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Abstract

Cancer can be considered a complex system consisting of a heterogeneous cell
population interacting with its environment. Cancer cellular behaviour is guided by
intrinsic rules and regulatory dynamics in the interplay with abiotic factors and other
cell populations. This influences not only the evolutionary history of the tumour mass
in the organism but also its reaction to applied therapies. Moreover, the therapies
themselves and the selective pressure exerted by the environment in turn influence
the composition of the tumour mass and its evolution in time.

The complexity and the overlap of all these processes make it difficult to find a
biologically coherent explanation or observe the underlying dynamics of numerous
emerging phenomena. The idea behind the use of mathematical modelling in the
biological field, specifically oncology here, is to provide a tool that, built on the
scientific knowledge we possess, can fill the gap with the observed phenomena.

In this thesis, with the aim of investigating the phenomena of resistance and
relapse in cancer treatment, we focus on characteristics of the tumour mass that are
relevant both for their impact on the outcome of therapies and for the benefit of the
use of the mathematical tool: geometry and heterogeneity.

In detail, with geometry, we refer to the growth, movement, shape, and spatial
location of the mass. Addressing heterogeneity, we consider the different genetic
and epigenetic signatures that characterize cell subpopulations, altering, together
with environmental conditions, their phenotype.

In order to catch these features, in the various models of the thesis, spatial PDEs
are adopted and structured or multiple cell populations are employed, with a predom-
inance of non-local continuous modelling strategies with multi-scale derivation. In
all our models, the description of the tumour population is characterized by prolif-
erative, mortality, and motile dynamics and the (epi)genetic signature determines
the performance potential of each. Furthermore, when considered in the models,
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external factors are directly entered into the framework. In particular, we consider
the interaction with abiotic factors and other populations.

In this thesis, great importance among the environmental factors is given to the
oxygenation state of the tissues. Many of the models we present include hypoxia,
considering its influence on proliferativity as its regulator, on mortality as a selective
pressure, and on cell movement as a trigger of chemotactic drift.

Particular attention is given to anti-tumour processes, which include the defence
reaction of the immune system and therapies, such as radiotherapy and oncolytic
virotherapy. Even when studying treatments, the influence of oxygenation is taken
into account.

Both the works already carried out and the future perspectives move in the
direction of therapeutic optimization from a personalised medicine perspective. In
this sense, mathematical modelling represents an adjuvant tool alongside clinical
analysis in the diagnosis and treatment. The final aim is to propose an alternative
to the systematic use of standard protocols and against the paradigm of aiming at
eradication as the only therapeutic strategy, in the attempt to avoid the emergence of
relapses and extend patient’s life, keeping its quality as uncompromised as possible.
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Introduction

Almost every paper on mathematical modelling for oncology begins with citations
of global cancer mortality statistics. I think it is not necessary. The evidence of
the criticality of the presence of this disease occurs daily in everyone’s life through
direct experience or contact.
The motivation for this thesis is among the most banal in research: when faced with
something scary and painful, try to use what you have to do something. Readers
will forgive me for the lack of scientific language (which will even get boring in
the following pages), but the point is that cancer is ugly, but above all, difficult to
observe and understand.
When it comes to cancer, the biggest problem is not understanding. Not understanding
the cause-effect relationships and the activation pathways that govern its behaviour
and not understanding the dynamics by which treatments that work on paper result
in outcomes that are often only temporarily successful and then end in resistance,
recurrences and mortality.
The mathematical tool tries to fill the gap between the scientific knowledge acquired
and the medical observations, in the attempt to bring to light underlying unobservable
dynamics motivating unexplained phenomena.

This thesis focuses on the study of tumour masses in their evolutionary dynam-
ics, considering the changes in shape and cellular composition and analysing the
contribution of the interaction with the environment on the history of the cancer cell
population.
Specifically, we consider oxygen concentration a predominant factor in delineating
evolutionary processes, and we investigate dynamics such as movement, prolifer-
ation, and survival. These emerging traits of the tumour mass are analysed as a
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characterisation of its features and as factors in the reaction to the immune system,
as well as clinical treatments, e.g. radiotherapy and oncolytic virotherapy.
The general perspective of the entire thesis is that of personalised medicine, with
the aim of making the mathematical tool a continuous map between the patient, the
evolutionary history of the tumour and the outcomes of the various therapies, being
able to optimize the treatment based on specific, individual characteristics.

We now present a brief map of the contents. The thesis is structured in three
parts. Part I introduces the biological and mathematical framework for the works.
It provides all the basic knowledge needed to understand the mathematical models
introduced in the various chapters and the biological processes described. A general
state of the art is included. Part II collects all the research results obtained so far,
including the contents of already published or submitted papers. Part III presents
ongoing works and future perspectives and finally summarizes the current point of
arrival and future steps.

Let us firstly consider Part I.

In Chapter 1, we introduce the needed biological background to understand the
tumour dynamics involved in our mathematical models. All specific biological terms
used in this section, which may not be immediately clear to the reader and cannot be
introduced in detail for the sake of conciseness, are exhaustively explained in this
chapter. We begin by introducing some basic knowledge on the biology of normal
cells and then pass on to enlighten the differences between cancer cells and the dif-
ferent levels of heterogeneity expressed in cancer cell populations. After presenting
cancer cells and their characteristics, we introduce essential information on their
interaction with the microenvironment. We exploit dynamics such as angiogenesis
and invasion to underline the fundamental role of signalling and epigenetic mutation.
Moreover, we describe the interaction between tumour cells and the immune system,
concentrating on immunoevasion dynamics. We then move to therapies, giving an
overview of clinical strategies and focusing on two treatments we model later in
the thesis: radiotherapy and oncolytic virotherapy. Finally, we explain the meaning
of analysing cancer as an evolutionary process, enlightening its multi-scale nature,
describing it in its temporal phases, and considering the trade-offs that its cells face.
At the end of the chapter, we explicitly state each notion’s relevance in the models
we present in the subsequent chapters.
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In Chapter 2 we present an overview on the adoptable mathematical strategies in
order to catch the biological dynamics introduced in the previous chapter. We explain
the role and interest of mathematical modelling in oncology, providing a characteri-
sation of the main strategies (continuous/discrete/hybrid, deterministic/stochastic)
and describing the pros and cons of different approaches. Given the wide range of
themes, we present a common review of mathematical models for the general subject
and then introduce a specific state of the art for each single theme in the relative
section of each chapter. We then specify which strategies are adopted in the models
we introduce in the following chapters.

We then move to overview Part II, in which each chapter presents a different
model, each built for the investigation of a specific dynamic (every chapter refers
to an already published or submitted paper). With a generic map, Chapter 3 and 4
are linked by common dynamics of proliferation and survival with respect to the
oxygenation of the environment, considering the cancer mass evolution (Chapter 3)
or also radiotherapy (Chapter 4). Chapter 5 and 6 are related due to the presence of
migratory dynamics, with a specific interest in environmental-driven invasive and
metastatic dynamics (Chapter 5) and epigenetic characterisation of EMT dynamics
(Chapter 6).

Let us analyse the content of the various chapters a little more in detail.

Chapter 3 concentrates on cancer evolution, particularly in the critical tumour-
environment interaction. We focus on the central role of oxygen concentration in
determining the phenotypic heterogeneity of cancer cell populations, whose qual-
itative and geometric characteristics are predominant factors in determining the
outcome of the cancer mass history. Contents of this chapter are published in Ref.
[112]. We propose a mathematical model able to describe the eco-evolutionary
spatial dynamics of tumour cells in their adaptation to hypoxic microenvironments.
As a main novelty with respect to the existing literature, we combine an epige-
netic indicator reflecting the experimentally observed metabolic trade-off between
the hypoxia-resistance ability and the proliferative potential with a 2d geometric
domain without the constraint of radial symmetry. The model is settled in the
mathematical framework of epigenetically structured population dynamics, and it is
formulated in terms of systems of coupled nonlinear integro-differential equations.
The computational outcomes demonstrate that hypoxia-induced selection results in a
geometric characterisation of phenotypic-defined tumour niches that impact tumour
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aggressiveness and invasive ability. Furthermore, results show how the knowledge
of environmental characteristics provides a predictive advantage on tumour mass
development in terms of size, shape, and composition.

In Chapter 4, we stick to the context of the previous chapter but insert radio-
therapy as a treatment. We consider the pivotal role of eco-evolutionary dynamics
in the study of therapeutic strategies for cancer treatment. Contents of this chapter
are published in Ref. [111]. Keeping our interest on the geometric and epigenetic
characterisation of the tumour, we analyse the impact of the characteristics of the
tumour population, the interaction with the environment, and the effects of the
treatment. These different triggers have direct consequences on the efficacy of the
therapy and possible relapses. In particular, considering radiotherapy, we investigate
the central role played by oxygen concentration both in determining the effective-
ness of the treatment and the selective pressure due to hypoxia. In the chapter, we
propose a mathematical model, settled in the framework of epigenetically struc-
tured population dynamics and formulated in terms of systems of coupled nonlinear
integro-differential equations, that aims to catch these phenomena and provide a
predictive tool for the tumour mass evolution and therapeutic effects. The outcomes
of the simulations show how the model is able to explain the impact of environ-
mental selection and therapies on the evolution of the mass, motivating observed
dynamics such as relapses and therapeutic failures. Furthermore, it offers a first
hint for developing therapies that can be adapted to overcome resistance and relapse
problems.

In Chapter 5, we focus on epithelial-mesenchymal transition in cancer cells
and introduce novel hybrid modelling for it. Contents of this chapter are published
in Ref. [110]. In order to take into account the typical heterogeneous and time-
evolving composition of cell populations in biological systems, and in particular in
cancer masses, we propose a modelling framework in which a discrete structuring
variable distinguishes cells according to their genotype while a specific mathematical
representation (i.e., individual/pointwise vs. collective/density-based) is assigned
to each individual based on its phenotypic hallmarks. We provide a mathematical
expression of phenotypic plasticity, accounting for the role played by stochasticity
and environmental conditions. The modelling environment is then enriched with
migratory dynamics, duplication/apoptotic processes, and chemical kinetics. We
apply the resulting model to the scenario of a heterogeneous tumour aggregate
cultured in vitro.
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In Chapter 6, we pay particular attention to the critical phenomenon of tumour
cell migration within their microenvironment in the intricate landscape of cancer
progression. Again, we put specific interest on hypoxia as a potent factor influencing
tumour behaviour in this context. We analyse how insufficient oxygen levels act as a
stressor on cells, prompting them to exhibit biased migration and undergo pheno-
typic changes. Concerning this, in this chapter, we concentrate on the role of Snail
transcription factors, which play a central role in how cells respond to hypoxic condi-
tions since they influence various cellular processes such as epithelial-mesenchymal
transition, migration, proliferation, and invasiveness. We propose an innovative
multi-scale mathematical model to address the intricate interplay of cellular and
molecular dynamics underlying tumour migration. This model seamlessly integrates
single-cell behaviour driven by Snail expression with macroscopic tumour migration
dynamics. Initially, we formulate kinetic transport equations that delineate the evo-
lution of cell distribution based on detailed microscopic dynamics. Subsequently,
utilizing appropriate scaling principles, we derive equations describing the statistical
properties of the cell distribution. These equations capture migratory dynamics
influenced by dispersion, oxygen-mediated drift, and the evolving average Snail
expression within the tumour cell population. We conduct numerical simulations
across diverse biologically relevant scenarios, providing insights into the role of
chemotactic-driven motion, anti-crowding effects, and the impact of Snail expression
on cell proliferation. Qualitative validation against experimental data demonstrates
the model’s capacity to reproduce hypoxia-induced migration patterns and gradients
of Snail expression observed in tumour tissues. Moreover, quantitative comparison
with experimental data validates the model’s efficacy in assessing the impact of Snail
transcription on cell migratory potential. These findings underscore the potential
of our mathematical framework as a promising approach to integrate molecular sig-
nalling pathways with cell dynamics, offering novel interpretations of experimental
data and advancing our understanding of the biological mechanisms driving tumour
progression. This investigation is presented in a preprint [109]), submitted in April
2024 to Communications in Nonlinear Science and Numerical Simulation journal.

Finally, we present Part III, in which we keep a similar chapter organisation
as in the previous part (with the only difference that works inserted here are still
under investigation) and finally present an overview of the current state of research,
underlining what has already been "concluded" and which are the future perspectives.
Chapter 7 keeps a link with Chapter 5 and Chapter 6 concerning migration dynamics
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focusing on go or/and grow dynamics. Chapter 8 introduces an independent analysis
of oncolytic virotherapy to open the path to a possible combination of radiotherapy
in further works. Chapter 9 introduces the immune system with a future perspective
on immunotherapy.

In particular, in Chapter 7, we present six models grouped under two modelling
strategies for cell movement: Fisher-like and anti-crowding. For every strategy,
we propose three different models differentiated for the epigenetic structure choice
adopted for the cell population: no epigenetic structure, a structure based on the
proliferative epigenetic trait or a double structure based on both proliferative and
motility epigenetic traits. The idea behind the work is the investigation of the
stratification of tumour spheroids that present an inner quiescent core and an outer
proliferative near the edge, beyond which fingers of motile cell populations infiltrate
healthy tissue. In this model, we neglect the investigation of the environmental
impact to focus on how the dynamics of proliferation and migration, influenced by
the heterogeneity and epigenetic evolution of the cell population, can alone confer to
the tumour mass: (i) growth speed and shape characterisation (ii) specific geometric
features to the epigenetic and phenotypic traits. The results obtained so far are part
of a joint project with the Mathematical Oncology Laboratory (MOLAB) in Ciudad
Real.

In Chapter 8, we focus again on environmental factors and therapies, introducing
a novel mathematical approach to oncolytic virotherapy, accounting for the effect
of hypoxia. Results are related to the modelling approach adopted in Chapter 3
and Chapter 4, we build our model in order to catch the evolutionary dynamics
of a tumour population that we differentiated in uninfected cells, epigenetically
structured, and infected cells, all grouped despite their characteristic trait. The
epigenetic variable confers a trade-off between the proliferative rate on one side and
the resistance both to the killing action of the virus and hypoxia on the other side.
Other agents included in the model are the virus and the oxygen. The main idea of
the work is to determine the impact of the epigenetic evolution of the mass, both in
terms of composition and geometry, on the effectiveness of the treatment, evaluated
in terms of eradication or growth control of the tumour mass. In the first moment,
the investigation treats a simple scenario with homogeneous oxygen distribution
in a stationary state. Then, we move to spatially heterogeneous abiotic conditions.
Finally, the study aims to consider scenarios in which both the presence of the tumour
itself and the tissue characterisation cause a time evolution of the environmental state
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in terms of oxygenation. This chapter contains partial results of a joint work with
Prof. Federico Frascoli (Swinburne University of Technology) and David Morselli
(Politecnico di Torino, Università di Torino, Swinburne University of Technology)
(currently under submission).

In Chapter 9, we present the early results of an initiated project in collaboration
with Professor José A. Carrillo (Oxford University). We start from an already
presented model built to describe the behaviour of two cell populations, characterised
by adhesive properties, which cohabit in a shared space, and we propose an adaptation
of the same to catch interaction dynamics between the cancer population and the
immune system. In particular, we start to characterize the cancer population in terms
of proliferative rate, detectability by the immune system and death factor due to
the immune action. We propose a trade-off between the first trait and the second
two, supposing that highly proliferative cells are more visible and less resistant to
immune action. We are first interested in the effect of these rates on (i) the possibility
of eradication and (ii) the outcome in terms of hot/cold tumours. Moreover, we pass
to consider a heterogeneous cancer population, admitting (at the first moment) two
subpopulations with opposite features (one highly proliferative, one highly resistant).
We aim to investigate the effect of the proportion of the two subpopulations and their
spatial location in the tumour mass on the outcomes (considered as above). This
initial setting opens the path to a structured population model.

In the Conclusions, we summarize the results obtained and the future perspec-
tives specifically related to each work and already presented in every chapter. We
deduce a fil rouge, which we show as a proposed path for the next steps in this
research direction.



Part I

Framework and basic knowledge





Chapter 1

Biological framework

According to the US National Cancer Institute, a tumour is defined as an abnormal
mass of tissue that forms when cells grow and divide more than they should or do
not die when they should. Cancer is a group of diseases caused by the uncontrolled
growth and spread of abnormal cells. Tumours can be cancerous, but not all tumours
are. Despite this, in this discussion, we consider cancerous tumours, and for this
reason, we refer indiscriminately to cancer or tumour cells.

If seen from a physical point of view, a tumour can be considered a mass; from
a population point of view, it is a set of cells (precisely a population) governed by
dynamics involving displacement and metabolic activity. Moreover, it is a population
composed of different subpopulations, each of which is characterised by a distinctive
signature.

Cancer cells, coming from but distinct from normal cells, are distinguished
by well-known characteristics such as proliferating uncontrollably, resisting death
and manipulating their surroundings for survival, breaking the usual cellular order.
Emerging from the normal somatic cell features, they evolve selfish traits, prioritising
individual fitness over the multicellular group [193]. Interactions among cancer cells
and with normal cells create complex tumours with organised systems. Diversifying
to occupy ecological niches, cancer cell communities exhibit cooperation within
and between subpopulations (also called clones) [87]. However, the drivers of these
interactions and the transition from exploiting cooperation with normal cells to
engaging in cooperative behaviours with other cancer cells remain unclear.
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In order to simplify the view, we could think of the tumour mass as an emerging
cell formation that breaks the equilibrium of the healthy host, entering a competition
for the same resources needed by healthy cells. In the context of this discussion,
oversimplifying the complex biology that would deserve an exhaustive discussion of
oncological dynamics, we can say that the life of the tumour mass is determined by
four predominant and overlapping dynamics:

• competition with healthy cells of the host tissue,
• the interaction with the abiotic factors of the environment that contains it,
• interaction with the body’s immune system,
• the effect of the applied therapies.

The intra-tumoural heterogeneity, both considered in terms of the presence of
different subpopulations and of their spatial collocation in the tumour mass, plays
a central role in all these four dynamics. On the one hand, the presence of this
heterogeneity, initially caused by intrinsic cancer characteristics determined at a
cellular level, influences the outcome of all the interactions. On the other hand, these
outcomes induce the survival or not of a subpopulation, having a determinant effect
on the evolution of the intra-tumoural heterogeneity.

For this reason, concerning the healthy-cancer cell interaction (Section 1.1), in
this chapter, we begin with a brief overview that aims to explain the functioning of a
generic healthy cell of the human body as a single agent and as part of a multicellular
organism (Section 1.1.1). We then move to characterise generic cancer cell biology,
underlining the difference between healthy cells and the effect of these on the compet-
itive dynamics (Section 1.1.2). Moreover, we seek an explanation at the microscopic
level of the intrinsic intra-tumoural heterogeneity, then subsequently analyse how
this level intersects with dynamics of selection or expansion of heterogeneity at the
population level (Section 1.1.3).
Following, we consider the interaction between the tumour and its microenvironment
(Section 1.2), concentrating on resulting dynamics such as angiogenesis (Section
1.2.1) and metastasis (Section 1.2.2).
Moreover, regarding the interaction of the tumour mass with the immune system
(Section 1.3), we first explain its normal functioning (Section 1.3.1) and then high-
light how cancer cell-specific features could affect the dynamics observed (Sections
1.3.2 and 1.3.3).
We then give an overview of the biology behind therapies and their effectiveness
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(Section 1.4), focusing, later, on radiotherapy (Section 1.4.1) and oncolytic virother-
apy (Section 1.4.2).
Finally, we give a evolutionary point of view of cancer (Section 1.5), considering it
in its multiscale nature (Section 1.5.1), analysing its phases (Section 1.5.2). Lastly
we present an interpretation of the cancer mass history coherent with an ecological,
evolutionary developmental biology perspective (Section 1.5) and we analyse the
trade-offs that cancer cells must face (Section 1.5.4). Note that the role of abiotic
factors is strictly interconnected with all these interactions, and instead of dedicating
a different section, we treat it in all these contexts.

1.1 Cancer cell and host tissue

Cellular biology, and in particular that of tumour cells, is vast, still little understood,
although much investigated, and includes a series of mechanisms too broad to be
exhaustively treated in their individuality, even more difficult in their interaction.
Without going into the role of the cells present in the various organs and tissues
of the human body, and therefore the actions carried out by each to ensure the
overall functioning of the organism, let us start from a simple but central fact: living
organisms need functional and organised cells to exist, and this condition is met by
processes that include reproduction, maintenance and cell death. Cancer originates
from healthy cells. Many theories, the most accredited of which are presented
subsequently, have been exposed to the dynamics with which this happens. To
delve into the exploration of what leads to the formation of a tumour mass and
what characterises it, we first provide a brief overview of the mechanisms of generic
healthy cells in the dynamics of life, reproduction and death and then try to enlight
which dysregulations within themselves cause and "regulate" the tumour mass.

1.1.1 Cell biology

The focus of this first section will be on essential dynamics common to most cells:
the cell cycle, the production of energy necessary for the various phases of the same,
and the mechanisms regulating the life and death of cells.
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Cell cycle

The cell-division cycle is the sequence of events that leads to the formation of two
daughter cells through a process of preparation and division of a cell called the
mother cell. All eukaryotic cells can be in three different states: resting, interphase
or division. The cell cycle determines the passage between these states. Cell division
states include mitosis and cytokinesis, two consequent subprocesses of the M phase.
Between two division states, cells face an interphase state, in which the cell prepares
itself for the new reproduction process. Interphase state includes G1 (gap one), S
(synthesis), and G2 (gap two) phases. When a cell abandons the cycle, it goes into a
resting state that matches with the G0 (gap zero) phase. Proper progression through
each phase is essential (see Fig. 1.1).

Fig. 1.1 Cell cycle representation. Figure taken from [350].

• G0 phase
The resting phase is characterised by the absence of division. Cells usually
exit the cell cycle in phase G1 and can enter the G0 phase reversibly (this is
called quiescence) or permanently (as it happens in senescence).

• G1 phase
This phase is recognised as the growth phase, as the cell increases the number
of organelles and grows in size. These developments are made possible by
the resuming of biosynthetic activities at a high rate (after a slowdown during
phase M), which causes an increase in the supply of proteins. At the end of the
G1 phase, there is regulated by G1/S cyclins, which cause a transition from
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the G1 to the S phase or stop the cells if they are not ready for the division
process (they can be sent either backwards in the progression of the cycle or
out of it entering the G0 phase).

• S phase
The subsequent S phase initiates with the onset of DNA synthesis, culminating
in the replication of all chromosomes, resulting in two sister chromatids for
each chromosome. Consequently, the cell’s DNA content doubles while ploidy
and chromosome number remain constant. This phase is characterised by very
low rates of RNA transcription and protein synthesis, with the exception of
histone production, which is predominantly active during the S phase.

• G2 phase
After DNA replication, in phase G2, the cell synthesises proteins and grows
in size rapidly. This phase includes microtubule reorganisation to form a
spindle (preprophase). Before entering the mitotic phase, cells undergo a G2
checkpoint to check for any DNA damage. The G2 checkpoint is primarily
regulated by the tumour protein p53, which, if the DNA is damaged, can
either facilitate DNA repair or initiate apoptosis. In this phase, the presence of
mutated p53 may be the cause of cancer cell formation, allowing cells with
damaged DNA to progress through the cell cycle.

• M phase

– Mitosis: M phase takes little time in comparison with the cell cycle but
is a complex one, made of different subphases. In this process, mitosis
occurs, i.e. the chromosomes in the nucleus divide into two identical sets
in two nuclei. This happens because the pairs of chromosomes attach to
microtubules, and the sister chromatids are pulled to the opposite side of
the cell.

– Cytokinesis: After mitosis, the DNA material of the cell has been com-
pletely duplicated. In cytokinesis, the cell undergoes division of the
nuclei, cytoplasm, organelles, and cell membrane, resulting in the for-
mation of two cells with approximately equal shares of these cellular
components.
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Energy production

Cells operate a series of metabolic reactions and processes to convert chemical
energy from nutrients into adenosine triphosphate (ATP), which contains the energy
necessary to fuel cell activities. This process is referred to as cellular respiration.
In order to happen, cellular respiration needs the presence of an inorganic electron
acceptor. Cell respiration strategies are differentiated into two categories, aerobic
and anaerobic, whether this acceptor is oxygen or not.

Both aerobic and anaerobic respiration starts in the cytosol with glycolisis, which
is considerable as a "sugar-splitting" phase. This process takes as reagents one
molecule of glucose, NAD+ and ADP, transforming them into two molecules of
pyruvate (pyruvic acid), four molecules of ATP (two of which are consumed as part
of the preparatory phase) and two NADH molecules. This is where aerobic and
anaerobic respiration split their paths.

Aerobic respiration

The first step of aerobic respiration is the oxidation of pyruvate to acetyl-CoA by the
pyruvate dehydrogenase complex (PDC), in a process called oxidative decarboxyla-
tion (Ox. D.) that occurs in mitochondria and also produces one molecule of NADH
and one molecule of CO2. When oxygen is present, the acetyl-CoA molecules enter
what is called Krebs cycle. Krebs cycle includes the action of eight enzymes that
oxidise acetyl-CoA into two molecules of CO2 and H2O each. For every acetyl-Coa
molecule that enters, the several oxidative steps included in the cycle produce the
following transformations:

• Three equivalents of NAD+ are turned into three equivalents of NADH.

