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Abstract

In this manuscript many results about elementary number theory are presented. They
mainly concern the study of linear recurrences and algebraic independence of certain
continued fractions and their convergents. The set of all linear recurrent sequences
can be equipped with several operations such as the binomial convolution (Hurwitz
product) or the multinomial convolution (Newton product). Using elementary and
combinatorial techniques, we prove that this set endowed with the termwise sum and
the aforementioned products is an R−algebra, given any commutative ring R with
identity. Moreover, we provide explicitly a characteristic polynomial of the Hurwitz
product and Newton product of any two linear recurrent sequences. We also inves-
tigate whether these R−algebras are isomorphic, considering also the R−algebras
obtained using the Hadamard product and the convolution product. The Lucas se-
quence is a specific linear recurrence of order two with characteristic polynomial
X2 − sX − t. When s, t are treated as variables, the definition of Lucas polynomials
naturally follows. Sagan and Tirrell [57] introduced a particular factorization of these
polynomials, known as Lucas atoms. We present a new approach to introducing
Lucas atoms, offering straightforward proofs for their main properties. Moreover, we
fully characterize the p-adic valuations of Lucas atoms for any prime p, answering
to a problem left open by Sagan and Tirrell, who treated only some specific cases
for p ∈ {2,3}. Finally, we prove that the sequence of Lucas atoms is not holonomic,
contrarily to the Lucas sequence. A particular instance of Lucas sequence is the
Fibonacci sequence, whose characteristic polynomial is X2−X −1. The Zeckendorf
representation of an integer is the unique way to write an integer as sum of distinct
and non consecutive Fibonacci numbers. Prempreesuk, Noppakaew, and Pongsriiam
[52] determined the Zeckendorf representation of the multiplicative inverse of 2
modulo Fn, for every positive integer n not divisible by 3, where Fn denotes the nth
Fibonacci number. We determine the Zeckendorf representation of the multiplicative
inverse of a modulo Fn, for every fixed integer a ≥ 3 and for all positive integers n



iv

with gcd(a,Fn) = 1. Our proof makes use of the so-called base-ϕ expansion of real
numbers.
Regarding the algebraic independence of numbers, Elsner et al. [23, 24] devel-
oped and applied a method in which the algebraic independence of n quantities
x1, . . . ,xn over a field is transferred to further n quantities y1, . . . ,yn by means of
a system of polynomials in 2n variables X1, . . . ,Xn, Y1, . . . ,Yn . In this manuscript,
we systematically study and explain this criterion and its variants. Moreover, we
apply this criterion to periodic non-regular Hurwitz-type continued fractions, namely
continued fractions with real numbers as partial quotients. We show that given a
continued fraction of this type, this criterion can be applied to prove that not only the
convergents are algebraically independent each other, but they are also algebraically
independent from the continued fraction.
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Chapter 1

A path into the chapters

The purpose of this manuscript is to explore linear recurrent sequences of any degree
in terms of algebraic structures, and also to study some aspects of the second-
order recurrences. In particular, the study focused on Lucas sequence, on a new
definition of Lucas atoms, and on Fibonacci sequence. Finally, some results concern
the algebraic independence of certain Hurwitz-type continued fractions and its
convergents.

The first part of this dissertation is about linear recurrent sequences. Let R be an
associative, commutative ring having characteristic zero and unity, let S(R) be the
set of sequences of elements belonging to the ring R and let W(R)⊂ S(R) the set of
linear recurrent sequences. Both sets can be equipped with several operations giving
them interesting algebraic structures. In the case that R is a field, it is immediate
to see that the element-wise sum or product (also called the Hadamard product) of
two linear recurrent sequences is still a linear recurrent sequence, see, e.g., [25].
Cerruti and Vaccarino [17] proved this in the general case where R is a ring, showing
that W(R) is an R−algebra and also giving explicitly the characteristic polynomial
of the element-wise sum and Hadamard product of two linear recurrent sequences.
Larson and Taft [43, 69] studied this algebraic structure characterizing the invertible
elements and the zero divisors. Other studies about the behaviour of linear recurrent
sequences under the Hadamard product can be found, e.g., in [15, 31, 38, 77]. In
the same manner, W(R) equipped with the element-wise sum and the convolution
product (or Cauchy product) has been deeply studied. In particular, W(R) is still an
R−algebra and the characteristic polynomial of the convolution product between
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two linear recurrent sequences can be explicitly computed [17]. The convolution
product of linear recurrent sequences has been explored also from a combinatorial
point of view [1] and over finite fields [36]. For other results, see, e. g., [66–68].
Another important operation between sequences is the binomial convolution (called
also Hurwitz product). In [39], Keigher introduced in a systematic way the Hurwitz
series ring. This has also been explored by other several authors [8, 7, 9, 10, 40,
76]. However, there are few results when focusing on linear recurrent sequences
[41, 42]. In Chapter 3 we study the algebraic structure of linear recurrent sequences
considering in particular the Hurwitz product and the Newton product. Moreover, in
Section 3.3 we study whether isomorphisms exist between these structures.

The Lucas sequence is a specific second-order linear recurrent sequence from
which Lucas polynomials are defined. Chapter 4 is devoted to the study of Lucas
atoms, introduced for the first time by Sagan and Tirrel [57], that are nothing
else than irreducible factors of Lucas polynomials. The main aim of the authors
was to investigate, from an innovatory point of view, when some combinatorial
rational functions are actually polynomials. It will be shown that Lucas atoms
can be introduced in a more natural and powerful way than the original definition,
providing straightforward proofs for their main properties. Specifically, in Section
4.1 we revisit some of the main properties of Lucas atoms, obtaining them with
elementary proofs. The p-adic valuations of integer sequences is a well studied
topic, in particular the case of Lucas sequences has been deepened by several authors
(see, e.g., [6, 44, 58, 71]). Section 4.2 is devoted to the p-adic valuations of Lucas
atoms. In [57], the authors dealt with Lucas atoms and some divisibility properties
by p = 2,3. They left open, addressing it as a hard problem, the extension of these
results to arbitrary primes. In Section 4.2, we solve this problem and we completely
characterize the p-adic valuations of Lucas atoms. Finally, in Section 4.3, we exploit
the results on the p-adic valuations of Lucas atoms to prove that the sequence of
Lucas atoms is not holonomic, i.e., it does not satisfy any recurrence relation, also
considering coefficients being polynomials, contrarily to the Lucas sequence.

A particular case of Lucas sequence is the Fibonacci sequence whose elements
are called Fibonacci numbers. The theorem of Zeckendorf asserts that any positive
integer can be expressed in a unique manner as the sum of one or more distinct
non-consecutive Fibonacci numbers [75]. These kinds of representation, called
Zeckendorf representations, have been studied in several works. In particular, the
Zeckendorf representation of numbers of the form fkn/ fn, f 2

n /d and L2
n/d, where
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fn are the Fibonacci numbers, Ln are the Lucas numbers and d is a Lucas or Fi-
bonacci number, have been studied by Filipponi and Freitag [26, 28]. Whereas,
the Zeckendorf representation of numbers of the form m fn have been analyzed
by Filipponi, Hart, and Sanchis [27, 35, 46]. Filipponi [27] determined the Zeck-
endorf representation of m fn fn+k and mLnLn+k for m ∈ {1,2,3,4}. The study of
Zeckendorf representations has been also approached from a combinatorial point
of view [4, 29, 47, 73]. Moreover, generalizations of the Zeckendorf representation
to linear recurrences other than the sequence of Fibonacci numbers has been con-
sidered [18, 19, 32, 48, 51]. For all integers a and m ≥ 1 with gcd(a,m) = 1, let
(a−1 mod m) denote the least positive multiplicative inverse of a modulo m, that is,
the unique b ∈ {1, . . . ,m} such that ab ≡ 1 (mod m). In [52], Prempreesuk, Nop-
pakaew, and Pongsriiam determined the Zeckendorf representation of (2−1 mod fn),
for every positive integer n that is not divisible by 3. (The condition 3 ∤ n is necessary
and sufficient to have gcd(2, fn) = 1.) In particular, they showed [52, Theorem 3.2]
that

(2−1 mod fn) =

∑
(n−7)/2
k=0 fn−3k−2 + f3 if n ≡ 1 (mod 3);

∑
(n−8)/2
k=0 fn−3k−2 + f4 if n ≡ 2 (mod 3);

for every integer n ≥ 8. In Chapter 5 we extend their result by determining the
Zeckendorf representation of the multiplicative inverse of a modulo fn, for every
fixed integer a ≥ 3 and every positive integer n with gcd(a, fn) = 1.

The last part of this dissertation focuses on the area of algebraic independence.
The transcendence of π and that of e has been known since the end of the 19th

century, but the question of the algebraic independence of π and e over Q has still
not been answered, i.e. the exclusion of the existence of a non-identical vanishing
polynomial P(X ,Y ) with rational coefficients such that P(π,e) = 0. The theorem
of Lindemann-Weierstrass (1885), from which the transcendence of π and of e
can be derived, is the beginning of a general theory on algebraic independence
of complex numbers over Q. In one of its equivalent formulations this theorem
states that in the case of the linear independence of algebraic numbers α1, . . . ,αn

over Q, the numbers eα1, . . . ,eαn are algebraically independent over Q [60]. An
additional significant achievement is the theorem of Gelfond-Schneider that states
the transcendence of αβ when α and β are algebraic over Q, assuming that α ̸= 0,1
and β ̸∈ Q [60]. Another important result is Baker’s theorem on linear forms
in logarithms that states that, given α1, . . . ,αn algebraic numbers different from
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zero such that logα1, . . . , logαn are linearly independent over the rational numbers,
then the numbers 1, logα1, . . . , logαn are linearly independent over the field of all
algebraic numbers [5]. In 1916, S. Ramanujan [53] defined the series

S j+1(x) :=
ζ (−2 j−1)

2
+

∞

∑
n=1

n2 j+1xn

1− xn

where ζ (s) is the Riemann zeta function. Let

P(x) := −24S1(x) , Q(x) := 240S3(x) , R(x) := −504S5(x) . (1.1)

In 1996, Y. Nesterenko [49] proved that for every complex number x with 0 < |x|< 1,
the set {

x,P(x),Q(x),R(x)
}

contains at least three numbers that are algebraically independent over Q. In terms
of algebraic independence of continued fractions, Tanaka [70] gave a necessary and
sufficient condition for the values of Θ(x,a,q) to be algebraically independent, where
Θ(x,a,q) is a sort of q-hypergeometric series. In particular, he showed under which
conditions the values of the continued fractions obtained when x = a, namely Θ(a,q),
are algebraically dependent. Chapter 6 contains results on algebraic independence
or dependence of number sets. A criterion and its variants will be presented, which
state that, starting from a set of known algebraically independent numbers, we obtain
a new set where the numbers in both sets satisfy a system of polynomial equations.
Moreover, in Section 6.3 this criterion will be applied to continued fractions and a
numerical example for Diophantine approximations with convergents of continued
fractions with algebraically independent partial quotients is presented.

The structure of the dissertation is as follows: Chapter 2 contains some prelimi-
nary concepts and well-known results that will be useful in the subsequent chapters.
New results about the algebraic structures of linear recurrent sequences will be
presented in Chapter 3. The following two chapters present some results connected
with second-order linear recurrent sequences: namely, Chapter 4 will be about Lucas
atoms, while Chapter 5 will be about Zeckendorf representation of the inverse of an
integer modulo a Fibonacci number; the final chapter focuses on the application of a
criterion for algebraic independence of Hurwitz-type continued fractions and their
convergents.



Chapter 2

Preliminaries and notation

2.1 About linear recurrent sequences

Given an associative and commutative ring (R,+, ·), having characteristic zero and
unity, we denote by S(R) the set of all sequences a := (an)n≥0 such that an ∈ R, for
all n ∈ N. A sequence a ∈ S(R) is said to be a linear recurrent sequence of order N
if its elements satisfy

an =
N

∑
i=1

hian−i, ∀n ≥ N

for some coefficients hi ∈ R, i = 1, . . . ,N, where hN is not a zero divisor in R. The
characteristic polynomial associated to this recurrence relation is defined as

pa(t) := tN −
N

∑
i=1

hitN−i.

The elements a0, . . . ,aN−1 are called initial conditions. We denote by W(R)⊂ S(R)
the set of all linear recurrent sequences. Moreover, given a ∈ S(R), we write

Ao(t) :=
∞

∑
n=0

antn, Ae(t) :=
∞

∑
n=0

an

n!
tn,

for the ordinary generating function (o.g.f.) and the exponential generating function
(e.g.f.), respectively. For any a,b ∈ S(R), we will deal with the following operations:
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• componentwise sum ⊕, defined by

c := a⊕b, cn := an +bn, ∀n ≥ 0;

• componentwise product or Hadamard product ⊙, defined by

c := a⊙b, cn := an ·bn, ∀n ≥ 0;

• convolution product ∗, defined by

c := a∗b, cn :=
n

∑
i=0

aibn−i, ∀n ≥ 0;

• binomial convolution product or Hurwitz product ⋆, defined by

c := a⋆b, cn :=
n

∑
i=0

(
n
i

)
aibn−i, ∀n ≥ 0;

• multinomial convolution product or Newton product ⊠, defined by

c := a⊠b, cn :=
n

∑
i=0

i

∑
j=0

(
n
i

)(
i
j

)
aibn− j, ∀n ≥ 0.

Remark 2.1.1. The Newton product is also called multinomial convolution product,
because it is the natural generalization of the binomial convolution product using the
multinomial coefficient. Observe indeed that

(n
i

)( i
j

)
=
( n

n−i,i− j, j

)
.

Definition 2.1.2. Given two monic polynomials f (t) of degree M and g(t) of degree
N, their resultant is res( f (t),g(t)) := ∏

M
i=1 ∏

N
j=1(αi −β j), where αi’s and β j’s are,

respectively, the roots of f (t) and g(t), counted with their multiplicities.

After introducing general linear recurrent sequences, we now examine specific
second-order sequences. Lucas sequences of the first kind (Un)n≥0 are linear recur-
rent sequences having characteristic polynomial X2 − sX − t with initial conditions
0 and 1, i.e., they are defined by the recurrenceU0 := 0, U1 := 1,

Un := sUn−1 + tUn−2, ∀n ≥ 2,
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where s and t are usually integer numbers. If we consider s and t as two variables,
then we talk about Lucas polynomials Un(s, t) ∈ N[s, t]. In [57], the authors studied
a very interesting factorization for Lucas polynomials connected to cyclotomic
polynomials. In particular, they introduced the Lucas atoms as the polynomials

P1(s, t) := 1, Pn(s, t) := Γ(Ψn(q)),

for all n ≥ 2, where Ψn(q) is the n–th cyclotomic polynomial and Γ a map that
exploits the gamma expansion of palindromic polynomials. Given this definition,
the authors proved that the following factorization of the Lucas polynomials holds:

Un(s, t) = ∏
d|n

Pd(s, t),

and moreover Pn(s, t) ∈ N[s, t], for all n ≥ 1.

This study was firstly motivated by the problem of finding when the rational
function

∏iUni(s, t)

∏ j Uk j(s, t)
(2.1)

is actually a polynomial. For instance, it has been studied by some authors the case
of the so called Lucanomial, which is the generalization of the binomial coefficient
to Lucas polynomials:

(
Un(s, t)
Uk(s, t)

)
:=

∏
n
i=1Ui(s, t)

∏
k
i=1Ui(s, t)∏

n−k
i=1 Ui(s, t)

,

see, e.g., [11, 12]. In fact, thanks to Lucas atoms, the study of when (2.1) is a
polynomial can be approached in a straightforward way exploiting the factorization
of Lucas polynomials.

The idea of factorizing the Lucas polynomials dates back to 1969, when Webb
and Parberry [72] employed it to discuss the irreducibility of the Lucas polynomial
Un(s,1). Subsequently, Levy [45] gave the definition of fibotomic polynomials,
which turn out to be the Lucas atoms for t = ±1 and he proved that they are
irreducible. Moreover, he made some remarks on their connection with the two-
variable homogeneous cyclotomic polynomials, which was already highlighted in
a work of Brillhart et al. [14]. It is also remarkable that this approach has been
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already used by Stewart et al. [61, 62, 64, 63, 65] in order to obtain estimations
on the greatest prime factor of the terms of the Lucas sequence and other recurrent
sequences. The definition of Lucas atoms can be simplified, avoiding the use of the
Γ map.

Let us consider

Φn(α,β ) :=
n

∏
j=1

( j,n)=1

(α −ω
j
β ),

for all n ≥ 1, where ω is an n–th primitive root of unity. For basic properties of these
polynomials we refer to [64]. From this definition, we immediately get that

α
n −β

n = ∏
d|n

Φd(α,β ),

and
β

ϕ(n)
Ψn(α/β ) = Φn(α,β ),

where ϕ(·) is the Euler’s totient function. Then, we can define the Lucas atoms as
the polynomials

P1(s, t) := 1, Pn(s, t) := Φn(α,β ) = β
ϕ(n)

Ψn(α/β ), (2.2)

for all n ≥ 2, where s = α +β and t =−αβ . In this way, we obtain the factorization
of the Lucas polynomials by means of the Lucas atoms (as well as with the definition
given in [57]). Indeed, observing that Φ1(α,β ) = α −β , we have

α
n −β

n = (α −β )∏
d|n
d ̸=1

Φd(α,β ) = (α −β )∏
d|n

Pd(s, t),

remembering that P1(s, t) = 1. Thus, we have

Un(s, t) =
αn −β n

α −β
= ∏

d|n
Pd(s, t) (2.3)

where (Un(s, t))n≥0 has characteristic polynomial X2 − sX − t = (X −α)(X −β ).

In Chapter 4, it will be shown that the definition of Lucas atoms given in (2.2) is
more convenient and straightforward than the original definition proposed in [57].
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A particular Lucas sequence is the Fibonacci sequence, whose characteristic
polynomial is X2 −X − 1, so that indicating by ( fn)n≥1 the sequence, then fn =

fn−1 + fn−2 for n ≥ 3 with initial conditions f1 = f2 = 1. It is well known [75]
that every positive integer n can be written as a sum of distinct non-consecutive
Fibonacci numbers, that is, n = ∑

m
i=1 di fi, where m ∈ N, di ∈ {0,1}, and didi+1 = 0

for all i ∈ {1, . . . ,m−1}. This is called the Zeckendorf representation of n and, apart
from the equivalent use of f1 instead of f2 or vice versa, is unique.
Let us recall that for every integer n ≥ 1 it holds the Binet formula

fn =
ϕn −ϕ

n
√

5
,

where ϕ := (1+
√

5)/2 is the Golden ratio and ϕ := (1−
√

5)/2 is its algebraic
conjugate. An interesting property of linear recurrent sequences is their periodicity
modulo an integer m, ∀m ∈ Z. In particular, the period of a linear recurrence is the
length of the smallest subsequence that throughout the sequence. This period length,
also known as the Pisano period, is denoted by π(m). So for every integer m ≥ 1,
the Fibonacci sequence ( fn)n≥1 is (purely) periodic modulo m.
The Fibonacci sequence can be studied by different prospective. In our study we
see it using the so-called base-ϕ expansion of real numbers, which was introduced
by Bergman [13] in 1957 (see also [56]), and which is a particular case of non-
integer base expansion (see, e.g., [50, 54]). Let D be the set of sequences in
{0,1} that have no two consecutive terms equal to 1, and that are not ultimately
equal to the periodic sequence 0,1,0,1, . . . . Then for every x ∈ [0,1) there exists
a unique sequence δδδ (x) = (δi(x))i∈N in D such that x = ∑

∞
i=1 δi(x)ϕ−i. Precisely,

δi(x) = ⌊ϕ ·T (i−1)(x)⌋ for every i ∈ N, where T (i) denotes the ith iterate of the map
T : [0,1)→ [0,1) defined by T (x̂) := (ϕ x̂ mod 1) for every x̂ ∈ [0,1) and T (0) is the
identity. Furthermore, letting F := Q(ϕ)∩ [0,1), if x ∈ F then δδδ (x) is ultimately
periodic. In particular, if x ∈ F is given as x = x1 + x2ϕ , where x1,x2 ∈ Q, then
the preperiod and the period of δδδ (x) can be effectively computed by finding the
smallest i ∈ N such that T (i)(x) = T ( j)(x) for some j ∈ N with j < i. Conversely,
for every ultimately periodic sequence ddd = (di)i∈N in D we have that the number
x = ∑

∞
i=1 diϕ

−i belongs to F , and x1,x2 ∈Q such that x = x1+x2ϕ can be effectively
computed in terms of the preperiod and period of ddd by using the formula for the sum
of the geometric series. Moreover, in the case that x is a rational number in [0,1)
then δδδ (x) is purely periodic [59].
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2.2 On the theory of algebraic independence and the
theory of continued fractions

The preliminaries contained in this section are mainly taken from [34] and [60].

Definition 2.2.1. A number α ∈ C is said to be algebraic if it is a root of a nonzero
polynomial f (t) = antn+ · · ·+a1t+a0 with rational coefficients. A number β is said
to be transcendental if it is not a root of any polynomial with algebraic coefficients
[60].

Two classical transcendental numbers are π and e. The transcendence of π is
closely related to the problem of squaring the circle, a classical problem studied
since Ancient Greek times. Some approximations of π by rational numbers were
achieved in the medieval period using geometric methods, specifically through the
construction of regular polygons inscribed or circumscribed about the circle. In
1873, Hermite proved the transcendence of e with a new method that Lindemann
generalized proving the transcendence of π .

Definition 2.2.2. Given a field K and a subfield L ⊆ K, then a set of numbers
T = {α1,α2, . . . ,αn} with αi ∈ K ∀1 ≤ i ≤ n is algebraically independent over
L if the elements of T do not satisfy any non-trivial polynomial equation with
coefficients in L and in n variables, namely {α1,α2, . . . ,αn} is not a zero of any
non-trivial polynomial in L[x1, . . . ,xn].

Definition 2.2.3. Given L ⊆ K, a derivation δ : L → K is a map which satisfies
δ (x + y) = δ (x) + δ (y) and δ (xy) = xδ (y) + δ (x)y for x,y ∈ K. Since K is an
extension field of L, δ is called an L-derivation; if in addition δ (x) = 0 for all x ∈ L,
δ is L-linear.

The followings theorems are classical results about the algebraic independence
of certain sets of numbers.

