretization of the computational domain, and (b) low-
fidelity pressure coefficient contours for the RAE-2822 airfoil.

The high-fidelity (Figure 7.5), mid-fidelity (Figure 7.6), and low-fidelity (Figure
7.7) meshes and distributions of the pressure coefficient highlight the increasing
discrepancy of the flow field representations as the level of fidelity decreases.
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7.2.2 Physics-Aware Utility Function for Aerodynamic Design

We formulate our physics-aware utility function α4 (Equation (5.1)) to include a
learning bias that wisely measures the utility of evaluating an aerodynamic model –
at a certain level of fidelity – according to the characteristics of the fluid dynamic
regime. This is achieved by formalizing the learning bias dependent on the Mach
number ψψψ = M as the variable representative of the physical phenomena involved in
the aerodynamic domain. Accordingly, α4(M, l) is depicted as follows:

α4(M, l) =

{
1 if l = 1, ...,L−1

Ms
Ms−M if l = L Ms = 1

(7.9)

This physics-aware utility function encourages the query of the high-fidelity
model for values of the Mach number close to the sonic condition (M = 1). Indeed,
α4 increases the value of the multifidelity acquisition function (Equation (5.1))
when an aerodynamic configuration is evaluated with the high-fidelity model in the
transonic regime (M > 0.8). The goal is to capture large-scale separation of the
fluid vein and unsteady effects that deeply influence the overall performance of the
aerodynamic system. This permits to better support and improve the search for
optimal designs through the a priori scientific knowledge about the aerodynamic
domain structure derived directly from the governing equations.

7.2.3 PA-MFBO Results and Discussion

This section illustrates and discusses the results achieved with the physics-aware mul-
tifidelity Bayesian optimization (PA-MFBO) framework for the aerodynamic design
optimization problem of the RAE 2822 transonic airfoil. The effectiveness of the
PA-MFBO algorithm is compared with other existing methods commonly adopted
to address black-box optimization problems, namely the single-fidelity efficient
global optimization (EGO) algorithm [109] adopting the high-fidelity aerodynamic
model, and the multifidelity Bayesian optimization based on the multifidelity ex-
pected improvement acquisition function (MFEI) [243]. We select the minimum
drag coefficient as the assessment metric to evaluate the capabilities of the com-
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Fig. 7.8 Statistics over 25 runs of the minimum drag coefficient C∗d obtained with the
competing algorithms.

peting algorithms, and provide a measure of the improvement of the aerodynamic
performance achieved by the identified design configurations:

C∗d = min(Cd(x)) (7.10)

Figure 7.8 reports the convergence history of the optimization procedure in terms
of values of the minimum drag coefficient C∗d as a function of the computational
budget B. We compute 25 independent replications of the experiment for each
methodology to measure and compensate the influence of the random initial sam-
pling procedure and ensure a fair comparison of the algorithms. The outcomes of
the statistics are represented through the median values of the assessment metric C∗d
together with the the associated values in between the 25-th and 75-th percentiles.
We consider as the baseline design solution the drag coefficient C∗d = 0.017796
obtained for the unmodified RAE 2822 airfoil corresponding to the design configura-
tion x = [0,0,0,0,0,0,0.65]. The convergence histories show that all the competing
methodologies are capable to identify improved design solutions if compared with
the baseline RAE 2822 design. In particular, our PA-MFBO delivers better aero-
dynamic designs in terms of reduction of the drag coefficient if compared with
the baseline EGO and MFEI algorithms. As can be seen, PA-MFBO reduces the
drag coefficient at the beginning of the optimization procedure and identifies op-
timal design configurations consuming a fraction of the available computational
budget. In addition, we note from the convergence of the PA-MFBO experiments
that the algorithm starts the search allocating budget for the exploration of different
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B C∗d EGO C∗d MFBO C∗d PA-MFBO

6 0.02212 (-24.30 %) 0.02212 (-24.30 %) 0.02212 (-24.30 %)
10 0.01887 (-6.055 %) 0.01515 (14.87 %) 0.01455 (18.24 %)
25 0.01770 (0.5394 %) 0.01484 (16.61 %) 0.01435 (19.36 %)
50 0.01738 (2.337 %) 0.01454 (18.30 %) 0.01347 (24.31 %)
100 0.01658 (6.833 %) 0.01418 (20.32 %) 0.01348 (24.31 %)

Table 7.3 Median values of the minimum of the drag coefficient C∗d and corresponding
design improvement (·) obtained with the competing algorithms.

design configurations over the domain, which corresponds to a moderate reduction
of the drag coefficient. Then, the computational resources are directed towards the
exploitation phase reducing the values of the design objective.

Table 7.3 reports the median values of the minimum drag coefficient for incre-
mental computational expense B = 6, 10, 25, 50, and 100 to better measure the
performance of the proposed PA-MFBO in comparison with the baseline algorithms.
After the expenditure of the initial resources for the initialization phase (B = 6), all
the algorithms identify design solutions characterized by higher values of the drag
coefficient with respect to the baseline design. At B = 10, the multifidelity algo-
rithms capitalize from the collected evaluations of the objective function and identify
improved designs with respect to the baseline solution, while the single-fidelity
EGO still achieves worst designs if compared with the unmodified RAE 2822 airfoil.
The PA-MFBO methodology realizes the larger design improvement of the 24.31%
before consuming a Budget of B = 50, which is superior to the MFEI design upgrade
of the 20.32% obtained adopting much more computational resources. Moreover,
the EGO methodology is capable to deliver a design improvement of only the 6.83%
using all the available computational budget.

To clarify and interpret the results obtained, Figure 7.9 illustrates the aerodynamic
performance of the optimal designs determined by all the algorithm. In particular,
we report the optimal airfoil shapes corresponding to the best aerodynamic design
(Figure 7.9(a)), and the related pressure coefficient distribution for the PA-MFBO
(Figure 7.9(b)), MFEI (Figure 7.9(c)), and EGO (Figure 7.9(d)) design solutions. It
can be noticed that the superior performance of the design configuration identified
with the PA-MFBO can be explained with the efficient expansion of the fluid at
the upper surface leading edge that induces low-intensity shock waves if compared
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Fig. 7.9 (a) Optimal airfoils geometry and associated pressure coefficient contours
obtained with (b) the PA-MFBO, (c) MFBO, and (d) EGO algorithm.

with the other modified airfoils. This results from the increase of the leading edge
radius and aft camber that produces a reduction of the adverse pressure gradient, and
permits a smooth evolution of the pressure coefficient in the supersonic bubble. This
features of the aerodynamic domain determine the substantial decrease of the drag
coefficient and enhance the overall efficiency of the modified airfoil. In this design
test case, the remarkable performance of the PA-MFBO framework is related to the
physical bias introduced in the sampling scheme. This enables the capitalization
from the prior scientific knowledge about the fluid dynamic regime, and permits to
accelerate and improve the optimization search through the wise selection of the
aerodynamic model to query with a continuous balance between computational cost
and accuracy of the solution.
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7.3 Cross-Regime Aerodynamic Design Optimization
Problem

In this section, we address an aerodynamic design optimization problem consider-
ing a cross-regime optimization setting – the cross-regime optimization has been
previously discussed in Section 7.2. Specifically, the design optimization problem
aims at identify the optimal combination of Mach number M and angle of attack that
minimizes the drag coefficient Cd of a NACA 0012 airfoil subject to maintaining
a minimum coefficient of lift Cl at a certain altitude h. This specific aerodynamic
design optimization problem is used to demonstrate and validate the performance
of the methodologies proposed in this thesis including the non-myopic NM2-BO
(Section 4.4), the physics-aware PA-MFBO (Section 5.1), and the physics-aware
non-myopic PA-NM2BO (Section 5.2) frameworks. Indeed, this NACA 0012 opti-
mization problem is frequently adopted as validation test case [244–247] due to the
availability of the real-world solution of the optimization problem and experimental
data of the lift and drag coefficients [248, 249]. This permits to assess the perfor-
mance of the algorithms with respect to the experimental optimum and real-world
aerodynamic data, which usually is not the case for real-world experiments where
the optimum solution is not computable.

The cross-regime aerodynamic design optimization problem is formalized as
follows:

min
x∈X

Cd(x)

s.t. 0.45−Cl(x)≤ 0 (7.11a)

h−h0 = 0 (7.11b)

X = IM× Iα (7.11c)

where x = [M,α] are the design variables, h is the flight altitude, Cl = 0.45 is
the constraint on the lift coefficient, h0 = 10000m is the constraint on the flight alti-
tude, and X = IM× Iα is the design space with IM = [0.6,0.99] and Iα = [0◦,4.5◦].
The constraint on the lift coefficient (Equation 7.11a), on the flight altitude (Equa-
tion 7.11b), and on the domain boundaries (Equation 7.11c) are imposed to replicate
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the flight scenario of a civil aircraft during the cruise phase. In particular, the
Mach number limits are defined to explore design configurations in both the sub-
sonic and transonic regime with the appropriate level of fidelity to grasp design
solutions that may be otherwise discarded. To handle the aerodynamic constraint
during the optimization process, we approximate the lift coefficient over the entire
design space through a multifidelity Gaussian process C(l)

l = GP(µ(l)
C ,σ

(l)
C ) and

adopt a conditional selection strategy that defines an additional surrogate model
GP(µ̃(l), σ̃ (l)) to represent the feasible regions of the design space from which the
new design to be evaluated will be chosen, where µ̃(l) = µ(l)(µ

(l)
C > 0.45) and

σ̃ (l) = σ (l)(µ
(l)
C > 0.45).

7.3.1 Aerodynamic Modeling

We consider a library of three aerodynamic models at different levels of fidelity.
All the aerodynamic models compute the drag coefficient Cd and lift coefficient
Cl , given the geometry of the airfoil, the flight altitude h, the Reynolds number Re,
the free-stream Mach number M and the flight angle of attack α . The high-fidelity
aerodynamic models are based on a CFD solver for the numerical solution of the
Reynolds Averaged Navier-Stokes equations; the mid-fidelity model is conceptually
equivalent to the high-fidelity model, except for a coarser discretization of the
aerodynamic domain; the low-fidelity model solves numerically the potential flow
equation through the panel method.

Specifically, the high-fidelity and mid-fidelity aerodynamic models represent
the fluid domain through the Reynolds Averaged Navier-Stokes (RANS) equations
(Equation (7.3)) to capture the effects of turbulence that occur at higher regimes of
Mach number and angle of attack. We use the finite volume method to discretize
Equation (7.3) in space with a standard edge-based data structure. The numerical
solution of the RANS equations is computed through the computational fluid dynamic
code SU2 version 7.0.3 in RANS mode with the Spalart-Allmaras turbolence model
[250], using the Jameson-Schmidt-Turkel model (JST) and the Scalar upwind model
as the flow and turbolence numerical method, respectively, and Euler implicit for
the time discretization. The convergence criterion is set as satisfied for values of the
computational residuals minor than 10−6.
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The high-fidelity computational domain consists of a grid of 27125 quadrilateral
elements with the farfield boundary extended to 500c away from the airfoil surface,
where c = 1m is the Reynolds length. Figure 7.10(a) provides details about the
discretization of the computational domain for the high-fidelity model. We consider
this model as the high-fidelity representation of the aerodynamic phenomena for the
capability to provide an accurate estimate of aerodynamic coefficients Cd and Cl

even in the presence of discontinuity and separation phenomena typical of the mixed
flow condition that characterizes the transonic regime. Figure 7.10(b) illustrates the
distribution of the pressure coefficient around the NACA 0012 airfoil computed with
the high-fidelity aerodynamic model, for a Mach number of 0.9, angle of attack of
3◦ and an altitude of 10000m.

The mid-fidelity aerodynamic model adopts the same governing RANS equations
and the same solution method of the high-fidelity model, with the grid density
being far coarser than that of the high-fidelity one. In particular, we discretize the
computational domain with 14336 quadrilateral elements, which leads to a lower
computational time required to estimate the aerodynamic coefficients Cd and Cl in
comparison to the high-fidelity model. Figure 7.11(a) illustrates the discretization of
the computational domain for the mid-fidelity aerodynamic model. As a result of
the coarser mesh, this model is not suitable for the computation of the aerodynamic
field for Mach numbers close to the sonic condition, as it may not capture the
discontinuities of the flow that occur at transonic speed regimes. However, the mid-
fidelity representation can still provides close approximations of the aerodynamic
coefficients for Mach number regimes far from the sonic condition. Figure 7.11(b)
presents the distribution of the pressure coefficient around a NACA 0012 airfoil in
output from the mid-fidelity aerodynamic model, for a Mach number of 0.9, angle of
attack of 3◦ and an altitude of 10000m.

The low-fidelity aerodynamic model approximates the flow-field around the
airfoil through the potential flow panel method with an integral boundary layer
formulation and an approximate eN envelope method to calculate the aerodynamic
transition. We use XFOIL [251] to solve the potential flow equation through the
panel method with the Karman-Tsien compressibility correction to rapidly predict
the airfoil performances. The code is developed to evaluate the aerodynamic coef-
ficients at low Reynolds numbers and is capable to calculate the viscous pressure
distribution, capturing the influence of limited trailing edge separation and laminar
separation bubbles. We use 200 panels to discretize the airfoil contour and set 200
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(a) (b)

Fig. 7.10 (a) High-fidelity discretization of the computational domain with 27125
quadrilateral elements, and (b) pressure coefficient contours for a Mach number of
0.9, angle of attack of 3° and an altitude of 10000 m.

(a) (b)

Fig. 7.11 (a) Mid-fidelity discretization of the computational domain with 14336
quadrilateral elements, and (b) pressure coefficient contours for a Mach number of
0.9, angle of attack of 3° and an altitude of 10000 m.

iterations as the convergence criteria to contain the computation time. We consider
the aerodynamic coefficients computed with this model being the low-fidelity approx-
imation of the real values, as the potential flow panel method and the compressibility
correction are not capable to achieve an accurate representation of the flow-field in
the more turbulent flow at higher values of Mach number (M > 0.65) and angle of
attack (α > 4◦). Moreover, the combination of the panel method with the Karman-
Tsien correction causes XFOIL to overestimate lift and underestimate drag [252].
Figure 7.12 illustrates the comparison between the drag coefficient of a NACA 0012
airfoil computed with the low-fidelity model over the design space, and the wind
tunnel prediction of the drag coefficient obtained interpolating with a spline function
the experimental data [1].
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(a) (b)

Fig. 7.12 Prediction of the drag coefficient Cd as a function of Mach number M and
angle of attack α obtained by interpolating data computed by the low-fidelity model
(7.12(a)) and experimental wind tunnel data (7.12(b)) for the NACA0012 airfoil [1]

7.3.2 Results and Discussion PA-NM2BO

This section presents and discusses the results achieved with the physics-aware non-
myopic MFBO (PA-NM2BO) for the constrained aerodynamic optimization problem
of a NACA 0012 airfoil subject to a multi-regime flow-field. The PA-NM2BO is
compared with state of the art Bayesian frameworks such as the efficient global
optimization (EGO) [109], a single-fidelity non-myopic framework (lookEGO)
[127, 134, 136, 137], MFBO based on the multifidelity expected improvement
acquisition function (MFEI) [38], the proposed physics-aware multifidelity Bayesian
optimization (PA-MFBO), and our non-myopic multifidelity Bayesian optimization
(NM2-BO).

All the multifidelity algorithms consider the complete spectrum of three levels of
fidelity for the aerodynamic modeling, while the single fidelity frameworks elicitate
evaluations of the high-fidelity CFD model only. For the numerical experiments
discussed in this section, the initial set of design configurations to be evaluated is
determined through a Latin hypercube strategy, and are used to compute the first
surrogate model of the objective function at the first iteration. Specifically, the
multifidelity searches are initialized with 13 initial design configurations among
which 10 observations of the objective function are evaluated with the low-fidelity
model, 2 are computed with the mid-fidelity model, and the last one is evaluated
with the high-fidelity model, while for the single fidelity frameworks we consider 2
initial design configurations at which we compute high-fidelity observations. The
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(a) (b)

Fig. 7.13 Statistics over 20 runs of the minimum drag coefficient C∗d (7.13(a)) and of
the error of the surrogate model ES (7.13(b)) computed as the Gaussian process of
the objective function obtained with the competing algorithms

computational cost B is evaluated as the sum of the computational costs required to
estimate the aerodynamic domain with a certain level of fidelity. To total computa-
tional budget assigned is fixed at Bmax = 10, that is equivalent to 10 evaluations of the
high fidelity model. The overall budget includes also the cost for the initial samples.
The single-fidelity competing methods adopt the Gaussian process as the surrogate
model of the objective function [126], and the multifidelity algorithms implement
the multifidelity Gaussian process surrogate model (Section 3.3.2) to synthesize the
responses from the spectrum of aerodynamic model into a unique representation of
the objective function. We adopt the square exponential kernel for the covariance
function of the GP models and provide an estimate of the hyperparameters using the
maximum likelihood estimation technique [253].