• One equivalent of flavin adenine dinucleotide (FAD) is transformed into one
equivalent of FADH2.

• One equivalent of guanosine diphosphate (GDP) and inorganic phosphate (Pi)
are turned into one equivalent of guanosine triphosphate (GTP).

GTP molecules are directly converted in ATP, but the main ATP production of
aerobic respiration is due to oxidative phosphorylation (Ox. P.), in which electrons
derived from NADH and FADH2 combine with O2, and the energy released from
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these oxidation/reduction reactions is used to drive the synthesis of ATP from ADP.
In particular, the net production rate of ATP is 2.5 from NADH and 1.5 from FADH2.
The complete process is represented in Fig. 1.2.
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Fig. 1.2 Schematic representation of aerobic respiration.

Thus, considering the whole aerobic respiration, starting from one molecule of
glucose, we have:

• 2 net ATP molecules directly produced during glycolysis (4 released, 2 used);

• 2 ATP molecules directly produced from GTP during Krebs cycle;

• respectively 2 and 6 NADH molecules released during glycolysis producing
2∗1.5/2.5 = 3/5 ATP molecules in the oxidative phosphorylation (here the
uncertainty stands in the possibility of a drop in the conversion rate due to the
necessity of NADH produced in the cytosol to pass through the mitochondria
membrane);

• respectively 2 and 6 NADH molecules released respectively during oxidative
decarboxylation and Krebs cycle, producing (2+6)∗2.5 = 20 ATP molecules
in the oxidative phosphorylation;

• 2 FADH2 molecules released in Krebs cycle producing 2 ∗ 1.5 = 3 ATP
molecules in the oxidative phosphorylation;
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for a total of a net ATP production of 30/32 molecules per glucose molecule. The
final side products of the whole process are CO2 and H2O.

Anaerobic respiration

We stated that aerobic and anaerobic respirations split their path after glycolysis, but
the reason is not that oxygen is strictly necessary to pyruvate oxidation. The problem
is that, in the lack of oxygen, the electron transport chain is not functional. Thus,
since the NADH made in glycolysis is not useful in producing additional ATP in
oxidative phosphorylation, the only purpose for which it can be used is to drop its
electrons off to turn back into the NAD+ required to fuel glycolysis. The process
used to do that is called fermentation and can occur on different molecules.

• Alcohol fermentation
In the pyruvate oxidation occurs in the absence of oxygen, the process stops
a step above, resulting in the production of acetaldehyde, whose molecule is
similar to acetyl-CoA but does not allow the entrance into the Krebs cycle. In
this case, NADH ceases its electrons to acetaldehyde, regenerating NAD+ and
forming ethanol as a side product.

• Lactic acid fermentation
In the case pyruvate oxidation does not occur, NADH releases its electrons
directly to pyruvate, again with the effect of regenerating NAD+, but forming
lactic acid as a side product.

Thus, the net ATP production of anaerobic respiration lies in the only two molecules
produced during glycolysis.

A comparison

It is evident that the net production rate of ATP, with respect to the same amount
of glucose involved, is 15−16 times higher for aerobic respiration. Moreover, side
products of aerobic respiration are easier for the organism to handle since lactate
and ethanol are acids and tend to create a hostile environment for healthy cells. On
the other side, anaerobic respiration needs fewer conditions to be possible and takes
less time (it can be 100 times faster). Thus, considering the regulatory pathways
that control an organism (the next session makes this clearer), we can say that in
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healthy conditions, aerobic respiration is the preferred one when possible, while
anaerobic is used when strictly needed. Later in the discussion, we highlight how
this choice is not always implemented. In particular, we will discuss how this
not-obvious preference is not only a characteristic feature of tumour cells but also
has a great impact on the evolutionary dynamics of cancer in intra-tumoural and
tumour-environment competition.

Cell regulation: homeostasis and its maintenance

Homeostasis is a concept that could be defined as a state of a functional, stable
equilibrium. The pursuit of maintaining homeostasis underlies the regulatory dy-
namics of an organism at different scales. Cellular homeostasis ensures that cells
maintain stable conditions necessary for optimal cell function, metabolism, growth,
and survival. This process relies on complex signalling pathways that detect and
respond to environmental changes, preventing fluctuations that may jeopardise cellu-
lar integrity. Cells adeptly modulate their metabolism in response to the availability
of nutrients, energy, and growth factors. The flexibility of these cellular systems is
precisely controlled by intricate signalling networks that integrate intracellular and
extracellular information [202].

On a broader scale, maintaining tissue homeostasis involves the fundamental
components that make up a tissue, a feedback loop within the tissue, and how cells
within the loop respond to environmental pressures such as space availability, growth
factors, cytokines, oxygen, and tension. The equilibrium in tissue homeostasis relies
on precise control of tissue renewal throughout life, balancing cellular proliferation
and differentiation. Essential to this balance is transcriptional regulation at both the
genetic and epigenetic levels [12]. In general, we can say that single-celled entities,
typically considered individualistic, have undergone cooperative interactions during
the evolution of multicellularity. This cooperative behaviour, enhancing the fitness of
the multicellular organism, was initially driven by the emergence of new cooperation
genes or the co-option of existing genes with individual-level functions. Among all
cell processes, the more involved in regulatory dynamics are reproduction, death and
differentiation.

We can provide a very general overview of homeostatic maintenance, saying that
in multicellular individuals, cells are part of signalling pathways thanks to which
the organism is informed about the number of cells which are present and can start
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cell division if more cells are needed or death if too many are present. The cell
division process has already been introduced and explained in the cell cycle. We can
further introduce a specification about cell division that takes into account not only
the chance to proliferate but also the product of this division. In fact, cells (even in
the same tissue) are not all the same, and every tissue has a differentiation cascade,
which is a sequence of cell degrees of specialisation. Among dividing cells, there
are multiple levels of cell potency, which is the cell’s ability to differentiate into
other cell types. A greater potency indicates a larger number of cell types that can be
derived. We define a cell [408]:

• totipotent, if can differentiate into all cell types;

• pluripotent, if it can differentiate into all cell types of the adult organism;

• oligopotent, if it has a more restricted reproductive potential than multipotent
but can still differentiate into a few closely related cell types;

• unipotent, if it is only capable of self-renewal (production of daughter cell in
the same compartment);

• terminal differentiated, if it has permanently exited the cell cycle, disassembled
the cell cycle machinery, and activated the genes indicative of its ultimate
function.

Less specialised cells are less capable of specific functional activities and have
the task of maintaining the cell population in the right number. More specialised
cells, on the other hand, are the ones that, with their specific activities, contribute
to the actual function of the tissue/organ. When they proliferate, less differentiated
cells are hinted by the environmental signalling in producing daughter cells, which
are the same as the mother or differentiated in the next specialisation step, according
to what is needed. We do not go into the details of this complex signalling system,
which includes chemical, genetic and epigenetic factors. We will only consider, in
the next session, the processes that differentiate cancer cell functioning from healthy
cells or the formation of cancer cells itself.

Considering the death program, there are two main mechanisms that cells adopt.
One is senescence, which is a stable cell cycle arrest triggered by diverse stimuli
that stops its proliferative potential. Senescent cells undergo continuous evolution,
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exhibiting distinct phenotypic alterations and a complex secretory phenotype. Un-
responsive to mitogenic signals, these cells impact tissue repair and ageing and
possess both beneficial and detrimental effects on health. Senescence serves as an
antitumour mechanism, hindering cancer cell proliferation. Removal of senescent
cells extends healthspan, showcasing its dual nature as a program of evolutionary
antagonistic pleiotropy [274]. The other mechanism is apoptosis, which is known as
a "programmed" cell death, which involves the genetically determined elimination
of cells. It is identified by specific morphological features and energy-dependent
biochemical processes, and it plays a crucial role in diverse processes such as regular
cell turnover, immune system development and function, and cell death induced by
chemicals [168].

1.1.2 Cancer cells

In order to operate the needed process, all cancers acquire and apply common abili-
ties and strategies, which are known as cancer hallmarks [213, 214, 211]. Acquired
capabilities and enabling characteristics accepted to be cancer hallmarks are self-
sufficiency in growth signal, evading apoptosis, insensitivity to antigrowth signal,
limitless replicative potential, sustained angiogenesis, tissue invasion and metastasis,
genome instability, reprogramming cellular metabolism, avoiding immune destruc-
tion, tumour-promoting inflammation. Moreover, additional proposals for elements
to be introduced in the list of hallmarks are: unlocking phenotypic plasticity, non-
mutational epigenetic reprogramming, polymorphic microbiomes, and senescent
cells (see Fig. 1.3).

In later sections, we insert a brief explanation of these characteristics and the
dynamics in which they are involved, grouping them as belonging to the same general
strategies:

• oncogenesis

• alternative self-regulation

• promoting tumour heterogeneity.



1.1 Cancer cell and host tissue 21

Fig. 1.3 Comparison between the cancer hallmarks introduced and recognized in Ref. [213]
and [214] and the suggested expansion proposed in Ref. [211]. Figure taken from [211].

Oncogenesis

Oncogenesis, also called carcinogenesis or tumourigenesis, is the formation of a
cancer. The two main theories regarding the dynamics that activate carcinogenesis
are the Somatic Mutation Theory (SMT), more conventional and rooted in oncology
research, and the tissue organisation field theory (TOFT), which has recently emerged
as an alternative to the first [40] (see Fig. 1.4 for a representation of both the theories).
What the two theories have in common is the occurrence of an event that alters the
homeostasis of the organism, that is, an alteration in the regulation of the processes of
cell proliferation and programmed death (apoptosis) in order to maintain the optimal
number of cells to preserve the functionality of the organism. What distinguishes the
theories are the supposed causes that lead to this alteration [411].

The Somatic Mutation Theory posits that the initiation of cancer is caused by a
mutational event endowing cells with a proliferative advantage, thereby instigating
clonal expansion and subsequent iterations of mutations, followed by additional
clonal expansions. The foundational tenets of SMT are expressed through the
following postulates:

1. cancer derives from a solitary somatic cell that has accrued multiple DNA
mutations;

2. the inherent state of cell proliferation defaults to quiescence;
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3. cancer manifests as a disorder of cellular proliferation induced by mutations
in genes governing both proliferation and the cell cycle.

Fig. 1.4 Illustration of SMT and TOFT models: (a) The SMT posits that carcinogens lead
to mutations in the cellular DNA of epithelial cells, leading to the propagation of cells
carrying advantageous mutations. Paracrine factors secreted by the growing tumour alter the
tumour stroma. The altered or ’activated’ stroma, in turn, contributes to cancer progression,
enabling a conducive environment for tumour cell invasion and metastasis. (b) The TOFT
model predicts that carcinogens affect the stroma, leading to altered cell–ECM and cell-cell
interactions in the epithelium, which then results in tumour formation in the epithelium
Figure and caption taken from [40].

The role of adjacent tissues, which in TOFT (as explained later) is central as a trigger,
is present here as support, as they influence the evolutionary dynamics, changing
adaptive fitness of clonal expansion or augmenting the neoplastic phenotype through
the recruitment of surrounding stromal cells. Considering the postulates of SMT,
we can state that in this theory, mutations are considered a necessary prerequisite
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for the onset of cancer, protracted in time as they are infrequent events and persist
when they lead to carcinogenesis. This implies that for a tissue to develop a tumour,
it must be exposed to carcinogens.

Tissue Organization Field Theory [412] says that cancer arises from the disrup-
tion of interactions with adjacent tissue, which can be mediated by intercellular
chemical signals, mechanical forces, and bioelectric changes. TOFT is summarised
by the "development gone awry" expression, as these interactions are thought to play
a role in embryonic development. Differently from what is stated in the second pos-
tulate of SMT, proliferation is considered the default state of all cells. The premise of
TOFT is that carcinogenesis represents a problem of tissue organisation comparable
to organogenesis and can, therefore, occur in tissue which has not been exposed to a
carcinogen. Symmetrically to the supporting role of interactions between adjacent
tissues in SMT, in TOFT, mutations are not necessary but still have a role as genetic
instability is considered a byproduct of carcinogenesis.

In Ref. [40], it is suggested that, in light of current knowledge and observations,
neither of the two theories is able to motivate all the dynamics shown in the medical
literature, both in tumour induction experiments and in clinical practice. In fact,
observations such as recurrent mutations (mutation with a higher frequency in the
tumour than expected by chance), tumour clonality, hereditary cancer, transgenic
experiments (in which mutated genes inserted into animals lead to cancer), and
remission of tumours following the inhibition of enzymes activated by mutated genes
(observed, as an example, in some chronic myelogenous leukaemia cases) would
seem to support SMT theory. On the other hand, SMT is not capable of explaining
other experiments that appear more coherent with TOFT. Among them, there are
cases of induction of cancer mass formation through the insertion of foreign-body (in
which the cause of carcinogenesis is identified in the shape and position of the body
and not in the carcinogenic nature of the material), and of nongenotoxic carcinogens
(chemicals that induce cancer without DNA alterations). Consequently, the article
suggests that in order to obtain a comprehensive explanation, further investigations
should be made into a possible joint theory.
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Uncontrolled proliferation and death of cancer cells

Insensitivity to anti-growth signal

Antigrowth signals can block normal cell proliferation either by reversible or irre-
versible mechanisms (forcing quiescent (G0) state or inducing postmitotic differentiation-
associated states). These mechanisms are part of checkpoint dynamics during the
G1 phase when cells monitor their external environment and decide whether to
proliferate, be quiescent, or enter into a postmitotic state. This decision is made on
the basis of sensed signals, many antiproliferative of which are funnelled through
the retinoblastoma protein (pRb). Since the pRb pathway strictly depends on TGF-β
(which is a soluble signalling molecule that prevents the phosphorylation that inacti-
vates pRb), cancer cells can use a loss of TGF-β responsiveness (obtained through
downregulation of their TGF-β receptors) to avoid sensitivity to antigrowth signals.
Another strategy to avoid quiescence relies on turning off the expression of cell
adhesion molecules that send antigrowth signals (with a pathway that impinges on
the pRb circuit as well) in favour of pro-growth molecules.
Among strategies to avoid differentiation, we found overexpression of the c-myc
oncogene, whose growth-stimulating action is usually balanced by alternative com-
plexes that elicit differentiation-inducing signals.

Limitless replicative potential

Numerous scientific investigations have highlighted that in order to ensure the
expansion of a clone of cells to a size that constitutes a tumour mass, acquired
uncorrelation of the cellular growth program from the environment is not sufficient.
For this to be possible, tumour cells must also deprive themselves of senescence
and crisis, two consequent processes independent of cell-to-cell signalling pathways,
which provide a finite replicative potential. The most credible hypothesis is that
unlimited replicative potential is an essential phenotype acquired in vivo during
tumour progression [220]. Healthy cells show in vivo potential of 60-70 doublings in
their lifespan, the full use of which is, however, limited by homeostatic regulations.
The absence of this regulation in tumour cells, together with the neutralisation of
senescence, would lead to a higher cell number than that observed, necessitating the
hypothesis of chronic apoptosis in malignant masses, which is thought to undergo
significant cell attrition concurrently with the accumulation of cells [454].
The cause of the replicative limitation of healthy cells due to crisis state has been
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recognised as the shortening of telomeres (the final part of the chromosome) with
each reproductive cycle of the cell, a process that gradually leads to end-to-end
chromosome fusions, producing the karyotypic disorder associated with crisis and
resulting, almost inevitably, in the death of the affected cell [132]. Whether by
upregulation of telomerase enzyme, which supplies additional hexanucleotide at
the end of DNA chromosomes, or activation of ALT mechanism, responsible for
telomeres maintenance, malignant cells are able to evade this crisis state induction.

However, there is less certainty about the causes of the induction of senescence,
which are hypothesised to be similar to those of the crisis state but also possibly
identified in conflicting growth signals that force aberrant cells irreversibly into a
G0-like state. Thus, it is less clear if the two telomeres maintenance mechanisms are
sufficient to evade both senescence and crisis or if other anti-signalling strategies are
necessary to evade the first one.

Self-sufficiency in growth signal

Normal cellular proliferation necessitates mitogenic growth signals to transit from
a quiescent to an actively proliferative state. In contrast, tumour cells exhibit a
significantly reduced dependence on exogenous growth stimulation, suggesting that
they generate many of their own growth signals. This feature makes them less
reliable in the microenvironment and more independent in their ability to proliferate.
Cancer cell strategies include receptor overexpression that allows them to become
hyper-responsive to ambient growth factors and favour the expression of extracellular
matrix receptors (integrins) that transmit pro-growth signals. Integrins link cells
to the extracellular matrix (ECM), influencing cell behaviour from quiescence to
motility, apoptosis resistance, and entry into the cell cycle.

Nevertheless, acquisition of growth signalling autonomy by cancer cells can
explain the deregulated growth of tumour only when paired with the contribution of
the ancillary cells present in a tumour. Intercellular growth signalling is expected
to function in most human tumours. A hypothesis suggests that successful tumour
cells may excel in co-opting their normal neighbours, inducing them to release
substantial amounts of growth-stimulating signals [407]. Additionally, inflammatory
cells attracted to neoplastic sites may paradoxically promote, rather than eliminate,
cancer cells [130, 133, 228], directly inducing their uncontrolled growth potential or
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modifying the environment in such a way that favour tumour overcome of a healthy
cell.

Evading apoptosis

As we stated before, apoptosis is a programmed death strategy triggered by a variety
of physiologic signals that allow the organism to maintain homeostasis. Apoptosis
is a process that lasts between thirty minutes and a couple of hours, after which
the leftovers of the dead cell are engulfed by the other cells of the tissue and
disappear within a day [454]. In order to make it possible, a sequence of processes
is needed, including disruption of cellular membranes, breach of cytoplasmic and
nuclear skeletons, extrusion of the cytosol, degradation of the chromosomes, and
fragmentation of the nucleus [405]. The apoptotic machinery is operated by two
different components. Sensors monitor extracellular conditions (such as adjacency
of other cells) and lack of intracellular non-functional abnormalities (such as DNA
defects or hypoxia). When needed, they give the signal to effectors, which operate
apoptotic death. One of the principal players of this cellular mechanism is the
oncosuppressor p53. Resistance to apoptosis can be acquired by cancer cells through
a variety of strategies, but the mostly known include mutation of this gene, leading
to the inactivation of its product protein and thus resulting in the removal of a key
component of the DNA damage sensor that can induce the apoptotic effector cascade.

Cancer cell metabolism

Both SMT and TOFT agree on recognising that uncontrolled cell proliferation
represents the essence of neoplastic disease. This behaviour makes it necessary
for tumour cells to dispose of the necessary amount of energy to support their
proliferative activity. In general, both healthy and cancer cell depend on adenosine
triphosphate (ATP) as a fuel for their processes and are able to produce this nucleotide
processing available nutrients provided by the environment.

In the previous section, we highlighted that normal cells under aerobic conditions
prefer aerobic respiration to produce energy, as according to homeostatic regulation
it is more efficient and has favourable side products. Cancer cells are also capable of
both aerobic and anaerobic respiration. The difference stands in the need for hypoxic
conditions to pass to anaerobic respiration. Either due to lack of necessary nutrients,
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or due to abnormal behaviour conferred on tumour cells by genetic and epigenetic
mutations or interaction with the environment, cancer cells are able to adopt different
energy production strategies without favouring aerobic respiration.

Otto Warburg first observed an anomalous characteristic of cancer cell energy
metabolism [348, 432]: even in the presence of oxygen, cancer cells can reprogram
their glucose metabolism, and thus their energy production, by limiting their energy
metabolism largely to glycolysis, leading to a state that has been termed "aerobic
glycolysis." This "choice" that would seem disadvantageous if adopted by a cell
that is part of homeostatic-focused regulation seems comprehensible if adopted by
cancer cells, which are not programmed to be part of an assembly line (at least not
with the aim of host tissue functionality). "Selfish" typical cancer cell behaviour
could be in line with this time-optimising strategy. Moreover, the side products of
anaerobic respiration, which are a source of acidification of the environment harmful
to healthy cells, represent an evolutionary advantage for tumour cells, which are not
only resistant to this hostile environment but are triggered by that in dynamics of
metastasis and mutation.

1.1.3 Tumour heterogeneity

Genotype, phenotype and epigenetic of cancer

Genomic changes contributing to the generation of cancer cells can occur at different
levels. We talk about genetic mutations when there is an alteration in the nucleotide
sequence of genomic DNA. Otherwise, if it is not the sequence of genes that varies,
but their expression, we speak of epigenetic mutations. Other possible variations af-
fect the number of chromosomes through errors in mitosis (aneuploidy) or abnormal
fusion of adjacent ones.

The genotype of an organism is its complete set of genetic material. Genotype
contributes to phenotype, defined the observable traits and characteristics in an indi-
vidual or organism, which are a results also of environmental and epigenetic factors.
Primary cancers frequently exhibit significant phenotypic and genetic intratumour
heterogeneity (ITH). Heightened levels of ITH have been associated with increased
tumour aggressiveness, resistance to therapies, and an overall unfavourable prognosis
[87].
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Genome instability

The prevailing evidence indicates that most cancer-related mutations are acquired,
either directly or indirectly, through alterations in the genomes of cancer cells. The
mutation of specific genes is an inefficient process due to the constant and meticulous
maintenance of genomic integrity by a complex array of DNA monitoring and repair
enzymes. Consequently, mutations are rare events, and the presence of multiple
mutations in tumour cell genomes is highly unlikely to occur within a human lifespan.
Thus, oncogenesis and tumour mass evolution seem compatible only with increased
mutability caused by dysfunctions in specific components of genomic "caretaker"
systems. Notably, the functionality of the p53 is lost in most human cancers. The
p53 tumour suppressor protein is a key member that responds to DNA damage by
inducing either cell cycle arrest for repair or apoptosis if the damage is excessive.
Additionally, various genes involved in sensing and repairing DNA damage or
ensuring accurate chromosomal segregation during mitosis are found to be lost in
different cancers, designating them as tumour suppressors.

Phenotypic plasticity

In healthy cells, terminal differentiation marks the point at which progenitor cells
cease their growth following the completion of these developmental processes. The
antiproliferative state resulting as the outcome of cellular differentiation establishes
a significant barrier to the non-regulated proliferation required for neoplastic trans-
formation. The abnormal activation of phenotypic plasticity (which is a limited
capability in a healthy state), enabling evasion or escape from the constraints of
terminal differentiation, stands as a critical determinant in the pathogenesis of cancer
[460].

Phenotypic plasticity mechanisms include:

• Dedifferentiation: a transient process by which cells become less specialised
and return to an earlier cell state (as in colon carcinogenesis);

• Blocked differentiation: the results of regulatory changes that stop the dif-
ferentiation cascade of progenitor cells (for example, in acute promyelocytic
leukaemia (APL) cells are the results of myeloid progenitor cells made unable
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to differentiate into granulocytes, resulting in cells trapped in a proliferative
stage [146].

• Transdifferentiation: a marked change of morphology through which cells of
a particular differentiated phenotype become clearly recognisable as another
type of cell. This mechanism, historically observed in the form of tissue
metaplasia, recently proved to be typical also of cancer. A clear example of
transdifferentiation role in tumourigenesis is pancreatic ductal adenocarcinoma
(PDAC), wherein the pancreatic acinar cell (which is one of the responsible
for cancer origin) can become transdifferentiated into a ductal cell phenotype.

Nonmutational epigenetic reprogramming

Some physical and chemical abnormalities of the tumour microenvironment can
induce mechanisms of epigenetic reprogramming. These alterations, conducive to
the phenotypic selection of hallmark capabilities, culminate in the clonal outgrowth
of cancer cells endowed with augmented fitness for proliferative expansion. One
prevalent feature characterising tumours is insufficient vascularisation. This leads,
on the one hand, to hypoxia, a condition of oxygen supply deprivation. This state
can affect the whole tumour or just a region of it. Hypoxia is able to cause hyper-
methylation through the inhibition of TET demethylases [432]. On the other hand,
the lack of sufficient vascularisation likely imposes constraints on the bioavailability
of essential nutrients. For instance, nutrient deprivation has been demonstrated to
induce changes in translational control, thereby augmenting the malignant phenotype
of breast cancer cells [189].

Alongside these microenvironmental mechanisms of epigenetic reprogramming,
epigenetic regulatory heterogeneity also plays a role in these non-mutational dynam-
ics. Intra-tumoural heterogeneity plays a pivotal role in the generation of phenotypic
diversity. This diversity provides a milieu in which the fittest cells undergo prolifer-
ative expansion and invasion, ultimately driving malignant progression. Genomic
instability, either chronic or episodic, and the resultant genetic heterogeneity within
the tumour cell population represent one facet of this phenotypic heterogeneity.
Moreover, emerging evidence underscores the presence of non-mutationally based
epigenetic heterogeneity. A notable example of this epigenetic heterogeneity is
observed in the dynamic expression and repression of the linker histone H1.0 within



30 Biological framework

subpopulations of cancer cells across various tumour types. This dynamic regulation
results in subpopulations of cancer cells in which the suppressed H1.0 expression
leads to stem-like characteristics and heightened tumour-initiating capability [424].

