
Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (36thcycle)

Simulation Techniques For Rapid
Software Development and

Validation

By

Mohammadreza Amel Solouki

Supervisor(s):
Prof. Massimo Violante

Doctoral Examination Committee:
Prof. Alberto Bosio, Referee, École centrale de Lyon
Prof. Andrea Acquaviva, Referee, University of Bologna
Prof. Maksim Jenihhin, Tallinn University of Technology
Prof. Maurizio Rebaudengo, Politecnico di Torino
Prof. Ernesto Sanchez, Politecnico di Torino

Politecnico di Torino

2024

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Mohammadreza Amel Solouki
2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

I would like to dedicate this thesis to my loving parents

Acknowledgements

I would first like to express my sincere gratitude to my advisor, Prof. Massimo
Violante, whose knowledge and expertise were invaluable in formulating my Ph.D.
research direction based on my interests. Your kindness, patience, insightful advice,
and feedback enlightened me, polished my thinking, and steered my work to a higher
level.

I am deeply grateful to my committee members, Prof. Alberto Bosio and Prof. An-
drea Acquaviva, for their invaluable help, constructive comments, and insightful
suggestions that significantly enriched my dissertation. I also extend my thanks to
Prof. Maksim Jenihhin, Prof. Maurizio Rebaudengo, and Prof. Ernesto Sanchez for
their role in my supervisory committee.

Besides, I would like to extend my sincere acknowledgment to my kind and
intelligent colleagues, Jacopo Sini, Juan David Guerrero Balanguera, Josie Esteban
Rodriguez Condia, Luigi Pugliese, and all of my colleagues in the Electronic CAD
& Reliability Group, for their inspiring discussions and help with our collaborative
work.

On a personal note, I want to thank my family, especially my parents, for their
unwavering support and understanding throughout this process. I would also like
to express my appreciation to my sister, Leila, and my brother, Alireza, who have
always supported me and my decisions throughout my life.

Abstract

Random hardware failures (RHFs) pose a significant risk, potentially leading to data
corruption and Control Flow Errors (CFEs) within embedded systems. To counteract
these vulnerabilities, hardening strategies are employed, leveraging either specialized
hardware or Software-Implemented Hardware Fault Tolerance (SIHFT) methods.
This thesis introduces a novel approach, focusing on the C-level implementation of
SIHFT techniques to detect CFEs, alongside the development of simulation tech-
niques for rapid software development and validation. Our proposed approach centers
on applying SIHFT methods to detect CFEs within C language-based application
code preceding compilation.

However, evaluating these methods presents challenges, notably in terms of the
introduced overhead to code size and, critically, real-time application execution.
The majority of these methods in the literature are implemented using low-level
languages like Assembly. Unfortunately, the development flow for embedded sys-
tems applications prefers high-level programming languages like C, aligning with
functional safety standards.

Nevertheless, a portion of code persists in Assembly language, where the com-
piler can automatically insert SIHFT methods, albeit typically limited to highly
optimized routines or device drivers. An alternative approach, compiling the ap-
plication code and then hardening the resultant assembly code, introduces more
substantial overhead compared to protecting individual statements in a high-level
programming language before compilation.

Therefore, our proposed approach in this thesis centers on applying SIHFT
methods to detect CFEs, also recognized as Control Flow Checking (CFC), within
C language-based application code preceding compilation. To illustrate this ap-
proach, we conducted a comparative analysis of two established software-based
control flow error detection methods—Yet Another Control-Flow Checking us-

vi

ing Assertions (YACCA) and Random Additive Control Flow Error Detection
(RACFED)—implemented in the C programming language. We also assessed the
impacts of compiler optimizations.

In the contemporary automotive industry, there is a prevailing trend toward
adopting the model-based software design approach. This involves automatically
translating executable algorithm models into C or C++ source code. In this context,
CFC methods have been integrated into the application behavioral model, and off-the-
shelf code generators seamlessly produce the fortified source code for the application.
It is worth noting that the majority of SIHFT methods primarily target soft errors,
such as single-event upsets typically manifesting as bit flips.

Consequently, the diagnostic metrics commonly provided in the literature,such
as error detection latency, fault coverage, and mean time to failure (MTTF), fall short
of effectively characterizing these methods when considering the broader spectrum
of faults, especially permanent random hardware faults like stuck-at faults. To
bridge this gap, our thesis addresses a scenario pertinent to the automotive industry,
where the primary concern revolves around permanent random hardware faults,
particularly stuck-at faults. Furthermore, we propose a classification scheme aligned
with ISO26262 compliance. This classification aims to benefit developers within the
automotive sector, where cost and safety considerations often drive the adoption of
software-only strategies.

Our results indicated that the diagnostic coverage (DC) for the YACCA method
was highest with the O1 optimization level, showing a marked improvement over
the unoptimized version (O0). For RACFED, a similar trend was observed, with
the detection rate increasing significantly from O0 to O1. However, at higher
optimization levels (O2 and O3), while the code size was reduced, some intra-block
detection capabilities were lost.

Additionally, our experiments quantified the overheads introduced by these
methods. For the TS benchmark, YACCA imposed a text segment size (TSS)
overhead ranging from 43.8% at O0 to -28.8% at O3, while RACFED’s TSS overhead
ranged from 261.23% at O0 to 100.69% at O3. Execution time overheads, measured
as the increase in the number of executed instructions, showed that YACCA imposed
a 318.17% overhead at O0, decreasing to 90.55% at O3. RACFED exhibited a
44.58% overhead at O0, which turned into a slight reduction of 5.06% at O3. These
results underscore the trade-offs between different levels of compiler optimizations

vii

and the effectiveness of CFC methods, providing crucial insights for developers
optimizing embedded systems for reliability and performance.

Contents

List of Figures xii

List of Tables xiv

Abbreviations xvi

1 Introduction 1

1.1 Research Objectives . 3

1.2 Contributions . 16

1.3 Structure . 19

2 Background And State-Of-The-Art 21

2.1 Setting the Scene . 22

2.2 Software-Implemented Detection Techniques 24

2.3 Control Flow Error . 26

2.4 In-Depth Examination of Control Flow Checking Methods 29

2.4.1 CFCSS . 29

2.4.2 YACCA . 30

2.4.3 ECCA . 30

2.4.4 RSCFC . 30

2.4.5 CEDA . 31

Contents ix

2.4.6 ACFC . 31

2.4.7 SCFC . 31

2.4.8 HETA . 32

2.4.9 SEDSR . 32

2.4.10 SIED . 33

2.4.11 RASM . 34

2.4.12 RACFED . 36

2.4.13 In Closing . 37

2.5 Design Diversity Based Software Fault Tolerance 38

2.6 Single-Design Software Fault Tolerance Approach 42

2.7 Hardware-Based Fault Tolerance Techniques 45

2.7.1 Redundancy in Hardware-Based Fault Tolerance Techniques 46

2.8 Hybrid methods . 47

2.9 Using the C language in automotive industry applications 48

2.10 Functional Safety in the Automotive Industry 49

2.11 ISO26262-compliant classification 50

2.12 A Note on Control-flow Integrity Techniques for Soft Errors-security 54

2.12.1 Data integrity . 55

3 Experiment Prerequisites 57

3.1 Fault models . 57

3.2 Implemented Software-Based Hardening Technique 58

3.2.1 YACCA . 60

3.2.2 RACFED . 62

3.2.3 Experimentation with Compiler Optimizations 65

4 Experimental Study on CFC Detection Techniques 66

x Contents

4.1 Target platform . 66

4.2 Hardening technique performance assessment 67

4.3 Fault injection results . 68

4.4 C programming language Fault injection results 69

4.4.1 Diagnostic coverage . 71

4.4.2 Overheads . 75

4.5 Model-Based Software Design Fault injection results 78

4.5.1 Diagnostic Coverage . 79

4.5.2 Overhead . 80

5 Conclusion 82

5.1 Summary . 82

5.2 Main contributions . 82

5.3 Future Work . 84

References 86

Appendix A Guidelines 95

A.1 Introduction . 95

A.2 Functions or macros needed in C language 96

A.3 Switch-case construct . 96

A.4 If-else construct . 98

A.5 Function calls . 99

A.6 For loops . 103

A.7 Conclusions . 103

Appendix B My publications 105

B.1 Journals . 105

Contents xi

B.2 Conferences and Workshops . 106

List of Figures

1.1 Automotive SW and E/E content per car [1, 2]. 4

1.2 Automotive SW and E/E market and Split of SW market into SW
development, integration, and validation/verification [1, 2]. 5

1.3 The automotive sensor market is projected to surpass automotive
sales, primarily due to robust growth in ADAS sensors [1, 2]. 5

1.4 The bathtub curve (red, upper solid line) is a combination of a
decreasing rate of early-life failures and an increasing rate of wear-
out failures, plus a constant level of random (latent) failures)[3]. . . 7

2.1 Sample code and program CFG example. The execution from basic
block BB1 to BB2 or from BB1 to BB3 are legal, but a jump from
BB1 to BB4 is illegal and called Control Flow Error (CFE). 28

2.2 The classifier FSM. The transition from Latent after injection or any
of the Dangerous/Residual group to a state of the Detected side is
allowed only before the FTTI elapses. The transition from the state
(detected) by software hardening to the state As golden is performed,
when one last line of the log file has been read, only if the behavior
of the software components remains the same of the golden run for
the entire log file. 53

3.1 Indication, inside the model-based flow, indicating when the CFC is
applied using high-level programming languages. The source code
is obtained automatically via the Mathworks Embedded Coder from
a Simulink semi-formal model, then the obtained source code is
manually hardened. 60

List of Figures xiii

3.2 Model-based approach for implementing the CFC methods. The
benchmarks are obtained by hardened them in the model, then gen-
erating the source code automatically thanks to the Embedded Coder. 61

3.3 Mapping between the signature updates instructions in C and the
relative Assembly (RISC-V RV32I) translation. It is possible to
see that GCC, configured with O0 optimization settings, keeps the
instructions in order. 64

4.1 The proposed test bench architecture. GCC compiles also the classi-
fier, whose source code is generated by the FIM. 67

A.1 Instructions on how to read the Control Flow Graphs represented in
this chapter. 96

A.2 Positions of the TEST and SET operations for inter-block CFE
detection inside the switch-case constructs for the entry block
(indicated as 0, in blue.) . 98

A.3 Positions of the TEST and SET operations for inter-block CFE
detection inside the switch-case constructs for the exit block
(indicated as 5, in green.) . 99

A.4 Positions of the TEST and SET operations for inter-block CFE de-
tection inside the if-else constructs for the entry block (indicated
as 0, in blue.) . 100

A.5 Positions of the TEST and SET operations for inter-block CFE de-
tection inside the if-else constructs for the exit block (indicated
as 5, in green.) . 100

A.6 Positions of the TEST and SET operations for inter-block CFE
detection for a function call. 102

A.7 Positions of TEST and SET operations to detect inter-block CFEs
for a for loop. 103

A.8 Positions of TEST and SET operations to detect inter-block CFEs
for a for loop containing a break instruction inside it. 104

List of Tables

2.1 Compare Control Flow Control techniques. 38

2.2 Overview of the techniques classification. [4] 49

4.1 Cumulative classifier results obtained from the 7 fault injection
campaigns evaluating the YACCA and RACFED methods without
compiler optimizations, manually implemented directly in C code,
on benchmarks. The "As Golden", "False Positive", "Undefined",
and "Error" results are all zero for all columns, so they are not
reported in the table. 71

4.2 Classifier results obtained from the fault injection campaign assess-
ing the YACCA implemented manually directly within the C code on
TS benchmark with different compiler optimizations. "As golden",
"False positive", "Undefined", and "Error" outcomes are all zero for
all the columns, so they are not reported in the table. 72

4.3 Classifier results obtained from the fault injection campaign as-
sessing the RACFED implemented manually directly within the C
code on TS benchmark with different compiler optimizations. "As
golden", "False positive", "Undefined", and "Error" outcomes are all
zero for all the columns, so they are not reported in the table. 72

4.4 ISO 26262-compliant classification of the cumulative results ob-
tained from the fault injection campaigns on the benchmarks com-
piled with almost no optimization (O0). 76

List of Tables xv

4.5 ISO 26262-compliant classification of the results obtained from
the fault injection campaigns on the TS benchmark compiled with
different compiler optimization levels. The results obtained with
almost no optimizations (O0) are also reported for ease of reading. . 76

4.6 Data regarding memory occupation and executed instruction.T =
Tank Level, TS = Timeline Scheduler, and TSS = Text Segment
Size. Vanilla refers to the application that is not hardened from its
original form. For TS, are reported the overheads with the different
optimization levels. All the differences are computed in comparison
to the Vanilla version compiled with almost no optimizations (O0). . 77

4.7 Classifier results obtained from fault injection campaigns evaluating
the YACCA and RACFED methods without compiler optimizations,
hardened in MBSD, on benchmarks. The "As Golden", "False Posi-
tive", "Undefined", and "Error" results are all zero for all columns,
so they are not reported in the table. 79

4.8 ISO 26262-compliant classification of the cumulative results ob-
tained from the fault injection campaigns on the benchmarks com-
piled with almost no optimization (O0). 79

4.9 Data regarding memory occupation and executed instruction.T =
Tank Level, TS = Timeline Scheduler, and TSS = Text Segment
Size. Vanilla refers to the application that is not hardened from its
original form. For TS, are reported the overheads with the different
optimization levels. All the differences are computed in comparison
to the Vanilla version compiled with almost no optimizations (O0). . 81

xvii

Abbreviations

ACFC Assertions for Control Flow Checking
AD Autonomous Driving
ADAS Advanced Driver Assistance Systems
ASIL Automotive Safety Integrity Level
BB Basic Block
CAGR Compound Annual Growth Rate
CEDA Control-flow Error Detection using Assertions
CFC Control Flow Checking
CFCET Control Flow Checking by Execution Tracing
CFCSS Control Flow Checking by Software Signatures
CFE Control Flow Error
CFG Control Flow Graph
COTS Commercial Off-The-Shelf
DC Diagnostic Coverage
DCU Domain Control Unit
DFT Design for Testability
DWC Duplication With Comparison
E/E Electrical and Electronic
ECC Error Correcting Code
ECCA Enhanced Control Flow Checking using Assertions
ECU Electronic Control Unit
EV Electric Vehicle
FI Fault Injection
FIM Fault Injection Manager
FM Failure Mode
FMEDA Failure Mode, Effects, and Diagnostic Analysis
FSC Functional Safety Concept
FSM Finite State Machine
FTA Fault Tree Analysis
FTC Fault Tolerant Control
FTTI Fault Tolerance Time Interval

xviii Abbreviations

FuSa Functional safety
GDB Gnu DeBugger
HSI Hardware/Software Interfaces
IC Integrated Circuit
I-IP Infrastructure Intellectual Properties
IP Intellectual Property
ISA Instruction Set Architecture
ISO International Standard Organization
MBSD Model-Based Software Design
NMR N modular redundancy
OSLC Online Signature learning and Checking
PC Program Counter
PCB Printed Circuit Board
PLD Programmable Logic Device
PPM Parts Per Million
RACFED Random Additive Control Flow Error Detection
RAID Redundant Arrays of Independent Disks
RHF Random Hardware Failure
RISC Reduced Instruction Set Computing
RSCFC Relationship Signatures for Control Flow Checking
SEooC Safety Element out of Context
SET Single Event Transient
SETA Software-only Error-detection Technique using Assertions
SEU Single Event Upset
SG Safety Goal
SIED Software implemented error detection
SIHFT Software Implemented Hardware Fault Tolerance
SS Standby-sparing
TLC Target Language Compiler Tool
TMR Triple Modular Redundancy
TSC Technical Safety Concept
TSR Technical Safety Requirements
USD United States dollar
WdM (AUTOSAR) Watchdog Manager
WDP Watchdog Direct Processing
YACCA Yet Another Control-Flow Checking using Assertions

Chapter 1

Introduction

Emerging technologies significantly enhance various aspects of our quality of life,
concurrently bolstering societal productivity and efficiency. Exemplary instances
include pioneering environmentally friendly transportation systems and advanced
production methodologies, which not only diminish human exertion but also optimize
the manufacturing of appliances and services.

In the realm of automotive systems, contemporary technological trends primarily
revolve around the integration of new functionalities, thereby augmenting the number
of on-board embedded systems and processors [5]. Within the automotive domain,
these systems are designed to enhance energy efficiency, elevate user experiences
through the incorporation of infotainment support, and facilitate autonomous and
semi-autonomous control mechanisms, encompassing strategies for cruise control
and autonomous piloting [6]. Additionally, in the context of industrial production, the
current trajectory of automation fosters collaborative work environments involving
human-robot interactions, thereby enhancing overall production. This automation
paradigm seeks to mitigate human risks, particularly in scenarios involving haz-
ardous conditions. Both automotive and industrial production scenarios exemplify
contemporary instances of safety-critical applications, where any functional failure
in the equipment, machinery, or devices supporting the application can lead to severe
consequences, including critical injuries, fatalities, substantial property damage, or
extensive environmental harm [7]. Consequently, the intricate electronic devices
integrated into these systems must adhere to rigorous safety, reliability, and security
constraints to ensure the flawless operation of the entire system. Furthermore, it is

2 Introduction

essential to acknowledge that the integration of cutting-edge technologies in these
domains not only amplifies the potential benefits but also introduces new challenges.
The complexity of these systems demands continuous advancements in safety mea-
sures, reliability protocols, and security frameworks to stay ahead of potential risks
and vulnerabilities. Researchers and practitioners alike must remain vigilant in
addressing these challenges to uphold the integrity of technological innovations in
the automotive and industrial production sectors.

The automotive industry is currently experiencing a transformative phase marked
by the synergistic evolution of autonomous driving (AD), connected vehicles, electri-
fication of the powertrain, and shared mobility (also called the ACES trends). These
developments not only disrupt the traditional automotive value chain but also exert
a significant influence on stakeholders, contributing to the anticipated 7 percent
compound annual growth rate (CAGR) in the automotive software (SW) and electri-
cal and electronic components (E/E) market. This growth is projected to escalate
from USD 238 billion to USD 469 billion between 2020 and 2030, surpassing the 3
percent CAGR expected for the overall automotive market during the same period.

The collective impact of ACES, further accelerated by the COVID-19 pandemic,
is reshaping the future of mobility, affecting customer preferences, technology adop-
tion, and regulatory frameworks [8]. The electric vehicle (EV) market is witnessing
an influx of new players with higher valuations than established OEMs, prompting
substantial investments in software and electrification by automotive companies and
their suppliers. By 2030, the global automotive software and electronics market is
forecasted to reach USD 462 billion, growing at a 5.5 percent CAGR from 2019 to
2030, while the overall automotive market for passenger cars and light commercial
vehicles (LCVs) is expected to expand at a 1 percent CAGR during the same period.
Figure 1.1 details the breakdown of automotive software (SW) development, high-
lighting diverse domains and tech-stack elements. While the overall electrical and
electronic (E/E) market is expected to outpace the automotive market, the specific
content of electronics and software per car varies significantly based on segment,
powertrain, and AV level.

Despite a modest increase in passenger car and LCV sales, the automotive soft-
ware and electronics market is poised to experience nearly four times the growth rate,
with electronic control unit (ECU) and domain control unit (DCU) sales projected
to reach USD 144 billion by 2030. Software development, particularly integration,

1.1 Research Objectives 3

verification, and validation, is anticipated to be the second-largest market segment
with a revenue potential of USD 83 billion. Power electronics emerges as the
fastest-growing component market, driven by a 23 percent CAGR through 2030,
fueled by the adoption of electric vehicles. Sensors, especially those for AD or
Advanced Driver Assistance Systems (ADAS), are expected to grow at a 6 percent
CAGR, driven by LiDAR, cameras, and radars. Beyond core SW development,
subsequent processes include customization, validation, verification, and integra-
tion, with post-production maintenance adding to development costs, as shown in
Figure 1.2.

The automotive software market is set to more than double from USD 31 billion
in 2019 to around USD 80 billion in 2030, with ADAS and AD software accounting
for nearly half of the market. The sensor market is also projected to grow, reaching
USD 46 billion in 2030, primarily due to increasing demand for ADAS and AD
sensors. As the industry transitions towards software-defined vehicles, strategic and
operational actions are imperative for automotive companies to harness the potential
of this transformative shift. Most sensors align with automotive market growth, but
those linked to ADAS and autonomous driving drive an anticipated 8 percent growth
in automotive sensors, detailed in Figure 1.3.

In 2023, the automotive industry served as an economic powerhouse for Europe,
contributing approximately 10 percent to the region’s exports. With over 17,300
companies forming a comprehensive network of OEMs and suppliers, the sector
directly or indirectly employed more than 6 percent of the region’s workforce,
generating positive spillover effects beyond its boundaries.

1.1 Research Objectives

A key facet of fault tolerance is to ensure the continued correct operation of modern
computing systems despite internal faults. The primary objective underlying fault
tolerance endeavors is to increase system dependability. In a fault-tolerant system,
the aim is to facilitate seamless transitions to alternative modules and thereby sustain
service provision in the face of faults, by either concealing faults or detecting errors.
To fulfill this aim, fault-tolerant systems must uphold specified service delivery, even
amidst component faults.

4 Introduction

Fig. 1.1 Automotive SW and E/E content per car [1, 2].

1.1 Research Objectives 5

Fig. 1.2 Automotive SW and E/E market and Split of SW market into SW development,
integration, and validation/verification [1, 2].

Fig. 1.3 The automotive sensor market is projected to surpass automotive sales, primarily
due to robust growth in ADAS sensors [1, 2].

6 Introduction

Failures arise when the behavior of a running system diverges from the system’s
expected behavior. Failures are caused by errors, while faults are the underlying
cause of errors. Yet, it is noteworthy that not all faults necessarily lead to errors, and
a single fault can precipitate multiple errors. Similarly, a solitary error can culminate
in multiple failures. Redundancy, in some form, is an essential component across
all fault tolerance approaches to ensure the system’s capacity to withstand faults.
Redundant devices, networks, data, or applications are leveraged based on the fault
class at hand.

As of now, novel technologies elevate various facets of our quality of life while
concurrently bolstering societal productivity and efficiency. Illustrative instances
include innovative environmentally conscious transportation systems and advanced
production methodologies, streamlining human effort and optimizing the generation
of appliances and services. In the realm of automotive systems, the trajectory of
emerging technological trends accentuates the introduction of novel features, ex-
panding the array of onboard embedded systems and processors [9]. Within the
automotive domain, these systems are engineered to optimize energy consumption,
enrich user experiences through infotainment support, and institute autonomous and
semi-autonomous control mechanisms encompassing methods like cruise control and
autonomous piloting [10]. Furthermore, within the production sphere, burgeoning
automation trends foster collaborative work environments uniting human workers
and autonomous robots, thus amplifying production. This automation paradigm ad-
ditionally seeks to mitigate human risk in scenarios involving hazardous conditions.

Central to the silicon lifecycle within automotive industries are Design for Testa-
bility (DFT) tasks, spanning from initial DFT insertion and high-quality test pattern
generation to stress tests accelerating aging. Traditional structural patterns, along
with increasingly prevalent system-level tests, are then applied. Volume diagnosis
supplements these steps within the manufacturing test framework, historically the
primary role of DFT beyond manufacturing. However, the contemporary landscape
demands an extension of DFT to encompass in-system and in-field operations (see
Figure 1.4).

While manufacturing stress tests effectively filter out chips prone to early-life
failures, subsequent phases in the integrated circuit (IC) lifecycle introduce random
latent defects. As aging takes hold, wear-out failures become a concern, leading to
an escalating failure rate over time. Consequently, in-system testing and monitoring

1.1 Research Objectives 7

Fig. 1.4 The bathtub curve (red, upper solid line) is a combination of a decreasing rate of
early-life failures and an increasing rate of wear-out failures, plus a constant level of random
(latent) failures)[3].

during these lifecycle stages are imperative. In specific domains, remote diagnosis
proves valuable for retrieving fail logs and computing defectivity profiles. This
data, in turn, contributes to refining tests and preempting similar issues in future
deployments.

Both automotive and industrial production domains represent paradigmatic in-
stances of safety-critical applications, wherein any functional malfunction of the sup-
porting equipment, machinery, or devices could trigger dire repercussions, spanning
critical injuries, fatalities, substantial property damage, or extensive environmental
harm [11]. Consequently, the intricate electronic devices now integrated within these
systems must rigorously adhere to safety, reliability, and security imperatives to
ensure the seamless operation of the entire system.

Within the automotive domain, prominent corporations have invested, and are
poised to continue investing, substantial capital in new technologies to not only imple-
ment but also broaden their applicability across various automotive functions. These
applications encompass the development of diverse levels of vehicular autonomy

8 Introduction

driven by the attendant benefits to user safety, security, traffic latency reduction, and
energy efficiency. Nevertheless, these technological advantages concurrently present
various challenges yet to be definitively resolved. In principle, well-established
methodologies for designing and developing secure and safe devices could be re-
purposed for use in these novel applications. However, both the automotive and
autonomous machinery domains presently exploit a medley of innovative technolo-
gies, including Artificial Intelligence (AI) and computer vision, furnishing a distinct
advantage in effecting more streamlined procedures. It’s worth noting, though,
that this trend equally introduces the ability for contemporary devices to integrate
intricate algorithms, thereby augmenting application complexity and imposing sub-
stantial constraints concerning real-time operation, available power resources, and
performance thresholds.