Figure 7.13(a) presents the results achieved in terms of reduction of the minimum
drag coefficient C∗d = min(Cd(x)) while Figure 7.13(b) illustrates the error of the
surrogate model obtained from a randomized statistic of 20 experiments starting
from different initial samples for all the algorithms. In particular, the evaluation
of the minimum drag coefficient provides a metric reflecting the goodness of the
design solution identified by the competing algorithms and provides a measure of
the improvement in the solution of the optimization problem. The measure of the
surrogate error reflects the capability of the competing methods to combine the
responses from the library of aerodynamic model to improve the accuracy of the
surrogate model: this permits to better inform the acquisition function with a reliable
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estimate of the objective function and potentially lead to superior optimization
performance. The outcomes are reported in terms of the median values (solid line)
together with the observations falling in the interval between the 25-th and 75-th
percentiles (shaded area). The error of the surrogate model of the objective function
ES is defined as the relative error between the values of the drag coefficient C̃d

predicted by the surrogate model of the objective function and the values of Cd,wt

determined through real world NACA 0012 wind tunnel data [1], since the high
fidelity model has been validated with this experiments:

ES =
1

nwt

nwt

∑
i=1

C̃d(xi,wt)−Cd,wt(xi,wt)

Cd,wt(xi,wt)
(7.12)

where nwt = 120 is the number of experimental data available and xi,wt is the i-th
design configuration evaluated in the wind tunnel experiments. The experimental
optimum is C∗d,wt = 0.0064 (dashed line in Figure 7.13) corresponding to the opti-
mum design x∗wt = [M∗wt ,α

∗
wt ] = [0.6574,3.013], and is also estimated through wind

tunnel experiments. The results suggest that the PA-NM2BO algorithm provides
superior optimization performance than the competing algorithms, and achieves
larger design improvements reducing both the drag coefficient and the surrogate
error earlier on in the first stages of the optimization process. After the exploitation
of all the computational budget available, it can be observed that the PA-NM2BO
identifies superior design configurations of the NACA0012 if compared with the ref-
erence methodologies: the joint contributions of the two-step lookahead multifidelity
policy and the physics-aware formulation allow to efficiently learn the aerodynamic
surrogate and minimize the drag coefficient. In addition, we notice that the inclu-
sion of the awareness about the fluid-dynamic physics enhances the optimization
procedure, and obtains sensitive improvements of the accuracy of the multifidelity
surrogate thanks to the wise use high-fidelity models at higher mach number regimes.
Table 7.4 depicts the minimum median values of the drag coefficient achieved by
the algorithms, and reports the drag coefficient along with the design configurations
and the queries of the aerodynamic models corresponding to the experiments that
give the best results. Our framework allows to achieve a design solution almost
identical to the best design from wind tunnel data using 993 observations of the
low-fidelity model, 10 evaluations of the mid-fidelity model and only 4 queries of the
high-fidelity model. Table 7.5 indicates the percentage errors computed on the mean
and on the best values of the drag coefficient determined by each competing methods
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Method mean C∗d best C∗d best M∗ best α∗ HF MF LF

EGO 0.00963 0.00858 0.621 2.622 10 - -
lookEGO 0.00894 0.00759 0.658 3.192 10 - -
MFEI 0.00777 0.00742 0.649 3.230 4 11 497
PA-MFBO 0.00756 0.00706 0.636 3.078 5 8 988
NM2-BO 0.00759 0.00676 0.633 2.959 4 10 997
PA-NM2BO 0.00664 0.00642 0.656 3.000 4 10 993
Wind Tunnel - 0.0064 0.657 3.013 - - -

Table 7.4 Comparison across median and best values of the minimum drag coefficient
C∗d over 20 experiments for the competing algorithms, including the related optimum
design variables M∗ and α∗, and the queries of the high-fidelity (HF), mid-fidelity
(MF) and low-fidelity (LF) model.

Error C∗d EGO lookEGO MFEI PA-MFBO NM2-BO PA-NM2BO

Mean 50.5% 39.7% 21.5% 18.2% 18.7 % 3.88%
Best 34.2% 18.6% 15.9% 10.4% 5.75 % 0.422%

Table 7.5 Comparison of the percentage error of the estimate of the minimum drag
coefficient C∗d with respect to the wind tunnel optimum C∗d,wt : mean and best values
over the 20 trials.

with reference to the wind tunnel optimum. On average, the PA-NM2BO strategy
permits to achieve an error of about 3.88%, whereas the second-best NM2-BO algo-
rithm achieves an error of the 5.75%. Moreover, our framework scores the overall
maximum reduction of the error with a value of about 0.422%. This demonstrates the
capability of the PA-NM2BO to leverage multiple aerodynamic models that jointly
with the lookahead property and the physics-awareness enhance the optimization
performances.

Figure 7.14 illustrates the design space obtained using a spline interpolation
of wind tunnel data and the high-fidelity sampling process corresponding to the
experiments that provide the best results in terms of reduction of the drag coefficient
for all the algorithms considered. It can be observed that the multifidelity strategies
allow to reduce the total number of high-fidelity observations respect to the single-
fidelity algorithms, leveraging the information from the mid-fidelity and low-fidelity
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(a) (b) (c)

(d) (e) (f)

Fig. 7.14 High-fidelity evaluations of Cd called by the different algorithms: EGO
(7.14(a)), lookEGO (7.14(b)), MFEI (7.14(c)), PA-MFBO (7.14(d)), NM2-BO
(7.14(e)), and PA-NM2BO (7.14(f)). The contour map indicates the Cd value ob-
tained interpolating the wind tunnel data as a function of Mach number M and angle
of attack α .

models. The proposed PA-NM2BO framework uses the high-fidelity model to
explore the regions of the design space characterized by higher Mach numbers and
angles of attack thanks to the physics-awareness property, and effectively exploit the
design space sampling closely to the optimum configuration through the lookahead
feature (Figure 7.14(f)). These aspects permit to accurately predict the aerodynamic
domain at transonic regimes taking advantage of lower-fidelity models to explore
design configurations at lower speeds and angle of attack. Also the PA-MFBO
algorithm samples the design space with a similar approach thanks to the domain-
aware formulation (Figure 7.14(d)). However, the exploitation is not effective as
PA-NM2BO demonstrating the significant role of the lookahead strategy to improve
the optimization performance.

The outcomes for this cross-regime aerodynamic design problem reveal the poten-
tial impact of combining non-myopic multifidelity policies with physics-awareness
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features for a broader application to aerodynamic design and optimization problems.
PA-NM2BO could be particularly attractive for optimization problems where the use
of high-fidelity models is computationally unfeasible but essential to represent the
full order complexity of the aerodynamic domain in certain fluid regimes. Indeed,
a multifidelity framework that is conscious about the evolution of the physics do-
main can improve the wise inclusion of high-fidelity data during the optimization,
and a non-myopic formulation can accelerate the identification of superior design
configurations and contain the total computational cost.

7.4 Space Vehicle Multidisciplinary Design Optimiza-
tion

The design of a space re-entry vehicle is a multidisciplinary optimization problem
that well carries the computational challenges associated with the design of complex
engineering systems [37, 207, 254]. This section uses this demanding MDO applica-
tion to demonstrate both the physics-aware multifidelity algorithm PA-MFBO and
the non-myopic multipoint multifidelity algorithm NM3-BO, and discuss them in
comparison with popular standard BO and MFBO algorithms.

Re-entry vehicles are spacecrafts conceived to enter the planetary atmosphere
and safely land on the planet surface. The main objective of the re-entry mission
is achieve a proper balance between the deceleration across the re-entry orbit and
the thermal loads on the structural frame. Indeed, these vehicles operate in an
extreme environment characterized by intense aerothermodynamic phenomena that
cause significant stress on the vehicle structural frame. This space vehicle MDO
problem captures the multi-physics nature of the atmospheric re-entry and involves
several disciplinary analyses, namely the contributions of the propulsion system, the
re-entry descend trajectory, the aerothermodynamic effects that occurs during the
descend path, and the thermo-structural interaction between the re-entry flow-field
and the thermal protection system. Figure 7.15 illustrates the concept of operations
of the re-entry mission. This involves several phases, namely a maneuver sequence
to introduce a thrust component that shapes the re-entry trajectory, the heat peak
along the descent caused by the hypersonic aerothermodynamic phenomena, and
the deployment of the parachutes during the landing phase. The entry phase is
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Fig. 7.15 Re-Entry Mission Concept of Operations.

characterized by a maneuver sequence to shape the descend trajectory, introducing
a thrust component opposite to the direction of motion to reduce the approaching
velocity, and a small normal component to calibrate the trajectory. During the
re-entry flight, the vehicle is subject to significant thermal stresses determined by
the largely hypersonic flow-field. Surface heating and temperatures are key design
aspects that influence the design of the spacecraft thermal protection system (TPS),
and influence the shape of the descend trajectory and the entry maneuver. The TPS is
designed to withstand the severe re-entry heat fluxes, keeping acceptable the internal
temperatures of the vehicle. At the end of descend phase, the parachutes are deployed
and the vehicle lands on the planetary surface.

Figure 7.16 illustrates the design structure matrix [255] of the re-entry vehicle
optimization problem. We adopt the multidisciplinary feasible architecture [46]
to address the MDO problem through a single optimization procedure where the
design variables and constraints are under the direct control of the optimizer. The
disciplinary analyses flow follows the diagonal of the DSM, while the feed forward
flows are represented on the upper triangle and the couplings between disciplines
are reported on the lower side. The propulsion system is modeled according to the
chemical rocket theory, and comprises primary and secondary chemical thrusters
fueled by an hypergolic propellant. The trajectory solver models the descend tra-
jectory as a bi-dimensional orbit propagated through the numerical integration of
the non-linear re-entry planetary ordinary differential equations. The aerothermo-
dynamic analysis consists of two disciplinary solvers at different levels of fidelity.
The high-fidelity model simulates the full order aerothermodynamic physics through
the numerical solution of the Reynolds-Averaged Navier-Stokes equations. The
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Fig. 7.16 Design structure matrix of the space vehicle MDO problem.

low-fidelity model uses the Oswatitsch Mach number independence principle jointly
with the Tauber-Sutton and Sutton-Grave formulations to provide an approximated
representation of the aerothermodynamic domain. The high-fidelity model requires
hours of computation on an high performance computing cluster, while the low-
fidelity analysis is three orders of magnitude faster on a standard computing platform.
The thermo-structural analysis models the interaction between the flow-field and
the structure of the Thermal Protection System (TPS) through the thermo-elastic
equations. Section 7.4.1 provides more details about the disciplinary models adopted
in the space vehicle MDO problem.

The design optimization problem targets the best design configuration x =

[FV ,FN ,sT PS] of the re-entry vehicle in terms of thrust capabilities F = [FV ,FN ] and
TPS structural thickness sT PS that jointly minimizes the temperature TT PS reached
by the TPS frame, the overall structural mass mT PS of the TPS, and the mass of
propellant mP burned during the re-entry maneuver. The multidisciplinary design
optimization problem is formulated as follows:
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minimize f (x) = 0.4
mT PS(x)
mT PS0

+0.4
TT PS(x)
TT PS0

+0.2
mP(x)
mP0

with respect to x = [FV ,FN ,sT PS]

subject to 100km≤ h∗(x)≤ 125km

RP(x) = 0

RT (x) = 0

R
(l=1)
A (x) = 0

R
(l=2)
A (x)≤ 10−6

RS(x) = 0

(4.11)

where the objectives are evaluated with reference to the baseline values for
the TPS mass mT PS0 = 700 kg and temperature TT PS0 = 1000 K, and for the mass
of propellant mP0 = 150 kg derived from similar re-entry capsules [256]. The
search is bounded by the move limits of the design space X = XFV ×XFN ×XsT PS ,
where the thrust capabilities tangential XFV = [29.2 kN,146 kN] and normal XFN =

[0.48 kN,2.4 kN] to the trajectory are defined according to the propulsion system
specifications, and the limits on the TPS thickness XsT PS = [0.03 m,0.1 m] are
imposed from expert knowledge. The MDO problem requires a specific range of
altitudes h∗ for the re-entry maneuver to simulate a real-world mission. Additional
constraints include the feasibility of the physics-based models at each iteration of the
optimization procedure, namely the complete resolution of the propulsion system
model RP(x) = 0, the trajectory model RT = 0, the low-fidelity aerothermodynamic
model R

(l=1)
A (x) = 0, the high-fidelity aerothermodynamic model ensured reducing

the computational residuals below R
(l=2)
A (x) ≤ 10−6, and the thermo-structural

model RS(x) = 0.

7.4.1 Disciplinary Models

The MDO problem of the re-entry space vehicle accounts for the interactions and
couplings between the aerothermodynamics, the atmospheric flight trajectory, the
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Fig. 7.17 Geometry of the Orion-like re-entry capsule.

capabilities of the propulsion system and the thermo-structural phenomena. In partic-
ular, we consider the case of an Orion-like capsule re-entering the Earth atmosphere.
Figure 7.17 illustrates the geometry of the capsule ([257]) and Table 7.6 indicates
the values of the geometric parameters which are considered given and not varying
for our problem. The capsule is equipped with two sets of thrusters to guide the entry
maneuver: the first set consists of two primary thrusters and the second set includes
six secondary thrusters. Both the primary and secondary thrusters are chemical
rocket engines that use an hypergolic combination of monomethyl hydrazine (MMH)
as propellant and dinitrogen tetra oxide (NTO) as oxidant. Table 7.7 reports the
number of thrusters, the maximum thrust in vacuum, the effective exhaust velocity
and the burning time for both the primary and secondary engines, summarizing
the details of the overall propulsion system. The propulsion system is modeled
according to the chemical rocket theory, that accounts for an impulsive orbital ma-
neuver considering the short burning period. The model of the trajectory considers a
bi-dimensional orbit of re-entry that is propagated starting from a fixed entry point
in the atmosphere. Table 7.8 summarizes the trajectory parameters of the entry
point, the mass and reference area of the capsule, the model of the Earth atmosphere
([258]), and the model of the Earth gravitational field. Two representations are
included for the aerothermodynamic phenomena: the first models the full order
physics and the second one provides a simplified physics-based representation. The
TPS is modeled approximating the vehicle to a sphere with a radius equal to the
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Geometry Parameters Description Unit

Frontal section diameter R = 5.0 m
Nose radius RN = 2.4R m
Upperside ablator inclination θA = 32.5 deg
TPS aperture θD = 23.04 deg

Table 7.6 Design parameters of the Orion-like geometry.

Thrusters Parameters Description Unit

Number of primary thruster 2 -
Number of secondary thruster 6 -
Maximum thrust primary thruster (Vacuum) Fmax1 = 73 kN
Maximum thrust secondary thruster (Vacuum) Fmax2 = 4.87 kN
Effective exhaust velocity primary thruster c1 = 2305 m/s
Effective exhaust velocity secondary thruster c2 = 2943 m/s
Burning time ∆t = 5 s

Table 7.7 Design parameters of the primary and the secondary thrusters.

radius of the nose of the capsule; the sphere is then discretized into finite elements
for the numerical solution of the thermo-elastic equations. The material chosen for
the TPS structural frame is the composite zirconium diboride ultra-high temperature
monolithic (UHTC ZrB2), whose properties are detailed in Table 7.9. This material
has been demonstrated to be very popular for this kind of application, given the
capability to withstand high temperatures ([259, 260]).

Propulsion System Model

The propulsion system model estimates the total mass of propellant demanded to
complete the re-entry maneuver, and accounts for the specifications of the engines
and the propulsive thrust (Table 7.7). We model the thrust vector F = [FV ,FN ]

considering two major components: FV tangential to the trajectory and FN normal to
the trajectory. Accordingly, the magnitude of the thrust vector F = |F| is defined as
per the chemical rocket propulsion theory ([261]):

F = ṁPc (7.18)
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where ṁP is the propellant mass flow rate and c is the effective exhaust velocity.
Accordingly, we compute the mass of the propellant mP as the propellant mass flow
integrated over the entire burning time ∆ = to f f − ton from the beginning ton to the
end to f f of the maneuver :

mP =
∫ to f f

ton

F
c

dt =
F
c

∆t (7.19)

Trajectory Model

The re-entry trajectory model estimates the parameters characterizing the re-entry
profile such as the descend velocity V , the flight path angle γ , the altitude during
the re-entry h and the longitude angle β . The re-entry orbit is completely computed
given the thrust vector F, the aerodynamic force coefficients provided by either
the low or high-fidelity aerothermodynamic representation, the design parameters
of the trajectory (Table 7.8) including the point of the atmosphere where the entry
maneuver begins, the mass M and reference area of the vehicle Are f , the spherical
gravitational model g(h), and the model of the atmosphere ([258]).

The descend trajectory is approximated as a planar orbit assuming the planet
as non-rotating and a constant flight path azimuth angle. Accordingly, the re-entry
equations are formalized as follows:

dV
dt

=−(D+FV )

M
−gsinγ (7.20a)

V
dγ

dt
=

(L+FN)

M
L−gcosγ +

V 2

(h+RE)
cosγ (7.20b)

dh
dt

=V sinγ (7.20c)

dβ

dt
=

V cosγ

(h+RE)
(7.20d)

where t is the re-entry time, M is the mass of the vehicle, D is the aerodynamic
drag, g is the acceleration of gravity, L is the aerodynamic lift and RE = 6.378 ·106m
is the Earth radius. We use the spherical gravitational model to provide an estimate
of the gravitational acceleration as a function of altitude:
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Trajectory Parameters Description Unit

Initial entry altitiude h0 = 125000 m
Initial entry velocity V0 = 7900 m/s
Initial entry longitude β0 = 0 deg
Initial entry time t0 = 0 s
Capsule mass M = 7500 kg
Capsule reference area Are f = 78.54 m2

Atmosphere model: free stream density ρ∞ = ρ∞(h) kg/m3

Atmosphere model: free stream temperature T∞ = T∞(h) K
Atmosphere model: free stream pressure p∞ = p∞(h) Pa
Gravitational model g = g(h) m/s2

Altitude for parachute deployment h = 5000 m

Table 7.8 Design parameters of the re-entry trajectory.

g(h) = g0

(
RE

RE +h

)2

(7.21)

where g0 = 9.81m/s2 is gravitational acceleration at sea level. The aerodynamic
forces of lift L and drag D are defined as follows :

L =
1
2

ρ∞V 2Are fCL (7.22)

D =
1
2

ρ∞V 2Are fCD (7.23)

where the free stream density ρ∞(h) is computed as a function of the altitude
through the atmosphere model, Are f is the area of the mid-ship section of the
vehicle; CL and CD are the lift and the drag coefficients, respectively, given by the
aerothermodynamic models.