Moreover, the epigenetic reprogramming of cells also involves tumour microen-
vironment cells that actively contribute to the acquisition of hallmark capabilities,
which, on the contrary, are generally postulated not to undergo genetic instability
and mutational reprogramming to augment their tumour-promoting functionalities.
For example, it is postulated that cancer-associated fibroblasts, innate immune cells,
as well as endothelial cells and pericytes of the tumour vasculature, undergo epige-
netic reprogramming orchestrated by soluble and physical factors that delineate the
distinctive characteristics of the solid tumour microenvironment [214, 212].

1.2 Cancer cell and its microenvironment

1.2.1 Sustained angiogenesis

Tumour angiogenesis is the growth of blood vessels, induced by cancer cell signalling,
which causes infiltration of the tumour mass [208]. In fact, while normal diffusion
of nutrients can support the growth of the tumour mass up to a radius of about 2-3
mm, direct delivery of nutrients and removal of waste become necessary above this
size. The presence of vessels inside the mass is also necessary to permit metastasis
in hostile environments (as we show in the next section).

In mechanical terms, angiogenesis involves different sequential phases. First step
is proteases, by which basement membrane is degraded. Subsequently, endothelial
cells (ECs) migrate into the interstitial space and proliferate. This way the proper ves-
sel is formed: the lumen (a cavity within a tubular structure) is formed, pericytes are
recruited and wrap around the ECs forming a new basement membrane, anastomoses
are created and finally the blood can flow. Tumour cells release factors influencing
endothelial cell functions through various intracellular signalling pathways. This
process begins with tumour cells releasing molecules that signal surrounding normal
tissue to activate specific genes, leading to protein production and the promotion of
new blood vessel growth. This ability of tumour cells, also referred to as angiogenic
phenotype, is not innate but acquired via a phenotype switch. Tumour cells may
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Fig. 1.5 Scheme of angiogenesis activation pathways. Figure taken from [208].

induce angiogenesis by overexpressing positive regulators, mobilising angiogenic
proteins, or recruiting host cells. Tumour-secreted growth factors like VEGF and
bFGF interact with EC receptors, triggering angiogenesis. Up-regulation alone isn’t
sufficient; down-regulating negative regulators is often necessary. The balance be-
tween angiogenic and angiostatic factors in the local environment determines vessel
growth or regression, with angiostatic factors inducing apoptosis or cell cycle arrest
in ECs. The switch to the angiogenic phenotype is governed by this balance. In
particular, known to be involved in cancer advancement due to direct activation of
glycolysis, EMT and apoptosis suppression and undirect interaction with c-Myc and
p53 pathway, hypoxia-inducible factor (HIF) activation also stimulates angiogenesis,
glycolysis, EMT, and suppressing apoptosis [306].
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1.2.2 Tissue invasion and metastasis

Usually driven by the lack of nutrients or by specific signals, both caused by a certain
advance in the growth of the tumour mass, cancers tend to spawn pioneer cells that
move out, invade adjacent tissues, and thence travel to distant sites where they may
succeed in founding new colonies. If this happens, the initial mass is called the
primary tumour, and the distant settlements of tumour cells are called metastases.
Metastases are considered the cause of 90% of human cancer deaths [414] and
enable cancer cells to escape the primary tumour, colonising new areas with initially
abundant nutrients and space. Metastases form from a blend of cancer and host
tissue cells. The genetic and biochemical determinants of invasion and metastasis
processes are not fully understood. Mechanistically, both processes involve changes
in cell coupling to the microenvironment and activation of extracellular proteases.

Proteins essential for cell tethering to tissue undergo changes in cells with invasive
or metastatic capabilities. These proteins, including cell-cell adhesion molecules
(CAMs) and integrins connecting cells to extracellular matrix substrates, participate
in regulatory signalling through "adherence" interactions [32]. A prevalent alteration
in cancer’s cell-to-environment interactions is the modification of E-cadherin, a
homotypic cell-to-cell interaction molecule expressed ubiquitously on epithelial
cells. E-cadherin coupling between adjacent cells transmits antigrowth signals
through cytoplasmic contacts.

It appears clear how invasive and metastatic phenotypes link to the concept of
epithelial-mesenchymal transition (EMT). EMT is a biological process that allows
a polarised epithelial cell, which normally interacts with the basement membrane
via its basal surface, to undergo multiple biochemical changes that enable it to
assume a mesenchymal cell phenotype, which includes enhanced migratory capacity,
invasiveness, elevated resistance to apoptosis, and greatly increased production
of ECM components [251]. This process (shown in Fig. 1.6 di [252]), which is
important and useful during implantation, embryogenesis, and organ development
and is also associated with tissue regeneration and organ, provides cancer with a
more aggressive feature. According to that, EMT activation has been associated with
the generation of cancer stem cells (CSCs) [379], which are cells within the cancer
cell population associated with tumourigenic potential, but also treatment-resistant
phenotypes due to their quiescence and plasticity tendency [103].
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Fig. 1.6 Schematic representation of epithelial-mesenchymal transition. Figure taken from
[364].

1.3 Cancer cells and immune system

1.3.1 An overview on the immune system

The immune system comprises two primary defence mechanisms: innate immunity
and adaptive immunity. Innate immunity acts as the initial response to combat
invading pathogens, initiating a rapid generic immune reaction. In contrast, adaptive
immunity is antigen-specific and dependent, featuring the ability to form a memory.
This memory capability enables the host to generate a quicker and more effective
immune response if exposed to the antigen again [311].

Innate immunity to pathogens relies on pattern recognition receptors (PRRs) that
recognise pathogen-associated molecular patterns (PAMPs), which are shared by a
wide range of pathogens. Innate immunity plays a vital role in mobilising immune
cells to infection and inflammation sites. This occurs through the production of
cytokines and chemokines, which are small proteins facilitating cell communication
and recruitment. Common strategies to fight the pathogen are the increase of the
temperature, acidification, and inflammation. When innate immunity is ineffective in
eliminating the pathogen, adaptive immunity is activated. The main steps of adaptive
immunity are:

1. recognition of "non-self" antigen;

2. generation of pathogen-specific immunologic effector pathways;

3. development of an immunologic memory.
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In the specific case of cancer, innate immunity is essential to the onset and mainte-
nance of adaptive immunity, which is the main agent in the "fight". The cells of the
adaptive immune system include APCs, antigen-specific T cells and B cells.

APCs stands for antigen-presenting cells and are a set of cells (usually dendritic
cells, but also macrophages, B cells, fibroblasts and epithelial cells) able to recognise
a specific antigen. The surfaces of APCs express a group of proteins known as the
major histocompatibility complex (MHC). The MHC protein displays fragments of
antigens (peptides) when a cell is infected with an intracellular pathogen. The scope
of APCs is activating T cells.

T cells derive from hematopoietic stem cells in the bone marrow and, following
migration, mature in the thymus. The membrane of every T cell is covered with
specific receptors (TCR, a single type per T-cell) able to bind to specific foreign
peptides. When the T-cell meet an APC displaying the matching peptide, it gains
the capacity to rapidly proliferate and differentiate. The chance for this to happen is
increased by the circulation of T cells throughout the body (via the lymphatic system
and bloodstream) and their accumulation (together with APCs) in lymph nodes. T
cells can differentiate into either:

• CD8+ cells, which are cytotoxic T cells directly involved in the killing of
tumour cells with the corresponding antigen;

• CD4+ cells, which are T-helper cells that act, releasing cytokines that influence
the activity of many cell types. Some of them are regulatory cells that limit
the immune response.

Both T cell types die upon resolution of their role: the majority of them are cleared
by phagocytes, while a few of them are retained as memory cells.

Finally, B cells are antibody producers. They originate from bone marrow
hematopoietic stem cells and express unique antigen-binding receptors after mat-
uration (thus, they do not need APCs). When activated by specific antigens, B
cells proliferate and mainly become antibody-secreting plasma cells, which have a
short life but provide effective protection. Some B cells differentiate in memory B
cells, which are long-lived survivors of past infections able to quickly respond upon
re-exposure.
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Thus, we can summarise that in order to effectively eliminate cancer cells from a
clinically detectable tumours through an anti-cancer immune response, a series of
steps known as the cancer-immune cycle must be repeated:

• step 1) Neoantigens released during tumour formation are acquired by dendritic
cells (DCs) and move to the draining lymph node (DLN).

• step 2) DCs present the antigen to T cells via MHC.

• step 3) Activated effector T cells recognise the antigen.

• step 4) T cells with antigen recognition migrate to the tumour.

• step 5) T cells infiltrate the tumour.

• step 6) T cells recognise the MHC–antigen complex on cancer cells through
the T cell receptor (TCR).

• step 7) Cancer cells are killed through processes involving CD8+ T cells.

This cycle repeats as cancer cells die, releasing new neoantigens and sustaining
the immune reaction.

1.3.2 Hot and cold tumours

tumours can be classified in different terms. Considering the relation with the im-
mune system, tumours are called hot or cold [441]. Tumour "hotness" or "coldness"
depends on cancer cell information, immune features, microenvironment, and sig-
nalling mechanisms, influencing clinical efficacy. The switch between these states,
along with their characteristics and treatment strategies, is crucial in tumour treat-
ment. Effectively distinguishing and understanding causes, microenvironments, and
characteristics are vital for optimising tumour response and treatment efficacy.

Predictive indicators for immunotherapy fall into two groups: tumour immune
microenvironments (TME) and molecular characteristics of tumour cells (e.g., TILs).
"Hot tumours" have TME rich in TILs (Tumour-infiltrating lymphocytes), PD-L1
overexpression (ligand for protein PD-1 that is a suppressor of the inflammatory
activity promoted by T-cells), genomic instability, and antitumour responses. "Cold
tumours" exhibit opposite traits.
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Immunotherapy, as a promising cancer treatment, reactivates the antitumour
immune cycle, aiming to regulate and eliminate tumours. This therapeutic approach,
primarily employing immune checkpoint inhibitors (ICIs), restores the body’s innate
antitumour immune response. ICIs are more effective against "hot tumours," requir-
ing combinations for "cold" or "variable" tumours. Converting them to "hot" tumours
holds promise in treating malignancies, presenting a crucial area for research.

1.3.3 Immunoevasion

Avoiding immune destruction is considered one of the hallmarks of cancer. Whether
we are considering hot or cold tumours, the strategies adopted by cancer cell to evade
the immune-system are different. When considering hot tumours, we are referring
to an infiltrated tumour that has successfully performed the initial five stages of the
immune response; thus, evading mechanisms usually exploit reactivity to immune
checkpoint inhibitors and include:

• Inhibition of recognition by immune cells (cycle step 6): cancer cells remove,
reduce, or transform MHC on the surface of cancer cells as a mechanism to
evade recognition by T cells.

• Immune checkpoint molecule expression (cycle step 7): T-cells response to
chronic antigen stimulation with a mechanism known as exhaustion, resulting
in poor effector function, sustained expression of inhibitory receptors and a
dysfunctional transcriptional state [63].

• Immunosuppressive cells in the TME (cycle step 7): cancer cells secrete
substances that stimulate the action of immunosuppressive cells.

In contrast, cold tumours are characterised by immune non-infiltration; thus, immuno-
evasive mechanisms need to be found earlier in tumour history. Among them, we
find:

• Decrease in tumour immunogenicity (evasion of step 1): cancer clones which
have formed the tumour mass are the ones that evaded immunosurveillance at
early stages and, thus, have fewer immunogenic antigens.
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• Inhibition of dendritic cell maturation (evasion of step 2): tumour-derived
factor, together with immunosuppressive cells in the TME, suppress DC
maturation, reducing the production of inflammatory cytokines and inhibiting
T-cell proliferation.

• Suppression of T cell activity (evasion of step 3): cancer cells reduce the
expression of co-stimulatory factors, which are needed, together with antigen
recognition, for a full T-cell activation.

• Inhibition of T cell migration and infiltration (evasion of steps 4-5): cancer
cells reduce the expression of chemokines that attract T cells. Modify blood
vessel layout, making the tumour less reachable, and secern substances that
alter T-cell mobility.

1.4 Cancer cells and therapies

Several therapies against cancer exist. Usually, biomarker testing, together with the
analysis of the state of progression of the tumour and its phenotypic characteristics,
is the tool used to decide which treatment or combination of treatments to apply to
the patient. Generally, treatment can be used alone as main therapy, combined with
other treatments, to reduce the tumour before the main therapy (neoadjuvant) and/or
to destroy surviving cancer cells after the main treatment (adjuvant). Moreover,
according to the chance to eradicate the tumour, treatments can be given with curative,
control or palliative aims.

One of the typical treatments of cancer is chemotherapy, a term that denotes the
non-specific usage of intracellular poisons to inhibit mitosis (cell division) or induce
DNA damage [375]. Chemotherapy is usually used as systemic therapy, meaning that,
once introduced into the bloodstream, it is able to address cancer at any location in the
patient’s body. Despite its high potential for killing tumour cells, chemotherapy has
the limitation of acting on cells in their mitotic phase (and therefore running into the
risk of resistance caused by cellular quiescence) and of having a very high damaging
effect also on healthy cells, causing many side effects. For this reason, in clinical
practice, they try, when possible, to combine chemotherapy with complementary
treatments in terms of effectiveness and less impact on the patient’s health. Radiation
therapy is another typical treatment, often used synergistically with chemotherapy.
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Radiotherapy acts in the same way as chemotherapy, but in order to induce the same
effect on cells, it uses ionising radiation, generally delivered by a linear particle
accelerator, instead of chemical reactions. Being a local treatment, it reduces the
chance to address the body, gaining in reduced and more localised side effects [67].

Another category of treatment is targeted therapies, which are based on the
concept of identifying genetic mutations and abnormal proteins that drive the growth
of specific cancers and using them as a target. Targeted therapy drugs specifically
target these abnormal proteins and not all the fast-dividing cells, preserving healthy
tissue. These therapies are effective only if the cancer exhibits the specific target and
faces the problem of resistance to these agents developing over time. They work by
acting on molecular targets such as cell surface antigens, growth factors, receptors,
or signal transduction pathways that influence cell cycle progression, cell death,
metastasis, and angiogenesis. These therapies can be monoclonal antibodies, small-
molecule drugs, hormone therapies, signal transduction inhibitors, gene expression
modulators, apoptosis inducers, angiogenesis inhibitors, immunotherapies, or toxin
delivery molecules. By blocking signals that promote cancer cell growth, interfering
with cell cycle regulation, or inducing cell death, targeted therapies aim to effectively
kill cancer cells. Immunotherapy can be considered as part of targeted therapies.
Among them, also oncolytic virotherapy is an emerging treatment modality that uses
replication-competent viruses to destroy cancers.

Given the interest in solid tumours in this thesis, and in particular, in their geomet-
rical characterisation, we take into account radiotherapy that, for its nature, can be
delivered with spatial precision. Moreover, considering the lack of this treatment, it is
easy to observe that targeted therapy could be considered as a complementary choice
since the pros of one seem to match the cons of the other. Thus, coherently with the
content of this thesis and the models developed in the same, we now concentrate on
two treatments: radiotherapy and oncolytic viruses.

1.4.1 Radiotherapy

Radiotherapy remains consistently effective in cancer treatment, with approximately
half of all patients undergoing it at some point in their management [46]. Ionising
radiation (IR), primarily consisting of photons, is widely used in radiotherapy. The
principal damaging effects result from the ability of IR to ionise molecules within
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cells, particularly DNA. Historical experimental evidence strongly supports DNA as
the primary target for radiation-induced cell killing [248].

The DNA damage response (DDR) is a complex system that coordinates cellular
reactions to radiation-induced DNA damage. Specialised sensing proteins detect
DNA lesions, signalling to the cell and initiating the DDR. This response focuses
the cell’s attention on the damage, halting processes like transcription and cell-cycle
progression while initiating DNA repair.

Cell sensitivity to radiation varies, with actively reproducing cells being more
susceptible due to their need for accurate DNA information. This highlights the
necessity for considering phenotype heterogeneity when analysing not only therapy
effectiveness but also selection processes induced by the therapy itself. Successful
radiation treatment primarily involves causing the death of individual tumour cells
through direct or indirect mechanisms. Direct death can be induced through apopto-
sis, autophagy, or other means, while indirect death involves inducing senescence or
occurring late after attempted mitosis.

The surviving fraction (SF), representing the number of colonies relative to
individual cells’ plating efficiencies after treatment, is a crucial measure. A cell
survival curve, used in radiobiology, illustrates the relationship between the fraction
of cells retaining reproductive integrity and the absorbed dose of radiation.

In order to model and quantify the killing potential of radiation, we can think of
some specific regions of the DNA as the only ones responsible for maintaining the
reproductive ability of cells. The survival of a cell after radiation exposure could
be interpreted, from a probabilistic point of view, as the chance of not being hit in
these sensitive regions. The simplest idea is to think that one hit by radiation on a
single sensitive target would lead to the death of the cell. This is called single- target
single-hit inactivation. Under the assumption that a large number of hits takes place
on different cells, but the is a very small probability (p) that, considered a given cell,
a next hit could occur, Poisson statistics can be used to derive an equation for the
related survival curve. Thus, we have:

p(survival) = p(0 hits) = e−
D

D0

where D0 is defined as the dose that gives an average of one hit per target.
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A more general version of target theory called multi-target single-hit inactivation
can be used to better fit the experimentally observed survival curve. In this idea, the
cell is supposed to have n sensitive targets, and, in order to die, it needs to be hit at
least once per target. Repeating the same argument as before, we obtain:

p(survival) = 1− p(1hitoneverytarget) = 1−
(
1− e−

D
D0
)n
.

Trying to consider a simplified mechanistic interpretation of irradiated cell dynamics,
one could synthesise as follows:

1. DNA double-strand break (DSB) number is proportional to radiation dose (D).

2. Considering an average repair half time TR, these DSBs can be repaired, with
first-order rate constant λ = ln2

TR
.

3. Binary misrepair of pairs of DSBs produced from different radiation tracks
can produce lethal lesions with a yield proportional to the square of the dose.
The occurrence of the two independent radiation tracks may be separated in
time within the overall regimen. This temporal gap enables the repair of the
first double-strand break (DSB) before it can engage in pairwise misrepair
with the second.

4. Single radiation tracks can produce lethal lesions with a yield that is propor-
tional to the dose.

Using this mechanistic view (and also supported by the empirical observation that
a cell survival can simply be fitted by a second-order polynomial), the following
formulation, which is termed the linear-quadratic (LQ) model, is determined:

p(survival) = e−(αD+βD2).

The main parameters of this model, α and β , represent the intrinsic radiosensitivity
of the irradiated cells: the higher their values, the higher the tumour sensitivity to
radiation. The α component includes the effect of nonrepairable (lethal) lesions in
the DNA from a single radiation event. In contrast, the β component represents
lethal damage arising from the interaction of repairable (sublethal) lesions, each
produced by independent radiation events [116]. Several protocols could be adopted,
meaning that one could choose different amounts of radiation to be provided, but
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the radiation amount could also be fractionated using a different amount of single
doses and varying the timing. The ratio of the two parameters, α/β , is a measure of
the fractionation sensitivity of the cells: cells with a α/β , are less sensitive to the
sparing effect of fractionation [430].

Different protocols, also with the same total amount of radiation, could lead to
very different scenarios. For example, prolonged irradiation could be partially useless
if in a first moment all sensitive cells have been killed. Moreover the environment
itself is can be modified by the therapy directly or via the killing effect on the tumour,
whose cells are responsible for secreting abiotic factors and consuming nutrients.
This is the specific case of oxygen.

The response of cells to ionising radiation is strongly dependent upon oxygen
[204]. On the one hand, oxygen presence avoids hypoxia-inducible factor (HIF) that
is responsible, among different effects, for proliferation inhibition, thus ensuring
a greater number of cell divisions, which, as mentioned before, increases cellular
radiosensitivity. On the other hand, broken DNA strands binding with oxygen
molecules fix the damage and avoid the chance of DNA repair. From a modelling
point of view, this is caught by the insertion of oxygen enhance ratio (OER) in
the probability of survival formula (as a modifier of α and β parameters). OER
is evaluated as the ratio of the needed radiation dose in hypoxia on The need for
radiation dose in the air allows for the same level of biological effect.

The LQ approach leads to various formulae for calculating isoeffect relationships
for radiotherapy in order to compare the effectiveness of protocols. The simplest
method to do this is converting each schedule into an isoeffective schedule in 2 Gy
fractions. We use:

EQD2 = D
d +α/β

2+α/β

where EQD2 is the total dose in 2 Gy fractions that is biologically equivalent to a
total dose D given with a fraction size of d Gy, assuming a relationship between D
and d which is defined by α/β .

1.4.2 Oncolytic viruses

As noted in Section 1.3 various mechanisms of tumour cells can cause an impover-
ishment of the defence capacity of the immune system, with consequent negative
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outcomes both on the natural response of the human body and on the outcome of
any immunotherapy treatments. Moreover, both (epi)genetic and environmental
factors can impact the effectiveness of therapies. In reference to this, we have already
addressed the impact of hypoxia on treatments such as radiotherapy.

This made it necessary to design therapies that would be able to fill these gaps.
Target therapies were thought with this aim. In particular, here we stick to a class of
target therapies that are interesting in particular for their overlapping with both the
immune system and the hypoxia problems: the oncolytic viruses.

With oncolytic viruses (OVs), we refer to some organisms capable of recognising
(naturally or by genetic manipulation [388]) and destroying various cells within
the tumour milieu, with the goal of stabilising and reducing tumour growth [390].
Different viruses are used for OVs, such as adenovirus, herpes virus, vaccinia virus,
and vesicular stomatitis virus, among others.

The mechanism that viruses use to kill tumour cells is lysis, which consists of the
breaking down of cells membrane, compromising their integrity and functionalities
[329]. When the infected cancer cell is destroyed, it releases virions (which are
infectious virus particles) that are able to spread and infect other tumour cells [173].

With respect to the immune system, there is an ambivalent correlation. On the one
hand, the immune system tends to impede the spread of viral infection [142]. On the
other hand, oncolytic virus therapy seems to trigger the immuno-action on tumour
cells and enhance its effectiveness. In fact, when considering T-cell role, some
tumours have the ability to prevent their activation [384] and, in the case of target
ICIs, to lose targeted antigen [186]. In Ref. [384], they affirm that oncolytic viruses
have the ability to create an immunostimulatory signal that increases immune cell
trafficking toward the tumour [429] to reverse the immunosuppressive status of the
microenvironment [387], but even more significantly to stimulate the development
of a new, specifically tailored immune response against certain markers (epitopes)
present on the tumour cells that have been lysed [450].

Moving to hypoxia, the heterogeneity of OVs, including different therapies ac-
cording to the kind of virus chosen, makes it impossible to state a common behaviour
in hypoxic conditions [207]. For example, with respect to replication, viruses that
seem to be affected by hypoxia are adenovirus (whose replication is hindered) and
herpes simplex virus (whose is boosted [6, 172]). Considering the cytotoxicity, the
vaccinia virus demonstrates an increase in certain hypoxic cancer cells despite no im-
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pact on viral protein synthesis or transgene expression. The vesicular stomatitis virus,
which is not affected by its replication properties, exhibits effectiveness in killing
hypoxic cancer cells. However, in renal cancer, it is vulnerable to elevated levels of
hypoxia-inducible factor-1α , which drastically enhances resistance to cytotoxicity.
Various hypoxia-selective and tumour-type-specific oncolytic adenoviruses, created
by incorporating hypoxia-responsive elements into synthetic promoters to regulate
crucial genes for viral replication or therapeutic genes, have proven to be both safe
and effective. Note also that hypoxic tumour-homing macrophages can efficiently act
as carrier cells, delivering an oncolytic adenovirus to the hypoxic/necrotic regions of
the tumour.

An example of exploitation of the knowledge of tissue oxygenation in order to
optimise therapies can be the breast cancer case [117]. In breast cancer, hypoxia
has the double effect of conferring resistance to both radio- and chemotherapy
and of desensitising estrogen-receptor-positive tumours to hormonal therapy. One
improvement could be trying a combined therapy, with standard therapy acting on
normally oxygenated tumour cells and genetically engineered herpes virus (with
induced reduced virulence to limit infection of normal tissues) acting on hypoxic
ones. Another possibility could be given by exploiting the lack of oxygen in breast
cancer and the augmented replication rate of herpes viruses. The main idea is to
operate genetic mutation of the virus to target cancer cells through deletion of UL39,
which is the gene that encodes the large subunit of ribonucleotide reductase (RR).
Hypoxia, in fact, stimulates RR production, significantly enhancing the cytotoxicity
of the multimutated virus in hypoxic breast cancer cells [358].

1.5 Cancer as an evolutionary process

1.5.1 Cancer: a multi-scale system

When we talk about cancer, we can think about a mass or its components. Different
dynamics occur in the tumour and at different levels. We distinguish three different
scales, and we refer to them as microscopic, mesoscopic and macroscopic.

• The microscopic scale is the lowest level that includes all the dynamics oc-
curring at the subcellular level. This involves membrane receptor activity,
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cell internal processes, and all the dynamics which are results of intracellular
pathways, intrinsic or triggered by the communication with the outside through
the receptors.