Theorem 2.2.4 (Lindemann - Weierstrass (1885)). Given {α1,α2, . . . ,αn} algebraic
numbers linearly independent over Q, then {eα1,eα2, . . . ,eαn} are algebraically
independent over Q.

Theorem 2.2.5 (Gelfond - Schneider (1934)). Given {α1,α2,β1,β2} non-zero al-
gebraic numbers such that logα1 and logα2 are linearly independent over Q then
β1 logα1 +β2 logα2 ̸= 0.
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One can reformulate the above theorem in a different way. If α ̸= 0,1 is an
algebraic number and β is algebraic and irrational, then αβ is transcendental. From
Theorem 2.2.5, it follows that eπ is transcendental. An analogous theorem holds
for any arbitrary number of logarithms of algebraic numbers. In particular, Baker
generalized Theorem 2.2.5.

Theorem 2.2.6 (Baker (1967)). Let {α1,α2, . . . ,αn} non-zero algebraic numbers
such that {logα1, logα2, . . . , logαn} are linearly independent over the field of ratio-
nals; then, the numbers {1, logα1, logα2, . . . , logαn} are linearly independent over
the field of all algebraic numbers.

Definition 2.2.7. A continued fraction is an expression of the form

a1 +
b1

a2 +
b2

a3 +
b3

a3 +
b3

a4 +
. . .

(2.4)

where the numbers a1,a2,a3, . . . ,b1,b2,b3, . . . can be integers or complex numbers.

A continued fraction is said to be simple if bi = 1 ∀i in expression (2.4), so it
assumes the form

a1 +
1

a2 +
1

a3 +
1

a3 +
1

a4 +
. . .

and it is usually denoted by [a1,a2,a3, . . . ]. The coefficients ai are called partial
quotients of the continued fraction, whereas the numbers

c1 : = [a1] =
a1

1
,

c2 : = [a1,a2] = a1 +
1
a2

,
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c3 : = [a1,a2,a3] = a1 +
1

a2 +
1

a3

,

...

ci : = [a1,a2,a3, . . . ,ai] = a1 +
1

a2 +
. . .+

1

ai−1 +
1

ai

are called convergents of the continued fractions. The numbers of ai’s may be
finite or infinite. In the case that the ai’s are positive integers, any finite simple
continued fraction represents a rational number and conversely any rational number
can be represented as a finite simple continued fraction. A very famous result due to
Lagrange asserts that any real quadratic irrational number η , namely numbers that
have the form P±

√
D

Q with P, Q integers and D a positive integer not a square, has a
continued fraction expansion which is periodic. In particular, its continued fraction
is

η :=
[

a0,a1, . . . ,ak−1,ak, . . . ,ak+ℓ−1
]

=
[

a0,a1, . . . ,ak−1,ak, . . . ,ak+ℓ−1,ak, . . . ,ak+ℓ−1,ak, . . . ,ak+ℓ−1, . . .
]
,

where ai ∈ Z, ai > 0 if i ⩾ 1 and k ⩾ 0 and ℓ⩾ 0 are positive integers. For example,√
2 = [1,2],

√
3 = [1,1,2] or

√
11 = [3,3,6].

Let pm/qm denote the convergents of ξ ∈ R. They are given by the recurrence
formulas

p−1 := 1 , p0 := a0 , pm := am pm−1 + pm−2 (m ≥ 1) , (2.5)

q−1 := 0 , q0 := 1 , qm := amqm−1 +qm−2 (m ≥ 1) . (2.6)

One has
pm−1qm − pmqm−1 = (−1)m (m ≥ 0) . (2.7)
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The following is a classical result about the approximation of an irrational number
in terms of its convergents.

Theorem 2.2.8. Given ξ ∈ R and
( pm

qm

)
m≥0 the sequence of convergents of its

continued fraction expansion, then

1
qm(qm +qm+1)

<

∣∣∣∣ξ − pm

qm

∣∣∣∣≤ 1
qmqm+1

<
1

q2
m
.

Moreover, given two integers a,b such that 1 ≤ b ≤ qm−1, then it holds the
inequality |qnη − pn| ≤ |bη −a|. This means that each convergent is closer to the
irrational number than the preceding one. Moreover, continued fractions provide the
best rational approximations of real numbers.

In Chapter 6, we consider non-regular Hurwitz-type continued fractions of the
form

ξ :=
[

a0,a1, . . . ,an−1
]

with positive partial quotients a0, . . . ,an−1, which are all "or partly" algebraically
independent over the rational numbers Q. A continued fraction is said to be non-
regular if the partial quotients ai are real numbers, and not all integers. Hurwitz-type
continued fractions were introduced by Hurwitz in 1887 for complex number [37].
The Hurwitz-type continued fraction of a complex number ξ is given by a sequence
such that each of its elements is computed with the nearest Gaussian integer function
[·] : C → Z[i]. This function associates to each complex number z the Gaussian
integer closest to z; if there is a tie, the function takes the one with the greatest real
or imaginary part.

he main difference with classical continued fractions is that the partial quotients
are chosen recursevily following a particular algorithm introduced by Hurwitz.....

2.3 On the resultants between polynomials

Definition 2.3.1. Given two polynomials f (t) = antn+ · · ·+a1t +a0, g(t) = bmtm+

· · ·+b1t +b0 ∈K, their resultant with respect to the variable t is given by

Res( f ,g) = am
n bm

n ∏
i, j
(αi −β j)
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where f (αi) = 0 for 1 ≤ i ≤ n and g(α j) = 0 for 1 ≤ j ≤ m. The resultant Res( f ,g)
is an element of the field of the coefficients of f (t) and g(t).

There are several important properties that the resultant of two polynomials
exhibits: below, we will list some lemmas whose proofs will be omitted.

Lemma 2.3.2. The resultant between two polynomials is zero if and only if two
polynomials have a root in common.

Lemma 2.3.3. Let f (t), g(t) ∈K[t] have degrees n and m, both greater than zero,
respectively. Then f (t) and g(t) have a non-constant common factor if and only
if there exist nonzero polynomials A(t),B(t) ∈ K[t] such that deg(A(t)) ≤ m− 1,
deg(B(t))≤ n−1, and A(t) f (t)+B(t)g(t) = 0.

Lemma 2.3.4. For f (t), g(t) ∈K[t], there exist polynomials A(t),B(t) ∈K[t] such
that A(t) f (t)+B(t)g(t) = Res( f ,g).

Lemma 2.3.5. If f (t) is the characteristic polynomial of a square matrix F, and
g(t) is any polynomial, then the degree of the common factor of f (t) and g(t) is the
nullity of the matrix g(M).



Chapter 3

On new R-Algebras of linear
recurrent sequences

In this chapter, we extend the studies about the algebraic structure of linear recurrent
sequences [17] considering in particular the Hurwitz product and the Newton product
(that can be seen as the generalization of the Hurwitz product considering multino-
mial coefficients). In particular, we prove that the set of linear recurrent sequences
with terms in the ring R, called W(R), is an R−algebra when equipped with the
element-wise sum and the Hurwitz product, as well as when we consider element-
wise sum and Newton product. We also give explicitly the characteristic polynomials
of the Hurwitz and Newton product of two linear recurrent sequences. For the
Newton product we also find explicitly the inverses. Furthermore, we study the iso-
morphisms between these algebraic structures, finding that W(R) with element-wise
sum and Hurwitz product is not isomorphic to the other algebraic structures, whereas
if we consider the Newton product, there is an isomorphism with the R−algebra
obtained using the Hadamard product. Moreover, we present an overview about the
behaviour of linear recurrent sequences under all the different operations considered
(element-wise sum, Hadamard product, Cauchy product, Hurwitz product, Newton
product) with respect to the characteristic polynomials and their companion matrices.
The results present in this chapter belong to the published paper [2].
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3.1 Previous results

In [17], the authors studied the algebraic structures of the set of linear recurrent
sequences equipped with the component wise sum as first operation and both the
Hadamard product and the convolution product as second operation. In particular,
they showed that (W(R),⊕,⊙) and (W(R),⊕,∗) are R−algebras and they are never
isomorphic. Moreover, given a,b ∈W(R) and c = a⊙b, d = a∗b, they proved that

pc(t) = pa(t)⊗ pb(t), pd(t) = pa(t) · pb(t), (3.1)

where the operation ⊗ between polynomials is defined as follows. Given two poly-
nomials f (t) and g(t) with coefficients in R, said F and G their companion matrices,
respectively, then f (t)⊗g(t) is the characteristic polynomial of the Kronecker prod-
uct between F and G. In the following, we will denote by ⊗ also the Kronecker
product between matrices. To the best of our knowledge, similar results involving
the Hurwitz product and the Newton product are still missing.

Remark 3.1.1. Let us observe that the sequences c and d, defined above, recur with
characteristic polynomials pc(t) and pd(t) as given in (3.1), respectively, but these
polynomials are not necessarily the minimal polynomials of recurrence. In the case
that R is a ring without zero divisors, see [25] for more, the minimal polynomial
of a linear recurrent sequence a is the (unique) monic polynomial f (t) such that it
divides any characteristic polynomial of any linear recurrence relation satisfied by a.
In other words, it is the characteristic polynomial of the linear recurrence relation
of least degree satisfied by a. In general, it is an hard problem to find the minimal
polynomials of recurrence of these sequences, for some results, see [15, 31, 43, 66].

Given a linear recurrent sequence, then its generating function is a rational func-
tion. In particular, if Ao(t) = ∑

∞
n=0 antn is the o.g.f. of the sequence an = ∑

N
i=1 hian−i,

then Ao(t) =
P(t)

1−h1t−h2t2−···−hnxn where P(t) = p0 + p1t + · · ·+ pN−1tN−1. For ex-
ample, let us consider the Fibonacci sequence for which the ordinary generating
function is

Fo(t) = 1+ t +2t2 +3t3 +5t4 +8t5 + · · ·= p0 + p1t
1− t − t2 .



3.2 R-algebras of linear recurrent sequences 17

With some arithmetic manipulations, in particular multiplying both sides by 1−t−t2,
we get the condition for p0 and p1,

p0 + p1t = (1− t − t2)(1+ t +2t2 +3t3 +5t4 +8t5 + · · ·) = 1+0t +0t2 + · · ·

which means p0 = 1 and p1 = 0 so the rational expression of the ordinary generating
function is Fo(t) = 1

1−t−t2 .

Lemma 3.1.2. ([17, Lemma 3.2]) Given a ∈ S(R), we have that a ∈W(R) and pa(t)
is its characteristic polynomial if and only if p∗a(t) ·Ao(t) is a polynomial of degree
less than deg(pa(t)), where p∗a(t) denotes the reciprocal or reflected polynomial of
pa(t).

Proof. Let pa(t) := tN −∑
N
i=1 hitN−i. The result of the lemma follows directly from

p∗a(t) ·Ao(t) =a0 +(a1 −h1a0)t +(a2 −h1a1 −h2a0)t2 + · · ·
+(aN−1 −h1aN−2 −·· ·hN−1a0)t(N−1)

+
∞

∑
j≥N

(a j −h1a j−1 −·· ·hNa j−N)t j. (3.2)

3.2 R-algebras of linear recurrent sequences

To help the reader become familiar with the operations between sequences, we
present them in Table 3.1. Let a := (a0,a1,a2, . . .) and b := (b0,b1,b2, . . .) ∈ S(R),
then the generic n-th term of the resulting sequence, when applying one of the
operations listed in the first column of Table 3.1, is shown in the third column.

Name Symbol Definition
Element-wise sum ⊕ an +bn

Hadamard product ⊙ an ·bn

Convolution product ∗ ∑
n
i=0 aibn−i

Hurwitz product ⋆ ∑
n
i=0
(n

i

)
aibn−i

Newton product ⊠ ∑
n
i=0 ∑

i
j=0
(n

i

)( i
j

)
aibn− j

Table 3.1 Definitions and symbols for operations between sequences.
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The main results of this section are provided in Theorems 3.2.1 and 3.2.5, where
we prove that (W(R),⊕,⋆) and (W(R),⊕,⊠) are R−algebras, finding also the
characteristic polynomial of the Hurwitz and Newton product between two linear
recurrent sequences.

Theorem 3.2.1. Given a,b ∈W(R), we have that r := a⋆b ∈W(R) and the char-
acteristic polynomial of r is res(pa(x), pb(t − x)) with pb(t − x) regarded as a poly-
nomial in x. Moreover, (W(R),⊕,⋆) is an R−algebra.

Proof. It is well–known that (S(R),⊕,⋆) is an R−algebra (see, e.g., [39]), thus to
prove that (W(R),⊕,⋆) is an R−algebra it is sufficient to show that r is again in
W(R), i.e. r satisfies a linear recurrence. Let M and N be the degrees of pa(t)
and pb(t), respectively. We prove the theorem in the case that pa(t) and pb(t) have
distinct roots denoted by α1, . . . ,αM and β1, . . . ,βN , respectively. We consider the
ordinary generating function of the sequence r = a⋆b,

Ro(t) =
+∞

∑
n=0

(
n

∑
i=0

(
n
i

)
aibn−i

)
tn =

+∞

∑
i=0

+∞

∑
n=i

(
n
i

)
aibn−itn

=
+∞

∑
i=0

ait i
+∞

∑
n=i

(
n
i

)
bn−itn−i

=
+∞

∑
i=0

ait i
+∞

∑
m=0

(
m+ i

i

)
bmtm, (3.3)

where ∑
+∞

m=0
(m+i

i

)
bmtm is the ordinary generating function of the sequence obtained

from the Hadamard product between b and
((m+i

i

))
m≥0

, i.e.,

+∞

∑
m=0

(
m+ i

i

)
bmtm =

(
+∞

∑
m=0

bmtm

)
⊙

(
+∞

∑
m=0

(
m+ i

i

)
tm

)
= Bo(t)⊙

1

(1− t)i+1.

Since Bo(t) is the ordinary generating function of b ∈W(R), it is a rational function
and we can write it as

Bo(t) =
γ(t)
p∗b(t)

=
N

∑
j=1

c j

(1−β jt)
,
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for some integers c j. Now, we have

1
1−β jt

⊙ 1
(1− t)i+1 =

+∞

∑
m=0

(β jt)m⊙
+∞

∑
m=0

(
m+ i

i

)
tm =

+∞

∑
m=0

(
m+ i

i

)
(β jt)m =

1
(1−β jt)i+1 ,

and we get that

Bo(t)⊙
1

(1− t)i+1 =
N

∑
j=1

c j
1

1−β jt
⊙

1

(1− t)i+1 =
N

∑
j=1

c j

(1−β jt)i+1.

Thus, from (3.3) we obtain

Ro(t) =
+∞

∑
i=0

ait i
N

∑
j=1

c j

(1−β jt)i+1 =
N

∑
j=1

c j

1−β jt

+∞

∑
i=0

ai
t i

(1−β jt)i

=
N

∑
j=1

c j

1−β jt
Ao

(
t

1−β jt

)

=
N

∑
j=1

c j

1−β jt
·

δ

(
t

1−β jt

)
p∗a
(

t
1−β jt

) , (3.4)

where δ (t) is a polynomial of degree less than M.

Let p(t) = res(pa(x), pb(t − x)), then p(t) =
M

∏
h=1

N

∏
l=1

(t −αh −βl) and its reciprocal

polynomial is p∗(t) =
M

∏
h=1

N

∏
l=1

(1− (αh +βl)t). In particular, it is possible to rearrange

the last formula in the following way

p∗(t) =
M

∏
h=1

N

∏
l=1

(1−βlt −αht) =
M

∏
h=1

N

∏
l=1

(1−βlt)
(

1− αht
1−βlt

)
=

M

∏
h=1

N

∏
l=1

(1−βlt)
N

∏
l=1

(
1− αht

1−βlt

)
=

M

∏
h=1

p∗b(t)
N

∏
l=1

(
1− αht

1−βlt

)
= [p∗b(t)]

M
N

∏
l=1

M

∏
h=1

(
1− αht

1−βlt

)
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= [p∗b(t)]
M

N

∏
l=1

p∗a

(
t

1−βlt

)
. (3.5)

Combining (3.4) and (3.5) we get

p∗(t) ·Ro(t) = [p∗b(t)]
M

N

∏
l=1

p∗a

(
t

1−βlt

) N

∑
j=1

c j

(1−β jt)
·

δ

(
t

1−β jt

)
p∗a
(

t
1−β jt

)


= [p∗b(t)]
M

(
N

∑
j=1

c j

1−β jt
·δ
(

t
1−β jt

))
·

N

∏
l=1
l ̸= j

p∗a

(
t

1−βlt

)
. (3.6)

Moreover, we can express the function δ

(
t

1−β jt

)
as

δ

(
t

1−β jt

)
=

M−1

∑
h=0

δh ·
(

t
1−β jt

)h

=
∑

M−1
h=0 δhth(1−β jt)M−1−h

(1−β jt)M−1 =
µ j(t)

(1−β jt)M−1 ,

with deg(µ j(t))≤ M−1. Applying the same reasoning, we have

p∗a

(
t

1−β jt

)
=

∑
M
h=0 fhth(1−β jt)M−h

(1−β jt)M =
ξ j(t)

(1−β jt)M

with deg(ξ j(t))≤ M. Hence, equation (3.6) becomes

p∗(t) ·Ro(t) = [p∗b(t)]
M

N

∑
j=1

c j

1−β jt
·

µ j(t)
(1−β jt)M−1 ·

N

∏
l=1
l ̸= j

ξ j(t)
(1−β jt)M

= [p∗b(t)]
M

N

∑
j=1

c j ·
µ j(t)

(1−β jt)M ·

N

∏
l=1
l ̸= j

ξ j(t)

N

∏
l=1
l ̸= j

(1−β jt)M

= [p∗b(t)]
M

N

∑
j=1

c jµ j(t)

N

∏
l=1
l ̸= j

ξ j(t)

[
p∗b(t)

]M =
N

∑
j=1

c jµ j(t)
N

∏
l=1
l ̸= j

ξ j(t). (3.7)
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We have from (3.7)

deg(p∗(t)Ro(t)) = deg

 N

∑
j=1

c jµ j(t)
N

∏
l=1
l ̸= j

ξ j(t)

≤ M−1+(N −1)M = MN −1,

thus, by Lemma 3.1.2, r is a linear recurrent sequence whose characteristic polyno-
mial is p(t) = res(pa(x), pb(t − x)).

Remark 3.2.2. Given a,b ∈W(R), if α1, . . .αM and β1, . . . ,βN are distinct roots of
pa(t) and pb(t) respectively, then, by Theorem 3.2.1, the roots of the characteristic
polynomial of a ⋆b are αi +β j, for any i = 1, . . . ,M and j = 1, . . . ,N. The proof
of Theorem 3.2.1 can be adapted also in the case of multiple roots, in this case the
calculations become much longer and more onerous.

In the following proposition, we see a way for writing the Newton product in
terms of the Hurwitz and Hadamard ones.

Proposition 3.2.3. Given a,b ∈ W(R), then a⊠b = [(a ⋆ 1)⊙ (b ⋆ 1)] ⋆ e, where
1 := (1,1,1, . . .) and e := ((−1)n)n≥0.

Proof. The n-th terms of a⋆1 and b⋆1 are by definition ∑
n
i=0
(n

i

)
ai and ∑

n
i=0
(n

i

)
bi,

respectively. Thus, the n–th term of (a ⋆ 1)⊙ (b ⋆ 1) is ∑
n
s=0
(n

s

)
as ∑

n
t=0
(n

t

)
bt , and

consequently
n

∑
i=0

(
n
i

)
(−1)n−i

i

∑
s=0

(
i
s

)
as

i

∑
t=0

(
i
t

)
bt

is the n–th term of [(a⋆1)⊙ (b⋆1)]⋆ e.
Applying Newton product’s definition, we need to prove the equality

n

∑
i=0

(
n
i

)
(−1)n−i

i

∑
s=0

(
i
s

)
as

i

∑
t=0

(
i
t

)
bt =

n

∑
i=0

i

∑
j=0

(
n
i

)(
i
j

)
aibn− j, ∀n ≥ 0. (3.8)

Let ci :=∑
i
s=0
(i

s

)
as ∑

i
t=0
(i

t

)
bt and dn :=∑

n
i=0 ∑

i
j=0
(n

i

)( i
j

)
aibn− j, then the expression

(3.8) is equivalent to
n

∑
i=0

(
n
i

)
(−1)ici = (−1)ndn. (3.9)
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Making use of the Newton’s inversion formula (see, e.g., [33, Equation 5.48]),

n

∑
i=0

(
n
i

)
(−1)i f (i) = g(n)⇔ f (n) =

n

∑
i=0

(
n
i

)
(−1)ig(i), (3.10)

for some arithmetic functions f and g, equation (3.9) becomes

n

∑
i=0

(
n
i

)
(−1)i(−1)idi = cn,

that is
n

∑
i=0

(
n
i

) i

∑
k=0

k

∑
j=0

(
i
k

)(
k
j

)
akbi− j =

n

∑
s=0

(
n
s

)
as

n

∑
t=0

(
n
t

)
bt . (3.11)

So, showing that (3.11) holds is equivalent to prove (3.8). Now, we can write the
first member of (3.11) as

n

∑
j=0

n

∑
s= j

n

∑
i=s

(
n
i

)(
i
s

)(
s
j

)
asbi− j. (3.12)

From (3.12) we have 0 ≤ j ≤ s ≤ i ≤ n, and we can rewrite (3.12) in the equivalent
form

n

∑
s=0

s

∑
j=0

n

∑
i=s

(
n
i

)(
i
s

)(
s
j

)
asbi− j,

where, setting t = i− j, so that s ≤ t + j ≤ n, we obtain

n

∑
s=0

s

∑
j=0

n− j

∑
t=s− j

(
n

t + j

)(
t + j

s

)(
s
j

)
asbt . (3.13)

Observing that

(
n

t + j

)(
t + j

s

)
=

n!

(n− t − j)!(t + j− s)!s!

=
n!(n− s)!

(n− s)!s!(n− t − j)!(t + j− s)!

=

(
n
s

)(
n− s

n− t − j

)
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the term (3.13) becomes

n

∑
s=0

(
n
s

)
as

s

∑
j=0

n− j

∑
t=s− j

(
n− s

n− t − j

)(
s
j

)
bt .