The trajectory parameters V , γ , h and β are computed by solving the system of
non-linear ODEs (7.20) using Runge-Kutta method. The equations are integrated
over the re-entry time from the time when the space vehicle enters the atmosphere t1
until the parachute is deployed t f – when Equation (7.20) is no longer valid since the
additional resistance due to the parachute is not considered. Given the short burning
time of the chemical engines, the entry maneuver is considered impulsive and the
thrust components FV and FN are considered exclusively for the first integration step,
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Fig. 7.18 Profile of the re-entry velocity evaluated with the re-entry trajectory model,
for the case of an unpowered re-entry of the Orion-like capsule.

while are set to zero for the following time-steps. Figure 7.18 illustrates the re-entry
velocity profile for the different altitudes crossed along the descend path, for the case
of the unpowered re-entry of the Orion-like capsule.

High-fidelity Aerothermodynamic model

The high-fidelity aerothermodynamic model computes the stagnation point heat
flux q̇ and the aerodynamic coefficients of lift CL and drag CD, given the geometry
parameters of the vehicle (Table 7.6), the velocity V and the altitude profile h
computed with the trajectory model, the atmosphere model (Table 7.8), and the
temperature of the TPS structure given by the thermo-structural model of the TPS.

We consider the full set of Reynolds Averaged Navier-Stokes equations for
viscous fluid as the governing equations of the fluid domain during the atmospheric
re-entry. The high-fidelity aerothermodynamic model uses the finite volume method
to discretize the equations in space, with a standard edge-based data structure where
the convective and viscous fluxes are evaluated at the midpoint of the edges. The
computational domain is defined as a semicircle of radius equal to 6.3RN , where
the capsule is placed on the axis of symmetry with the nose at 2.5RN from the
center, and is discretized with a mesh of 9.2 ·104 quads elements. The density of the
computational grid is variable in the domain and more refined in the proximity of
the nose to better capture the discontinuities of the flow field and the temperature
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(a) (b)

Fig. 7.19 (a) Discretization of the computational domain with approximately 9.2 ·104

quad elements, and (b) temperature contours around the Orion-like capsule for an
altitude of 60km and for a Mach number of 20.

gradients that are critical for the structure of the TPS. The boundary conditions of
the computational domain include the body of the re-entry capsule and the inlet
flow; the outline of the capsule is defined as a marker wall on which the temperature
of the TPS structure TT PS is imposed, while the inlet marker is defined in terms of
the re-entry velocity V , the free stream density ρ∞(h), the free stream temperature
T∞(h), and the free stream pressure p∞(h). Figure 7.19(a) provides details about the
discretization of the computational domain considered in the model. We use gmsh
[262] to generate the computational grid of the fluid domain and SU2 [263] version
7.0.3 in RANS steady mode to solve the Reynolds-averaged Navier-Stokes equations
and predict the effects of the turbulence; The RANS equations are integrated through
Euler implicit and the convergence criteria are set minor than 10−6. Figure 7.19(b)
illustrates the temperature distribution around the Orion-like capsule, at an altitude
of h = 60 km and for a Mach number of 20.
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We consider the temperature distribution and the flow-field computed with this
model as the high-fidelity representation of the stagnation point heat load q̇ acting
on the vehicle and of the aerodynamic coefficients CL and CD.

Low-fidelity Aerothermodynamic model

The low-fidelity aerothermodynamic model computes the aerodynamic coefficients
of lift CL and drag CD, and the stagnation point heat flux acting on the TPS structure
q̇, given the re-entry flight parameters from the trajectory model, the model of the
atmosphere (Table 7.8) and the geometry of the capsule (Table 7.6). This low-fidelity
representation is characterized by surrogate models based on the Oswatitsch Mach
number Independence principle to approximate the aerodynamic coefficients, and on
Sutton-Grave and Tauber-Sutton formulations to evaluate the convective heat flux
and the radiative heat flux. The Oswatitsch Mach number independence principle
([264]) is based on the inviscid representation of the re-entry flow modeled through
the Euler equations. Accordingly, at large values of Mach number the inviscid flow
field behind the bow shock tends to a limit condition, where the lift coefficient CL = 0
and drag coefficient CD = 6.14 are constant with altitude.

The total heat flux at the stagnation point transfers to the structure of the TPS
through convective and radiative energy exchanges. The convective heat load is
estimated according to the Sutton-Grave formulation ([265]):

q̇conv = ks

√
ρ∞

RN

(
V

1000

)3.15

(7.24)

where ks = 5.1564 ·10−5 is a constant for the Earth atmosphere, RN is the radius
of the nose of the capsule and V is the re-entry flight velocity.

The radiative heat load is computed using the Tauber-Sutton formulation ([266]):

q̇rad =CRa
Nρ

b
∞ f (V ) (7.25)

where C = 4.736 · 104 and b = 1.22 are constants adopted for the Earth atmo-
sphere, a = 1.072 ·106V−1.88ρ−0.325

∞ is given in function of the descend velocity V
and the density of the atmosphere ρ∞(h), and f (V ) is a tabulated function of velocity.
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Fig. 7.20 Heat flux evaluated with the low-fidelity aerothermodynamic model, for
the case of an unpowered re-entry of the Orion-like capsule.

The Sutton-Grave and Tauber-Sutton formulations give the total heat load at the
stagnation point q̇:

q̇ = q̇conv + q̇rad (7.26)

This model constitutes the low-fidelity aerothermodynamic representation within
our framework of disciplinary models.

Figure 7.20 illustrates the values of the stagnation point heat flux computed along
the altitude profile of the re-entry with this low-fidelity aerothermodynamic model,
for the case of an unpowered re-entry of the Orion-like re-entry capsule.

Thermo-structural Model of the Thermal Protection System

The Thermo-structural model estimates the temperature of the TPS frame TT PS and
the mass of the TPS structure mT PS, given the total heat load q̇ provided by either
the low or the high-fidelity aerothermodynamic model, the thickness of the TPS
structure sT PS, the material property of the TPS (Table 7.9) and the geometry of the
capsule (Table 7.6).

We model the structure of the TPS as an arc of circumference discretized into
ne = 1000 linear elements, approximating the re-entry capsule with a sphere of
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radius equal to the radius of the nose RN . Figure 7.21(a) shows an example of
the discretization of the TPS with ne = 4 finite elements for illustration purposes.
Figure 7.21(b) represents a generic e-th finite element of the discretized TPS where
η is the local references axis, n̂e is the versor normal to the element, 1e and 2e

are the nodes of the element, le is the length of the element, and ŵ is the versor
representing the direction of the heat flux vector q̇ = q̇ŵ. Accordingly, the heat
equation is specialized for the generic e-th finite element and linearized considering
uniform the thermal conductivity κT PS and the thickness of the TPS structure sT PS:

ρT PScPsT PS
dT
dt
−κT PSsT PS

∂ 2T
∂η2 +4σεT PST 3

∞T −4σεT PST 4
∞− q̇s = 0 (7.27)

where ρT PS, cP and εT PS are respectively the density, the specific heat at con-
stant pressure and the emissivity coefficient of the TPS material, σ is the Stephan-
Boltzmann constant, q̇s is the heat source term and T∞(h) is the temperature of the
atmosphere. We use the Galerkin method over the discretized structural domain of
the TPS to numerical solve Equation (7.27). Thus, the associated weak formulation
is defined as follows:

f (T (η , t)) = 0 (7.28)

The temperature along each element is defined using the technique of the separa-
tion of variables:

T (η , t) = N(η)ΩΩΩe (7.29)

where N(η) are the linear shape functions and ΩΩΩe = [Ω1e ,Ω2e ] are the nodal
temperatures of the e-th element. The problem is formulated with the Galerkin
method as follows:

∫ le

0
NT (η) f (T (η , t))dη = 0 (7.30)
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(a) (b)

Fig. 7.21 (a) Example of the discretization of the TPS with 4 elements, and (b) details
of the e-th finite element

TPS Parameter Description Unit

TPS mass density ρT PS = 6000 kg/m3

TPS specific heat (constant pressure) cP = 628 J/kgK
TPS emissivity εT PS = 0.9 −
TPS thermal conductivity (T = 300K) κT PS = 58 W/mK
TPS thermal conductivity (T = 1300K) κT PS = 64 W/mK
TPS thermal conductivity (T = 2300K) κT PS = 134 W/mK
TPS maximum temperature Tmax = 2273.15 K

Table 7.9 Design parameters of the thermal protection system.

where q̇s = q̇ · n̂e is the initial condition. Problem (7.30) is a system of ODEs
where the nodal temperatures ΩΩΩ = [ΩΩΩ1,ΩΩΩ2, ...,ΩΩΩne ] are the unknowns computed via
Crank-Nicolson method.

Among them, the nodal temperature at the stagnation point Ωstag = max(ΩΩΩ) is
the most stressfull for the frame and we consider it as the temperature of the TPS
structure TT PS. Figure 7.22 illustrates the profile of the TPS temperature TT PS as a
function of the re-entry altitudes for the case of unpowered re-entry of the Orion-like
capsule.



140 Experiments and Discussion: Design Applications

02468

Altitude [m] 10
4

200

400

600

800

1000

1200

1400

1600

1800

T
P

S
 T

em
p

er
at

u
re

 [
K

]

Fig. 7.22 Temperature profile of the TPS structure evaluated with the thermo-
structural model, for the case of an unpowered re-entry of the Orion-like capsule

The model of the thermal protection system computes the mass of the structural
frame of the TPS mT PS:

mT PS = ρT PSST PSsT PS (7.31)

Where ST PS is the frontal surface of the spherical shell that approximates the
structure of the TPS, given by the area of the circle with radius equal to the radius of
the nose of the capsule RN .

7.4.2 NM3-BO Results and Discussion

This section investigates the performance of the proposed Non-Myopic Multipoint
Multifidelity algorithm NM3-BO for the MDO problem of the re-entry space vehicle.
We compare our methodology against standard Multifidelity Bayesian Optimiza-
tion frameworks: all those MFBO algorithms rely on the multifidelity Gaussian
process surrogate model (Section 3.3.2) and implement different formulations of the
acquisition function, including the Multifidelity Expected Improvement [38] (MFEI),
Multifidelity Max-value Entropy Search [42] (MFMES), and Multifidelity Probabil-
ity of Improvement [41] (MFPI). In addition, we report the outcomes achieved with
the Efficient Global Optimization [109] (EGO) algorithm using only high-fidelity
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Fig. 7.23 Statistics over 25 experiments of the minimum of the objective function f ∗

obtained with the competing algorithms.

queries to provide a comparison with a popular single fidelity Bayesian optimization
methodology.

The performance of the competing algorithms are evaluated in terms of the
minimum of the objective function f ∗(x∗) = minx∈X f (x) as a function of the com-
putational budget B = ∑λ

(l)
i at each iteration i of the optimization procedure. The

computational costs for the aerothermodynamic analyses are imposed at λ (2) = 1 for
the high-fidelity model and λ (1) = 0.001 for the low-fidelity model; these specific
values reflect the time required to complete the aerothermodynamic simulation adopt-
ing either the CFD solver or the low-fidelity formulations. We consider a statistics
over 25 experiments for each algorithm, and initialize the searches with random
initial samples collected through a Latin hypercube sampling scheme. This experi-
mental methodology permits to quantify the influence of different initialization on
the algorithms performance. In particular, the multifidelity algorithms are initialized
with 1000 design configurations evaluated with the low-fidelity model, and 34 design
points computed with the high-fidelity analysis. The single-fidelity algorithm starts
the search with an initial set of 35 designs evaluated with the high-fidelity model.

Figure 7.23 illustrates the median values (solid line) of the minimum of the
objective function f ∗ along with the observations falling between the 25-th and 75-th
percentiles (shaded area). At the beginning of the optimization, all the competing
algorithms relies on a set of initial samples that corresponds to design configurations
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B f ∗EGO f ∗MFEI f ∗MFMES f ∗MFPI f ∗NM3−BO

50 1.172 (-17) 1.091 (-9.1) 0.930 (6.9 ) 0.961 (3.8 ) 0.912 (8.7 )
75 0.967 (3.3 ) 0.877 (12.2 ) 0.930 (6.9 ) 0.943 (5.6 ) 0.826 (17.2 )
100 0.967 (3.3 ) 0.877 (12.2 ) 0.910 (8.9 ) 0.898 (10.1 ) 0.826 (17.2 )
150 0.910 (8.9 ) 0.877 (12.2 ) 0.902 (9.7 ) 0.898 (10.1 ) 0.826 (17.2 )
200 0.908 (9.1 ) 0.877 (12.2 ) 0.902 (9.7 ) 0.898 (10.1 ) 0.826 (17.2 )
250 0.906 (9.3 ) 0.877 (12.2 ) 0.902 (9.7 ) 0.898 (10.1 ) 0.826 (17.2 )

Table 7.10 Median values of the minimum of the objective function f ∗ and corre-
sponding percentage design improvement (·)% obtained with the competing algo-
rithms.

worse than the baseline solution ( f > 1), and all the methodologies are capable to
identify design configurations superior to the baseline design solution within the
maximum computational budget available B = 250. It is possible to observe that
the multifidelity algorithms outperform the single-fidelity EGO both in terms of
computational efficiency and design improvement. This indicates that the combi-
nation of disciplinary responses from multiple models allows to efficiently explore
the design space and contain the computational cost. However, we notice that the
NM3-BO algorithms achieves remarkable accelerations of the MDO procedure, and
obtains superior design solutions – larger reductions of the objective function – with
a fraction of the computational cost required by the competing algorithms to identify
suboptimal designs. This outcome suggests that the combination of the non-myopic
scheme and the multiple decision making process capitalizes from the design evalua-
tions adopting different sources of information, and effectively accelerates the search
toward optimal design solutions.

To further highlights the advantages of the proposed methodology, Table 7.10
summarizes the median values of f ∗ for discrete values of the computational budget
B. We can observe that the NM3-BO achieves the higher design improvement
(8.77%) after the consumption of a budget B = 50, whereas the other strategies
score worst in terms of design upgrades. A remarkable outcome is the overall
acceleration of the MDO procedure provided by NM3-BO: our framework converges
for a computational budget below B = 75 and leads to a design upgrade of the 17.4%.
This result is outstanding if compared with the design improvement of about the
10% obtained by the EGO, MFMES, and MFPI algorithms, and the design upgrade
around the 12% achieved by the MFEI at convergence.
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Fig. 7.24 Temperature contours at the heat peak condition evaluated with the high-
fidelity aerothermodynamic model considering the best design solution achieved
with our NM3-BO algorithm.

Method f ∗(x∗) x∗ = [F∗V ,F
∗
N ,s
∗
T PS] m∗T PS T ∗T PS m∗P

EGO 10.0 % [33.63 kN,0.969 kN,0.0396 m] 476 kg 1320 K 74.6 kg
MFEI 12.8 % [35.67 kN,1.561 kN,0.0341 m] 410 kg 1326 K 80.0 kg
MFMES 10.3 % [35.97 kN,2.046 kN,0.0373 m] 448 kg 1329 K 81.5 kg
MFPI 10.7 % [35.40 kN,0.691 kN,0.0377 m] 453 kg 1322 K 77.9 kg
NM3-BO 17.9 % [29.53 kN,0.807 kN,0.0304 m] 365 kg 1310 K 65.4 kg

Table 7.11 Comparison between the best design solutions identified with the compet-
ing algorithms.

Table 7.11 compares the best design solutions obtained with the competing
algorithms over the collected experiments. NM3-BO identifies an optimal design
configuration of the re-entry vehicle that delivers an upgrade of the 17.98%, and
privileges lower thrust capabilities and contained thickness of the thermal protection
system. This determines a lower storage of propellant m∗P = 65.45 kg on-board and
permits to navigate a safe re-entry trajectory that contains the heat loads affecting
the frame. As a result, the temperature of the TPS structure is kept below T ∗T PS =

1310 K with a total TPS structural mass of m∗T PS = 365.17 kg. Figure 7.24 provides
details about the temperature distribution achieved adopting the best re-entry capsule
computed with the NM3-BO at the heat peak condition. It should be noticed that
all the design solutions identified by the algorithms prioritize the reduction of both
the TPS and propellant mass, and penalize the temperature reached by the heat
shield. On one hand, this permits to contain the overall mass of the vehicle with
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consequent savings in terms of launch costs; on the other hand, the temperature
peaks experienced by the structural frame are far below the thermal properties of
the TPS material: this guarantees the survival of the vehicle during the atmospheric
descent.