• The mesoscopic scale refers to all the processes happening at the cell level. It
is an intermediate scale since it still considers the cell as a single entity and
as an agent that interacts with other cells (healthy, tumour cells of the same
population or another) or with the extracellular environment. This means that
we consider the effect of these in terms of behaviour (death, proliferation,
displacement, phenotypic switches) but without considering the microscopic
processes that regulate these changes (focus moves from the intracellular
processes to the intercellular ones).

• The macroscopic scale is the largest one. At this level, we lose the focus on the
agents’ dynamics to directly describe the processes occurring in the population
of cells, which is considered an identity in its totality. Tumour dynamics is
coupled with the evolution of other tissues or cell populations (blood vessel
network evolution, competition for space and resources, ECM remodelling,
etc.).

Not only different scales refer to different "zooms" on the system. Dynamics
involved in different scales occur in completely different time ranges, meaning that
processes included in a scale can be considered important if taken into account at the
time scale of the upper level.

1.5.2 Cancer phases and characteristics

Every cancer has its history, but its evolution is divided into different phases. Cancer
is typically labelled in stages from I to IV, when a mass is present. The classification
is based on tumour mass characteristics and the impact on the rest of the host body.

At stage 0, the tumour mass has not yet formed. This is the phase of abnormal
cell formation, with the potential to become cancer. This is also called carcinoma in
situ.
At stage I, cancer cells have formed a proper tumour mass, but they are still reduced
in size and limited to one area. At this phase, the nutrients provided by the host
are sufficient for cancer cell division so that there is an (almost) competition-free
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proliferative dynamics. This is also called early-stage cancer.
During stages II and III, tumour mass grows in size and extends to surrounding tissues
or lymph nodes. In this stage, the tumour induces angiogenesis, i.e., the formation
of new blood vessels, in order to increase the transport of nutrients (carried by the
blood) inside the tumour mass. Moreover, a hypoxic condition due to increased
oxygen consumption induces epigenetic changes that promote invasive potential
(migratory skills) in cancer cells.
Finally, when reaching stage IV, the cancer has spread to non-adjacent parts of the
host body (metastasis). This is also called metastatic cancer.

It is then important to know:

1. the mechanisms that, from a healthy state, allow for the entry in stage 0;

2. the mechanisms that make the cancer mass evolve in the different stages.

1.5.3 Eco-evo-devo in cancer evolution

Neoplasms are composed of an ecosystem of evolving clones, competing and co-
operating with each other and other cells in their microenvironment, and this has
important implications for both neoplastic progression and therapy. But if the trans-
formations themselves can be considered as results of cellular evolution influenced
by genetic and epigenetic modifications, the effective advantage in terms of survival
and predominance that they confer is not intrinsic and immutable in time but is
determined by the microenvironmental ecology.

For example, in the first phase of tumour growth, when there is full availability
of nutrients, clones characterised by high proliferation rates (but needing more
resources to fuel the division process) would have an advantage. Growing up, the
tumour will sensitively decrease the amount of available nutrients, changing the
fittest trait from highly proliferative cells to more resistant cells or more motile
cells. Also, bigger tumours usually induce a higher immune response, giving an
advantage to cells which are able to evade T cell activity. Moreover, if the tumour is
detected, therapy is usually applied. A lot of treatments, such as radiotherapy, act
on dividing cells, giving an advantage to cells able to enter a quiescent state during
the treatment and then go back to proliferative dynamics once the other populations
have been reduced by the therapy and the nutrient availability increases. Under an
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Fig. 1.7 Graphic representation of the evolutionary process of a tumour mass. Starting from
an initially small number of tumour cells (born following tumourigenesis), the cell population
undergoes heterogenisation or homogenisation due to intrinsic mutation or selection factors
or triggered by the environment and therapies. Original figure.

ecological, evolutionary developmental biology point of view (eco-evo-devo), the
key idea is to study cancer history in order to uncover the rules that underlie the
interactions between its environment, its genetic (and associated), and development
and to incorporate these rules into evolutionary theory [2]. In Ref. [308], a possible
simple classification of ecological and evolutionary factors is provided.

As it can be seen in Fig. 1.8, the proposed ecological index (eco-index) is com-
posed of two factors: hazards (H) and resources (R) available to the neoplastic cells.
The evolutionary index (Evo-index) is also composed of two factors: heterogeneity
over space (D) and over time (∆). Heterogeneity is considered in terms of genetic,
epigenetic and phenotypic alterations, quantified in absolute values and frequencies.
All these indexes have a low value (1) or high value (2). tumour mass can end up
showing different index values coming from different developmental histories due
to selective pressures. For example, an ecological index of H1-R1 would select
highly resistant cells with a tendency to move to locate more resources. H2-R2
tumours would probably undergo massive cell turnover as highly proliferative cells
would rapidly replace cells that have been killed by the hazards but would then be
exposed to the same death potential. For the evolutionary counterpart, an initial D1
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Fig. 1.8 Graphic representation of ecological (top) and evolutionary (bottom left) indexes
proposed in Ref. [308]. Map of possible index evolution in time (bottom right). Figures
taken from [308].

tumour could preserve its low heterogeneity by quiescence or accumulate mutation,
becoming D2 in a second moment; in the same way, environmental pressure could
amplify the internal heterogeneity of an initial D2 tumour or homogenise it via
selective sweep. In Ref. [308], these features and the relative proposed classification
are connected with possible therapy design strategies. As shown in Fig. 1.9, aware
of tumour and environment-specific characteristics, it could be possible to apply and
combine different therapies, trying not only to maximise the killing potential of the
treatment but also to control the evolutionary history of the cancer cell population in
order to move toward directions that keep a possible therapeutical strategy open.
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Fig. 1.9 Graphic representation of possible time evolution of eco-evo indexes due to delivery
of different therapies. Figure taken from [308].

1.5.4 Trade-off

The concept of trade-off is central in evolutionary dynamics [236, 219, 65]. At a
cellular level, this means that a cell has a finite amount of resources to be allocated,
and using them for a function results in depriving another possible functionality of
the fuel needed to be performed. Cancer trade-offs happen both at phenotypic and
genetic levels.

One of the most famous trade-off mechanisms is the one between proliferation
and motility, referred to as "go or grow" ([215]). Cancer cells are able to switch



1.6 Relevance for this thesis 49

between migratory and proliferative phenotypes [60], as we previously considered
when introducing epithelial-mesenchymal transition. According to theoretical stud-
ies, motility in cells (and also in cancer cells) is usually triggered by a disadvantage
in staying, usually caused by harsh conditions or lack of nutrients [280]. Based on
this assumption, in Ref. [215] they propose as a cause for EMT this microscopic
’Go or Grow’ mechanism (migration/proliferation trade-off) triggered by the nutrient
shortage (in this case hypoxia).

Due to the same limited resource conditions, another well-known trade-off in
malignant cell dynamics is between proliferation and survival. In rich environ-
ments, cells prioritise rapid proliferation but are vulnerable to apoptosis. In adverse
conditions, cells exhibit slower proliferation but enhanced survival. Cancer cells
adapt to their environment, displaying either proliferation or survival phenotypes.
Selection for strategies may change over time due to tumourigenesis and therapies,
favouring extreme phenotypes in later stages, such as highly proliferative cells with
compromised survival or seemingly dormant cells with enhanced survival abilities
([15, 65]).

Finally, to close the triangle, a direct trade-off between migration and survival
also exists. The cost of migration due to environmental adversity and resource
fluctuations in the resource may include increased risk of predation and hazards
associated with exposure to the new environment [157], leading to the preference
of allocating resources to improve phenotypic plasticity in the direction of gaining
survival chance in harsh conditions. In this light, trade-off dynamics underlie the
importance of a deep knowledge of activation pathway in response to environmental
factor in order to quantify phenotypic composition of the tumour mass according to
observed conditions and to be able to predict cancer behaviour.

1.6 Relevance for this thesis

This chapter aims to provide the basic biological knowledge to understand the
modelling choices of the works presented later, both in terms of processes selected
to be captured by models and with respect to the mathematical form adopted.

As will become clear in chapters relating to the models, the biological treat-
ment surpasses the mathematical formulation in precision of detail (in most cases).
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However, we consider it important to give a "complete" vision of the biological
framework for two main reasons. On the one hand, the mathematical model does
not contain all the degrees of detail of biological knowledge due to the need for
modelling simplification: the objective is to minimize the number of parameters
and components of the model equations without affecting the ability to replicate
the observed phenomenon with a biologically consistent formulation. This does
not make it any less important to be aware of the biological knowledge that lies
upstream of this reduction process. On the other hand, mesoscopic and macroscopic
mathematical models often include terms that seem to lack in connection with the
microscopic dynamics. On the contrary, in a well-built model this connection is
"hidden" but does exist and it is important to have full awareness of the process of
derivation from the microscopic scale (accompanied with the biological precision
exposed here). In fact, without it, parameter estimation would be excessively de-
pendent on data and hard to evaluate in its biological reliability. This manuscript
contains many models investigated from a theoretical point of view and verified in
qualitative terms. The subsequent steps, aimed at creating a link with the available
medical data, involve a parametric quantification which requires awareness of the
"hidden" biological processes in the mathematical model.

Section 1.1 gives a general overview of cell functioning. In particular, cell
cycle, metabolism, and homeostasis explain some common assumptions made in
the various models. In our models, cells are characterised by proliferation activity,
which, according to the biological information provided, appears to be a central
point in the cell cycle, respiration and regulation. Some of the processes that cells
undergo (such as nutrient consumption or therapy effectiveness) in our models are
related to their proliferative dynamics. Proliferative switching according to cell
selection and oxygen availability is included, capturing the metabolic consideration
observed. Additional information provided stands as a hint for further work. An idea
is to include more specific models based on cell phase in the cell cycle. Another
possible direction is the formulation of a mathematical model for the Warburg effect,
considering the switch in the respiration strategy of the cell, its correlation with its
survival chance in harsh environment and with its impact on oxygen consumption.
The characterisation of cell functionality with respect to their specialisation degree
is a central theme going in the direction of developing models addressing stemness
and also considering liquid tumours.



1.6 Relevance for this thesis 51

The dissertation on oncogenesis highlights discrepancies in the knowledge of
the actual trigger for the generation of tumour cells but also coherence regarding
the recognition of an internal heterogeneity of the tumour population supported by
mutation processes. This explains our common choice in the models not to directly
insert tumourigenesis, starting from a small set of tumour cells already formed, but
admitting heterogeneity within the same and evolutionary dynamics (of mutation
and selection) in favour of it (as presented in Section 1.1.3).

Furthermore, for reasons of simplification of the models, we do not include
healthy cells among the populations described. Despite this, when healthy cell
behaviour has effects on the individual components included in the models, we
directly insert them (for example, when we consider tissue nutrients, we allow a
decay term that takes into account the consumption by healthy cells).

Cancer hallmarks presented in Section 1.1.2 are included in the models, both in
the dynamics themselves and in the parameter estimations. Cancer cells in our model
proliferate faster than healthy ones and slow down in the proliferative dynamics,
which are connected with environmental stressor-inducing quiescence. In our model,
in fact, quiescent cells do not create a separate population but are determined by
their phenotypic state. Together with the insertion of a carrying capacity, which
is only determined by space availability, this reflects self-sufficiency in growth
signal, apoptosis evasion and cancer metabolism information. Moreover, phenotypic
plasticity and epigenetic alterations jointly with the concepts about the evolutionary
processes presented in Section 1.5, are central in all the models presented in the
thesis, with epigenetic expression being linked to phenotypic behaviour in terms
of proliferation (all models), survival (models in Chapter 3, 4), motility (models in
Chapter 5, 6, 7), therapy effectiveness (models in Chapter 5, 8), and immunoevasion
(models in Chapter 9). In particular, proliferative dynamics are typically seen as
a trade-off with the others, with the only exception of Chapter 7 where motility
and proliferation are considered as two independent traits, whose eventual trade-off
dynamics emerge as a consequence of evolutionary dynamics.

Cancer cell’s interactions with the environment, described in Section 1.2 have a
strong impact on the thesis’s modelling choices, with models presented in Chapter
3, 4, 5, 6 directly including oxygen as an environmental factor influencing cancer
cell dynamics. In particular, oxygen is responsible for selective dynamics (Chapter
3, 4) and modulating proliferative and/or motile dynamics (all chapters cited above).
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Tissue invasion described in Section 1.2.2 is a central topic in Chapter 5 and 7, with
Chapter 5 directly addressing metastatic dynamics. Sustained angiogenesis (Section
1.2.1) is a future work perspective for the work presented in Chapter 5.

Cancer cell’s interaction with the immune system, presented in Section 1.3, is
central in the ongoing work presented in Chapter 9 and provides a hint for future
perspective in relation to oncolytic viruses considering a model in Chapter 8. In
particular, in Chapter 9, cells are characterised by a trade-off between proliferation
and immunoevasion (see Section 1.3.3), with highly proliferating cells being more
visible and killed more easily by the immune system.

Two models presented in the thesis describe therapies. In Chapter 4, according to
what was introduced in Section 1.4.1 from a biological point of view, the effective-
ness of radiotherapy is correlated with the oxygenation of the environment and the
effective proliferative state of the cells, with cells being more hit when diving in nor-
moxic conditions and resistance when quiescent and hypoxic. Moreover, oncolytic
virus therapies are modelled in Chapter 8, where interaction with oxygenation of
the tissue is investigated (as depicted in Section 1.4.2, that also put the bases for an
overlap of works presented in Chapter 8 and 9).

Finally, evolutionary processes of Section 1.5, with dynamics underlying the
tumour mass and actions operated by the environment and the medical practice
influencing the history of the tumour, are present in all the works presented in the
thesis. Specifically, the multi-scale nature of the oncological disease, described in
Section 1.5.1 has a direct mathematical counterpart in the model presented in Chapter
6, where we start from a model describing the microscopic dynamics of tumour cells,
and we adopt mathematical procedures to obtain a macroscale model.



Chapter 2

Mathematical framework

2.1 The need for mathematical modelling

Resistance, metastasis and treatment failure are rather common events in clinical
practice. The complexity of cancer, considered as a system, and the dynamics that
occur at the cellular and mass level are two of the main complications that currently
make it impossible to fully understand the pathways and mechanisms underlying.
Therefore, we lack complete knowledge that explains the reasons behind the failures
of treatments which are supposed to be tailored to cancer cell properties.

However, although it is clear that there are many aspects of the biology of the
tumour mass that we do not know, we cannot reduce the problem to a lack of knowl-
edge. In fact, even dynamics of which, taken individually, we have a profound
understanding, inserted in the context of a system, connected and interacting with
other pathways, are not fully controllable and predictable. This is the paradigm
of system biology, which is a biology-based interdisciplinary field involving com-
putational and mathematical sciences that has the aim of analysing and modelling
complex biological systems. In system biology, this is done consistently with the
concept of holism [396], according to which a whole system is expected to reveal
properties (referred to as emergent) beyond its part, in contrast with the reductionist
theory which thinks of a system as completely understandable as the result of simpler,
separable processes.

This is a key point in which mathematical modelling has the potential for improve-
ment. Mathematical models describe, in mathematical terms, the state variations and
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behaviours of a component of a system (be it a cell, a cell population, a tissue, etc.) in
relation to its action potential, its condition and interaction with other components or
with the environment. This gives the possibility, starting from biological knowledge
on individual pathways, of superimposing the cause-effect chains and seeing the
effect of the interactions between them. Furthermore, the equations that govern the
behaviour of agents in the biological system have the advantage of being analytically
and/or numerically solvable. These solutions not only give the possibility of trying to
reproduce the available data but also, through a process of estimating the parameters
present in the model, making the mathematical approximation as faithful as possible
to the observed phenomenon (with the intent of fulfilling reproducibility). Moreover,
they additionally provide a forecast intent, as once validated, models can be used
with a predicting aim.

In the oncological context, this predictive potential has the utility of being able
to bypass the lack of accessibility to data typical of cancer masses, whether it
is a physical problem (such as the non-reachability of the tumour location) or a
temporal problem ( such as the inaccessibility of future information or data that
precede the diagnosis). On the one hand, medical practice has a limit to observability.
Some easier-to-access information, such as the shape and global development of
the mass, could be provided by non-invasive imaging (i.e. MRI), which, however,
lacks accuracy on the (epi)genetic characterisation of the tumour. This type of
information is poorly accessible because it requires complicated surgeries, which
can even negatively affect the patient’s outcome (see the example of biopsies and
related risks [234]). Furthermore, even by obtaining analysed samples of the tumour,
in vitro observation excludes all the variables that are influenced by the interaction
with the environment, and therefore, the reliability of the information obtained is
partial.

A mathematical approach could prove, via biological coherent formulation of
a model and numerical approximation of the same, prove or explain theoretical
cell hypotheses such as the selective pressure of therapies [308, 214] and chronic
hypoxia [462, 320] or the co-optation of normal physiologic processes due to tumour
cell biochemical and biomechanics communication with stromal cells [372, 250].
Another aspect is that the analysis of the solutions and the sensitivity with respect
to the parameters used can provide a suggestion on the possible evolution of the
mass before it occurs and an indication of the statistical validity of this prediction.
In this sense, being able to provide a realistic model not only for the evolution of the
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tumour mass but also for the therapies themselves allows the numerical simulation
of the same to be used as an in silico patient. This term refers to the practice of using
mathematical models as virtual laboratories in which real patients are "substituted"
by computational approximations to investigate emergent clinical behaviours and
therapeutical protocols. The main aim would be to provide a suggestion that supports
the doctor in the delineation of the optimal treatment modality, dose and timing.

Consequently, once the effective contribution of the mathematics-medicine syn-
ergy has been proven [461], the question arises spontaneously as to which is the best
modelling technique to use. The honest answer is there is no answer. On the one
hand, the concept of the model’s optimality is affected by the importance of various
factors in its qualitative evaluation. If, on the one hand, precision and replicative
effectiveness are important, on the other, the simplicity of the model guarantees
greater ease in analytical resolution and, therefore, greater control of data dependence
and greater predictive capacity; from a further point of view, more complex models,
which aim more at coherence with reality, require complex numerical techniques for
their simulation. Another factor to take into consideration is that of optimising the
necessary computational resources. Furthermore, even if the optimality evaluation
criterion of the model had been decided, the complexity of the cancer system and
the heterogeneity of the processes, which includes different aspects such as nature
(chemical, mechanical, etc.), scale (cell, tissue, etc.) and times, makes it impossible
to find a single model that is optimal for each of these processes.

In this sense, we evade the question by saying that different modelling strategies
have been proposed over time, and their analysis has led to a conscious knowledge
of what the strengths and weaknesses of each are and what genres of processes
are better represented by each of them. In the following sections, we present the
modelling strategies that are included in the thesis, focusing on the reasons that led
to adopting them in the analysis of specific oncological dynamics.

2.2 Continuous modelling

Continuous models abandon the single agent detail to gain the possibility of de-
scribing a set of them as a population or mass whose modelled quantity is density
or numerousness (see [53]). This limits the use of these models to meso-macro
scales (in the sense that continuous modelling of microscale processes is possible



56 Mathematical framework

only considering one cell per time), and to describe (portions of) tissues and cell
aggregate, reaching intercellular dynamics as the highest degree of precision. Here,
a difference arises. From a biological point of view, a tumour is a set of cancer cells
that can be considered as follows:

• a phenomenological system: a population regulated as a whole by laws which
are the results of cell properties, interactions and dynamics;

• a mechanical system: a mass governed by physical laws which are influenced
by its aggregate of cell nature.

The choice between these two ways of visualising the tumour is not an aut-aut
since its behaviour is likely to be determined, in reality, by dynamics both arising
from mechanical and phenomenological processes. For example, in both views, the
tumour population can include growth and movement. But if, from a biological point
of view, the two aspects can be easily considered overlapped, from a mathematical
point of view, the choice of which to make prevalent is needed as it leads to the
selection of a specific modelling approach.

Referring to the two examples before, mechanical models include proliferation
effects, but the phenomenological aspect is not considered, as it is only described
as its results on the mass size and shape change in time (the daughter cells exert a
"pressure," displacing nearby cells and causing a growth in tumour size). On the
other hand, phenomenological models include movement but make the assumption
of ignoring mechanical effects, i.e. the only allowed movements are the ones
explainable as a combination of diffusion and taxis (attractive or repulsive response
to an external stimulus) such as chemotaxis (directional movement in response to
certain diffusible chemicals in the environment) or haptotaxis (directional movement
up a gradient of cellular adhesion).

Mechanical models are characterised by the use of force-balance or momentum-
balance interactions to determine how the cell, matrix and fluid components move
in response to the physical forces involved [53]. In mechanistic models, cellular
and tissue deformation are tracked, taking into account stresses and strains. In order
to do that, a choice in the description of tumour tissue, matrix and interstitial fluid
is necessary (if treated as elastic fluids or porous medium, for example). Some
well-known works describing tumours based on the so-called mixture theory are,
for example, [22, 81, 79]. In these cases, the tumour is described as a multiphase



2.2 Continuous modelling 57

material of cells, ECM and extracellular fluid. The underlined assumption is that
at every point in the space, there is a fraction of each constituent type. Although
this concept is of great relevance for the morphological and physical description
that it can provide of the tumour, during this thesis, we will mainly adopt a point of
view more similar to the first, in which the tumour is seen as a cellular population.
While on the one hand, the interest in the geometry of the tumour could lead to the
deduction of the optimality of mechanical treatment of the tumour, in our case, the
interest in the volumetric and spatial characteristics of the tumour mass is closely
linked to the connection with the evolutionary and selective dynamics which are
best represented in population models. We will refer to the mechanical aspect when
considering closure techniques for scale connection in multi-scale modelling (see
Section 2.4) in Chapter 7. Later, when considering phenomenological modelling,
we will use the term mass, but not strictly related to physical properties, rather as
a physical quantity resulting from the juxtaposition of the cells belonging to the
population, but whose properties we do not mathematically model in terms of the
continuous mechanics of liquids/solids.

Coupled ordinary differential equations can be employed to simulate extensive
cell population systems. In this framework, each dependent variable represents a spe-
cific, well-defined biological property common to all cells within a given population.
These models are constructed by averaging across both the spatial variable and the
biological functions associated with each population. Consequently, the system’s
state is only characterised by the number density of cells within each population.
The formulation of these models involves technical adaptations of Lokta–Volterra
type equations. Perthame’s book [354] offers an overview of population models in
biology, drawing upon an extensive bibliography documented in various books. In
this context, it is clear that tumours that are not distinguished by a particular spatial
characterisation are the best candidates for this modelling technique. Among all,
liquid tumours are the most striking example. Liquid tumours, such as leukaemia, are
characterised by a strong differentiation cascade (similar to the one of the hematopoi-
etic system, starting from stem cells and moving to fully differentiated cells across
a variety of intermediate stages). This usually leads to the modelistic choice of
adopting different ODEs to describe different compartments (differentiation stages).
[310, 462, 286, 416, 417]. ODEs also have the advantage of being easily attributable
to treatment medical studies since the efficacy of therapies is usually quantified in
term of "number of death of cells". Moreover, ODEs leave more space for analytical
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studies that benefit from a simple mathematical formulation, such as optimal control
[334].

ODE models are also adopted in order to quantify tumour spheroid growth when
only considering reaction terms such as proliferation and death without characterising
them in spatial terms [378, 371, 345, 114].

If there is no interest in average information, it is possible to catch the spatial
and biological heterogeneity of the population using systems of partial differential
equations. In this case, the variable is usually expressed in terms of cell density,
and the multidimensional domain includes independent variables related both to the
physical and biological space. Physical space is usually referred to as a time evolution
and a spatial characterisation. Models that dedicate more dimensions to geometrical
space allow us to avoid radial symmetry constraints. The biological internal variables
(usually a scalar one) could be an indicator of any cell characteristics that impact
specific cell functions and the related biological events under consideration. For
example, it could indicate the age of cells or quantify the expression of a gene
responsible for the determination of a particular behaviour, such as apoptosis or
proliferation. This category of models takes the name of structured population
models (a complete introduction and state of art in this field can be found in Ref.
[354, 230, 138, 422, 423, 355]).

In particular coupling partial differential equations allow to represent all the
players: cell populations, matrices, abiotic factors. Considering tumour spheroid
modelling, previously introduced by ODE techniques, when considering spatial
characterisation, the typical growth-limited behaviour of Lotka-Volterra modelling
is usually conserved in Fisher-like models, and different approaches are mainly
based on resource distribution, factors of growth inhibition and diffusive motion
(to cite some early works, we find [404, 100, 4, 5, 319, 318, 98]). These works are
characterised by the presence of non-uniform resource consumption (such as oxygen
in Ref. [319]) and the insertion of apoptosis as a volume loss mechanism [318].
These biologically coherent introductions enable the model to reproduce clinically
observed growth patterns. In particular, the model is able to characterise some
conditions under which non-viable states can be distinguished among necrosis and
dormancy. Mathematically, competition is also studied between populations evolv-
ing in fluctuating environments, using different modelling approaches, including
deterministic predator-prey models and stochastic models. In Ref. [35], the evolu-
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tionary dynamics of competing phenotype-structured populations are studied in a
periodically fluctuating environment, and in Ref. [137], authors study Lotka-Volterra
equations for two competing species under the assumption of coefficients being
periodic functions. Also, [176] considers a phenotypically structured population
inserted in a fluctuating environment. Here, the dynamics of mutations and selection
are again described by a parabolic Lotka-Volterra type equation, this time under the
assumption of non-local competition and time-periodic growth rate. One could also
consider a spatially-variable environment as done in Ref. [108] where a general
model of competitive and apparent competitive interactions is analysed to compare
findings on coexistence in a temporally variable environment.