Finally, setting m := s− j, we have 0 ≤ m ≤ s and we get

n

∑
s=0

(
n
s

)
as

s

∑
m=0

n−s+m

∑
t=m

(
n− s

n− s− (t −m)

)(
s

s−m

)
bt

=
n

∑
s=0

(
n
s

)
as

s

∑
m=0

n−s+m

∑
t=m

(
n− s
t −m

)(
s
m

)
bt

=
n

∑
s=0

(
n
s

)
as

n

∑
t=0

bt

t

∑
m=0

(
n− s
t −m

)(
s
m

)
=

n

∑
s=0

(
n
s

)
as

n

∑
t=0

(
n
t

)
bt ,

where the last equality is due to Vandermonde’s identity ∑
t
m=0

(n−s
t−m

)( s
m

)
=
(n

t

)
.

Remark 3.2.4. The previous proposition can be proved also exploiting the umbral
calculus. The techniques of umbral calculus were introduce by John Blissard around
1870. The main idea was to obtain some sequences’ identities pretending that
the indices of the sequence’s terms were exponents. Indeed, given a sequence
(a0,a1,a2, . . .) if we want to associate to it a new sequence (b0,b1,b2, . . .) such that
bn = ∑

n
k=0
(n

k

)
ak, we can mix up indices and exponents and think bn as bn := (a+1)n.

In 1930 Eric Bell tried to formulate this concept in a formal way. In particular, he
associated to each sequence a and b, two variables called umbral variables such
that these variables obey to a very particular algebra. In 1970 Gian-Carlo Rota and
Steven Roman connected umbral calculus with linear algebra. Umbral variables can
be thought as representing polynomials instead of representing sequences. Let L
be a linear operator acting on polynomials such that L(xn) := an, then, for example,
applying the binomial theorem and the linearity of L, we get

L((x+1)n) = L
( n

∑
k=0

(
n
k

)
xk)

=
n

∑
k=0

(
n
k

)
L(xk).
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In order to prove Proposition 3.2.3 with the techniques of umbral calculus, we
consider two linear functionals U and V defined by U(W n) := an and V (Zn) := bn

associated to a,b ∈ S(R). It follows that the n–th term given by

(
(a⊠b)⋆1

)
n =

n

∑
i=0

(
n
i

) i

∑
k=0

k

∑
j=0

(
i
k

)(
k
j

)
akbi− j

it can be obtained using the functionals U and V in the following way

UV

(
n

∑
i=0

(
n
i

)
Zi

i

∑
k=0

(
i
k

)
W k

k

∑
j=0

(
k
j

)
Z− j

)
=UV

(
n

∑
i=0

(
n
i

)
Zi

i

∑
k=0

(
i
k

)
(W +W/Z)k

)

=UV

(
n

∑
i=0

(
n
i

)
(ZW +W +Z)i

)
=UV ((ZW +W +Z +1)n).

Now, the last quantity can be rewritten as

UV ((Z +1)n(W +1)n) =U(V (Z +1)n(W +1)n)

=U

(
V

(
n

∑
s=0

(
n
s

)
Zs

)
(W +1)n

)

=U

(
n

∑
s=0

(
n
s

)
bs(W +1)n

)

=
n

∑
s=0

(
n
s

)
bsU

(
n

∑
t=0

(
n
t

)
W t

)

=
n

∑
s=0

(
n
s

)
bs ·

n

∑
t=0

(
n
s

)
at ,

which is the n–th term of the sequence (a⋆1)⊙ (b⋆1).

Theorem 3.2.5. Given a,b ∈ W(R), we have that c := a ⊠ b ∈ W(R) and the
characteristic polynomial of c is ∏

M
i=1 ∏

N
j=1(t − (αi + β j + αiβ j)), where M :=

deg(pa(t)), N := deg(pb(t)), αi’s are the roots of pa(t) and β j’s the roots of pb(t).
Moreover, (W(R),⊕,⊠) is an R−algebra.

Proof. Firstly, we show that (S(R),⊕,⊠) is an R−algebra. This is an immediate
consequence of Proposition 3.2.3. Indeed, since a⊠b = [(a⋆1)⊙ (b⋆1)]⋆ e, it is



3.2 R-algebras of linear recurrent sequences 25

straightforward to see that the Newton product satisfies all the properties charac-
terizing (S(R),⊕,⊠) as an R−algebra. Moreover, since (1,0,0, . . .) is the identity
element for the Hurwitz product and e is the inverse of 1 with respect to the Hurwitz
product, we have that (1,0,0, . . .) is the identity also for the Newton product. Given
a,b ∈W(R), we have a⊠b ∈W(R) by Proposition 3.2.3, thus also (W(R),⊕,⊠)

is an R−algebra. By Theorem 3.2.1 and Remark 3.2.2, we can observe that, given
a,b ∈ W(R), then a ⋆ 1 and b ⋆ 1 are linear recurrent sequences whose character-
istic polynomials have roots αi + 1 and β j + 1, for i = 1, . . . ,M and j = 1, . . . ,N,
respectively. Moreover, since e is a linear recurrent sequence whose characteristic
polynomial is t +1, then [(a⋆1)⊙ (b⋆1)]⋆ e has characteristic polynomial whose
roots are (αi+1)(β j+1)−1=αi+β j+αiβ j, for i= 1, . . . ,M and j = 1, . . . ,N.

Proposition 3.2.6. Let a ∈ S(R) be invertible with respect to the Newton product,
then, said b its inverse, we have that the generic term has the following explicit
formula

bn := (−1)n
n

∑
t=0

(
n
t

)
(−1)t 1

∑
t
s=0
(t

s

)
as
, (3.14)

for any n ≥ 0.

Proof. Recalling that the identity element for the Newton product is (1,0,0, . . .), we
have that a0b0 must be 1, i.e., b0 = a−1

0 . When n ≥ 1, we have that

n

∑
i=0

(
n
i

)
(−1)n−i

i

∑
s=0

(
i
s

)
as

i

∑
t=0

(
i
t

)
bt = 0,

i.e.,
n

∑
i=0

(
n
i

)
(−1)i

i

∑
s=0

(
i
s

)
as

i

∑
t=0

(
i
t

)
bt = 0.

Let us define the quantities

f (i) :=
i

∑
s=0

(
i
s

)
as

i

∑
t=0

(
i
t

)
bt , g(n) :=

n

∑
i=0

(
n
i

)
(−1)i f (i),

where g(n) = 0, when n ≥ 1 and g(0) = 1. Applying Newton’s inversion formula
(3.10), we get

f (n) =
n

∑
i=0

(
n
i

)
(−1)ig(i).
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Since g(i) = 0 for all i ≥ 1, we have f (n) = 1 for all n ≥ 0, thus

n

∑
s=0

(
n
s

)
as

n

∑
t=0

(
n
t

)
bt = 1,

or, equivalently,
n

∑
t=0

(
n
t

)
bt =

1
∑

n
s=0
(n

s

)
as
.

Let dn =
1

∑
n
s=0 (

n
s)as

, by Newton’s inversion formula, we get for all n ≥ 0

dn =
n

∑
t=0

(
n
t

)
(−1)t(−1)tbt ⇔ (−1)nbn =

n

∑
t=0

(
n
t

)
(−1)tdt ,

therefore

bn = (−1)n
n

∑
t=0

(
n
t

)
(−1)t 1

∑
t
s=0
(t

s

)
as
.

Remark 3.2.7. We point out that a is invertible with respect to the Newton product
if and only if all the elements of a are invertible elements of R, as well as it happens
for the Hadamard product.

At each sequence a ∈W(R), it can be linked a monic characteristic polynomial
pa ∈ R[t] and, at this polynomial a matrix A (called companion matrix) can be
associated to it. Therefore, the results found for the R−algebras (W(R),⊕,⊙),
(W(R),⊕,∗), (W(R),⊕,⋆), and (W(R),⊕,⊠) can be seen in terms of new algebraic
structures in the set of the monic polynomials Pol(R) with coefficients in R. Indeed,
we can also observe what happens to the roots and to the companion matrices of the
characteristic polynomials.

Let us consider a,b ∈W(R) with characteristic polynomials of degree respec-
tively M and N, whose roots are α1, . . . ,αM and β1, . . .βN . The sequences a+b
and a ∗ b both recur with characteristic polynomial pa(t) · pb(t). Regarding the
Hadamard product, we have already observed that the characteristic polynomial
of c = a⊙b is pc(t) = pa(t)⊗ pb(t), whose roots are αiβ j, for i = 1, . . . ,M and
j = 1, . . . ,N. Thus, starting from the R−algebra (W(R),⊕,⊙), we can construct the
semiring (Pol(R), ·,⊗) whose identity element is the polynomial t −1. Said A,B,
and C the companion matrices of pa(t), pb(t) and pc(t), we have that C = A⊗B,
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where ⊗ is the Kronecker product between matrices. Thus C is a mn×mn matrix
with eigenvalues the products of the eigenvalues of A and B.

Similarly, starting from the Hurwitz product, we can construct a new operation in
Pol(R). Given c = a⋆b, we proved that pc(t) has roots αi+β j, for i = 1, . . . ,M and
j = 1, . . . ,N. The matrix A⊗ In+ Im⊗B is a mn×mn matrix, whose eigenvalues are
the sum of the eigenvalues of A and B. Thus, we can define pc(t) := pa(t)⋆ pb(t) as
the characteristic polynomial of the matrix A⊗ In + Im ⊗B and we get the semiring
(Pol(R), ·,⋆).

Finally, given c = a⊠b, we know that pc(t) has roots αi +β j +αiβ j, for i =
1, . . . ,M and j = 1, . . . ,N. In this case, we can define pc(t) := pa(t)⊠ pb(t) as
the characteristic polynomial of the matrix A⊗ In + Im ⊗ B+ A⊗ B, which is a
mn×mn matrix, whose eigenvalues are exactly αi + β j +αiβ j, for i = 1, . . . ,M
and j = 1, . . . ,N. Thus, we have that (Pol(R), ·,⊠) is another semiring of monic
polynomials.

3.3 On isomorphisms between R-algebras

In [17], Cerruti and Vaccarino proved that (W(R),⊕,⊙) and (W(R),⊕,∗) are never
isomorphic as R−algebras. In the following we prove similar results for the other
algebraic structures that we have studied in the previous section.

Theorem 3.3.1. The R−algebras (W(R),⊕,⊙) and (W(R),⊕,⋆) are not isomor-
phic.

Proof. Let us suppose that ψ : (W(R),⊕,⊙) −→ (W(R),⊕,⋆) is an injective mor-
phism and consider a := (1,0,0,0, . . .) and b := (0,1,0, . . .). Since we are con-
sidering a morphism and a⊙b = (0,0,0, . . .), then ψ(a⊙b) = (0,0, . . .) so also
ψ(a)⋆ψ(b) = (0,0, . . .) and, by injectivity, ψ(a),ψ(b) ̸= (0,0, . . .). Let Aψ

e (t) and
Bψ

e (t) be the exponential generating functions of ψ(a) and ψ(b), respectively. From
ψ(a)⋆ψ(b) = (0,0, . . .), it follows that Aψ

e (t)B
ψ
e (t) = 0. Thanks to Lemma 3.1.2,

we have
p∗

ψ(a)(t)A
ψ
o (t) = h(t) (3.15)

with deg(h(t))< deg(p∗
ψ(a)(t)).

Now, let us examine the map γ : (R[[t]],+, ·) −→ (Re[[t]],+, ·), which is an isomor-
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phism from the set of ordinary generating functions R[[t]] = {∑
∞
n=0 antn,∀an ∈ R}

and the ones of exponential generating functions Re[[t]] = {∑
∞
n=0

an
n! tn,∀an ∈ R},

where the sum is the usual one as the sum between polynomials. Whereas, the
product of the first ring corresponds to the Cauchy product between sequences and
the product of the second ring to the ones of Hurwitz. Applying γ to (3.15), we
obtain

γ

(
p∗

ψ(a)(t)
)

Aψ
e (t) = γ(h(t))

where p∗
ψ(a)(t) can be viewed as a formal series with an infinite number of zero

coefficients. Multiplying by γ(p∗
ψ(a)(t)) the equation Aψ

e (t)B
ψ
e (t) = 0, it becomes

γ(h(t))Bψ
e (t) = 0

which implies h(t)Bψ
o (t) = 0. From this, it follows that there is a nonzero element

w ∈ R, such that wBψ
o (t) = 0 ([30, Eq. (2.9)]) and wb = 0, which is absurd.

Theorem 3.3.2. The R−algebras (W(R),⊕,⊙) and (W(R),⊕,⊠) are isomorphic.

Proof. The explicit isomorphism is ψ : (W(R),⊕,⊙)→ (W(R),⊕,⊠) defined by
ψ(a) := a⋆ e, where e = ((−1)n)n≥0. Indeed, by Theorem 3.2.1, the map ψ is well–
defined (in the sense that a linear recurrent sequence is mapped into a linear recurrent
sequence). Moreover, since 1 is the inverse of e with respect to the Hurwitz product,
it is straightforward to check injectivity and surjectivity. Finally, by Proposition
3.2.3, we have

ψ(a)⊠ψ(b) = (((a⋆ e)⋆1)⊙ ((b⋆ e)⋆1))⋆ e = (a⊙b)⋆ e = ψ(a⊙b),

since e⋆1 = (1,0,0, . . .).

Theorem 3.3.3. Let R be an integral domain, if ψ : (W(R),⊕,∗)→ (W(R),⊕,⋆)

is a morphism, then ψ is not injective.

Proof. Let us suppose that ψ : (W(R),⊕,∗) → (W(R),⊕,⋆) is an injective mor-
phism. Let us denote by (ψ(a))i the i-th term of the sequence ψ(a). The n-th term
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of ψ(a)⋆ψ(b) is

n

∑
i=0

(
n
i

)
(ψ(a))i(ψ(b))n−i = n!

n

∑
i=0

(
n
i

)
(ψ(a))i

i!
(ψ(b))n−i

(n− i)!
.

Then, considering ψ(a∗b) = ψ(a)⋆ψ(b), for any a,b ∈W(R), we obtain

ψ(a∗b) = ((ψ(a)⊙ f−1)⋆ (ψ(b)⊙ f−1))⊙ f (3.16)

where we define the formal sequences f := (1,2!,3!, . . .) and f−1 := (1, 1
2! ,

1
3! , . . .).

We define a map τ : (W(R),⊕,∗)−→ (W(R),⊕,∗) such that τ(a) := ψ(a)⊙ f−1.
By definition, we have that τ(a⊕b) = τ(a)⊕ τ(b), τ(a∗b) = τ(a)∗ τ(b), for any
a,b ∈W(R) and ker(τ) = 0 where 0 = (0,0,0, . . .).

Let τ̃ be a map that acts over the ordinary generating functions such that if
A(t) = ∑

+∞

n=0 antn then τ̃(A(t)) = ∑
+∞

n=0(τ(a))ntn. From the properties of τ , it follows
that

τ̃(A(t)+B(t)) = τ̃(A(t))+ τ̃(B(t)), τ̃(A(t)B(t)) = τ̃(A(t))τ̃(B(t))

and
τ̃(A(t)) = τ̃(B(t)) ⇔ A(t) = B(t).

When we consider A(t) = 1 and B(t) = 1, we clearly have

τ̃(1) = τ̃(1 ·1) = τ̃(1)τ̃(1)

and this implies τ̃(1) = 1. Indeed, by the injectivity of τ , we can not have τ̃(1) = 0
because τ(1,0, . . .) should be 0. In the case that A(t) = t and B(t) =−t, then

0 = τ̃(0) = τ̃(t − t) = τ̃(t)+ τ̃(−t),

which implies τ̃(−t) =−τ̃(t). Moreover, when A(t) = t and B(t) = t−1, then

1 = τ̃(1) = τ̃(t · t−1) = τ̃(t)τ̃(t−1),

so τ̃(t−1) = (τ̃(t))−1. Lastly, if A(t) = B(t) = t, then

τ̃(t2) = τ̃(t · t) = τ̃(t)τ̃(t),
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so τ̃(t2) = (τ̃(t))2 and τ̃(nt) = nτ̃(t), ∀n ∈ N.

Now, let us consider A(t) = t and τ̃(t) = ∑
+∞

n=0 sntn, then from τ̃(t2) = (τ̃(t))2 it
follows that(

+∞

∑
n=0

sntn

)2

=
+∞

∑
n=0

(
n

∑
i=0

sisn−i

)
tn ⇒

∑
2k+1
i=0 sis2k+1−i = 0

∑
2k
i=0 sis2k−i = sk

(3.17)

i.e, if we consider the square of the ordinary generating function τ̃(t), seen as the
product between τ̃(t) and itself, it must be equal to τ̃(t2), then the coefficients of the
even powers are zero and the coefficients of the odd powers are sk. From (3.17), we
obtain s0 = s2

0 and we may have s0 = 0 or s0 = 1. In the case that s0 = 1, then si = 0,
∀i ≥ 1, and τ̃(t) = 1. But this can not happen because, if so, we should have

τ̃(t) = 1 = τ̃(1),

which implies τ̃(t −1) = 0, i. e., t = 1. Whereas, if s0 = 0, then s1 = s2
1 and s1 = 0

or s1 = 1. In the case that s1 = 1, then si = 0, ∀i ≥ 2, and τ̃(t) = t.
In the case that s1 = 0, then s2 = s2

2 so s2 = 0 or s2 = 1. Repeating the same reasoning
and exploiting (3.17), we get that τ̃(t) = tk must hold for a fixed k ≥ 1.

Let us consider A(t) = 1
1−t , then

τ̃((1− t)−1) = (τ̃(1)− τ̃(t))−1 = (1− τ̃(t))−1 = (1− tk)−1.

By definition,

τ̃

(
1

1− t

)
= τ̃

(
+∞

∑
n=0

tn

)
=

+∞

∑
n=0

(τ(1))ntn, (3.18)

and, since from some k ≥ 1 we have τ̃(t) = tk, we also have

τ̃

(
1

1− t

)
=

+∞

∑
n=0

tkn. (3.19)

Equating the coefficients in the two equivalent power series (3.18) and (3.19), we
have (

τ̃

(
1

1− t

))
n
=

1 if k | n

0 if k ∤ n.
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Thus, by (3.16) and the definition of τ and τ̃ , we have

ψ(1)n = (τ(1)⊙ f)n =

n! if k | n

0 if k ∤ n,

which is not a linear recurrent sequence.

Remark 3.3.4. It has been proved that (W(R),⊕,⊙) and (W(R),⊕,⊠) are isomor-
phic as R-algebras (see Theorem 3.3.2). However, (W(R),⊕,⊙) and (W(R),⊕,⋆)

are not isomorphic (see Theorem 3.3.1), nor are (W(R),⊕,⊙) and (W(R),⊕,∗)
[17]. It is interesting to explore the existence of injective morphisms among these
algebras. According to [17], there are no injective morphisms from (W(R),⊕,⊙)

to (W(R),⊕,∗), nor (W(R),⊕,⊠) to (W(R),⊕,∗). The existence of injective
morphisms in the reverse directions remains an open problem. From the proof of
Theorem 3.3.1, it follows that there are no injective morphisms from (W(R),⊕,⊙)

or (W(R),⊕,⊠) to (W(R),⊕,⋆). Whether the reverse injective morphisms exist
is still an open problem. Finally, Theorem 3.3.3 states that there is no injective
morphism from the R-algebra with the convolution product to the one with Hurwitz
product, but whether the reverse is true remains an open question.



Chapter 4

Lucas atoms

In this chapter, we define Lucas atoms, originally introduced by Sagan and Tirrell
[57], in a different way which is probably easier and more direct. We prove some of
their main properties and we present new results on their p-adic valuations. Moreover,
we solve a left open problem by Sagan and Tirrell in [57]. Finally, we exploit the
results on the p-adic valuations of Lucas atoms to prove that the sequence of Lucas
atoms is not holonomic.

4.1 Revisiting some properties of Lucas atoms via cy-
clotomic polynomials

In this section, we obtain some properties of Lucas atoms exploiting the definition
(2.2). Here, we will always consider s, t,α and β as variables related by

s := α +β , t :=−αβ .

First of all, we prove that the Lucas atoms are actually polynomials with natural
coefficients.

Lemma 4.1.1. For all n ≥ 0, we have αn +β n ∈ Z≥0[s, t].

Proof. We prove the Lemma by induction. The first steps are straightforward:

α +β = s, α
2 +β

2 = (α +β )2 −2αβ = s2 +2t.



4.1 Revisiting some properties of Lucas atoms via cyclotomic polynomials 33

Now, consider an integer n > 2 and suppose α i +β i ∈ Z≥0[s, t] for all i ≤ n−1. If
n = 2k we want to prove that α2k

+β 2k
= Pk +2t2k−1

with Pk := P2
k−1 +4Pk−1t2k−2

.
By induction, for k = 1 we have α2 +β 2 = P1 +2t, for k > 1

α
2k
+β

2k
= (α2k−1

+β
2k−1

)2 −2α
2k−1

β
2k−1

= (Pk−1 +2t2k−2
)2 −2t2k−1

= P2
k−1 +4Pk−1t2k−2

+2t2k−1

= Pk +2t2k−1
.

Consequently we have α2k
+β 2k ∈ Z≥0[s, t]. If n is odd, then

α
n +β

n = (α +β )
n−1

∑
i=0

(−1)i
α

n−1−i
β

i

= (α +β )
(

α
n−1 +β

n−1 +(−αβ )(n−1)/2

+
(n−3)/2

∑
i=1

(−αβ )i(αn−1−2i +β
n−1−2i)

)
= s
(

α
n−1 +β

n−1 + t(n−1)/2 +
(n−3)/2

∑
i=1

t i(αn−1−2i +β
n−1−2i)

)
,

and by the inductive hypothesis we have αn +β n ∈ Z≥0[s, t]. If n = 2kh, with k > 0
and h > 1 odd, then we can write

α
n +β

n = (α2k
+β

2k
)

h−1

∑
i=0

(−1)i(α2k
)h−1−i(β 2k

)i,

and the thesis follows as above.

We recall the definition 2.2 for the Lucas atoms

P1(s, t) := 1, Pn(s, t) := Φn(α,β ) = β
ϕ(n)

Ψn(α/β ).

Proposition 4.1.2. For all n ≥ 1, we have Pn(s, t) ∈ Z≥0[s, t].