7.4.3 Physics-Aware Utility Function for the Space Vehicle MDO

The physics-aware utility function α4 (Equation (5.1)) is specifically conceived to
incorporate a learning bias that guides the selection of the aerothermodynamic model
to query – at a certain level of fidelity – according to the severity of the aerother-
modynamic phenomena. This is achieved introducing a learning bias dependent on
the re-entry flight altitude h as the trajectory parameter sensitive to the heat loads
affecting the TPS structure. Accordingly, α4(h, l) is formalized as follows:

α4(h, l) =


1 if l < L
200 h

h0
if l = L ∧ h ∈ H

1 if l = L ∧ h /∈ H

(7.32)

where H = [35km,65km] and h0 = 50km. The range of altitudes H represents
specific conditions of the re-entry trajectory where the thermal loads acting on the
heat shield achieve their maximum values, as per real-world data measured during
the atmospheric re-entry of capsules and probes [267–269]. The goal is to encourage
the use of the high-fidelity aerothermodynamic model l = L in this range of altitudes:
this permits to accurately estimate the thermal effects and the heat loads since the
temperatures are more likely to be critical for the survivability of the TPS material.
This motivates the choice to set α4 to achieve values much more larger than 1 for
l = L, when the capsule navigates the risky range of altitudes, encouraging the
selection of the high-fidelity model to compute the heat fluxes affecting the capsule.

7.4.4 PA-MFBO Results and Discussion

This section discusses the results obtained with our physics-aware multifidelity
algorithm (PA-MFBO) for the space vehicle MDO problem. The PA-MFBO method-
ology is compared to the single fidelity-Bayesian framework based on the efficient
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Fig. 7.25 PA-MFBO and EGO statistics.

global optimization formulation ([220]) eliciting evaluations of the low fidelity
aerothermodynamic model only.

Figure 7.25 illustrates the convergence of the algorithms in terms of minimum
of the objective function f ∗ = min( f (x)) obtained for 100 iterations of both the
EGO and the multifidelity PA-MFBO optimization strategies. The EGO experiments
consist of 50 tests initialized with different n = 200 initial design configurations; the
PA-MFBO results are obtained for 20 searches each starting with different n = 200
combinations of design variables, where n = 198 designs are evaluated with the low-
fidelity aerothermodynamic model and n = 2 designs are observed with high-fidelity
evaluations. The results of the statistics are reported in terms of the median values
(solid line) of f ∗ together with the observations falling in the interval between the
25-th and 75-th percentiles (shaded area), and Table 7.12 reports the median that
characterize the distribution of the multifidelity and single-fidelity tests at i=1, 5, 25,
50 and 100.

At the beginning of the MDO procedure, all the initial design configurations
score worse than the baseline re-entry vehicle ( f ∗(x)> 1), and both the EGO and
PA-MFBO experiments progressively learn from the physics-based models to search
for improved design solutions. Our PA-MFBO algorithm identifies superior design
configurations and achieves larger improvement with contained resource expenditure.
Specifically, it is possible to notice that the PA-MFBO permits to identify better
design solutions with respect to the baseline design after only i = 5 iterations for
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i PA-MFBO Median EGO Median

i = 1 1.2730 1.396
i = 5 0.9894 1.178
i = 25 0.8732 1.037
i = 50 0.8687 0.9859
i = 100 0.8499 0.9705

Table 7.12 Comparison between PA-MFBO and EGO median values of the minimum
of the objective function.

Method x = {FV ,FN ,sT PS} mP TT PS mT PS

EGO x = {70.52kN,2.098kN,0.0320m} 156.6kg 1850K 384.3kg
PA-MFBO x = {41.79kN,1.621kN,0.03057m} 93.41kg 1476K 367.4kg

Table 7.13 Comparison between the best design solutions evaluated with the PA-
MFBO and the EGO algorithms.

a fraction of experiments, and after i = 25 iterations for all the experiments. In
contrast, only a fraction of the EGO experiments achieves improved designs even
at i = 100. On average, after 100 iterations, our PA-MFBO strategy achieves a
design improvement of about 15% with respect to the baseline, whereas the EGO
optimization obtains design upgrades of about 3%. The best design configuration
identified with the EGO algorithm scores f ∗ = 0.9169, which corresponds to a
design improvement of 8%. The best result obtained with the PA-MFBO algorithm
is f ∗ = 0.7905, corresponding to a design improvement of 21% with respect to the
baseline. Table 7.13 compares the two best design solutions identified with the EGO
and PA-MFBO optimization strategies.

Figure 7.26 illustrates the space of the objectives and its projections to illustrate
the search sequence corresponding to the PA-MFBO optimization experiment that
identifies the best design configuration, which corresponds to a space vehicle char-
acterized by a TPS thickness of 0.03057m whose propulsion system can generate
41.79kN of tangential thrust and 1.621kN of normal thrust. This design solution
is characterized by an overall TPS structural mass of 367.4kg that permits to keep
the temperature of the TPS structure below 1476K and requires 93.41kg of pro-
pellant mass to complete the re-entry maneuver. It is possible to observe that the
initial exploration phase corresponds to high values of the TPS temperature: this
corresponds to the evaluations of the design configurations with the low-fidelity
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Fig. 7.26 Space of the objectives related to the best PA-MFBO test.

aerothermodynamic model that overestimates the thermodynamic phenomena. The
search progressively capitalizes the knowledge gained through a limited number of
high-fidelity aerothermodynamics data towards improved (lower) values of all the
components of the objective functions, with particular benefits in terms of reduction
of the temperature of the TPS structure. It is interesting to note that the search
structures can be observed in the TT PS−mP plane: at first, the higher mP values are
explored in favor of lower TT PS; then, three main paths are explored which jointly
reduce mP and TT PS.

Figure 7.27 illustrates the design space and its projections to highlight the sam-
pling sequence of the corresponding PA-MFBO experiment in Figure 7.26. The
initial set of design configurations consists of 200 samples obtained through a Latin
Hypercube sampling of the design space. Each design point requires the evaluation
of all the time-steps of the re-entry trajectory. The subsequent search targets the iden-
tification of an optimal design configuration through a continuous trade-off between
the exploration of the design space and exploitation of information to identify better
(eventually optimal) design solutions
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Fig. 7.27 Space of the design variables related to the best PA-MFBO test.

Figure 7.28 shows the evolution of the heat flux at the stagnation point of the
TPS structure over the re-entry altitude for the best design solution identified by the
PA-MFBO algorithm. The diagram focuses on the results obtained for an altitude
below 85km where the hypothesis of continuous flow holds and RANS provide an
accurate estimate of the aerothermodynamic phenomena. The maximum heat load of
q̇ = 55610W/m2 is achieved at h = 57.87km and is computed with the high-fidelity
aerothermodynamic model. The PA-MFBO method incentives the evaluation of the
aerothermodynamic phenomena through the high-fidelity model for three points of
the trajectory which correspond to altitudes where the re-entry conditions are critical
for the survivability of the capsule. This illustrates the role of the physics-aware
utility function α4 that characterize the particular formulation of our multifidelity
acquisition function: it allows to enrich the low-fidelity aerothermodynamics infor-
mation with expensive simulations capturing the need for higher fidelity information
when the heat load becomes critical for the survivabilty of the vehicle.

The results discussed in this section are obtained running groups of 4 exper-
iments in parallel. We run each test on a single core of a desktop PC with Intel
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Fig. 7.28 Stagnation point heat flux with altitude outcoming from the best PA-MFBO
analysis.

Core i7-8700 (3.2 GHz) and 32 GB of RAM. A single iteration of the PA-MFBO
optimization takes approximately 3.6× 102 min, while each iteration of the EGO
algorithm based on the low-fidelity aerothermodynamics takes about 2min. To assess
the computational time possibly associated with the single fidelity Bayesian opti-
mization based on high-fidelity evaluations only, consider that a single evaluation
of the aerothermodynamic model in Section 7.4.1 takes about 150min on the same
computing platform. This would amount to about 150×22 min for a single HF only
iteration with a re-entry trajectory discretized into 22 stages. This considerations
remark the need for computational strategies to accelerate the MDO procedure while
efficiently including high-fidelity simulations. The proposed PA-MFBO leverages
a physics-aware formulation of the multifidelity acquisition function that captures
the expert knowledge about the range of altitudes where the heat loads are expected
to be critical. Accordingly, the algorithm prioritizes the interrogation of the costly
aerothermodynamic model when higher fidelity estimations are essential contributing
to both accelerate the identification of superior design and reduce the demand for
computational resources.



Chapter 8

Experiments and Discussion:
Diagnostics Applications

In this chapter, we apply the proposed methodologies to aerospace engineering
diagnostics optimization problems and demonstrate their performance. Specifically;

• Section 8.1 investigates the capabilities of the PA-MFBO methodology for
a structural health monitoring problem of a composite plate for aerospace
structures.

• Section 8.2 demonstrates and validates the capabilities of the FREEDOM and
MF-FREEDOM computational frameworks for the diagnostics of aerospace
electromechanical actuators for flight controls systems.

8.1 Structural Health Monitoring of a Composite Plate

This structural health monitoring problem requires the assessment of the health status
of a composite skin plate of an aircraft wing. Particular attention is dedicated to the
incipient fracture of the carbon fiber: this represents one of the most critical failure
for laminates since involves the degradation of the mechanical properties of the
material and cannot be easily detected by standard non-destructive health monitoring
techniques [270]. For this application, the expert knowledge about the physics relates
to specific structures of the domain characterized by damage conditions that might
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be misinterpreted by simplified modeling approaches. We adopt our physics-aware
multifidelity Bayesian optimization framework (Chapter 5) to address this structural
health monitoring problem, and include the expert knowledge about the problem in
the search procedure through a physics-aware utility function (Section 5.1) that biases
the query of numerical models to accurately distinguish the actual fault condition
affecting the plate.

The structural health monitoring problem demands for the identification of the
damage parameters affecting a composite plate subject to a cut in the fibers. The
composite plate is constituted of four layers of plain weave fabric of carbon prepreg
(IM7/8552 AS4) laminated with a stacking sequence [45◦/0◦/0◦/45◦], and with
dimension of 102 mm transversal length, 456 mm longitudinal length, and 0.76 mm
thickness of each ply. The material properties for the IM7/8552 AS4 considered
in this application are reported in the data sheet published from the national center
for advanced materials [271]. To reproduce an operational condition, we consider a
load applied along the major dimension of the plate which represents a simplified
load condition of a wing panel during the flight. The damage consists in a cut of the
fibers along the transversal direction in the third layer, and is selected to simulate a
critical condition where the fault involves the layer with 0◦ orientation that mainly
contributes to support the load.

The health status of the system is represented through different damage parame-
ters x = [x1,x2,x3,x4], including the transversal x1 and longitudinal x2 position of the
cut, the extension of the cut x3 along the transversal direction, and the load x4 acting
on the structure. Accordingly, the health monitoring task aims at identify the health
status of the composite plate minimizing the discrepancy f between a real-world
signal measured from the real system and the same signal computed evaluating a
structural numerical model. For this procedure, we adopt the strain field y as the
output signal to determine the health status of the structure: this signal is sensitive
to failures in the fibers and can be easily measured in real-world applications and
in laboratory. Formally, this health monitoring task is formulated as an inverse
optimization problem:

x∗ = min
x∈X

f (x) (8.1)
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where the discrepancy function f (x) = RMSE
(

yre f (x),y
(l)
mon(x)

)
is the root

mean square error between the reference strain field yre f (x) measured from the real

system and the strain field y(l)mon(x) computed with the l-th level of fidelity numerical
model. The domain of the fault parameters X = Ix1 × Ix2 × Ix3 × Ix4 bounds the
transversal Ix1 = [0,102] mm and longitudinal Ix2 = [0,456] mm position of the cut
according to the maximum dimensions of the plate, while the intervals for the length
of the cut Ix3 = [0,30] mm and the load Ix4 = [0,20] N are imposed from the expert
knowledge about the specific structural health monitoring problem.

8.1.1 Structural Models

The strain field y of the composite plate is modeled through the Reissner-Mindlin
plate equations [272] and numerically solved adopting the Finite Element Method
(FEM). The structural modeling approach depicts the composite material of the
undamaged structure as an orthotropic material assigning the properties of the carbon
prepreg IM7/8552 AS4, and the cut in the fiber is modeled as an homogeneous
material with the mechanical properties of the matrix. The boundary conditions
impose a clamp in the lower section and a displacement in the upper portion of
the plate with a region extended for the 10% of the total longitudinal length. This
represents a simplification of the aerodynamic load acting on a composite panel
adopted for the skin of an aircraft wing.

We use the software MSC Patran and MSC Nastran to develop two FEM models
and compute the strain field of the damaged composite plate at different levels of
fidelity. The high-fidelity model consists of a three-dimensional representation of the
structure discretized through an adaptive grid of HEXA8 3D elements characterized
by a dimension of 1 mm in both the longitudinal and transversal direction near
the cut region thought the border, and an increasingly coarse discretization away
from the cut. This permits to capture the variation of the strain field that occurs
in a small region near the cut with an high level of accuracy, while containing the
overall computational cost reducing the number of elements far from the damaged
location. The thickness of the plate is modeled inserting three HEXA8 elements
for each of the four layers along the thickness direction to further enhance the
accurate representation of the strain field. The cut is represented as a rectangular
parallelepiped in the third layer characterized by a transversal extension discretized
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with HEXA8 elements, longitudinal extension equal to one element and thickness of
three elements.

The low-fidelity model approximates the composite plate through a two-dimensional
representation discretized using an adaptive mesh of QUAD4 elements with transver-
sal dimension of 2 mm and longitudinal dimension of 4 mm around the cut, and
progressively increases the coarseness towards the boundaries of the plate. The cut
is modeled through the same methodology of the accurate numerical model.

The high-fidelity model provides a reliable representation of the strain field as a
result of the refined computational grid near the damage. This guarantees an high
sensitivity to small incipient faults for which the variation of the strain field occurs
in a contained region around the cut. In addition, this model allows to distinguish
variations in the strain field caused by the application of intense loads in presence of
a small cut in fiber – which leads to a significant variation of the strain field even in
regions far from the damage – from an extended cut of the fiber – which produces
large strains in an extended region due to the size of the damage. We consider the
high-fidelity structural model as an emulator of the real-world composite plate that
is adopted to compute the reference strain field yre f (x), and is used as the highest

level of fidelity available to evaluate the monitoring signal y(L=2)
mon (x).

The low-fidelity representation reduces the computational burden if compared
with the high-fidelity model, and achieves a satisfactory accuracy of the strain field
prediction for damages characterized by an extended cut in the fiber. However, the
coarse discretization entails an inaccurate evaluation of the strain field for small
incipient damages of the composite plate, and fails in differentiating the increase of
the strain associated with small cuts in presence of significant loads from extended
damages in the fiber. This results in an approximated representation of the monitoring
strain signal y(l=1)

mon (x).

Figure 8.1 and Figure 8.2 illustrate the computational mesh and strain field over
the four layers of the plate computed with the high-fidelity and low-fidelity structural
model, respectively. These results are achieved for a cut in the fiber of the third layer
located horizontally at 40 mm and vertically at 250 mm considering a cut length of
10 mm and load equal to 5 N.
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(a) (b)

Fig. 8.1 (a) high-fidelity discretization of the computational domain, and (b) high-
fidelity strain distribution for the four layers of the damaged composite plate.
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Fig. 8.2 (a) low-fidelity discretization of the computational domain, and (b) low-
fidelity strain distribution for the four layers of the damaged composite plate.

8.1.2 Physics-Aware Utility Function for Structural Health Mon-
itoring

The physics-aware utility function is conceived to incorporate expert knowledge
about the appropriate structural model to be evaluated in presence of a small incipient
cut concurrently with a significant load condition, or an extended damage in the
fiber of the composite plate. This is realized through a bias in the search procedure
ψψψ = [x3,x4] that encodes the specific structure of the domain, and is induced by the
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length of the fiber cut x3 and the load applied on the plate x4. Thus, we formalize
α4(x3,x4, l) for the health monitoring problem as follows:

α4(x3,x4, l) =

{
1 if l = 1, ...,L−1
0.5 x3max

x3
+0.5 1

x4max−x4
if l = L

(8.2)

where x3max is the maximum length of the cut in the fiber and x4max is the
maximum load applied on the plate. This physics-aware utility function realizes a sort
of expert reasoning and privileges the evaluation of the high-fidelity structural model
for small incipient damages and high load values. Indeed, α4(x3,x4, l) increases the
value of the multifidelity acquisition function (Equation (5.1)) when the health status
of the plate affected by an incipient cut and high load condition is evaluated with
the high-fidelity numerical model. This ensures an accurate estimate of the strain
field and permits to distinguish a narrow cut that generates large variations of the
strain field amplified by high loading conditions form the magnification of strains
generated by an extended cut in the fiber.

8.1.3 PA-MFBO Results and Discussion

This section reports and discusses the results achieved with the PA-MFBO framework
for the structural health monitoring example to evaluate the capabilities of the
algorithm against a damage identification problem. The outcomes of the PA-MFBO
are compared against the efficient global optimization (EGO) algorithm [109] and
the multifidelity Bayesian optimization implementing the multifidelity expected
improvement (MFEI) [38]. To assess the performance of the optimization algorithms
on this test case, we compute the following assessment metrics:

e(xi) =
|x∗i − xi|

x∗i
·100 (8.3)

f ∗ = min( f (x)) (8.4)

where x∗i is the actual level of damage that affects the composite plate, xi is the
level of damage inferred by the algorithm considering the i-th fault parameter, and



156 Experiments and Discussion: Diagnostics Applications

f (x) is the value of the discrepancy between the reference strain signal and the strain
field computed with the high-fidelity model. The percentage relative error e(xi)

quantifies the accuracy related to the identification of the faults parameters, and f ∗

represents the minimum value of the discrepancy computed by the algorithms and
provides a measure of the improvement in the solution of the optimization procedure.