Considering, in particular, the fitting dynamics of phenotype with respect to the
environment, in Ref. [357] authors use evolutionary bet-hedging, which consists of
a trade-off between the mean and variance of fitness due to which phenotypes with
reduced mean may be at a selective advantage under certain conditions. In general,
integro-differential equations and PDEs (usually non-local parabolic ones) are used
to exploit mathematical modelling in order to achieve a more in-depth understanding
of phenotypic adaptation mechanisms in different biological contexts. In Ref. [148]
authors model dynamics occurring due to mutualistic interactions between specialist
and generalist species, where the specialist population is structured by a continuous
phenotypical trait (here, quantifying the ability of individuals to consume specific
resources).

This approach has also been used when considering therapies, for example in
Ref. [368] where authors couple two integro-differential equations, modelling cancer
and healthy cells, both exposed to therapy (here chemotherapy). The phenotypic
structure, which is here related to the treatment resistance capability, is applied to
both populations.

Following the tumour mass phases described in Section 1.5.2, after the formation
of the primary mass and its growth up to a certain size, angiogenesis mechanisms
are necessary to provide the necessary nutrients to go on with the mass development.
This makes the tumour enter the vascular phase, which is characterised by two
main dynamics: tumour-signalling-driven vessel formation and invasive phenotype
switch of cancer cells. Considering the first one, even if the strong predominance of
stochasticity makes it easier to model angiogenesis using discrete modelling, some
successful attempts of adopting continuous modelling can be found, for example, in
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Ref. [26], where the continuous approach is used to directly describe TAF (tumour
angiogenesis factor) and the vessel building process is considered as a result of the
interaction between endothelial cells and ECM. On the other hand, considering the
invasive trend engaged by cancer cells in this phase, in Ref. [98, 97], authors study
the coincidence of the critical tumour size that triggers the transition with the one
that separates avascular and the start of angiogenesis. Moreover, going on again in
the steps described in Section 1.5.2, the presence of intratumoral vascularisation is
considered the mean by which cancer can metastasise. In Ref. [160] a theoretical
description of cell population dynamics coupled with molecular binding to cell
membranes is provided.

This spatio-temporal structure is used to illustrate dynamics arising from cancer
invasion. Some works also use double structure, such as [338] where the population
is structured both in terms of phenotypical trait and age. For instance, in Ref.
[27, 28, 30], authors describe tumour invasion considering the interactions between
tumour cells, ECM, matrix-degradative enzymes (MDE) and (later also) oxygen,
while a local model based on haptotaxis is presented in Ref. [196]. In the same work,
a non-local model for cancer cell invasion based on cell adhesion is discussed.

Local models assume that the dynamics of a dependent variable at a point in the
domain are determined only by the value of independent and dependent variables at
that point in the domain. On the contrary, if the dependency basin is not punctual,
we talk about non-local models. For some biological settings, non-local models
seem more coherent [76]. This is the case, for example, of particles that, with their
presence, modify some sensing field. Moreover, if we consider agents secreting
substances which act as chemo-attractors for some other agents, one could decide
not to directly insert the abiotic factor in the models but consider an attraction kernel
of the second population toward the first, dependent on their distance (based on an
assumption of instant diffusion). As an example, Ref. [89] introduces a modelling
set in which cells interact with each other by repulsion (if the distance between cells
decreases excessively with respect to volume size constraints around the nuclei)
or attraction (at medium distances through chemo-sensitivity or mechanically via
formation of protrusions). Moreover, the forces exerted by each cell type on the others
are included as non-local terms. Here again, a limit to the continuous counterpart is
operated as presented in Section 2.4.
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Based on the non-local setting of [196], in [159], the model is extended to catch
dynamics resulting from cell-cell and cell-ECM adhesion properties of cancer cells
for considering heterogeneous cell populations. Moreover, in Ref. [61], non-local
modelling is adopted to describe cancer cell invasion and movement, considering the
impact of integrin on adhesion properties. Also, in Ref. [307] authors study tumour
growth in the absence of necrotic core formation, considering the heterogeneity in
cancer cell population and the interaction with the TME in order to discover their
results in terms of tumour progression and morphology.

In Chapter 1, we underlined the cross-correlation of heterogeneity that charac-
terises both microenvironment and tumour cells. The mathematical framework of
structured populations allows individuals to be differentiated with respect to their
characteristics, whether they are phenotypical or genotypical. Keeping a generic per-
spective on structured population, not necessarily directly connected with the cancer
field, in Ref. [70] authors start from a simple reaction-diffusion equation structured
in spacial and motility capabilities term (resulting in a two-dimensional domain)
and study front acceleration and selection of the most motile individual dynamics.
Moving to a more complicated non-local parabolic Lotka-Volterra type equation,
structured by a two-dimensional space variable and a one-dimensional phenotypical
trait, in Ref. [71] authors keep into account spatial diffusion, mutations (as diffusion
on the phenotypical trait) and space-local competition between the individuals. Even
if not explicitly in the cancer context, in Ref. [69], authors propose an interesting
use of structured population in the context of the study of the invasion of cane
toads in Australia, introducing a structuring variable quantifying motility ability and
investigating spatial propagation in a using a non-local reaction-diffusion–mutation
model. Moreover, in the generic context of structured population, they demonstrate
the presence of significant stable conditions in reaction-diffusion equations featuring
a continuous parameter relevant to models of selection, mutation, competition, and
migration within structured populations characterised by spatial and continuous trait
variations. Keeping a more theoretical point of view, in Ref. [14], authors consider
a non-local reaction-diffusion equation as a model structured as the previous, and
they investigate the existence of travelling wave solutions, identifying a minimal
speed above/under which waves exist/do not exist. Later, in a model based on this,
environmental factors are added [13]. In Ref. [84], authors explore super-linear
spreading within a reaction-diffusion model akin to the Fisher-KPP equation but
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with the introduction of both a structuring variable linked to the dispersal ability of
individuals and a non-local saturation factor with respect to one variable.

Moving to the oncological context, a theoretical investigation motivated by a basic
model of tumour growth in order to explain the emergence of resistance to therapy is
presented in Ref. [323]. Here, the equations of the model capture the competition
for resources among individuals, which are phenotypically and spatially structured,
regardless of their traits. The solutions demonstrate a concentration effect, favouring
the fittest individuals. Authors establish the convergence of the solution towards a
Dirac mass in the physiological trait, which varies over time and spatial location,
exhibiting Lipschitz continuity. In [105] tumour growth dynamics are analysed via
a system in which two hyperbolic equations govern cell densities in proliferating
and quiescent states, while two elliptic equations model nutrient concentration and
pressure. In a free boundary framework, authors establish the solution’s existence,
uniqueness, and regularity over short time intervals. Sticking to the hyperbolic
part, in Ref. [104], the linear asymptotic stability of the stationary solution is
proved. A multi-scale tumour model incorporating gene mutations’ effects on tumour
cell population density is introduced in Ref. [183], where oxygen and chemokine
concentrations are considered. Analytical results include the solution’s existence,
uniqueness, and certain properties of the free boundary. Another approach in Ref.
[456] considers a time delay in proliferation compared to apoptosis due to mitosis
time and demonstrates that tumour volume self-limits, either disappearing or evolving
to a dormant state, under the hypothesis of a small enough diffusion/doubling time
ratio. In Ref. [457], angiogenesis is considered, investigating the existence and
stability of steady-state solutions for a tumour under the hypothesis of a constant rate
of tumour-induced blood vessel attraction. In Ref. [160], authors establish a general
spatio-temporal-structural framework to enable the description of molecular binding
to cell membranes coupled with the cell population dynamics in order to analyse
the interplay between collective movement and the various molecules present in the
biological system. Ref. [235] includes an examination of the impact of numerous
small mutations on a model of population dynamics structured by phenological traits
and spatially heterogeneous. In this model, various sub-populations compete for
the same nutrient diffusing through the spatial environment. In Ref. [300, 436], the
role of abiotic factor variation in mediating intra-tumour phenotypic heterogeneity is
studied via a phenotypic structure based on the resistance to hypoxia and involving a
trade-off with proliferation speed. The connection between the tissue scale changes
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in tumour morphology and the cell-scale dynamics of proteolytic enzymes in the
neighbourhood of the tumour interface is explored in Ref. [426] via a mathematical
analysis based on a structured population model. In Ref. [301], the same type of
model, this time structured by the expression level of a phenotype of resistance to
cytotoxic drugs, is used to investigate the effects of cytotoxic and cytostatic drugs.

Moreover, continuous models are also suitable for testing different therapeu-
tic protocols that simulate treatment strategies like surgery, vessel renormalisation,
antiangiogenic therapy, chemotherapy, radiotherapy, immunotherapy, or oncolytic
viruses. In Ref. [419], authors address perfusion challenges in tumours via vascular
normalisation and decompression methods. Despite the promise, optimal strategy
guidelines are absent. The so-developed mathematical model integrates vascular,
transvascular, and interstitial fluid dynamics alongside tumour vessel properties to
optimise a therapeutic intervention for enhanced perfusion. In Ref. [327] mathemat-
ical modelling is used to demonstrate the potential of metronomic chemotherapy
as an alternative to maximum tolerated doses in normalising tumour blood vessels,
enhancing perfusion, improving drug delivery, alleviating hypoxia, and boosting
the immune response against cancer, including resistant cells. In a study presented
in Ref. [439], authors examined vessel co-option dynamics in gliomas and brain
metastases, particularly in response to antiangiogenic treatment. The mathematical
model revealed how coopted vessels lead to hypoxia and secondary angiogenesis. In
Ref. [57], authors extend a computer model that enables quantitative comparison of
different metastasis formation models with clinical and experimental data in order
to incorporate chemotherapy, radiation, and therapies. In the paper, they utilise
discrete event simulation and piecewise growth functions to model tumour behaviour.
Considering the investigation of radiotherapy effectiveness, in Ref. [95, 94], tumour
diversity in oxygenated tissue is explored considering stemness levels influence on
cell behaviour and response to treatment. Phenotypic evolution is linked to oxygen
levels, revealing multiple steady states. The importance of oxygen levels in treatment
efficacy is also emphasised with respect to radiotherapy responses. A rich review
examination of vascularised tumour growth models can be found in Ref. [209], focus-
ing on continuum-based approaches with the potential for clinical translation. Topics
include tumour perfusion, drug delivery mechanisms, and personalised medicine
challenges and opportunities.



64 Mathematical framework

2.3 Discrete and hybrid modelling

We hereby present a brief overview of discrete modelling (see reviews [325, 163,
162, 28, 134]). In discrete modelling, formulae that describe the dynamics of the
observed agents are fit to discrete data, which are not infinitely divisible. In discrete
models, each agent is provided with a set of rules that govern its behaviour according
to its state and the interaction with other agents and with the environment. In contrast
to continuous modelling, discrete modelling captures individual details.

As we stated in Section 2.1, various modelling approaches have been employed
to simulate multicellular systems, each corresponding to distinct levels of approxima-
tion of biological reality, and each approach requires specific mathematical structures.
In this case, we can easily see that the advantage of single agent precision can lie
both in the ability to analyse dynamics at a subcellular scale (microscale) and in the
possibility of describing single cells (mesoscale) or agglomerations (macroscale)
characterised by a precise shape, state and spatial position.

The range of characteristics attributable to the agent, behaviours that can be
adopted and influences perceivable by other agents and the environment are limited
by the capacity of the chosen method, i.e. by how agents and environments are
mathematically described. Discrete models can be divided into two main categories.

The first one is lattice-based models, which confine cells to a regular two-
dimensional or three-dimensional lattice, with each computational mesh point up-
dated over time based on deterministic or stochastic rules derived from physical
conservation laws and biological constraints. Adopting a sufficient resolution degree
allows subcellular details to be captured. A specific case within this framework is
cellular automata (CA) models that represent each cell with a single computational
mesh point. Other possible modelling choices include lattice gas cellular automata
(LGCA) models where the same mesh point can host multiple cells and cellular Potts
models (CP) that allows the usage of more lattice site to represent each single cell. In
addition to the precision that can be achieved with sufficient mesh fineness, lattice-
based models have the advantage of the simplicity of the spatial arrangement, which
makes them accessible even without advanced computational expertise. Moreover, it
reduces the need for complex interaction testing between discrete cells and facilitates
direct coupling with the microenvironment by assigning continuum variables to each
mesh point.
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However, these two features also translate into some limitations. High-resolution
mesh requires computational resources. To overcome this problem, one can limit
the application to small systems of cells, incurring a limitation of applicability to
real-life problems, or move to low-resolution lattices, with the risk of introducing
artificial constraints on cell arrangement, orientation, and interaction. This, together
with the chance of oversimplification of the spatial arrangement, could result in a
struggle to capture specific patterns observed in normal tissues and cancers. Thus, if
these limitations are impactful for the specific biological system considered, lattice-
free models could be used instead. Lattice-free models, the second macro set of
discrete approaches often known as agent-based (AB) models, allow agents to move
without the constraints of discrete voxels so that distance and direction only depend
on the physical characterisation of the dynamics. It is clear that, on the one hand,
this strategy leads to a gain in degrees of freedom; on the other hand, the loss of
discretisation of the spatial domain makes a mechanical characterisation of particle
collisions necessary. AB models treat cells as distinct objects or agents capable of
individual movement and metabolic activity, such as division or death, based on
biophysically informed rules. Every agent can be characterised by the chosen level
of detail. Cells can be described as pointwise elements or be characterised by size
and shape. Also, signalling networks, genotypic and phenotypic traits, different gene
expressions and epigenetic characterisation can be linked to single agents.

Agent-based models are particularly well-suited for scenarios involving freely
moving and nonuniformly arranged cells. This is the case for immune system
interactions with tumour cells and metastasis.

This complexity of individual cells, together with the freedom of movement in
space, on the one hand, offers a better level of precision and overcomes the problems
of layout constraints of lattice-based models. On the other hand, this can lead to high
computational expenses, limiting their application to small cell systems. Here, the
high cost not only comes with a large number of agents but is additionally increased
by cell-cell interaction and heavy testing due to the lack of a regular cell arrangement.

In general, whether lattice-based or lattice-free, we can summarise the advantages
of discrete modelling in simplicity and single agent precision, as well as its lack of
analytical solution and high computational costs.

As called by its name, hybrid modelling pairs continuous and discrete modelling.
Based on the observations that we highlighted in the previous sections, it is intuitive
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to think that such a choice can be made in heterogeneous situations in which the
elements to be modelled have such great differences that they cannot be adequately
described by a single type of mathematical formulation, instead requiring a spec-
ification capable of capturing their characteristics. Such heterogeneity can match,
for example, biological systems in which the essential dynamics occur at different
times or spatial scales, i.e., "microscopic vs. macroscopic". In these cases, classical
approaches typically rely on the idea that the optimal choice is using a density-based
description for systems composed of high amounts of particles with negligible mass
(such as molecules), while the discrete counterpart better fit a population made of
agents that need to be considered as individuals (such as cells whose behaviour is
influenced by the state in which it is). These mathematical frameworks are typically
based on coarse-graining procedures [161], mean-field limits [90], or heuristic laws
of large numbers [86]. Macroscopic formulations have also been derived by selected
lattice-gas cellular automata (LGCA) in Ref. [82]. One typical setting, for exam-
ple, when considering cell population evolution in a determined space and time, is
to use agent-based modelling for cells, continuous chemical kinetic equations for
microscopic processes happening inside the single cell and macroscopic continuous
modelling (usually PDEs) for nutrients diffusion in the space. In this case, different
modelling settings (discrete vs continuous) are used not to describe different players
but to describe the elements of the same type having different behaviours, where
the modelling strategies are chosen to better catch the specific dynamics. For exam-
ple, one could have a cell population made of proliferative and moving cells, and
in this case, the increase in cell density due to division could be easily caught by
continuous modelling, while lattice-free discrete modelling would better fit a precise
determination of the movement (as done in [122, 392]).

When going into biological details characterising cancer dynamics, one can easily
understand how discrete and hybrid modelling can be exploited to represent them
[321]. It is important to underline that, due to the great importance attributed to the
tumour-microenvironment interaction, and given the preference of adopting a contin-
uous description for abiotic factors (usually undergoing diffusive dynamics), discrete
modelling has strongly moved towards a hybrid modelling approach. Nevertheless,
recently, a variety of works have also adopted a pure discrete modelling approach to
catch specific cell dynamics. One of the first advantages of using discrete modelling
is that it allows for a detailed determination of phenotypical specific characteristics.
One of the first works in which phenotypic heterogeneity of the tumour mass is
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formally included is [253], where a three-dimensional CA model for brain tumour
includes differences in proliferation capabilities and necrotic dynamics. In such a
way, the model is able to reproduce experimentally observed phenotypic stratification
of cancer spheroids. Phenotypically layered tumour structures, where proliferating,
necrotic, quiescent and motile cells settle at different positions with respect to the tu-
mour "centre", were also investigated using analogous discrete modelling techniques
[164, 421]. Further works in the direction of [253] include treatments and clone
evolutionary dynamics, mechanical interactions between tumour cells and stroma,
the degradation of ECM by outer layer cells, and the nutrient gradient-driven cell
motion [391, 174, 410, 245, 244]. In the same direction, a series of works starting
from [152] and followed by [217, 115, 216, 218] analyse the role of the environment
in term of re-orientation of migrating cells. Considering the characterisation of
cancer stem cells, discrete modelling has been adopted in Ref. [180, 361, 192].

Hybrid modelling, more in general, appears to fit the interest in analysing cell
populations characterised by different behaviours. Addressing one of the major
trade-offs presented in the previous chapter, the proliferation-migration dichotomy,
we see that, in particular when studying gliomas, agent-based models have been
used to investigate the glucose- and mechanics-drive selection of migration versus
proliferation for glioma cells [266], the quantification of parameters of a tumour’s
invasive dynamics [83], the oxygen role in influencing cell division, re-orientation,
migration, or apoptosis [215]. When considering the switch between epithelial and
mesenchymal states, in Ref. [267], authors investigate the interaction of tumour
cells and signal-secreting cells (discrete) and the ECM (continuous). Correlation
between hypoxia and tumour growth is studied with a hybrid approach in Ref. [25].
In Ref. [409], a hybrid cellular automation approach is developed to investigate
the mediation of somatic evolution of cancer cells due to cell-microenvironmental
interactions. Moreover, cell-based models are adopted to investigate the correlation
between hypoxia and tumour growth, both in correlation with phenotypic plasticity
and migration capabilities, in several works [29, 194].

Also, CP models [201] are adopted with the same modelling aim. Being able
to use more mesh points to describe a single cell, this category of models allows
for the mechanical characterisation of cells, which are modelled as deformable
objects with a certain volume, able to adhere to each other and to the medium in
which they live. After their generic application to cell sorting when introduced
[203], this class of model has been applied to study tumour growth. In particular,
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growth factors, nutrients and abiotic factors are inserted in the model [243, 403, 420].
Also, interaction with extracellular materials is considered in Ref. [428] using
the same approach. The capability of mechanically characterising single agents
in discrete modelling exploits its potential in models such as the one presented in
Ref. [288, 287] where the emergence of invasive phenotypes is studied as a result
of cell interactions, in particular considering how different proliferation, motility
and apoptosis rates tailor the evolutionary dynamics. In Ref. [164], each cell is
considered a physical agent characterised by elasticity, compressivity, deformability
and adhesiveness properties. An even deeper mechanical cell characterisation is
adopted in Ref. [393, 395, 394], where cell internal structure is described by a
differentiation of the nucleus and the cytosolic region.

Another cancer aspect in which hybrid modelling is widely used is angiogenesis
and the possible resulting metastasis dynamics. For example, in Ref. [27, 317, 316],
authors use the discrete model in order to describe the formation of capillaries
via chemical-stimuli-induced endothelial cell migratory and proliferative dynam-
ics. They also examine fluid flow through these network structures and explore
therapeutic delivery from tumour-associated vasculatures.

In Ref. [362], a lattice-based agent-based model is implemented in order to
study cancer stem cell role in tumour growth, exploiting discrete modelling using in
vitro assay to inform and calibrate behavioural rules and fitting in vitro and in vivo
experiments to validate emerging population-level dynamics. In Ref. [340], authors
develop an in silico agent-based model of triple-negative breast cancer that considers
surface receptor CCR5-high and CCR5-low cells and breast cancer stem cells to
predict the tumour growth rate and spatio-temporal distribution of cells in primary
tumours. Again, considering the same cancer class, in order to allow for a detailed
determination of phenotypical specific characteristics of cancer stem cells, discrete
modelling has been also adopted in Ref. [339]. In this study, authors focus on the
contributions of macrophages, fibroblasts, and endothelial cells on tumour evolution.
Model introduced in Ref. [59] study cancer stem cells in which cancer cell agents
are distinguished based on the differentiation stage associated with the malignancy.
The investigation is driven by a treatment optimisation aim. Furthermore, keeping
into account therapeutic perspectives, in Ref. [284], an off-lattice model is adopted
to study cell heterogeneity in treatment responses.
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The immune system is another context in which individual agent modelling is
widely used since the motion and action dynamics of agents (such as T cells) benefit
from individual characterisation. For example, in Ref. [17], tumour cells and T
cells are modelled as individual agents, while abiotic factors driving the chemotactic
movement of the immune system players towards the tumour are modelled as a
continuum.

2.4 Multi-scale derivation of models

The biological interconnection between different scales needs to be found in cor-
respondence with the mathematical counterpart. It is essential that macroscopic
models are formally derived from underlying cellular models. One way to do this
is considering dynamics at a cellular scale and then using the so-called asymptotic
methods, which are based on the procedure of using a limit of intercellular distances
toward those at the tissue level.

We can group these techniques into two main strategies:

• parabolic limit (low field) emphasises diffusion processes in the solutions,
leading to drift-diffusion or reaction-diffusion systems;

• iperbolic limit (high field) emphasises convective or interaction terms, leaving
diffusion at a lower order of magnitude.

See that multicellular models include a characterisation of active particles based
on position and velocity (as in classical physics), but also on microscopic state
coherent with their biological functioning, that influence macroscopic phenomena
[92, 68, 353]. Another possible derivation strategy, based on a similar limit procedure
of the previous, is starting from the tentative of representing multicellular systems
using stochastic individual-based models [101]. In this mathematical formulation, a
single-cell dynamic is captured by stochastic rules that can be tailored to enhance
descriptive precision. Here, the advantage stands in being able to consider stochastic
fluctuations in single-cell biophysical properties even in situations in which cellular
densities are too low to be captured by the continuum model (with the same advantage
of agent-based modelling highlighted when considering hybrid strategies for multi-
scale phenomena). The limit procedure is to reproduce the emergence of population-
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level phenomena that are induced by these low-level processes (see Ref. [16] for a
full explanation of the theoretical aspects of the derivation). This kind of discrete-
continuous derivation can be exploited in order to catch either transport dynamics
(like chemotaxis) from velocity-jump process [222] or linear and nonlinear diffusion
from discrete modelling of random walks [352] or systems of discrete equations
[332]. One of the main advantages of these derivation strategies is not only the
deduction of the "shape" of the equations defining the continuous model, but also
the direct estimation of global parameters showed at the macroscopic level from the
individual ones present in the discrete modelling (which are more easily observable).

2.5 Relevance for the thesis

Given the mathematical nature of the work, the thesis focuses mainly on continuous
models, which as anticipated have the advantage of greater predictability and theo-
retical analysability. Furthermore, the numerical tools in our possession guarantee us
effective simulations of the same, without exceeding computational costs (for every
model we show the chosen numerical approach).

Given the interest in tumour spatial configuration, all continuous models are
based on PDE systems. In particular, with the sole exception of the model presented
in Chapter 7, which presents radial symmetry, our models are set on two-dimensional
spatial domains free from symmetry constraints.

All the models presented can be said to be multi-scale since they take into
consideration dynamics belonging to different temporal and spatial scales. However,
a rigorous multi-scale derivation in mathematical terms characterises the model
presented in Chapter 6. Also, the model introduced in Chapter 7 presents a formal
derivation starting from a stochastic discrete model (characterised by single-cell
dynamics) and leading to a continuous model at a macroscopic scale.