Proof. From Lemma 4.1.1, we have that Pn(s, t) ∈ Z[s, t], for all n ≥ 1. Indeed,
Pn(s, t) = β ϕ(n)Ψn(α/β ) and by the palindromicity of the cyclotomic polynomials,
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we have

Pn(s, t) = α
ϕ(n)+β

ϕ(n)+
(ϕ(n)−2)/2

∑
j=1

c j(αβ )i j(αk j +β
k j),

where c j ∈ Z and i j,k j ∈ N. Moreover, we can observe that

Pn(s, t) = Φn(α,β ) =
ϕ(n)/2

∏
j=1

(α2 +β
2 − (ω j + ω̄ j)αβ ),

where ω j is a primitive n-th root of unity and ω̄ j is its complex conjugate. Each
factor in the above formula can be also written as

(α +β )2 − (ω j + ω̄ j +2)αβ = s2 +(ω j + ω̄ j +2)t,

where ω j + ω̄ j +2 > 0 for all j. This ensures that the coefficients of Pn(s, t) must be
non-negative integers.

In [45], Levy proved the irreducibility of the univariate Lucas atoms Pn(s,±1).
Exploiting the connection with cyclotomic polynomials Φn(α,β ), we are able to
provide the same result for general t, i.e. for the Lucas atoms Pn(s, t) in two variables.

Proposition 4.1.3. The Lucas atoms Pn(s, t) are irreducible polynomials over Q, for
all n ∈ N.

Proof. Note that Pn(s, t) = Pn(α + β ,−αβ ) = Φn(α,β ). The polynomial Φn is
irreducible over Q as the homogenization of Ψn, which is irreducible over Q as well.
Then any factorization of Pn(s, t) into a product of two polynomials An(s, t),Bn(s, t)∈
Q[s, t] can be rewritten as

Φn(α,β ) = Pn(α +β ,−αβ ) = An(α +β ,−αβ )Bn(α +β ,−αβ ).

Because of the irreducibility of Φn(α,β ) over Q we conclude that either An(s, t) =
An(α + β ,−αβ ) or Bn(s, t) = Bn(α + β ,−αβ ) is a constant polynomial. This
proves the irreducibility of Pn(s, t) over Q.

From Proposition 4.1.3, using the irreducibility of the Lucas atoms Pn(s, t), we
obtain a simple proof of the following theorem, which is one of the main results of
[57].
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Theorem 4.1.4. Let us suppose f (s, t) := ∏
d≥2

Uni(s, t) and g(s, t) := ∏
d≥2

Uk j(s, t), for

ni,k j ∈ N, and write their atomic decompositions as

f (s, t) = ∏
d≥2

Pd(s, t)ad , g(s, t) = ∏
d≥2

Pd(s, t)bd ,

for ad,bd ∈ N. Then f (s, t)/g(s, t) is a polynomial if and only if ad ≥ bd for all
d ≥ 2. Furthermore in this case f (s, t)/g(s, t) has non-negative integer coefficients.

Proof. The condition ad ≥ bd is clearly sufficient for f (s, t)/g(s, t) being a poly-
nomial. Conversely, since the polynomials Pd(s, t) are irreducible, by Proposition
4.1.3, the Lucas atoms at the denominator cancel out only if they are present at the
numerator with a greater or equal exponent. Moreover, the ratio f (s, t)/g(s, t) has
nonnegative integer coefficients because it is the product of the remaining Lucas
atoms.

Lucas formula and Gauss formula for cyclotomic polynomials can be easily
adapted to Lucas atoms. For instance, from the Lucas formula we have that, if n ≥ 5
odd and squarefree, then there exist two palindromic polynomials Cn(α/β ),Dn(α/β )∈
Z[α/β ], with degrees ϕ(n)/2 and ϕ(n)/2−1, respectively, such that

Ψn((−1)(n−1)/2
α/β ) =C2

n(α/β )−n
α

β
D2

n(α/β ).

Thus, if n ≡ 1 (mod 4), we obtain

β
ϕ(n)

Ψn(α/β )= β
ϕ(n)C2

n(α/β )−nαβ
ϕ(n)−1D2

n(α/β )= C̃2
n(α,β )−nαβ D̃2

n(α,β ),

where C̃n(α,β ), D̃n(α,β )∈Z[α,β ] are palindromic with degrees ϕ(n)/2 and ϕ(n)/2−
1, respectively. Then, by palindromicity of these polynomials and by Lemma 4.1.1
we get

Pn(s, t) = F2
n (s, t)+ntG2

n(s, t)

with Fn(s, t),Gn(s, t) ∈ Z[s, t]. Similar results can be obtained for the case n even
and for the Gauss formula. The same results were obtained in a simple way in [57],
but with the definition (2.2) of the Lucas atoms, it becomes more clear the fact that
the Lucas formula, for n odd, can not be adapted when n ≡ 3 (mod 4). Indeed, in
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this case we would have

β
ϕ(n)

Ψn(−α/β ) = β
ϕ(n)C2

n(α/β )−nαβ
ϕ(n)D2

n(α/β )

where on the left side we have the Lucas atoms Pn(s, t) but where s =−α +β and
t = αβ making not possible to obtain on the right hand some polynomials with these
variables s and t and integer coefficients.

In [57], the authors proved also an analogue of a reduction formula for cyclotomic
polynomials. In order to provide a proof of this result, the authors proved several
combinatorial lemmas, claiming that a proof could not be found easily and directly
from the connection with cyclotomic polynomials provided by the function Γ. Here
we show that, exploiting (2.2), the proof becomes straightforward.

Theorem 4.1.5. If n ≥ 2 is a positive integer and p is a prime not dividing n, then

Ppn(s, t) =


Pn(s2 +2t,−t2)

Pn(s, t)
if p = 2,

Pn(sP2p, t p)

Pn(s, t)
if p ≥ 3,

where writing Pm we mean Pm(s, t).

Proof. By (2.2) and the reduction formulas for cyclotomic polynomials,

Ppn(s, t) = Φpn(α,β ) =
Φn(α

p,β p)

Φn(α,β )
=

Φn(α
p,β p)

Pn(s, t)
. (4.1)

Now let us notice that α p and β p are the roots of the polynomial

(X −α
p)(X −β

p) = X2 − (α p +β
p)X +(αβ )p,

hence the Lucas atom correspondent to Φn(α
p,β p) is

Pn(α
p +β

p,−(αβ )p) = Pn(α
p +β

p,−(−t)p).

If p = 2,
Φn(α

2,β 2) = Pn(α
2 +β

2,−t2) = Pn(s2 +2t,−t2),
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and this concludes the proof for this case. For p ≥ 3, let us notice that

U2p(s, t) =
α2p −β 2p

α −β
=

α p −β p

α −β
(α p +β

p) = Pp(s, t)(α p +β
p).

By the definition of Lucas atoms, this means that

α
p +β

p = P2P2p = (α +β )P2p = sP2p.

Therefore,
Φn(α

p,β p) = Pn(α
p +β

p,−(−t)p) = Pn(sP2p, t p),

and also the case of odd p is complete.

Using a similar argument, it is easily obtained also the following theorem, which
is the other main result of Section 5 in [57].

Theorem 4.1.6. If n ≥ 2 is a positive integer and p is a prime not dividing n, then,

Ppmn(s, t) =

Ppm−1n(s
2 +2t,−t2) if p = 2,

Ppm−1n(sP2p, t p) if p ≥ 3,

for all m ≥ 2.

Proof. By (2.2) and the reduction formulas for cyclotomic polynomials,

Ppmn(s, t) = Φpmn(α,β )

= Φpn(α
pm−1

,β pm−1
)

= Φpm−1n
(
α

pm−1

pm−2 ,β
pm−1

pm−2
)

= Φpm−1n(α
p,β p) = Ppm−1n(α

p +β
p,−α

p
β

p) (4.2)

In the case that p = 2, the thesis follows from α2 +β 2 = s2 +2t. For p ≥ 3, since
α p +β p = sP2p, then Ppmn(s, t) = Ppm−1n(sP2p,−t p).

If Φn(a,b) = p for some index n, p prime and a,b integers, then

Pn(a+b,−ab) = Φn(a,b) = p,
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where a+ b and −ab are still integers. For b = 1, a famous conjecture of Bun-
yakovsky implies that, for a fixed n, Φn(a,1) = Ψn(a) is prime for infinitely many
positive integers a. In light of this, we can state the following conjecture which is
weaker than the Bunyakovsky’s one.

Conjecture 4.1.7. For each integer n ≥ 2 there exist infinitely many pairs (s, t) ∈ Z2

such that Pn(s, t) is prime.

It is easy to see that the polynomials P2(s, t) = s, P3(s, t) = s2 + t and P4(s, t) =
s2+2t represent all the integers, in particular all the prime numbers. The polynomial
P6(s, t) = s2+3t, meanwhile, represents all the integers not congruent to 2 modulo 3,
in particular all the prime numbers of this form. For remaining polynomials Pn(s, t),
whose degrees are at least equal to 4, we do not know any tool for proving that they
represent infinitely many prime numbers.

4.2 p–adic valuations of Lucas atoms

In this section, we fully characterize the p-adic valuation of Lucas atoms. In this
way we solve a problem left open in [57], which the authors addressed as hard. In
particular, they treated only some cases for p ∈ {2,3} (see [57, Theorems 6.3, 6.5]),
leaving open the general problem of extending their results to arbitrary primes.

In the following, we consider s, t as integers and α,β as the roots of the polyno-
mial X2 − sX − t and we will denote by ∆ its discriminant.

Given an integer n ̸= 0, let ρ(n,U) be the rank of appearance of n in the sequence
(Um)m≥0, i.e., the minimum positive integer k such that n |Uk. The next results are
useful known properties of the rank of appearance (see, e.g., [55]). We give the
proofs for completeness.

Lemma 4.2.1. Given an integer n ̸= 0, if gcd(n, t) = 1, we have that ρ(n,U) | m if
and only if n |Um.

Proof. Let f (X) = X2 − sX − t be the characteristic polynomial of (Uk)k≥0 and we
also define the linear recurrent sequence (Tk)k≥0 with characteristic polynomial f (X)

and initial conditions (1,0). Furthermore, define the ring R := Zn[X ]⧸( f (X)) and the
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group G := R∗
⧸Z∗

n
. We denote by [a+bX ] the elements of G. In R, we can prove by

induction that
Xm = Tm +UmX

for all m ≥ 0. The base cases hold:

X0 = T0 +U0X , X1 = T1 +U1X .

Then,
Xm = Xm−1X = Tm−1X +Um−1X2 = Tm−1X +Um−1(sX + t).

Considering that Tm = tUm−1, for all m ≥ 2, we obtain

Xm = tUm−1 +(sUm−1 +Tm−1)X = Tm +(sUm−1 + tUm−2)X = Tm +UmX .

Since gcd(n, t) = 1, we can observe that X ∈ R∗ and we prove now that the order of
[X ] in G is ρ(n,U). Indeed,

ordG[X ] = min{k ∈ N+ : [X ]k = 1}= min{k ∈ N+ : Xk ∈ Z∗
n}

= min{k ∈ N+ : Tk +UkX ∈ Z∗
n}= min{k ∈ N+ : Uk ≡ 0 (mod n)}

= min{k ∈ N+ : n |Uk}= ρ(n,U).

By the same reasoning we see that n |Um if and only if [X ]m = 1. By the property of
the order of an element in a group we know that [X ]m = 1 exactly when ordG[X ] =

ρ(n,U) | m. The equality ordG[X ] = ρ(n,U) also proves that ρ(n,U) exists for all n
under the hypothesis of the lemma.

Lemma 4.2.2. Given a prime number p such that p ∤ t, the rank of appearance
ρ(p,U) divides p−

(
∆

p

)
, where

(
∆

p

)
is the Legendre symbol.

Proof. If p | ∆, then α ≡ β (mod p) and Up = ∑
p−1
j=0 α p−1− jβ j ≡ pα p−1 ≡ 0

(mod p), i.e., ρ(p,U) = p. Considering

L =

(
s t
1 0

)
,

we have that

Ln

(
1
0

)
=

(
Un+1

Un

)
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for all n ≥ 0. For p ∤ ∆, the matrix L is similar to the diagonal matrix(
α 0
0 β

)
.

If
(

∆

p

)
=−1, then by the Frobenius morphism, we have

(
Up+2

Up+1

)
= Lp ·L

(
1
0

)
≡

(
αβ 0
0 αβ

)(
1
0

)
=−t

(
1
0

)
(mod p)

as α,β ∈ Fp2\Fp and Lp is similar to the matrix(
α p 0
0 β p

)
≡

(
β 0
0 α

)

via the same similarity matrix as L and

(
α 0
0 β

)
. If
(

∆

p

)
= 1, then by the Fermat’s

little theorem, we have(
Up

Up−1

)
= Lp−1

(
1
0

)
≡

(
1
0

)
(mod p)

as α,β ∈ Fp.

Similarly to the rank of appearance of a non-zero integer in the Lucas sequence,
we will denote by ρ(n,P) the rank of appearance of the integer n ̸= 0 in the sequence
of Lucas atoms (Pm)m≥1. In the following lemma we prove that the rank of appear-
ance of a given prime number in a Lucas sequence is the same for the corresponding
sequence of Lucas atoms.

Lemma 4.2.3. Given a prime p, we have

ρ(p,P) = ρ(p,U) =: k

and
vp(Uk) = vp(Pk),

where vp(·) denotes the p-adic valuation.
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Proof. Consider k = ρ(n,U). By the definition of rank of appearance we have that
p |Uk and p ∤Ud for any d < k. If p divides Pd for some d < k, then it divides Ud

and this is a contradiction. Therefore, the rank of appearance of p in the sequence of
Lucas atoms must be greater than or equal to k. Moreover,

vp(Uk) = ∑
d|k

vp(Pd) = vp(Pk),

so that ρ(p,P) = k and vp(Uk) = vp(Pk).

For studying the p-adic valuations of Lucas atoms, we use the following results
of Ballot [6] and Sanna [58] on the p–adic valuations of Lucas sequences.

Theorem 4.2.4 ([58], Corollary 1.6). Let p ≥ 3 be a prime number such that p ∤ t
and k = ρ(p,U). Then,

vp(Un) =


vp(n)+ vp(Up)−1 if p | ∆, p | n,

0 if p | ∆, p ∤ n,

vp(n)+ vp(Uk) if p ∤ ∆, k | n,

0 if p ∤ ∆, k ∤ n,

for each positive integer n, where νp(Up) = 1 for p ≥ 5 if p | ∆.

Theorem 4.2.5 ([58], Theorem 1.5 for p = 2). If 2 ∤ t and 2 | s (i.e., 2 | ∆ and
ρ(2,U) = 2), then

v2(Un) =

v2(n)+ v2(U2)−1 if 2 | n,

0 if 2 ∤ n.

If 2 ∤ t and 2 ∤ s (i.e., 2 ∤ ∆ and ρ(2,U) = 3), then

v2(Un) =


v2(n)+ v2(U6)−1 if 3 | n, 2 | n,

v2(U3) if 3 | n, 2 ∤ n,

0 if 3 ∤ n.

Theorem 4.2.6 ([6], Theorem 1.2). Let p be a prime such that s = pas′ and t = pbt ′,
where p ∤ s′t ′ and a,b ∈ N+∪{∞} with a,b necessarily finite in the case of b = 2a.
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Then for all n ≥ 1, we have

vp(Un) =

(n−1)a if b > 2a,

(n−1)a+ vp(U ′
n) if b = 2a,

where (U ′
n)n≥0 is the Lucas sequence with characteristic polynomial X2 − s′X − t ′.

For b < 2a, we have thatvp(U2n) = bn+(a−b)+ vp(n)+λn,

vp(U2n+1) = bn,

where

λn =

vp(s′2 − t ′) if 2 ≤ p ≤ 3, 2a = b+1, p | n,

0 otherwise.

In the following theorems we characterize the p-adic valuations of Lucas atoms,
dealing with the cases p ∤ t and p divides both s and t (note that when p ∤ s and p | t,
the p-adic valuation of Lucas polynomials is always zero).

Theorem 4.2.7. Let p ≥ 3 be a prime number such that k = ρ(p,U). Let us suppose
that p ∤ t. Then

vp(Pn) =


vp(Uk) if n = k,

1 if n = kph, h ≥ 1,

0 otherwise.

Proof. First, consider p ∤ ∆ and we prove by induction thatvp(Pn)≥ 1, if n = kph, h ≥ 0,

vp(Pn) = 0, otherwise.
(4.3)

By Lemmas 4.2.1 and 4.2.3 we know that vp(Pk) = vp(Uk)≥ 1 and vp(Pn) = 0 for
all n < k. Now, fixed a certain positive integer n, we suppose that (4.3) holds for all
i < n and we prove that it holds also for n. By (2.3), we have

vp(Pn) = vp(Un)− ∑
d|n
d ̸=n

vp(Pd).
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If k ∤ n, then vp(Pn) = 0, since vp(Un) = 0 by Lemma 4.2.1.
If k | n and vp(n) = 0, then

vp(Pn) = vp(Uk)+ vp(n)− ∑
d|n

d ̸=n

vp(Pd),

by Theorem 4.2.4. Thus,

vp(Pn) =− ∑
d|n

d ̸∈{k,n}

vp(Pd) = 0,

since vp(Pk) = vp(Uk) by Lemma 4.2.3 and all divisors d of n can not be of the form
kph for some h ≥ 0.
If k | n and n = kmph, for some positive integer h and m ̸= 1 with gcd(m, p) = 1,
then

vp(Pn) = vp(n)− ∑
d|n

d ̸∈{k,n}

vp(Pd) = h−
h

∑
i=1

vp(Pkpi),

since, by Lemma 4.2.2, p ∤ k Moreover, by inductive hypothesis, vp(Pkpi)≥ 1, for
all 1 ≤ i ≤ h, and vp(Pd) = 0 otherwise. Since the p-adic valuations of Lucas atoms
can not be negative, we must have that vp(Pkpi) = 1, for all 1 ≤ i ≤ h, and thus
vp(Pn) = 0.
Finally, if k | n and n = kph for a positive integer h, then

vp(Pn) = vp(n)− ∑
d|n

d ̸∈{k,n}

vp(Pd) = h−
h−1

∑
i=1

vp(Pkpi) = 1.

Now we consider the case p | ∆ and we prove by induction that (4.3) still holds.
Considering that in this case k = p by Lemma 4.2.2 and vp(Un) = 0 for all n < p
by Theorem 4.2.4, then from Lemmas 4.2.1 and 4.2.3, the base step is true. Now,
consider (4.3) true for all i < n, for a fixed positive integer n, and we prove that it
holds also for n.
If p ∤ n, then vp(Pn) = vp(Un)− ∑

d|n
d ̸=n

vp(Pd) = 0. If p | n and n = mph, for an integer

m > 1 such that gcd(m, p) = 1, then, using the inductive hypothesis and Theorem
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4.2.4, we obtain

vp(Pn) = vp(Un)− ∑
d|n

d ̸=n

vp(Pd) = vp(n)+ vp(Up)−1− vp(Pp)− ∑
d|n

d ̸∈{p,n}

vp(Pd)

= h−1−
h

∑
i=2

vp(Ppi).

Since vp(Ppi)≥ 1, and the p-adic valuation of Lucas atom is nonnegative, we must
have vp(Ppi) = 1, for all i ≥ 2 and thus vp(Pn) = 0.
If p | n and n = ph, then

vp(Pn) = vp(Un)− ∑
d|n

d ̸=n

vp(Pd) = vp(n)+ vp(Up)−1− vp(Pp)− ∑
d|n

d ̸∈{p,n}

vp(Pd)

= h−1−
h−1

∑
i=2

vp(Pi) = 1.

Theorem 4.2.8. If 2 ∤ t and 2 | s (i.e., 2 | ∆ and ρ(2,U) = 2), then

v2(Pn) =


v2(U2) if n = 2,

1 if n = 2h, h ≥ 2,

0, otherwise.

If 2 ∤ t and 2 ∤ s (i.e., 2 ∤ ∆ and ρ(2,U) = 3), then

v2(Pn) =


v2(U3) if n = 3,

v2(U6)− v2(U3) if n = 6,

1 if n = 3 ·2h, h ≥ 2,

0 otherwise.

Proof. The proof for the case 2 ∤ t and 2 | s follows as in the proof of Theorem
4.2.7. If 2 ∤ st, we have v2(P3) = v2(U3) ̸= 0 and v2(P6) = v2(U6)− v2(U3), since
v2(P2) = 0. Then, the other cases follow by induction as in the proof of Theorem
4.2.7.
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Theorem 4.2.9. Let p be a prime such that s = pas′ and t = pbt ′, where p ∤ s′t ′,
a,b > 0 with b ≥ 2a possibly infinite and a finite. Then for all n ≥ 2, we have

vp(Pn) =

ϕ(n)a if b > 2a,

ϕ(n)a+ vp(P′
n) if b = 2a,

where (P′
n)n≥1 is the sequence of Lucas atoms associated to the Lucas sequence

(U ′
n)n≥0 with characteristic polynomial X2 − s′X − t ′.

Proof. We prove the statement by induction. If b > 2a, the base step is straightfor-
ward. Now suppose vp(Pi) = ϕ(i)a, for all i < n and then

vp(Pn) = vp(Un)− ∑
d|n

d ̸=n

vp(Pd) = (n−1)a− ∑
d|n

d ̸∈{1,n}

ϕ(d)a = aϕ(n),

where we exploited Theorem 4.2.6 and vp(P1) = 0.
Also for b = 2a the base step is straightforward and supposing that the thesis is true
for all the nonnegative integers less than n, we have

vp(Pn) = (n−1)a+ vp(U ′
n)− ∑

d|n
d ̸=n

(aϕ(d)+ vp(P′
d)) = aϕ(n)+ vp(P′

n)

since vp(P′
n) = vp(U ′

n)− ∑
d|n

d ̸=n

vp(P′
d).

Theorem 4.2.10. Let p be a prime such that s = pas′ and t = pbt ′, where a,b > 0
and p ∤ s′t ′ and b < 2a with a possibly infinite. If p ̸∈ {2,3} or b < 2a+1, then for
each n ≥ 2, we have

vp(Pn) =


a if n = 2,

b
ϕ(n)

2
+1 if n = 2ph, h ≥ 1,

b
ϕ(n)

2
otherwise.
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Proof. We proceed by induction. The basis is straightforward. Now, consider
n = 2ph for some h ≥ 1 and that the thesis is true for all i < n. Then,

vp(Pn) = vp(Un)− ∑
d|n
d ̸=n

vp(Pd).