We consider a statistics over 25 different combinations of fault parameters
determined through the scaled Latin hypercube sampling process proposed by Berri
et al. [225]. This design of experiments permits to increase the distribution of the
fiber cut length located in proximity of the undamaged condition, and improves the
amount of incipient damages evaluated during the experiments.

Figure 8.3 reports the outcomes in terms of median and interval between the 25-th
and 75-th percentiles for both the assessment metrics, and Table 8.1 summarizes the
convergence results. Overall, the multifidelity algorithms – PA-MFBO and MFEI –
achieve lower values of the identification error rather than the single fidelity strategy
implementing the high-fidelity structural model – EGO. However, it can be noticed
that the proposed PA-MFBO is the only optimization method capable to infer the
exact health status of the composite plate (e(xi) = 0%) with a computational budget
of just B = 22.8, which corresponds to less than half of the budget consumed by
EGO and MFBO (B = 50) to converge to suboptimal values of the identification error
e(xi)> 0%. These results suggest that the introduction of prior expert knowledge
about the health monitoring problem enhances the accuracy of the damage identi-
fication procedure. A remarkable outcome is that the PA-MFBO algorithm is the
only optimization framework capable to accurately identify the health status of the
composite plate within the allocated budget. This outcome suggests that the inclusion
of the expert knowledge about the structures of the domain and the behaviour of the
numerical models over those structures allow to obtain a fast and robust inference
performance.



8.1 Structural Health Monitoring of a Composite Plate 157

(a)

(b) (c)

(d) (e)

Fig. 8.3 Statistics over 25 runs of the minimum discrepancy f ∗ and percentage
relative error of the inference of the damage parameters e(xi) obtained with the
competing algorithms.

Method e(x1) e(x2) e(x3) e(x4) f ∗

PA-MFBO 0.00% 0.00% 0.00% 0.00% 0.00
MFBO 8.46% 11.5% 4.26% 0.19% 0.0261
EGO 34.1% 55.5% 10.7% 2.47% 0.0474

Table 8.1 Convergence results of the percentage relative error of the inference of
the damage parameters e(xi), and minimum discrepancy value f ∗ obtained with the
competing algorithms.
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Fig. 8.4 An aerospace electromechanical actuator

8.2 Aerospace Electromechanical Actuator Diagnos-
tics

In this section, we demonstrate and validate our computational frameworks FREE-
DOM and MF-FREEDOM for the FDI problem of an ElectroMechanical Actuator
(EMA) adopted for the flight control system of manned aircraft. EMAs represent a
complex multiphysics system that constitute a potential enabling technology for sus-
tainable aviation according to the more electric and all electric aircraft philosophies:
these systems permits the elimination of a centralized hydraulic power generation
system with benefits in terms of lower emissions and weight reduction [273–278].
The progressive switch to EMA based flight control systems is currently underway in
upcoming platforms, and will be facilitated by the adoption of reliable fault detection
strategies. EMAs constitute a significant challenge for the FDI procedure due to the
presence of different subsystems characterized by heterogeneous and coupled physi-
cal domains. The common subsystems of an aerospace EMA (Figure 8.4) includes a
brushless motor with its power electronics, and a mechanical transmission with a
reduction gearbox and a screw device to convert rotary motion to linear translation
of the output. A network of sensors measures positions, speeds, temperatures and
electrical parameters to inform the control electronics and close the feedback loops.

FDI for Aerospace EMAs is a particularly challenging task as the monitored sys-
tem combines multi-physical behaviors involving the interaction between electrical,
mechanical and thermal subsystems, which can exhibit highly nonlinear behaviors
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fault parameter fault mode xi = 0 (no damage) xi = 1 (full damage)

x1 friction nominal 3 times nominal
x2 backlash nominal 100 times nominal
x3 phase A short circuit absent complete
x4 phase B short circuit absent complete
x5 phase C short circuit absent complete
x6 rotor eccentricity absent air gap width
x7 eccentricity phase −180◦ 180◦

Table 8.2 Definition of the health status of the EMA system in terms of fault parame-
ters xi

under different conditions. As a consequence, EMAs may show multiple fault modes
that can interact with each other through causal relationships (i.e. an initial fault can
propagate to other components) yielding to nonlinear combinations of effects on
the actuator’s performances. Additional challenges to FDI are posed by the harsh
environment in which aerospace actuators are required to operate: EMAs are often
exposed to extreme temperature changes, high vibration and acceleration levels, and
electromagnetic disturbances, all of which can hamper the acquisition of accurate
and reliable sensor data.

For this study, the health condition of the system is encoded in x ∈ R7 and in-
cludes four different failure modes, namely friction (x1) and backlash (x2) increases,
partial short circuit of the three stator windings (x3,4,5 respectively) and rotor eccen-
tricity (x6,7 for the eccentricity amplitude and phase). Table 8.2 summarizes the fault
modes affecting the considered EMA system; these failure conditions are selected
among the most common EMA faults during the in-flight operations [279, 280]. For
each element of xxx, a null value represents a nominal condition without faults, while
a unit value is a full failure state. We consider as incipient damages values of fault
parameters xi < 0.05 which represent a condition where the system is still capable to
meet the operational requirements with a small degradation of the performance.

The variable monitored for the FDI task is the equivalent DC stator current
I = 1

2(|iA|+|iB|+|iC|)sign(Tm), where Tm is the motor torque and iA,B,C are the stator
phase currents. This variable is sensitive to faults and is already measured to close
the torque feedback loop. Thus, the FDI problem of the considered aerospace EMA
is formulated as follows:
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Fig. 8.5 Block diagram of the HF EMA model

x∗ = argmin
x∈X

|| ˆIre f (x∗,m̂)− ˆImon(x,m̂)|| (8.5)

where x = [x1, ...,x7] represents the health status of the considered system, and
X = [0,1]7 is the space of the fault parameters.

We use two physics-based numerical models of the EMA at different levels
of fidelity to demonstrate the capabilities of our FDI algorithms. In addition, we
employ the data acquired from a real-world EMA test-bench to validate the efficiency
of the proposed methodologies. The following sections briefly describe the two
numerical models and the physical test-bench of the EMA. Further details about
those numerical models and the physical test-bench are discussed in [281, 282].

8.2.1 High Fidelity (HF) model

The High Fidelity (HF) model of the actuator is a detailed, physics-based emulator
of the EMA’s dynamical behavior. The model has a high accuracy in simulating
the response of a physical system, as validated experimentally in [283]. Figure
8.5 shows the block diagram of the high-fidelity models. At the core of the HF
model is a three-phase simulation of the stator currents, including the hysteresis
closed-loop current control and the resistive-inductive (RL) model of the stator coils.
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The electromagnetic coupling between the wound stator and the permanent magnet
rotor is mapped as a function of the rotor angular position and magnetic flux that
concatenates with the stator coils. The magnetic flux time derivative is leveraged to
evaluate both the back-EMF and the torque generated by the motor. The magnetic
model is sensitive to asymmetries in the air gap distribution and to unbalances in
the windings, therefore faults like rotor eccentricity and partial short circuits of the
stator can be simulated directly.

The mechanical transmission is modelled as a second order dyamical system,
that includes the simulation of several nonlinear effects, namely: backlash, dry
friction, mechanical endstops, and the finite stiffness of load-carrying components.
The mechanical load on the actuator is simulated through the linearized longitudinal
model of the F-16 jet aircraft proposed by Stevens [284]. Stator currents iA, iB and
iC are measured to close the current/torque control loop; the velocity and position
loops rely on three Hall effect sensors on the motor shaft and a linear displacement
sensor (LVDT) on the actuator output, respectively. The current loop is managed by
three individual hysteresis controllers, one for each phase; the position and velocity
loops feature Proportional-Integral-Derivative (PID) regulators with full anti-windup,
derivative filtering and dead-band functions to inhibit limit cycles.

We utilize this HF model as an emulator of a real-world actuator to evaluate the
proposed FDI strategy and gather ground truth data for our two-step compression
methodology. However, the high computational cost required to estimate the dynamic
of the EMA system is nearly two orders of magnitude higher than the simulated time
interval, making the FDI task with the high-fidelity model alone impractical with
limited computational resources. As a result, we aim to develop a low-fidelity model
of the EMA system that introduces approximations to alleviate the computational
burden while maintaining an acceptable level of accuracy in simulating the actuator’s
dynamics.

8.2.2 Low Fidelity (LF) model

The Low Fidelity model of the actuator introduces simplifications to the physical
representation of the EMA in order to reduce the computational cost in evaluation
while retaining an acceptable accuracy. The block diagram of the LF model is
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Fig. 8.6 Block diagram of the LF EMA model

shown in Figure 8.6. The main simplification with respect to the HF model is the
replacement of the three-phase RL stator simulation with a single-phase equation:

V = RI +κvω (8.6)

where κv is the motor’s back-EMF coefficient and ω is the rotor’s angular speed.
This approach enables to speed up computations significantly, as the stator circuit
is pre-solved and does not require to run an iterative solver at each timestep. This
approach requires to introduce the sensitivity to fault modes empirically through
modulating functions for the motor parameters, as proposed by Berri et al. [285].
In addition, the control logic only includes a linear PID for the speed and position
loops, and a simplified hysteresis controller – consisting in a single sign function
– manages the current loop. The aerodynamic load is estimated from the aircraft
attitude with a proportional gain, neglecting the longitudinal dynamics of the entire
vehicle. In this work, the LF model is used alongside with the HF one as a source of
information to compute the monitoring current signal of the EMA system.

8.2.3 Physical test bench

The proposed FDI strategy is validated experimentally with data from a real-world
EMA test-bench capable to simulate the presence of mechanical faults in the trans-
mission. The setup, shown in Figure 8.7, includes a permanent magnet brushless
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(a) (b)

Fig. 8.7 (a) EMA test-bench and (b) the corresponding block diagram.

motor connected to a planetary reduction gearbox. The motor is driven by a current-
controlled, 400 V three-phase inverter. A separate 24 VDC bus drives the control
logic. A pair of high resolution encoders measure the position of the motor shaft and
the position of the gearbox output shaft: the former is used for phase commutation
and speed feedback while the latter closes the position control loop. A repeatable
mechanical load is provided by a servo-actuated brake module, whose torque is mea-
sured by a loadcell and controlled in closed loop. This permits to simulate different
load profiles and include the effect of a friction increase fault. Moreover, the last gear
pair driving the output shaft is adjustable, and allows to simulate the backlash fault
through a controlled variation of the mechanical play. Acquisitions from the test
bench were initially used to validate the HF and LF models in nominal conditions
and in presence of mechanical faults [286]. In addition, the measurements of current
signals from the EMA test-bench are used as the reference signal to validate the
performance of the proposed multifidelity FDI strategy.

8.2.4 Experiments

For all the experiments of this study, we collect a reference dataset of 100 combina-
tions of incipient faults whose corresponding system responses are evaluated with
the high-fidelity EMA model. This set of faults is determined through a modified
scaled Latin hypercube sampling to increase the density of sampling points near
the nominal condition [225]. Offline, we use this dataset to compute an encoding
map of nw = 30 informative points using our original two-step compression strategy
presented in Section 6.1.1. Figure 8.8 shows the placement of those informative
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Fig. 8.8 Set of nw = 30 informative points over the first DMD mode

points determined through the self organizing map for the first mode computed using
the dynamic mode decomposition technique: our compression strategy places the
nw points in correspondence of the most significant locations of the mode including
minima and maxima. This compressed representation is adopted online to identify
the health status of the EMA system.

We conducted both numerical and physical experiments considering different
experimental configurations to investigate the overall behaviour of the proposed
single-fidelity FREEDOM algorithm and multifidelity MF-FREEDOM algorithm.
In particular, we first tested FREEDOM implementing the high-fidelity numerical
model of the EMA (Section 8.2.5) to compute both the reference output signal and
the monitoring signal: the goal is to assess the performance of the proposed method-
ology in the identification of the health status of the system without introducing a
modeling error between the reference and the monitoring signals. This procedure
permits to highlight the main difficulties in solving the EMA identification problem
caused by the interaction of heterogeneous and multi-domain fault modes that affect
simultaneously the system, and excludes the influence of modeling approximations
in the computation of the monitoring signal. Then, we investigate our FREEDOM
methodology implementing the low-fidelity representation of the EMA (Section
8.2.5) as the monitoring model, to evaluate the actual performance in fault identifica-
tion considering a real-world scenario where a fast digital twin is required to limit
the computational resources for the evaluation of the monitoring signal. This allows
to assess both the accuracy and robustness of the proposed methodology in presence
of multiple fault conditions and modeling error between reference and monitoring
system. Finally, we validate FREEDOM for the health assessment of the real-world
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EMA system (Section 8.2.5) using the low-fidelity EMA model as the monitoring
model.

In the multifidelity numerical experiments (Section 8.2.6), the proposed MF-
FREEDOM is investigated for a setting where the high-fidelity EMA model is
adopted to compute the reference current signal of the EMA system, and the multi-
fidelity FDI framework leverages both the high-fidelity and low-fidelity EMA nu-
merical models to compute the monitoring current signal: the multifidelity Bayesian
procedure selects at each iteration of the identification process the appropriate EMA
numerical model seeking to efficiently direct the computational resources towards
the identification of the actual damages. In the real-world multifidelity physical
experiments, the EMA test-bench permits to acquire the reference current signal
considering the real-world system affected by damages, and both the high-fidelity
and low-fidelity EMA numerical models are used during the FDI procedure to com-
pute the monitoring current signal and identify the EMA health status through the
multifidelity Bayesian identification procedure.

For the numerical experiments, the output current signal of the EMA is computed
considering a linear chirp actuation command characterized by a 0.5 s duration,
5 ·10−3 rad amplitude, 0 Hz start frequency and 15 Hz end frequency, and an aero-
dynamic load of 0.5 Nm applied to the actuator. The measurement locations consist
of multiple acquisitions of the current signal every 10−6 seconds over the actuation
time for the high-fidelity numerical model, and every 10−4 for the low-fidelity nu-
merical model. This results in a computational cost of the high-fidelity model of 10
seconds on average, while the low-fidelity model requires approximately 1 second.
For the real-world EMA test bench, the current signal is acquired considering a
sinusoidal actuation command of 24 seconds with 0.12 rad amplitude and 0.2 Hz
frequency and without external loads applied to the actuator. This real-world current
signal is acquired in measurement locations along the actuation time each 4 ·10−3

seconds apart. All the algorithms are implemented in the Matlab environment and
the experiments are conducted on a laptop PC with Intel Core i7-6700HQ and 32GB
memory.
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8.2.5 FREEDOM Results and Discussion

In this section, we illustrate and discuss the results achieved with the proposed
FREEDOM approach for the EMA diagnostic problem. We compare three different
formulations of the acquisition function (Section 6.1.2) for the Bayesian damage
inference stage, including the expected improvement (EGO) [109], upper-confidence
bound (UCB) [287] and two-step lookahead acquisition function (lookEGO) [137].
To assess the diagnostics performance of FREEDOM, we define the following
assessment metrics:

e(xi) =
||x∗i − x̃i||

x∗i
×100% (8.7)

f ∗ = min( f (x∗,m̂)) (8.8)

where x∗i is the actual level of damage that affects the system, x̃i is the level of
damage inferred by the algorithm considering the i-th fault mode, and f (x∗,m̂) is
the value of the discrepancy between the reference and monitoring output signals.
In particular, e(xi) measures the percentage relative error in the identification of the
health status of the system, and f ∗ represents the minimum value of the discrepancy
achieved by the algorithm.

We evaluate e(xi) and f ∗ as functions of the computational time required by the
different implementations to complete the FDI task. For the results obtained against
numerical experiments, we consider a statistics over 100 different incipient faults
combinations x∗ = (x∗1, ...,x

∗
7) including all the spectrum of mechanical and electrical

damages. For the results obtained against physical experiments, we consider a
statistics over 10 different combinations of incipient mechanical faults x∗ = (x∗1,x

∗
2).

For both the numerical and physical experiments, the incipient damage conditions
are determined through the scaled Latin hypercube sampling proposed by Berri et
al. [225]. This choice is motivated by the increased probability distribution of the
fault combinations located near the nominal condition, in order to collect a large
amount of incipient faults without limiting the identification process bounding the
space of faults. In the remaining, the results are compared in term of median values
of the inference error e(xi) and discrepancy f ∗ together with the associated statistics
in between the 25-th and 75-th percentiles.
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Numerical Experiments: High-Fidelity Monitoring

Figure 8.9 illustrates the outcomes obtained for an experimental setup where the
high-fidelity numerical model of the EMA (Section 8.2.1) is used as the source of
information for both the reference and monitoring current signal. All the competing
formulations are capable to exactly identify the health status of the EMA system
reducing the inference error e(xi) for both the mechanical (x1,x2) and electrical
faults (x3,x4,x5,x6,x7). We notice that the two-step lookahead acquisition function
(lookEGO) provides superior convergence performance, and provides a significant
reduction of the inference error for all the damages with reduced computational time
with respect to UCB and EGO. This suggest the opportunity offered by non-myopic
strategies to quantify the improvement in the solution of the FDI problem achievable
in future iterations and determine an effective and efficient inference stage.