In practice, the development of modern safety-critical applications hinges upon
three core elements: i) robust high-performance operation and power efficiency,
ii) cost-effectiveness, and iii) unwavering safety and reliability [12]. In numerous
instances, manufacturers and designers confront these demands by harnessing the
latest transistor technology and scaling methods, thereby pushing the boundaries
of Moore’s law to incorporate an elevated transistor count within the same device.
This endeavor yields appreciable enhancements in execution performance, power
consumption, and practical production expenses.

However, various studies [13], [14], [15], [16], [17] have demonstrated that
devices constructed using these cutting-edge technologies are inherently susceptible
to an array of faults manifesting during initial operational stages and, with greater
frequency, throughout their active lifespan. These faults may arise from two primary
sources: (i) inherent defects stemming from manufacturing processes or component
fatigue, and (ii) environmental or external influences [18]. In the former case, device
faults might emanate from manufacturing anomalies that evade detection during end-
of-production testing, thereby precipitating unforeseen behaviors during operational
life-cycles. Furthermore, components within a device are predisposed to degradation
(e.g., electro-migration or gate-oxide effects) following prolonged operation or even
during periods of idleness (e.g., idle operational mode) [19], thereby potentially
generating intermittent or permanent faults. In such scenarios, the faults arise due to
aging or wear-and-tear effects [20], [21], [22]. Conversely, external influences also
exert sway over device operation. Environmental factors temporarily or permanently
alter electrical parameters, resulting in transient fault effects that impinge upon

1.1 Research Objectives 9

ongoing device applications. These fault effects propagate across the device as soft
errors, which solely emerge when applications are executing on afflicted devices.
Exposure to high-energy particles (triggering radiation effects) or electromagnetic
interference (EMI) increases device vulnerability to transient faults, disrupting the
electronic charge of one or more storage components within the device and toggling
the state of transistors employed for data storage. As this data courses through
the circuitry, multiple errors can arise within the application. In the most extreme
instances, external interventions can lead to permanent damage to the device.

fault-tolerance methods focus on detecting and recovering from faults, regardless
of their types, in order to ensure the correct functioning of the system. To achieve a
given reliability target, one commonly used fault-tolerance technique is the utilization
of redundancy, in terms of hardware, software, information, and time, exceeding
what is normally required for system operation. Hardware redundancy techniques
involve adding extra hardware components to detect or tolerate faults. For example,
multiple cores or processors can be utilized instead of a single one, with each
application being executed on a separate core/processor, enabling fault detection
and even correction. Another technique, time redundancy, allocates extra time to
perform system functions and detect faults, without violating the timing constraints
of real-time systems. The re-execution technique is an example of time redundancy,
where a faulty task is repetitively executed on the same hardware until the correct
output is obtained. Information redundancy techniques, such as error detection
and correction coding, are commonly used in memory units, storage devices, and
data communication to ensure reliability. Redundant Arrays of Independent Disks
(RAIDs) are another example of information redundancy, where data is organized
and stored in multiple configurations to enhance reliability. Additionally, software
redundancy involves adding extra software to detect and tolerate faults. For example,
N-version programming involves separate groups of programmers designing and
coding a software module multiple times, reducing the likelihood of the same mistake
occurring in all versions. Checkpointing, on the other hand, stores the last fault-
free state of a process in stable memory, allowing the system to roll back to that
state and re-execute the application in case of a fault. By employing these fault-
tolerance methods, systems can ensure reliable functioning despite the occurrence of
faults [23].

The proliferation of semiconductors in automotive applications is further pro-
pelled by the increasing importance of vehicle software. Current legal mandates

10 Introduction

mandate the integration of diverse software-driven safety features, such as emergency
braking assistance. In premium-tier vehicles, software-based functionalities, ranging
from infotainment systems to advanced ADAS and autonomous driving capabilities,
are progressively shaping customers’ purchasing preferences. This dynamic land-
scape highlights the growing significance of software-driven functions, influencing
the overall appeal and market competitiveness of vehicles.

Several of these new devices and technologies, initially integrated into vehicles
as enablers for ADAS, have been instrumental in enhancing vehicle safety. Despite
providing simple and partial autonomous features at low levels of autonomy, ADAS,
inclusive of lane departure warning systems, adaptive cruise control, blind spot
monitors, and automatic parking, has demonstrated its value. These systems operate
within the conventional vehicle Electrical/Electronic (E/E) architecture, requiring
no major modifications. ADAS has found extensive adoption in today’s commercial
vehicles due to its cost-effectiveness.

Embedded systems are employed in various industries, such as aerospace, auto-
motive, and defense, to implement safety or mission-critical applications. Functional
safety (FuSa) is a part of the product safety process that focuses mainly on the ab-
sence of unreasonable risks. For this purpose, FuSa standards provide reference life
cycles to implement embedded systems. In other words, it is required to guarantee
that the system can perform tasks correctly within a defined time or, at least, to bring
the controlled physical process into a safe state.

The incorporation of FuSa testing introduces an additional layer of complexity
to semiconductor testing, a dimension further intensified by the autonomy inherent
in advanced systems. The absence of human intervention in autonomous processes
amplifies the necessity for stringent safety measures, as there is no human presence
to improvise or rectify potential issues in real-time. Consequently, in scenarios
where a 10nm chip functions as the neural core of an autonomous vehicle’s artificial
intelligence, the conventional benchmark of testing 95% or more of the transistors
on the chip is no longer deemed acceptable.

In the landscape of semiconductor testing, the advent of autonomy poses dis-
tinctive challenges that demand a reevaluation of established testing paradigms.
The intricate interplay of autonomous systems and semiconductor components un-
derscores the criticality of comprehensive testing strategies. Merely adhering to
traditional testing thresholds may prove insufficient in ensuring the robustness and

1.1 Research Objectives 11

reliability of semiconductor devices, particularly when deployed in autonomous
applications.

This paradigm shift necessitates a nuanced approach to testing methodologies,
wherein the focus extends beyond conventional benchmarks to encompass the intri-
cate interactions within autonomous systems. Researchers and practitioners must
delve into innovative testing frameworks that address the unique requirements posed
by the autonomy factor, ensuring that safety and reliability are upheld at levels
commensurate with the heightened complexities of modern semiconductor devices.
As semiconductor technology continues to evolve, the scientific community must
remain proactive in developing and refining testing protocols to match the intricacies
introduced by autonomous functionalities in semiconductor-based applications.

Most current standards derive from IEC 61508 on functional safety for electrical,
electronic, and programmable electronic safety-related systems. In particular, the
standard for automotive industry applications is ISO 26262, targeting applications
in charge of safety-critical tasks. It was first released in 2011 and then updated in
2018 [24].

In compliance with the latest safety standard, which mandates an exceptionally
stringent norm, the imperative requirement is to limit defects to as small as zero. This
strict requirement arises from the increasing shift towards automation in the electric
and electronic control of vehicles. Consequently, there is a heightened significance
in evaluating the margin of error in component performance and reliability. To
illustrate the gravity of a defect, consider a Printed Circuit Board (PCB) featuring
40 Integrated Circuits (ICs), each boasting 90% fault coverage and 90% yield. This
configuration results in a reject rate of 34.4% or 344,000 defective parts per million
(PPM). This underscores the critical need for precision in adhering to stringent safety
standards in the context of automated control systems in vehicles [25].

Widely acknowledged as a cornerstone in the realm of automotive electronics de-
sign and formalized in ISO 26262 standards, the practice of designing for functional
safety entails a meticulous examination and integration of countermeasures against
potential vulnerabilities within the System-on-Chip (SoC) design. These vulnerabili-
ties encompass facets of the design that render it susceptible to mission failure arising
from transient errors occurring during routine vehicle operation. In the context of
ADAS applications, the repercussions of such failures could be catastrophic for
vehicle occupants, posing a significant threat to human safety. Furthermore, such

12 Introduction

failures have the potential to erode consumer trust precisely at a juncture when
technological adoption is on the ascent, thereby impeding the widespread acceptance
of the technology.

The Automotive Safety Integrity Level (ASIL) systematically addresses the miti-
gation of risks in automotive systems, as defined by the ISO 26262 standard. This
classification system evaluates the severity of hazards arising from potential mal-
functions in automotive components, assigning ASILs ranging from A (lowest) to D
(highest). Conforming to ISO 26262 involves a comprehensive process that guides
identifying safety goals and requirements, encompassing internal and external com-
ponents within and beyond the system boundary. Automotive Original Equipment
Manufacturers (OEMs) and their suppliers are diligently aligning their practices with
ISO 26262 standards. Alignment with ASIL is integral to contemporary vehicle
development, representing a pivotal aspect of ISO 26262 compliance. Safeguarding
vehicle systems in automotive software development extends to managing fail-safe
conditions, including hardware malfunctions, environmental stress, and software
bugs, with ISO 26262 providing a structured framework for analysis. In the realm
of ADAS, some manufacturers openly disclose data regarding the failure rates of
their components, contributing valuable insights into the relative reliability of di-
verse technologies. For instance, NXP Semiconductors provides failure rate data
for its automotive microcontrollers, shedding light on the robustness of its offerings.
Similarly, Infineon Technologies specifies a failure rate of less than 10−9 per hour
for its automotive-specific microcontrollers [26, 27].

Under adverse conditions, ADAS systems typically transition into a fail-safe
state, a strategic design approach that aims to mitigate the consequences of a failure
rather than preventing it outright. This proactive strategy aims to reduce or eliminate
potential harm resulting from system malfunctions, emphasizing the commitment to
safety inherent in ASIL and ISO 26262 compliance.

ISO 26262 addresses two distinct categories of faults within the context of
functional safety [28]:

• Systematic faults: Arising from specification or design anomalies, systematic
faults manifest in a deterministic manner. These faults can affect both software
and hardware components and necessitate corrective measures to enhance the
development process, including safety analyses and thorough verification. A
prevalent example of a systematic fault is a development bug.

1.1 Research Objectives 13

• Random hardware faults: Unpredictably occurring during the operational
lifespan of a hardware component, random hardware faults result from physical
processes such as wear-out, physical degradation, or environmental stress.
While reliability engineering practices can mitigate the occurrence of random
hardware faults, their complete elimination remains unattainable. This category
further branches into two subtypes:

a. Permanent faults: These persist until addressed or repaired and encompass
examples like stuck-at faults and bridging faults.

b. Transient faults: Occurring momentarily and then dissipating, transient
faults may stem from causes like electromagnetic interference or alpha par-
ticles. With the reduction in technology node scale, memory elements like
flip-flops and memory arrays are increasingly susceptible to transient faults,
exemplified by occurrences such as Single Event Upset (SEU) and Single
Event Transient (SET).

SEU involves a transient change in a digital memory element’s state caused by a
single ionizing particle, leading to temporary errors. Typically associated with cosmic
rays, SEUs are critical concerns in semiconductor devices. In contrast, SET occurs
when a high-energy particle disturbs a semiconductor device, resulting in transient
changes in its electrical characteristics. Unlike SEUs affecting memory states,
SETs manifest as temporary glitches in logic gates or circuits, causing momentary
disruptions in electronic systems[29].

The susceptibility of memory elements to transient faults, exemplified by SEU
and SET, intensifies with shrinking technology nodes. Consequently, addressing
and mitigating these faults become pivotal for ensuring the reliability and functional
safety of semiconductor devices, especially in safety-critical applications adhering
to ISO 26262 standards [28].

Moving to permanent faults, achieving the required safety targets clearly man-
dates the adoption of special techniques to minimize the chances that possible faults
created by the manufacturing process or by other mechanisms (e.g., aging) escape
the different test procedures applied at the device, board and system level. Moreover,
given the very high safety targets required, the advanced semiconductor technology
used to manufacture current automotive devices, and the relatively short life- time
of these technologies in safety-critical applications, including ADAS systems, it is

14 Introduction

mandatory to develop efficient techniques to detect permanent faults (in-field test)
before they cause critical failures.

In this concept, the designers aim to prevent systematic design errors and ensure
hardening against Random Hardware Failures (RHFs). An RHF is a failure that
affects a physical component of a computation platform, especially in this work,
a central processing unit register or a (random access) memory location. While
systematic errors can be avoided with a properly implemented life cycle, RHFs are
unavoidable due to the physical nature of the electronic components. For example,
consider platooning vehicles, which is the linking of two or more trucks in convoy
using connectivity technology and automated driving support systems. In this
example, sensor faults have become a common fault problem in fault tolerant control
(FTC) research, and the frequency of fault occurrence in the actual system cannot be
ignored. The faults of single or multiple vehicles lead to the breakdown of the entire
platooning system, so the FTC is a critical issue [30].

Hardening the system generally means adding redundancy. It can be implemented
in two ways: (i) adding extra hardware components or (ii) adding software instruc-
tions in the application code. The first strategy requires adding special hardware
modules to the system architecture like watchdogs [31], checkers [32], or Infras-
tructure Intellectual Properties (I-IP) [33]. On the other hand, software redundancy
techniques are much more flexible and cost-effective in error detection compared
to hardware methods. This is because they perform extra instructions without any
hardware component changes and allow for monitoring of the application’s correct
execution.

Software-Implemented Hardware Fault Tolerance (SIHFT) methods are software
redundancy techniques that are especially helpful when other hardening methods
result in hardened hardware components with high computation power or high
cost per unit. The component cost per unit is particularly critical for automotive
applications, where a design is produced in tens of thousands of units. On the
other hand, software techniques allow the implementation of dependable systems
without the high cost of hardened hardware but at the expense of higher development
costs. Nonetheless, this cost can be split over the produced units, making them
economically convenient. Various SIHFT methods have been proposed over the
years, such as Control Flow Checking (CFC) [34–48].

1.1 Research Objectives 15

Selecting among the various CFC methods proposed in the literature is challeng-
ing. Hence, in this paper, we propose a comparison methodology that consists of
selecting a set of representative applications, hardening them with chosen methods,
and finally performing the fault injection. To evaluate our approach, two established
CFC methods were selected and applied to two benchmarks representing typical
applications used in the Automotive Industry.

In this work, we are mainly concerned with RHFs caused by permanent stuck-at
faults. Most of the proposed approaches for SIHFT methods target single-event
upsets (soft errors), such as bit flips. As a result, the diagnostic figures provided in
the literature are insufficient to characterize the techniques effectively. Common
diagnostic metrics in the literature include:

• Error Detection Latency: Measures the time taken to detect an error after it
has occurred. This metric is useful for understanding the response time of a
fault-tolerance method but does not provide insights into the method’s overall
effectiveness against various types of faults.

• Fault Coverage: Indicates the proportion of faults that a method can detect
and/or correct. While important, this metric often focuses on specific fault
models (e.g., single-event upsets) and may not account for more complex or
permanent faults like stuck-at faults.

• Mean Time to Failure (MTTF): Represents the average time between failures
for a system. MTTF provides a general sense of reliability but does not capture
the nuances of how different faults impact system performance and safety.

• Performance Overhead: Assesses the additional computational resources
(e.g., processing time, memory usage) required by a fault-tolerance method.
Although crucial for real-time applications, this metric alone cannot determine
the method’s efficacy in various fault scenarios.

Therefore, targeting the most suitable fault models is essential, as we propose in this
work.

In this work, we implemented the CFC methods in the C programming language,
though in the literature, the CFC methods are usually implemented in assembly.
There is still a non-negligible portion of code written in the assembly language. Also,

16 Introduction

implementing SIHFT methods in assembly lets the compiler automatically insert
most SIHFT methods.

One of the reasons for our choice is that implementing in C, compared to other
programming languages, significantly outperforms execution time, energy consump-
tion, and peak memory usage for selected benchmarks [49]. In addition, implement-
ing the CFC method in a high-level programming language reduces the developers’
challenges in comparison to using low-level programming languages. Moreover,
writing Assembly code is not the preferred development flow for embedded systems
since the functional safety standards mandate adopting high-level programming lan-
guages such as C whenever possible (as requested by part 6 of ISO 26262 Standard).

For application codes written in high-level programming languages, such as C, it
is possible to compile and then harden the obtained assembly code. However, this
approach introduces more significant overhead, especially in terms of execution time,
which is a primary concern for real-time applications compared to our approach,
which includes protecting single statements in the high-level programming language
before compiling the code. The drawback of our approach is that the compiler may
remove the extra instructions or change the order of all the instructions to optimize
the code. We also investigated this aspect by repeating the fault injection campaigns
with all four optimization levels offered by the Gnu Compiler Collection (GCC).

The simulation results were expressed in compliance with ISO 26262 automotive
functional safety standards. These results are obtained by assessing the efficiency of
the CFC methods based on the RHFs detection, defined by the Standard as Detection
Coverage (DC).

1.2 Contributions

In this chapter, we present the contributions of our research, which encompass several
novel aspects in the field of fault tolerance and safety-critical systems.

Our research focuses on enhancing the reliability of embedded systems through
Control Flow Checking (CFC) methods. At the core of our investigation is the
assumption that faults affecting the Program Counter (PC) are critical. These faults
can disrupt the control flow of a program, leading to significant operational failures.
Thus, we consider PC faults as our primary fault model, introducing this assumption

1.2 Contributions 17

at the outset of our study to establish a clear context for our contributions. To
mitigate the effects of PC faults, we propose a robust software-based hardening
technique. This technique is designed to counteract the disruptions caused by these
faults, ensuring the integrity of the program’s execution flow. Our approach is a key
contribution to the field, demonstrating significant improvements in fault tolerance
for embedded systems.

To validate our methodology, we implemented and evaluated two distinct CFC
techniques: "Yet Another Control-Flow Checking using Assertions" (YACCA) and
"Random Additive Control Flow Error Detection" (RACFED). These techniques
were chosen for their contrasting philosophies—YACCA utilizes bit masking and
focuses on inter-block detection, while RACFED employs random numbers for both
inter-block and intra-block detection capabilities. YACCA was selected for its sim-
plicity of implementation, whereas RACFED was chosen for its recent advancements
and comprehensive detection capabilities.

In our evaluation, we used two benchmark applications to represent real-world
scenarios similar to automotive applications. The first benchmark, a timeline sched-
uler (TS), is essential for operating systems managing periodic tasks. The second
benchmark, a tank level controller (T), maintains the liquid level in a tank using
on-off logic, analogous to battery charge level control algorithms in electric and
hybrid vehicles. These benchmarks were selected due to their relevance and repre-
sentativeness, despite not using proprietary automotive applications for intellectual
property reasons.

Both benchmarks were automatically generated using Simulink Coder, based
on the Model-Based System Development (MBSD) methodology. This high-level
approach contrasts with traditional assembly language implementations of CFC tech-
niques. Implementing CFC methods in C programming language, as we have done,
offers numerous advantages: it is more developer-friendly, reduces implementation
time, and minimizes errors compared to assembly language.

Furthermore, we investigated the impact of compiler optimizations on the ef-
fectiveness of CFC methods by conducting experiments with different optimization
levels (O0, O1, O2, and O3), offered by GCC for RISC-V architecture. Maintaining
the correct instruction order and avoiding optimizations that could interfere with
signature updates are crucial aspects addressed in our methodology.

18 Introduction

The simulation results obtained from the benchmark applications running on a
RISC-V-based target platform provide insights into the performance of the proposed
hardening techniques. We analyzed fault injection, diagnostic coverage, and overhead
for both manually implemented CFC methods. These analyses were conducted
considering different optimization levels for manual hardening in the C programming
language and no optimization levels for the Model-Based Software Development
(MBSD) approach.

Additionally, we present a comprehensive set of guidelines for implementing
CFC methods using the C programming language. These guidelines are designed
to assist developers in the development of safe and reliable embedded systems.
While following these guidelines is not mandatory, they offer a practical approach to
implementing critical safety embedded systems.

The effectiveness of our proposed approach and guidelines is demonstrated
through two case studies, showcasing the successful deployment of reliable em-
bedded systems in safety-critical scenarios, particularly in the automotive industry
context. These case studies validate the applicability of our methodology in real-
world settings.

We acknowledge several assumptions and limitations inherent in our approach.
Firstly, our reliance on manual implementation of CFC techniques in C code intro-
duces potential challenges such as time consumption and error-proneness, particu-
larly for large and complex codebases, suggesting a need for future exploration into
automated insertion methods. Moreover, our evaluation’s focus on the GCC compiler
for the RISC-V architecture may limit generalizability, necessitating investigation
into the behavior of other compilers and architectures. While our approach effec-
tively targets faults affecting the Program Counter (PC), it may not be as efficient
for other fault types, warranting further research into broader fault model coverage.
Additionally, our findings and guidelines are tailored to the C programming language,
requiring careful consideration when adapting to other languages like C++. Further-
more, while model-level implementation using Simulink simplifies complexity, it
may impose limitations based on model fidelity and tool capabilities. Assumptions
regarding a homogeneous fault model, consistent compiler behavior, and model
accuracy are made, acknowledging potential variations and deviations that could
affect the validity of our results. Manual implementation overhead, limited fault
coverage, performance overhead, dependency on target architecture, and the assump-

1.3 Structure 19

tion of an adversarial fault introduction environment are further considerations that
shape the scope and applicability of our approach. Understanding and addressing
these assumptions and limitations provide a holistic perspective on the context and
interpretation of our research findings.

In conclusion, our contributions extend beyond the development of novel fault-
tolerant techniques. We provide a systematic methodology, supported by guidelines,
for implementing CFC methods in high-level programming languages, thereby
offering a practical solution for enhancing the safety and reliability of embedded
systems. Future research directions could explore the applicability of our approach
to C++ compilers, considering the prevalence of embedded systems using C++ code.

1.3 Structure

The subsequent sections of this manuscript are organized as follows:

chapter 2 provides additional background information about the contemplated
embedded systems, specifically focusing on the Control Flow Error, along with an
examination of Software-Implemented Hardware Fault Tolerance techniques. The
discussion delves into the utilization of the C programming language within the
context of functional safety in the automotive industry, including a consideration of
ISO 26262-compliant classification. Concluding this chapter is a dedicated section
titled "A Note on Soft Errors in Security."

chapter 3 explains the proposed fault models and outlines our methodological
approach for the integration of established software-based hardening techniques into
high-level programming languages.

chapter 4 outlines the experimental configuration and presents the results ob-
tained through simulation. It is followed by an extensive theoretical analysis of the
efficacy of the high-level programming language implementation. This analysis
encompasses not only an evaluation of the techniques’ effectiveness but also the
essential examination of the associated overheads, particularly in the context of
real-time systems.

Finally, chapter 5 unveils forthcoming research directions and provides a summa-
tion of the study’s key conclusions.

20 Introduction

Additionally, Appendix A delivers a comprehensive guideline for the application
of a subset of CFC methods to application code coded in the C programming
language. This appendix serves as a valuable resource for practitioners seeking to
enhance the reliability and robustness of their software systems.

Chapter 2

Background And State-Of-The-Art

This section embarks on an exploration of fault-tolerant systems, focusing on both
hardware and software methodologies. We begin by providing a clear and com-
prehensive explanation of Control Flow Errors (CFEs) and Control Flow Checking
(CFC) methodologies, which form the cornerstone of our investigation. As outlined
in the introduction, our research is dedicated to enhancing the reliability of embedded
systems against CFEs induced by external perturbations. Before delving deeper into
the intricacies of CFE, it is crucial to delineate the scope of our research.

We commence with an extensive review of state-of-the-art (SOTA) software-
implemented detection methods in section 2.2, clarifying the concept of CFE in
section 2.3: Control Flow Error. Subsequently, we conduct an in-depth examination
of Control Flow Checking Methods in section 2.4, elucidating their role in bolstering
system resilience against CFEs.

Design Diversity-Based or Multiple-Version-Based software fault tolerance,
which involves using multiple versions or variants of software, either executed
sequentially or in parallel, is discussed in section 2.5: Design Diversity Based
Software Fault Tolerance.

Complementary to this, section 2.6delves into a detailed analysis of software-
based fault tolerance methods, particularly focusing on the Single-Design Software
Fault Tolerance Approach.

22 Background And State-Of-The-Art

Various hardware-based fault tolerance methods are delineated in section 2.7
: Hardware-Based Fault Tolerance, shedding light on their efficacy in fortifying
system robustness.

In section 2.8: Hybrid-Based Approaches, we explore hybrid methodologies
that integrate both hardware and software techniques, presenting a comprehensive
overview of their benefits and limitations.

Furthermore, section 2.9: Using the C Language in Automotive Industry Applica-
tions, addresses the utilization of the C language in automotive industry applications,
highlighting its significance in developing fault-tolerant systems.

To augment understanding, a comprehensive explanation of ISO 26262-compliant
classification is provided in section 2.10 and section 2.11: Functional Safety Stan-
dards and ISO 26262 Compliance.

Additionally, a note on Control-flow Integrity Techniques for Soft Errors-security
is presented in section 2.12: A Note on Control-flow Integrity Techniques for Soft
Errors-Security, underscoring their relevance in mitigating security vulnerabilities
arising from soft errors.

2.1 Setting the Scene

Embedded systems oriented toward safety-critical tasks play a crucial role in fa-
cilitating the implementation of sensor fusion and deep learning algorithms for AI
applications. These embedded systems find particular relevance in Advanced Driver-
Assistance Systems (ADAS) within the automotive domain, where they are integrated
into systems designed to perform various functions, such as Automatic Cruise Con-
trol, Pedestrian Recognition and Protection, Forward Collision Warning, Automatic
Parking, and Automatic Pilot [50] [51]. ADAS systems heavily rely on sensor inputs,
including cameras, radars, and LiDARs [52], which generate a continuous stream of
data that necessitates real-time processing and decision-making [53]. Embedded sys-
tems are well-suited for handling the data-intensive processing requirements of these
ADAS applications and are increasingly adopted by manufacturers. Additionally,
ADAS serves as an intermediary step towards the realization of semi-autonomous
and self-driving vehicles [54].

