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The aim of this dissertation is to study linear recurrent sequences of any degree
within the context of algebraic structures, as well as to examine certain aspects of
second-order recurrences. Specifically, the study focuses on the Lucas sequence, it in-
troduces a new definition of Lucas atoms, and it investigates the Fibonacci sequence.
Additionally, the research presents results regarding the algebraic independence of cer-
tain Hurwitz-type continued fractions and their convergents.

The first part of this manuscript is about linear recurrent sequences. Let R be an
associative, commutative ring having characteristic zero and unity, and let S(R) be the
set of sequences of elements belonging to the ring R and W(R)⊂S(R) the set of linear
recurrent sequences. Both sets can be equipped with several operations giving them
interesting algebraic structures. In particular, if R is a field, it is immediate to see that
the element-wise sum or product (also called Hadamard product) of two linear recurrent
sequences is still a linear recurrent sequence. Cerruti and Vaccarino proved this in the
general case where R is a ring, showing that W(R) is an R−algebra and also giving
explicitly the characteristic polynomial of the element-wise sum and Hadamard product
of two linear recurrent sequences [6]. In the same manner, W(R) equipped with the
element-wise sum and the convolution product (or Cauchy product) has been deeply
studied. In particular, W(R) is still an R−algebra and the characteristic polynomial of
the convolution product between two linear recurrent sequences can be explicitly found
[6]. The convolution product of linear recurrent sequences has been explored also
from a combinatorial point of view [1] and over finite fields [11]. Another important
operation between sequences is the binomial convolution (called also Hurwitz product).
In [12], Keigher introduced in a systematic way the Hurwitz series ring. This has also
been explored by other several authors [4, 5, 13]. However, there are few results when
focusing on linear recurrent sequences [14]. We expose our results about the algebraic
structure of linear recurrent sequences considering in particular the Hurwitz product
and the Newton product. Moreover, we study whether isomorphisms exist between
these structures.

The Lucas sequence is a specific second-order linear recurrence sequence from
which Lucas polynomials are defined. Lucas atoms have been introduced by Sagan and
Tirrell [17], we introduce them in a new and different perspective, providing straight-
forward proofs for their main properties. Specifically, we revisit some of the main
properties of Lucas atoms, obtaining them with elementary proofs. The p-adic val-
uations of integer sequences is a well studied topic, in particular the case of Lucas
sequences has been deepened by several authors (see, e.g., [3, 15, 18, 21]). We present
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our results about the p-adic valuations of Lucas atoms. In [17], the authors dealt with
Lucas atoms and some divisibility properties by p = 2, 3. They left open, addressing it
as a hard problem, the extension of these results to arbitrary primes. We solve this prob-
lem and we completely characterize the p-adic valuations of Lucas atoms. Finally, we
exploit the results on the p-adic valuations of Lucas atoms to prove that the sequence
of Lucas atoms is not holonomic, i.e., it does not satisfy any recurrence relation, also
considering coefficients being polynomials, contrarily to the Lucas sequence.

A particular case of Lucas sequence is the Fibonacci sequence whose elements are
called Fibonacci numbers. The theorem of Zeckendorf asserts that any positive integer
can be expressed in a unique manner as the sum of one or more distinct non-consecutive
Fibonacci numbers [22]. This kind of representation of integer sequences has been
studied in several works. In particular, the Zeckendorf representation of numbers of
the form fkn/ fn, f 2

n /d and L2
n/d, where Ln are the Lucas numbers and d is a Lucas

or Fibonacci number, have been studied by Filipponi and Freitag [7, 9]. Whereas, the
Zeckendorf representation of numbers of the form m fn have been analyzed by Filip-
poni, Hart, and Sanchis [8, 10]. Filipponi determined the Zeckendorf representation of
m fn fn+k and mLnLn+k for m ∈ {1,2,3,4}, see e.g. [8]. For all integers a and m ≥ 1
with gcd(a,m) = 1, let (a−1 mod m) denote the least positive multiplicative inverse of
a modulo m, that is, the unique b ∈ {1, . . . ,m} such that ab ≡ 1 (mod m). In [16],
Prempreesuk, Noppakaew, and Pongsriiam determined the Zeckendorf representation
of (2−1 mod fn), for every positive integer n that is not divisible by 3. We extend their
result by determining the Zeckendorf representation of the multiplicative inverse of a
modulo fn, for every fixed integer a≥ 3 and every positive integer n with gcd(a, fn)= 1.

The last part of this dissertation focuses on the area of algebraic independence. The
transcendence of π and that of e has been known since the end of the 19th century, but
the question of the algebraic independence of these two numbers over Q has still not
been answered. It concerns the exclusion of the existence of a non-identical vanish-
ing polynomial P(X ,Y ) with rational coefficients such that P(π,e) = 0. The theorem
of Lindemann - Weierstrass (1885), from which the transcendence of π and of e can
be derived, is the beginning of a general theory on algebraic independence of com-
plex numbers over Q. In one of its equivalent formulations this theorem states that in
the case of the linear independence of algebraic numbers α1, . . . ,αn over Q, the num-
bers eα1 , . . . ,eαn are algebraically independent over Q [19]. An additional significant
achievement is the theorem of Gelfond-Schneider that states the transcendence of αβ

when α and β are algebraic over Q, assuming that α ̸= 0,1 and β ̸∈ Q [19]. An-
other important result is Baker’s Theorem on linear forms of logarithms that states that
given α1, . . . ,αn algebraic numbers different from zero such that logα1, . . . , logαn are
linearly independent over the rational numbers, then the numbers 1, logα1, . . . , logαn
are linearly independent over the field of all algebraic numbers [2]. In terms of alge-
braic independence of continued fractions, Tanaka [20] gave a necessary and sufficient
condition for the values of Θ(x,a,q) to be algebraically independent, where Θ(x,a,q)
is a sort of q-hypergeometric series. In particular, he showed under which conditions
the values of the continued fractions obtained when x = a, namely Θ(a,q), are alge-
braically dependent. The last chapter of this manuscript contains results on algebraic
independence or dependence of number sets. There will be presented a criterion and its
variants such that, starting from a set of known algebraic independent numbers we get
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a new one, where the numbers in both sets satisfy a system of polynomial equations.
Moreover, this criterion will be applied to prove the algebraic independence of certain
Hurwitz-type continued fractions and their convergents.
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