It is possible to observe that the correct inference of the EMA damage config-
uration, which correspond to the computational time for which the inference error
is equal to zero, coincides also with zero discrepancy between the reference and
monitoring current signals (Figure 8.9(h)). Indeed, the use of the high-fidelity nu-
merical model to evaluate both the reference and monitoring current signal involves
the computation of the same reference and monitoring responses when the damages
are correctly identified, which in turn determine a value of the discrepancy function
equal to zero. This permits to highlight the challenges associated with the EMA
health assessment problem without introducing a modeling error between reference
and monitoring signals (which is typically the case of real-world problems). In par-
ticular, the convergence diagrams for all the fault modes affecting the EMA indicate
that a reduction of the discrepancy between the reference and monitoring current
signal is not related with a continuous decrease of the inference error (Figure 8.9).
This suggests that the EMA identification problem is ill-posed: a reduction of the
discrepancy function is not always related to an improvement in the accuracy of the
faults inference. As a consequence, the identified fault parameters are subjected to
instability and uncertainty that raise when the reduction of the discrepancy causes an
increase in the inference error, further complicating the fault detection and isolation
task. These results are justified with the presence of multiple and multiphysics
faults affecting simultaneously the EMA system. In particular, a variation of both
the friction in the mechanical transmission (x1) and the partial short circuit in the
three phases of the electric motor (x3, x4, x5) determines opposite effects in the
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(a) Friction (b) Backlash

(c) Phase A short circuit (d) Phase B short circuit

(e) Phase C short circuit (f) Rotor eccentricity

(g) Eccentricity phase (h) Discrepancy

Fig. 8.9 Statistics over 100 incipient fault conditions of the percentage relative error
of the inference of the fault parameters e(xi) and minimum discrepancy value f ∗

obtained for the high-fidelity monitoring.
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Method e(x1) e(x2) e(x3) e(x4) e(x5) e(x6) e(x7) f ∗ Time

EGO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0 583 s
UCB 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0 335 s
lookEGO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0 271 s

Table 8.3 Convergence results of the percentage relative error of the inference of
the fault parameters e(xi), minimum discrepancy value f ∗, and computational time
obtained for the high-fidelity monitoring.

Method em(x1) em(x2) em(x3) em(x4) em(x5) em(x6) em(x7)

EGO 1.06% 1.05% 1.53% 1.51% 1.07% 1.43% 1.16%
UCB 0.87% 1.30% 1.10% 1.64% 1.35% 1.26% 1.13%
lookEGO 0.88% 0.91% 1.21% 1.25% 0.95% 1.20% 1.05%

Table 8.4 Convergence results of the maximum percentage relative error of the
inference of the fault parameters em(xi) obtained for the high-fidelity monitoring.

dynamical response of the system: increasing x1 reduces the speed of the actuation
while increasing x3:5 causes an increase in the motor speed. These effects indicate
a distinct multimodality of the discrepancy function, which is characterized by the
presence of multiple suboptimal local minima that stresses the search towards the
actual health status of the system.

Table 8.3 and Table 8.4 show and summarize the convergence history for the
three formulations of the acquisition function in terms of median values of the
inference error e(xi) and minimum discrepancy f ∗, and maximum inference error
em(xi) achieved at convergence, respectively. It is possible to observe that the demand
for computational time required to identify the exact EMA health status is on average
271 seconds for the lookEGO, while the other competing formulations require further
time expenditure to infer the damaged condition (Table 8.3). A significant outcome
observed at convergence is that all the algorithms achieve a maximum inference error
lower than 1.64% over the experimental setup of 100 incipient fault combinations,
highlighting the robust identification of the health status of the system (Table 8.4).

The outcome from the high-fidelity monitoring experiments demonstrate both the
accuracy and robustness of the FREEDOM algorithm even in presence of multiple
and interacting incipient failure modes. In addition, it is shown the capability of our
framework to overcome the issues related to the ill-posed identification problem and
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multimodality of the discrepancy function. However, the demand for computational
resources makes the FDI procedure with high-fidelity numerical models unfeasible
for the fast identification of the health status of the system. This justifies the adoption
of the low-fidelity numerical model to approximate the output signal of the system,
decreasing the computational cost required for the FDI procedure.

Numerical Experiments: Low-Fidelity Monitoring

Figure 8.10 shows the results achieved for the experiments implementing the low-
fidelity numerical model of the EMA system (Section 8.2.2) to compute the mon-
itoring current signal. Similarly to the previous experiments, we observe that the
lookEGO acquisition function provides a superior reduction of the inference error
with a contained computational time if compared with EGO and UCB. Nevertheless,
all the competing formulations identify accurately the level of damage for the electri-
cal faults (x3,x4,x5,x6,x7) and allow to reduce the inference error for friction (x1) and
backlash (x2) fault modes below the 6.66% and 10.1%, respectively. However, the
convergence values of e(x1) and e(x2) are higher with respect to the values of the er-
ror for the electrical faults. Figure 8.10(a) and Figure 8.10(b) report the convergence
history of the inference error for the mechanical faults affecting the EMA. Both
e(x1) and e(x2) show similar trends: the error decreases for lower computational
times while tends to reach values higher than the minimum computed so far as the
FDI algorithm proceeds in reducing the discrepancy f . This result can be justified
with the introduction of a modeling error between the reference – high-fidelity – and
monitoring – low-fidelity – signals that is reflected in a computed minimum of the
discrepancy f ∗ different from zero (Figure 8.10(h)). Indeed, the same combination
of fault parameters determines discrepant current responses between the high-fidelity
and low-fidelity numerical model caused by the physical approximations adopted to
reduce the computational cost of the low-fidelity representation. Those effects poses
further difficulties to efficiently assess the health status of the system.

Table 8.5 illustrates the median values of the inference error e(xi) and minimium
discrepancy f ∗ reached at the convergence of the FDI process, while Table 8.6 shows
the corresponding maximum inference error em(xi). In particular, the lookEGO
identifies the electrical damages with an error below the 0.12%, while permits the
identification of the mechanical faults with an error of the 4.51% and 8.94% for
friction and backlash, respectively (Table 8.5). Although the inference of mechanical
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(a) Friction (b) Backlash

(c) Phase A short circuit (d) Phase B short circuit

(e) Phase C short circuit (f) Rotor eccentricity

(g) Eccentricity phase (h) Discrepancy

Fig. 8.10 Statistics over 100 incipient fault conditions of the percentage relative error
of the inference of the fault parameters e(xi) and minimum discrepancy value f ∗

obtained for the low-fidelity monitoring.
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Method e(x1) e(x2) e(x3) e(x4) e(x5) e(x6) e(x7) f ∗ Time

EGO 6.5% 8.6% .08% .09% .11% .10% .05% 0.136 51 s
UCB 6.6% 10% 4.7% 3.6% 6.5% 14% 3.3% 0.139 69 s
lookEGO 4.5% 8.9% .05% .09% .12% .07% .06% 0.132 25 s

Table 8.5 Convergence results of the percentage relative error of the inference of
the fault parameters e(xi), minimum discrepancy value f ∗, and computational time
obtained for the low-fidelity monitoring.

Method em(x1) em(x2) em(x3) em(x4) em(x5) em(x6) em(x7)

EGO 6.77% 9.07% 4.90% 4.05% 4.82% 4.61% 4.53%
UCB 6.86% 10.73% 8.60% 8.21% 10.23% 19.77% 9.64%
lookEGO 4.73% 9.33% 4.81% 4.24% 3.12% 3.98% 3.35%

Table 8.6 Convergence results of the maximum percentage relative error of the
inference of the fault parameters em(xi) obtained for the low-fidelity monitoring.

Metric GA PSO DE GWO FREEDOM

Average Time 2322 s 1710 s 405 s 709 s 25 s
Average Error e(x) 2.813% 0.711% 3.001% 4.378% 1.977%

Table 8.7 Comparison of the computational time and average inference error between
the FREEDOM algorithm and the meta-heuristic algorithms proposed by [2], namely
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution
(DE) and Grey Wolf Optimization (GWO).

failures is not as accurate as the identification of electrical damages, the overall
accuracy of our methodology is adequate for the detection of incipient failure modes,
and permits the adoption of corrective actions to contain the early stage effects on
the degradation of the system performance. In addition, the identification of the
health status of the system requires on average 25 seconds for the lookEGO, which
correspond to a reduction of the 91% if compared with the time required to assess
the EMA health status with the high-fidelity monitoring. This allows to infer barely
noticeable failure modes early on before the propagation, and permits to prevent and
counteract to excessive loss of performance of the system with potentially severe
effects.

Moreover, it can be noticed that the lookEGO algorithm achieves a maximum
inference error at convergence below the 4.81% for the electrical damages, and equal
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to 4.73% for friction and 9.33% for backlash considering a total of 100 incipient
fault combinations (Table 8.6). These outcomes demonstrate that our methodology
FREEDOM provides a robust identification of the health status of the system even in
presence of modeling errors, ill-posedness, and multimodality of the identification
problem. However, the maximum inference error computed at convergence is higher
if compared with the outcomes of the high-fidelity monitoring test-case (Table
8.4), suggesting that the introduction of the modeling error also affects the overall
robustness of the FDI process.

Table 8.7 compares the results obtained with the FREEDOM algorithm and with
popular meta-heuristic approaches as the one proposed by [2]. In particular, we
compare the two-step lookahead implementation of FREEDOM with the diagnostics
outcomes obtained with Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), Differential Evolution (DE) and Grey Wolf Optimization (GWO). FREEDOM
is capable to achieve a comparable average reduction of the inference error with
a remarkable acceleration up to two orders of magnitude if compared with the
standard algorithms. These results remark and emphasize the capability of the
FREEDOM framework to leverage the combination of efficiently compressed highly
informative signals with the Bayesian inference stage to provide an accurate health
status assessment with a fraction of the computational cost required by competing
algorithms.

The outcomes computed adopting the low-fidelity numerical model demonstrate
a substantial acceleration of the inference of incipient damages with satisfactory
accuracy and robustness. In particular, the implementation of a low-fidelity mon-
itoring model significantly reduces the computational burden associated with the
FDI procedure if compared with the time expenditure required for the high-fidelity
monitoring test-case. Moreover, the computational time required to complete the
FDI task with our methodology is two orders of magnitude lower than state of the
art model-based FDI algorithms [2, 288–290]. This reveals the capabilities of our
algorithm to efficiently exploit data from the low-fidelity monitoring model and con-
tain the demand for computing resources. However, the introduction of a modeling
error between the reference and monitoring signal moderately affects the accuracy
and robustness of the FDI procedure for the failures in the mechanical transmission.
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(a) Friction (b) Backlash

(c) Discrepancy

Fig. 8.11 Statistics over 10 incipient fault conditions of the percentage relative error
of the inference of the fault parameters e(xi) and minimum discrepancy value f ∗

obtained for the real-world experiments.

Real-World Experiments

Figure 8.11 illustrates the results obtained with the FREEDOM algorithm for the
health assessment of the real-world EMA system (Section 8.2.3) implementing the
low-fidelity monitoring model. All the three formulations are capable to identify
the health status of the system minimizing the inference error with a contained
computational time. The overall convergence trends for both the inference error of
friction (Figure 8.13(a)) and backlash (Figure 8.13(b)) confirm that the identification
problem is ill-posed and multimodal – the decrease of the discrepancy (Figure
8.13(h)) is not always related to a reduction of the inference error – and affected by
the modeling error between the current signal measured on the real-world system
and the same signal computed with the low-fidelity model – the minimum of the
discrepancy is greater than zero when the health status of the system is inferred.

Table 8.8 provides the experimental convergence median values of the inference
error e(xi) and minimum discrepancy f ∗ for the three acquisition functions consid-
ered in this paper. All the implementations accurately identify the health status of
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Method e(x1) e(x2) f ∗ Time

EGO 0.03% 0.08% 0.0326 16 s
UCB 0.03% 0.08% 0.0326 20 s
lookEGO 0.03% 0.08% 0.0326 6 s

Table 8.8 Convergence results of the percentage relative error of the inference of
the fault parameters e(xi), minimum discrepancy value f ∗, and computational time
obtained for the real-world experiments.

Method em(x1) em(x2)

EGO 2.69% 3.35%
UCB 2.39% 2.59%
lookEGO 1.62% 1.24%

Table 8.9 Convergence results of the maximum percentage relative error of the
inference of the fault parameters em(xi) obtained for the real-world experiments.

the system, and lead to an inference error of the 0.03% for friction and 0.08% for
backlash. However, the lookEGO implementation achieves the best experimental
results in terms of efficiency, identifying the incipient mechanical faults with a
computational time within 6 seconds; this corresponds to a reduction of the 62%
and 70% of time expenditure if compared with the outcomes of the EGO and UCB
methods, respectively. Table 8.9 illustrates the maximum inference errors em(xi)

at convergence. All the formulations keep the maximum error below the 3.35%,
validating the robust identification of the incipient mechanical faults; in particular,
the two-step lookahead acquisition function shows the higher level of robustness
with an inference error at convergence lower than the 1.62% and 1.24% for friction
and backlash, respectively.

These outcomes validate the performance of FREEDOM as a computational
framework that enables the acceleration of the FDI procedure, and permits the accu-
rate and robust identification of incipient faults affecting a complex and multiphysics
aerospace system. A significant achievement of our methodology is the reduction of
computational time required to identify the health status of the real-system, which
corresponds to an inference procedure two orders of magnitude faster than standard
model-based FDI approaches [2, 288–290].
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8.2.6 MF-FREEDOM Results and Discussion

In this section, we illustrate and discuss the results achieved with the proposed multi-
fidelity FREEDOM (MF-FREEDOM) approach for the EMA diagnostic problem.
We compare our framework with the state-of-the-art Efficient Global Optimization
(EGO) algorithm, a popular Bayesian algorithm where the expected improvement
works as the acquisition function and only the high-fidelity EMA model is available
during the FDI procedure [109].

The FDI performance are evaluated using two assessment metrics: the percentage
relative inference error e(xi) of the xi fault, and the minimum of the discrepancy
function f ∗ between the reference and monitoring signal:

e(xi) =
||x∗i − x̃i||

x∗i
×100% (8.9)

f ∗ = min( f (x∗,m̂)) (8.10)

where x∗i is the actual damage affecting the EMA system and x̃i is the damage inferred
by the FDI algorithm. The relative inference error e(xi) measures the accuracy
related to the identification of the damages affecting the EMA system, and f ∗

provides a measure of the improvement in the solution of the optimization procedure
through our multifidelity Bayesian FDI method. For both numerical and physical
experiments, these metrics are measured over a statistics of, respectively, 50 and
10 different incipient damage conditions sampled through a scaled Latin hypercube
scheme [225]. This sampling procedure increases the probability distribution of
damages near the nominal condition, and expands the amount of small incipient
faults without completely excluding more serious damages. The goal is to investigate
the capabilities of the FDI algorithm to identify the health status of the EMA system
before the damages become severe – and easily assessed.

Figure 8.12 and Figure 8.13 illustrate the results of the competing algorithms for
the numerical and physical experiments, respectively. The outcomes are reported
in terms of median values of the assessment metrics (solid lines) together with the
statistics of observations falling in between the 25-th and 75-th percentiles (shaded
areas). We show and advance the following empirical observations. First, our MF-
FREEDOM algorithm consistently converges much faster than the baseline EGO
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algorithm with all the formulations of the multifidelity acquisition function – both
MFEI and NM2-BO. In particular, the multifidelity paradigm achieves remarkable
accelerations and reduces the identification time by more than one order of magnitude.
Moreover, the rate of convergence of NM2-BO is moderately higher that the MFEI
acquisition function. However, in all the experimental campaign the proposed MF-
FREEDOM outperforms the single-fidelity EGO algorithm. In addition, the proposed
algorithm provides the exact inference of the incipient faults affecting the EMA
system (e(xi) = 0). These results demonstrate and validate the performance of our
framework, which provides a fast and robust inference of incipient multiphysics and
multimodal faults affecting the EMA. In numerical experiments, the average runtime
of NM2-BO and MFEI is within 32 seconds and 39 seconds, respectively, which
is notably lower if compared with the 691 seconds runtime of EGO. Similarly, the
diagnosis of the real-world EMA takes 26 seconds for NM2-BO and 42 seconds
for MFEI on average, while EGO increases the duration of the FDI process to 273
seconds.

The convergence of the minimum discrepancy in both the settings is not strictly
related to the continuous decrease of the inference error over the runtime. This can
be justified with the ill-posedness of the EMA inverse problem: the FDI procedure is
subject to instability caused by the joint decrease of the discrepancy function and
increase of the inference error. As highlighted by [221], this behaviour results from
the opposite effects of heterogeneous damages on the EMA dynamics: the increase
of the mechanical friction x1 decreases the actuation speed while the increase of the
partial short circuit x3:5 increases the speed of the motor shaft. As a consequence,
the discrepancy function is characterized by a strong multimodality that stresses the
FDI framework.