2.1 Setting the Scene 23

In contemporary safety-critical embedded system design, adherence to industrial
standards, such as ISO26262 in the automotive sector, is imperative. These standards
impose specific conditions to ensure correct execution, a high level of functional
safety, and reliability of GPU devices throughout their production and operational life.
Compliance with these regulations is vital due to several key factors: i) operational
constraints inherent to safety-critical applications, ii) the technological advancements
within embedded systems, and iii) the architectural intricacies and complexities of
embedded systems.

Regarding the first factor, any proposed fault-tolerance solutions must account
for real-time operation limitations, constrained power budgets, and the high data-
intensive processing nature of safety-critical applications. Furthermore, these solu-
tions should evaluate performance limitations during in-field testing and potential
mitigation strategies. The availability of system modules and other resources must
also be considered during the operation of safety-critical applications.

On the other hand, technology scaling approaches aim to boost performance and
reduce the physical size of embedded systems while maintaining cost-effectiveness.
However, these cutting-edge scaling methods increase susceptibility to faults, making
new devices more prone to errors stemming from both internal and external factors,
such as radiation. Notably, these faults can manifest after prolonged device operation,
as a result of aging or wear-and-tear, or due to external factors like radiation effects,
electromagnetic interference, and extreme variations in temperature and power
supply [55], [56], [57], [58], [59]. Consequently, fault-tolerance solutions and
reliability assessments assume a pivotal role in the safety-critical domain, particularly
in the context of GPUs used for such applications.

An embedded system comprises hardware and software components that interact
with the physical environment through sensors and actuators, serving a dedicated
function [60]. The software component typically consists of two subcomponents:
the application and, in some cases, a real-time operating system. The need for an op-
erating system depends on the specific applications the embedded system is intended
to execute. Embedded systems without an operating system are referred to as "bare-
metal" systems, indicating that the application directly interfaces with the hardware.
The hardware component of an embedded system can be a microcontroller or an
application processor, each tailored for distinct use cases. Application processors are
employed when a general-purpose operating system is required to support the desired

24 Background And State-Of-The-Art

application(s), whereas microcontrollers are designed for executing bare-metal or
real-time applications with the assistance of a real-time operating system.

Within the hardware components of a microcontroller, several elements are sus-
ceptible to erroneous bit-flips, including memory, peripherals, and buses. Such
bit-flips can lead to incorrect data, instructions, or interrupt signals being supplied to
the CPU core, resulting in erroneous outputs from the application. The application of
error correction codes (ECC) to safeguard memory and peripheral registers against
bit-flips is a well-established practice. ECCs introduce redundant bits to stored data,
enabling data correction in the event of a bit-flip. The data transmitted between
hardware components via buses is also susceptible to external disturbances, war-
ranting ongoing research into the application and improvement of ECCs to protect
transmitted data.

Additionally, bit-flips can disrupt the program’s execution flow and data manipu-
lation, leading to Control Flow Errors (CFEs) or Data Flow Errors (DFEs). A Data
Flow Error (DFE) occurs when a bit-flip corrupts the data being processed by the
CPU. This can happen within the register bank, the arithmetic logic unit (ALU),
or during data transfer through the data interface. The corrupted data then leads to
incorrect calculations or manipulations.

On the other hand, a Control Flow Error (CFE) arises when a bit-flip alters the
program’s execution sequence. This can occur if the bit-flip affects the instruction
register, modifying the instruction type or encoded values. A corrupted program
counter (PC) register, which stores the address of the next instruction, can also lead
to a CFE by directing the CPU to an unintended instruction

2.2 Software-Implemented Detection Techniques

Various techniques have been proposed in the literature to address transient and
permanent faults in different parts of a system, targeting both hardware and software
components and relying on different forms of redundancy. Among these techniques,
CFC stands out as it can cover faults affecting memory components containing the
executable program, as well as the hardware components handling the program and
its flow [61]. CFC has been suggested to handle reliability issues for both transient
and permanent faults ([62], [63], and more recently, it has been applied to address

2.2 Software-Implemented Detection Techniques 25

security issues caused by the injection of malicious faults ([64], [65]). Malicious
faults, within the context of fault tolerance, refer to deliberate and intentional actions
taken by malicious actors to disrupt or compromise the normal functioning of a
computer system, network, or software application. These actions are aimed at
exploiting vulnerabilities in order to compromise the system’s integrity, availability,
or confidentiality [66]. Unlike transient and permanent faults, which often arise from
natural hardware failures or environmental factors, malicious faults are caused by
human intent and typically involve actions such as hacking, malware deployment, or
unauthorized access.

In a cost-effective method proposed in [67], transient faults are detected through
coarse-grain CFC, achieving efficiency by simplifying signature calculations within
BBs and conducting checks at a coarse-grain level. To assess the effectiveness of
this approach, a comprehensive fault injection campaign was conducted, using single
bit-flips to model transient faults. Transient faults may not cause permanent damage
to the hardware, but they can silently corrupt an application’s correctness during run-
time or even lead to system crashes. For instance, HP [68] reported frequent failures
in their 2048-CPU system at the Los Alamos National Laboratory due to high-
energy cosmic rays. A study [69] revealed that the BlueGene/L machine installed
in Lawrence Livermore National Labs experienced soft errors approximately every
four hours. Considering the estimated reliability drop per bit with each generation of
processors [70], it becomes essential to provide transient fault protection schemes for
both current and future systems. Transient fault detection techniques rely on different
forms of redundant checking, either in hardware or software. Hardware solutions
like DMR, TMR, and watchdog processors [71] are employed in systems like IBM
Z-Series servers [72], HP NonStop systems [73], and Boeing 777 airplanes [74].
However, hardware-based solutions introduce unavoidable area and energy costs,
making them unsuitable for commodity embedded systems. Software-based redun-
dant checking, on the other hand, is more appealing for transient fault detection due
to its lower production costs and higher flexibility. Securing control flows is crucial
for transient fault protection, as CFEs are more likely to cause programs to behave
incorrectly. While traditional software methods [35, 36] provide high fault coverage,
they inject a significant number of validating instructions into programs, resulting in
moderate to large performance overhead. Recent studies [75, 76] attempt to reduce
this validation overhead by injecting fewer instructions, but they may sacrifice fault
coverage due to their heuristic approaches. Software-based transient fault detection

26 Background And State-Of-The-Art

techniques are categorized into data flow protection and control flow protection.
Although data flow errors can be masked during program executions, CFEs are more
challenging to hide. This work focuses on detecting illegal control flows since they
can lead to incorrect program behavior. Researchers from industry and academia
have been actively seeking solutions to counter the threat of transient faults in both
hardware and software. Hardware-only solutions, with sufficient resources, are more
efficient for a single, fixed reliability policy, while software-only solutions offer
flexibility and lower costs. Software-only solutions can be deployed immediately
on existing hardware by recompiling the application. However, devising correct
software solutions for transient faults is a challenging task due to the numerous fault
scenarios. Various techniques are suggested in the literature for detecting transient
faults, falling into two general classes: hardware or software redundancy. Hardware-
based methods provide better fault coverage but impose higher costs and overhead
on the system, making them less suitable for some general-purpose applications. On
the other hand, software-based techniques offer less fault coverage and large

2.3 Control Flow Error

There are three ways to implement data redundancy: (i) passive, (ii) active, and (iii)
hybrid.

The first one is based on a voting mechanism in such that passive redundancy, i.e.,
obtaining/computing the data from multiple independent sources) allows isolating
the error and avoids propagating wrong copy.

The second one, active redundancy, usually is founded by dividing the error
handling into three phases: fault detection, isolation, and recovery (FDIR). In this
approach, if an error has been detected, the faulty module is replaced with another
one.

The third one, hybrid redundancy, is a combination of the two previous methods.
Namely, it uses error masking to prevent the system from producing erroneous
outputs by determining, thanks to voting based on FDIR mechanisms, the fault-free
modules of which the output has to be propagated. The monitoring system can detect
timing errors by working in two phases because of watchdogs. The watchdogs are
configured in the system startup with the expected timing information. Then, at

2.3 Control Flow Error 27

run-time, the watchdogs are reset. The system is working correctly if the resets occur
with the scheduled timings. In the other case, a time-out error is raised, triggering
proper recovery or mitigation strategies.

Control Flow Checking (CFC) is chosen for this purpose among the various
RHFs protection techniques available in the literature. It should be mentioned that
our case study only considers permanent faults.

In the automotive industry, the use of high-level programming languages is
recommended. Moreover, using CFC techniques perfectly suits the automotive
industry’s needs. Usually, the production-grade embedded software is developed by
adopting the Model-Based Software Design (MBSD) [77]. With this approach, the
software is not developed by a traditional high-level programming language (like C,
C++, or ADA) but resorting a graphical representation of its functionality in the form
of a physical/control model or a Finite State Machine (FSM). The adopted tools for
developing these models are developed by the company MathWorks [78].

Their popular tool for describing behavior models is Simulink, while its package
Stateflow is used to develop FSMs. Since these are commonly implemented software
units, CFC is perfect for hardening them against RHFs.

The main idea of CFC is to verify that the program performs in the correct order.
Before diving into the specific implementation adopted to develop the benchmark
application mentioned in this paper, we summarize the CFC techniques.

Various CFC techniques have been proposed to detect faults that modify the
execution flow. A common way to implement this approach is through signature
monitoring. It does not require special hardware or operating system requirements
and is based on inserting some redundant instructions into the software unit source
code. Thanks to this characteristic, it is adaptable to any COTS microcontroller,
including low-power consumption units. Moreover, CFC does not interfere with
hardware-based hardening techniques, like watchdogs, and can be accelerated if
external hardware support is available to execute run-time signatures from the in-
structions and compare them with the expected ones.

At the bottom of CFC, the main idea is the concept of a Control Flow Graph
(CFG). CFG is a methodology to divide the program code within basic blocks (BBs).

BBs are maximal sets of ordered instructions that run sequentially from the
beginning to the end. So a BB cannot contain branching instructions, such as jumps

28 Background And State-Of-The-Art

G= (V,E)
V={BB0,BB1,BB2,BB3,BB4}

E={e0,e1,e2,e3,e4}

e0= {BB0, BB1}

e1= {BB1, BB2}

e2= {BB1, BB3}

e3= {BB2, BB4}

e4= {BB3, BB4}

BB4

BB1

BB3BB2

BB0

BB0 while (int i>10) {

BB1 If y==1

BB2 y ++;

BB3 Else
y=y*2;

BB4 i++;
}

Fig. 2.1 Sample code and program CFG example. The execution from basic block BB1 to
BB2 or from BB1 to BB3 are legal, but a jump from BB1 to BB4 is illegal and called Control
Flow Error (CFE).

or calls to functions, since they change the execution flow. The only exception is the
last instruction of the block, which can jump to the first instruction of another BB.

More formally, by defining an oriented graph composed of a set of vertices
denoting basic blocks V = {v1,v2, ...,vn} and the set of edges E = {bri j|bri j is a
branch from vi to v j} denoting the legal set of possible jumps between the basic
blocks, a program can be represented by the graph, G = {V,E}. Any branch not
present in E is illegal and hence denotes a Control Flow Error (CFE). Please note that
the legal branches, represented as edges contained in E, are not necessarily defined
by explicit branch instructions but may be implicit through execution paths, jumps,
subroutine calls, and returns. A graphical representation of CFG for a sample source
code developed in the C language can be found in Figure 2.1.

Software-based CFC methods use CFG alongside signatures computed by redun-
dant instructions to detect illegal branches. The basic idea of signature-monitoring
techniques is to have a static signature for each BB of a given program and a dynamic
global signature. In all CFE detection methods, a unique static signature is associated
with each basic block. CFC methods should be able to detect three types of CFEs :

1. CFEs due to unwanted jump of the program flow from a legal BB to an illegal
BB (so a jump not present in the E set). These are called inter-block CFEs.

2. CFEs that represent an unwanted jump of the program flow from a legal BB to
an unused memory space.

2.4 In-Depth Examination of Control Flow Checking Methods 29

3. CFEs that manage an unwanted jump of the program flow from the BB to
another space in the same BB by BB partitioning (e.g., the BB is split into
partial-BBs even if they are not present in the CFG).

CFC methods trigger all approaches of detection action in an exact way. First,
the CFG is generated by the high-level language source code, then the BB signatures
and their computation methods are defined. While the hardened software component
is executing, the signature values computed at run-time will be compared with the
predetermined signature. Finally, an error signal that triggers the detection will be
activated in case of a mismatch

2.4 In-Depth Examination of Control Flow Checking
Methods

Several widely adopted techniques for Control Flow Checking (CFC) revolve around
the assessment of runtime signatures in contrast to the predetermined values allocated
to individual program blocks during the design or compilation stages. This approach
aims to fortify software systems by ensuring the integrity and authenticity of their
control flow. In this scholarly exploration, we delve into the elucidation of these
techniques, offering comprehensive insights into their mechanisms, applications, and
significance within the domain of software reliability. Our objective is to enhance
the understanding of CFC methodologies and their role in safeguarding software
systems against unauthorized or malicious control flow alterations.

2.4.1 CFCSS

In Control Flow Checking by Software Signatures (CFCSS), which is discussed
in [35], instead of their sources, are evaluated at the destinations of all branches and
then jump. During execution, a global variable G is initialized with the signature of
the first BB of a program. When transitioning from one BB to another, CFCSS calcu-
lates the target block signature from the source block’s signature by using the XOR
function to determine the difference between the signatures of the source and target
blocks. Control flow will be checked by comparing the computed signature with the
expected one. The method described in [35] inserts control flow checking assertions

30 Background And State-Of-The-Art

manually. This will be done by adding a few instructions at the beginning of each
BB. First, check the incoming signature variable and then set its outgoing signature.
This way, it is possible to guarantee that the execution flow is working accurately. It
needs no dedicated hardware, such as a watchdog for CFC. It implies that CFCSS
can be used even when the operating system does not support multitasking. CFCSS
is not able to detect errors if multiple BBs transition, at their ends, to a common BB.

2.4.2 YACCA

"Yet Another Control-Flow Checking using Assertions" (YACCA) technique is
one of the most powerful (in terms of detection capabilities) among the methods
explained in [38]. This method assigns a unique signature to each BB entry and
exit point. The advantage of this method is it makes it possible to detect CFEs that
happened when the program flow jumped from one BB’s inside to one of its legal
successors, even if the successive BB gives back the control to the BB affected by the
wrong jump. This is possible since the signature is re-assessed before each branch
instruction to drop the wrong-successor CFE. The YACCA has fewer undetected
errors and higher performance overhead compared to CFCSS.

2.4.3 ECCA

Enhanced Control Flow Checking Using Assertions (ECCA) method was proposed
by [34]. The idea is to allocate a unique numerical identifier to each BB of a program.
When the processor executes a new BB, particular assertions check the control flow
using the involved BBs identifiers. ECCA methods, extending the CCA technique,
can detect all CFEs between diverse BBs but can neither detect errors inside the
same BB nor faults that cause incorrect decisions on a conditional branch.

2.4.4 RSCFC

The Relationship Signatures for Control Flow Checking (RSCFC) was proposed
in paper [42]. The method encodes the control flow relations between different
BBs into specially formatted signatures and then inserts CFC instructions into every
BB’s head and end. This technique detects inter-block CFEs with three variables:

2.4 In-Depth Examination of Control Flow Checking Methods 31

a compile-time signature si, the CFG locator Li, and the cumulative signature mi.
RSCFC has a higher fault detecting rate than CFCSS. The main drawback of this
method is a higher performance overhead w.r.t. the previously described methods.

2.4.5 CEDA

The authors of [36] proposed Control-flow error detection using assertions (CEDA)
by assigning a signature verification at the beginning and end of each BB, detecting
the aliasing errors by maintaining unique signatures for each one of the aliased
blocks. CEDA uses run-time signatures to efficiently detect faults in the control
flow by inserting them during compilation. By doing so, CEDA can detect all faults
that violate the program flow graph but cannot detect incorrect but legal jumps
(according to the program flow graph). Therefore, CEDA cannot achieve complete
fault detection.

2.4.6 ACFC

Assertions for Control Flow Checking (ACFC), mentioned in [37], is a classification
design for control flow faults and the control checking method that does not depend
on the predecessor-successor relationships between BBs. The technique inserts
fewer instructions than previous methods. Therefore, the method has less memory
overhead than the previous technique but worsening its detection performance.

2.4.7 SCFC

Software-Based Control Flow Checking (SCFC) was proposed by [39]. The tech-
nique uses two run-time variables: A variable containing the BBs’ run-time values
ID and a variable containing the run-time signature S. The compile-time signature is
constructed as in SEDSR. A CFE can be detected at two places in the basic block;
in the run-time ID or the run-time signature S that contains a wrong value. The
ID should contain the compile-time value of the BB, and the S should contain a
signature that indicates the predecessor BB. ID and S are updated at different places
in the basic block. The S is updated in the middle of the BB after verifying it, while

32 Background And State-Of-The-Art

the ID is updated to the compile-time id of the successor block at the end of the BB.

2.4.8 HETA

Another approach is Hybrid Error-detection Technique using Assertions (HETA) [40].
By using HETA we can detect incorrect jumps during the program execution. HETA
develops CEDA techniques and associates them with hardware resources, a watchdog,
for achieving complete fault detection. Using HETA methods cannot detect 100%
faults in the control flow because it only detects errors that violate the CFG: an
incorrect instruction that branches to a BB that is a legal successor will not be
detected since it does not feature mechanisms to reveal data errors.

Software-only Error-detection Technique using Assertions (SETA) is another
approach. It was proposed in [41] for recognizing CFEs in processors without
hardware-implemented hardening techniques. By utilizing this method, they can
reduce the computation units’ costs. SETA is based on two previously described
techniques: HETA and CEDA. These techniques use run-time signatures to identify
errors related to the control flow. Signatures are calculated a priori and compared
with the signature computed at run-time. The application code is divided into BBs.
Two Basic Block Types (BBTs) are defined: A and X. Type A is the BB with
multiple predecessors, and at least one of its predecessors has multiple successors.
BBs without these conditions are called type X. Then, defined BBs are grouped into
networks, and BBs sharing a common predecessor refer to the same network.

Every BB has two different signatures. The first is called Node Ingress Signature
(NIS), compared when entering the BB. The other is called Node Exit Signature
(NES), which is checked when exiting the basic block. The NIS describes the current
basic blocks, and the NES is used to identify the successor network and its legal
successor BBs subsequentially.

2.4.9 SEDSR

Soft Error Detection using Software Redundancy (SEDSR) is an inter-block CFE
detection technique proposed by Asghari et al. [79]. SEDSR assigns just one variable
to each basic block at compile time, i.e. the compile-time signature si. It is a bit

2.4 In-Depth Examination of Control Flow Checking Methods 33

sequence that shows the valid successor basic blocks of the current basic blocks. If
there are n basic blocks in the CFG of the program, si is n bits wide and the bits of
the successor blocks are set to 1. The run-time signature S is verified at the beginning
of each basic block. The verification checks whether or not the current basic block
is a valid successor of the previous basic block. In case of an error-free run, the bit
on the position associated with the current basic block should be set. If that bit is
zero, a CFE has occurred. The run-time signature S is updated in the middle of each
basic block and assigns the compile-time signature si of the current basic block to
S. Fig. 2.11 shows our implementation of SEDSR. The run-time signature is stored
in register r11. We implemented the run-time signature verification with a bitwise
and operation (AND), between the run-time signature and the expected set bit. Next,
the result of the bitwise and operation is verified (CMP). In an error-free run, the bit
at the wanted position is set, so control is transferred to the error handler located at
address 0x246 if the run-time signature is zero (BEQ). The signature update in the
middle of each basic block is implemented using a move instruction (MOV), except
in exit basic blocks.

2.4.10 SIED

The final SOTA technique we discuss in this chapter is Software-Implemented Error
Detection (SIED) proposed by Nicolescu [80]. SIED is capable of detecting both
inter-block and intra-block CFEs. At compile time, each basic block is assigned a
unique identifier IDB, a list containing the compile-time signatures of all successor
basic blocks and a variable n that indicates how many instructions must be executed
in the basic block. The run-time signature X is updated and verified at the beginning
of each basic block. The update consists of storing the result of the addition between
the unique identifier of the current basic block and the status condition branch (SCB)
in X. In other words, the update is the following X = IDBi + SCB. The status
condition branch is updated each time a conditional branch is taken and indicates
whether the false or true path should have been taken. Next, the run-time signature
verification compares X with a second run-time variable Y . In an error-free run,
both should hold the same value, thus a mismatch indicates a CFE has occurred.
Next, the intra-block updates are inserted. To detect intra-block CFEs, SIED uses
the run-time variable checkpass. Once the run-time signature has been verified,
checkpass is updated with the ni variable of the current basic block. After each

34 Background And State-Of-The-Art

original program instruction, checkpass is decremented. At the end of the basic
block, a verification instruction is inserted to validate whether or not checkpass is
now zero. If that is not the case, a CFE has occurred. Finally, the run-time variables
SCB and Y are assigned their new values, after the intra-block verification. Y is
updated with the IDBi of the successor basic block and SCB is updated to 1 if
the true path of a conditional branch has to be taken, otherwise it is updated to 0.
For our implementation of SIED, register r10 stores X or SCB depending on the
location in the basic block, register r9 stores Y and register r11 stores checkpass.
Fig. 2.13 shows that the implementation is rather straightforward. The update X =
IDBI + SCB is implemented with the addition instruction (ADD) and the according
verification, i.e. X == Y , is implemented using the comparison instruction (CMP).
When a mismatch is detected, control is transferred to the error handler located at
address 0x28a (BNE). Next, the intra-block updates are inserted. The initialization
of checkpass, i.e. checkpass = ni, is implemented using the simple move instruction
(MOV). Then a decrement is implemented after each original original program
instruction (SUB). The last thing each basic block does, is update SCB and Y .
We implemented this using the MOV instruction. When a basic block ends with
a conditional branch, these last two updates are executed conditionally. As with
all our implementation, exit basic blocks do not perform these last updates. The
verification checkpass == 0 is inserted at the beginning of each basic block, except
for the first one. We implemented it at the start of the basic block, instead of at the
end of each basic block as proposed by Nicolescu et al., to assure the correct control
flow through the program. When a comparison instruction is inserted at the end of a
basic block, it might overwrite the system flags needed to take the correct path of a
conditional branch. To avoid this problem, we insert the verification and branch to
the error handler at the beginning of each basic block.

2.4.11 RASM

In this section, we delve into the implementation process of the Run-time Assurance
Signature Monitoring (RASM) technique, which involves several steps aimed at
ensuring the reliable detection of Control Flow Errors (CFEs). The overarching
goal of RASM is to maintain the integrity of program execution paths by utilizing a
combination of gradual signature updates and signature verifications.

2.4 In-Depth Examination of Control Flow Checking Methods 35

The implementation journey begins with a global step that assigns essential
variables to all basic blocks within the program. Two random values are allocated to
each basic block. The first value, known as the compile-time signature, is unique to
each basic block. Simultaneously, the second value, referred to as subRanPrevVal,
is employed in the subsequent step of the implementation process for updating
the run-time signature. To ensure the uniqueness of each basic block, the sum of
the compile-time signature and subRanPrevVal must be distinct. Consequently,
subRanPrevVal is continually assigned until this criterion is met.

Following the assignment of random values to basic blocks, protective instruc-
tions are inserted into all basic blocks. The first instruction that a protected basic
block must execute is an update to the run-time signature. This update involves
subtracting the signature from the subRanPrevVal of the current basic block. Once
executed, the run-time signature should align with the compile-time signature of the
current basic block. Subsequently, a verification instruction is introduced to validate
this result. Any divergence in the run-time signature from the expected compile-time
signature is reported as a CFE occurrence.

The concluding phase of RASM’s implementation process entails inserting
the second run-time signature update at the end of each basic block. This final
instruction ensures that all intentional paths within the Control Flow Graph (CFG)
remain accessible during error-free runs, without triggering false positive CFE
detections. To sustain the integrity of intentional paths, the signature is updated
with an adjustment value. This value is computed as the disparity between the
compile-time signature of the current basic block and the sum of the compile-time
signature and subRanPrevVal of the successor block. If a basic block culminates
with a conditional branch, this last update is conditionally executed to guarantee
that the run-time signature retains the correct value for the corresponding successor
block.

The implementation strategy diverges slightly when dealing with exit blocks.
Depending on the number of instructions within such a block, either an additional
verification is introduced or no further instructions are added. For exit blocks with
more than one instruction, an extra verification is incorporated before the return
instruction. This verification cross-checks whether the run-time signature matches the
randomly chosen subRanPrevVal. This additional safeguard allows the detection of
certain CFEs that might lead to premature program termination. In this scenario, the

36 Background And State-Of-The-Art

adjustment value corresponds to the difference between the compile-time signature
of the current basic block and subRanPrevVal. However, for basic blocks containing
only a return instruction and no other instructions, no extra instructions are added in
this step to minimize the overhead imposed by RASM.

2.4.12 RACFED

In this section, we present the implementation process for the Random Additive
Control Flow Error Detection (RACFED), an extended version of RASM designed
to detect intra-block Control Flow Errors (CFEs) in addition to inter-block CFEs,
thereby enhancing the overall CFE detection capabilities. The implementation of
RACFED involves four fundamental steps, building upon the foundation of the
RASM process.