The interest in the epigenetic characterisation of cancer cell populations leads to
the choice of the structured population in models introduced in Chapters 3, 4, 7, and
8 (moreover in Chapter 6 when considering micro- and meso-scale and in Chapter 9
as a future perspective) or multiple populations differentiated by epigenetic traits in
Chapters 5 and 9.
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Chapter 3

Continuous modelling for geometric
characterisation of hypoxia-resistance
and proliferation heterogeneity in
tumours

In this chapter, we focus on a key aspect of tumour growth and evolution: the tumour-
environment interaction. In Chapter 1 we observed that, in particular, the several
pathways involves oxygenation of the tissues, inducing relevant co-implications with
tumour dynamics (see Chapter 1). We deepen the investigation on the role of oxygen
concentration in the determination of the epigenetic-phenotypic heterogeneity of
cancer cell populations (part of the analyses and results included in this chapter were
also previously published in Ref. [112]). The investigation of the evolution of the
tumour mass, in terms of shape, size, and geometrical and epigenetic characterisation,
does not only have an exploratory interest; when considering therapy, such features
are predominant factors in the occurrence of relapses after treatment or failures in
the eradication of the mass. While we keep the explicit therapeutical analysis for the
next chapters, inspired by the interest in these specific features of the tumour, we
hereby propose a mathematical model able to describe the eco-evolutionary spatial
dynamics of tumour cells in their adaptation to hypoxic microenvironments [111].
The main novelty with respect to the existing literature is the combination of an
epigenetic indicator used to structure the population with a 2d geometric domain that
allows for the abandonment of radial symmetry. The epigenetic independent variable
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included in the model is a descriptor for the experimentally observed metabolic
trade-off between the proliferative potential and the ability to resist under hypoxic
conditions. The model is settled in the mathematical framework of epigenetically
structured population dynamics. We formulate it in terms of systems of coupled
non-linear integro-differential equations, where dependent variables include cancer
cells, necrotic cells, and oxygen.
Computational simulations show the strong effect of hypoxia-induced selection on
the geometric characterisation of epigenetic- and phenotypic-defined tumour niches.
This population composition, together with its spatial features, impacts tumour
invasive ability and aggressiveness. Furthermore, we show the importance of the
knowledge of environmental characteristics with the aim of providing a predictive
advantage on tumour mass development.
Detailing chapter organisation, we present the biological framework and the mod-
elling state of the art in Section 3.1. Section 3.2 introduces the model and founda-
tional assumptions guiding our research. Section 3.3 details the numerical imple-
mentation, starting with parameter estimation and metrics for measuring tumour
progression as outlined in Subsection 3.2.1. We proceed to examine tumour growth
in a designated standard scenario, referred to as the reference case, in Subsection
3.3.1. Subsequent sections, 3.3.2 and 3.3.3, explore potential deviations from this
reference scenario, specifically focusing on tumour invasion capabilities. Through
selected examples, we underscore the significance of tumour-environment interac-
tions in tumour development. In Subsection 3.3.2, we investigate how the spatially
variable distribution of intra-tumoural blood vessels contributes to niche formation
driven by blood vessel dispersion. Subsection 3.3.3 examines the effects of oxygen-
related selective pressures on tumour cells, especially in light of adjustments in the
proliferation-survival trade-off, and its influence on developing hypoxic resistance
within tumours. The document concludes with Section 3.4, where we summarize key
findings, discuss our approach’s limitations, and suggest future research directions.

3.1 Introduction

The dynamic evolution of cancer, fuelled by its genetic and epigenetic instability, is a
critical factor in the failure of cancer treatments [31]. The variability in the genotypic
and phenotypic characteristics of cancer cells, which can fluctuate across different
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locations and over time, coupled with the significant influence of environmental fac-
tors, leads to considerable variations in tumour progression among patients with the
same histological types. Such variability, both within individuals and across different
tumours, lays the groundwork for developing intra- and inter-tumour heterogeneity,
posing significant challenges to the eradication of cancer [178].

Niche construction theory provides a robust framework for understanding the
robustness of cancer; it positions cancer cells as exemplary invasive species that
have thrived across thousands of generations, creating niches that enhance their
proliferation and ability to invade new territories [231].

Oxygen levels play a pivotal role in this scenario. Clinical observations reveal
that oxygen distribution within solid tumours is highly uneven, ranging from standard
to mildly hypoxic, severely hypoxic, and even anoxic conditions [335]. The lack of
oxygen acts as an environmental stressor, triggering a series of genetic and especially
epigenetic mutations that significantly influence the eco-evolutionary dynamics of
tumours. Cancer cells adapt by modulating their cellular physiology and metabolism,
upregulating genes such as p53, HIF-α , GLUT-1, or IAP-2, which enables them to
thrive in hypoxic environments and evade cell death [386].

This behaviour highlights a crucial consideration: despite their extensive capacity
for adaptation, cancer cells must navigate trade-offs in allocating energy to essential
functions such as growth, maintenance, reproduction, and movement. As a result,
while they possess significant evolutionary potential, they cannot achieve optimality
across all traits [144, 167]. Specifically, cancer cells may face a trade-off between
enhancing cell survival under adverse conditions, such as oxygen deprivation and
maximizing cell proliferation. This is evident in hypoxia-resistant cells, which show
a reduced proliferation rate, with doubling times twice as long as those of normal
cells [312].

The impact of hypoxia on the eco-evolutionary dynamics of tumour cells also has
critical implications for therapy. The emergence and extinction of dominant clones,
whether occurring in bursts or more steadily, necessitate tailored clinical approaches.
Variability in tumour responses may be linked to the spatially heterogeneous dis-
tribution of blood vessels within tumours; this dispersion creates ecological niches
that select for cells with differing resistance capabilities. Furthermore, variations in
the blood vessel network can lead to heterogeneity in the tumour microenvironment
among patients, affecting tumour responses [119, 19, 283].
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Mathematical models serve as valuable tools in this domain, acting as in-silico
laboratories for testing various environmental conditions, tumour compositions, and
therapeutic strategies. These models can streamline experimental trials, enhancing
the efficiency of experimental protocols and clinical interventions while reducing the
need for animal testing.

The phenotypic plasticity of cancer cells and their role in tumour development has
been extensively studied through a broad array of modelling techniques, particularly
within the framework of structured populations. This approach has shed light
on various growth-related factors, including resource distribution, environmental
heterogeneity, and cancer cell diversity [70, 160, 235, 296].

In the specialized field of hypoxia research, the use of integro-differential equa-
tions and partial integro-differential equations has been a critical methodological
approach for exploring how oxygen distribution influences the development of
phenotypic heterogeneity within tumours. This analytical strategy has been ef-
fectively applied in several studies, as evidenced by the work documented in Ref.
[36, 418, 437, 300, 301, 436, 175]. These studies collectively underscore the eco-
logical significance of oxygen levels in shaping the diverse phenotypic landscape
of tumour cells, highlighting the complex interplay between genetic factors and
environmental conditions in cancer progression.

Adopting a different mathematical approach, the examination of hypoxia’s effect
on the proliferative and invasive capabilities of cancer has been conducted through the
lens of hybrid cellular automaton models. This approach is well-represented in the
literature, particularly in the pioneering work of Ref. [194], which has opened new
avenues for understanding the dynamic responses of cancer cells to hypoxic stress.
Further advancing this field, a novel methodological perspective was introduced
in Ref. [110] (see Chapter 5), which delves into the role of hypoxia as a catalyst
for phenotypic instability. This instability encourages tumour cells to adopt more
aggressive characteristics, employing a hybrid model that distinguishes cells based
on both their genetic and phenotypic attributes. Additionally, the development of
a mechanical model that simulates tumour growth by depicting cellular switches
between aerobic and anaerobic metabolisms under hypoxic conditions has made
significant contributions to our understanding of cancer cell survival strategies [38].

Building on the foundations laid by these diverse modelling efforts [175, 437, 36],
our current study is designed to further investigate the interplay between tumour mass



3.2 The mathematical model 77

and the availability of essential resources, mainly focusing on oxygen distribution.
We aim to explore: (i) how this interaction can lead to a geometric delineation of
tumour niches, characterized by their spatial extent and the delineation between active
and necrotic zones; (ii) the implications of such geometric characterisation on the
phenotypic makeup of the tumour, specifically regarding cell survival and invasion
capabilities; and (iii) how these elements, in conjunction, influence overall tumour
growth. Moreover, this research direction sets the stage for examining the impact of
a tumour’s pre-therapeutic exposure to varying oxygen levels on the likelihood of
treatment failures. The emergence of hypoxic cells resistant to treatment, stemming
from these dynamics, poses a challenge for controlling tumour growth and preventing
the spread of cancer to regional and distant sites. This scenario underscores a critical
therapeutic challenge that demands extensive exploration to develop more effective
treatment strategies and, potentially, to mitigate the risk of cancer relapse.

3.2 The mathematical model

We construct our model using a system of interconnected nonlinear integro-differential
equations. Through numerical simulations, we investigate various eco-evolutionary
scenarios by adjusting both cancer cells’ biophysical/biochemical traits and environ-
mental parameters. Specifically, our model addresses a spatially explicit, epigeneti-
cally structured population reliant on environmental resources, which are supplied
through a spatially heterogeneous distribution and diffuse across the environment.
The behaviour of our virtual tumour cells is shaped by individual phenotypic traits,
environmental conditions, and their interplay, facilitated by spatially explicit pheno-
typic relationships. Our focus is solely on the role of oxygen, which is considered
the sole metabolic resource available in this context. We consider a spatial bi-
dimensional domain Ωs ⊂ R2 where the tumour mass can expand. This represents a
tissue slice in which the tumour mass grows. Considering the population of malig-
nant cells, we designate viable cells as those that are metabolically active (i.e., their
counterparts are necrotic individuals). This viable group is structured based on the
epigenetic trait u ∈ Ωp = [0,1], which characterizes their resistance level, namely
their ability to survive in harsh environmental conditions such as hypoxic tumour
areas. Specifically, the phenotypic state u = 0 (referred to as the proliferation promot-
ing phenotype) denotes the cell clone with the highest mitotic potential but the lowest
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level of hypoxia-resistance, while u = 1 (termed the survival promoting phenotype)
confers the highest survival ability but the lowest duplication capacity. Between
these extreme values lies a continuum spectrum of possible states, encompassing
cell variants with intermediate levels of both survival and proliferation. In ecological
terms, this implies a population composed of two specialists—proliferating and re-
sistant cells—and a range of hybrid ones, known as generalists, capable of allocating
their energies partly to proliferation and partly to survival.

This choice to represent the phenotype of a cell via a continuous variable could
reflect existing biological evidence. For example, it allows us to tightly represent
how the over-expression of some genes could result in a spectrum of distinct abilities,
as shown by the histological data presented in Ref. [139], where different levels
of expression of GLUT-1 arise in a heterogeneous distribution of cells in terms of
hypoxia resistance. In the same veins, it could be particularly suitable to describe the
phenotype of a cell as the result of the interaction among several genes that could
combine, conferring maxima, minima but also hybrid characteristics, as shown in
the epithelial-mesenchymal transition, [58].

In accordance with these assumptions, the function a(t,x,u) : T ×Ωs×Ωp 7→R+
0

henceforth delineates the local arrangement of active tumour cells across the trait
space. Put differently, a(t,x,u) mirrors the phenotypic constitution of the tumour
mass at the specified time t and domain point x. Consequently, the local density of
viable individuals can be calculated as follows:

ρ(t,x) =
∫

Ωp

a(t,x,u),du, (3.2.1)

to encompass all individuals within the mass, irrespective of their phenotype (i.e.,
integration over the phenotypic domain Ωp).

Conversely, the necrotic subpopulation is assumed to lack differentiation, its
density determined by the function n(t,x) : T ×Ωs 7→ R+

0 . The concentration of
oxygen is denoted by O(t,x) : T ×Ωs 7→ R+

0 .

Cellular scale: tumour cells undergo proliferation, engage in resource competition,
infiltrate surrounding tissue, and experience natural selection that optimizes their
nutrient uptake for proliferation and enhances their survival in challenging envi-
ronments, such as hypoxic regions. However, there exists a trade-off that prevents
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the simultaneous maximisation of these traits. Additionally, cancer cells can alter
their biochemical and biophysical properties, potentially leading to necrosis. Their
behaviour is influenced by the surrounding tumour microenvironment, which, in a
feedback/feedforward manner, is affected by the presence of cancer cells. Metabol-
ically active cells are expected to (i) undergo random phenotypic transitions, (ii)
move randomly, and (iii) either proliferate under selective environmental pressures
or irreversibly transition to a necrotic state. The evolution of their distribution can be
described by the following trait-structured integro-differential equation (IDE):

∂a(t,x,u)
∂ t

= βp
∂ 2a(t,x,u)

∂u2︸ ︷︷ ︸
epigenetic variations

+βs∆xa(t,x,u)︸ ︷︷ ︸
movement

+R(u,O(t,x),ρ(t,x),n(t,x))a(t,x,u)︸ ︷︷ ︸
proliferation/selection/necrosis

.

(3.2.2)
The diffusion operator on the right-hand side concerning the variable u in Equa-
tion (3.2.2), with a constant coefficient βp > 0, represents the minute epigenetic
fluctuations within the tumour mass stemming from random mutation events due
to the non-genetic instability present in malignant cells. This modelling approach,
highlighted in Ref. [113] and its bibliography, underscores the interplay between
a cell’s genetic heritage and its environmental context in shaping its phenotype.
Incorporating a diffusive term allows for two key considerations: firstly, variations
in gene expression leading to minor phenotype differences are the most common, oc-
curring with high probability based on biological evidence. Secondly, although rare,
there are instances where changes in the expression of a few genes can significantly
impact the observed phenotype, giving rise to individuals with markedly different
characteristics. The diffusion operator regarding the x variable on the right-hand side
encapsulates the random movement exhibited by cells, described by isotropic Fick’s
law of diffusion with a diffusivity coefficient βs > 0.

The reaction term in Equation (3.2.2) resumes local variations in the mass of
viable cells due to proliferation, natural selection and necrosis phenomena:

R(u,O(t,x),ρ(t,x),n(t,x))=P(u,O(t,x),ρ(t,x),n(t,x))︸ ︷︷ ︸
proliferation

−S(u,O(t,x))︸ ︷︷ ︸
selection

−N(O(t,x))︸ ︷︷ ︸
necrosis

.

(3.2.3)

In particular, the proliferation rate P is assumed to depend on (i) the individual
actual epigenetic trait, (ii) the oxygen availability and (iii) the physical limitations
of space availability. In this respect, we factorize P in three terms catching these
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aspects, as follows:

P(u,O(t,x),ρ(t,x),n(t,x)) = p1(u) p2(O(t,x)) p3(ρ(t,x),n(t,x)). (3.2.4)

The duplication law p1 accounts for the fact that the epigenetic state u = 0
corresponds to the trade-off level at which cells have the highest proliferation rate,
γmax, whereas a trait value u = 1 lead to the lowest rate γmin characterizing the cell
clones whose high resistant feature pays in poor chances to undergoes mitotic events.
In order to quantify the proliferation-resistance trade-off, we adopt a linear trend,
defining p1 as:

p1(u) = (γmin − γmax)u+ γmax. (3.2.5)

Aware of the possibility of shaping this trade-off with other curves, we focus on
the linear function considered as an average condition between a concave choice,
characterized by an initially weak and cheap trade-off, and a convex choice, in which
the trade-off is initially strong and costly [65].

Considering the already mentioned decrease of proliferative activity due to HIFs
in case of lack of oxygen, we assume that active cells proliferate proportionally
to the quantity of oxygen. In particular, we consider a basal concentration On,
corresponding to the amount of molecular substance needed to remain viable and
avoid necrotic transition. Under this level, proliferation is considered blocked; above
that, there is a positive proportionality to the exceeding amount of oxygen. We stick
to a classical formulation for the relation between cell duplication rate and available
chemicals, given by the Michaelis-Menten law:

p2(O(t,x)) =
O(t,x)−On

αO +(O(t,x)−On)
H(O(t,x)−On), (3.2.6)

being H(O(t,x)−On)= {1 , if O(t,x)≥ On; 0 , if O(t,x)< On} the Heaviside func-
tion. Equation (3.2.6) therefore implies that mitotic events are prohibited in the case
of insufficient presence of oxygen. The factor p3 in Equation (5.5.8) is finally in-
serted in the models to catch the typical compression-driven disruption of the mitotic
cycle. In order to replicate this aspect from a mathematical point of view, we con-
sider a local carrying capacity k > 0, which represents the maximum allowed density
according to space availability in the tissue, and we set the following logistic-like
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law:
p3(ρ(t,x),n(t,x)) = 1− ρ(t,x)+n(t,x)

k
. (3.2.7)

In Equation (3.2.7), both viable and necrotic cells contribute to occupying space.

The function S(u,O(t,x)) in Equation (5.5.9) can be considered as a death rate
representing the oxygen-driven natural selection according to the resistance trait
expressed by the cells. We refer to theoretical results and experimental data (in
particular, see Ref. [272] and Ref. [434]) to depict a scenario based on the following
biological assumptions:

Assumption 1. There exist two oxygen concentration levels OM > Om > 0 that can
be considered as the threshold for three possible oxygenation scenarios for cells:
hypoxic if O ≤ Om; moderately oxygenated if Om < O < OM; normoxic (i.e. well
oxygenated) if O ≥ OM.

Assumption 2. Given a fixed concentration of oxygen, a hypoxia-resistant epigenetic
trait exists, which is the fittest. Considering this as the fittest expression of genes that
correlates with hypoxia-resistance, cells showing a lower expression have a higher
death rate when exposed to a lack of oxygen because of the inability to survive.
On the other side, the decrease in cell proliferation associated with the acquisition
of resistance to hypoxia (according to the already presented trade-off) results in a
correlation of a higher level of gene expression with a higher fitness cost and then an
increased death factor due to competition with more proliferative traits. Thus, the
closer the gene expression level to the fittest one, the higher the chance of survival.
Hence, cells with a gene expression far from the fittest one are more likely to die due
to oxygen-driven selection.

Assumption 3. As considered in the previous assumption, the fittest level of ex-
pression of the hypoxia-resistant gene depends on the oxygen concentration. In
particular, the minimal level of gene expression (i.e. u = 0) is the fittest in the
case of normoxic environments (i.e. when O ≥ OM), the maximal level of gene
expression (i.e. u = 1) is the fittest in the case of hypoxic environments (i.e. when
O ≥ OM); when considering moderately-oxygenated environments (i.e. intermediate
cases Om < O < OM), the fittest level of gene expression is a function of the oxygen
concentration, continuous and with decreasing monotonicity (i.e. as the oxygen
concentration increases, it decreases continuously from u = 1 to u = 0).
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Under Assumptions 1, 2 and 3, the oxygen-driven selection term S(u,O(t,x)) is
defined as:

S(u,O(t,x)) = ηO
(
u−ϕO(O(t,x))

)2
. (3.2.8)

Here, the parameter ηO > 0 is a quantifier for the intensity of oxygen-driven selection.
Function ϕO(O(t,x)) can be chosen as wanted in order to provide a mathematical
formulation for Assumption 3. The oxygen concentration O(t,x) is the expression
for the environmental conditions and, for our model, we choose a linear expression
for ϕO(O(t,x)) as it is the simplest function respecting the continuity and decreasing
monotonicity condition. Its explicit formulation is given by:

ϕO(O(t,x)) =



0, O(t,x)≥ OM,

OM −O(t,x)
OM −Om

, Om < O(t,x)< OM,

1 O(t,x)≤ Om.

(3.2.9)

Finally, in order to catch the irreversible necrotic fate acquired by viable cells in case
available oxygen concentration drops below the level On, the term N in Equation
(3.2.3) reads as follows:

N(O(t,x)) = ηH(On −O(t,x)). (3.2.10)

Here, η represents a transition rate, and H is again the Heaviside function. We are
indeed assuming a deterministic necrosis in the case of a hypoxic condition, reflecting
the disruption of intracellular metabolic activity in the environments characterized
by a lack of resources, which is common among all viable cell variants.

Necrotic cells dynamics

Viable cells undergoing the just shown metabolic inactivation are incorporated in the
necrotic population so that the same rate N(O(t,x)) establishes the growth term in
the relative equation, i.e.,

∂n(t,x)
∂ t

= N(O(t,x))ρ(t,x). (3.2.11)
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Here, ρ(t,x) is the number density of viable individuals since the irreversibility of
necrosis and the lack of metabolic activity in this population allow the collection of
cells regardless of their epigenetic characterisation. Equation (3.2.11) implies that
necrotic cells have no movement; thus, they remain frozen in space.

Molecular scale

The equation governing the local concentration of oxygen includes a source term
V (x), which is spatially heterogeneous and aims to capture intra-tumoural vessels
bringing oxygen into the tissue where the tumour settled. Once provided by vessels,
the oxygen movement is determined by a purely diffusive dynamic. Then oxygen
naturally decays (here, the term also includes the consumption by healthy cells) and
is consumed by metabolically active cancer cells. The mathematical formulation of
oxygen concentration kinetics results in the following parabolic PDE:

∂O(t,x)
∂ t

= βO∆xO(t,x)︸ ︷︷ ︸
diffusion

− λOO(t,x)︸ ︷︷ ︸
natural decay

−ζO

∫
Ωp

p(O(t,x))a(t,x,u)du︸ ︷︷ ︸
consumption by

active tumour cells

+ V (x)︸︷︷︸
inflow from

the blood vessels

.

(3.2.12)
Here λO, βO and ξO are constant coefficients.

As a notation, we use ϒ = {(vi, Ii) ∈ Ωs ×R+}NV
i=1 to refer to the set of blood

sources present in the tissue, where a couple defines the i-th element: the first element
vi provides its geometrical position and the second element Ii gives the rate of oxygen
inflow in the tissue via it. Thus, mathematical formulation of the inflow V (x) in
(3.2.12) can be of the form of a geometric source given by:

V (x) =
NV

∑
i=1

Ii e
− (x−vi)

2

σ2
V . (3.2.13)

Coherently with the model introduced in Ref. [436], the variance is taken such that
σV << 1 to simulate a quasi-pointwise source. In this modelling arrangement, source
characteristics and numbers are time-independent. This leaves space for different
generalisations in future. For example, one could consider variations in time of
the number of vessels NV = NV (t) to take into account blood vessel destruction or
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formation or intensities dependent on time Ii = Ii(t) to be able to reproduce the effect
on the inflow capabilities caused by external factors, such as therapies. Moreover,
we specify that we do not take into account any physical characterisation of vessels
so that there are no mechanical interactions between tumour cells and blood sources
and no tumour cell extravasation is allowed (this model does not consider tumour
metastatic dynamics).

3.2.1 Simulation details

The spatial domain Ωs represents a 2-dimensional section of a tissue. In particular,
we take into account a square with a side of 4 cm, i.e. Ωs = [−2,2]2 cm. We
denote by tF the final observation, letting it vary in each experiment according to the
dynamics to be captured (being tF = 1000 days the longest time-window adopted for
a simulation).

Initial and boundary conditions

Considering Equation (3.2.2) and Equation (3.2.11) (describing cell dynamics), we
impose the following initial conditions:

a(0,x,u) = A exp
(
−(x−xC)

2

2σ2
x

− (u−u0)
2

2σ2
u

)
, for x,u ∈ Ωs ×Ωp; (3.2.14)

n(0,x) = 0, for x ∈ Ωs, (3.2.15)

with A > 0 s.t. ρ(0,x) =
∫

Ωp
a(0,x,u)du < k. Note that xC is the barycentre of

cancer cell population at the initial time and it is explicitly expressed in every
different simulation setting.

According to the already stated decision to not catch oncogenesis dynamics and
not explicitly insert healthy cells in the model, we assume that, at the beginning
of all experiments, the tissue already contains a set of malignant viable cells with
the following characteristics: (i) Each cell phenotype exhibits a complete Gaussian
distribution along the spatial dimension, centred at the initial point xC, with a variance
of σ2x = 8 ·10−3 cm2. (ii) The cell mass follows a half-normal distribution in the
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trait space, peaking at u0 = 0 and with a variance of σ2
u = 8 ·10−2. This distribution

choice is justified by the initial phase of tumourigenesis in simulations, characterized
by a low cell count and a propensity for proliferation to establish within the tissue.
Initially, the cell configuration reaches a maximum density of A = 89.20 cells/cm2.
At t = 0, the overall density ρ of active individuals is symmetrically distributed with
respect to xC, primarily consisting of proliferative-promoting cell variants with only
a tiny fraction of survival-promoting agents. The initial growth phase of malignancy
lacks a necrotic core, as depicted schematically in Figure 3.1 for the case where
xC = (0,0).

The Equation (3.2.2) adheres to zero-flux conditions at the boundary of the
epigenetic domain, denoted as ∂ua(·, ·,0) = ∂ua(·, ·,1) = 0. This condition aligns
with the inherent limitation that malignant cells cannot possess a trait value less
than 0 or greater than 1. This principle extends to the domain Ωs, particularly when
considering mass growth within a tissue slice.

Fig. 3.1 Initial condition for the tumour mass. For example, the node of malignant viable cells
is centred at xC =(0,0). Cell density a(0,x,ui) is projected on the segment (−2,0),(2,0) that
crosses diametrically the mass. ui for i = 1...10 correspond to the nodes of the discretisation
of the epigenetic domain that is considered. Each line refers to one of the discretized
phenotypes.

Here, physical barriers such as bones, boundaries of breast ducts, or the absence
of extracellular matrix prevent the mass from expanding beyond them.
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In the context of chemical kinetics, the equation (3.2.12) is supplemented with
an initial condition:

O(0,x) = O0(x), (3.2.16)

where O0(x) denotes the steady-state oxygen distribution in the tissue in the
absence of tumour cells, considering a distribution of blood vessels. We enforce
zero-Dirichlet conditions at the boundary of the spatial domain Ωs, assuming a
sufficiently large tissue with anoxic regions at the boundaries.