To better illustrate and demonstrate the performance of the proposed multifidelity
FDI methodology, Figure 8.14 and Figure 8.15 present the search processes as the
sampling in the faults domain selected for a single experiment made by our MF-
FREEDOM algorithm and the competing EGO method in the numerical and physical
experiments, respectively. As it can be observed, our multifidelity FDI method
evaluates different damage configurations adopting both the high-fidelity (circle) and
low-fidelity (triangle) EMA numerical model, while the EGO algorithm uses only
high-fidelity evaluations of the faults space. All the algorithms seek to balance the
exploration of different damage configurations to improve the awareness about the
distribution of the discrepancy function over the faults domain, and the exploitation
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(a) Friction (b) Backlash

(c) Phase A short circuit (d) Phase B short circuit

(e) Phase C short circuit (f) Rotor eccentricity

(g) Eccentricity phase (h) Discrepancy

Fig. 8.12 Statistics over 50 incipient fault conditions of the percentage relative error
of the inference of the fault parameters e(xi) and minimum discrepancy value f ∗

obtained for the MF-FREEDOM algorithm and EGO on numerical experiments.
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(a) Friction (b) Backlash

(c) Phase A short circuit (d) Phase B short circuit

(e) Phase C short circuit (f) Rotor eccentricity

(g) Eccentricity phase (h) Discrepancy

Fig. 8.13 Statistics over 10 incipient fault conditions of the percentage relative error
of the inference of the fault parameters e(xi) and minimum discrepancy value f ∗

obtained for the MF-FREEDOM algorithm and EGO on physical experiments.
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towards the actual damages affecting the system (dashed red line). However, the
EGO method requires a large amount of computational time to assess the EMA
health status if compared with MF-FREEDOM: high-fidelity data are employed at
the beginning of the FDI process to explore damage alternatives, and afterwards
directed toward the actual damage level; the unique adoption of the high-fidelity
EMA numerical model dramatically penalizes the convergence time. Conversely, the
proposed MF-FREEDOM algorithm takes advantage on fast low-fidelity responses:
the low-fidelity EMA model is adopted at the beginning of the FDI procedure to
explore the faults domain with contained time expenditure while the expensive high-
fidelity model is sparingly adopted in the exploitation phase to accurately identify
the damages affecting the EMA. In particular, the NM2-BO acquisition function
permits to better capitalize the informative content acquired during the low-fidelity
exploration phase, and converges faster than the MFEI acquisition function.

The remarkable accelerations achieved in the experimental campaigns demon-
strate and validate the efficiency and robustness of our multifidelity FDI framework
even in presence of incipient faults and marked multimodality. These results are
due to the combination of two distinguishing features we introduced in our method:
i) the optimal two-stage compression reduces the signals into highly informative
representations that reduces the dimensionality of the FDI problem, and ii) the
multifidelity Bayesian scheme for inference wisely queries high-fidelity models
to enhance the identification procedure while contains the overall computational
expenditure through low-fidelity evaluations.
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Fig. 8.14 Searches over the faults space of the MF-FREEDOM and EGO algorithms
on numerical experiments.
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Fig. 8.15 Searches over the faults space of the MF-FREEDOM and EGO algorithms
on physical experiments.



Chapter 9

Conclusions

In chapter 4, we presented a Non-Myopic Multifidelity Bayesian Optimization
framework (NM2-BO) to accelerate the optimization of expensive objective functions
using multiple representations at different levels of fidelity and evaluating costs. This
is achieved by measuring the informative gains acquired from future steps of the
optimization procedure through a sampling scheme based on an original two-step
lookahead multifidelity acquisition function. We demonstrate the performances
of our NM2-BO algorithm against standard multifidelity Bayesian frameworks on
a large set of benchmark optimization problems (Section 4.7). These analytical
experiments have revealed that the proposed non-myopic multifidelity scheme is
capable to outperform the standard algorithms leading to a superior solution of the
optimization procedure with a fraction of the computational cost over a variety of
mathematical properties that are frequently encountered in real-world applications in
science and engineering – such as non linearity, multimodality, oscillatory nature,
non-convexity and presence of noise. In addition, in Chapter 7 we demonstrated our
approach for the physics-based aerodynamic design optimization problem of a RAE-
2822 airfoil subject to aerodynamic and geometric constraints (Section 7.1). The
NM2-BO permits to improve the aerodynamic design of the 15.7% requiring a 65%
lower computational cost if compared with the best performing standard algorithm,
which achieved a design improvement of the 10.9%. Across all the demonstration
campaign, the non-myopic multifidelity scheme allows to effectively capitalize from
the use of limited high-fidelity information to identify improved optimal solutions,
while targeting a trade-off between computational cost and future information gains
as prescribed by our two-step lookahead multifidelity acquisition function.
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In addition, we propose a Non-Myopic Multipoint Multifidelity Bayesian Op-
timization (NM3-BO) framework to significantly accelerate expensive multidisci-
plinary design optimization problems (Section 4.6). NM3-BO combines two distin-
guishing features: a non-myopic decision making process maximizes the cumulative
reward of design solutions over future iterations and a penalization strategy enables
multiple decisions as a batch of design configurations and associated level of fidelity
to evaluate simultaneously. This search scheme identifies promising batches through
the measure of their future utility, and leverages parallel computations to reduce
the overall computational cost of the MDO procedure. The NM3-BO algorithm is
demonstrated for the MDO problem of a space re-entry vehicle (Section 7.4.2). The
method permits substantial accelerations and identifies superior design solutions
compared to state-of-the-art multifidelity and single-fidelity algorithms. In particular,
NM3-BO delivers on average a space vehicle design improvement of the 17.4%
with a fraction of the computational resources adopted by competing algorithms to
identify suboptimal solutions.

In chapter 5, this thesis recognizes that domain knowledge is commonly available
in science and engineering, and can be used to accelerate and improve the multifi-
delity optimization process. We propose a Physics-Aware Multifidelity Bayesian
Optimization – PA-MFBO – framework that incorporates forms of prior scientific
and expert knowledge about the physical domain during the search procedure. This
is achieved introducing a learning bias formalized as a physics-aware multifidelity
acquisition function that leverages the knowledge about the structure of the domain
to enhance the accuracy of the solution and alleviate the computational cost for
optimization. The results achieved with the PA-MFBO are observed and discussed
for a cross-regime aerodynamic design problem (Section 7.2) and a structural health
monitoring problem (Section 8.1). In the design test-case, the PA-MFBO introduces
a bias to pursue the awareness about the transition of fluid regimes through the Mach
number. In the health assessment task, PA-MFBO incorporates a bias based on the
expert knowledge about the features of the domain for specific combinations of
load and extension of the damage. We note that for the two optimization problems
our methodology outperforms standard single-fidelity and multifidelity Bayesian
algorithms in terms of accuracy and acceleration of the search. In particular, the
PA-MFBO identifies aerodynamic design solutions capable to deliver a performance
improvement of the 24.31% in less than half the computational time required by
competing algorithms to search suboptimal designs. Moreover, PA-MFBO is the
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only algorithm that permits the robust identification of damages in the composite
plate, which otherwise would have required more computational resources or might
have led to an inaccurate health assessment. In Section 7.4.4, we further investi-
gate the capabilities of the PA-MFBO algorithm for the multidisciplinary design
optimization problem of a space vehicle. In particular, we embed during the search
for optimal designs the physics-awareness about the stressful aerothermodynamic
phenomena that occur during the re-entry trajectory. The sensitivity to the evolution
of the domain is introduced through a specific range of altitudes where heat loads
threaten the survival of the spacecraft, and high-fidelity responses are essential for the
accurate estimate of thermal loads. The results for this MDO problem demonstrate
that the physics-awareness capability introduced with our PA-MFBO scheme allows
to effectively identify superior design improvements of the 21% with respect to the
design upgrade of the 8% obtained with the single fidelity BO counterpart informed
by the low-fidelity aerothermodynamic model.

In addition, we incorporate the physics-aware learning scheme with the non-
myopic multifidelity policy and formalize a Physics-Aware Non-Myopic MFBO
(PA-NM2BO) algorithm in Section 5.2. This learning scheme permits to embed the
awareness about the scientific/expert knowledge about the optimization problem of
interest while selecting the most valuable set of optimization variables and levels
of fidelity through a two-step lookahead sampling policy that measures the long
term improvement of the solution of the optimization problem. In Section 7.3, we
demonstrate our framework and validate our results against wind tunnel data for the
cross-regime constrained aerodynamic optimization of an airfoil subject to maintain
a minimum lift coefficient at a fixed flight altitude. Our non-myopic physics-aware
multifidelity framework is compared against standard multifidelity and single-fidelity
Bayesian frameworks. The results show that our strategy outperforms the competing
algorithms allowing for a significant reduction of the drag coefficient with reduced
computational expense through the construction and use of an efficient aerodynamic
surrogate model. Specifically, the proposed framework allows to lower the error on
the identification of the minimum drag coefficient down to the 3.88% on average
respect to the experimental optimum, which goes down to 0.422% for the best
test case over the experiments conducted. This is achieved thanks to the two key
features of the proposed multifidelity acquisition function which allow to consider
the evolution of the fluid regime through the Mach number by including physics
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awareness in the formulation, and to account for the anticipated gain through the
two-step lookahead scheme that permits the efficient exploration of the design space.

In Chapter 6.1, we introduce an original fault detection and isolation (FDI)
methodology FREEDOM to accelerate the identification of the health status of
complex aerospace systems. Our algorithm permits to identify the incipient failure
condition affecting the system through the original combination of a two-step com-
pression strategy – which reduces the amount of data to be stored and processed
– and an inverse Bayesian approach – to infer failure modes through the efficient
use of data. The objective is to accelerate the FDI task and provide an accurate
and robust inference of the system health status with a major reduction of the de-
mand for computational resources. We demonstrate and validate our computational
framework for the fault detection and isolation problem of an electromechanical
actuator, considering heterogeneous mechanical and electrical incipient fault modes.
Specifically, we conducted both numerical and physical experiments comparing three
formulations of the Bayesian acquisition function to investigate the performance of
our methodology with different search criteria, and compared the results achieved
with popular model-based FDI algorithms (Section 8.2.5). The results demonstrate
that FREEDOM provides an accurate and robust inference of the health status of
the system in presence of incipient faults with a reduced time expenditure. This is
particularly relevant to capture the early stages of damages propagation, and prevents
severe effects due to the degradation of the performance of the system. The compari-
son over the different formulations reveals that the two-step lookahead acquisition
function provides a robust identification of the electrical faults with an error below
the 0.1% while keeping the error under the 9% for the mechanical damages; this is
due to the intrinsic properties of the low-fidelity monitoring model that introduces a
modeling error which increases the difficulties in the identification of mechanical
faults. Nevertheless, the major outcome is observed in terms of a large reduction of
the computational time required to complete the FDI task. Indeed, the fault detec-
tion and isolation procedure is completed within 25 seconds when the low-fidelity
monitoring model is used implementing the two-step lookahead acquisition function.
This corresponds to a reduction of two orders of magnitude with respect to the
computational cost required by standard model-based FDI algorithms. The outcomes
are validated through physical experiments on the real-world system affected by
mechanical failures. In particular, the two-step lookahead acquisition function per-
mits to achieve the exact identification of the health status of the system within 6
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seconds with the use of the low-fidelity monitoring model. The major acceleration
of the FDI procedure is enabled by the original combination of a highly informative
two-step compression mapping that allows to speed up the data processing, and
the data efficient Bayesian inference that permits to contain the number of model
evaluations. In addition, our experiments illustrate that the adoption of a low-fidelity
monitoring model – and therefore the introduction of a modeling error between the
reference and monitoring signals – affects the fault detection and isolation process,
precluding the possibility of high accuracy in health status inference.

We overcome these issues formalizing the multifidelity FREEDOM (MF-FREEDOM)
computational framework (Section 6.2). The proposed MF-FREEDOM framework
permits to accelerate the identification of multiphysics and multimodal incipient
faults of complex systems while including high-fidelity evaluations of the moni-
toring signals. The algorithm relies on the original combination of the two-stage
highly informative compression strategy to reduce the dimensionality of the diag-
nostic signals, and a multifidelity Bayesian scheme to infer incipient failure modes
through the combination of multiple models with variable fidelities and costs. We
demonstrate and validate the proposed methodology for the FDI of an aerospace
electromechanical actuator affected by incipient mechanical and electrical faults. We
conducted both numerical and physical experiments where our multifidelity scheme
is compared with the standard single-fidelity efficient global optimization algorithm
(Section 8.2.6). The results show that our multifidelity FDI outperforms standard
single-fidelity algorithms in terms of accuracy and acceleration of the inference. In
particular, the non-myopic search identifies the exact EMA damage condition 95.4
% faster than the single-fidelity approach. The physical experiments confirm and
validate the efficiency of the proposed framework: our strategy identifies with the
non-myopic search the exact damage condition of the real-world EMA reducing the
computational cost by 90.5 % if compared with the single-fidelity algorithm. The
sensitive accelerations and improved accuracy of the FDI procedure are enabled
by the combination of the efficient compression of the diagnostic signals through
the encoding map, and the effective use of high-fidelity responses to accurately
identify multiphysics damages. The results make the ambition of using high-fidelity
monitoring more achievable, and even suggest the possibility of using them for
nearly real-time diagnostics.



References

[1] Charles D Harris. Two-dimensional aerodynamic characteristics of the naca
0012 airfoil in the langley 8 foot transonic pressure tunnel. 1981.

[2] Matteo Davide Lorenzo Dalla Vedova, Pier Carlo Berri, and Stefano Re.
Metaheuristic bio-inspired algorithms for prognostics: Application to on-
board electromechanical actuators. In 2018 3rd International Conference on
System Reliability and Safety (ICSRS), pages 273–279. IEEE, 2018.

[3] Joaquim RRA Martins and Andrew Ning. Engineering design optimization.
Cambridge University Press, 2021.

[4] Nam-Ho Kim, Dawn An, and Joo-Ho Choi. Prognostics and health manage-
ment of engineering systems. Switzerland: Springer International Publishing,
2017.

[5] Paul Upham, Janet Maughan, David Raper, and Callum Thomas. Towards
sustainable aviation. Routledge, 2012.

[6] Frederico Afonso, Martin Sohst, Carlos MA Diogo, Simão S Rodrigues, Ana
Ferreira, Inês Ribeiro, Ricardo Marques, Francisco FC Rego, Abdolrasoul
Sohouli, Joana Portugal-Pereira, et al. Strategies towards a more sustainable
aviation: A systematic review. Progress in Aerospace Sciences, 137:100878,
2023.

[7] Kavindu Ranasinghe, Roberto Sabatini, Alessandro Gardi, Suraj Bijjahalli,
Rohan Kapoor, Thomas Fahey, and Kathiravan Thangavel. Advances in
integrated system health management for mission-essential and safety-critical
aerospace applications. Progress in Aerospace Sciences, 128:100758, 2022.

[8] Averill M Law and Michael G McComas. Simulation-based optimization. In
Proceedings of the Winter Simulation Conference, volume 1, pages 41–44.
IEEE, 2002.

[9] Abhijit Gosavi et al. Simulation-based optimization. Springer, 2015.

[10] Wilson Trigueiro de Sousa Junior, José Arnaldo Barra Montevechi, Rafael
de Carvalho Miranda, and Afonso Teberga Campos. Discrete simulation-
based optimization methods for industrial engineering problems: A systematic
literature review. Computers & Industrial Engineering, 128:526–540, 2019.



References 189

[11] Charles Audet and Warren Hare. Derivative-free and blackbox optimization.
2017.

[12] Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. Survey of
multifidelity methods in uncertainty propagation, inference, and optimization.
Siam Review, 60(3):550–591, 2018.

[13] P Piperni, A DeBlois, and R Henderson. Development of a multilevel
multidisciplinary-optimization capability for an industrial environment. AIAA
journal, 51(10):2335–2352, 2013.

[14] MJ Mifsud, David G MacManus, and ST Shaw. A variable-fidelity aerody-
namic model using proper orthogonal decomposition. International Journal
for Numerical Methods in Fluids, 82(10):646–663, 2016.

[15] Rhea P Liem, Charles A Mader, and Joaquim RRA Martins. Surrogate models
and mixtures of experts in aerodynamic performance prediction for aircraft
mission analysis. Aerospace Science and Technology, 43:126–151, 2015.

[16] Timothy W Simpson, Jesse D Poplinski, Patrick N Koch, and Janet K Allen.
Metamodels for computer-based engineering design: survey and recommen-
dations. Engineering with computers, 17:129–150, 2001.

[17] Felipe AC Viana, Christian Gogu, and Raphael T Haftka. Making the most
out of surrogate models: tricks of the trade. In International design engi-
neering technical conferences and computers and information in engineering
conference, volume 44090, pages 587–598, 2010.

[18] Timothy Simpson, Vasilli Toropov, Vladimir Balabanov, and Felipe Viana.
Design and analysis of computer experiments in multidisciplinary design
optimization: a review of how far we have come-or not. In 12th AIAA/ISSMO
multidisciplinary analysis and optimization conference, page 5802, 2008.

[19] Felipe AC Viana, Timothy W Simpson, Vladimir Balabanov, and Vasilli
Toropov. Special section on multidisciplinary design optimization: metamod-
eling in multidisciplinary design optimization: how far have we really come?
AIAA journal, 52(4):670–690, 2014.

[20] Raul Yondo, Esther Andrés, and Eusebio Valero. A review on design of experi-
ments and surrogate models in aircraft real-time and many-query aerodynamic
analyses. Progress in aerospace sciences, 96:23–61, 2018.