In the first step, akin to RASM, we initiate the process by assigning two random
values to each basic block. These values include the compile-time signature and
subRanPrevVal, with the latter being utilized in the subsequent step to update the
signature. To ensure each basic block’s uniqueness, the sum of the compile-time
signature and subRanPrevVal is required to be distinct, and we continue assigning
subRanPrevVal until this condition is met.

Step 2 introduces the critical component of instruction monitoring within RACFED.
Instruction monitoring entails the incorporation of run-time signature updates with
random values after each original instruction. This countermeasure is selectively im-
plemented, targeting basic blocks with three or more original instructions, as they are
susceptible to intra-block CFEs. Basic blocks with only one instruction are exempt
from this countermeasure, as intra-block CFEs do not apply to them, and inter-block
CFEs are detected through RACFED’s signature monitoring instructions. For basic
blocks with two instructions, intra-block CFEs cannot be effectively detected via
instruction monitoring due to the absence of skipped updates.

Step 3 closely mirrors the third step of the RASM technique, involving the
insertion of the first run-time signature update and the sole verification per basic
block. This update consists of subtracting the signature from the subRanPrevVal of
the current basic block, aiming to align the run-time signature with the compile-time
signature. Any deviation from this alignment is indicative of a CFE, triggering
detection.

2.4 In-Depth Examination of Control Flow Checking Methods 37

Step 4 culminates in the insertion of the final signature update within each basic
block, ensuring that intentional paths in the Control Flow Graph (CFG) remain
accessible during error-free runs without yielding false positive CFE detections.
The adjustment value for this update is computed as the difference between the
run-time signature updates of the current block and the first update of the next
block. The process entails determining the current run-time value, factoring in the
cumulative impact of inserted intra-block updates. Additionally, it computes the
expected value for each successor by summing subRanPrevVal and the compile-time
signature of the respective successor. The adjustment value is then integrated into
the run-time signature. For basic blocks concluding with a conditional branch, this
update is conditionally executed to ensure the run-time signature’s accuracy for the
corresponding successor.

The procedure slightly varies for basic blocks ending with a return instruction, as
these instructions signal the exit from the current function. Depending on the number
of instructions within such blocks, an additional verification is introduced or no
further instructions are added. For multi-instruction basic blocks, an extra verification
precedes the return instruction, scrutinizing whether the run-time signature aligns
with the randomly selected returnVal. This safeguard helps identify CFEs that could
prematurely exit the program. The adjustment value for this scenario is computed
as the difference between the run-time signature updates of the current block and
returnVal. For basic blocks containing solely a return instruction without additional
instructions, no extra instructions are introduced in this step, effectively reducing the
execution time overhead of RACFED.

In summary, the RACFED implementation process comprises four comprehen-
sive steps, building upon the principles of RASM while extending its capabilities to
detect intra-block CFEs, thus fortifying control flow error detection within programs.

2.4.13 In Closing

To summarize, signature monitoring methods like, for instance, YACCA [38],
CFCSS [35], CEDA [36], RASM [43], SEDSR [48], and ECCA [34], exclusively
addressed illegal inter-block jumps during application execution by monitoring run-
time signatures with compile-time signatures at the basic block level. The essential

38 Background And State-Of-The-Art

difference among these techniques is how signatures are computed and checks are
performed.

To improve the aforementioned methods providing covering illegal intra-block
jumps, instruction monitoring techniques, such as the previously described RSCFC [42],
Software implemented error detection (SIED) [44], and Random Additive Control
Flow Error Detection (RACFED) [45] were developed to inspect whether instruction
executed in the correct order. Moreover, in [46], a software behavior-based technique
is presented to detect CFEs in multi-core architectures.

[81] has presented the Software Implemented Hardware Fault Tolerance (SIHFR)
approach to CFEs online detection, which is considered an appropriate method for
safety-critical applications implemented by low-cost embedded systems in which
availability and execution speed are minor issues.

As a final point, it is essential to remark that there is a trade-off among the afore-
mentioned methods regarding achieved detection rate and computed time overhead,
depending on the number of additional statements inserted in the various proposals.

Table 2.1 Compare Control Flow Control techniques.

Algorithm Used Variables Signatures intra-block detection performance [%] Code size overhead [%] Execution time overhead[%]
ECCA 4 prime-numbers χ 73.5 36.0 244.8
CFCSS 2 randomized-bit χ 75.8 15.2 76.6
YACCA 2 bit-field χ 82.8 30.0 203.2
RSCFC 2 bit-field ✓ 49.4 17.5 86.8
SEDSR 3 bit-field ✓ 46.8 12.3 67.1
SCFC 3 bit-field ✓ 60.4 22.9 115.7
SIED 2 random numbers ✓ 52.4 14 115.7

RACFED 3 random numbers ✓ N.A. N.A. 81.5

2.5 Design Diversity Based Software Fault Tolerance

Design Diversity-Based or Multiple-Version-Based software fault tolerance involves
using multiple versions or variants of software, either executed sequentially or in par-
allel. These versions are used as alternatives, with separate means of error detection,
and can be implemented in pairs or larger groups for replication checks or masking
through voting. The main idea is that components built differently should fail differ-
ently, so if one version fails on a specific input, at least one alternate version should
be able to produce the correct output. This section explores various approaches

2.5 Design Diversity Based Software Fault Tolerance 39

to software reliability and safety through design diversity. However, ensuring the
independence of failure among multiple versions and developing effective output
selection algorithms are critical challenges in deploying multi-version software fault
tolerance techniques.

Design diversity serves as a means of protection against uncertainty, specifically,
design faults and their associated failure modes in software design. The objective of
applying design diversity techniques to software design is to build program versions
that fail independently and with a low probability of coincidental failures. Achieving
this objective greatly reduces or eliminates the probability of encountering incorrect
outputs during program execution. However, due to the complexity of software, the
application of design diversity for software fault tolerance is currently more of an art
than a science.

The concept of multiple-version software design was pioneered by Algirdas
Avizienis and his team at UCLA in the 1970s, primarily focusing on software. Their
research also explored the application of design diversity concepts to other system
aspects such as the operating system, hardware, and user interfaces. Even with
rigorous development and proper application of design diversity, there is still the
issue of identical input profiles leading to common errors. Experiments have shown
that error manifestations are not equally distributed across the input space, and the
probability of coincident errors is influenced by the chosen inputs. Data diversity
techniques can potentially mitigate this issue, but quantifying their effectiveness
remains a challenge.

An important consideration in using multi-version software is the cost involved.
Replicating the entire development effort, including testing, would be expensive. In
some cases, where only certain parts of the functionality are safety-critical, applying
design diversity only to those critical parts can reduce development and production
costs. [82] highlights the need to address the problem of identical input profiles as
a common source of errors, highlighting that experiments have indicated unequal
distribution of error manifestations across the input space. While data diversity
techniques may reduce the impact of this error source, quantifying their effectiveness
remains a challenge.

In summary, Design Diversity-Based or Multiple-Version-Based software fault
tolerance offers a means of enhancing software reliability and safety by using multi-
ple versions of software with independent failure properties. However, challenges

40 Background And State-Of-The-Art

exist in ensuring independence from failure and developing suitable output selection
algorithms. The concept of design diversity has evolved as an art in software fault
tolerance, with applications extending beyond software to other system aspects. The
issue of identical input profiles leading to common errors requires attention, and
while data diversity techniques may mitigate this, quantifying their effectiveness
remains a challenge. The cost of using multi-version software is an important con-
sideration, and selectively applying design diversity to critical parts can help reduce
development and production costs.

In this study, we explore various fault-tolerance approaches in software that
incorporate design diversity, both with multiple versions and a single design. The
approaches we focus on are as follows:

• The Recovery Block Scheme: The Recovery Block Scheme (RBS) combines
the checkpoint and restart approach with multiple versions of a software com-
ponent [83]. Before execution, checkpoints are created to allow for recovery
after detecting errors. This ensures a valid operational starting point for the
next version if an error is detected. Additionally, embedded checks are used to
enhance error detection. The primary version executes more frequently com-
pared to alternates, which are designed for degraded performance. Multiple
versions can be executed sequentially or in parallel, depending on processing
capability and desired performance. In the event that all alternates fail, the
component must raise an exception to communicate its failure to the system.

• The N-Version Programming Scheme: The N-Version Programming Scheme
(NVPS) is a multiple-version technique where all versions fulfill the same
basic requirements, and the correctness of output decisions relies on comparing
all outputs [84]. A voter selects the correct output, eliminating the need
for an acceptance test based on the application. Developing NVPS requires
considerable effort as all versions must adhere to the same conditions, resulting
in complexity comparable to creating a single version. Designing the voter can
be challenging and may involve inexact voting. Different voters, such as the
Formalized Majority Voter, Generalized Median Voter, Formalized Plurality
Voter, and Weighted Averaging Techniques, can be used, with weights based
on the application and individual versions’ features.

2.5 Design Diversity Based Software Fault Tolerance 41

• The N Self-Checking Programming Scheme: The N Self-Checking Program-
ming Scheme (NSCPS) combines various structural variations of Recovery
Blocks and N-Version Programming using multiple software versions [85].
Independent development of versions and acceptance tests based on shared re-
quirements are used in this technique. NSCPS utilizes separate acceptance tests
for each version, distinguishing it from the Recovery Blocks approach. The
technique benefits from using an application-independent decision algorithm
for selecting the correct output.

• The Consensus Recovery Blocks Scheme: The Consensus Recovery Blocks
Scheme (CRBS) combines N-Version Programming and Recovery Blocks to
achieve higher reliability compared to either approach individually [86]. The
acceptance test in Recovery Blocks techniques lacks guidance and may have
design faults, whereas voters in N-Version Programming can be unsuitable in
certain cases. CRBS incorporates the first layer of decision-making using a
similar algorithm to that of N-Version Programming. If the first layer declares
a failure, the second layer, which utilizes acceptance tests similar to Recovery
Blocks, is invoked. Although more complex than the individual techniques,
CRBS has the potential to deliver a more reliable result.

• The t/(n-1)-Variant Programming Scheme: The t/(n-1)-Variant Programming
Scheme (VPS) involves n variants and the t/(n-1) diagnosability measure to
restrict faulty units to a subset of size at most (n-1), assuming a maximum of t
faulty units. This approach differs from the previous methods in terms of the
methodused to isolate faulty units [87].

In summary, the utilization of Design Diversity-Based or Multiple-Version-Based
software fault tolerance techniques offers promising avenues to enhance software
reliability and safety. These approaches leverage multiple versions of software,
designed to fail independently, thereby reducing the likelihood of encountering
erroneous outputs during program execution. However, the practical implementation
of design diversity in software fault tolerance remains more of an art than a science
due to the complexity of software and the challenges in ensuring independence
from failure. Additionally, addressing the issue of identical input profiles leading to
common errors and quantifying the effectiveness of data diversity techniques remain
significant challenges. Furthermore, the cost implications of employing multi-version
software must be carefully considered, and selective application of design diversity

42 Background And State-Of-The-Art

to critical components can help mitigate development and production expenses. The
various fault-tolerance approaches explored, such as the Recovery Block Scheme, N-
Version Programming Scheme, N Self-Checking Programming Scheme, Consensus
Recovery Blocks Scheme, and t/(n-1)-Variant Programming Scheme, provide diverse
strategies to implement design diversity effectively in software fault tolerance.

2.6 Single-Design Software Fault Tolerance Approach

Single-design fault tolerance is a method that involves introducing redundancy to
a single version of the software in order to detect and recover from faults. In the
context of single-version software fault tolerance techniques, various factors need
to be considered, including program structure, error detection, exception handling,
checkpoint and restart, process pairs, and data diversity.

In terms of software engineering aspects, the use of modularizing techniques is
crucial for implementing fault tolerance effectively. Modular decomposition should
include built-in protections to prevent abnormal behavior from propagating to other
modules. Control hierarchy issues, such as visibility and connectivity, should also
be taken into account to minimize the risk of uncontrolled corruption of the system
state. Partitioning can provide isolation between functionally independent modules,
leading to simplified testing, easier maintenance, and lower propagation of side
effects. System closure, which states that no action is allowed unless explicitly
authorized, is another important principle of fault tolerance. Atomic actions, which
are activities in which components exclusively interact with each other without
any interaction with the rest of the system, offer error confinement and recovery
capabilities. If an atomic action terminates normally, its results are complete and
committed. If a failure occurs during an atomic action, it only affects the participating
components [88].

To ensure the effective application of fault tolerance techniques in single version
systems, structural modules should possess two basic properties: self-protection
and self-checking. Self-protection means that a component can detect errors in
the information passed to it by other interacting components. Self-checking means
that a component can detect internal errors and take appropriate actions to prevent
error propagation. The extent to which error detection mechanisms are used in a
design depends on the cost of additional redundancy and the run time overhead. It’s

2.6 Single-Design Software Fault Tolerance Approach 43

important to note that fault tolerance redundancy is not intended to contribute to
system functionality but rather to the quality of the product. Similarly, detection
mechanisms can affect system performance. The utilization of fault tolerance in
a design involves trade-offs between functionality, performance, complexity, and
safety.

Assertions, which are logical statements inserted at different points in a program
reflecting relationships between program variables, can also be used for fault toler-
ance. However, their effectiveness depends on the nature of the application and the
programmer’s ability. CFC involves partitioning the application program into basic
blocks (BBs) and computing deterministic signatures for each block. Faults can be
detected by comparing the run time signature with a precomputed one.

Replication checks involve matching components with error detection based on
the comparison of their outputs, making them suitable for multi-version software
fault tolerance. Timing checks are applicable to systems and modules with timing
constraints and can look for deviations from acceptable module behavior. Watchdog
timers, a type of timing check, can be used to monitor system behavior and detect
"lost or locked out" components. Reversal checks use the output of a module to
compute the corresponding inputs and detect errors if the computed inputs do not
match the actual inputs. Coding checks utilize redundancy in the representation
of information and check relationships between actual and redundant information
before and after operations. Reasonableness checks rely on semantic properties of
data, such as range, rate of change, and sequence, to detect errors. Data structural
checks involve inspecting known properties of data structures, such as number of
elements, links, and pointers. Augmenting data structures with redundant structural
data can enhance the effectiveness of structural checks. Runtime checks are standard
error detection mechanisms in hardware systems and can be used as fault detection
tools [87]. Fault trees, top-down graphical representations of failures and triggering
conditions can aid in the development of fault detection methods by identifying
failure classes and triggering conditions.

Exception handling involves interrupting normal operations to handle abnormal
responses. Exceptions are signaled by error detection mechanisms, and the design of
exception handlers requires consideration of possible triggering events, their effects
on the system, and appropriate recovery actions [87].

44 Background And State-Of-The-Art

Checkpoint and restart is a common recovery methodfor single-design software.
Most software faults that occur after development are unanticipated, state-dependent
faults. Restarting a module is usually sufficient to complete its execution successfully.
Restart recovery can be static or dynamic. Static restart returns the module to a pre-
determined state, while dynamic restart uses dynamically created checkpoints [87].

Process pairs utilize two identical versions of software running on separate
processors. The recovery methodis a checkpoint and restart. The primary processor
actively processes input and creates output while generating checkpoint information
for the backup processor. Upon error detection, the secondary processor loads the
last checkpoint and takes over the primary processor’s role. The faulty processor
goes offline for diagnostic checks. This technique ensures uninterrupted delivery of
services after a failure [87].

Data diversity is an effective defense methodagainst design faults, especially
when combined with checkpoint and restart methods. By implementing "input
sequence workarounds" and using different input re-expressions on each retry, data
diversity enhances the success rate of checkpoint and restart procedures. The desired
outcome of each retry is to generate output results that are either exactly the same or
semantically equivalent, although the definition of equivalence may vary depending
on the application. In [89], three fundamental data diversity models are presented:
(i) Input Data Re-Expression, which focuses on modifying the input; (ii) Input Re-
Expression with Post-Execution Adjustment, which involves processing the output
to achieve the desired value or format; and (iii) Re-Expression via Decomposition
and Recombination, where the input is broken down into smaller elements and then
recombined after processing to obtain the desired output. It is worth noting that data
diversity works hand in hand with the Process Pairs technique, allowing for different
re-expressions of the input in the primary and secondary.

In the context of operating systems, software fault tolerance is crucial to en-
sure the proper functioning of any application-level software. While designing and
building operating systems can be complex, time-consuming, and costly, it may
be necessary to develop custom operating systems with highly structured design
processes involving experienced programmers and advanced verification techniques
for safety-critical applications. Another approach to achieving fault tolerance in
operating systems for mission-critical applications is to use wrappers on off-the-shelf
operating systems to enhance their robustness against faults. However, utilizing

2.7 Hardware-Based Fault Tolerance Techniques 45

off-the-shelf software on dependable systems poses the challenge of ensuring the
reliability of the components for the intended application. It is known that the
development process for commercial off-the-shelf software lacks consideration for
safety or mission-critical standards, resulting in weak documentation for design
and validation activities. On the other hand, commercial operating systems of-
fer advantages such as incorporating the latest developments in operating system
technology and potentially having fewer bugs overall due to continuous bug-fixing
efforts driven by user complaints. In order to minimize the risk of introducing design
faults, it is preferable to adopt techniques that utilize the operating system as is,
without internal modifications. Wrappers serve as middleware between the operating
system and application software, monitoring the flow of information to prevent
undesirable values from propagating. By limiting the input and output spaces of a
component, wrappers provide application-transparent fault tolerance functionality.
In [90], wrappers referred to as "sentries" encapsulate operating system services
and can modify the characteristics of these services as perceived by the application
layer. Through wrappers, fault-tolerance methods can be dynamically assigned to
specific applications based on their individual needs in terms of fault tolerance, cost,
and performance. Authors proposed using wrappers at the micro-kernel level for
off-the-shelf operating systems, aiming to verify semantic consistency constraints
using abstractions or models of the expected component functionality.

In conclusion, Software based fault tolerance methods offer several advantages,
including the absence of additional auxiliary devices, no specific operating system re-
quirements, good expansibility, and support for continuous exploration and repeated
experiments. However, these methods come with significant time and space overhead
due to the inclusion of numerous redundant instructions, which can significantly
impact program performance.

2.7 Hardware-Based Fault Tolerance Techniques

Hardware-based techniques have two main groups: (i) redundancy-based and (ii) hard-
ware monitors. The first group relies on hardware or time redundancy. In contrast,
the second group adds special hardware modules to the system’s architecture to
monitor the control flow of the programs inside the processors and memory accesses
performed by them, such as watchdog processors [31], checkers [32], or infras-

46 Background And State-Of-The-Art

tructure intellectual properties (I-IP) [33]. Hardware-based techniques have a high
cost, verification and testing time, and area overhead, leading to a higher power
consumption.

2.7.1 Redundancy in Hardware-Based Fault Tolerance Tech-
niques

Hardware redundancy is the most common technique, which is the addition of extra
hardware components for detecting or tolerating faults [29, 91]. For example, instead
of using a single core/processor, more cores/processors can be exploited so that each
application is executed on each core/processor; then, the fault can be detected or
even corrected. Hardware redundancy can be applied through (i) passive, (ii) active,
and (iii) hybrid methods.

(i) Passive Redundancy

Examples of this redundancy are N Modular Redundancy (NMR), such as Triple
Modular Redundancy (TMR), and using voting techniques. These techniques are re-
ferred to as M-of-N systems, which means that the system consists of N components,
and the correct operation of this system is achieved when at least M components
correctly work. The TMR system is a 2-of-3 system with M = 2 and N = 3, which
is realized by three components performing the same action, and the result is voted
on [29, 91].

(ii) Active Redundancy

This type of active hardware redundancy includes duplication with comparison
(DWC), standby-sparing (SS), a pair-and-a-spare technique, and watchdog timers.
In DWC, two identical hardware components perform the exact computation in
parallel, and their output is compared. Therefore, the DWC technique can only
detect faults but cannot tolerate them because the faulty component cannot be
determined [29, 91]. In standby-sparing, one module is operational, and one or
more modules are standby or spares. If the fault is detected in the main component,
it will be omitted from the operation, and the spare component will continue the
execution [29, 91]. Meanwhile, pair-and-a-spare is a combination of DWC and SS
techniques. For instance, two modules are executed in parallel, and their results are
compared to detect the fault [29, 91].

2.8 Hybrid methods 47

(iii) Hybrid Redundancy

The basic concept of this method is integrating the main features of both active
and passive hardware redundancies. N modular redundancy with spare, sift-out
modular redundancy, self-purging redundancy, and triple duplex architecture are
examples of hybrid hardware redundancy [29, 91]. The basic concept of self-purging
is based on NMR with spare techniques. All modules are active and participate in
the function of the system. In sift-out modular redundancy, there are N identical
modules. However, they are configured in the system through special circuits
(comparators, detectors, and collectors). The triple duplex architecture combines the
DWC technique with TMR, which helps to detect the faulty module and remove it
from the system.

2.8 Hybrid methods

Hybrid fault-tolerance methods typically involve the integration of a Software Im-
plemented Hardware Fault Tolerance (SIHFT) method with a hardware module
designed to perform consistency checks within the processor. In a study by [92],
SIHFT techniques are combined with a Control Flow Checking (CFC) module,
which is responsible for monitoring the trace port of the processor. Another hybrid
approach, proposed by [40], is known as Hybrid Error-detection Technique using
Assertions (HETA). This method utilizes a watchdog module and assertions (or
signatures) to address control-flow errors.

Lockstep is another hybrid fault-tolerance technique that utilizes both software
and hardware redundancy for error detection and correction ([93], [94], [95], [96]).
Lockstep involves executing the same application simultaneously and symmetrically
in two identical processors. These processors are initialized to the same state and
receive identical inputs during system start-up. During normal operation, the state of
both processors should be identical at each clock cycle. By monitoring the proces-
sor’s data, addressing, and controlling buses ([97]), a checker module periodically
compares the outputs of the processors to check for inconsistencies. To enforce
verification, specific points are inserted in the program to indicate when the appli-
cation execution should be locked and the outputs compared. If any discrepancies
are found, the lockstep system leverages a rollback methodto restore the processors

48 Background And State-Of-The-Art

to a safe state. In the absence of errors, a checkpoint operation is performed, which
stores the context of the processor (including registers and main memory) in a secure
memory location. Memories can be protected using Error Correction Code (ECC)
to prevent data corruption. ECC is capable of detecting and correcting single-bit
errors and detecting double-bit errors. To recover from errors, the fault-free copy of
the processor’s context is retrieved from memory using the rollback method. The
processor is then recovered to a state without errors and restarts the application
execution from this point.

In summary, hybrid fault-tolerance methods combine software and hardware
approaches to enhance error detection and correction. One approach integrates Soft-
ware Implemented Hardware Fault Tolerance (SIHFT) with Control Flow Checking
(CFC) or Hybrid Error-detection Technique using Assertions (HETA) to monitor and
address control-flow errors. Another hybrid method, known as Lockstep, executes
applications in parallel on identical processors, comparing outputs and employing
rollback and checkpoint mechanisms to ensure system reliability and error recovery.
These hybrid approaches provide robust fault tolerance in critical systems.

Table 2.2 provides an overview of the classification of hardware-based, software-
based, and hybrid-based techniques.

2.9 Using the C language in automotive industry ap-
plications

C programming language is extensively utilized in the automotive industry due to
its flexibility, support, and portability, making it suitable for high-speed, low-level
input/output operations and complex applications that require high efficiency.

However, programming errors are relatively easy to make, and the language lacks
proper support for error detection, posing a potential danger to safety-critical systems.
Consequently, several constraints, such as the MISRA C guidelines [98], have been
developed, limiting the use of problematic language features. In addition, various
tools and techniques like static analysis tools, code reviews, and unit testings are
available to enhance the security of C codes. Nonetheless, C language’s weaknesses,
like incomplete type checking, lack of exception handling mechanisms, and limited

2.10 Functional Safety in the Automotive Industry 49

Table 2.2 Overview of the techniques classification. [4]

Technique Classification Pros Cons

Hardware -High fault detection
-Fast detection
-No software modification

-Most does not correct errors
-Mainly single fault model
-High area and power over-
head
-Implemented only in physical
level
-Can be expensive

Software -High fault detection
-High flexibility
-No hardware modification
-Small area overhead
-Some can correct errors

-High performance overhead
-Mainly single fault model
-Focuses only on data or con-
trol flow, but not both

Hybrid -High fault detection
-High efficiency
-Can achieve small area
overhead
-Some can detect both SDC
and SEFI
-Some can correct errors

-Can also achieve high perfor-
mance or area overhead
-Software and hardware modi-
fication

run-time error checking, increase the need to incorporate SIHFT to the code written
in C to guarantee safety even after eliminating programming defects.

2.10 Functional Safety in the Automotive Industry

In safety-critical embedded systems, ensuring adequate safety levels represents the
primary factor in the success of these systems. ISO 26262 is an international standard
for the functional safety of electrical and electronic systems titled “Road vehicles—
Functional safety.” It was released in 2011, and the current edition is the second one,
released in 2018 [24]. ISO 26262 was derived from the generic functional safety
standard IEC 61508 to address the specific needs of electrical and electronic systems,
and focuses on malfunctioning behaviors.