By Theorem 4.2.6, we have

vp(Pn) = bph +(a−b)+h− ∑
d|n
d ̸=n

vp(Pd),

and using the inductive hypothesis we get

vp(Pn) = bph +(a−b)+h− vp(P2)−
b

2

h

∑
i=1

ϕ(p j)−
h−1

∑
i=1

(
b

ϕ(2pi)

2
+1

)

= bph −b+1−
b

2

(
h

∑
i=1

ϕ(pi)+
h−1

∑
i=1

ϕ(2pi)

)

= bph −b+1−
b

2
(2ph −1−ϕ(2ph)−ϕ(2))

= b
ϕ(n)

2
+1.

The other cases, when n ̸= 2ph, follow in a similar way

Finally, the next two theorems fully complete our analysis. The techniques of the
proofs are similar to the previous ones and they exploit the results of Ballot [6].

Theorem 4.2.11. If s = 3as′ and t = 3bt ′, with a,b ∈ N+, 3 ∤ s′t ′ and b = 2a− 1,
then for each n ≥ 2, we have

v3(Pn) =



a if n = 2,

b+1+ v3(s′2 + t ′) if n = 6,

3h−1b+1 if n = 2 ·3h, h ≥ 2,

b
ϕ(n)

2
otherwise.
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Theorem 4.2.12. If s = 2as′ and t = 2bt ′, with a,b ∈ N+, 2 ∤ s′t ′ and b = 2a− 1,
then for each n ≥ 2, we have

v2(Pn) =



a if n = 2,

b+1+ v2(s′2 + t ′) if n = 4,

2h−2b+1 if n = 2h, h ≥ 3,

b
ϕ(n)

2
otherwise.

4.2.1 Another approach for the study of the p–adic valuations of
Lucas atoms

From (2.3) we derive
νp(Un) = ∑

d|n
νp(Pd)

for each prime number p and positive integer n. Hence, by Möbius transformation
formula we obtain

νp(Pn) = ∑
d|n

µ(d)νp(U n
d
), n ≥ 1,

where µ denotes the Möbius function. From Theorems 4.2.4, 4.2.5, 4.2.6 we
know that the sequence (νp(Un))n≥1 is a linear combination of identity function,
characteristic functions of some arithmetic progressions and products of functions of
this form with the sequence of p-adic valuations of consecutive positive integers. By
the bilinearity of Dirichlet convolution we can express p-adic valuations of Lucas
atoms as linear combinations of the transformations of the mentioned functions via
Dirichlet convolution with Möbius function.

For each integer r ≥ 1 we denote by 1r the characteristic function of the multi-
plicities of r, i.e. the function given by the formula

1r(n) =

1 if r | n,

0 if r | n.

Now we are ready to state the crucial lemma.
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Lemma 4.2.13. Let p be a prime number and q,r ≥ 1 be integers, where gcd(q, p) =
1. Then, for each integer n ≥ 1 we have:

1. ∑d|n µ(d) · n
d = ϕ(n);

2. ∑d|n µ(d) ·1r
( n

d

)
=

1 if n = r,

0 if n ̸= r;

3. ∑d|n µ(d) ·1q
( n

d

)
νp
( n

d

)
=

1 if n = phq for some h ∈ N+,

0 otherwise.

Proof. The first identity follows from application of Möbius transformation formula
to classical identity

∑
d|n

ϕ(d) = n.

We start the proof of remaining identities with the note that their left hand sides
vanish when n is not divisible by r (q, respectively) as all the divisors of n are not
divisible by r (q, respectively). From this moment on, we consider the case of n
divisible by r (q, respectively). Write n = rn′ for some n′ ∈ N+. Then,

∑
d|n

µ(d) ·1r

(n
d

)
=∑

d|n
µ

(n
d

)
·1r(d)= ∑

r|d|n
µ

(n
d

)
= ∑

d′|n′
µ

(
n′

d′

)
=

1 if n′ = 1,

0 if n′ ̸= 1,

where we write d = rd′ for d divisible by r and the last equality is a well known fact.
The second identity is proved. Similarly we start the proof of the last identity when
n = qn′, n′ ∈ N+. Write

∑
d|n

µ(d) ·1q

(n
d

)
νp

(n
d

)
= ∑

d|n
µ

(n
d

)
·1q(d)νp(d)

= ∑
q|d|n

µ

(n
d

)
νp(d)

= ∑
d′|n′

µ

(
n′

d′

)
νp(d′)

= ∑
d′|n′

µ(d′)νp

(
n′

d′

)
, (4.4)
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where we write d = qd′ for d divisible by q and use the coprimality of q and p in the
penultimate equality. If n′ = ph, h ∈ N+, then the last expression in (4.4) takes the
form

νp(ph)−νp(ph−1) = 1.

Otherwise, n′ = phuw, where h,w ∈ N+, u is a prime number, and p ∤ uw. Then we
may write the last expression in (4.4) as follows.

∑d′|pw

(
µ(d′)νp

(
n′

d′

)
+µ(ud′)νp

(
n′

ud′

))
= ∑

d′|pw

(
µ(d′)νp

(
n′

d′

)
−µ(d′)νp

(
n′

d′

))
=0

The proof of the last identity is finished.

Now, we can reformulate Theorems 4.2.4, 4.2.5, 4.2.6.

Theorem 4.2.14 (Reformulation of Theorem 4.2.4). Let p ≥ 3 be a prime number
such that p ∤ t and k = ρ(p,U). Then,

vp(Un) =

vp(n)+(vp(Up)−1)1p(n) if p | ∆,

1k(n)vp(n)+ vp(Uk)1k(n) if p ∤ ∆,

for each positive integer n, where νp(Up) = 1 for p ≥ 5 if p | ∆.

Theorem 4.2.15 (Reformulation of Theorem 4.2.5). If 2 ∤ t and 2 | s (i.e., 2 | ∆ and
ρ(2,U) = 2), then

v2(Un) = v2(n)+(v2(U2)−1)12(n).

If 2 ∤ t and 2 ∤ s (i.e., 2 ∤ ∆ and ρ(2,U) = 3), then

v2(Un) = v2(n)13(n)+ v2(U3)13(n)+(v2(U6)− v2(U3)−1)16(n).

Theorem 4.2.16 (Reformulation of Theorem 4.2.6). Let p be a prime such that
s = pas′ and t = pbt ′, where p ∤ s′t ′ and a,b ∈ N+∪{∞} with a,b necessarily finite



50 Lucas atoms

in the case of b = 2a. Then for all n ≥ 1, we have

vp(Un) =

an−a if b > 2a,

an−a+ vp(U ′
n) if b = 2a,

where (U ′
n)n≥0 is the Lucas sequence with characteristic polynomial X2 − s′X − t ′.

For b < 2a, we have that

vp(Un) =
b
2
·n− b

2
+

(
a− b

2

)
12(n)+ vp

(n
2

)
12(n)+λ12p(n)

=
b
2
·n− b

2
+

(
a− b

2

)
12(n)+ vp(n)12(n)−δp,212(n)+λ12p(n),

where

λ =

vp(s′2 − t ′) if 2 ≤ p ≤ 3, 2a = b+1,

0 otherwise

and

δp,2 =

1 if p = 2,

0 if p ̸= 2.

Applying Lemma 4.2.13 to the above theorems and using bilinearity of Dirichlet
convolution it is possible to obtain the main results of this section, exploiting this
different approach.

4.3 Non-holonomicity of the sequence of Lucas atoms

In the striking opposition to the Lucas sequence, which is binary linearly recurrent
from its definition, the sequence of Lucas atoms evaluated at any pair of integer
values of variables s and t ̸= 0 is not even holonomic, i.e. polynomially recurrent.
This follows from the more general fact stated below.

Theorem 4.3.1. For each integers s, t with t ̸= 0 there do not exist l ∈ N+ and
G0(X),G1(X), . . . ,Gl(X) ∈Q[X ] such that

Pn(s, t) = G0(n)+
l

∑
j=1

G j(n)Pn− j(s, t)
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for sufficiently large n ∈ N+.

Proof. Fix non-zero values of s and t and assume that

Pn(s, t) = G0(n)+
l

∑
j=1

G j(n)Pn− j(s, t)

for some l,n0 ∈ N+ and G1(X), . . . ,Gl(X) ∈Q[X ] and all n ≥ n0. Choose a prime
number p so large that p divides neither of s, t and the denominators of the
coefficients of G0(X),G1(X), . . . ,Gl(X) written in the irreducible form. Then
G j(n1)≡ G j(n2) (mod p) for each j ∈ {0,1, . . . , l} and integers n1 ≡ n2 (mod p).
Since the set of l-tuples

{(Pmp−1(s, t), . . . ,Pmp−l(s, t)) (mod p) : mp ≥ n0}

is finite, by pigeon hole principle we find integers m2 > m1 ≥ n0
p such that

(Pm1 p−1(s, t), . . . ,Pm1 p−l(s, t))≡ (Pm2 p−1(s, t), . . . ,Pm2 p−l(s, t)) (mod p).

Putting m0 =m2−m1 we show by easy induction that Pn+m0 p(s, t)≡Pn(s, t) (mod p)
for each integer n ≥ m1 p− l. In particular, the set of indices n such that p | Pn(s, t)
is a finite union of infinite arithmetic progressions and a finite set. Howerver, The-
orems 4.2.7, 4.2.8 and 4.2.10 show that is not the case. The contradiction proves
non-holonomicity of the sequence (Pn(s, t))n≥1.

As a direct consequence we get the following corollary.

Corollary 4.3.2. There do not exist l ∈N+ and G0(s, t,X),G1(s, t,X), . . . ,Gl(s, t,X)∈
Q[s, t,X ] such that

Pn(s, t) = G0(s, t,n)+
l

∑
j=1

G j(s, t,n)Pn− j(s, t)

for sufficiently large n ∈ N+.

Since a lot of number sequences having combinatorial interpretation are polyno-
mially recurrent, Theorem 4.3.1 suggests us that the problem of finding some natural
combinatorial interpretation of Lucas atoms seems to be intractable.
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Let us notice that the proof of Theorem 4.3.1 is valid only if t ̸= 0. From the
definition of Lucas atoms we have P1(s,0) = 1 and Pn(s,0) = sϕ(n) for n ≥ 2. Then
it is quite interesting to check for which value of s the sequence (Pn(s,0))n≥1 is
(polynomially) recurrent.

Theorem 4.3.3. Let s ∈ Z, the sequence (Pn(s,0))n≥1 is polynomially recurrent if
and only if s ∈ {−1,0,1}.

Proof. If s ∈ {−1,0,1}, the sequence (Pn(s,0))n≥1 is obviously recurrent. Now,
suppose |s| > 1 and (Pn(s,0))n≥1 polynomially recurrent. Thus, there exist some
polynomials f0(X), . . . , fk(X) ∈Q[X ] such that

k

∑
j=0

f j(n)sϕ(n+ j) = 0,

for all n ≥ 0. Now, let us notice that there exist infinitely many primes p such
that p ≡ 1 (mod (k+1)!). For all such p, we have that j+1 divides p+ j for all
j = 1, . . . ,k, hence

ϕ(p+ j)≤ (p+ j)
ϕ( j+1)

j+1
≤ (p+ j)

j
j+1

.

Therefore, since ϕ(p) = p−1, for all j = 1, . . . ,k we have

ϕ(p+ j)−ϕ(p)≤ (p+ j)
j

j+1
− (p−1) =

−p
j+1

+
j2 + j+1

j+1
.

It follows that ϕ(p+ j)−ϕ(p)→−∞ for p →+∞. Since

f0(p) =−
k

∑
j=1

f j(p)sϕ(p+ j)−ϕ(p),

we get that f0(X) is the null polynomial and repeating the above reasoning we get
also f1(X) = . . .= fk(X) = 0.



Chapter 5

The Zeckendorf representation of an
integer modulo a Fibonacci number

This chapter contains the study of the Zeckendorf representation of the multiplicative
inverse of a fixed integer greater than 3 modulo a Fibonacci number, such that the
integer and the Fibonacci number are coprime. In the first section of the chapter
there are some lemmas useful to get the connection of the base-ϕ expansions and the
Zeckendorf representation. In the second section there is the main theorem of this
study regarding the Zeckendorf representation described above. The results present
in this chapter belong to the published paper [3].

5.1 Preliminary lemmas for the proof of the main
theorem

The next lemma gives a formula for the inverse of an integer a modulo fn.

Lemma 5.1.1. For all integers a ≥ 1 and n ≥ 3 with gcd(a, fn) = 1, we have that

(a−1 mod fn) =
b fn +1

a
,

where b := (− f−1
r mod a), r := (n mod π(a)) and π(a) is the period length as

described in Section 2.1.
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Proof. Since r ≡ n (mod π(a)), we have that fr ≡ fn (mod a). In particular, it
follows that gcd(a, fr) = gcd(a, fn) = 1. Since fr is invertible modulo a, then b is
well defined. Moreover, we have that

b fn +1 ≡− f−1
r fr +1 ≡ 0 (mod a),

and thus c := (b fn +1)/a is an integer. One the one have, we have that

ac ≡ b fn +1 ≡ 1 (mod fn).

On the other hand, since b ≤ a−1 and n ≥ 3, we have that

0 ≤ c ≤ (a−1) fn +1
a

= fn −
fn −1

a
< fn.

Therefore, we get that c = (a−1 mod fn), as desired.

In order to introduce the next lemma, let us recall that D is the set of sequences in
{0,1} that have no two consecutive terms equal to 1, and that are not ultimately equal
to the periodic sequence 0,1,0,1, . . . . Moreover, we know that for every x ∈ [0,1)
there exists a unique sequence δδδ (x) = (δi(x))i∈N in D such that x = ∑

∞
i=1 δi(x)ϕ−i.

Furthermore, letting F :=Q(ϕ)∩ [0,1), if x ∈ F then δδδ (x) is ultimately periodic.

The following lemma collects two easy inequalities for sums involving sequences
in D.

Lemma 5.1.2. For every sequence (di)i∈N in D and for every m ∈N∪{∞}, we have

1. ∑
m
i=1 diϕ

−i ∈ [0,1)

2. ∑
m
i=1 di(−ϕ)−i ∈ (−1,ϕ−1).

Proof. Since (di)i∈N belongs to D, there exists k ∈N such that dk = dk+1 = 0. Let k
be the minimum integer with such property. Then

∞

∑
i=1

diϕ
−i =

k−1

∑
i=1

diϕ
−i +

∞

∑
i=k+2

diϕ
−i <

⌊k/2⌋

∑
j=1

ϕ
−(2 j−1)+

∞

∑
i=k+2

ϕ
−i

=
(

1−ϕ
−2⌊k/2⌋

)
+ϕ

−k ≤ 1,
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and 1 is proved. Let us prove 2. We have

m

∑
i=1

di(−ϕ)−i ≤
m

∑
j=1

d2 jϕ
−2 j <

∞

∑
j=1

ϕ
−2 j = ϕ

−1,

where the second inequality is strict because D does not contain sequences that are
ultimately equal to (0,1,0,1, . . .). On the other hand, similarly, we have

m

∑
i=1

di(−ϕ)−i ≥−
m

∑
j=1

d2 j−1ϕ
−(2 j−1) >−

∞

∑
j=1

ϕ
−(2 j−1) =−1.

Thus 2. is proved.

The next lemma relates base-ϕ expansion and Zeckendorf representation.

Lemma 5.1.3. Let N be a positive integer and write N = xϕm/
√

5 for some x ∈ F
and some integer m ≥ 2. Then the Zeckendorf representation of N is given by

N =
m−1

∑
i=1

δm−i(x) fi.

Moreover, we have δm(x) = 0.

Proof. Let R := N −∑
m−1
i=1 δm−i(x) fi. We have to prove that R = 0. Since R is an

integer, it suffices to show that |R|< 1. We have

√
5N = xϕ

m =
∞

∑
i=1

δi(x)ϕm−i =
m

∑
i=1

δi(x)ϕm−i +
∞

∑
i=m+1

δi(x)ϕm−i

=
m−1

∑
i=0

δm−i(x)ϕ i +
∞

∑
i=1

δi+m(x)ϕ−i

=
m−1

∑
i=0

δm−i(x)(ϕ i −ϕ
i)+

m−1

∑
i=0

δm−i(x)ϕ i +
∞

∑
i=1

δi+m(x)ϕ−i

=
√

5
m−1

∑
i=1

δm−i(x) fi +
m−1

∑
i=0

δm−i(x)(−ϕ)−i +
∞

∑
i=1

δi+m(x)ϕ−i.

Hence, we get that

√
5R =

m−1

∑
i=0

δm−i(x)(−ϕ)−i +
∞

∑
i=1

δi+m(x)ϕ−i.
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For the sake of contradiction, suppose that δm(x) = 1. Then δm+1(x) = 0 and, by
Lemma 5.1.2, it follows that

√
5R = 1+

m−1

∑
i=1

δm−i(x)(−ϕ)−i +
∞

∑
i=2

δi+m(x)ϕ−i ∈ (1−1+0,1+ϕ
−1 +ϕ

−1)

= (0,
√

5),

which is a contradiction, since R is an integer.

Therefore, δm(x) = 0 and, again by Lemma 5.1.2, we have

√
5R =

m−1

∑
i=1

δm−i(x)(−ϕ)−i +
∞

∑
i=1

δi+m(x)ϕ−i ∈ (−1+0,ϕ−1 +1)⊆ (−
√

5,
√

5),

so that |R|< 1, as desired.

In the next lemma there is the explicit formula for the base-ϕ expansions of the
sum of two numbers.

Lemma 5.1.4. Let x,y ∈ [0,1), m ∈ N, and put v := x+ yϕ−m. Suppose that there
exists λ ∈ N such that λ +2 ≤ m and δλ (x) = δλ+1(x) = 0. Then, putting

w :=
∞

∑
i=λ+2

δi(x)ϕ−i +
∞

∑
i=m+1

δi−m(y)ϕ−i,

we have that v,w ∈ [0,1) and

δi(v) =

δi(x) if i ≤ λ ,

δi(w) if i > λ ,
(5.1)

for every i ∈ N.

Proof. From Lemma 5.1.2.1, we have that

0 ≤ w < ϕ
−(λ+1)+ϕ

−m < ϕ
−(λ+1)+ϕ

−(λ+2) = ϕ
−λ .
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Hence, w ∈ [0,ϕ−λ )⊆ [0,1) and so w = ∑
∞

i=λ+1 δi(w)ϕ−i. Therefore, recalling that
δλ+1(x) = 0, we get that

v = x+ yϕ
−m =

∞

∑
i=1

δi(x)ϕ−i +
∞

∑
i=1

δi(y)ϕ−i−m =
∞

∑
i=1

δi(x)ϕ−i +
∞

∑
i=m+1

δi−m(y)ϕ−i

=
λ

∑
i=1

δi(x)ϕ−i +w =
λ

∑
i=1

δi(x)ϕ−i +
∞

∑
i=λ+1

δi(w)ϕ−i,

which is the base-ϕ expansion of v. (Note that δλ (x) = 0.) In particular, by
Lemma 5.1.2.1, we have that v ∈ [0,1). Thus (5.1) follows.

5.2 Main theorem for the Zeckendorf representation
of the inverse of an integer mod( fn)

Theorem 5.2.1. Let a ≥ 3 be an integer. Then there exist integers M,n0, i0 ≥ 1
and periodic sequences zzz(0), . . . ,zzz(M−1) and www(1), . . . ,www(i0) with values in {0,1} such
that, for all integers n ≥ n0 with gcd(a, fn) = 1, the Zeckendorf representation of
(a−1 mod fn) is given by

(a−1 mod fn) =
n−1

∑
i= i0

z(n mod M)
n−i fi +

i0−1

∑
i=1

w(i)
n fi.

From the proof of Theorem 5.2.1 it follows that M,n0, i0, zzz(0), . . . ,zzz(M−1), and
www(1), . . . ,www(i0) can be computed from a (see also Remark 5.2.2 at the end of the
chapter).

Proof. Fix an integer a ≥ 3. Let us begin by defining M,n0, i0, and zzz(0), . . . ,zzz(M−1).
Put M := π(a). For each r ∈{0, . . . ,M−1} with gcd(a, fr)= 1, let br :=(− f−1

r mod
a), xr := br/a, and zzz(r) := δδδ (xr). Note that xr ∈ (0,1). Since xr is a positive
rational number, we have that zzz(r) is a (purely) periodic sequence belonging to D.
Let ℓ be the least common multiple of the period lengths of zzz(0), . . . ,zzz(M−1), and
put i0 := ℓ+ 3. Finally, let n0 := max{i0 + 1,⌈log(2a)/logϕ⌉}. Pick an integer
n ≥ n0 with gcd(a, fn) = 1 and, for the sake of brevity, put r := (n mod M). From
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Lemma 5.1.1 and Binet’s formula (2.1), we get that

(a−1 mod fn) =
br fn +1

a
=

br(ϕ
n −ϕ

n)√
5a

+
1
a
= (xr + ynϕ

−n)
ϕn
√

5
, (5.2)

where

yn :=

√
5

a
− xr(−ϕ)−n.

Since n≥ n0, it follows that yn ∈ (0,1) and xr+ynϕ−n ∈ (0,1). Therefore, from (5.2)
and Lemma 5.1.3, we get that

(a−1 mod fn) =
n−1

∑
i=1

δn−i(xr + ynϕ
−n) fi.

Since δδδ (xr) is (purely) periodic and belongs to D, we have that δδδ (xr) contains
infinitely many pairs of consecutive zeros. Furthermore, since the period length of
δδδ (xr) is at most ℓ, we have that among every ℓ+1 consecutive terms of δδδ (xr) there
are two consecutive zero. In particular, there exists λ = λ (r) such that n− ℓ−3 ≤
λ ≤ n− 2 and δλ (xr) = δλ+1(xr) = 0. Consequently, by Lemma 5.1.4, we get
that δi(xr + ynϕ−n) = δi(xr) for each positive integer i ≤ λ and, a fortiori, for each
positive integer i ≤ n− i0. Therefore, we have that

(a−1 mod fn) =
n−1

∑
i= i0

δn−i(xr) fi +
i0−1

∑
i=1

δn−i(xr + ynϕ
−n) fi (5.3)

=
n−1

∑
i= i0

z(r)n−i fi +
i0−1

∑
i=1

w(i)
n fi,

where www(1), · · · ,www(i0) are the sequences defined by w(i)
n := δn−i(xr + ynϕ−n). Note

that, by construction,

z(r)1 ,z(r)2 , . . . ,z(r)n−i0,w
(i0−1)
n ,w(i0−2)

n , . . . ,w(1)
n

is a string in {0,1} with no consecutive zeros. Hence, (5.3) is the Zeckendorf
representation of (a−1 mod fn).