Two different geometrical layouts for blood vessels are considered. The first,
simpler layout consists of a single vessel placed at the centre of the domain (0,0),
termed the SV-layout (Single Vessel layout). The second layout involves three
vessels positioned at coordinates (−1,1), (1.2,−0.8), and (0.8,−1.2), referred to
as the 3V-layout (Three Vessels layout). Various simulations will explore the effects
of different vessel intensities. Specifically, we denote the standard intensities for the
SV-layout and the 3V-layout as ISV and I3V , respectively. We will consider different
combinations of their full values (IF

SV and IF
3V , respectively) and half values (IH

SV and
IH
3V , respectively). This enables us to describe all potential configurations of the

oxygen source distribution as follows:

ϒ
W
SV =

{(
(0,0), IW

SV
)}

(3.2.17)

and

ϒ
WXY
3V =

{(
(−1,1), IW

3V
)
,
(
(1.2,−0.8), IX

3V
)
,
(
(0.8,−1.2), IY

3V
)}

, (3.2.18)

with all possible half and full intensity choices W,X ,Y = H,F , see Figure 3.2 for
the disposition of the vessels, as well as the respective oxygen initial condition map,
for layouts ϒF

SV and ϒFFF
3V .
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Fig. 3.2 Initial condition for the oxygen map in the two geometrical blood vessel layouts
adopted (SV- and 3V-layout, left and right panel, respectively). For example, all vessels are
set with full intensity (i.e. ϒF

SV and ϒFFF
3V ). The regions outlined by the blue, orange and green

lines highlight the optimal areas for low, medium and high epigenetic bands, respectively. A
Definition of these quantities is provided in 3.2.2. Caption and Figure from Ref. [112].

Parameter Estimation

Most model coefficients possess explicit and biologically meaningful interpretations,
allowing for accurate estimations derived from the empirical literature. Given the
generic tumour scenario under consideration, we have drawn upon a diverse array of
experimental studies encompassing various diseases.

The diffusion coefficient governing random epigenetic variations, denoted as
βp, has been calibrated to 8.64 · 10−9 day−1, exceeding the rate of somatic DNA
mutations by one or two orders of magnitude, as documented in Ref. [158] within
the context of vascularized tumours. Similarly, the tissue diffusion coefficient, βs,
is determined as βs = 3.11 ·10−5 cm2/day, consistent with findings reported in Ref.
[312].

The coefficients γmin and γmax quantify the minimal and maximal cellular prolifer-
ation abilities relative to their epigenetic state u, considering oxygen availability and
space constraints. Selected values, γmin = 3.46 ·10−1 day−1 and γmax = 6.94 ·10−1
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Parameter Description Value [Units] Reference(s)

ce
ll

dy
na

m
ic

s
βp epigenetic variation rate 8.64 ·10−9 [day−1] [158]
βs spatial diffusion rate 3.11 ·10−5 [cm2/day] [312]
γmin minimal cell duplication rate 3.46 ·10−1 [day−1] [312]
γmax maximal cell duplication rate 6.94 ·10−1 [day−1] [312]
k tissue carrying capacity 106 [cell/cm2] [400]
ηO oxygen selection gradient 1 [day−1] model estimate
η rate of necrotic transition 1 [day−1] model estimate
A initial maximal cell density 89.20 [cell /cm2] [54]
σ2

x Variance in geometrical space 0.008 [cm2] model estimate
σ2

u Variance in epigenetic space 0.08 model estimate

ox
yg

en
ki

ne
tic

s

βO oxygen diffusion coefficient 8.64 ·10−1 [cm2/day] [312]
λO oxygen natural decay rate 8.64 ·10−3 [day−1] [136]
αO Michealis-Menten oxygen constant 4.28 ·10−9 [µmol/ cm2] [140]
ζO oxygen consumption rate 8.64 ·10−16 [µmol/cell] model estimate
On oxygen necrotic threshold 1.20·10−9 [µmol/cm2] [74]
Om oxygen hypoxic threshold 2.57·10−9 [µmol/cm2] [74]
OM oxygen normoxic threshold 1.37·10−8 [µmol/cm2] [74]
IF
SV full vessel inflow for SV-layout 1.58 [µmol/cm2 ·day] model estimate

IF
3V full vessel inflow for 3V-layout 1.03 [µmol/cm2 ·day] model estimate

Table 3.1 Reference parameters setting. Table from Ref. [112].

day−1, correspond to doubling times of 24 and 48 hours, respectively, in line with
biological data [312]. Furthermore, they fall within the range of duplication rates
observed for glioblastoma cell lines under both hypoxic and normoxic conditions
[436].

The carrying capacity denoted as k, is set to 106 cells/cm2, assuming a mean cell
diameter of 10 µm as measured in Ref. [400].

Oxygen concentration thresholds are specified as follows: On = 1.20 · 10−9

µmol/cm2 for necrosis, Om = 2.57 ·10−9 µmol/cm2 for cell viability and duplication,
and OM = 1.37 ·10−8 µmol/cm2 for normoxia, consistent with observations in Ref.
[74]. The characteristic constant αO of the Michaelis-Menten proliferation law is
determined as 4.28 ·10−9 µmol/cm2, consistent with existing findings [140].

The oxygen diffusion coefficient is specified as βO = 8.64 · 10−1 cm2/day, as
reported in Ref. [312]. The oxygen decay rate, λO = 8.64 ·10−3 day−1, is determined
based on [136]. All other parameters are defined based on the specific dynamics of
the model. Table 3.1 outlines the complete parameter setup.
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Numerical method

The domain is discretized in the following manner:

• For the temporal and epigenetic domains, a uniform one-dimensional discreti-
sation is employed.

• A triangular mesh with radial symmetry discretises the two-dimensional geo-
metric domain.

To numerically solve the system of partial differential equations, a mixed solution
scheme is employed:

• For the one-dimensional components of the domain (time and epigenetic trait),
the explicit Euler method is used to approximate the derivatives.

• For the dynamics on the geometric domain, a Galerkin finite element method
is applied, employing a weak formulation of the problem.

A Python code has been developed for the domain mesh and the implementation of
the numerical resolution algorithm, utilizing the FEniCS and Dolfin packages [279].

3.2.2 Quantification of model results

As previously stated, our research aims to explore the impact of environmental
conditions and biophysical factors on tumour growth. Specifically, we will examine
the dynamics of variables pertaining to both the disease’s overall (macroscopic) traits
and its internal (microscopic) features, including heterogeneity.

In order to provide some qualitative indicators of tumour evolution and quantify
the description of the phenotypes distribution inside the mass, we split the epigenetic
domain Ωp in three bands, referring to them by the term epigenetic bands, that we
denote with L (low), M (medium) and H (high):

Ωp = Ω
L
p ∪Ω

M
p ∪Ω

H
p

with
Ω

L
p = [0,0.3), Ω

M
p = [0.3,0.7], and Ω

H
p = (0.7,1].
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To strengthen the connection between environmental conditions and the epigenetic
characteristics of the individuals inhabiting them, we establish a link between the
epigenetic bands and the tissue regions where they are most advantageous. This
linkage is facilitated by the function ϕo(O(t,x)), which identifies the most suitable
trait based on the local oxygen concentration O(t,x). To achieve this, we first identify
the area where the oxygen level falls below the hypoxic threshold On, leading to
necrosis. This region is denoted as

Ω
N
s (t) = {x ∈ Ωs :,O(t,x) ∈ [0,On]}

and is referred to as the necrotic area. Subsequently, we partition the spatial domain
according to the subsets of the epigenetic domain. Specifically, we delineate regions
where the optimal epigenetic traits correspond to those in the low, medium, or high
epigenetic band:

Ωs(t) = Ω
L
s (t)∪Ω

M
s (t)∪Ω

H
s (t)∪Ω

N
s (t) ∀t ∈ T

with
Ω

L
s (t) = {x ∈ Ωs s.t.O(t,x) ∈ (ϕ−1

O (0.3),ϕ−1
O (0.0)]},

Ω
M
s (t) = {x ∈ Ωs s.t.O(t,x) ∈ [ϕ−1

O (0.7),ϕ−1
O (0.3)]}, and

Ω
L
s (t) = {x ∈ Ωs s.t.O(t,x) ∈ [ϕ−1

O (1.0),ϕ−1
O (0.7))}\Ω

N
s (t).

We will refer to ΩL
s (t), ΩM

s (t), and ΩH
s (t) as the low, medium, and high optimal

areas respectively.

Correspondingly, we introduce their local number densities. Again, we denoted
with low (ρL), medium (ρM) and high (ρH) respectively, and we computed as:

ρI(t,x) =
∫

ΩI
p

a(t,x,u)du for I ∈ {L,M,H}. (3.2.19)

We refer to them as band-specific local number densities. Furthermore, considering
a global counterpart of numerosity, we introduce the total cell count provided by the
integration of the local number density on the spatial domain:

Γ(t) =
∫

Ωs

ρ(t,x)dx (3.2.20)
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and the corresponding band-specific cell counts:

ΓI(t) =
∫

ΩI
s

ρI(t,x)dx for I ∈ {L,M,H}. (3.2.21)

In order to better represent the epigenetic spectrum in the mass, we introduce:

• the spatial average epigenetic map:

f (t,x) =
1

ρ(t,x)

∫
Ωp

a(t,x,u)udu,

which is an indicator of the spatial location of the epigenetic traits;

• the epigenetic global density:

g(t,u) =
∫

Ωs

a(t,x,u)dx, (3.2.22)

that provides a quantification of the number of tumour cells in the entire mass
characterized by a specific epigenetic firm;

• the average epigenetic trait:

F(t) =
1

Γ(t)

∫
Ωp

ug(t,u)du, (3.2.23)

that corresponds to the average epigenetic trait characterizing the mass during
the evolution.

Finally, we evaluate the spatial extension evolution during tumour development in
the case of masses characterized by radial symmetry. We introduce the time-evolving
quantity r(t) that measures the radius of the mass as:

r(t) = sup
{
∥x−xc∥ s.t. x ∈ Ωs and ρ(t,x)> σr

}
(3.2.24)

with σr = k/10 in the meaning of a non-detectable tumour density.
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3.3 Results

3.3.1 Reference simulation

As a prototype of a growing malignant mass, focusing on the metabolic transition
between normoxic and hypoxic cells, we investigate the evolutionary dynamics
during tumour expansion in a relatively straightforward scenario. Considering the
previously mentioned possible geometrical layouts for blood vessels, we opt for the
SV-layout, as illustrated in the left panel of Figure 3.2. At the onset of the numerical
simulation, a single node of malignant viable cells is assumed to be already present
at the centre of the domain xC = (0,0), aligned with the blood vessel. These cells
possess epigenetic characteristics outlined in Section 3.2.1. For a one-dimensional
depiction of the cancer population at the initial condition, refer to Figure 3.1. The
resulting modelling context aims to replicate the development of a tumour cord,
representing a cylindrical mass composed of tumour cells encircling the blood vessel.
For a schematic representation of tumour cord formation from both cross-sectional
and side views, see Figure 3.3.

Fig. 3.3 Schematic representation of a tumour cord formation from a cross and a side point
of view (left and right panel, respectively). Caption and Figure from Ref. [112].

Oxygen dynamics

As depicted in the left panel of Figure 3.2, the interplay of oxygen’s reaction-diffusion
dynamics, influenced by inflow through the blood vessel and consumption by tumour
cells, results in its concentration reaching stable values. These values gradually
decrease as one moves away from the oxygen source. Notably, the resulting profile
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resembles a Gaussian distribution, with oxygen levels transitioning from normoxic to
mild, severe, and even anoxic conditions as one moves away from the blood vessel.

Cell dynamics

From a morphological perspective, we can understand the overall behaviour of our
simulated mass by observing its spatial extension through the measurement of its
radius, denoted as r(t) (top panel of Figure 3.4, depicted by the lilac line), and its
volume, indicated by the total cell count Γ(t) (top panel of Figure 3.4, represented by
the red line). Upon analysing their temporal evolution, we notice an initial plateau
phase followed by a subsequent increase, characterized by a gradually decreasing
velocity, throughout the entire observation period.

Initially, the total count of active individuals Γ(t) exhibits exponential-like growth
during the earliest phases, which then transitions to a semi-linear trend. Ultimately,
it converges toward a steady-state value (around t ≈ 365 days) in a second phase
relative to the time when the tumour cord achieves its maximum expansion (around
t ≈ 270 days), reflecting an invasion dynamic consistent with physical constraints.
The initial rapid growth dynamics, observed in quantity and radial expansion, align
with the mass development in regions abundant in resources primarily composed of
"proliferation-promoting" cells.

Conversely, the subsequent slower dynamics emerge as the mass encounters in-
creasingly inhospitable regions characterized by low nutrient concentrations, thereby
promoting the expansion of more resistant phenotypes with a lower mitotic potential.
Consequently, the radial expansion of the mass and the increase in quantity decelerate
as cells require more time to establish and populate new regions.

The multi-phase growth pattern observed here evokes findings from various
experimental studies. Notably, research dating back to the early 1970s, such as
the investigation into the self-regulation of growth in three-dimensional spheroids
[181], provides insights into similar growth dynamics. More recent works have
also delved into the analysis of volume extensions in different cell lines cultured
in vitro [346]. This growth behaviour aligns with Gompertz-like kinetics when
extending the monitoring time window, as illustrated in the top panel of Figure
3.5. Specifically, the total cell count Γ(t) exhibits a sigmoidal profile, ultimately
converging asymptotically to a maximum threshold value. This threshold value
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Fig. 3.4 Results of the reference simulation relative to cancer cell dynamics and tumour
morphology. (a) The first row represents the evolution in time of the total cell count Γ(t)
and radius r(t) of the tumour mass. Vertical lines detect the times chosen for instantaneous
representation in the second and third rows. (b) The second row is a two-dimensional spatial
representation of ρ(t,x) for t = 90,180,270 days. The cancer mass radius, along with plots
in the third row, is projected and highlighted with the lilac segment. (c) Third row provides a
one-dimension representation of band-specific and global number densities ρL(t,x), ρM(t,x),
ρH(t,x), ρ(t,x) along the segment (0,0),(2,0) for t = 90,180,270 days. Caption and Figure
from Ref. [112].
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corresponds to the maximum carrying capacity of the entire tissue, reflecting the
tissue’s limitations in accommodating further cell proliferation.

In the middle panel of Figure 3.4, we observe the evolution of the virtual mass
through its cell number density ρ(t,x) at three distinct time points (90, 180, and 270
days). Initially, cell clones begin to spread radially, moving away from the blood
vessel and occupying all available space until nutrient concentrations are adequate
for survival. However, upon encountering anoxic tissue regions, cells undergo a
necrotic transition, halting the invasion dynamics. This growth-limiting behaviour
aligns with the evolutionary dynamics observed in in vivo neoplasm development.
Experimental evidence indicates that neoplasms reach a maximum average radius
during the avascular phase and get surrounded by necrotic regions. This quasi-steady
state arises due to the high oxygen consumption by proliferating cancer cells, coupled
with oxygen diffusion limits, leading to a radial decline in essential nutrients and the
formation of anoxic areas.

Examining the mass’s evolution from a radial cross-sectional perspective, de-
picted in the bottom panel of Figure 3.4, we gain insight into the synergistic interac-
tion between cell proliferation and movement, enabling tumour cell invasion into the
surrounding tissue. The cell number density ρ(t,x) along the segment (0,0),(2,0)
behaves akin to an invading front, saturating growth at the local tissue’s carrying
capacity k. This saturation is illustrated by the pink-coloured regions summarizing
its evolution at three different time points (t = 90, 180, and 270 days).

In this regard, our research highlights how tissue colonisation results from
cooperative interactions among different specialised cell variants, underscoring
the significance of phenotypic composition in tumour development. Analysis of the
band-specific number density of various sub-groups ρI for I = L,M,H (representing
low, medium, and high hypoxia-resistant cells - depicted by blue, orange, and green
curves, respectively) reveals dynamic changes in tumour composition that mutually
shape with the tumour microenvironment. Spatial variations in oxygen concentration
create environmental gradients, leading to the selection of cells with epigenetic traits
that vary with distance from the blood vessel.

The emergence of specific phenotypic traits correlates with the region of the tu-
mour mass under analysis. Notably, black vertical lines delineate oxygenation areas:
the dashed line separates optimal areas for the low and medium bands, the dotted
line demarcates optimal areas for the medium and high bands, and the continuous
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line signifies the limit of the non-necrotic area. Observably, the prevailing clones
in each region strike a balance between replicative ability and reduced proliferation
rates due to heightened survival capabilities, ensuring their adaptation to prevailing
environmental conditions.

Consistent with biological principles, this selection mechanism unfolds gradually,
as evident from the comparison between the left and central panels in the bottom
row of Figure 3.4. The temporal evolution of different cell fractions indicates that
in the initial phase (left side of Figure 3.4, bottom panel), proliferation-promoting
cells dominate (blue curve), colonizing even distant regions from the blood ves-
sel. However, in subsequent phases (central and right sides of Figure 3.4, bottom
panel), these cell variants progressively diminish in external regions of the mass,
giving way to new clones characterized by an increasing overexpression of survival-
promoting genes (orange and green curves). By the end of the simulation, a ring
structure emerges, comprising a central group of proliferating cells surrounded by
two concentric rims of medium and high-resistant cells, mirroring the evolutionary
selection of more resistant cell clones under harsh tissue conditions (and vice versa),
as documented in the existing literature. Thus, our findings not only capture this
phenomenon but also provide insights into its mechanisms and timing.

Expanding the observation time window to better understand the evolutionary
processes requiring a longer time scale to manifest, we observe a trend toward the
development of hypoxia-resistant phenotypes characterizing tumour evolution, as
depicted in Figure 3.5. Gradually, the entire disease exhibits a phenotypic shift
towards greater resistance to hypoxia, evident from the time evolution of the band-
specific cell counts ΓI(t) for I ∈ L,M,H across the entire mass, illustrated in the top
panel of Figure 3.5.

Initially, the mass predominantly comprises proliferation-promoting cells (blue
curve). Still, over time, they are progressively supplanted by increasingly resistant
phenotypes (medium and high resistant cells - depicted by orange and green lines,
respectively). By the final observation time (t = 1000 days), approximately 70% of
the mass consists of high-resistant cells, with medium-resistant cells constituting
nearly 20%, while only a tiny fraction comprises low-resistant ones.

This trend aligns with the evolution of the epigenetic global density g(t,u),
shown in the middle panel of Figure 3.5, which initially concentrates around u = 0
before gradually shifting towards high resistance development. This evolution
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Fig. 3.5 Reference simulation results relative to numerical and geometrical epigenetic com-
position. (a) The first row represents the evolution in time of band-specific and global cell
counts Γ(t), ΓL(t), ΓM(t), ΓH(t). (b) The second row shows the epigenetic global density
g(t,u). The pink line represents the time evolution of the average epigenetic trait F(t). (c)
The third row provides the spatial two-dimension representation of the average epigenetic
map f (t,x) at times t = t1 = 100 days, t = t2 = 300 days, t = t3 = 700 days. These quantities
are defined in 3.2.2. Caption and Figure from Ref. [112].
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of the epigenetic landscape provides insights into the emergence of intra-tumour
heterogeneity during mass growth. The spectrum of phenotypes observed at the final
simulation time (t = 1000 days) expands significantly compared to earlier phases,
encompassing all phenotypes from low to high resistance, with a notable increase
in intensity towards resistance development. This is consistent with the findings
depicted in Figures 3.4 and 3.5, as well as the evolution of the average epigenetic
trait F(t) of the mass (pink line).

Further confirmation comes from analyzing the spatial average epigenetic map
f (t,x), shown in the bottom panel of Figure 3.5, at three different time steps (t =
100,300,700 days). This map reflects the dynamics of mass development described
earlier in terms of epigenetic composition over an extended time window, consistent
with the evolutionary time scale. Notably, the previously described ring structure is
vividly discerned, indicating that, by the end of the mass expansion, the prevailing
epigenetic profiles lie between u = 0.7 and u = 1, representing the more resistant
phenotypes.

In summary, our findings indicate that during the initial stages of progression,
tumour growth and expansion within the host are driven by collective cell dynamics.
This process is facilitated by the emergence of intratumoral phenotypic heterogeneity,
demonstrating how cells with diverse characteristics and functions cooperate to
survive and effectively invade the host. This phenomenon will be further investigated
in the subsequent sections.

3.3.2 Geometric characterisation of the environment and its im-
pact on tumour niches

It is essential to study the vascular network responsible for tissue oxygenation to
explore the interaction between a tumour and its surrounding environment, mainly
focusing on the impact of hypoxia.

The diverse configurations of blood vessels, characterized by differences in
inflow intensity and geometric organisation, can naturally result in varying spatially
heterogeneous oxygen distributions. When combined with different primary tumour
locations within the tissue, these variations have the potential to alter the mass’s
invasive capabilities significantly.
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In this section, we focus on examining the influence of oxygen inflow intensity
on tumour morphology, including growth rate, size, and epigenetic composition.
Figure 3.6 illustrates the setup used for the study, with the only variation being the
intensity of the vessel inflow. The experiment is conducted twice: the left column
depicts a tumour cord developing around a vessel with the same intensity as the
reference case (ϒF

SV ). In contrast, the right column represents a vessel with half the
intensity (ϒH

SV ).

The initial oxygen distribution in both cases is shown in the first row. Indicative
bands corresponding to oxygen concentration levels are depicted to elucidate the
relationship between environmental characteristics and the epigenetic makeup of
potentially colonizing individuals. Specifically, the anoxic area, where oxygen
falls below the threshold On, leading to tumour cell necrosis, is highlighted in
dark blue. The hypoxic area, characterized by oxygen levels between On and Om,
where maximal gene expression fitness occurs (u = 1), is represented in blue. The
moderately-oxygenated area, ranging from Om to OM, is subdivided into three
different bands: ΩH

s , ΩM
s , and ΩL

s , corresponding to optimal survival areas of high
(indigo), medium (light blue), and low (light pink) epigenetic bands (ΩH

p , ΩM
p , and

ΩL
p), respectively. Lastly, the normoxic area, characterized by oxygen levels higher

than OM, where minimal gene expression fitness occurs (u = 0), is represented in
cherry.

Comparing the two oxygen maps reveals differences in proliferation speed,
extension, and epigenetic distribution of the tumour mass. In the case of higher
oxygen concentration (left column of Figure 3.6), the mass exhibits faster growth
due to more efficient oxygenation of proliferation and the presence of a substantial
node of proliferation-promoting individuals, as indicated by the formulation of
the proliferation factor p2 in Equation (3.2.6). Conversely, in a more hypoxic
environment (right column of Figure 3.6), higher epigenetic traits are selected,
resulting in slower tumour growth but increased hypoxia resistance.

The observed trend in hypoxia-resistance enhancement, evident in both scenarios,
is mirrored in the temporal evolution of the total and band-specific cell counts,
depicted in the second row of Figure 3.6. Vertical blue and yellow lines mark the
times at which ΓL(t) and ΓM(t) reach their maximum values, respectively. Upon
comparison of the two dynamics, it becomes apparent that in the case of lower
oxygenation, the growth of the global cell count Γ(t) (magenta dotted line - right
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Fig. 3.6 This experiment compares results from the simulation in the reference setting (ϒF
SV ,

left column) with results from a simulation with the same parameters and setting, with the
exception of a half value for the vessel intensity (ϒH

SV , right column). (a) The first row
shows the initial oxygen map O(t0,x). (b) The second row provides evolution in time of
band-specific and global cell counts Γ(t), ΓL(t), ΓM(t), ΓH(t). (c) The third row represents
the profiles of the densities ρ , ρL(t,x), ρM(t,x), ρH(t,x), along the segment (0,0),(2,0) at
the final observation time t = tF = 1000 days. Vertical lines partition the spatial domain,
from left to right, in ΩL

s (tF), ΩM
s (tF), ΩH

s (tF), and ΩN
s (tF) i.e. the final low, medium, and

high optimal areas and the necrotic one. Caption and Figure from Ref. [112].
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panel) proceeds at a slower pace than its counterpart in the higher oxygenation
scenario (magenta dotted line - left panel), with a lower plateau value observed,
consistent with the diminished nutrient availability.

Remarkably, in both experiments, the band-specific cell counts (ΓL(t), ΓM(t),
ΓH(t), represented by blue, orange, and green curves respectively) underscore the
evolutionary interplay between species and the competitive exclusion principle. This
principle posits that two species with similar needs cannot coexist sympatrically;
one will invariably out-compete the other, leading to either adaptation or exclusion
through emigration or extinction. The higher proliferative rate initially confers
an evolutionary advantage to proliferation-promoting phenotypes over other epi-
genetic traits, resulting in their dominance within the population. Subsequently,
this dominance persists in regions of high oxygenation where the low epigenetic
trait is optimal. Conversely, environmental selective pressures in areas with lower
oxygenation lead to increased mortality rates among low epigenetic trait cells. Con-
sequently, proliferation-promoting cells undergo apoptosis rapidly, creating space
for the expansion of other cancer subpopulations. Despite their slower proliferation,
these subpopulations exhibit greater resistance to environmental hostility, driving a
competitive out-competition-like dynamic.