50 Background And State-Of-The-Art

The standard is divided into eleven parts, covering all activities during the safety
life cycle of safety-related systems, including electrical, electronic, and software
elements that provide safety-related functions. The process prescribed in ISO 26262
uses a top-down approach in which, first, hazard analysis is conducted to identify
potential hazards and system-level requirements. The most important parts related to
our paper are the third (concept phase), fifth (development at the hardware level),
and sixth (development at the software level).

The third is the “concept phase”, where the item is defined. From the definition,
it is possible to perform the hazard analysis and risk assessment needed to define the
risk level associated with its functionality (automotive safety integrated level, ASIL),
the safety goals (SGs) to be achieved, and its functional safety concept (FSC).

Based on the obtained SGs and their ASILs, actions that prevent the presence of
systematic failures or mitigate random hardware failures (RHFs) have to be taken
in phases five and six. The fifth one is about product development at the hardware
level. An essential result of this phase is the list of the possible failure modes (FMs)
that can affect the designed item and, in particular, its computation unit. A detailed
description of the application of the safety life cycle to semiconductors is given in
part 11 [24].

The design group develops embedded software in parallel to the hardware design.
It shall be developed by following part six of the standard to avoid the presence
of defects (also known as bugs) in the code (prevention against systematic errors).
The possibility of unavoidable RHFs shall be taken into account, hence the need to
implement hardening techniques such as CFC.

2.11 ISO26262-compliant classification

The ISO26262 standard, tailored for automotive applications, was initially released
in 2011 and subsequently updated in its second edition in 2018 [24]. This stan-
dard mandates the implementation of detection and mitigation systems capable of
responding effectively to Random Hardware Failures (RHFs). A critical aspect of
evaluating a design, outlined in Part 5 of the standard, titled "Product Development
at the Hardware Level," involves conducting Failure Mode, Effects, and Diagnostic
Analysis (FMEDA). Within this analysis, a key focus lies in ascertaining the de-

2.11 ISO26262-compliant classification 51

tectability of RHFs and evaluating the efficiency of adopted mitigation strategies.
For this reason, we concentrate solely on the detection mechanisms.

It is worth noting that failure modes associated with semiconductor components
are comprehensively described in Part 11 of the standard, titled "Guidelines on
the Application of ISO 26262 to Semiconductors," which was added in the second
update of the standard.

The central premise of this thesis is to assess, in accordance with ISO26262
guidelines, the effectiveness of CFC (Code Fault Coverage) algorithms implemented
in the C programming language for applications developed using Model-Based
System Development (MBSD). To achieve this objective, the process involves the
injection of faults followed by a classification of the outcomes.

The classification hinges on describing an application’s behavior through a
comparison of outputs with a fault-free execution (referred to as the "golden run"),
as well as analyzing the flow of the Program Counter (PC) register after a fault has
been introduced. Seven distinct outcomes have been defined:

• "Latent after injection": A fault is injected, and the behavior remains identical
to the fault-free run.

• "Erratic behavior": The behavior deviates from the fault-free run.

• "Infinite loop": The PC enters an infinite loop not present in the original
program flow, resulting from the interaction between the source code and the
faulty PC register.

• "Stuck at some instruction": The PC remains fixed, pointing to a valid instruc-
tion. This occurs when the injected fault impedes the PC from incrementing
its value, especially when the 3rd bit is involved.

• "(Detected) by SW hardening": Detection occurs through the CFC.

• "(Detected) by HW (mechanism)": The PC points outside the FLASH/RAM
addressing space or triggers other hardware traps.

• "As golden": Detection with an output identical to the golden run. This
classification differs from "Latent after injection" in that it signifies detection
of a fault that has no impact on the application’s output. Furthermore, four
additional outcomes are provided: "Latent," "Error," "Undefined," and

52 Background And State-Of-The-Art

• "False Positives." These outcomes do not directly relate to the application
itself but serve to monitor the classifier, with "False Positives" indicating flaws
in the CFC implementation.

The classification process is vital in determining Diagnostic Coverage (DC), as
defined by ISO26262, which categorizes detection as "detected" if an embedded
mechanism identifies the presence of the considered RHF, or "undetected" if not. In
the "detected" category, two subclasses are possible: "safe" when the RHF poses no
significant danger to the user or the environment, and simply "detected" when making
such an assumption is not feasible (as is the case in this paper, where mitigation
strategies are not considered).

Conversely, within the "undetected" class, two subclasses can be defined: "latent"
when the RHF has no effect on the item’s behavior and "residual." Additionally, a
third subclass, "false positive," not formally defined by ISO26262, is introduced
to describe instances where the detection mechanism is erroneously triggered. It’s
important to note that in an effective detection mechanism, the frequency of the
"false positive" subclass should ideally be 0%.

The ISO26262-compliant classifications are computed using the following for-
mulas, taking into account:

• N: The total number of injections.

• L: The number of "latent after injection" outcomes.

• DHW : The number of simulations where a hardware mechanism has detected
the RHF.

• DSW : The number of simulations where the RHF has been detected by the
CFC.

• U : The experiments in which the application entered an "infinite loop," re-
mained "stuck at some instruction," or exhibited an "erratic behavior." The
formulas are as follows:

Safe =
As golden

N

2.11 ISO26262-compliant classification 53

Detected

Latent
after

injection As golden

By SW
hardening

By HW
Stuck at some

instruction

Infinite Loop

Erratic
behavior

False positive

The transition from Latent to
False Positive is monitored

before the injection.

Unknown

Undetected

Allowed detection latency

Dangerous/
Residual

Problem with
Sim. system

Latent

Fig. 2.2 The classifier FSM. The transition from Latent after injection or any of the Danger-
ous/Residual group to a state of the Detected side is allowed only before the FTTI elapses.
The transition from the state (detected) by software hardening to the state As golden is
performed, when one last line of the log file has been read, only if the behavior of the
software components remains the same of the golden run for the entire log file.

Detected =
DHW +DSW

N

Latent =
L
N

Residual =
U
N

False positive =
false positive

N

It is important to consider the RHF as "detected," adhering to the concept of
the Fault Tolerance Time Interval (FTTI) outlined in the Standard, only if detection
occurs within a specific number of machine instructions. For all simulations in
this paper, this value has been set to 200 assembly instructions, as it allows for the
execution of multiple Basic Blocks (BB).

54 Background And State-Of-The-Art

2.12 A Note on Control-flow Integrity Techniques for
Soft Errors-security

Control-flow integrity (CFI) techniques are employed to ensure that a program func-
tions as intended without being affected by soft errors, which can arise from external
factors like radiation, power surges, or electromagnetic disturbances. These errors
have the potential to cause unintended consequences, such as data loss, diminished
system reliability, and even security breaches. [99] The primary purpose of CFI tech-
niques is to mitigate the risk of security breaches resulting from soft error-induced
deviations by implementing a set of rules on the program’s control-flow graph (CFG).
This graph represents the program’s control flow and the relationships between
its various components. These rules dictate the permissible execution paths and
prevent any unauthorized or malicious alterations to the control flow. One commonly
used CFI technique is "strict control-flow integrity" (SCFI), which enforces rules to
maintain the integrity of the program’s control-flow graph during execution. Any
attempt to deviate from this graph is detected and prevented, thus safeguarding the
program’s integrity. Additional CFI techniques include "shadow-stack-based CFI,"
"implicit CFI," and "hybrid CFI," each with its own specific rules and requirements.
Soft errors can affect the direct as well as indirect branches and hence CFI, as is, is
not directly applicable for soft errors. Though direct branches can also be protected
in a manner similar to dynamic branches, but the already high overhead (20%-60%
for dynamic branches only) would become prohibitive [100].

Synergy with CFC Methods:

CFI restricts execution paths: CFI constrains the program’s execution to au-
thorized paths within the CFG, mitigating the risk of control flow alterations by
malicious actors. This reduction in the attack surface enhances system security
against control flow deviations.

CFC methods detect deviations: CFC methods actively monitor the program’s
execution flow during runtime. In the event of a deviation, whether intentional
or due to soft errors, CFC can promptly detect it and trigger appropriate recovery
mechanisms, such as error logging or attempting to restore to a known good state.

Complementary Approaches:

2.12 A Note on Control-flow Integrity Techniques for Soft Errors-security 55

CFI and CFC methods complement each other in ensuring control flow integrity.
While CFI focuses on preventing unauthorized deviations, CFC diligently detects and
reacts to any deviations that may occur. This collaborative approach strengthens the
overall control flow security and reliability of the program, offering robust protection
against both intentional attacks and inadvertent soft errors.

In summary, CFI techniques serve as a set of measures to protect software
systems from security breaches caused by soft errors. By enforcing strict rules
on the program’s control-flow graph, these techniques can identify and thwart any
unauthorized or malicious changes to the program’s execution, thereby bolstering its
security and reliability.

2.12.1 Data integrity

Data integrity refers to the concept of ensuring that data remains accurate, consistent,
and reliable throughout its entire life cycle. In the context of soft error security, data
integrity becomes especially crucial in protecting against potential vulnerabilities and
risks posed by transient faults or soft errors. These errors can be caused by various
factors, such as cosmic radiation, electrical noise, or electromagnetic interference,
and can adversely impact the integrity of stored data. To mitigate such risks, data
integrity measures involve implementing error detection and correction techniques,
such as checksums and parity bits, to detect and correct any errors that may occur.

Maintaining data integrity is relatively straightforward in a standalone system
with a single database. This is achieved through the use of database constraints
and transactions, typically managed by a database management system (DBMS).
Transactions should adhere to the ACID principles (atomicity, consistency, isolation,
and durability) to ensure data integrity. Most databases support ACID transactions,
which aids in preserving data integrity. However, data integrity in cloud-based
systems refers to the preservation of data accuracy. It is crucial to ensure that data
remains unchanged and is not lost due to unauthorized user actions. Data integrity
forms the foundation for cloud computing services like Software as a service (SaaS),
Platform as a Service (PaaS), and Infrastructure as a Service (IaaS) [101]. In addition
to storing large volumes of data, cloud environments typically offer data processing
services. methods such as RAID-like methods and digital signatures can be employed
to maintain data integrity in cloud systems.

56 Background And State-Of-The-Art

Remote verification of data integrity in the cloud is a prerequisite for deploying
applications. Bowers et al. introduced the "Proofs of Retrievability" theoretical
framework, which combines error correction codes and spot-checking to facilitate
remote data integrity checks [102]. The High-Availability and Integrity Layer (HAIL)
system utilizes the Proofs of Retrievability (POR) method to verify data storage
across different clouds, ensuring redundancy of copies and enabling availability
and integrity checks [103]. Schiffman et al. proposed the use of Trusted Platform
Modules (TPM) for remote data integrity checks [104].

Due to numerous entities and access points in a cloud environment, authoriza-
tion plays a vital role in ensuring that only authorized entities interact with data.
By preventing unauthorized access, organizations can have greater confidence in
data integrity. Monitoring mechanisms provide increased visibility, enabling the
identification of any alterations made to data or system information that may affect
its integrity. While cloud computing providers are entrusted with maintaining data
integrity and accuracy, it is important to establish a third-party supervision method
alongside users and cloud service providers.

In summary, data integrity is paramount for safeguarding data accuracy and
consistency, particularly in the context of transient faults or soft errors. Techniques
like checksums and parity bits are used to detect and correct errors. While standalone
systems can ensure data integrity through database constraints and ACID trans-
actions, cloud-based systems require remote verification methods, such as Proofs
of Retrievability and Trusted Platform Modules, to maintain data accuracy across
various access points. Authorization and monitoring mechanisms also play crucial
roles in preserving data integrity in the cloud, requiring collaboration among users,
providers, and third-party oversight for effective security.

Chapter 3

Experiment Prerequisites

This chapter introduces a fault model, as CFCs are capable of detecting only those
fault models (FMs) that directly or indirectly modify the instruction flow. Our
focus was specifically on fault models affecting the Program Counter (PC). We then
applied a software-based hardening technique to address these fault models. To
investigate the effectiveness of this approach, we manually implemented two CFC
techniques within the C listing of two benchmark applications. These benchmarks
were generated automatically using Simulink Coder, based on the Model-Based
System Development (MBSD) methodology. This allowed us to compare the process
of implementing CFC methods in high-level programming with the conventional
approach of implementing CFC techniques in assembly language. However, it’s
important to note that the latter approach can be significantly more time-consuming
and prone to errors.

3.1 Fault models

In the context of this study, since CFCs can detect only fault models (FMs) directly
or indirectly modify the instructions flow, we considered only those affecting the
Program Counter (PC). We chose to inject faults into the PC register since it directly
affects the instructions flow. Considering the scope of CFCs, we know without any
need for simulation results that failures affecting data or making the program follow
a wrong but legal (present in the CFG) path are not detected. For example, choosing

58 Experiment Prerequisites

a wrong path on conditional assertion (e.g., if-else) due to corruption on the variable
to which the condition will be applied cannot be detected.

The Fault Injection Manager (FIM) described in [105] mentioned above features
two fault models: (i) "Permanent" and (ii) "PermanentStuckAt". "Permanent" affects
only one bit of the target register. It remains, from the injection time on, fixed to 0 or
1. The "PermanentStuckAt" affects the entire register globally, making it stuck to a
fixed value.

For the simulation campaigns, we decided to use only the "Permanent" fault
representing, coherently with the definition commonly found in literature, a condition
when a bit inside the affected register remains permanently stuck at 0 or 1 from the
moment of injection till the end of the simulation. Injection time, the affected bit,
and its state are randomly chosen. To increase injection efficiency, it is possible
to choose a subset of bits that can be affected thanks to a bitmask, allowing to
avoid injection on higher positions, causing the PC immediately to move outside
the "text segment size," triggering hardware failure detection mechanisms. The
positions that can be affected by the fault are indicated by the bits set to 1 of a bit
field called bitPosMaks. This mask will be clearly indicated for each campaign
in the simulation results.

3.2 Implemented Software-Based Hardening Tech-
nique

Usually, CFC techniques are implemented in assembly language, which can be
time-consuming and error-prone. Moreover, international standards like ISO26262
prescribe that code should be written in a structured manner using high-level pro-
gramming languages, with minimal exceptions. Therefore, we decided to harden the
code by implementing CFC methods in the C programming language.

The two CFC techniques were manually implemented in C and directly on the
Model-Based System Development (MBSD) listing of the two benchmarks. These
benchmarks were generated using Simulink Coder, which is based on the MBSD
approach.

3.2 Implemented Software-Based Hardening Technique 59

Simulink also provides the capability for code generation starting from models
through the use of Embedded Coder. This process facilitates the generation of
C, C++, optimized MEX functions, and HDL code. Simulink includes the Target
Language Compiler tool (TLC), allowing developers to customize the generated
code to suit the target platform based on any model. TLC is used for converting the
model into C code.

For CFC methods, maintaining the instruction order is crucial to allow the correct
signature update. If the update is based on arithmetic computations, the compiler
might merge all the partial sums to obtain the correct numerical results before the
correctness verification. These optimizations can affect the detection capabilities of
the CFC method. To investigate this possibility, we designed experiments with each
of the four optimization levels (O0, O1, O2, and O3) offered by GCC for RISC-V,
implementing CFC methods manually in the C programming language.

The first benchmark is a Finite State Machine (FSM) that implements a timeline
scheduler (TS). A timeline scheduler is responsible for executing periodic tasks
triggered by a timer interrupt. These tasks are executed in a fixed order defined by
the system designer. In our benchmark, we have 15 tasks that are scheduled to run in
a fixed order, each allocated a 200 ms time slot.

The second benchmark is a software-based controller designed to maintain the
liquid level in a tank at a desired height using an on-off logic (T). It monitors the
liquid level within the tank and the current absorbed by the pumps. Based on this
data, it decides when to activate the pump and generates an alarm if over-current
is detected. In such cases, it shuts down the pump to prevent motor damage. This
controller is implemented as an FSM and includes decision logic and an independent
monitoring checker to ensure the physical plant executes the commands correctly.

We selected these two benchmarks as they are representative of applications
similar to those in the automotive industry, which cannot be used due to intellectual
property protection reasons. The first benchmark, referred to as "TS," is essential for
implementing any operating system that handles periodic tasks. The latter, referred to
as "T," is commonly found in industrial applications and is analogous to algorithms
that control battery charge levels in electric and hybrid vehicles within the automotive
domain.

60 Experiment Prerequisites

Figure 3.1 and Figure 3.2 illustrates the model-based development process,
indicating when the CFC methods were applied in the high-level programming
language, as per our proposed approach.

Simulink
Stateflow .c .h .c .h

Vanilla source code Manually Hardened
Source code

Embedded
coder

CFC hardening

Fig. 3.1 Indication, inside the model-based flow, indicating when the CFC is applied using
high-level programming languages. The source code is obtained automatically via the
Mathworks Embedded Coder from a Simulink semi-formal model, then the obtained source
code is manually hardened.

We chose YACCA and RACFED due to their different underlying philosophies
(bit mask vs. random numbers, inter-block vs. intra-block detection capabilities).
YACCA was selected for its simplicity of implementation, while RACFED was
chosen because it represents one of the most recent approaches in this context.

3.2.1 YACCA

We adopted the methods described in [81] and [38], where YACCA was proposed
as a software-implemented RHF detection mechanism suitable for safety-critical
applications.

The program has been divided, into BBs. A vertex in the CFG represents one BB.
Each one of the vertices are associated two different random numbers (signatures)
embedded into the C code at compile-time. The first signatures represent the ID
of the BB, while the second one is the mask of its predecessors. Since signatures
have been assigned to each BB at compile-time, it is possible to compute them
independently at run-time and then compare the latter with the assigned one. In this
case, the algorithm makes use of two variables: ERR_CODE and IDs. A unique ID
corresponding to a power of 2 (to have only 1-bit, assigns 1 in binary representation)
is assigned to each BB. At the program start-up, ERR_CODE is set to equal 0, and
IDs is equal to the ID of the first BB that will be executed. When the program enters
a BB, it checks if the content of IDs is equal to the ID of the current BB. If this

3.2 Implemented Software-Based Hardening Technique 61

Fig. 3.2 Model-based approach for implementing the CFC methods. The benchmarks are
obtained by hardened them in the model, then generating the source code automatically
thanks to the Embedded Coder.

condition is not verified, the ERR_CODE variable is increased by 1. When the BB
ends, before jumping to the next BB, it resets the IDs content by performing an AND
operation between IDs itself and a mask corresponding to the bit-wise NOT of its ID,
then OR it with the ID of its legal successor. If the program flow is correct, the first
comparison is verified, so ERR_CODE remains 0. Then IDs is set to all zeros by the
AND operation (if IDs is the correct one, the bit-wise NOT of the current state ID is
also the bit-wise NOT of IDs, hence IDs NOT ID = 0) and can be set to the ID of its
legal successor by the OR operation. In the case a CFE happens, the AND followed
by the OR operations sets two different bits to 1, so none of the BBs can successfully
pass the comparison between IDs and its ID, causing ERR_CODE to increase.

YACCA Functions or macros needed in C language:

YACCA uses the following TEST and SET operations to check and update the
control flow signatures:

62 Experiment Prerequisites

Algorithm 1 TEST operation (YACCA)
1: TEST(RT S, predecessors_mask)
2: if RT S∧ (¬ predecessors_mask) then

CFE detected
end

3: Continue normal execution

Algorithm 2 Set operation (YACCA)
1: SET(RT S, predecessors_mask,BB_ID)
2: RT S = RT S∧¬predecessors_mask
3: RT S = RT S∨ (1 << BB_ID)

The TEST function checks if the runtime signature (RTS) matches the expected
signature based on the predecessors’ mask. A mismatch indicates a control flow
error. The SET operation updates the RTS to reflect the execution of a basic block
(BB), identified by BB_ID.

3.2.2 RACFED

Another technique we opted to implement in our benchmark is RACFED [45].
RACFED was developed based on Random Additive Signature Monitoring (RASM)
technique [43] to detect both inter-block and intra-block CFEs. RASM is a signature
monitoring technique that uses two gradual signature updates and one signature
verification per BB. Using gradual updates means that all updates on a specific,
intentional path are linked together, acting as one update. Skipping one gradual
update implies that the run-time signature can never hold the correct value again.
Of course, compiler optimization can also affect these gradual signature updates,
making it act as a single update in the compiled application. However, RACFED
extends this functionality by inserting gradual signature updates after each instruction
inside the run time signature (RTS) variable.

Below its implementation steps will be discussed in detail.

1. Firstly, for each BB there are two signatures needed at compile time compile
time signature (CTS) and subRanPrevVal. The CTS is a random
number defining the expected signature value. In the case that there are more
than two payload instructions inside the considered BB, a random number is

3.2 Implemented Software-Based Hardening Technique 63

assigned for each payload instruction. subRanPrevVal is the sum of all
the chosen compile time random numbers previously assigned to the payload
instructions. It should be noticed that subRanPrevVal is equal to zero if
BB has less than two instructions.

2. Consider now the execution of a BB after the signature check (see Figure 3.3
for an example). After each payload instruction is executed, run time
signature (RTS) is increased by the random value assigned in the previ-
ous step to each payload instruction. This process allows for the detection of
intra-block CFEs.

3. Next, at the end of the considered BB (all payload instructions have been
executed), an adjustment value is computed as the sum of its CTS
and the sum of all the random numbers assigned to its payload instructions
(numerically equal to subRanPrevVal but independently computed at run
time), then by subtracting the CTS and subRanPrevVal of its successor
BB. At the end of considered BB, the RTS is increased by the yet computed
adjustment value (starting the two-phases RTS update).

4. Finally, RTS is updated at the beginning of the successor BB, (concluding the
two-phases RTS update) by subtracting the subRanPrevVal of its prede-
cessor. At this point RTS shall equal CTS. If not, CFEs happened, otherwise
CTS equals RTS and the process repeats from step 2.

RACFED Functions or macros needed in C language:

RACFED uses random numbers to update and check the RTS, providing more
granular intra-block detection:

Algorithm 3 TEST operation (RACFED). bb represents the ID of the BB which is
calling TEST(). RTS is an array containing the compile-time signature of every BB.

1: TEST(bb)
2: if RT S ̸=CT S[bb] then

CFE detected
end

3: Continue normal execution

Here, CTS is an array containing compile-time signatures for each BB.

64 Experiment Prerequisites

To simplify the implementation of the algorithm, considering that each state
of our FSMs contain a branch instruction, and that the branches have a different
number of C code statements (in this specific case, 4 and 1, respectively), we decided
to choose random numbers such that the sum is the same regardless the chosen
branch. The reader can find the branch instruction at line 162 of Figure 3.3, where it
is possible to see that the sums in both the execution paths are the same: the sum
obtained by executing the statements at lines 165, 169, and 173 (respectively adding
25, 35, and 67 to the signature) is the same as executing the statement at line 177,
which adds 25+35+67=127.

Figure 3.3 illustrates the mapping between signature update instructions written
in C and their corresponding assembly instructions (RISC-V RV32I). The left side
of the figure shows the C code, where runtime signature updates are performed. The
right side displays the assembly translation generated by the GCC compiler with
optimization level O0. The arrows highlight the correspondence between specific
instructions in C and their assembly counterparts, demonstrating that the compiler
preserves the order of instructions as intended. This ensures the integrity of the CFC
techniques implemented in the C code.

Fig. 3.3 Mapping between the signature updates instructions in C and the relative Assembly
(RISC-V RV32I) translation. It is possible to see that GCC, configured with O0 optimization
settings, keeps the instructions in order.

3.2 Implemented Software-Based Hardening Technique 65

Appendix A presents a set of guidelines for implementing CFC methods in our
case study YACCA and RACFED using the C programming language.

3.2.3 Experimentation with Compiler Optimizations

To verify whether the hardened code is correctly translated into assembly, we first
compiled the code of a BB hardened with RACFED with no optimizations and
investigated the obtained assembly code. This step ensured that the compiler did
not alter the order of instructions. The results of these experiments are discussed in
chapter 4.

Additionally, we compiled the code of a BB hardened with RACFED with
optimizations to verify if the compiler impacts RACFED’s effectiveness by filtering
out its instructions. The results of these experiments are also discussed in chapter 4.

Chapter 4

Experimental Study on CFC
Detection Techniques

This chapter presents the simulation results obtained and provides an overview of
the selected RISC-V environment. The benchmark application runs on a RISC-V-
based target platform, enabling the assessment of the performance of the hardening
techniques. Additionally, it delves into the results of fault injection, diagnostic
coverage, and overhead analysis for both CFC methods. These analyses consider
different optimization levels for manual hardening in the C programming language
and no optimization levels for the Model-Based Software Development (MBSD)
approach.

4.1 Target platform

The target platform on which we run the benchmark application is based on RISC-V.
It is a free and open Instruction Set Architecture (ISA) introduced by the University of
California, Berkeley [106]. RISC-V is based on Reduced Instruction Set Computing
(RISC) theory to decrease hardware implementation costs, improve performance,
and simplify instruction specifications. Developers can take advantage of RISC-V to
modify the architecture to suit specific applications or to remain open to applications
made by programmers unaware of the underlying hardware. It allows developers to
combine the advantages of both worlds [107], providing flexibility to both hardware

4.2 Hardening technique performance assessment 67

Fa
ul

t i
nj

ec
tio

n

D
at

a
re

tri
ev

al

Fault
Injection
Manager

+

-

|o-o’| ≤ 𝜀

|o-o’| > 𝜀
FAIL

PASS

Source
Code

.elf

GDB

CMDSettings

Golden
Run
Logs

Fault-
affected
Runs
Logs o’

o

C
la

ss
ifi

er

Fig. 4.1 The proposed test bench architecture. GCC compiles also the classifier, whose
source code is generated by the FIM.

and software. The benchmark applications considered in this thesis were compiled
using the GNU RISC-V Toolchain [108].