5.2 Zeckendorf representation of the inverse of an integer mod( fn) 59

It remains only to prove that www(1), · · · ,www(i0) are periodic. By (5.3) and the
uniqueness of the Zeckendorf representation, it suffices to prove that

R(n) := (a−1 mod fn)−
n−1

∑
i= i0

z(r)n−i fi =
i0−1

∑
i=1

w(i)
n fi (5.4)

is a periodic function of n. From the last equality in (5.4), we have that 0 ≤ R(n)<

∑
i0−1
i=1 fi. (Actually, one can prove that 0 ≤ R(n) < fi0 , but this is not necessary

for our proof.) Fix a prime number p > max{a,∑i0−1
i=1 fi}. It suffices to prove that

R(n) is periodic modulo p. Recalling that (a−1 mod fn) = (br fn +1)/a and that the
sequence of Fibonacci numbers is periodic modulo p, it follows that (a−1 mod fn) is
periodic modulo p. Hence, it suffices to prove that R′(n) := ∑

n−1
i=i0 z(r)n−i fi is periodic

modulo p. Using that zzz(r) has period length dividing ℓ, we get that

R′(n+ ℓM)−R′(n) =
n+ℓM−1

∑
i= i0

z((n+ℓM) mod M)
n+ℓM−i fi −

n−1

∑
i=i0

z(r)n−i fi

=
n+ℓM−1

∑
i= i0

z(r)n+ℓM−i fi −
n−1

∑
i= i0

z(r)n−i fi

=
n+ℓM−1

∑
i=n

z(r)n+ℓM−i fi +
n−1

∑
i= i0

(z(r)n+ℓM−i − z(r)n−i) fi

=
ℓM

∑
j=1

z(r)j fn+ℓM− j,

which is a linear combination of sequences that are periodic modulo p. Hence R′(n)
is periodic modulo p. The proof is complete.

Remark 5.2.2. The proof of Theorem 5.2.1 provides a way to compute the positive
integers M, i0,n0 and the periods of the periodic sequences zzz(0), . . . ,zzz(M−1) and
www(1), . . . ,www(i0). Indeed, going through the proof, we have that: M = π(a) is the
Pisano period of a, which can be computed in an obvious way; zzz(r) = δδδ

(
(− f−1

r

mod a)/a
)

and so the period of zzz(r) can be computed as explained at the beginning
of Section 2.1; i0 and n0 have simple formulas in terms of ℓ, which is the least
common multiple of the period lengths of zzz(0), . . . ,zzz(M−1). Finally, the periods
of www(1), . . . ,www(i0) can be computed from (5.4) and the fact that R(n) is periodic
with period length at most π(p)2ℓM, which follows from the arguments after (5.4).
However, note that proceeding in this way might be impractical, since ℓ might be
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exponential in M, and thus p might be double exponential in M; making the search
for the periods of www(1), . . . ,www(i0) extremely long.



Chapter 6

Exploring the algebraic independence
with a focus on certain continued
fractions and their convergents

In this chapter, we summarize a method to prove the algebraic independence of n
quantities developed by C. Elsner et al. in the last years [23, 24]. Starting from n
algebraic independent quantities, it is possible to transfer this property to another
set of n quantities making use of a polynomial system in 2n variables. We provide
new applications of this criterion to periodic non-regular Hurwitz type continued
fractions. Specifically, given a particular continued fraction with real numbers having
partial quotients that are algebraically independent from each other, then not only the
convergents are algebraically independent each other, but they are also independent
from the limit of the continued fraction.

6.1 A criterion for algebraic independence

In this section we summarize the different variants of the criterion developed by
Elsner et al. taking into account their interconnections.

Theorem 6.1.1. (Theorem 1, [20]) Let K be a field with Q⊆K⊆ C. Assume that
the numbers x1, . . . ,xn ∈ C and y1, . . . ,yn ∈ C satisfy a system

f j(x1, . . . ,xn,y1, . . . ,yn) = 0 ( j = 1, . . . ,n) (6.1)
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of equations with polynomials f j(X1, . . . ,Xn,Y1, . . . ,Yn) ∈ K[X1, . . . ,Xn, Y1, . . . ,Yn]

for j = 1, . . . ,n. If the numbers x1, . . . ,xn are algebraically independent over K and

detn
(

∂ f j

∂Xi
(x1, . . . ,xn,y1, . . . ,yn)

)
̸= 0 (6.2)

holds, then the numbers y1, . . . ,yn are algebraically independent over K.

Remark 6.1.2. We interpret j as the row number and i as the column number.
From now on, we denote by capital letters the variables and by lowercase letters
the numerical values they assume. Moreover, by detk we mean the determinant of a
k× k matrix.

Theorem 6.1.1 can be proved in many different ways. The proof shown below
makes use of basic concepts of Commutative Algebra and of a lemma on separable
algebraic field extensions. Other proofs make use respectively of the projection
theorem of Tarski - Seidenberg and the concept of semi-algebraic sets (in the case of
a real field K), differential forms or isomorphism of fields, see [22, Example 1].

Proposition 6.1.3. Let L be a field with Q ⊆ L ⊆ R. Furthermore, let the point
(x1, . . . ,xn) ∈ Rn be an isolated zero of the system of equations

Pj(X1, . . . ,Xn) = 0 ( j = 1, . . . ,n) ,

which is formed with polynomials Pj(X1, . . . ,Xn) ∈ L[X1, . . . ,Xn] for j = 1, . . . ,n.
Then, the numbers x1, . . . ,xn are algebraic over L.

Proposition 6.1.3, that will be apply in the proof of Theorem 6.1.1, can be refor-
mulated in terms of the following lemma.

Lemma 6.1.4. Let F be an extension field of L and let x1, . . . ,xn ∈ F satisfy a system
of equations

Pj(x1, . . . ,xn) = 0 (for j = 1, . . . ,n) (6.3)

with polynomials Pj(X1, . . . ,Xn) ∈ L[X1, . . . ,Xn]. If

detn
(

∂Pj

∂Xi
(x1, . . . ,xn)

)
̸= 0

holds, then L(x1, . . . ,xn) is a separable algebraic field extension of L.
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Proof. Let D be a L-derivation of F = L(x1, . . . ,xn). From 6.3, it follows that
D(Pj(x1, . . . ,xn) = 0 so

∑
i

(
∂Pj

∂Xi

)
(x1, . . . ,xn) ·D(xi) = 0 for = j = 1, . . . ,n

So we have a system of n homogeneous linear equations in D(x1), . . . ,D(xn) with
non vanishing determinant. This implies that D(x1) = · · ·= D(xn) = 0 so D is the
trivial derivation. The thesis follows because a necessary and sufficient condition for
a finitely generated extension field of L to be separable over L is that 0 is the only
L-derivation of F [74, p. 126].

Proof. (Theorem 6.1.1),[20] Using the polynomials f1, . . . , fn from Theorem 6.1.1,
we define some auxiliary polynomials Pj, for j = 1, . . . ,n;

Pj(X1, . . . ,Xn) := f j(X1, . . . ,Xn,y1, . . . ,yn) ∈K(y1, . . . ,yn)[X1, . . . ,Xn] . (6.4)

They are constructed using the variables X1, . . . ,Xn, and they all vanish at the point
(x1, . . . , xn) because of (6.1). The determinant condition (6.2) takes the form

detn
(

∂Pj

∂Xi
(x1, . . . ,xn)

)
̸= 0 . (6.5)

With F = C, L = K(y1, . . . ,yn) and the setting of polynomials Pj(X1, . . . ,Xn) ( j =
1, . . . ,n) as in (6.4), all the conditions of Lemma 6.1.4 including (6.5) are fulfilled.
So, by Lemma 6.1.4, L(x1, . . . ,xn) is an algebraic field extension over L.

We denote by tr.deg
(
K2 : K1

)
the transcendence degree of the field extension

K2 over K1. Then, we have

tr.deg
(
L(x1, . . . ,xn) : L

)
= 0 and tr.deg

(
K(x1, . . . ,xn) : K

)
= n ,

where the latter is due to the condition on the algebraic independence of x1, . . . ,xn

over K in Theorem 6.1.1. Trivially, K⊆ L implies that tr.deg(L(x1, . . . ,xn) : K)≥ n.
If the fields K1, K2 and K3 form a field tower K1 ⊆K2 ⊆K3, we know according
to the chain theorem for degrees of transcendence, that

tr.deg
(
K3 : K1

)
= tr.deg

(
K3 : K2

)
+ tr.deg

(
K2 : K1

)
. (6.6)
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Applying this relation to the field tower K⊆ L=K(y1, . . . ,yn)⊆ L(x1, . . . ,xn), we
obtain

n ≤ tr.deg
(
L(x1, . . . ,xn) : K

)
= tr.deg

(
L(x1, . . . ,xn) : L

)
+ tr.deg

(
L : K

)
= tr.deg

(
L : K

)
= tr.deg

(
K(y1, . . . ,yn) : K

)
≤ n .

Since tr.deg
(
K(y1, . . . ,yn) : K

)
= n, the theorem is proved.

Theorem 6.1.5. Let K be a field with Q⊆K⊆ C. Furthermore, it is assumed that
the numbers x1, . . . ,xn ∈ C and y1, . . . ,yn ∈ C satisfy a system

y j = Tj(x1, . . . ,xn), ( j = 1, . . . ,n) (6.7)

of equations with polynomials Tj(X1, . . . ,Xn) ∈K[X1, . . . ,Xn] for j = 1, . . . ,n. If the
numbers x1, . . . ,xn are algebraically independent over K and

detn
(

∂Tj

∂Xi
(x1, . . . ,xn)

)
̸= 0 (6.8)

holds, then the numbers y1, . . . ,yn are algebraically independent over K.

Proof. Setting

f j
(
X1, . . . ,Xn,Yj

)
:= Tj

(
X1, . . . ,Xn

)
−Yj (1 ⩽ j ⩽ n) ,

Theorem 6.1.5 follows immediately from Theorem 6.1.1.

Remark 6.1.6. Under the conditions of Theorem 6.1.5, the non-vanishing of the
determinant in (6.8) is not only sufficient but also necessary for the algebraic inde-
pendence of y1, . . . ,yn over K.

In numerous applications, each of the numbers y1, . . . ,yn can be represented as
the value of a rational function at the point (x1, . . . ,xn), namely

y j =
Tj(x1, . . . ,xn)

U j(x1, . . . ,xn)
( j = 1, . . . ,n) . (6.9)
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Here Tj and U j are non-identical vanishing polynomials from the ring K[X1, . . . ,Xn].
The polynomials

f j(X1, . . . ,Xn,Yj) := YjU j(X1, . . . ,Xn)−Tj(X1, . . . ,Xn), (6.10)

for j = 1, . . . ,n, thus vanish at the points (x1, . . . ,xn,y j).

Theorem 6.1.7. Let K be a field with Q⊆K⊆ C. Furthermore, we assume that the
numbers x1, . . . ,xn ∈ C and y1, . . . ,yn ∈ C satisfy a system of the form

y j = R j(x1, . . . ,xn) ( j = 1, . . . ,n)

of equations with rational functions R j(X1, . . . ,Xn) in the extension field K(X1, . . . ,Xn)

for j = 1, . . . ,n. If the numbers x1, . . . ,xn are algebraically independent over K and

∆̃1 := detn
(

∂R j

∂Xi
(x1, . . . ,xn)

)
̸= 0 (6.11)

holds, then the numbers y1, . . . ,yn are algebraically independent over K.

Proof. We denote the determinant in (6.11) by ∆1. Let us first assume that ∆1 ̸= 0;
we can express the rational functions R j by

R j(X1, . . . ,Xn) =
Tj(X1, . . . ,Xn)

U j(X1, . . . ,Xn)
( j = 1, . . . ,n) ,

using the polynomials Tj and U j already introduced in (6.9). The algebraic in-
dependence of y1, . . . ,yn over K can be proven with Theorem 6.1.1, where the
non-vanishing of the Jacobi determinant must be shown for the functions f j from
(6.10):

∆̃2 :=detn
(

∂ f j

∂Xi

)
(x1, . . . ,xn,y1, . . . ,yn)

=detn
(

y j
∂U j

∂Xi
−

∂Tj

∂Xi

)
(x1, . . . ,xn)

=detn
( Tj

U j

∂U j

∂Xi
−

∂Tj

∂Xi

)
(x1, . . . ,xn)
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=(−1)nU1 · · ·Undetn

(
1

U2
j

(
∂Tj

∂Xi
U j −Tj

∂U j

∂Xi

))
(x1, . . . ,xn)

=(−1)nU1 · · ·Undetn
(

∂R j

∂Xi

)
(x1, . . . ,xn)

=(−1)nU1 · · ·Un(x1, . . . ,xn)∆̃1 .

Since ∆̃1 ̸= 0 we have ∆̃2 ̸= 0. The x1, . . . ,xn are considered as algebraically inde-
pendent over K so that the polynomial Q1 · · ·Qn does not vanish identically. Then,
U1 · · ·Un(x1, . . . ,xn) ̸= 0 is guaranteed. Theorem 6.1.1 thus proves the algebraic
independence of y1, . . . ,yn over K.

Theorem 6.1.8. Let K be a field with Q ⊆ K ⊆ C. Let m and n be positive inte-
gers with 1 ≤ m < n. Furthermore, assume that the numbers x1, . . . ,xn ∈ C and
y1, . . . ,ym ∈ C satisfy a system

f j(x1, . . . ,xn,y1, . . . ,ym) = 0 ( j = 1, . . . ,m) (6.12)

of equations with polynomials f j(X1, . . . ,Xn,Y1, . . . ,Ym) ∈K[X1, . . . ,Xn, Y1, . . . ,Ym]

for j = 1, . . . ,m. If the numbers x1, . . . ,xn are algebraically independent over K and
if

detm
(

∂ f j

∂Xi
(x1, . . . ,xn,y1, . . . ,ym)

)
̸= 0 (6.13)

holds with 1 ⩽ i, j ⩽ m, then the numbers y1, . . . ,ym are algebraically independent
over the field K(xm+1, . . . ,xn).

Proof. In addition to the equations in (6.12) we introduce the polynomials

f j(X j,Yj) := X j −Y j ∈ K[X j,Yj] ( j = m+1, . . . ,n)

so that for y j := x j with j = m+ 1, . . . ,n the polynomial f j vanishes at the point
(x j,y j). Theorem 6.1.1 can now be applied for the proof of the algebraic indepen-
dence of y1, . . . ,yn over K. We compute the Jacobi determinant of the functions
f1, . . . , fn at the position (x1, . . . ,xn,y1, . . . ,yn) and apply the condition from (6.13):

detn
(

∂ f j

∂Xi
(x1, . . . ,xn,y1, . . . ,yn)

)
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=detn



∂ f1

∂X1
· · · ∂ f1

∂Xm

∂ f1

∂Xm+1
· · · ∂ f1

∂Xn
... · · ·

...
... · · ·

...
∂ fm

∂X1
· · · ∂ fm

∂Xm

∂ fm

∂Xm+1
· · · ∂ fm

∂Xn
0 · · · 0 1 · · · 0
... · · ·

... · · · · · ·
...

0 · · · 0 0 · · · 1


(x1, . . . ,xn,y1, . . . ,ym)

=detn


∂ f1

∂X1
· · · ∂ f1

∂Xm
... · · ·

...
∂ fm

∂X1
· · · ∂ fm

∂Xm

(x1, . . . ,xn,y1, . . . ,ym) ̸= 0 .

Thus, according to Theorem 6.1.1 and to y j = x j for j = m+1, . . . ,n, the algebraic
independence of the numbers y1, . . . ,ym,xm+1, . . . ,xn over K is proven. This implies

tr.deg
(
K(y1, . . . ,ym,xm+1, . . . ,xn) : K

)
= n .

Taking into account the presupposed algebraic independence of x1, . . . ,xn over K,
we know that the equation tr.deg

(
K(xm+1, . . . ,xn) : K

)
= n−m holds. Again we

make use of the chain rule from (6.6), applied to the fields K ⊆ K(xm+1, . . . ,xn) ⊆
K(y1, . . . ,ym,xm+1, . . . ,xn). Thus we obtain

tr.deg
(
K(y1, . . . ,ym,xm+1, . . . ,xn) : K(xm+1, . . . ,xn)

)
= m ,

which is the statement of Theorem 6.1.8.

6.2 A pratical lemma for the handling of the determi-
nant condition

In this section we want to show the method used later to get a contradiction in
the proof of Theorem 6.3.1. Let X1,X2,Y1,Y2 be variables and x1,x2,y1,y2 be real
numbers, where x1 and x2 are algebraically independent over a finite field extension
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Q̃ of Q. Let us consider three polynomials, such that

P1
(
X1,X2,Y1

)
∈Q̃
[
X1,X2,Y1

]
,

P2
(
X1,X2,Y2

)
∈Q̃
[
X1,X2,Y2

]
,

D
(
X1,X2,Y1,Y2

)
∈Q̃
[
X1,X2,Y1,Y2

]
.

We require that
P1(x1,x2,y1) = 0 ,
P2(x1,x2,y2) = 0 .

(6.14)

At this point, assume that
D(x1,x2,y1,y2) = 0 , (6.15)

later, in our application, we require that D is not zero. As a first step, we consider
D(Y1,Y2) := D(x1,x2,Y1,Y2) and P1(Y1) := P1(x1,x2,Y1) as polynomials in the poly-
nomial ring Q̃(x1,x2)[Y1,Y2]. By (6.14) and (6.15), the two polynomials D(Y1,Y2)

and P1(Y1) have a common root at (Y1,Y2) = (y1,y2), and thus their resultant with
respect to Y1 vanishes for Y2 = y2. Therefore, we define the polynomial P3(Y2) as

P3(Y2) := ResY1

(
D(Y1,Y2), P1(Y1)

)
= ResY1

(
D(x1,x2,Y1,Y2) ,P1(x1,x2,Y1)

)
and, from one hand it holds the property

P3(y2) = 0 , (6.16)

on the other side it is
P3(Y2) ∈ Q̃(x1,x2,Y2) . (6.17)

As a second step, we interprete P2(Y2) := P2(x1,x2,Y2) as a polynomial from the
polynomial ring Q̃(x1,x2)[Y2] over the field Q̃(x1,x2). Together with (6.16) and
(6.17), it holds that P4(x1,x2) = 0 where the polynomial P4(X1,X2) is defined by

P4(X1,X2) := ResY2

(
P3(Y2),P2(Y2)

)
∈ Q̃

[
X1,X2

]
.

An algebraic conclusion argument now requires that P4(X1,X2) does not vanish
identically. For this we need the following lemma.



6.3 An application of the criterion to continued fractions 69

Lemma 6.2.1. Let α1 and α2 be two real numbers. Set X1 = α1 and X2 = α2 so that
we have for the above polynomials

P1(Y1) = P1(Y1) ,

P2(Y2) = P2(Y2) ,

D(Y1,Y2) = D(Y1,Y2) ,

and all these polynomials are considered as polynomials over the field Q̃(α1,α2). If

γ := ResY2

(
ResY1

(
D(Y1,Y2), P1(Y1)

)
, P2(Y2)

)
is a non-vanishing number from the field Q̃(α1,α2), then the polynomial P4(X1,X2)

does not vanish identically.

Proof. Since there is no difference whether the resultants is computed with respect
to Y1 and Y2 with unspecified parameters X1 and X2, and then assigning special values
to these parameters, or whether assigning these values in the involved polynomials
already at the beginning before the resultant calculations, then the proof follows.

6.3 An application of the criterion to continued frac-
tions

In this section we apply the above lemma to prove the algebraic independence of
certain continued fractions and their convergents. In the following theorem we
consider the case of a continued fractions of periods 2, and lately we show why it is
not possible to prove the algebraic independence in the case of period 1.

Theorem 6.3.1. Let Q̃ be a real finite field extension of Q, and let α and β be two
real algebraic independent numbers over Q̃ greater than 0. Moreover, let pm/qm be
the convergents of ξ := [α,β ]. Then, for every integer n ⩾ 0, the two numbers ξ

and pn/qn are algebraically independent over the field Q̃.
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Proof. Let us rename the following quantity as

y1 := [α,β ] = α +
1

β +
1

y1

=
(αβ +1)y1 +α

βy1 +1
.

Then we have
βy2

1 −αβy1 −α = 0 . (6.18)

This implies

y1 =
α

2
+

√
α2

4
+

α

β
, (6.19)

but we will not need this representation of y1. From [21, Corollary 1] we obtain
three-term recurrence formulas for leaping convergents of y1 with indices modulo 2.
For n ⩾ 2 we have

p2n = (αβ +2)p2n−2 − p2n−4 , (6.20)

q2n = (αβ +2)q2n−2 −q2n−4 ; (6.21)

and for n ⩾ 1,

p2n+1 = (αβ +2)p2n−1 − p2n−3 , (6.22)

q2n+1 = (αβ +2)q2n−1 −q2n−3 . (6.23)

The characteristic polynomial P(x) of all four recursion formulas in (6.21) and (6.22)
is

P(x) = x2 − (αβ +2)x+1 .

Its roots t1, t2 can be easily calculated as

t1 =
αβ +2

2
+

√
(αβ +2)2

4
−1 =

αβ +2
2

+
1
2

√
αβ (αβ +4) , (6.24)

and, similarly,

t2 =
αβ +2

2
− 1

2

√
αβ (αβ +4) . (6.25)

We now determine explicit formulas for the four quantities p2n, q2n, p2n+1, and q2n+1

based on the recursion formulas in (6.21) and (6.22). We start with an equation for
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p2n

p2n = C1tn
1 +C2tn

2 (n ≥ 0). (6.26)

We have the initial values

p−1 = 1 ,
p0 = α ,

p1 = αβ +1 ,
p2 = α2β +2α ,

p3 = α2β 2 +3αβ +1 .


(6.27)

To obtain C1 and C2 in (6.26), we need the values for n = 0 and n = 1 from (6.27):

n = 0 : α = C1 +C2 ,

n = 1 : α2β +2α = C1t1 +C2t2 .

Using the explicit values for t1 and t2 from (6.24) and (6.25), we solve this system
for C1 and C2:

C1 =
α

2

(
1+

αβ +2√
αβ (αβ +4)

)
,

C2 =
α

2

(
1− αβ +2√

αβ (αβ +4)

)
.