[21] Nestor V Queipo, Raphael T Haftka, Wei Shyy, Tushar Goel, Rajkumar
Vaidyanathan, and P Kevin Tucker. Surrogate-based analysis and optimization.
Progress in aerospace sciences, 41(1):1–28, 2005.

[22] Gary Wang and S. Shan. Review of metamodeling techniques in support of
engineering design optimization. Journal of Mechanical Design - J MECH
DESIGN, 129, 04 2007.



190 References

[23] Raphael T Haftka, Diane Villanueva, and Anirban Chaudhuri. Parallel
surrogate-assisted global optimization with expensive functions–a survey.
Structural and Multidisciplinary Optimization, 54:3–13, 2016.

[24] Haitao Liu, Yew-Soon Ong, and Jianfei Cai. A survey of adaptive sampling
for global metamodeling in support of simulation-based complex engineering
design. Structural and Multidisciplinary Optimization, 57:393–416, 2018.

[25] Lisia Dias, Atharv Bhosekar, and Mariathi Ierapetritou. Adaptive sampling
approaches for surrogate-based optimization. In Computer Aided Chemical
Engineering, volume 47, pages 377–384. Elsevier, 2019.

[26] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of
bayesian methods for seeking the extremum. Towards global optimization,
2(117-129):2, 1978.

[27] Jonas Mockus. Bayesian approach to global optimization: theory and appli-
cations, volume 37. Springer Science & Business Media, 2012.

[28] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando
De Freitas. Taking the human out of the loop: A review of bayesian optimiza-
tion. Proceedings of the IEEE, 104(1):148–175, 2015.

[29] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint
arXiv:1807.02811, 2018.

[30] Stefan Goertz, Mohammad Abu-Zurayk, Caslav Ilic, Tobias F Wunderlich,
Stefan Keye, Matthias Schulze, Christoph Kaiser, Thomas Klimmek, Özge
Süelözgen, Thiemo Kier, et al. Overview of collaborative multi-fidelity
multidisciplinary design optimization activities in the dlr project victoria. In
AIAA Aviation 2020 Forum, page 3167, 2020.

[31] Stanislav Karpuk, Valerio Mosca, Chuanzhen Liu, and Ali Elham. Develop-
ment of a multi-fidelity design, analysis, and optimization environment for
future transport aircraft. In AIAA Scitech 2022 Forum, page 0686, 2022.

[32] M Giselle Fernández-Godino, Chanyoung Park, Nam H Kim, and Raphael T
Haftka. Issues in deciding whether to use multifidelity surrogates. Aiaa
Journal, 57(5):2039–2054, 2019.

[33] Benjamin Peherstorfer, Karen Willcox, and Max Gunzburger. Survey of
multifidelity methods in uncertainty propagation, inference, and optimization.
Siam Review, 60(3):550–591, 2018.

[34] Marc C Kennedy and Anthony O’Hagan. Predicting the output from a complex
computer code when fast approximations are available. Biometrika, 87(1):1–
13, 2000.



References 191

[35] Alexander IJ Forrester, András Sóbester, and Andy J Keane. Multi-fidelity
optimization via surrogate modelling. Proceedings of the royal society a:
mathematical, physical and engineering sciences, 463(2088):3251–3269,
2007.

[36] Seongim Choi, Juan J Alonso, Illan M Kroo, and Mathias Wintzer. Multifi-
delity design optimization of low-boom supersonic jets. Journal of Aircraft,
45(1):106–118, 2008.

[37] Philip S Beran, Dean Bryson, Andrew S Thelen, Matteo Diez, and Andrea
Serani. Comparison of multi-fidelity approaches for military vehicle design.
In AIAA AVIATION 2020 FORUM, page 3158, 2020.

[38] Deng Huang, Theodore T Allen, William I Notz, and R Allen Miller. Sequen-
tial kriging optimization using multiple-fidelity evaluations. Structural and
Multidisciplinary Optimization, 32(5):369–382, 2006.

[39] Kirthevasan Kandasamy, Gautam Dasarathy, Junier Oliva, Jeff Schneider,
and Barnabás Póczos. Gaussian process optimisation with multi-fidelity
evaluations. In Proceedings of the 30th/International Conference on Advances
in Neural Information Processing Systems (NIPS’30), pages 1–9, 2016.

[40] Yehong Zhang, Trong Nghia Hoang, Bryan Kian Hsiang Low, and Mohan
Kankanhalli. Information-based multi-fidelity bayesian optimization. In NIPS
Workshop on Bayesian Optimization, pages 1–5, 2017.

[41] Xiongfeng Ruan, Ping Jiang, Qi Zhou, Jiexiang Hu, and Leshi Shu. Variable-
fidelity probability of improvement method for efficient global optimization of
expensive black-box problems. Structural and Multidisciplinary Optimization,
62:3021–3052, 2020.

[42] Shion Takeno, Hitoshi Fukuoka, Yuhki Tsukada, Toshiyuki Koyama, Motoki
Shiga, Ichiro Takeuchi, and Masayuki Karasuyama. Multi-fidelity bayesian
optimization with max-value entropy search and its parallelization. In Inter-
national Conference on Machine Learning, pages 9334–9345. PMLR, 2020.

[43] Jaroslaw Sobieszczanski-Sobieski. Multidisciplinary design optimization: an
emerging new engineering discipline. In Advances in structural optimization,
pages 483–496. Springer, 1995.

[44] Natalia M Alexandrov, M Yousuff Hussaini, et al. Multidisciplinary design
optimization: State of the art. SIAM, 1997.

[45] Jeremy Agte, Olivier De Weck, Jaroslaw Sobieszczanski-Sobieski, Paul
Arendsen, Alan Morris, and Martin Spieck. Mdo: assessment and direc-
tion for advancement—an opinion of one international group. Structural and
Multidisciplinary Optimization, 40:17–33, 2010.

[46] Joaquim RRA Martins and Andrew B Lambe. Multidisciplinary design
optimization: a survey of architectures. AIAA journal, 51(9):2049–2075,
2013.



192 References

[47] Rolf Isermann. Model-based fault-detection and diagnosis–status and applica-
tions. Annual Reviews in control, 29(1):71–85, 2005.

[48] Ali Zolghadri. Advanced model-based fdir techniques for aerospace systems:
Today challenges and opportunities. Progress in Aerospace Sciences, 53:18–
29, 2012.

[49] Julien Marzat, Hélène Piet-Lahanier, Frédéric Damongeot, and Eric Walter.
Model-based fault diagnosis for aerospace systems: a survey. Proceedings
of the Institution of Mechanical Engineers, Part G: Journal of aerospace
engineering, 226(10):1329–1360, 2012.

[50] Ke-Shi Zhang, Zhong-Hua Han, Zhong-Jian Gao, and Yuan Wang. Con-
straint aggregation for large number of constraints in wing surrogate-based
optimization. Structural and Multidisciplinary Optimization, 59:421–438,
2019.

[51] Amin Nazemian and Parviz Ghadimi. Multi-objective optimization of trimaran
sidehull arrangement via surrogate-based approach for reducing resistance
and improving the seakeeping performance. Proceedings of the institution
of mechanical engineers, part M: journal of engineering for the maritime
environment, 235(4):944–956, 2021.

[52] Truong Dang, Anh Vu Luong, Alan Wee Chung Liew, John McCall, and
Tien Thanh Nguyen. Ensemble of deep learning models with surrogate-based
optimization for medical image segmentation. In 2022 IEEE Congress on
Evolutionary Computation (CEC), pages 1–8. IEEE, 2022.

[53] Halil Beglerovic, Michael Stolz, and Martin Horn. Testing of autonomous
vehicles using surrogate models and stochastic optimization. In 2017 IEEE
20th International Conference on Intelligent Transportation Systems (ITSC),
pages 1–6. IEEE, 2017.

[54] César Ramírez-Márquez, Edgar Martín-Hernández, Mariano Martín, and
Juan Gabriel Segovia-Hernández. Surrogate based optimization of a process
of polycrystalline silicon production. Computers & Chemical Engineering,
140:106870, 2020.

[55] Ryan Shaffer, Lucas Kocia, and Mohan Sarovar. Surrogate-based optimization
for variational quantum algorithms. Physical Review A, 107(3):032415, 2023.

[56] Michael D McKay, Richard J Beckman, and William J Conover. A comparison
of three methods for selecting values of input variables in the analysis of output
from a computer code. Technometrics, 42(1):55–61, 2000.

[57] Richard F Gunst and Robert L Mason. Fractional factorial design. Wiley
Interdisciplinary Reviews: Computational Statistics, 1(2):234–244, 2009.

[58] Douglas C Montgomery. Design and analysis of experiments. John wiley &
sons, 2017.



References 193

[59] Anders Gustafsson, Andreas Herrmann, and Frank Huber. Conjoint mea-
surement: Methods and applications. Springer Science & Business Media,
2013.

[60] Raymond H Myers, Douglas C Montgomery, and Christine M Anderson-
Cook. Response surface methodology: process and product optimization
using designed experiments. John Wiley & Sons, 2016.

[61] Herman Chernoff. Sequential design of experiments. The Annals of Mathe-
matical Statistics, 30(3):755–770, 1959.

[62] Ruichen Jin, Wei Chen, and Agus Sudjianto. On sequential sampling for
global metamodeling in engineering design. In International design engi-
neering technical conferences and computers and information in engineering
conference, volume 36223, pages 539–548, 2002.

[63] Foster Provost, David Jensen, and Tim Oates. Efficient progressive sam-
pling. In Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 23–32, 1999.

[64] Francesco Di Fiore, Michela Nardelli, and Laura Mainini. Active learning
and bayesian optimization: a unified perspective to learn with a goal. Archives
of Computational Methods in Engineering, 2024.

[65] Francesco Di Fiore, Michela Nardelli, and Laura Mainini. Active learning
and bayesian optimization: a unified perspective to learn with a goal. arXiv
preprint arXiv:2303.01560, 2023.

[66] Ashwin Ram and David B Leake. Goal-driven learning. MIT press, 1995.

[67] J Tinsley Oden and Kumar S Vemaganti. Estimation of local modeling
error and goal-oriented adaptive modeling of heterogeneous materials: I.
error estimates and adaptive algorithms. Journal of Computational Physics,
164(1):22–47, 2000.

[68] Tan Bui-Thanh, Karen Willcox, Omar Ghattas, and Bart van Bloemen Waan-
ders. Goal-oriented, model-constrained optimization for reduction of large-
scale systems. Journal of Computational Physics, 224(2):880–896, 2007.

[69] Chad Lieberman and Karen Willcox. Goal-oriented inference: Approach,
linear theory, and application to advection diffusion. siam REVIEW, 55(3):493–
519, 2013.

[70] Francesco Di Fiore and Laura Mainini. Non-myopic multifidelity bayesian
optimization. arXiv preprint arXiv:2207.06325, 2022.

[71] Francesco Grassi, Giorgio Manganini, Michele Garraffa, and Laura Mainini.
Raal: Resource aware active learning for multifidelity efficient optimization.
AIAA Journal, 61(6):2744–2753, 2023.



194 References

[72] Masashi Sugiyama and Shinichi Nakajima. Pool-based active learning in
approximate linear regression. Machine Learning, 75(3):249–274, 2009.

[73] Dongrui Wu. Pool-based sequential active learning for regression. IEEE
transactions on neural networks and learning systems, 30(5):1348–1359,
2018.

[74] Alexander Shapiro. Monte carlo sampling methods. Handbooks in operations
research and management science, 10:353–425, 2003.

[75] Art B Owen. Quasi-monte carlo sampling. Monte Carlo Ray Tracing: Sig-
graph, 1:69–88, 2003.

[76] A Karamchandani, P Bjerager, and CA Cornell. Adaptive importance sam-
pling. In Structural Safety and Reliability, pages 855–862. ASCE, 1989.

[77] Monica F Bugallo, Victor Elvira, Luca Martino, David Luengo, Joaquin
Miguez, and Petar M Djuric. Adaptive importance sampling: The past, the
present, and the future. IEEE Signal Processing Magazine, 34(4):60–79,
2017.

[78] Benjamin Peherstorfer, Tiangang Cui, Youssef Marzouk, and Karen Willcox.
Multifidelity importance sampling. Computer Methods in Applied Mechanics
and Engineering, 300:490–509, 2016.

[79] Yves F Atchadé and Jeffrey S Rosenthal. On adaptive markov chain monte
carlo algorithms. Bernoulli, 11(5):815–828, 2005.

[80] Yves Atchade, Gersende Fort, Eric Moulines, and Pierre Priouret. Adaptive
markov chain monte carlo: theory and methods. Bayesian time series models,
1, 2011.

[81] Mónica F Bugallo, Luca Martino, and Jukka Corander. Adaptive importance
sampling in signal processing. Digital Signal Processing, 47:36–49, 2015.

[82] Xiuzhuang Zhou, Yao Lu, Jiwen Lu, and Jie Zhou. Abrupt motion tracking via
intensively adaptive markov-chain monte carlo sampling. IEEE Transactions
on Image Processing, 21(2):789–801, 2011.

[83] Ning-Cong Xiao, Hongyou Zhan, and Kai Yuan. A new reliability method
for small failure probability problems by combining the adaptive importance
sampling and surrogate models. Computer Methods in Applied Mechanics
and Engineering, 372:113336, 2020.

[84] HA Jensen, DJ Jerez, and M Valdebenito. An adaptive scheme for reliability-
based global design optimization: A markov chain monte carlo approach.
Mechanical Systems and Signal Processing, 143:106836, 2020.

[85] Christian P Robert, George Casella, and George Casella. Monte Carlo statisti-
cal methods, volume 2. Springer, 1999.



References 195

[86] Tim Hesterberg. Weighted average importance sampling and defensive mix-
ture distributions. Technometrics, 37(2):185–194, 1995.

[87] Luca Martino, Victor Elvira, David Luengo, and Jukka Corander. An adaptive
population importance sampler: Learning from uncertainty. IEEE Transac-
tions on Signal Processing, 63(16):4422–4437, 2015.

[88] Yousef El-Laham, Luca Martino, Víctor Elvira, and Mónica F Bugallo. Effi-
cient adaptive multiple importance sampling. In 2019 27th European Signal
Processing Conference (EUSIPCO), pages 1–5. IEEE, 2019.

[89] John D Jakeman and Stephen G Roberts. Local and dimension adaptive
stochastic collocation for uncertainty quantification. In Sparse grids and
applications, pages 181–203. Springer, 2012.

[90] John D Jakeman, Michael S Eldred, Gianluca Geraci, and Alex Gorodetsky.
Adaptive multi-index collocation for uncertainty quantification and sensitiv-
ity analysis. International Journal for Numerical Methods in Engineering,
121(6):1314–1343, 2020.

[91] Max Gunzburger, Clayton G Webster, and Guannan Zhang. An adaptive
wavelet stochastic collocation method for irregular solutions of partial differ-
ential equations with random input data. In Sparse Grids and Applications-
Munich 2012, pages 137–170. Springer, 2014.

[92] Martin Eigel, Oliver G Ernst, Bjorn Sprungk, and Lorenzo Tamellini. On
the convergence of adaptive stochastic collocation for elliptic partial differ-
ential equations with affine diffusion. SIAM Journal on Numerical Analysis,
60(2):659–687, 2022.

[93] Youssef Marzouk and Dongbin Xiu. A stochastic collocation approach to
bayesian inference in inverse problems. Communications in Computational
Physics, 6(4):826–847, 2009.

[94] Xiang Ma and Nicholas Zabaras. An efficient bayesian inference approach to
inverse problems based on an adaptive sparse grid collocation method. Inverse
Problems, 25(3):035013, 2009.

[95] Abdul-Lateef Haji-Ali, Fabio Nobile, Lorenzo Tamellini, and Raúl Tempone.
Multi-index stochastic collocation for random pdes. Computer Methods in
Applied Mechanics and Engineering, 306:95–122, 2016.

[96] Jens Lang, Robert Scheichl, and David Silvester. A fully adaptive multilevel
stochastic collocation strategy for solving elliptic pdes with random data.
Journal of Computational Physics, 419:109692, 2020.

[97] Thomas Gerstner and Michael Griebel. Dimension–adaptive tensor–product
quadrature. Computing, 71:65–87, 2003.



196 References

[98] Diane Guignard and Fabio Nobile. A posteriori error estimation for the
stochastic collocation finite element method. SIAM Journal on Numerical
Analysis, 56(5):3121–3143, 2018.

[99] Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A com-
prehensive study of non-adaptive and residual-based adaptive sampling for
physics-informed neural networks. Computer Methods in Applied Mechanics
and Engineering, 403:115671, 2023.

[100] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde:
A deep learning library for solving differential equations. SIAM review,
63(1):208–228, 2021.

[101] Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Effi-
cient training of physics-informed neural networks via importance sampling.
Computer-Aided Civil and Infrastructure Engineering, 36(8):962–977, 2021.

[102] Burr Settles. Active learning literature survey. 2009.

[103] Xueying Zhan, Huan Liu, Qing Li, and Antoni B Chan. A comparative survey:
Benchmarking for pool-based active learning. In IJCAI, pages 4679–4686,
2021.

[104] Harold J Kushner. A new method of locating the maximum point of an
arbitrary multipeak curve in the presence of noise. 1964.

[105] AG Zhilinskas. Single-step bayesian search method for an extremum of
functions of a single variable. Cybernetics, 11(1):160–166, 1975.
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