As the target platform, as described in [105], we choose RISC-V RV32I, simu-
lated at the ISA level thanks to the QEMU (Quick Emulator) [109].

QEMU is an open-source machine emulator and virtualizer written by Fabrice
Bellard. Most parts are licensed under GNU General Public License (GPL), others
under different GPL-compatible licenses. The main reason QEMU was used in our
proposal is to make the test bench agnostic to ISAs, allowing for application on
different architectures.

The GNU DeBugger (GDB) [110] is used to interact with QEMU. The fault
injection is managed by a Fault Injection Manager that writes the GDB scripts needed
to inject the faults and log the simulation results. The classifier uses these results to
assess the fault injection results.

4.2 Hardening technique performance assessment

As described in section chapter 3, the source codes were generated directly from
the Simulink StateFlow chart via the Embedded Coder and then were hardened
manually.

68 Experimental Study on CFC Detection Techniques

To verify whether the hardened code is correctly translated in Assembly, the code
of a BB hardened with RACFED was compiled with no optimizations (of course,
with the O0 optimization flag of GCC). In Figure Figure 3.3, it is possible to verify
that the compiler with the aforementioned settings did not change the order of the
instructions.

When the benchmarks are compiled with optimization flags enabled, the execu-
tion time overhead decreases. Still, as expected, this reduction in execution time
overhead is counterbalanced by a reduction in error detection.

In addition to the compilation process, compiler optimizations can also affect
RACFED. To verify if the compiler impacts RACFED effectiveness by filtering
out its instructions, the code of a BB hardened with RACFED was compiled with
optimizations. We found that the compiler filters out the mechanism’s operation and
makes it less effective, as better described in the following sections.

Before starting with the fault injections, a golden execution was performed for
each campaign. A golden execution runs when the target system is simulated without
injecting any faults. It is needed to obtain a log file representing the benchmark
applications’ nominal behaviors and gather information on the target system and the
simulator’s state. Moreover, it is a way to guarantee no false positive detections.

4.3 Fault injection results

In the initial phase, we need to articulate the simulation results in terms of "de-
tected," signifying whether an embedded mechanism can discern the presence of the
considered Random Hardware Fault (RHF), or "undetected" if not.

Within the "detected" category, we can further categorize it into two subgroups:

• "Safe," where it can be reasonably assumed that the RHF does not pose
significant risks to the user or the surrounding environment.

• "Detected," for situations where making such an assumption is not feasible.
This is particularly relevant in our context, as we do not consider mitigation
strategies in this paper.

Similarly, in the "undetected" category, we establish two subcategories:

4.4 C programming language Fault injection results 69

• "Latent," when the RHF does not affect the item’s behavior.

• "Residual," encompassing situations where the RHF does impact the item’s
behavior.

To enhance the clarity of our analysis, we introduce a third subclass, "false
positive," which is not formally defined by ISO 26262. This subclass helps quantify
the likelihood of the detection mechanism erroneously triggering. Notably, in the
case of a robust detection mechanism, the occurrence of this subclass should be
minimal, ideally 0

The outcomes expressed in these ISO 26262-compliant terms are tabulated in
Table 4.5. This table sets the stage for the subsequent step, which involves computing
the Diagnostic Coverage (DC).

Within our definition of "detected," we include:

• All faults that resulted in detection by the software.

• Those faults that led to a timeout following the last SET instruction, mimicking
the behavior of a windowed watchdog.

• The fault detected by the hardware, where the Program Counter (PC) points
beyond the boundaries of the instruction memory.

These delineations are essential for a comprehensive evaluation of the diagnostic
coverage.

4.4 C programming language Fault injection results

We conducted 13 campaigns, each one of 1000 injections of "Permanent" faults
affecting the Program Counter (PC) of the target. There needs to be more than
this number of injections to provide statistical results, but the CFC methods have
already been proven effective in the literature. The purpose of this work is not to
assess their effectiveness again but to provide data about the Diagnostic Coverage to
application developers in a realistic scenario, taking into account also the effect of
the optimization introduced by the compilers.
The 13 campaigns are organized as follows:

70 Experimental Study on CFC Detection Techniques

• 7 campaigns with O0 optimizations

– 5 have been performed on the timeline scheduler (TS) benchmark;

– 2 on the Tank level controller (T).

• Moreover, other 6 campaigns have been conducted on the TS benchmark:

– 3 for the TS hardened with YACCA;

– 3 for the TS hardened with RACFED.

Each campaign has been performed by compiling the application with the
remaining 3 optimization levels (O1, O2, and O3), obtaining all the possible
combinations.

In all the campaigns, the injected "Permanent" faults are of the stuck-at type,
described as one of the bits composing the registers remaining stuck at 0 or 1 from
the moment of the injection up to the end of the simulation. When injecting stuck-at
faults on the PC, the expectation of an unwanted instruction only happens if the
stuck-at fault changes the PC value. Since the PC is 32-bit long, injecting a stuck-at
fault on its most significant bits will lead to a considerable jump in the instruction
memory. It is noteworthy that all the stuck-at faults were injected in random positions
of the PC bits at random times.

The same faults have been injected on both YACCA and RACFED. Considering
the campaigns with O1, O2, and O3 optimization levels, we injected faults only on
TS since the T benchmark seemed unsuitable to be hardened with CFC (very low
detection rate).

The results obtained from the classifier for YACCA and RACFED are available
in Table 4.1. In both tables, columns show the benchmarks on cumulative results
which the fault injection campaign was conducted for different random fault injection
masks. TS stands for the timeline scheduler benchmark, and T stands for the tank
level controller benchmark. In each row, the number of occurrences of 5 different
outcomes is reported.

Analyzing the experimental results where the CFC is not able to detect the
failures (rows for "infinite loop" or "Stuck at some instructions"), it is possible to
observe a known limitation of the selected CFC methods. Since the application and
the CFC code are executed on the same computation unit, no detection is possible

4.4 C programming language Fault injection results 71

Table 4.1 Cumulative classifier results obtained from the 7 fault injection campaigns evaluat-
ing the YACCA and RACFED methods without compiler optimizations, manually imple-
mented directly in C code, on benchmarks. The "As Golden", "False Positive", "Undefined",
and "Error" results are all zero for all columns, so they are not reported in the table.

YACCA RACFED
Classification results TS Benchmark T benchmark TS benchmark T benchmark
Latent after injection 226 883 230 945

Erratic behavior 0 29 0 0
Infinite loop or Stuck at some instruction 408 20 1066 0

(Detected) by SW hardening + Safe 253 66 255 52
(Detected) by HW mechanism 1063 2 1449 3

if the error prevents the CFC test instructions from executing. ISO26262 indicates
these cases as "not free from interference" since the same cause can affect both the
benchmark and the CFC code.

In Table Table 4.1, there is no "Infinite loop" or "Stuck at some instruction" out-
comes for the T benchmark with hardening with RACFED. This observation, along-
side the very high rate of "Latent after the injection" outcomes for the TS benchmark,
shows how much the effectiveness of the hardening method is application-dependent.
Suppose no decisions (and hence transitions between BBs) are performed in the time
window between the injection and the end of the simulation. In that case, the injected
faults remain latent due to the impossibility of executing the CFC’s test instructions.
In the case of sufficient spare execution time, a possible proposal to solve this issue
can be to add a dummy control flow to check if the computation unit is working
correctly. This solution can be adopted when an online test is unavailable for the
target platform, or the application should not depend on any specific platform for
commercial or intellectual property protection reasons.

The detailed experimental results for the campaigns are reported in Table Ta-
ble 4.1 for the experiments without almost all compiler optimizations (O0), and in
Table Table 4.2 and Table Table 4.3 for the three levels of optimization.

4.4.1 Diagnostic coverage

The results shown in Section section 4.3 were transposed into ISO 26262-compliant
classifications, which requires computing the Diagnostic Coverage (DC) of the pro-

72 Experimental Study on CFC Detection Techniques

Table 4.2 Classifier results obtained from the fault injection campaign assessing the YACCA
implemented manually directly within the C code on TS benchmark with different compiler
optimizations. "As golden", "False positive", "Undefined", and "Error" outcomes are all zero
for all the columns, so they are not reported in the table.

Classification results O0 O1 O2 O3
Latent after injection 110 393 433 521
Erratic behavior 0 0 0 0
Infinite loop or Stuck at some instruction 266 0 0 0
(Detected) by SW hardening + Safe 112+0 266 + 0 118+0 132+0
(Detected) by HW mechanism 512 341 449 347

Table 4.3 Classifier results obtained from the fault injection campaign assessing the RACFED
implemented manually directly within the C code on TS benchmark with different compiler
optimizations. "As golden", "False positive", "Undefined", and "Error" outcomes are all zero
for all the columns, so they are not reported in the table.

Classification results O0 O1 O2 O3
Latent after injection 86 229 181 199
Erratic behavior 0 0 0 0
Infinite loop or Stuck at some instruction 385 0 266 0
(Detected) by SW hardening + Safe 93+0 183 + 0 129+7 156+0
(Detected) by HW mechanism 436 558 673 561

posed CFC methods. The obtained results are presented in Table 4.5 and Table 4.5.
It is important to remark that the "Detected" column is calculated by taking into ac-
count both hardware and software-detected failures; hence, in the following analysis,
this sum is considered. More specifically, the "Detected" column in Table 4.5 is the
sum of the last two rows of Table Table 4.1 for YACCA and RACFED methods.

We can observe no "safe" detected failures for the TS benchmark, while the
"safe" detected failures are predominant for the T benchmark. The state in the
Time scheduler (TS) benchmark FSM is changed continuously. Since the FSM is
implemented by switch-case structures, every time the state is updated, the BBs
are changed accordingly. On the other hand, the states of the Tank level Controller (T)
benchmark FSM are changed only in reaction to input changes. However, considering

4.4 C programming language Fault injection results 73

the tank level inertia with respect to its controller update time (10 milliseconds), the
controller usually keeps the current state, avoiding BB changes.

Table 4.5 considers the codes compiled with no optimizations (O0). Starting
with YACCA, its DC for TS benchmark is 67.49% and for T benchmark is 2.80%. It
is important to note that YACCA does not feature intra-block detection mechanisms,
so skipping only one instruction results in a high probability of remaining unnoticed.

As shown in Table Table 4.4, hardening the TS benchmark and T benchmark
with RACFED, its DC respectively 56.80% and 0.3%. This observation is due to the
fact that RACFED features intra-block detection mechanisms.

Considering the "Undetected failures" in Table 4.4, there are 11.0% and 88.30%
of "latent" undetected failures for the hardening TS benchmark and T benchmark
hardening with YACCA, respectively. The "latent" undetected failures for hardening
benchmarks with RACFED are 8.60% for TS benchmark and 94.50% for the T
benchmark. This outcome can be explained considering that the fault injection can
affect a higher significant bit. If the affected bit is stuck at a value equal to the
expected one, the PC is the same as expected. Hence the fault does not affect the
code execution. For the T benchmark, the number of "latent" undetected failures
is greater in comparison to TS benchmark since it changes states less frequently
compared to the TS benchmark, so a situation where its output remains stuck can
remain unnoticed for a longer time.

The "Residual" undetected failures for the TS benchmark hardening with YACCA
for TS benchmark is 20.92% and for T benchmark is 4.90% and using RACFED and
from 38.5% and 0.0% for TS and T benchmarks. These failures are not detectable
by the CFC itself but can be detected as timeout errors thanks to external hardware
components like watchdogs. Considering the T benchmark, this case is rare: 4.9%
occurrences for YACCA and 0.0% for RACFED.

In conclusion, considering Tables Table 4.1 as observed in the rows titled "De-
tected by SW hardening + safe," the CFC methods can increase the system DC by an
average of 15,65% in a realistic scenario. These results may not appear impressive.
However, considering that these SIHFT methods should be employed alongside
other hardening methods like watchdogs and memory error detection and correction,
they can be useful to reach a high diagnostic rate (usually ≥ 99%) required by the
Standard.

74 Experimental Study on CFC Detection Techniques

Table 4.2 and Table 4.3 show results with different compiler optimizations
obtained on the TS benchmark, Table 4.5 the obtained DCs, and finally Table 4.6 the
corresponding overheads.

Starting from the results in Table 4.2, the diagnostic coverage (SW only) for
YACCA is the best at O1, while the DC is similar for O0 and O2, with O2 being
slightly better than O0. Overall with all three different compiler optimizations, the
DC is improved compared to the case where no compiler optimizations were used
(O0). This can be explained, considering that YACCA does not feature intra-block
detection. Hence the code will be shorter in each optimization, and the probability
that the failure inside the PC triggers a detectable CFE increases. Moreover, the
transition between BBs is due to transitions inside the application algorithm, so the
optimization cannot strongly affect them.

A similar story can be seen in Table Table 4.3 for RACFED, which also features
intra-block detection capability. From O0 to O1, the detections by software increased
from 93 to 183. The same pattern, even if less evident, is observed from O2 (136) to
O3 (156). To explain this phenomenon, we analyzed the generated Assembly code.
Between O0 and O1, the intra-block signature update instructions are almost kept in
the correct order, but the occupied program memory is shrunken (causing the CFC
test function calls to be closest to each other) of about 20%. Similar to YACCA,
this leads to an increase in the probability that the failure causes a detectable CFE.
Repeating the analysis for O2 and O3, we observed that the intra-block updates are
merged, completely losing the intra-block detection offered by RACFED. But again,
shrunken occupied program memory section increases the probability of a detectable
CFE between O2 and O3.

In Table Table 4.5 the DCs for different compiler optimizations are reported. We
can observe that, for YACCA, the DC decreases as the optimization levels increase
(shortened code counterbalances Detected with the Undetected ones). While
for RACFED, the results are less intuitive. From O0 to O1, the DC increases by
about 24% as the occupied program memory is shrunken by about 20%. The DC for
O2 and O3 remains approximately the same as the O1 optimizations.

For RACFED, all compiler optimizations result in zero "residual undetected"
failures. This means that all undetected failures are "latent." Hence, no wrong
program execution is expected due to the fact that the failure is either detected or
is a latent undetected that does not change the behavior of the program. However,

4.4 C programming language Fault injection results 75

for YACCA, all compiler optimizations result in zero "residual undetected" failures
except the O2 optimization.

It is essential to highlight that, under the hypothesis of a multi-core system
or external hardware (like companion chips or dedicated custom peripherals for
CFC), two HW mechanisms can aid the detection of these failures: (i) a trap raised
when the injected fault results in the PC pointing outside the program memory to
a non-valid memory address. (ii) the injected fault results in the PC pointing to a
valid but undesirable memory address. This can be explained by considering the
differences in the program memory size for the two benchmarks. The occupied
program memory is composed of 9012 instructions for the T benchmark and only
1736 instructions for the TS benchmark. Since the number of instructions for the T
benchmark is almost five times the number of instructions for the TS benchmark, and
the probability of finding jump/branch instructions increases when the number of
instructions increases, the likelihood of the occurrence of case (ii) increases for the
T benchmark compared to the TS benchmark. For the same reason, the probability
of case (i) decreases for the T benchmark.

In conclusion, YACCA and RACFED, two different CFC methods, react similarly
to the compiler optimizations: for both, the number of "detected" by only software is
better with O1 optimization, then O2 and O0 are similar, while O3 performs better
compared to O2. The "Residual Undetected" failures, with O0 optimization, are
relatively high (26.6% for YACCA, 38.50% for RACFED). Then, the "Residual
Undetected" failures for all compiler optimizations are zero, except for the O2
optimization with YACCA, which is equal to the case of no compiler optimization.
The "latent undetected" failure for YACCA increases with the optimization level,
with a huge step between O0 and O1, explainable as the occupied program memory
is reduced to half of its size, leading to freeing one bit of the PC to be used for
representing a valid instruction address. At the same time, for RACFED, we have
8.6% for O0 and about 20% for the optimized versions.

4.4.2 Overheads

There are two types of overheads considered in this work: (i) the increases in
Text Segment Size (TSS), which shows the increase in the size of the occupied
program memory due to the CFC instructions added to the program instructions

76 Experimental Study on CFC Detection Techniques

Table 4.4 ISO 26262-compliant classification of the cumulative results obtained from the
fault injection campaigns on the benchmarks compiled with almost no optimization (O0).

Detected Undetected False Pos.
CFC method Benchmark Safe Detected Latent Residual

YACCA TS 0.00% 67.49% 11.59% 20.92% 0.00%
YACCA T 4.00% 2.80% 88.30% 4.90% 0.00%

RACFED TS 0.00% 56.80% 7.67% 35.53% 0.00%
RACFED T 5.2% 0.3% 94.50% 0.00% 0.00%

Table 4.5 ISO 26262-compliant classification of the results obtained from the fault injection
campaigns on the TS benchmark compiled with different compiler optimization levels. The
results obtained with almost no optimizations (O0) are also reported for ease of reading.

Detected Undetected False Pos.
CFC method Compiler Optimization Safe Detected Latent Residual

YACCA O0 0.00% 62.40% 11.00% 26.60% 0.00%
YACCA O1 0.00% 60.70% 39.30% 0.00% 0.00%
YACCA O2 0.00% 56.70% 43.30% 26.60% 0.00%
YACCA O3 0.00% 47.90% 52.10% 0.00% 0.00%

RACFED O0 0.00% 52.90% 8.60% 38.50% 0.00%
RACFED O1 0.00% 77.10% 22.90% 0.00% 0.00%
RACFED O2 0.71% 81.01% 18.28% 0.00% 0.00%
RACFED O3 0.00% 78.28% 21.72% 0.00% 0.00%

after compiling the hardened program. This leads to requiring more space in the
flash memory of the embedded system. (ii) Execution time overhead, measured,
given the ISA-level simulation adopted to run the campaigns, as the extra number of
machine instructions (# exec. instr.) it takes for the hardened program to execute.
The overhead has been computed with respect to the non-optimized version without
the hardening.

Considering both overheads is essential for embedded applications. The concerns
are the code size for applications running on low-cost micro-controllers with a
minimal amount of embedded flash memory and the number of executed instructions
(as a figure of the execution time) for real-time applications.

Table Table 4.6 reports the overhead on the program memory represented as
"TSS" and the overhead on executed instructions represented as "# exec. instr." The

4.4 C programming language Fault injection results 77

Table 4.6 Data regarding memory occupation and executed instruction.T = Tank Level, TS =
Timeline Scheduler, and TSS = Text Segment Size. Vanilla refers to the application that is
not hardened from its original form. For TS, are reported the overheads with the different
optimization levels. All the differences are computed in comparison to the Vanilla version
compiled with almost no optimizations (O0).

CFC method Benchmark Compiler Optimization TSS Overhead # exec. instr. Overhead
Vanilla T O0 9012 42593
YACCA T O0 10512 (+16.6%) 44668 (+4.9%)

RACFED T O0 10966 (+21.7%) 43864 (+3.0%)
Vanilla TS O0 1736 3991
YACCA TS O0 2496 (+43.8%) 16689 (+318.17%)
YACCA TS O1 1620 (-6.68%) 8761 (+119.52%)
YACCA TS O2 1480 (-14.75%) 8363 (+109.55%)
YACCA TS O3 1236 (-28.80%) 7605 (+90.55%)

RACFED TS O0 6271 (261.23%) 5770 (+44.58%)
RACFED TS O1 5404 (+211.29%) 4680 (+17.26%)
RACFED TS O2 3980 (+129.26%) 3972 (-0.48%)
RACFED TS O3 3484 (+100.69%) 3789 (-5.06%)

overhead on the number of executed instructions is obtained from the increase in
the ISA-level simulator counts when running the simulation of the fault-injected
program compared to the simulation of the fault-free program.

For both benchmarks, YACCA imposes less TSS overhead compared to RACFED.
The difference between TSS overheads imposed by these two CFC methods is
insignificant for the T benchmark, while it is much more significant for the TS
benchmark.

The YACCA method is implemented in the TS benchmark by inserting the CFC
instructions at each BB entry and exit point. While in the T benchmark, the YACCA
method is implemented by calling functions for the set and test operations. For the
TS benchmark, the TSS overheads are more significant than the TSS overheads in the
T benchmark. This is due to the strategy to harden the code without using function
calls. In RACFED implementation, there are many duplicated instructions (similar
to the inserting strategy adopted for YACCA implementation). On the contrary, in
the T benchmark, in which we chose to use functions, the TSS overheads are around
20%.

The discussion is more complicated regarding the number of executed instruc-
tions overhead, considering the compiler optimization’s importance. For both bench-

78 Experimental Study on CFC Detection Techniques

marks, YACCA imposes a greater overhead in terms of executed instructions than
RACFED; hence RACFED outperforms YACCA in this comparison. For the T
benchmark, the difference between the executed instructions overheard of by the
two CFC methods is negligible, while this difference is more noticeable for the
TS benchmark. This can be explained considering that almost every BB of the TS
benchmark has more than two instructions, while the T benchmark has fewer. This
is important since, for those BBs containing more than two instructions, RACFED
sums to the signature a random number after each instruction. At the same time,
YACCA does not perform any different operations. Again, considering the other
optimization levels, we can observe that with optimization O2 and O3, the number
of executed instructions is less than that of the vanilla version without optimization.
Still, it is important to remark that, in these two latter cases, the intra-block detection
is lost.

For YACCA, with any compiler optimization level, the number of executed
instructions is greater than the number of executed instructions in the Vanilla O0.
However, the executed instructions overhead decreases drastically from O0 to 01,
while this overhead decreases slowly while changing the optimization level from O1
to O2 and from O2 to O3. For RACFED, with O1 compiler optimization level, the
number of executed instructions is greater than the number of executed instructions
in the Vanilla O0. On the contrary, with O2 and O3 optimization levels, the exe-
cuted instructions become negative. The executed instructions overhead decreases
drastically from O0 to 01, and also from O1 to O2. While this overhead decreases
slowly while changing the optimization level from O2 to O3. In conclusion, for both
benchmarks, YACCA imposes less TSS overheads while RACFED imposes less
executed instructions overheads.

4.5 Model-Based Software Design Fault injection re-
sults

This section shows the obtained simulation results, describes MBSD approach, and
provides how the performances of the hardening techniques have been assessed.
Finally, it covers the fault injection results, diagnostic coverage, and overheads for
both CFC methods when compiled with without optimization levels.

4.5 Model-Based Software Design Fault injection results 79

4.5.1 Diagnostic Coverage

The results obtained from the classifier for YACCA and RACFED implemented on
the timeline scheduler and tank level are available in Table 4.7.

Table 4.7 classifier results obtained from the fault injection campaign assessing
the YACCA and RACFED CFC methods implemented on the timeline schedule and
tank level.

Table 4.7 Classifier results obtained from fault injection campaigns evaluating the YACCA
and RACFED methods without compiler optimizations, hardened in MBSD, on benchmarks.
The "As Golden", "False Positive", "Undefined", and "Error" results are all zero for all
columns, so they are not reported in the table.

YACCA RACFED
Classification results TS Benchmark T benchmark TS benchmark T benchmark
Latent after injection 110 791 113 771

Erratic behavior 0 0 0 0
Infinite loop or Stuck at some instruction 261 0 167 0

(Detected) by SW hardening + Safe 112+0 0+13 305+0 1+34
(Detected) by HW mechanism 512 2 395 0

Table 4.8 ISO 26262-compliant classification of the cumulative results obtained from the
fault injection campaigns on the benchmarks compiled with almost no optimization (O0).

Detected Undetected False Pos.
CFC method Benchmark Safe Detected Latent Residual

YACCA TS 0.00% 51.80% 9.10% 39.10% 0.00%
YACCA T 1.61% 0.25% 98.14% 0.00% 0.00%

RACFED TS 0.00% 70.00% 13.30% 16.70% 0.00%
RACFED T 4.22% 0.12% 95.66% 0.00% 0.00%

For YACCA, we obtained a DC of 51.8% for the timeline scheduler (TS) and
1.86% for the tank level (T).
For RACFED, we obtained a DC of 70.0% for the TS and 4.34% for T.

Regarding the CFC algorithms that we opted for, we can say that RACFED
is more effective than YACCA. This is an expected result since it also provides,
alongside intra-block detection not exploited in our benchmark, a two-phase signature
update.

80 Experimental Study on CFC Detection Techniques

For both cases, it is evident how the DC lowers for the T benchmark compared
with the one obtained on the TS due to both algorithms’ different natures.

The TS, due to its scheduler nature, performs a state transition every time its
step() function (the function that is called at a fixed rate to make it behave as a
periodic task) is called, whereas this is not true for the T, since its transitions depend
on the level of the liquid inside a slow-changing physical system (a tank), leading to
a relatively lower number of transitions.

Analyzing the experiments where the CFC is not able to detect the injected failure
(infinite loop or stuck at some instructions results in Table 4.8), it is possible to
observe a known limitation of those algorithms experimentally. Since the application
and the CFC are executed on the same computation unit, no detections are possible
if the error prevents the TEST instructions from executing. In the ISO26262, these
cases are indicated as not “free from interferences”, since the same root cause can
affect both. This is an important point when designers choose to adopt such solutions,
since CFC by itself is incapable of detecting 100% of faults: this highlights the need
to combine this type of algorithm with other techniques, such as watchdog or the
execution of tests on other cores if they are available.