The three remaining quantities are treated in an analogous way. We continue with
q2n:

q2n = C3tn
1 +C4tn

2 (n ≥ 0). (6.28)

We have the initial values

q−1 = 0 ,
q0 = 1 ,
q1 = β ,

q2 = αβ +1 ,
q3 = αβ 2 +2β .

Hence we have
n = 0 : 1 = C3 +C4 ,

n = 1 : αβ +1 = C3t1 +C4t2 ,
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and consequently,

C3 =
1
2

(
1+

αβ√
αβ (αβ +4)

)
,

C4 =
1
2

(
1− αβ√

αβ (αβ +4)

)
.

For an explicit formula for p2n+1 we access values from (6.27):

p2n+1 = C5tn
1 +C6tn

2 (n ≥ 0) , (6.29)

Thus, we have

n = 0 : αβ +1 = C5 +C6 ,

n = 1 : α2β 2 +3αβ +1 = C5t1 +C6t2 ,

and consequently,

C5 =
αβ +1

2
+

α2β 2 +3αβ

2
√

αβ (αβ +4)
,

C6 =
αβ +1

2
− α2β 2 +3αβ

2
√

αβ (αβ +4)
.

Last, we are going to tackle q2n+1:

q2n+1 = C7tn
1 +C8tn

2 (n ≥ 0) ; (6.30)

n = 0 : β = C7 +C8 ,

n = 1 : αβ 2 +2β = C7t1 +C8t2 ;

C7 =
β

2
+

αβ 2 +2β

2
√

αβ (αβ +4)
,

C8 =
β

2
− αβ 2 +2β

2
√

αβ (αβ +4)
.

It is necessary to give a clearer form to the formulas (6.26), (6.28), (6.29) and (6.30),
by expressing the constants by t1 and t2. For this purpose we first introduce

z := αβ
(
αβ +4

)
. (6.31)
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For example, we hereby obtain for C1 and C2:

C1 =
α

2
· αβ +2+

√
z√

z
=

α√
z

(
αβ +2

2
+

1
2
√

z
)
=

αt1√
z
,

C2 = −αt2√
z
.

Therefore, we can express (6.26) in the following form

p2n =
α√

z

(
tn+1
1 − tn+1

2
)
, (6.32)

where

t1 =
αβ +2

2
+

1
2
√

z ,

t2 =
αβ +2

2
− 1

2
√

z .

Similarly, (6.28), (6.29), and (6.30) are treated, requiring intermediate calculations
of greater or lesser length

q2n =
1√
z

(
(t1 −1)tn

1 − (t2 −1)tn
2
)
, (6.33)

p2n+1 =
1√
z

(
(t1 −1)tn+1

1 − (t2 −1)tn+1
2
)
, (6.34)

q2n+1 =
β√

z

(
tn+1
1 − tn+1

2
)
. (6.35)

By these explicit formulas for the convergents it becomes clear that the continued
fraction [α,β ] converges for every pair α,β of positive real numbers: on the one
side, for convergents p2n/q2n with even subscripts, we obtain from (6.32) and (6.33),

[α,β , . . . ,α︸ ︷︷ ︸
2n+1

]
=

p2n

q2n

=
α

1−
tn
1
(
1− (t2/t1)

n)
tn+1
1
(
1− (t2/t1)

n+1)
(n→∞)−→

α

1−
1

t1

=
α

2
+

√
α2

4
+

α

β
= y1 ,
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note that the inequalities 0 < t2 < t1 hold by (6.24), (6.25) and α,β > 0. On the other
side, a similar calculation shows for convergents p2n+1/q2n+1 with odd subscripts
by (6.34) and (6.35),

[α,β , . . . ,β︸ ︷︷ ︸
2n+2

]
=

p2n+1

q2n+1

=
1
β

(
tn+2
1
(
1− (t2/t1)

n+2)
tn+1
1
(
1− (t2/t1)

n+1)
)

(n→∞)−→ 1
β

(
t1 −1

)
=

α

2
+

√
α2

4
+

α

β
= y1 .

This proves the convergence of the continued fraction [α,β ] for all positive real
numbers α and β . For completeness, the convergence can also be proved applying a
classical result that asserts that, taken a continued fraction with real partial quotients
[a0,a1, . . . ] such that ai > 0 for i > 0, then it converges in R if and only if ∑ai = ∞

(see Proposition 2.3 of [16] for a very nice and simple proof).

We first prove in Theorem 6.3.1 the algebraic independence of ξ and p2n/q2n for
n ⩾ 3. In order to do that, we want to apply Theorem 6.1.1, so our look for two
polynomials such that Pi,n(α,β , p2n,q2n) = 0 and the functional determinant does
not vanish. From now on, we omit the subscript n in Pi,n.
It makes sense to introduce also

w := αβ +2 . (6.36)

This allows t1 and t2 to be represented even more simply as

t1 =
1
2
(
w+

√
z
)
,

t2 =
1
2
(
w−

√
z
)
.
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These representations are used to express tm
1 − tm

2 in terms of w and
√

z by binomial
expansions. Let

∆m = ∆m(α,β ) :=
tm
1 − tm

2√
z

=
1

2m√z

(
(w+ z1/2)

m − (w− z1/2)
m)

=
1

2m√z

( m

∑
ν=0

(
m
ν

)
wm−νzν/2 −

m

∑
ν=0

(
m
ν

)
wm−ν(−1)νzν/2

)
=

1
2mz1/2 ∑

1 ≤ ν ≤ m
ν ≡2 1

2
(

m
ν

)
wm−νzν/2

=
1

2m−1 ∑
µ⩾1

(
m

2µ −1

)
wm−2µ+1zµ−1

(6.31),(6.36)
=

1
2m−1 ∑

µ⩾1

(
m

2µ −1

)
(αβ +2)m+1−2µ

(
αβ (αβ +4)

)µ−1

=
1

2m−1 ∑
µ⩾1

(
m

2µ −1

)
(αβ )µ−1(4+αβ )µ−1(2+αβ )m+1−2µ ,

(6.37)

where the last expression may be considered as a polynomial in α and β with rational
coefficients. Therefore, we obtain by (6.37) from (6.32), (6.33), (6.34), and (6.35):

p2n =
α(tn+1

1 − tn+1
2 )

√
z

= α∆n+1 ,

q2n =
(tn+1

1 − tn+1
2 )− (tn

1 − tn
2)√

z
= ∆n+1 −∆n ,

p2n+1 =
(tn+2

1 − tn+2
2 )− (tn+1

1 − tn+1
2 )

√
z

= ∆n+2 −∆n+1 ,

q2n+1 =
β (tn+1

1 − tn+1
2 )

√
z

= β∆n+1 .



(6.38)

We prove Theorem 6.3.1 first for ξ and convergents p2n/q2n with even index 2n ⩾ 4,
so that we assume n ⩾ 2 in the following. Set

P1
(
X1,X2,Y1

)
:= X2Y 2

1 −X1X2Y1 −X1 , (6.39)
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so that P1(x1,x2,y1) = 0 for X1 = x1 := α , X2 = x2 := β , and Y1 = y1 := ξ by (6.18).
Moreover, let

y2 :=
p2n

q2n

(6.38)
=

α∆n+1

∆n+1 −∆n
.

Hence, the polynomial

P2
(
X1,X2,Y2

)
:=
(
∆n+1 −∆n

)
Y2 −∆n+1X1 (6.40)

vanishes for (X1,X2,Y2) = (x1,x2,y2) where ∆m = ∆m(X1,X2) with m ∈ {n,n+1}.

In (6.37) we replace α by X1 and β by X2:

∆m
(
X1,X2

)
=

1
2m−1 ∑

µ⩾1

(
m

2µ −1

)
(X1X2)

µ−1(4+X1X2)
µ−1(2+X1X2)

m+1−2µ .

(6.41)
For brevity, we again write ∆m instead of ∆m(X1,X2), and we set

∆
(X j)
m :=

∂∆m

∂X j
( j = 1,2) .

Then we obtain

∂P1

∂X1

(6.39)
= −X2Y1 −1 ,

∂P1

∂X2

(6.39)
= Y 2

1 −X1Y1 ,

∂P2

∂X1

(6.40)
=

(
∆
(X1)
n+1 −∆

(X1)
n
)
Y2 −∆

(X1)
n+1X1 −∆n+1 ,

∂P2

∂X2

(6.40)
=

(
∆
(X2)
n+1 −∆

(X2)
n
)
Y2 −∆

(X2)
n+1X1 .
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With these partial derivatives we calculate the following functional determinant

D1 = D1
(
X1,X2,Y1,Y2

)
:=

∣∣∣∣∣∣∣∣∣∣
∂P1

∂X1

∂P1

∂X2

∂P2

∂X1

∂P2

∂X2

∣∣∣∣∣∣∣∣∣∣
= −(1+X2Y1)

((
∆
(X2)
n+1 −∆

(X2)
n
)
Y2 −∆

(X2)
n+1X1

)
−
(
Y 2

1 −X1Y1
)((

∆
(X1)
n+1 −∆

(X1)
n
)
Y2 −∆

(X1)
n+1X1 −∆n+1

)
. (6.42)

For 1 ⩽ µ ⩽ ⌊(m+1)/2⌋ let

Hm,µ =Hm,µ

(
X1,X2

)
=

1
2m−1

(
m

2µ −1

)
(X1X2)

µ−1(4+X1X2)
µ−1(2+X1X2)

m+1−2µ .

(6.43)
Then we obtain from (6.41)

∆m = ∑
µ⩾1

Hm,µ . (6.44)

Note that
∆1 = H1,1 = 1 and ∆2 = H2,1 = 2+X1X2 .

Thus m= 2 is the smallest index for which neither ∆
(X1)
m nor ∆

(X2)
m vanishes identically.

Therefore, in (6.42) the same holds for n ≥ 2, and the calculations made below do
not require a case distinction. The statements of Theorem 6.3.1 for p2/q2 and p0/q0

have to be proved separately later. We have from (6.41) and (6.42) to (6.44):

D1 =−
⌊(n+2)/2)⌋

∑
µ=1

(
(1+X2Y1)Y2

(
H(X2)

n+1,µ −H(X2)
n,µ
)
− (1+X2Y1)X1H(X2)

n+1,µ

+(Y1 −X1)Y1Y2
(
H(X1)

n+1,µ −H(X1)
n,µ
)
− (Y1 −X1)X1Y1H(X1)

n+1,µ

− (Y1 −X1)Y1Hn+1,µ

)
(6.45)

In the following, let m ⩾ 2 and 1 ⩽ µ ⩽ (m+1)/2 (if m is odd) and 1 ⩽ µ ⩽ m/2
(if m is even). We obtain from (6.43):
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H(X1)
m,µ = H(X1)

m,µ (X1,X2) :=
∂Hm,µ(X1,X2)

∂X1

=
1

2m−1

(
m

2µ −1

)(
(µ −1)X2(X1X2)

µ−2(4+X1X2)
µ−1(2+X1X2)

m+1−2µ

+(µ −1)(X1X2)
µ−1X2(4+X1X2)

µ−2(2+X1X2)
m+1−2µ

+(m+1−2µ)(X1X2)
µ−1(4+X1X2)

µ−1X2(2+X1X2)
m−2µ

)
.

(6.46)

Note that for µ = 1 the formula for the partial derivative of Hm,1(X1,X2) with respect
to X1 takes the form

H(X1)
m,1 =

m(m−1)
2m−1 X2(2+X1X2)

m−2 . (6.47)

Additionally we obtain the identity

X1H(X1)
m,µ (X1,X2) = X2H(X2)

m,µ (X1,X2) , (6.48)

which follows from (6.43) by the chain rule for derivatives.

In the following we prepare a procedure as described in the section 6.2. Here we will
choose α1 = 2 and α2 =−2. We obtain from (6.43), (6.46), (6.47) and (6.48):

Hm,1(2,−2) =
1

2m−1

(
m
1

)
(−2)m−1 = (−1)m−1m , (6.49)

Hm,µ(2,−2) = 0 (µ ⩾ 2) , (6.50)

H(X1)
m,1 (2,−2) =

m(m−1)
2m−1 (−2)(−2)m−2 = (−1)m−1m(m−1) , (6.51)

H(X2)
m,1 (2,−2) = (−1)mm(m−1) , (6.52)

H(X1)
m,2 (2,−2) =

1
2m−1

(
m
3

)
(−4)(−2)(−2)m−3 = 2(−1)m−1

(
m
3

)
, (6.53)

H(X2)
m,2 (2,−2) = 2(−1)m

(
m
3

)
, (6.54)

H(X j)
m,µ (2,−2) = 0 (µ ⩾ 3, j = 1,2) . (6.55)
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Next, we substitute the values from (6.49) to (6.55) into (6.45), where m is replaced
by n and n+1, respectively. Note that ⌊(m+1)/2⌋= ⌊(n+2)/2⌋⩾ 2 holds by our
assumption n ≥ 2. We obtain

D1(2,−2) = −(1−2Y1)Y2(H
(X2)
n+1,1 +H(X2)

n+1,2 −H(X2)
n,1 −H(X2)

n,2 )

+2(1−2Y1)(H
(X2)
n+1,1 +H(X2)

n+1,2)

−(Y1 −2)Y1Y2(H
(X1)
n+1,1 +H(X1)

n+1,2 −H(X1)
n,1 −H(X1)

n,2 )

+2(Y1 −2)Y1(H
(X1)
n+1,1 +H(X1)

n+1,2)

+(Y1 −2)Y1Hn+1,1

= (2Y1 −1)Y2

(
(−1)n+1n(n+1)+2(−1)n+1

(
n+1

3

)
−(−1)n(n−1)n−2(−1)n

(
n
3

))
+2(1−2Y1)

(
(−1)n+1n(n+1)+2(−1)n+1

(
n+1

3

))
−(Y1 −2)Y1Y2

(
(−1)nn(n+1)+2(−1)n

(
n+1

3

)
−(−1)n−1(n−1)n−2(−1)n−1

(
n
3

))
+2(Y1 −2)Y1

(
(−1)nn(n+1)+2(−1)n

(
n+1

3

))
+(Y1 −2)Y1(−1)n(n+1)(−1)n+1(
(2Y1 −1)Y2

(
n(n+1)+2

(
n+1

3

)
+(n−1)n+2

(
n
3

))
+2(1−2Y1)

(
n(n+1)+2

(
n+1

3

))
+(Y1 −2)Y1Y2

(
n(n+1)+2

(
n+1

3

)
+(n−1)n+2

(
n
3

))
−2(Y1 −2)Y1

(
n(n+1)+2

(
n+1

3

))
−(Y1 −2)Y1(n+1)

)
=

(−1)n+1(n+1)
3

(
(Y 2

1 Y2 −Y2)n(2n+1)

+(2−2Y 2
1 )n(n+2)+3(2Y1 −Y 2

1 )
)

(6.56)
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We need to evaluate the polynomials P1 and P2 from (6.39) and (6.40), respectively,
at the point (X1,X2) = (2,−2). For the polynomial P1 we get immediately

P1(2,−2,Y1) = 4Y1 −2Y 2
1 −2 . (6.57)

For P2, we obtain from (6.41), (6.43), (6.49) and (6.50) that

∆n+1(2,−2) = (−1)n(n+1) ,

∆n(2,−2) = (−1)n−1n .

Therefore,
P2(2,−2,Y2) = (−1)n((2n+1)Y2 −2(n+1)

)
.

Now we assume for the functional determinant D1 in (6.42) that

D1(x1,x2,y1,y2) = 0 (6.58)

holds. Additionally, we know from (6.39) and (6.40) that

P1(x1,x2,y1) = 0 ,
P2(x1,x2,y2) = 0 .

}
(6.59)

Now we consider the following polynomials in one variable each (for ∆m from (6.37)
with α and β replaced respectively by x1 and x2):

D1(x1,x2,Y1,y2) ∈ Q(x1,x2,y2)[Y1] ⊆ Q̃(x1,x2,y2)[Y1] ,

P1(x1,x2,Y1) ∈ Q(x1,x2)[Y1] ⊆ Q̃(x1,x2)[Y1] ,

P2(x1,x2,Y2) ∈ Q(x1,x2)[Y2] ⊆ Q̃(x1,x2)[Y2] .

 (6.60)

Thus, a situation is now given as described at the beginning of subsection 6.2. It now
will be necessary to guarantee the non-vanishing of D1(x1,x2,y1,y2) with the help
of Lemma 6.2.1. Because of (6.58) to (6.60) we obtain by using resultants

P3(x1,x2,y2) := ResY1

(
D1(x1,x2,Y1,y2), P1(x1,x2,Y1)

)
= 0 ,

and
P4(x1,x2) := ResY2

(
P3(x1,x2,Y2), P2(x1,x2,Y2)

)
= 0 .
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Because of P4(x1,x2) ∈ Q̃(x1,x2) and the presupposed algebraic independence of x1

and x2 over Q̃, the latter is possible only for P4 ≡ 0.

In particular, we can rewrite (6.56) in terms of the coefficients

Cn =
(−1)n+1(n+1)

3
,

An = n(2n+1)Y2 −2n(n+2)−3 , (6.61)

Bn =−n(2n+1)Y2 +2n(n+2)

obtaining D1 = AnCnY 2
1 +6CnY1 +BnCn.

The solutions of (6.56) can be written using (6.61) obtaining

a1 = − 3
An

+

√
9

A2
n
− Bn

An
,

a2 = − 3
An

−

√
9

A2
n
− Bn

An
,

whereas the solutions of the polynomial P1 are b1 = b2 = 1.
Applying the definition of the resultants, it follows

P3
(
2,−2,Y2

)
= (AnCn)

2(−2)2(a1 −b1)(a1 −b2)(a2 −b1)(a2 −b2)

= 4A2
nC2

n

(
− 3

An
−1+

√
9

A2
n
− Bn

An

)2(
− 3

An
−1−

√
9

A2
n
− Bn

An

)2

= 4A2
nC2

n

(
6−3

An

)2

= 4(n+1)2 .

Applying the same reasoning for ResY2(P2,P3) we have

P4
(
2,−2

)
= 4(n+1)2 ̸= 0 . (6.62)

Formula (6.62) contradicts P4 ≡ 0. So D1(x1,x2,y1,y2) does not vanish in (6.58),
and so the algebraic independence of ξ = [α,β ] and p2n/q2n over Q̃ for n ⩾ 2
follows by Theorem 6.1.1 with K = Q̃. Now we prove Theorem 6.3.1 for ξ and
convergents p2n+1/q2n+1 with odd index, so that we assume n ⩾ 1 in the following.
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As the argument is similar to the even case, we omit some calculations.
The polynomial P1

(
X1,X2,Y1

)
does not change, whereas since now we are consider-

ing convergents with odd index we define a new polynomial. Let

y2 :=
p2n+1

q2n+1

(6.38)
=

∆n+2 −∆n+1

β∆n+1
.

Hence, the polynomial

P2
(
X1,X2,Y2

)
:= ∆n+1X2Y2 −

(
∆n+2 −∆n+1

)
(6.63)

vanishes for X1 = x1, X2 = x2, and Y2 = y2, where ∆m = ∆m(X1,X2) with m ∈ {n+
1,n+2}.
Applying the same reasoning of the case of the convergents with even indexes, we
obtain

∂P1

∂X1

(6.39)
= −X2Y1 −1 ,

∂P1

∂X2

(6.39)
= Y 2

1 −X1Y1 ,

∂P2

∂X1

(6.63)
= X2Y2∆

(X1)
n+1 −∆

(X1)
n+2 +∆

(X1)
n+1 ,

∂P2

∂X2

(6.63)
= Y2∆n+1 +X2Y2∆

(X2)
n+1 −∆

(X2)
n+2 +∆

(X2)
n+1 .

With these partial derivatives we calculate the following functional determinant

D2 = D2
(
X1,X2,Y1,Y2

)
:=−(1+X2Y1)

(
Y2∆n+1 +X2Y2∆

(X2)
n+1 −∆

(X2)
n+2 +∆

(X2)
n+1

)
−
(
Y 2

1 −X1Y1
)(

X2Y2∆
(X1)
n+1 −∆

(X1)
n+2 +∆

(X1)
n+1

)
.

(6.64)

Next, we substitute the values from (6.49) to (6.55) into (6.64), where m is replaced
by n+1 and n+2, respectively and we obtain

D2(2,−2) = −(1−2Y1)Y2Hn+1,1 +2(1−Y2)(H
(X2)
n+1,1 +H(X2)

n+1,2)

+(1−2Y1)(H
(X2)
n+2,1 +H(X2)

n+2,2 −H(X2)
n+1,1 −H(X2)

n+1,2)
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+ 2(Y 2
1 −2Y1)Y2(H

(X1)
n+1,1 +H(X1)

n+1,2)

+ (Y 2
1 −2Y1)(H

(X1)
n+2,1 +H(X1)

n+2,2)

− (Y 2
1 −2Y1)(H

(X1)
n+1,1 +H(X1)

n+1,2)

=
(−1)n(n+1)

3
(
6−6Y 2

1 +2n2(−1+Y 2
1 )(−1+Y2)

−3Y2 +6Y1Y2 +n(−1+Y 2
1 )(−7+4Y2)

)
(6.65)

We need to evaluate the polynomials P1 and P2 from (6.39) and (6.40), respectively,
at the point (X1,X2) = (2,−2). For the polynomial P1 we have the result (6.57).
For P2, we obtain from (6.41), (6.43), (6.49) and (6.50) that

∆n+1(2,−2) = (−1)n(n+1) ,

∆n+2(2,−2) = (−1)n−1(n+2) .

Therefore,
P2(2,−2,Y2) = (−1)n(− (n+1)Y2 +2n+3

)
. (6.66)

Now we assume for the functional determinant D2 in (6.64) that

D2(x1,x2,y1,y2) = 0 (6.67)

holds. Additionally, we know from (6.39) and (6.40) that

P1(x1,x2,y1) = 0 ,
P2(x1,x2,y2) = 0 .

}
(6.68)

Now we consider the following polynomials in one variable each (for ∆m ∈Q[x1,x2]

see (6.37)):

D2(x1,x2,Y1,y2) ∈ Q(x1,x2,y2)[Y1] ⊆ (x1,x2,y2)[Y1] ,

P1(x1,x2,Y1) ∈ Q(x1,x2)[Y1] ⊆ Q̃(x1,x2)[Y1] ,

P2(x1,x2,Y2) ∈ Q(x1,x2)[Y2] ⊆ Q̃(x1,x2)[Y2] .