The last observation is that there are no “Infinite loop” or ”Stuck at some in-
struction” outcomes for the T benchmark. This, alongside the very high rate of
“Latent after the injection” with respect to the TS results, shows how the nature of
the application to be hardened is essential in a real use case: if no change in decision
is needed in the time window between the injection and the end of the simulation,
the behavior remains accidentally correct.

A possible proposal for such applications, in the case of sufficient spare execution
time, can be to add a dummy control flow to check if the computation unit is working
correctly. This solution can be adopted when an online test is unavailable for the
target platform, or the application should not depend on any specific platform for
commercial or intellectual property protection reasons.

4.5.2 Overhead

Table 4.9 presents the data on the overhead of the hardening techniques considering
two different aspects: the increase in the program size (evaluated in terms of the

4.5 Model-Based Software Design Fault injection results 81

increase in its text segment) and the number of actually executed machine-code
instructions (a reliable metric to estimate its effect on its execution time).

It is possible to see that the explanation on the lower DC for the T benchmarks
is confirmed considering the overhead in terms of the executed instructions num-
ber: for both the hardening techniques, we have a stronger impact. This result is
expected: the more the signature is tested, the greater the probability that it detects
CFEs. Considering the T benchmark, the impact of the CFCs in terms of executed
instructions is almost negligible (a small number of BBs transitions happen).

The huge difference in terms of text segment sizes between the two benchmarks
can be explained in terms of the number of BBs present: the functions related to the
hardening techniques are implemented with the inline option of Embedded Coder, so
a greater number of BBs requires, in a proportional way, more C language statements
and then more machine code ones.

Regarding the main memory occupation, our implementation of the YACCA
algorithm requires three unsigned 64-bit variables for a total of 24 bytes for each
execution flow. The TS has only one execution flow, whereas T has two execution
flows (one for the decision based on the tank level, the other to implement the
overcurrent protection) with an occupation of 48 bytes. Considering RACFED, it
needs four 64-bit variables for the execution flow. Hence, the overhead is 32 bytes
for TS and 64 bytes for T.

Table 4.9 Data regarding memory occupation and executed instruction.T = Tank Level, TS =
Timeline Scheduler, and TSS = Text Segment Size. Vanilla refers to the application that is
not hardened from its original form. For TS, are reported the overheads with the different
optimization levels. All the differences are computed in comparison to the Vanilla version
compiled with almost no optimizations (O0).

CFC method Benchmark Compiler Optimization TSS Overhead # exec. instr. Overhead
Vanilla T O0 9012 33460
YACCA T O0 110432 (+15.7%) 33498 (+0.1%)

RACFED T O0 12804 (+42.0%) 33534 (0.2%)
Vanilla TS O0 1736 3991
YACCA TS O0 6056 (+249%) 10771 (+170%)

RACFED TS O0 17320 (+322%) 7492 (+87.7%)

Chapter 5

Conclusion

5.1 Summary

The pivotal outcomes and contributions of the research, as outlined in this thesis,
are synthesized within this section. Furthermore, we delve into potential avenues
for future research and advancements in the context of addressing random hardware
failures (RHFs) in embedded systems, emphasizing the importance of fault testing
and mitigation in GPU architectures.

5.2 Main contributions

In this thesis, we conducted an extensive exploration of various fault-tolerance
methods tailored to mitigate random hardware failures (RHFs) in embedded systems,
with a particular emphasis on real-time embedded systems. The growing prevalence
of embedded systems in safety-critical and mission-critical applications underscores
the need for robust fault tolerance techniques, ensuring seamless automation and
operational efficiency across commercial and industrial sectors.

We began by discussing the fundamental importance of fault tolerance in con-
temporary computing systems, elucidating how these techniques bolster system
dependability by concealing faults and identifying errors, thereby enabling uninter-
rupted service delivery even in the presence of internal failures. We highlighted the

5.2 Main contributions 83

distinctions between hardware and software redundancy as mechanisms for achieving
fault tolerance, guaranteeing the reliability of system operations.

Special consideration was given to software fault tolerance, acknowledging that
software faults are a leading cause of system failures. While software engineering
endeavors to eliminate most deterministic design faults, the inherent complexity
of software design makes it virtually impossible to ensure their complete absence.
Consequently, software fault tolerance techniques serve as an additional layer of
protection, ensuring the continued provision of services at an acceptable level of
performance and safety.

Furthermore, we delved into the growing challenge posed by soft errors or
transient bit-errors in modern computing systems, emphasizing the critical role of
fault tolerance in mitigating these errors to prevent system malfunctions.

Our exploration encompassed a wide array of fault tolerance techniques, includ-
ing hardware, software, and hybrid redundancy, providing valuable insights into their
advantages and suitability across different scenarios. Additionally, we addressed
fault-tolerance strategies tailored specifically for resource-constrained embedded sys-
tems, acknowledging the importance of accounting for limited memory and low-end
computational environments in such systems.

Nonetheless, it is imperative to highlight that the realm of real-time embedded
systems demands further research and development in fault-tolerance methods to
ensure the reliable and resilient operation of interconnected computing systems. In
conclusion, this thesis offers valuable insights into fault mitigation techniques and
underscores the critical role of fault tolerance in guaranteeing the dependability and
functionality of modern computing systems. The methods presented, including CFC,
redundancy approaches, optimized resource management, and security-oriented
measures, pave the way for continued advancements in the field of fault tolerance
and its application in critical computing systems.

Moving on to another facet of the research, numerous Software-Implemented
Hardware Fault Tolerance (SIHFT) methods have been proposed in the literature
to enhance the reliability of embedded systems against Random Hardware Failures
(RHFs). However, selecting a specific SIHFT method presents a challenge due to the
multitude of available options, necessitating an objective comparison methodology.

84 Conclusion

We introduced a comprehensive comparison methodology, comprising the selec-
tion of representative applications that were hardened with chosen SIHFT methods,
followed by fault injection experiments. Specifically, two well-established CFC
methods were selected and applied to two benchmark applications to evaluate our
approach.

We then reported simulation results in alignment with the automotive functional
safety standard ISO 26262, assessing the efficacy of the CFC methods in detecting
RHFs. Additionally, we examined the impact of compiler optimization on their
effectiveness by conducting experiments at each of the four optimization levels
offered by GCC.

It’s worth noting that our approach can be extended to various industrial domains,
such as unmanned aerial vehicles, as it transcends the confines of the automotive
industry. For this study, we opted for automotive industry benchmarks to align with
the requirements of automotive functional safety standards, particularly for the use
of high-level programming languages.

Adhering to a model-based software design approach, we implemented hardening
against RHFs at a high level of abstraction, directly within behavioral models, and
then automatically translated these models into a high-level language, namely C. This
streamlined the implementation of CFC within the Simulink Stateflow environment.

5.3 Future Work

As a natural extension of this research, we propose conducting a more extensive fault
injection campaign within the context of the small-scale factory environment. This
expanded initiative aims to further validate the research findings, encompassing the
efficacy of the developed techniques, the GCC plugin, and the fault injection tool, all
of which were instrumental in our investigation.

Up to this point, our exploration has been primarily preliminary in nature, focus-
ing on the small-scale case study. While this preliminary study has allowed us to
draw initial conclusions regarding the effectiveness of implementing Control Flow
Checking (CFC) methods through high-level programming languages, it represents
just the tip of the iceberg. A comprehensive fault injection campaign holds several
key objectives:

5.3 Future Work 85

Firstly, it offers the opportunity to gain a more profound understanding of the
potential ramifications of Control Flow Errors (CFEs) within a more extensive
industrial setup. Our thesis identified three primary CFE types based on data analysis.
However, a more extensive investigation could unveil additional CFE types or shed
light on further causal factors contributing to the observed CFE types.

Secondly, it allows for a more thorough assessment of whether CFC methods
genuinely avert all hazardous scenarios. While our preliminary study demonstrated
that CFC methods can effectively detect a majority of errors, empirical evidence
from other experiments suggests that they may not capture all CFEs. By extending
the fault injection campaign to cover a wider range of code segments, we can
ascertain whether potentially dangerous situations persist within the small-scale
factory environment.

Lastly, it would be prudent to explore the feasibility and applicability of these
techniques to C++ compilers, considering the prevalent use of C++ in embedded
systems. This avenue presents a promising direction for future research endeavors in
the realm of embedded systems, addressing the evolving landscape of programming
languages and their relevance to fault tolerance strategies.

Our approach can be extended to other industrial landscapes, e.g., unmanned
aerial vehicles, since it is more comprehensive than the automotive industry applica-
tion domain. Here, we selected automotive industry benchmarks to address the needs
of automotive functional safety standards for the use of high-level programming
languages.

References

[1] McKinsey & Company. Outlook on the automotive soft-
ware and electronics market through 2030. https://www.
mckinsey.com/industries/automotive-and-assembly/our-insights/
mapping-the-automotive-software-and-electronics-landscape-through-2030?
cid=eml-web.

[2] McKinsey & Company. Automotive software and electronics
2030. https://www.mckinsey.com/~/media/mckinsey/industries/
automotive%20and%20assembly/our%20insights/mapping%20the%
20automotive%20software%20and%20electronics%20landscape%
20through%202030/outlook%20on%20the%20auto%C2%ADmotive%
20software%20and%20electronics%20market%20through%202030/
automotive-software-and-electronics-2030-full-report.pdf.

[3] Jens Lienig and Hans Bruemmer. Fundamentals of electronic systems design.
Springer, 2017.

[4] ADRIA BARROS DE OLIVEIRA. Applying dual-core lockstep in embedded
processors to mitigate radiation-induced soft errors, Number 2017. Avail-
able at https://www.lume.ufrgs.br/bitstream/handle/10183/173785/001061371.
pdf?sequence=1.

[5] B. Fleming. Microcontroller units in automobiles [automotive electronics].
IEEE Vehicular Technology Magazine, 6(3):4–8, 2011.

[6] J. P. Trovao. Trends in automotive electronics [automotive electronics]. IEEE
Vehicular Technology Magazine, 14(4):100–109, 2019.

[7] J. C. Knight. Safety critical systems: challenges and directions. In Proceedings
of the 24th International Conference on Software Engineering. ICSE 2002,
pages 547–550, 2002.

[8] Research European Parliament’s committee on Industry and Energy (ITRE).
The future of the eu automotive sector. https://www.europarl.europa.eu/
RegData/etudes/STUD/2021/695457/IPOL_STU(2021)695457_EN.pdf,
2021.

[9] Bill Fleming. Microcontroller units in automobiles [automotive electronics].
IEEE Vehicular Technology Magazine, 6(3):4–8, 2011.

https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030?cid=eml-web
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030?cid=eml-web
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030?cid=eml-web
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030?cid=eml-web
https://www.mckinsey.com/~/media/mckinsey/industries/automotive%20and%20assembly/our%20insights/mapping%20the%20automotive%20software%20and%20electronics%20landscape%20through%202030/outlook%20on%20the%20auto%C2%ADmotive%20software%20and%20electronics%20market%20through%202030/automotive-software-and-electronics-2030-full-report.pdf
https://www.mckinsey.com/~/media/mckinsey/industries/automotive%20and%20assembly/our%20insights/mapping%20the%20automotive%20software%20and%20electronics%20landscape%20through%202030/outlook%20on%20the%20auto%C2%ADmotive%20software%20and%20electronics%20market%20through%202030/automotive-software-and-electronics-2030-full-report.pdf
https://www.mckinsey.com/~/media/mckinsey/industries/automotive%20and%20assembly/our%20insights/mapping%20the%20automotive%20software%20and%20electronics%20landscape%20through%202030/outlook%20on%20the%20auto%C2%ADmotive%20software%20and%20electronics%20market%20through%202030/automotive-software-and-electronics-2030-full-report.pdf
https://www.mckinsey.com/~/media/mckinsey/industries/automotive%20and%20assembly/our%20insights/mapping%20the%20automotive%20software%20and%20electronics%20landscape%20through%202030/outlook%20on%20the%20auto%C2%ADmotive%20software%20and%20electronics%20market%20through%202030/automotive-software-and-electronics-2030-full-report.pdf
https://www.mckinsey.com/~/media/mckinsey/industries/automotive%20and%20assembly/our%20insights/mapping%20the%20automotive%20software%20and%20electronics%20landscape%20through%202030/outlook%20on%20the%20auto%C2%ADmotive%20software%20and%20electronics%20market%20through%202030/automotive-software-and-electronics-2030-full-report.pdf
https://www.mckinsey.com/~/media/mckinsey/industries/automotive%20and%20assembly/our%20insights/mapping%20the%20automotive%20software%20and%20electronics%20landscape%20through%202030/outlook%20on%20the%20auto%C2%ADmotive%20software%20and%20electronics%20market%20through%202030/automotive-software-and-electronics-2030-full-report.pdf
https://www.lume.ufrgs.br/bitstream/handle/10183/173785/001061371.pdf?sequence=1
https://www.lume.ufrgs.br/bitstream/handle/10183/173785/001061371.pdf?sequence=1
https://www.europarl.europa.eu/RegData/etudes/STUD/2021/695457/IPOL_STU(2021)695457_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2021/695457/IPOL_STU(2021)695457_EN.pdf

References 87

[10] João P. Trovao. Trends in automotive electronics [automotive electronics].
IEEE Vehicular Technology Magazine, 14(4):100–109, 2019.

[11] John C Knight. Safety critical systems: challenges and directions. In Pro-
ceedings of the 24th international conference on software engineering, pages
547–550, 2002.

[12] Haleh Ardebili, Jiawei Zhang, and Michael G. Pecht. 10 - trends and chal-
lenges. In Haleh Ardebili, Jiawei Zhang, and Michael G. Pecht, editors,
Encapsulation Technologies for Electronic Applications (Second Edition),
Materials and Processes for Electronic Applications, pages 431–479. William
Andrew Publishing, second edition edition, 2019.

[13] Seyab Khan, Said Hamdioui, Halil Kukner, Praveen Raghavan, and Francky
Catthoor. Bti impact on logical gates in nano-scale cmos technology. In 2012
IEEE 15th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS), pages 348–353, 2012.

[14] Said Hamdioui, Dimitris Gizopoulos, Groeseneken Guido, Michael Nicolaidis,
Arnaud Grasset, and Philippe Bonnot. Reliability challenges of real-time
systems in forthcoming technology nodes. In 2013 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pages 129–134, 2013.

[15] Innocent Agbo, Mottaqiallah Taouil, Said Hamdioui, Pieter Weckx, Stefan
Cosemans, Francky Catthoor, and Wim Dehaene. Read path degradation
analysis in sram. In 2016 21th IEEE European Test Symposium (ETS), pages
1–2, 2016.

[16] Sangwoo Pae, Jose Maiz, Chetan Prasad, and Bruce Woolery. Effect of bti
degradation on transistor variability in advanced semiconductor technologies.
IEEE Transactions on Device and Materials Reliability, 8(3):519–525, 2008.

[17] Krzysztof Iniewski. Radiation effects in semiconductors. CRC press, 2018.

[18] Daniel Oliveira, Sean Blanchard, Nathan Debardeleben, Fernando F. Dos San-
tos, Gabriel Piscoya Dávila, Philippe Navaux, Carlo Cazzaniga, Christopher
Frost, Robert C. Baumann, and Paolo Rech. Thermal neutrons: a possible
threat for supercomputers and safety critical applications. In 2020 IEEE
European Test Symposium (ETS), pages 1–6, 2020.

[19] Hans G. Kerkhoff and H. Ebrahimi. Intermittent resistive faults in digital
cmos circuits. In 2015 IEEE 18th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems, pages 211–216, 2015.

[20] Daniel Gil-Tomás, Joaquín Gracia-Morán, J.-Carlos Baraza-Calvo, Luis-J.
Saiz-Adalid, and Pedro-J. Gil-Vicente. Studying the effects of intermittent
faults on a microcontroller. Microelectronics Reliability, 52(11):2837–2846,
2012.

88 References

[21] Martin Radetzki, Chaochao Feng, Xueqian Zhao, and Axel Jantsch. Methods
for fault tolerance in networks-on-chip. ACM Comput. Surv., 46(1), jul 2013.

[22] Shekhar Borkar, Norman P. Jouppi, and Per Stenstrom. Microprocessors in
the era of terascale integration. In 2007 Design, Automation & Test in Europe
Conference & Exhibition, pages 1–6, 2007.

[23] Mohammadreza Amel Solouki, Shaahin Angizi, and Massimo Violante. De-
pendability in embedded systems: A survey of fault tolerance methods and
software-based mitigation techniques. arXiv preprint arXiv:2404.10509,
2024.

[24] ISO 26262:2018 Road vehicles – functional safety, 2018.

[25] Afaq Ahmad. Automotive semiconductor industry-trends, safety and security
challenges. In 2020 8th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions)(ICRITO),
pages 1373–1377. IEEE, 2020.

[26] Infineon. Aurixtm tc3xx functional safety (fusa) in a nutshell.
https://www.infineon.com/dgdl/Infineon-AN0001-AURIX_TC3xx_
functional_safety_FUSA_in_a_nutshell-ApplicationNotes-v01_00-EN.pdf?
fileId=8ac78c8c8c3de074018c823bd97f1cbc.

[27] Kavya Prabha Divakarla. Iso26262 and iec61508 functional safety overview.
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/
tech-days/160/1/AMF-AUT-T2713.pdf, 2017.

[28] Wen Chen and Jayanta Bhadra. Practices and challenges for achieving func-
tional safety of modern automotive socs. IEEE Design & Test, 36(4):31–47,
2019.

[29] Elena Dubrova. Fault-tolerant design. Springer, 2013.

[30] Bai-Fan Yue and Wei-Wei Che. Data-driven dynamic event-triggered fault-
tolerant platooning control. IEEE Transactions on Industrial Informatics,
2022.

[31] Aamer Mahmood and Edward J McCluskey. Concurrent error detection using
watchdog processors-a survey. IEEE Transactions on Computers, 37(2):160–
174, 1988.

[32] Todd M Austin. Diva: A reliable substrate for deep submicron microarchi-
tecture design. In MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture, pages 196–207. IEEE, 1999.

[33] CA Lisboa, Marcelo Ienczczak Erigson, and Luigi Carro. System level ap-
proaches for mitigation of long duration transient faults in future technologies.
In 12th IEEE European test symposium (ETS’07), pages 165–172. IEEE,
2007.

https://www.infineon.com/dgdl/Infineon-AN0001-AURIX_TC3xx_functional_safety_FUSA_in_a_nutshell-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8c3de074018c823bd97f1cbc
https://www.infineon.com/dgdl/Infineon-AN0001-AURIX_TC3xx_functional_safety_FUSA_in_a_nutshell-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8c3de074018c823bd97f1cbc
https://www.infineon.com/dgdl/Infineon-AN0001-AURIX_TC3xx_functional_safety_FUSA_in_a_nutshell-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8c3de074018c823bd97f1cbc
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/tech-days/160/1/AMF-AUT-T2713.pdf
https://community.nxp.com/pwmxy87654/attachments/pwmxy87654/tech-days/160/1/AMF-AUT-T2713.pdf

References 89

[34] Zeyad Alkhalifa, VS Sukumaran Nair, Narayanan Krishnamurthy, and Ja-
cob A. Abraham. Design and evaluation of system-level checks for on-line
control flow error detection. IEEE Transactions on Parallel and Distributed
Systems, 10(6):627–641, 1999.

[35] Nahmsuk Oh, Philip P Shirvani, and Edward J McCluskey. Control-flow
checking by software signatures. IEEE transactions on Reliability, 51(1):111–
122, 2002.

[36] Ramtilak Vemu and Jacob Abraham. Ceda: Control-flow error detection using
assertions. IEEE Transactions on Computers, 60(9):1233–1245, 2011.

[37] Rajesh Venkatasubramanian, John P Hayes, and Brian T Murray. Low-cost
on-line fault detection using control flow assertions. In 9th IEEE On-Line
Testing Symposium, 2003. IOLTS 2003., pages 137–143. IEEE, 2003.

[38] Olga Goloubeva, Maurizio Rebaudengo, M Sonza Reorda, and Massimo
Violante. Improved software-based processor control-flow errors detection
technique. In Annual Reliability and Maintainability Symposium, 2005. Pro-
ceedings., pages 583–589. IEEE, 2005.

[39] Seyyed Amir Asghari, Hassan Taheri, Hossein Pedram, and Okyay Kaynak.
Software-based control flow checking against transient faults in industrial
environments. IEEE Transactions on Industrial Informatics, 10(1):481–490,
2013.

[40] Jose Rodrigo Azambuja, Mauricio Altieri, Jürgen Becker, and Fernanda Lima
Kastensmidt. Heta: Hybrid error-detection technique using assertions. IEEE
Transactions on Nuclear Science, 60(4):2805–2812, 2013.

[41] Eduardo Chielle, Gennaro S Rodrigues, Fernanda L Kastensmidt, Sergio
Cuenca-Asensi, Lucas A Tambara, Paolo Rech, and Heather Quinn. S-seta:
Selective software-only error-detection technique using assertions. IEEE
transactions on Nuclear Science, 62(6):3088–3095, 2015.

[42] Aiguo Li and Bingrong Hong. Software implemented transient fault detection
in space computer. Aerospace science and technology, 11(2-3):245–252,
2007.

[43] Jens Vankeirsbilck, Niels Penneman, Hans Hallez, and Jeroen Boydens. Ran-
dom additive signature monitoring for control flow error detection. IEEE
transactions on Reliability, 66(4):1178–1192, 2017.

[44] Bogdan Nicolescu, Yvon Savaria, and Raoul Velazco. Sied: Software imple-
mented error detection. In Proceedings 18th IEEE Symposium on Defect and
Fault Tolerance in VLSI Systems, pages 589–596. IEEE, 2003.

[45] Jens Vankeirsbilck, Niels Penneman, Hans Hallez, and Jeroen Boydens. Ran-
dom additive control flow error detection. In International Conference on
Computer Safety, Reliability, and Security, pages 220–234. Springer, 2018.

90 References

[46] Mohammad Maghsoudloo, Hamid R Zarandi, and Navid Khoshavi. An effi-
cient adaptive software-implemented technique to detect control-flow errors
in multi-core architectures. Microelectronics Reliability, 52(11):2812–2828,
2012.

[47] Jens Vankeirsbilck, Niels Penneman, Hans Hallez, and Jeroen Boydens. Ran-
dom additive signature monitoring for control flow error detection. IEEE
transactions on Reliability, 66(4):1178–1192, 2017.

[48] Seyyed Amir Asghari, Hassan Taheri, Hossein Pedram, and Okyay Kaynak.
Software-based control flow checking against transient faults in industrial
environments. IEEE Transactions on Industrial Informatics, 10(1):481–490,
2013.

[49] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha,
João Paulo Fernandes, and João Saraiva. Energy efficiency across program-
ming languages: how do energy, time, and memory relate? In Proceedings
of the 10th ACM SIGPLAN International Conference on Software Language
Engineering, pages 256–267, 2017.

[50] J. Borrego-Carazo, D. Castells-Rufas, E. Biempica, and J. Carrabina.
Resource-constrained machine learning for adas: A systematic review. IEEE
Access, 8:40573–40598, 2020.

[51] Weijing Shi, Mohamed Baker Alawieh, Xin Li, and Huafeng Yu. Algorithm
and hardware implementation for visual perception system in autonomous
vehicle: A survey. Integration, 59:148–156, 2017.

[52] Jelena Kocić, Nenad Jovičić, and Vujo Drndarević. Sensors and sensor fusion
in autonomous vehicles. In 2018 26th Telecommunications Forum (TELFOR),
pages 420–425. IEEE, 2018.

[53] J. Janai, Fatma Güney, Aseem Behl, and Andreas Geiger. Computer vision
for autonomous vehicles: Problems, datasets and state of the art. Foundations
and Trends® in Computer Graphics and Vision, 12(1–3):1–308, 2020.

[54] R. Hussain et al. Autonomous cars: Research results, issues, and future
challenges. IEEE Communications Surveys Tutorials, 21(2):1275–1313, 2019.

[55] S. Khan, S. Hamdioui, H. Kukner, P. Raghavan, and F. Catthoor. Bti impact
on logical gates in nano-scale cmos technology. In 2012 IEEE 15th Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits Systems
(DDECS), pages 348–353, 2012.

[56] S. Pae, J. Maiz, C. Prasad, and B. Woolery. Effect of bti degradation on tran-
sistor variability in advanced semiconductor technologies. IEEE Transactions
on Device and Materials Reliability, 8(3):519–525, 2008.

[57] M. Dumont, M. Lisart, and P. Maurine. Electromagnetic fault injection :
How faults occur. In 2019 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 9–16, 2019.

References 91

[58] C. Constantinescu. Intermittent faults and effects on reliability of integrated
circuits. In 2008 Annual Reliability and Maintainability Symposium, pages
370–374, 2008.

[59] C. Sandionigi, O. Heron, C. Bertolini, and R. David. When processors get
old: Evaluation of bti and hci effects on performance and reliability. In 2013
IEEE 19th International On-Line Testing Symposium (IOLTS), pages 185–186,
2013.

[60] Ashraf Armoush. Design patterns for safety-critical embedded systems. PhD
thesis, RWTH Aachen University Aachen, Germany, 2010.

[61] Abhishek Rhisheekesan, Reiley Jeyapaul, and Aviral Shrivastava. Control flow
checking or not?(for soft errors). ACM Transactions on Embedded Computing
Systems (TECS), 18(1):1–25, 2019.

[62] Aviral Shrivastava, Abhishek Rhisheekesan, Reiley Jeyapaul, and Carole-Jean
Wu. Quantitative analysis of control flow checking mechanisms for soft errors.
In Proceedings of the 51st Annual Design Automation Conference, pages 1–6,
2014.

[63] Alfredo Benso, Stefano Di Carlo, Giorgio Di Natale, and Paolo Prinetto.
A watchdog processor to detect data and control flow errors. In 9th IEEE
On-Line Testing Symposium, 2003. IOLTS 2003., pages 144–148. IEEE, 2003.

[64] Ameya Chaudhari, Junyoung Park, and Jacob Abraham. A framework for low
overhead hardware based runtime control flow error detection and recovery.
In 2013 IEEE 31st VLSI Test Symposium (VTS), pages 1–6. IEEE, 2013.

[65] Jacob A Abraham and Ramtilak Vemu. Control flow deviation detection for
software security, December 31 2009. US Patent App. 12/484,839.

[66] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic con-
cepts and taxonomy of dependable and secure computing. IEEE transactions
on dependable and secure computing, 1(1):11–33, 2004.

[67] Ze Zhang, Sunghyun Park, and Scott Mahlke. Path sensitive signatures for
control flow error detection. In The 21st ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems, pages 62–73,
2020.

[68] Shubu Mukherjee. Architecture design for soft errors. Morgan Kaufmann,
2011.

[69] Greg Bronevetsky, B de Supinski, and Martin Schulz. A foundation for the
accurate prediction of the soft error vulnerability of scientific applications.
Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States), 2009.

[70] Shekhar Borkar et al. Microarchitecture and design challenges for gigascale
integration. In MICRO, volume 37, pages 3–3, 2004.

92 References

[71] Aamer Mahmood and Edward J McCluskey. Concurrent error detection using
watchdog processors-a survey. IEEE Transactions on Computers, 37(2):160–
174, 1988.

[72] Wendy Bartlett and Lisa Spainhower. Commercial fault tolerance: A tale
of two systems. IEEE Transactions on dependable and secure computing,
1(1):87–96, 2004.

[73] David Bernick, Bill Bruckert, Paul Del Vigna, David Garcia, Robert Jardine,
Jim Klecka, and Jim Smullen. Nonstop/spl reg/advanced architecture. In 2005
International Conference on Dependable Systems and Networks (DSN’05),
pages 12–21. IEEE, 2005.

[74] Ying C Yeh. Triple-triple redundant 777 primary flight computer. In 1996
IEEE Aerospace Applications Conference. Proceedings, volume 1, pages
293–307. IEEE, 1996.

[75] Daya Shanker Khudia and Scott Mahlke. Low cost control flow protection
using abstract control signatures. In Proceedings of the 14th ACM SIG-
PLAN/SIGBED conference on Languages, compilers and tools for embedded
systems, pages 3–12, 2013.

[76] Zhiqi Zhu, Joseph Callenes-Sloan, and Benjamin Carrion Schafer. Control
flow checking optimization based on regular patterns analysis. In 2018
IEEE 23rd Pacific Rim International Symposium on Dependable Computing
(PRDC), pages 203–212. IEEE, 2018.

[77] K Vinoth Kannan. Model-based automotive software development. In Auto-
motive Embedded Systems: Key Technologies, Innovations, and Applications,
pages 71–87. Springer, 2021.

[78] The MathWorks Inc. Matlab version: 9.13.0 (r2022b), 2022.

[79] Seyyed Amir Asghari, Atena Abdi, Hassan Taheri, Hossein Pedram, Saadat
Pourmozaffari, et al. Sedsr: Soft error detection using software redundancy.
Journal of Software Engineering and Applications, 5(09):664, 2012.

[80] Bogdan Nicolescu, Yvon Savaria, and Raoul Velazco. Sied: Software imple-
mented error detection. In Proceedings 18th IEEE Symposium on Defect and
Fault Tolerance in VLSI Systems, pages 589–596. IEEE, 2003.

[81] Olga Goloubeva, Maurizio Rebaudengo, M Sonza Reorda, and Massimo
Violante. Soft-error detection using control flow assertions. In Proceedings
18th IEEE Symposium on Defect and Fault Tolerance in VLSI Systems, pages
581–588. IEEE, 2003.

[82] F Saglietti. Strategies for the achievement and assessment of software fault-
tolerance. IFAC Proceedings Volumes, 23(8):303–308, 1990.

[83] Brian Randell and Jie Xu. The evolution of the recovery block concept.
Software fault tolerance, 3:1–22, 1995.

References 93

[84] Algirdas Avizienis. The methodology of n-version programming. Software
fault tolerance, 3:23–46, 1995.

[85] Jean-Claude Laprie, Jean Arlat, Christian Beounes, and Karama Kanoun.
Definition and analysis of hardware-and-software fault-tolerant architectures.
In Predictably Dependable Computing Systems, pages 103–122. Springer,
1995.

[86] R. Keith Scott, James W. Gault, and David F. McAllister. Fault-tolerant
software reliability modeling. IEEE transactions on Software Engineering,
(5):582–592, 1987.

[87] Dhiraj K Pradhan et al. Fault-tolerant computer system design, volume 132.
Prentice-Hall Englewood Cliffs, 1996.

[88] Torres Wilfredo. Software fault tolerance: A tutorial. 2000.

[89] Victor F Nicola. Checkpointing and the modeling of program execution time.
University of Twente, Department of Computer Science and Department
of . . . , 1994.

[90] Mark Russinovich and Zary Segall. Fault-tolerance for off-the-shelf appli-
cations and hardware. In Twenty-Fifth International Symposium on Fault-
Tolerant Computing. Digest of Papers, pages 67–71. IEEE, 1995.

[91] Israel Koren and C Mani Krishna. Fault-tolerant systems. Morgan Kaufmann,
2020.

[92] Eduardo Chielle, Boyang Du, Fernanda L. Kastensmidt, Sergio Cuenca-
Asensi, Luca Sterpone, and Matteo Sonza Reorda. Hybrid soft error mitigation
techniques for cots processor-based systems. In 2016 17th Latin-American
Test Symposium (LATS), pages 99–104, 2016.

[93] F. Abate, L. Sterpone, and M. Violante. A new mitigation approach for
soft errors in embedded processors. In 2007 9th European Conference on
Radiation and Its Effects on Components and Systems, pages 1–6, 2007.

[94] Massimo Violante, Cristina Meinhardt, Ricardo Reis, and Matteo Sonza Re-
orda. A low-cost solution for deploying processor cores in harsh environments.
IEEE Transactions on Industrial Electronics, 58(7):2617–2626, 2011.

[95] Julen Gomez-Cornejo, Aitzol Zuloaga, Uli Kretzschmar, Unai Bidarte, and
Jaime Jimenez. Fast context reloading lockstep approach for seus mitigation
in a fpga soft core processor. In IECON 2013 - 39th Annual Conference of
the IEEE Industrial Electronics Society, pages 2261–2266, 2013.

[96] Hung-Manh Pham, Sébastien Pillement, and Stanisław J. Piestrak. Low-
overhead fault-tolerance technique for a dynamically reconfigurable softcore
processor. IEEE Transactions on Computers, 62(6):1179–1192, 2013.

94 References

[97] N.S. Bowen and D.K. Pradham. Processor- and memory-based checkpoint
and rollback recovery. Computer, 26(2):22–31, 1993.

[98] The MISRA Consortium Limited. Misra c:2023 guidelines for the use of the
c language in critical systems, 2023.

[99] Gilad Dar, Giorgio Di Natale, and Osnat Keren. Nonlinear code-based low-
overhead fine-grained control flow checking. IEEE Transactions on Comput-
ers, 71(3):658–669, 2021.

[100] Martín Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow
integrity principles, implementations, and applications. ACM Transactions on
Information and System Security (TISSEC), 13(1):1–40, 2009.

[101] K Chandrasekaran. Essentials of cloud computing. CrC Press, 2014.

[102] Kevin D Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory
and implementation. In Proceedings of the 2009 ACM workshop on Cloud
computing security, pages 43–54, 2009.

[103] Kevin D. Bowers, Ari Juels, and Alina Oprea. Hail: A high-availability and
integrity layer for cloud storage. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS ’09, page 187–198, New
York, NY, USA, 2009. Association for Computing Machinery.

[104] Joshua Schiffman, Thomas Moyer, Hayawardh Vijayakumar, Trent Jaeger,
and Patrick McDaniel. Seeding clouds with trust anchors. In Proceedings
of the 2010 ACM workshop on Cloud computing security workshop, pages
43–46, 2010.

[105] Jacopo Sini, Massimo Violante, and Fabrizio Tronci. A novel iso 26262-
compliant test bench to assess the diagnostic coverage of software hardening
techniques against digital components random hardware failures. Electronics,
11(6):901, 2022.

[106] The risc-v instruction set manual volume i: Unprivileged isa document version
20191213.

[107] Stefano Di Mascio, Alessandra Menicucci, Gianluca Furano, Claudio Mon-
teleone, and Marco Ottavi. The case for risc-v in space. In International
Conference on Applications in Electronics Pervading Industry, Environment
and Society, pages 319–325. Springer, 2019.

[108] Gnu risc-v toolchain [online] available. https://github.com/johnwinans/
riscv-toolchain-install-guide, 2022.

[109] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX
annual technical conference, FREENIX Track, volume 41, pages 10–5555.
Califor-nia, USA, 2005.

[110] The gnu debugger [online] available. https://www.gnu.org/software/gdb/,
2022.

https://github.com/johnwinans/riscv-toolchain-install-guide
https://github.com/johnwinans/riscv-toolchain-install-guide
https://www.gnu.org/software/gdb/

Appendix A

Guidelines

A.1 Introduction

This chapter presents a guideline for applying a subset of SIHFT methods called
Control Flow Checking (CFC) methods to application code written in C language.
The motivation is that in the literature few guidelines can be found that provide
insight on implementing CFC methods with high-level programming languages.
Most proposals implement CFC methods in low-level languages such as assembly.
The rationale behind developing high-level language implementations lies in the
pursuit of architecture independence as well as the inadequacy of a certified compiler
for the target platform that can conveniently incorporate Certified Functionally
Correct into the compiled assembly/machine language code.

This chapter presents a set of guidelines for implementing CFC methods using C
programming language. We evaluate the effectiveness of the proposed approach in
two case studies. Our results show that our approach regarding the implementation
of the CFC in C language is maintaining the effectiveness of the CFC method in
detecting RHFs in the embedded systems. Hence, our approach is a viable alternative
to implementing traditional hardening techniques.

To understand this guideline, Figure A.1 explains how to read Control Flow
Graphs. The control graph is a visual representation of the control flow of a program.
The nodes in the graph represent the statements in the program, and the edges
represent the control flow between the statements.

96 Guidelines

Fig. A.1 Instructions on how to read the Control Flow Graphs represented in this chapter.

A.2 Functions or macros needed in C language

The YACCA and RACFED algorithms use different methods for performing the
TEST and SET operations, with algorithm 4 used for TEST in YACCA and algo-
rithm 5 used for RACFED, and algorithm 6 used for SET in YACCA and algorithm 7
used for RACFED. In RACFED, the Run Time Signature (RTS) is updated
after each basic block statement by summing a random number, and the total of these
random numbers is subtracted before signature checking to allow for intra-block
detection capabilities. The SET operation is conducted in two phases within the
actual algorithm. To optimize YACCA, the predecessor’s mask is retrieved from the
last TEST call in the implementation, as TEST always occurs before SET.

A.3 Switch-case construct

For a switch-case construct, Figure A.2 shows the positions of the TEST and SET
statements for the entry BB which is indicated with the switch(...) statement.

A.3 Switch-case construct 97

Algorithm 4 TEST operation (YACCA)
1: TEST(RT S, predecessors_mask)
2: if RT S∧ (¬ predecessors_mask) then

CFE detected
end

3: Continue normal execution

Algorithm 5 TEST operation (RACFED). bb represents the ID of the BB which is
calling TEST(). RTS is an array containing the compile-time signature of every BB.

1: TEST(bb)
2: if RT S ̸=CT S[bb] then

CFE detected
end

3: Continue normal execution

Algorithm 6 Set operation (YACCA)
1: SET(RT S, predecessors_mask,BB_ID)
2: RT S = RT S∧¬predecessors_mask
3: RT S = RT S∨ (1 << BB_ID)

Algorithm 7 Set operation (RACFED). bb represents the current BB, while bb+1
its expected successor. subRanPrevVal and CTS are arrays (with lengths equal
to the number of BBs) containing respectively the random number sums and the
compile-time signature for every BB.

1: SET(bb, bb+1)
2: RTS = RTS - subRanPrevVal[bb]
3: adjVal = (CTS[bb]+subRanPrevVal[bb]) + (CTS([bb+1]+subRanPrevVal[bb+1]
4: RTS = RTS + adjVal

98 Guidelines

Meanwhile, Figure A.3 shows the positions of the TEST and SET statements for the
exit BB which is indicated with a } character.

It is important to note that in cases where there is no default case for the entry BB,
its inclusion is necessary. We address this by adding a default case to the original
algorithm used in implementing the CFC. Lastly, an optimized diagnostic coverage
for exit BB can be achieved by testing the signature of its only legal predecessors for
each switch case. This is due to the presence of diverse paths in this construct.

switch (…)
{

case ….:

break;
case ….:

break;
case ….:

break;
default:

break;
}

TEST (BB0 pred.)
0

1

2

3

4

5

SET (BB0)

SET (BB0)

SET (BB0)

SET (BB0)

BB0 pred.

Fig. A.2 Positions of the TEST and SET operations for inter-block CFE detection inside the
switch-case constructs for the entry block (indicated as 0, in blue.)

A.4 If-else construct

For the if-else construct, Figure A.4 illustrates the positions of the TEST and
SET statements for the entry BB, which is indicated with the if(...) statement.
While Figure A.5 displays the positions of the TEST and SET statements for the exit
block which is indicated with a } character.

If there is no else statement, an else statement should be included. In this
situation, it is strongly recommended to add a comment clarifying that the else

A.5 Function calls 99

switch (…)
{

case ….:

break;
case ….:

break;
case ….:

break;
default:

break;
}

0

1

2

3

4

5

TEST (BB5)

BB0 pred.

TEST (BB5)

TEST (BB5)

TEST (BB5)

SET (BB5)

Fig. A.3 Positions of the TEST and SET operations for inter-block CFE detection inside the
switch-case constructs for the exit block (indicated as 5, in green.)

statement was inserted to the initial algorithm to facilitate the implementation of the
CFC.

A.5 Function calls

Figure A.6 illustrates that a function call is considered a basic block (BB) since the
call and return statements act as jumps. Each function has its own return to sub-
routine Run Time Signature (RTS) so its TEST and SET functions operate
on two different signatures: one for the caller and another for the called function.
The blue operations refer to operations on the caller’s Run Time Signature
(RTS), while the yellow operations refer to operations on the function’s Run Time
Signature (RTS). The BBs are also color-coded. Within a function call, there
are generally three BBs, including:

• the previous BB of the caller (p_c),

• the function call (f),

• and the BB following the function call (f _c).

100 Guidelines

if (…)
{

}
else if (…)
{

}
else if (…)
{

}
else
{

}

TEST (BB0 pred.)

SET (BB0)

SET (BB0)

SET (BB0)

SET (BB0)

0

2

3

4

5

BB0 pred.

F

F

F

T

T

T

1

Fig. A.4 Positions of the TEST and SET operations for inter-block CFE detection inside the
if-else constructs for the entry block (indicated as 0, in blue.)

if (…)
{

}
else if (…)
{

}
else if (…)
{

}
else
{

}

0

2

3

4

5

BB0 pred.

F

F

F

T

T

T

TEST (BB5)

TEST (BB5)

TEST (BB5)

TEST (BB5)

SET (BB5)

1

Fig. A.5 Positions of the TEST and SET operations for inter-block CFE detection inside the
if-else constructs for the exit block (indicated as 5, in green.)

A.5 Function calls 101

Meanwhile, in a called function, we can define at least two BBs, including the (i)
initial BB (i_ f) and (ii)final BB (f _ f). The two BBs may be merged if the called
function has only one BB or if its source code is unavailable.

The following implementation steps are taken:

1. Before the function call, we insert the SET operation for the caller BB (p_c)
signature.

2. Then, the function call BB starts. As usual, the signature of the predecessor
BB is tested with the TEST operation for the caller BB (p_c) signature.

3. Now, the SET operation is called for the signature of the i_ f BB. If the function
has been already called in other points of the program, the signature remains
set to the signature of the f _ f BB, generating a false CFE. The signature of
the i_ f BB is the signature of the function wrapper, while the signature of the
f _ f BB is the signature expected at the end of the function call. Hence, the
signatures of the i_ f and f _ f BBs are different if the function is hardened,
equal otherwise.

4. The function is executed (with possible hardening) and terminates. The signa-
ture of the f _ f BB is tested with the TEST operation.

5. The wrapper sets the signature to the signature of the f BB. (since it is a
normal BB of the function call) as its last instruction.

6. The BB following the function call tests the signature against the signature of
the caller BB (f).

If the compiler decides to inline the function, the proposed strategy behaves correctly
(since the TESTs/SETs order is kept). If a function is impossible to harden (for
example, using standard libraries or Application Programming Interfaces) or the
function contains only a single BB, it is treated as a normal statement.

If a function is called from different locations within the code, separate wrappers
must be utilized, each with the appropriate TEST and SET operations. Finally,
if the application is multi-threaded, it is critical to avoid having the Run Time
Signature (RTS) and predecessor masks of the function as static variables
to avoid conflicts. Local variables are used in this case.

102 Guidelines

Fig. A.6 Positions of the TEST and SET operations for inter-block CFE detection for a
function call.

A.6 For loops 103

for(int i = 0;i < N;i++)
{

if(i == 0){ }
else { }

}

if(i == 0){ }
else{ }

TEST (BB0 pred.) 0

1

2

SET (BB0)

BB0 pred.

TEST (BB1)
TEST (BB0)

SET (BB1)

SET (BB0) TEST (BB0)
TEST (BB1)

The programmer starts with a TEST

Fig. A.7 Positions of TEST and SET operations to detect inter-block CFEs for a for loop.

A.6 For loops

To implement a hardened for loop, the structure depicted in Figure A.7 must be
employed, along with the if...else structures shown in gray. It should be noted
that these structures are not separate basic blocks (BBs), as they are not present in
the original algorithm but are necessary to properly call the TEST/SET functions in
the correct order. If the body of the for loop statement (denoted by the orange
square in the figure) contains more than one BB, they should be hardened as usual,
ensuring that the last BB places the same tested signature in the else statements
(identified as BB1 in the figure). For handling a break statement within a for
loop, as demonstrated in Figure A.8, it is impossible to know if the break has been
executed. Therefore, the only way is to refrain from performing the TEST and SET
operations on BB2 (which is disregarded in the implementation). The reason is that
the break is the sole means of reaching BB5 without executing BB4; hence, BB1 is a
legal predecessor of BB5.

A.7 Conclusions

This chapter presents a comprehensive set of guidelines to assist in the development
of safe and reliable embedded systems written in C while employing CFC hardening
methods.

104 Guidelines

for(int i = 0;i < N;i++)
{

if(i == 0){ }
else { }

if(something)
{

break;
}
else
{

}

}
if(i == 0){ }
else{ }

TEST (BB0 pred.)

0

1

5

SET (BB0)

BB0 pred.

TEST (BB1)
TEST (BB0)

SET (BB1)

SET (BB0) TEST (BB0)
TEST (BB1 OR BB4)

2

3

4

T

F

TEST (BB1)

TEST (BB1)

SET (BB3)

TEST (BB3)

SET (BB4)

Fig. A.8 Positions of TEST and SET operations to detect inter-block CFEs for a for loop
containing a break instruction inside it.

Following the proposed guideline is not mandatory, but it is designed to offer a
practical approach to developing critical safety embedded systems. The effectiveness
of this guideline has been demonstrated through a series of case studies, where
reliable embedded systems were developed and deployed in safety-critical situations.
The experimental results emphasize the applicability of the guidelines in automotive
industry contexts due to their successful employment in this automotive industry
scenario.

In conclusion, it would be valuable to investigate the applicability of this method
to C++ compilers, especially given the current prevalence of embedded systems
using C++ code. This could be a potential avenue for future research in the field of
embedded systems.

Appendix B

My publications

B.1 Journals

1. Dependability in Embedded Systems: A Survey of Fault Tolerance Methods
and Software-Based Mitigation Techniques
M. Amel Solouki, S. Angizi and M. Violante.
to be submitted
arXiv preprint arXiv:2404.10509

2. An Experimental Evaluation of Control Flow Checking for Automotive Em-
bedded Applications Compliant with ISO 26262
M. Amel Solouki, J. Sini and M. Violante.
IEEE Access, doi: 10.1109/ACCESS.2023.3279731

3. Implementation of Control-Flow Checking - A New Perspective Adopting a
Model-Based Software Design Approach
M. Amel Solouki, J. Sini and M. Violante.
Electronics 2022, 11(19), 3074; DOI= 10.3390/electronics11193074

4. A Novel Redundant Validation IoT System for Affective Learning based on
Facial Expressions and Biological Signals
A. Marceddu Costantino, L. Pugliese, J. Sini, G. Ramirez Espinosa, M.Amel
Solouki, P. Chiavassa, E. Giusto, B. Montrucchio, M. Violante, and F.De Pace
Sensors (ISSN: 1424-8220) Vol 22, 2022-DOI = 10.3390/s22072773

106 My publications

B.2 Conferences and Workshops

1. Enhancing Automotive Embedded Applications: A Comprehensive Evaluation
of Control Flow Checking Methods
M. Amel Solouki, J. Sini and M. Violante
IEEE 2nd International conference on Design, Test & Technology of Integrated
Systems (DTTIS).
Accepted

2. Guidelines for Implementing Control Flow Checking into Automotive Embed-
ded Applications Developed with C Language
J. Sini, M. Amel Solouki and M. Violante
IEEE Nordic Circuits and Systems Conference (NorCAS), 2023, pp. 1-6, doi:
10.1109/NorCAS58970.2023.10305466.‘

3. A New Approach to Selectively Control Flow Checking Methods Compliant
with ISO 26262
M. Amel Solouki, J. Sini and M. Violante
20th ACM International Conference on Computing Frontiers (CF ’23), 215–216.
https://doi.org/10.1145/3587135.3592185

4. Assessing Effectiveness of Software-Implemented Control Flow Checking
Methods for Automotive Embedded Applications : a New Approach
M. Amel Solouki, J. Sini and M. Violante
The 6th Conference on PhD Research in Microelectronics and Electronics in
Latin America (PRIME-LA) was held in conjunction with the 2023 IEEE 14th

Latin American Symposium on Circuits and Systems (LASCAS) in Quito,
Ecuador -Presented

5. An Empirical Study on the Effectiveness of Control Flow Checking Algorithms
Implemented by the Model-Based Software Design Approach
M. Amel Solouki, J. Sini and M. Violante
29th IEEE International Conference on Electronics, Circuits and Systems
(ICECS), 2022, pp. 1-4, doi: 10.1109/ICECS202256217.2022.9970849.

6. Control Flow Error Detection Techniques Assessment for Embedded Software
Development and Validation

B.2 Conferences and Workshops 107

M. Amel Solouki, J. Sini and M. Violante
27th IEEE European Test Symposium (ETS)-Poster

	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Research Objectives
	1.2 Contributions
	1.3 Structure

	2 Background And State-Of-The-Art
	2.1 Setting the Scene
	2.2 Software-Implemented Detection Techniques
	2.3 Control Flow Error
	2.4 In-Depth Examination of Control Flow Checking Methods
	2.4.1 CFCSS
	2.4.2 YACCA
	2.4.3 ECCA
	2.4.4 RSCFC
	2.4.5 CEDA
	2.4.6 ACFC
	2.4.7 SCFC
	2.4.8 HETA
	2.4.9 SEDSR
	2.4.10 SIED
	2.4.11 RASM
	2.4.12 RACFED
	2.4.13 In Closing

	2.5 Design Diversity Based Software Fault Tolerance
	2.6 Single-Design Software Fault Tolerance Approach
	2.7 Hardware-Based Fault Tolerance Techniques
	2.7.1 Redundancy in Hardware-Based Fault Tolerance Techniques

	2.8 Hybrid methods
	2.9 Using the C language in automotive industry applications
	2.10 Functional Safety in the Automotive Industry
	2.11 ISO26262-compliant classification
	2.12 A Note on Control-flow Integrity Techniques for Soft Errors-security
	2.12.1 Data integrity

	3 Experiment Prerequisites
	3.1 Fault models
	3.2 Implemented Software-Based Hardening Technique
	3.2.1 YACCA
	3.2.2 RACFED
	3.2.3 Experimentation with Compiler Optimizations

	4 Experimental Study on CFC Detection Techniques
	4.1 Target platform
	4.2 Hardening technique performance assessment
	4.3 Fault injection results
	4.4 C programming language Fault injection results
	4.4.1 Diagnostic coverage
	4.4.2 Overheads

	4.5 Model-Based Software Design Fault injection results
	4.5.1 Diagnostic Coverage
	4.5.2 Overhead

	5 Conclusion
	5.1 Summary
	5.2 Main contributions
	5.3 Future Work

	References
	Appendix A Guidelines
	A.1 Introduction
	A.2 Functions or macros needed in C language
	A.3 Switch-case construct
	A.4 If-else construct
	A.5 Function calls
	A.6 For loops
	A.7 Conclusions

	Appendix B My publications
	B.1 Journals
	B.2 Conferences and Workshops