 (6.69)

Also in this case, a situation is now given as described at the beginning of subsec-
tion 6.2. It now will be necessary to guarantee the non-vanishing of D2(x1,x2,y1,y2)

with the help of Lemma 6.2.1. Because of (6.67) to (6.69) we obtain by using
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resultants

P3(x1,x2,y2) := ResY1

(
D2(x1,x2,Y1,y2), P1(x1,x2,Y1)

)
= 0 ,

and
P4(x1,x2) := ResY2

(
P3(x1,x2,Y2), P2(x1,x2,Y2)

)
= 0 .

Because of P4(x1,x2) ∈ Q̃(x1,x2) and the presupposed algebraic independence of x1

and x2 over Q̃, the latter is possible only for P4 ≡ 0.

However, we obtain with (6.65), (6.57) and (6.66):

P3
(
2,−2,Y2

)
= 4(n+1)2Y 2

2 ,

and hereby finally
P4
(
2,−2

)
= 4(3+5n+2n2)

2 ̸= 0 . (6.70)

Formula (6.70) contradicts P4 ≡ 0. So D2(x1,x2,y1,y2) does not vanish in (6.58), and
so it follows by Theorem 6.1.1 with K= Q̃ the algebraic independence of ξ = [α,β ]

and p2n+1/q2n+1 over Q̃ for n ⩾ 0.
In the following we want to study the particular cases of the convergents p0/q0,
p1/q1 and p2/q2.
In particular, from equations (2.5) and (2.6) we have

y2 :=
p0

q0
= α

so we can define the polynomial

P2
(
X1,X2,Y2

)
:= X1 −Y2.

From the fact that y1 > 1 and x1 − y1 < 0, we have

D3 = D3
(
X1,X2,Y1,Y2

)
:=−

(
Y 2

1 −X1Y1
)
= Y1(X1 −Y1)< 0.

For the case of p1/q1 we have

y2 :=
p1

q1
=

αβ +1
β
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so we can define the polynomials

P2
(
X1,X2,Y2

)
:= X2Y2 −X1X2 −1,

D4 = D4
(
X1,X2,Y1,Y2

)
:= X1 +X2Y 2

1 −Y2 −X2Y1Y2.

In particular, it follows that

D4(2,−2,Y1,Y2) = 2−2Y 2
1 −Y2 +2Y1Y2

and that
P2(2,−2,Y1,Y2) = 3−2Y2.

Repeating the same reasoning of the convergents with even or odd indexes, we have

P3(2,−2,Y2) = 4Y 2
2 ,

P4(2,−2,Y2) = 36 ̸= 0 .

For the case of p2/q2 we have

y2 :=
p2

q2
=

α2β +2α

αβ +1

the corresponding polynomial is

P2
(
X1,X2,Y2

)
:= (X1X2 +1)Y2 − (X2

1 X2 +2X1).

We have

D5 =D5
(
X1,X2,Y1,Y2

)
:= X2

1 −2X1Y1−X1Y2−X2
1 X2Y1+2X1X2Y 2

1 −X2Y 2
1 Y2+2Y 2

1 .

In particular, it follows that

D5(2,−2,Y1,Y2) = 4+4Y1 −6Y 2
1 −2Y2 +2Y 2

1 Y2

and that
P2(2,−2,Y1,Y2) =−3Y2 +4.
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Repeating the same reasoning of the convergents with even or odd indexes, we have

P3(2,−2,Y2) = 16 ,

P4(2,−2,Y2) = 16 ̸= 0 .

This completes the proof of Theorem 6.3.1.

Remark 6.3.2. Theorem 6.3.1 can also be proved in a short and alternative way, with-
out using the criterion set out in the Theorem 6.1.1. The main idea of this alternative
proof is to define rational functions from equations 6.21, 6.22, 6.27, from which it fol-
lows that tr.deg(Q̃(α,β ,ξ , p2n/q2n) : Q̃(ξ , p2n/q2n)) = 0 that implies the following
degree of transcendence tr.deg(Q̃(ξ , p2n/q2n) : Q̃) = 2. However, the proof of The-
orem 6.3.1 presented in this manuscript, which uses the algebraic independence cri-
terion, also allows for handling the more general case ξ := [T1(α,β ), . . . ,Tw(α,β )]

with w ≥ 2, T1, . . . ,Tw ∈Q[X1,X2] and α,β ∈ R algebraically independent numbers
over the field Q. In this dissertation, we choose to present this proof, rather than the
shorter one, to provide the reader with an idea of how to apply the criterion to prove
the algebraic independence between ξ and its convergents also in the more general
case ξ := [T1(α,β ), . . . ,Tw(α,β )].

Remark 6.3.3. Theorem 6.3.1 does not longer hold in the case of period 1, so when

y1 = [α ] =
α

2
+

1
2

√
4+α2 .

In this case we have
y2 =

p0

q0
=

α

1
= α,

so there is an algebraic dependence over Q between y1 and y2 due to the following
relation

y2
1 − y1y2 −1 = 0 .

Let n ≥ 2, and let a0, . . . ,an−1 be positive real numbers, where a0 ⩾ 1. Asuume
that, among a0, . . . ,an−1 there are at least two numbers, aµ and aν with 0 ⩽ µ < ν ⩽

n−1, say, which are algebraically independent over Q. In terms of the transcendence



6.3 An application of the criterion to continued fractions 87

degree, this means that

tr.deg(Q(a0, . . . ,an−1) : Q) ⩾ 2 . (6.71)

Next, we introduce the field Q̃ by the field extension

Q̃ := Q
(
a0, . . . ,aµ−1,aµ+1, . . . ,aν−1,aν+1, . . . ,an−1

)
.

Let p∗m/q∗m be the mth convergent of the number

ξ :=
[

a0, . . . ,an−1
]
. (6.72)

Since a0 ⩾ 1 and ak > 0 for k = 1, . . . ,n−1, we have

p∗m
q∗m

> 1 (m ⩾ 1) . (6.73)

Both, the terms p∗m and q∗m, depend on a0, . . . ,am for all m ⩾ 0. We write

p∗m = p∗m(x0, . . . ,xm), for xk = ak (0 ⩽ k ⩽ m) ,

q∗m = q∗m(x0, . . . ,xm), for xk = ak (0 ⩽ k ⩽ m) .

Finally, we assume that

det



∂

∂xµ

(
p∗n−1 −q∗n−2

q∗n−1

)
∂

∂xν

(
p∗n−1 −q∗n−2

q∗n−1

)

∂

∂xµ

(
p∗n−1 −q∗n−2

p∗n−2

)
∂

∂xν

(
p∗n−1 −q∗n−2

p∗n−2

)

(
xν = aν

0 ⩽ ν ⩽ n−1

)
̸= 0 , (6.74)

where

p∗n−1

q∗n−1
= [a0,a1, . . . ,an−1 ] and

p∗n−2

q∗n−2
= [a0,a1, . . . ,an−2 ] . (6.75)

In the following theorem, using the results obtained in Theorem 6.3.1, we derive
further results regarding algebraic independence.
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Theorem 6.3.4. Let all the quantities defined above satisfy the conditions in (6.71)
to (6.75). Then there exist two positive real numbers α and β such that α and
β are algebraically independent over Q̃, and the two numbers ξ and pn/qn are
algebraically independent over Q̃ for every integer n ⩾ 0.

Proof. From (6.72) we have the identity

ξ =
p∗n−1ξ + p∗n−2

q∗n−1ξ +q∗n−2
,

which can be rearranged to the quadratic equation

q∗n−1ξ
2 − (p∗n−1 −q∗n−2)ξ − p∗n−2 = 0 .

Solving this equation for the positive number ξ yields

ξ =
p∗n−1 −q∗n−2

2q∗n−1
+

√√√√(p∗n−1 −q∗n−2)
2

4q∗2
n−1

+
p∗n−2

q∗n−1
= R1 +

√
R2 , (6.76)

where

R1 :=
p∗n−1 −q∗n−2

2q∗n−1
and R2 := R2

1 +
p∗n−2

q∗n−1
.

Set

α :=
p∗n−1 −q∗n−2

q∗n−1
and β :=

p∗n−1 −q∗n−2

p∗n−2
. (6.77)

We obtain from (6.73) for m = n− 1 ⩾ 1 that p∗n−1 > q∗n−1 ⩾ q∗n−2. Therefore, α

and β are positive real numbers. From the combination of Theorem 6.1.7 and 6.1.8,
due to the assumed nonvanishing of the determinant in (6.74), we have the algebraic
independence of the two numbers α and β over Q̃.

Since

R1 =
α

2
and R2 =

α2

4
+

α

β
,

we obtain from the equations (6.76) and (6.19) that

ξ = R1 +
√

R2 =
α

2
+

√
α2

4
+

α

β
= y1 = [α,β ] . (6.78)
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The remaining statement in Theorem 6.3.4 on the algebraic independence of ξ and
pn/qn over Q̃ for n ⩾ 0 follows from Theorem 6.3.1.

Remark 6.3.5. The convergents p∗m/q∗m of ξ depend on a0, . . . ,an−1, while the
convergents pm/qm of ξ depend only on α and β . The convergents p∗m/q∗m are in
general completely different from the convergents pm/qm, although they approximate
the same number ξ . This effect occurs because we are not dealing with continued
fractions whose partial quotients are natural numbers. If one tries to generalize
Theorem 6.3.1 to a continued fraction with period length greater than two, our
method of prove will become very complicated. Theorem 6.3.4 reduces this type of
continued fraction to one with period length two and we obtain such a result for the
convergents pm/qm instead of p∗m/q∗m.

6.3.1 Some supplementary results and their proofs

From the formulas (6.72), (6.75), (6.77) and (6.78) we obtain an explicit formula to
transform the regular continued fraction ξ = [b0,b1, . . . ,bn] of a quadratic irrational
number ξ into a non-regular continued fraction with a small preperiod and a period
of length one. Here, b0 and bν ⩾ 1 for 1 ⩽ ν ⩽ n are integers.

For this result, we additionally need an identity between a periodic regular continued
fraction with rational partial quotients and a non-regular continued fraction with
integer denominators and numerators.
Let a/b and c/d be rationals with a,c ∈ Z\{0} and b,d ∈ N. Then, we have

[
a
b
,

c
d

]
=

a
b
+

1

c

d
+

1

a

b
+

1

c

d
+
. . .
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=
a
b
+

d

c+
bd

a+
bd

c+
bd

. . .

=
a
b
+

d

c+

 bd

a +

bd

c


=

a
b
+

 d
c +

bd

a +

bd

c

 .

In the special case of a = c this identity assumes the simple form

[
a
b
,

a
d

]
=

a
b
+

 d
a +

bd

a

 . (6.79)

Shifting the index in (6.75), we have with

p∗n
q∗n

=
[

b1, . . . ,bn
]

and
p∗n−1

q∗n−1
=
[

b1, . . . ,bn−1
]

the equation [
b1, . . . ,bn

]
=

[
p∗n −q∗n−1

q∗n
,

p∗n −q∗n−1

p∗n−1

]
, (6.80)

which results from (6.72), (6.77) and (6.78). Combining (6.79) and (6.80), we obtain

ξ =
[

b0,b1, . . . ,bn
]

= b0 +
[

0,b1, . . . ,bn
]

= b0 +
1[

b1, . . . ,bn
]
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(6.80)
= b0 +

1 p∗n −q∗n−1

q∗n
,

p∗n −q∗n−1

p∗n−1


(6.79)
= b0 +

1

p∗n −q∗n−1

q∗n
+

 p∗n−1

p∗n −q∗n−1
+

p∗n−1q∗n
p∗n −q∗n−1


= b0 +

q∗n

p∗n −q∗n−1 +

 p∗n−1q∗n
p∗n −q∗n−1

+

p∗n−1q∗n
p∗n −q∗n−1


= b0 +

 q∗n
p∗n −q∗n−1 +

p∗n−1q∗n
p∗n −q∗n−1


= b0 +

q∗n

p∗n −q∗n−1 +
p∗n−1q∗n

p∗n −q∗n−1 +
p∗n−1q∗n

p∗n −q∗n−1 +
. . .

.

For example,

√
19 =

[
4,2,1,3,1,2,8

]
= 4+

117

312+
4563

312+
4563

312+
. . .

= 4+
[

117
312 +

4563
312

]
,

since

p6

q6
=
[

2,1,3,1,2,8
]
=

326
117

and
p5

q5
=
[

2,1,3,1,2
]
=

39
14

.

Example 6.3.6. An interesting special case of Theorem 6.3.4 is given when the
Hurwitz period of ξ is composed of only two algebraically independent numbers α∗
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and β ∗ over Q. For this we consider the following two examples.

(i) Let ξ := [α∗,β ∗,β ∗,α∗ ].
With n = 4 we have by a0 = a3 = α and a1 = a2 = β . Then, we obtain with (6.77),

α :=
p∗3 −q∗2

q∗3
=

α∗2β ∗2 +α∗2 −β ∗2 +2α∗β ∗

α∗β ∗2 +α∗+β ∗ =
p∗3 −q∗2

p∗2
=: β .

Due to α = β , the algebraic independence of these two quantities is not given; the
determinant in (6.74) vanishes. Theorem 6.3.4 is not applicable to this situation.

(ii) Next, let ξ := [α∗,β ∗,β ∗ ].
With n = 3 we obtain

α :=
p∗2 −q∗1

q∗2
=

α∗β ∗2 +α∗

β ∗2 +1
= α

∗ ,

β :=
p∗2 −q∗1

p∗1
=

α∗β ∗2 +α∗

α∗β ∗+1
.

The determinant in (6.74) takes the value

det


∂

∂x0
(x0)

∂

∂x1
(x0)

∂

∂x0

(
x0x2

1 + x0

x0x1 +1

)
∂

∂x1

(
x0x2

1 + x0

x0x1 +1

)
(

x0 = α∗

x1 = β ∗

)
=

α∗(α∗β ∗2 −α∗+2β ∗)(
α∗β ∗+1

)2 ,

which does not vanish by the algebraic independence of α∗ and β ∗ over Q̃. Thus,
Theorem 6.3.4 is applicable with

ξ =
[

α∗,β ∗,β ∗
]
=

[
α∗,

α∗(β ∗2 +1)
α∗β ∗+1

]
.

We complete the application of the algebraic independence criterion to non
regular continued fractions by the following proposition, for which we provide two
different proofs.
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Proposition 6.3.7. Let n ≥ 1 and let a0, . . . ,an−1 be real algebraic independent
numbers greater than 1. Then the convergents

pm

qm
= [a0,a1, . . . ,am] (0 ≤ m ≤ n−1) (6.81)

of the continued fraction [a0,a1, . . . ,an−1] are algebraically independent over the
field Q of rational numbers.

Proof. The first proof makes use of Theorem 6.1.7. We may consider pm/qm as a
rational function formed by integer polynomials at the places a0, . . . ,am. We compute
these rational functions using the recurrence formulas (2.5) and (2.6). We have for
m = 0 and m = 1

p0

q0
= a0 ,

p1

q1
=

a0a1 +1
a1

, (6.82)

for m ≥ 2
pm

qm
=

am pm−1 + pm−2

amqm−1 +qm−2
. (6.83)

Note that by (6.81) the four numbers pm−1, qm−1, pm−2 and qm−2 do not depend on
aµ for µ = m+ 1, . . . ,n. Since pm/qm is a rational function Rm(X0, . . . ,Xm) at the
places a0, . . . ,am, we have1

y j :=
p j

q j
= R j

(
a0,a1, . . . ,a j

)
( j = 0, . . . ,n−1) .

In order to prove the algebraic independence of y0, . . . ,yn−1 over Q we apply Theo-
rem 6.1.7

detn
(

∂R j

∂Xi
(a0, . . . ,an−1)

)
=

∣∣∣∣∣∣∣∣∣∣∣

∂R0

∂X0
. . .

∂R0

∂Xn−1
...

...
...

∂Rn−1

∂X0
. . .

∂Rn−1

∂Xn−1

∣∣∣∣∣∣∣∣∣∣∣
(a0, . . . ,an−1)

1We change the index from m to j to adjust to the notation in Theorem 6.1.7.
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂R0

∂X0
0 0 . . . 0

∂R1

∂X0

∂R1

∂X1
0 . . . 0

∂R2

∂X0

∂R2

∂X1

∂R2

∂X2
. . . 0

...
...

...
...

...

∂Rn−1

∂X0

∂Rn−1

∂X1

∂Rn−1

∂X2
. . .

∂Rn−1

∂Xn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(a0, . . . ,an)

=
n−1

∏
j=0

∂R j

∂X j
(a0, . . . ,a j) . (6.84)

We obtain from (6.82):

∂R0(a0)

∂X0
= 1 =

1
q2

0
,

∂R1(a0,a1)

∂X1
=

a0a1 − (a0a1 +1)
a2

1
= − 1

a2
1
= − 1

q2
1
.

(6.85)
Similarly, using the quotient rule for the derivative in (6.83), we get for j ≥ 2,
respecting the remark made about (6.83):

∂R j(a0, . . . ,a j)

∂X j
=

p j−1(a jq j−1 +q j−2)− (a j p j−1 + p j−2)q j−1

(a jq j−1 +q j−2)
2

=
p j−1q j−2 − p j−2q j−1

q2
j

(2.7)
=

(−1) j

q2
j

. (6.86)

With (6.85) and (6.86) the formula (6.84) changes into:

detn
(

∂R j

∂Xi
(a0, . . . ,an−1)

)
=

n−1

∏
j=0

(−1) j

q2
j

= (−1)(n−1)n/2
n−1

∏
j=0

q−2
j . (6.87)

At this point we insert a brief consideration of the nonvanishing of the q j for j =
0, . . . ,n−1. It is clear that q0 = 1 and q1 = a1 > 1 do not vanish. By induction on
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the index m, it then follows from the recurrence formula (2.6) that all denominators
qm are positive and thus nonzero.

The determinant in (6.87) does not vanish either, and with Theorem 6.1.7 the proof
of our Proposition 6.3.7 is completed.
Now we prove the Proposition with no use of Theorem 6.1.7, but only with the use
of some algebra notions. In particular, since the degree of transcendence of the field
Q(a0, . . . ,an−1) over Q is n, we have a chain of transcendental field extensions

Q⊂Q(a0)⊂Q(a0,a1)⊂ ·· · ⊂Q(a0, . . . ,an−2)⊂Q(a0, . . . ,an−1).

From the recurrence formulas of pm and qm we know for the generic convergents
pm/qm that

cm :=
pm

qm
∈Q(a0, . . . ,am)\Q(a0, . . . ,am−1) (0 ≤ m ≤ n).

By induction we will show that

tr.deg
(
Q(c0, . . . ,cν) : Q

)
= ν +1 (0 ≤ ν ≤ n). (6.88)

For ν = 0 it follows that tr.deg
(
Q(c0) : Q

)
= tr.deg

(
Q(a0) : Q

)
= 1. Let us

suppose that equation (6.88) is true for 0 ≤ ν ≤ n−2 and we want to prove that

tr.deg
(
Q(c0, . . . ,cν+1) : Q

)
= ν +2.

Let us assume the contrary, so there exists a polynomial P ∈Q[X0, . . . ,Xν+1]\{0}
such that P(c0, . . . ,cν+1) = 0. From the algebraic independence of c0, . . . ,cν , it fol-
lows that the degree of the polynomial P with respect to the variable Xν+1 is greater
than 0, otherwise we would have P(c0, . . . ,cν ,0) = 0, which is impossible. Now, let
us consider the polynomial P̄(Xν+1) := P(c0, . . . ,cν ,Xν+1) ∈ Q(c0, . . . ,cν)[Xν+1].
From the consideration above, the leading coefficient of P̄ is a non-vanishing poly-
nomial from Q[X0, . . . ,Xν ], and when computed for c0, . . . ,cν , it does not vanish. In
other words,

P̄[Xν+1] = P(c0, . . . ,cν ,Xν+1) ∈Q(a0, . . . ,aν)[Xν+1]\{0}. (6.89)
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From P(c0, . . . ,cν+1) = 0 it should follow that P̄(cν+1) = P(c0, . . . ,cν ,cν+1) = 0,
but this is not possible by (6.89) and the fact that cν+1 = pν+1/qν+1 is transcendental
over Q(a0, . . . ,aν).

6.4 A numerical example

We want to show an interesting example about the Diophantine approximations with
convergents of continued fractions having algebraic independent partial quotients.
The four numbers

√
2 ,
√

3 ,
√

5 ,
√

7 are linear independent over the rationals. By
Lindemann’s theorem it follows that the numbers a0 = e

√
2 > 1, a1 = e

√
3 > 1,

a2 = e
√

5 > 1, and a3 = e
√

7 > 1 are algebraically independent over the rationals [60,
page 71]. Let n = 4, and set

ξ = [a0,a1,a2,a3] = 4.2869121345586584011981145995 . . .

where ξ is the positive root of the polynomial

P(x)= (a1a2a3+a1+a3)x2+(a1a2−a0a1a2a3−a0a1−a0a3−a2a3)x−a0a1a2−a0−a2.

Its first four convergents are

p0

q0
= e

√
2 = 4.113250 . . . ,

p1

q1
= e

√
2(1+ e−

√
2−

√
3 )= 4.290171 . . . ,

p2

q2
= e

√
2
(

1+
e−

√
2−

√
3

1+ e−
√

3−
√

5

)
= 4.286888 . . . ,

p3

q3
= e

√
2
(

1+
e−

√
2−

√
3 + e−

√
2−

√
3−

√
5−

√
7

1+ e−
√

3−
√

5 + e−
√

5−
√

7

)
= 4.286912 . . . .

From the theory of regular continued fractions, in particular applying Theorem
2.2.8, one knows the following approximation quality of the convergents pm/qm∣∣∣ξ − pm

qm

∣∣∣ ⩽ 1
qmqm+1

(m ⩾ 0) . (6.90)
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For example, we check (6.90) for m = 2 and m = 3

0.238634221 · · · ·10−4 =
∣∣∣ξ − p2

q2

∣∣∣ ⩽ 1
q2q3

= 0.242554642 · · · ·10−4 ,

0.392042084 · · · ·10−6 =
∣∣∣ξ − p3

q3

∣∣∣ ⩽ 1
q3q4

= 0.408315495 · · · ·10−6 .
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