In the third row of Figure 3.6, the cross-sectional profiles of densities ρ , ρL, ρM,
ρH along the segment (0,0),(2,0) at the final observation time tF = 1000 days are
depicted. The dynamics of phenotypic diversity observed in tissue area colonisation
follows a pattern similar to that described in the corresponding panel of Figure 3.4,
which pertains to the case of a more hypoxic environment.

As anticipated, both the optimal area for high resistant phenotypes ΩH
s and

the necrotic region ΩN exhibit greater extension, consistent with a less efficient
vasculature. This results in a less extensive mass, as evidenced by the radius measure,
which is roughly about 20% smaller than that in the reference case (r(tF)≈ 1.5 cm
versus r(tF)≈ 1.8 cm).

In summary, our findings suggest that the success of a tumour in terms of
adaptation, survival, and expansion is closely linked to the niche characteristics that
tumour cells encounter, in conjunction with the optimality of the epigenetic profile
relative to these characteristics.

In this context, another aspect that naturally emerges and could be of particular
interest in understanding the development of a malignant mass is the possibility of
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observing completely different evolutionary trajectories, depending on the region of
the tissue in which the primary tumour cells originate, as illustrated in Figure 3.7.
Here, we consider a 3V-layout with ϒFFF

3V configuration and vary the tissue region
for the onset of the primary tumour cells.

The resulting oxygen map shows the highest concentration area in the bottom-
right corner of the tissue slice due to the proximity of two of the three blood vessels
considered. The second-highest oxygenation area is located near the single vessel
in the top-left corner of the domain. Specifically, the simulation is repeated nine
times, considering all combinations of xC = (x1,x2) with x1,x2 ∈ −1,0,1 as primary
locations for tumour settlement (denoted with red stars in Figure 3.7).

Differences in tumour emergence are highlighted in terms of global descriptors
such as the global cell count Γ(t) and the morphological shape of the mass, detected
at two different time instants t1 = 50 and t2 = 100 days as measures of intermediate
and final growth stages. The tumour mass morphology is investigated via the analysis
of tumour density ρ , plotted at the final time of observation t2, with a pink contour
representing the tumour mass profile detected at the intermediate time t1. Detection
is considered possible when the local tumour number density ρ reaches at least 10%
of the local carrying capacity k. Under each plot, the cell count at time instants t1
and t2 is reported.

Our results reveal radical differences in the morphology of the tumour mass
closely related to the local concentration of resources in the malignant primary
nidus location. It is observed that in cases where tumours originate in one of the
higher oxygenated areas, the mass develops faster in terms of both extension and
cell count. This is due to two factors: firstly, a higher amount of oxygen ensures
faster proliferation; secondly, the initial cancer population is characterized by an
epigenetic distribution that is predominantly proliferation-promoting. Thus, in
regions characterized by high oxygenation, the predominant epigenetic trait will
already be optimal, resulting in fewer cells facing apoptosis due to environmental
selection forces.

Phenotypic optimality plays a crucial role in this dynamic, particularly when
tumours start developing in low-oxygenated areas. Their initial growth is slow and
accelerates as they reach regions of the domain closer to the vessels, ensuring better
oxygenation. Interestingly, our results show that the malignant mass is not even
detected at the intermediate time in four cases. From a clinical perspective, this
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Fig. 3.7 This experiment compares the results from nine simulations in which we vary the
primary settlement of the tumour. In particular, we consider a 3V-layout in which all vessels
are set with full intensity (ϒFFF

3V ), and we keep unaltered the parameters of the reference
simulation, with the exception of the geometrical starting points xC for the cancer population.
All combinations of xC = (x1,x2) with x1,x2 ∈ {−1,0,1} are considered (depicted with red
stars in the different panels). The pink lines identify the tumour edge at an intermediate time
of t1 = 50 days, while the contour plot represents the ρ(t,x) at the final time t = t2 = 100
days. The numerical values shown below the graphs are the cell counts: Γ(t1) −→ Γ(t2).
Caption and Figure from Ref. [112].
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suggests that imaging analysis at an intermediate time may not reveal the presence of
a tumour, even if it is slowly developing. Therapeutically, this implies that detecting
the tumour from medical images at a given time may determine the area for therapy
or resection. However, as the comparison between intermediate and final times
reveals, the edges detected by the tumour images in the initial phase can differ
significantly from the definitive ones.

As seen in plots related to final times, even if small in number and slowly
proliferating, cells in areas with adverse environmental characteristics are present.
When they reach the optimal epigenetic trait to survive, they minimize the death
rate due to selection, and the tumour mass begins to expand even in areas not
initially considered for surgery. In this context, medical images alone provide
indispensable information but may not be sufficient to determine the outcome of
the tumour. Therefore, awareness of the characteristics of the environment and the
capability of modelling and simulating their impact on the evolutionary dynamics
of the cancer population may provide predictive support. As mentioned earlier,
our results suggest that favourable environmental conditions can accelerate tumour
growth and expansion, making it detectable in a shorter time and exhibiting more
predictable behaviour. Conversely, unfavourable environmental conditions may slow
down tumour growth, leading to a less predictable course and the development of
more resistant characteristics, potentially impacting therapy efficacy.

Motivated by these considerations, we now explore how variations in the mor-
phology and epigenetic/phenotypic composition of the tumour mass occur across
a wide range of oxygen maps. To achieve this, we fix the tumour’s primary nidus
at the centre of the domain and consider a three-vessel layout with variations in
blood vessel intensity, encompassing all possible combinations of full-intensity and
half-intensity inflows.

In Figure 3.8, we present results from three different settings: (i) all vessels
with full intensity (ϒFFF3V configuration, results shown in the first column), (ii)
all vessels with half intensity (ϒHHH3V configuration, results shown in the second
column), and (iii) a mixed setting with two vessels characterized by half-intensity
and one vessel by full intensity (ϒHFH configuration, results shown in the third
column).

The first row of Figure 3.8 displays oxygen maps with boundaries indicating
corresponding optimal areas ΩL

s , ΩM
s , and ΩH

s for low, medium, and high epigenetic
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Fig. 3.8 This experiment compares the results from three different simulations in which we
vary the blood vessel network in terms of potency. In particular, we adopt the 3V-layout,
keeping unaltered parameters from the reference simulation, with the exception of the
intensities of the vessels. All possible combinations between full (F) and half (H) intensities
are considered. In this plot, we show the results of the configurations FFF (first column),
HHH (second column), and HFH (third column). (a) The first row shows the initial oxygen
maps. (b) In the second row, pink lines identify the tumour edge at an intermediate time
t1 = 100 days, while the contour plot represents the ρ(t,x) at the final time t = t2 = 200 days.
(c) The third row shows f (t,x) at the final time t2 = 200 days. Caption and Figure from Ref.
[112].
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bands, respectively. The same colours used for the band-specific cell counts (blue,
orange, and green contours) represent these optimal areas. In the first experiment,
at least one optimal area is identified for each tumour cell sub-group, ensuring low-
resistant cells’ survival. The mixed configuration also allows for the colonisation of
tissues by proliferation-promoting phenotypes, except for one region close to two
vessels in the bottom-right corner. Conversely, in the second experiment, some areas
are optimal only for medium and high-resistant phenotypes.

The second row of Figure 3.8 presents tumour local density profiles ρ at the
final observation time t2 = 200 days, with the boundary of the tumour mass at an
intermediate time t1 = 100 days projected in pink. We extend the observation time
window compared to previous experiments due to the presence of less oxygenated
areas, which slow down tumour growth and extend the time scale of environmental
selection dynamics. Different blood source networks directly influence tumour
growth speed and morphology in terms of both cell count and extension.

In environments with high oxygenation (left panel), the tumour mass edge at
the intermediate time is similar to that at the final time. Conversely, in hypoxic
environments, tumour mass development at the intermediate time appears limited
to the highest oxygenated region. Still, with a more extended observation period,
expansion occurs near the single vessel, ultimately connecting two cell islands. This
aligns with our previous observations: well-oxygenated tumours tend to exhibit
more aggressive growth and expansion, with shorter detection times and predictable
behaviour. At the same time, unfavourable environmental conditions may slow
growth but lead to less predictable outcomes.

The third column of Figure 3.8 represents a middle ground, where the tumour
mass at the intermediate time already shows a trend towards unexplored regions
around the single vessel. Finally, the third row of Figure 3.8 illustrates each case’s
different epigenetic distributions of tumour cells. Comparing these distributions to
the oxygenation maps in the first row, we observe that the extent of the optimal area
for the low-specific epigenetic band is reflected in the corresponding regions of the
graph in the third row. Conversely, lighter colours dominate in the second and third
columns, reflecting the prevalence of optimal areas for medium and high bands.

Significantly, our research indicates that a tumour mass developing in well-
oxygenated areas tends to approach its steady state profile earlier than one growing
in an adverse environment, as evidenced by the earlier convergence of the pink
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boundaries projected in the second row. From a medical standpoint, these findings
hold particular interest, especially in cases requiring surgical removal of a mass.
They provide insights into scenarios where a larger region, compared to what is
detected through imaging analysis at a specific point, might be safer to remove.
Specifically, our results highlight that in harsh microenvironments, such as those
depicted in the second column, there is a higher likelihood of silent regions in terms
of density, yet characterized by strong invasive capabilities where the mass is already
proliferating. These considerations are crucial for surgical planning and underscore
the importance of accounting for environmental factors in treatment strategies.

3.3.3 The impact of environmental selection forces

When examining the interaction between tumour and abiotic factors on the eco-
evolutionary trajectory of a mass, it is crucial to recognize that two tumours may
exhibit similar clonal compositions at a given moment, but this does not necessarily
imply shared evolutionary histories. Moreover, it does not preclude the possibility
of significant future divergence, even under identical environmental conditions
[308]. The resulting potential for multiple evolutionary pathways adds another layer
of complexity, making it challenging to pinpoint the ecological and evolutionary
mechanisms driving tumour phenotypic evolution.

One possible explanation for this variability lies in the varying strength of natural
selection, i.e., the force with which environmental conditions influence cancer
population dynamics and how individuals perceive their environment—a concept
aligned with niche construction.

With this in mind, we investigate how variations in selective pressures due
to oxygen deprivation affect the evolutionary trajectory of tumour cells and their
impact on tumour morphology. Selection gradients can be viewed as indicators of
how individuals interact with their environment, so changes in their values reflect
variations in selective pressures.

To explore this, we maintain the same setup as the reference simulation (ϒF
SV )

and adjust the selection parameter ηO. Specifically, we conduct three experiments
representing low (LS), medium (MS), and high (HS) selection rates, corresponding
to ηO = 0.1, 1, and 10, respectively. The summarized results are presented in Figure
3.9. The first row of Figure 3.9 illustrates the evolution of the global cell count (Γ)
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Fig. 3.9 This experiment compares the results from three different simulations in which we
vary the intensity of natural selection. In particular, we keep unaltered parameters from
the reference simulation, with the exception of the selection gradient. We focus on the
analysis of a low (LS), medium (MS) and high (HS) selection rate impact that corresponds
to ηO = 0.1, 1, 10 respectively. (a) In the first row, the time evolution of cell counts Γ(t) and
radius r(t) are provided for the three different settings over a time span of 1000 days. The
second and third rows are divided into columns according to LS (first), MS (second) and
HS (third). (b) The second row shows the evolution in time of band-specific and global cell
counts Γ(t), ΓL(t), ΓM(t), ΓH(t) for t ∈ [0,1000] days. Vertical lines highlight the times at
which cell counts show maximum peaks. (c) The third row provides evolution in time of the
epigenetic global density g(t,u)) of the population (contour plot) and highlights the average
epigenetic trait F(t) evolution (pink line). Caption and Figure from Ref. [112].
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and radius (r) across the three different settings over a span of 1000 days. Notably, all
cell counts and radii converge towards the same steady states, with the selection rates
influencing only the speed and intermediate dynamics of interaction between cancer
cell subpopulations. While this trend holds for the high selection (HS) setup as well,
it is less apparent due to the slower mass extension and the limited observation time.

Comparing the cases, both Γ and r profiles reveal that higher selection rates
correspond to slower growth speeds, indicating that selective solid pressures impede
the initial mass expansion. Regarding the evolution of r, the selection rate impacts
both the rate at which the tumour advances spatially (higher selection rates correlate
with slower advancement) and the invasion mechanism, significantly shaping its
profile.

A distinct step-like behaviour is observed, particularly pronounced with higher
selection rates, accompanied by more prolonged plateaus. Lower selection rates
imply a more extended time required to select the fittest epigenetic trait at a given
point in the domain, allowing cells to survive and proliferate even when suboptimal
for a region. Consequently, lower epigenetic traits enjoy an evolutionary advantage,
evading apoptosis and proliferating more rapidly, especially in less oxygenated
regions. This is evidenced by the earlier saturation of the radius (r) in the case of
lower selection, indicating faster maximum extension relative to resource availability.
Here, proliferation dominates the selection mechanism, becoming more influential
in later phases.

Conversely, higher selection rates expedite the selection of optimal epigenetic
traits, leading to rapid apoptosis of proliferation-promoting cells in oxygen-deprived
regions. Consequently, mass expansion is slower, with surviving cells exhibiting
reduced proliferation rates, necessitating more time to conquer tissue regions. The
mass takes at least three times longer to reach maximum extension under stronger
selective pressures compared to lower selection.

In summary, the tumour rapidly spreads due to abundant proliferation-promoting
individuals, optimizing survival in each area. Conversely, under high selection,
selective pressures immediately counteract proliferation, allowing only optimal
epigenetic traits to resist in specific domain points, penalizing proliferative cells
outside their optimal zones and limiting significant spreads.

The step-like behaviour observed in the mass invasion reflects the profound
influence of natural selection intensity on its invasion capacity. A high selection
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rate implies that individuals in each mass area share the optimal or nearly optimal
epigenetic trait. Consequently, as the tumour progresses, it attempts to conquer
new areas where more efficient individuals may possess different characteristics
from those already present in the mass. However, since the clonal expansion of
new, better-adapted individuals in earlier growth phases was limited by the previous
optimal ones, only a small portion of the population consists of these newly adapted
individuals, resulting in an apparent cessation of mass invasion into new tissues.

Additionally, a variation in the selection gradient can be interpreted as a change
in the shape of the Proliferation-Survival trade-off affecting cancer cells. A lower
selection gradient allows cells to proliferate for longer periods even without the
best epigenetic traits, indicating that survival is less costly under lower selection, as
evidenced by the higher proliferation/death ratio observed in the dynamics.

This is prominently reflected in the dynamics of the global and band-specific cell
counts, as depicted in the second row of Figure 3.9, comparing low and high selection
cases. In the low selection scenario (first column of Figure 3.9), the high prolifera-
tion/death ratio enables cells with lower epigenetic traits to proliferate rapidly in the
early phases, significantly increasing their fraction in the population. However, as the
mass approaches tissue carrying capacity, selection becomes predominant, leading
to a decrease in the population of non-optimal cells, characterized by an expansion-
contraction dynamic, particularly evident in the low-specific cell count. Conversely,
in the high selection scenario (last column of Figure 3.9), no such dynamics are
observed, indicating immediate selection and preventing significant decreases in the
number of low and medium sub-populations.

Expanding the observation time window reveals that the cell count of each band
tends towards the same numerical value in all experiments, regardless of the selection
rate. This is reflected in the results presented in the last row of Figure 3.9, which
shows the evolution over time of the epigenetic global density on which the average
epigenetic trait is projected in pink. In the low selection case (first column), peak
dynamics are observed, indicating the expansion-contraction phenomenon affecting
almost all epigenetic traits. Conversely, in the high selection case (third column),
only a significant peak is observed for cells characterized by high hypoxia resistance.
Notably, the strength of natural selection strongly influences tumour composition
during mass expansion. Lower natural selection promotes longer coexistence phe-
nomena, whereas higher selection rates promote quick out-competition, leading to
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a predominant presence of high resistance cells in the mass, consistent with the
hypoxia-driven development observed.

With respect to the evolution in time of the average epigenetic trait F , it is
possible to formally demonstrate that its steady state is not influenced by the varying
selection rates utilized in the three experiments. The pink line indeed converges
towards the same profile in all three plots of the last row, although this dynamic is
not fully discernible within the selected time range. Nonetheless, the results indicate
that the dynamics in approaching the steady state differ significantly, consistent with
previous observations. The first column exhibits a gradual growth characterized by
a relatively constant rate; the second column displays a rapid initial growth phase
followed by a transition to a linear trend with nearly zero slope; while the third
column demonstrates a sudden spike in growth followed by a stable trend. These
trends align with the notion that a lower selection rate promotes coexistence, whereas
a higher one promotes out-competition.

Spatial-focused evidence of this dynamic is represented in Figure 3.10. The
graphs refer to the two opposite LS and HS experiments shown in Figure 3.9. The
top panels refer to the LS case, and the bottom ones refer to the HS case. The six
contour plots (three for each case) represent the number density of viable individuals
characterized by the epigenetic trait u = 0.5, with a variance of 0.05 at three different
times instants (t = 100,500,900 days) that we denoted with:

ρ0.5(t,x) =
∫ 0.55

0.45
a(t,x,u)du. (3.3.1)

The red circles highlight the domain areas where, according to the oxygen map, the
phenotype u = 0.5 is optimal, indicating that the tumour mass at the stationary stage
should contain all cells characterized by the phenotype u = 0.5 within these rings.
The other plots depict the band-specific number densities ρL, ρM, and ρH at t = 1000
days along the radius (0,0),(2,0).

Consistent with our earlier observations, in the LS case, weak selective pressures
allow the tumour to expand uncontrollably outside the optimal area. As it nears
the carrying capacity, the proliferative potential diminishes, and selective dynamics
become predominant, resulting in progressive cell death in areas where hypoxia
resistance is insufficient for survival. Consequently, the maximum radius at which
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Fig. 3.10 A spatial focused evidence of the dynamic presented in Figure 3.9 is here shown.
The top panels refer to the LS case, and the bottom ones refer to the HS case. The six contourf
plots (three for each case) represent the number density ρ0.5(t,x) of viable individuals
characterized by the epigenetic trait u = 0.5 with a variance of 0.05 at three different times
instants (t = t1 = 100 days, t = t2 = 500 days, t = t3 = 900 days). Second and fourth rows
provide bands-specific number densities ρL(t,x), ρM(t,x), ρH(t,x) at t = tF = 1000 days
along the segment (0,0),(2,0). Vertical lines detect, from left to right, ΩL

s (tF), ΩM
s (tF),

ΩH
s (tF), and ΩN

s (tF) (low, medium, and high optimal areas and necrotic area). Caption and
Figure from Ref. [112].
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individuals with the specified epigenetic trait can be detected progressively decreases,
although, within the observed timeframe, it has not yet reached the optimal area.

This dynamic is reflected in the band-specific cell plot, which indicates that the
medium band ρM, housing the chosen phenotype u = 0.5, remains prevalent even in
areas farther from the vessel, where the high epigenetic band is optimal. This aligns
with our earlier observations that low selection promotes longer coexistence periods.
In contrast, in the HS case, invasion dynamics are slower but more regulated. The cell
density ρ0.5 is concentrated more distinctly and immediately within the optimal area.
Similarly, the band-specific cell counts plot demonstrates that, in the HS case, each
epigenetic band is localized within the optimality area by the end of the simulation,
consistent with the notion that high selection rates promote out-competition.

In summary, our results illustrate that the intensity of selective pressures exerted
by oxygen, quantified by the selection gradient ηO, may influence the emergence of
hypoxic resistance in tumours. Additionally, they suggest that the observed trade-off
between proliferation and survival in cancer cells plays a crucial role in shaping
future evolution. The nature of this trade-off can either promote or inhibit coexistence
or out-competition, leading to significant changes in tumour composition during
expansion, affecting both morphology and invasion capability.

3.4 Conclusion and future perspectives

The proposed mathematical modelling approach comprehensively simulates the
eco-evolutionary spatial dynamics of tumour cells as they adapt to hypoxic microen-
vironments, shedding light on the impact of the experimentally observed trade-off
between maximizing cell survival (by increasing tolerance to unfavourable condi-
tions) and maximizing cell growth affecting cancer cells [8].

Our results affirm the substantial influence of the oxygen map on tumour mass
development, delineating the areas where cancer progression occurs and elucidat-
ing differences in tumour growth speed and epigenetic composition of the popula-
tion [386]. Notably, our findings align with experimental observations, indicating
that favourable environmental conditions predominantly lead to tumours exhibiting
heightened aggressiveness in terms of growth and expansion. These tumours are
detectable in a shorter time, exhibit more predictable behaviour, and show less re-
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sistance to treatments. Conversely, unfavourable environmental conditions tend to
decelerate tumour growth, resulting in a less predictable course and more aggressive
characteristics in terms of therapeutic resistance [139]. Furthermore, our model high-
lights potential mechanisms underlying these dynamics: slow growth favours a less
invasive malignant mass, while gradual expansion allows for prolonged tumour unde-
tectability, enabling the cancer population to gradually shift its epigenetic dominance
toward resistance phenotypes to both hostile environments and treatments.

Our findings underscore the profound impact of tumour oxygenation heterogene-
ity on tumour mass evolution, leading to variations in the geometry of the growing
malignant mass. Specifically, tumour cells characterized by lower expression lev-
els of hypoxia-resistant genes (proliferation-promoting phenotypes) predominantly
colonize well-oxygenated regions. Conversely, cells expressing more aggressive
resistance phenotypes (survival-promoting phenotypes) populate more hypoxic areas.
These theoretical insights align with histological data on tumour cords, reflecting the
up-regulation of genes such as p53, HIF-1α , and GLUT-1, as apoptosis repressors
increase from the centre to the external region of the tumour cord [386].

From an evolutionary standpoint, our modelling approach captures a crucial
aspect of neoplasm eco-evolutionary narratives: two tumours may possess a similar
clonal composition at a given time, yet this does not necessarily indicate similar
evolutionary histories. Additionally, under the same environmental conditions, their
future evolution may diverge significantly. Specifically, depending on the oxygen
selection gradient ηo, multiple evolutionary pathways can lead to the development
of hypoxia resistance.

Concerning the Proliferation-Survival trade-off, our findings suggest that its
existence and intensity, linked to the strength of natural selection, play pivotal
roles in determining the phenotypic composition of a cancer population. The trade-
off’s intensity significantly influences individuals’ evolutionary trajectories and
the diversity of trait values among them. In this regard, our results align with
the classification of neoplasm evolutionary and ecological features, identifying
the selection gradient ηo as a measure of hypoxia’s impact on tumour cell eco-
evolutionary dynamics. Notably, our results demonstrate that the strength of selective
pressures exerted by oxygen on tumour cells fundamentally shapes the emergence of
hypoxic resistance, altering the pathways through which such resistance develops.
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These findings find justification in a niche construction evolutionary perspec-
tive. Selection gradients can be interpreted as measures of how individuals interact
with their environment, suggesting that changes in individuals’ perception of their
environment can completely alter the population’s evolutionary trajectory. This
perspective expands upon the traditional view of evolution by Darwinian natural
selection, considering both natural selection via environmental variables and the alter-
ations of these conditions by the organism itself, resulting in additional evolutionary
or ecological consequences.

As possible extensions of the model here presented, different aspects can be of
particular interest from both the evolutionary and the physical point of view. In this
respect, it would be interesting to consider additional components of the tumour
environment and their effects on the characterisation of the geometric evolution of
the tumour mass. This would include: (i) the mechanical aspects of the intracellular
fluid, (ii) the interaction with extracellular matrix in the expansion dynamics, (iii)
the competition for space and resources with the healthy cells of the host tissue, and
(iv) the interplay between metabolically active, quiescent and necrotic cells.

With respect to the latter, the necrotic population is already present in the mathe-
matical formulation of our model but not particularly investigated. This is because,
in this work, we focus on tumour cords, in which the necrotic population develops
at the edge of the mass and can, therefore, be reached by macrophages, which are
responsible for its elimination. On the contrary, in the case of tumour spheroids, the
necrotic core develops inside the mass due to hypoxic conditions induced by the
consumption of oxygen by the tumour population itself. From this perspective, it
would be interesting to apply the same model to tumour spheroids formation and
consider the effects of the presence of a necrotic core on the morphology and invasion
ability of the mass. Necrotic regions have indeed an active role in the evolutionary
dynamics of malignant populations, being responsible for the secretion of cytokines
which exert tumour-promoting activity triggering angiogenesis, proliferation, and
invasion, [281]. Moreover, in spheroids development, necrotic core extension can be
a relevant parameter to be considered since, in multiple experimental works, a sub-
stantial proportion of necrosis in histopathology samples has been indeed proposed
as an indicator of tumour aggressiveness associated with poor clinical outcomes,
identifying in necrosis extension a valid clinical index to define the tumour degree of
advancement and the invasive potential of a growing mass, [365]. In fact, necrotic
regions play an active role in the evolutionary dynamics of malignant populations,
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secreting cytokines that promote tumour activity by triggering angiogenesis, pro-
liferation, and invasion. Regarding the latter, while our mathematical formulation
already includes the necrotic population, it has not been extensively explored in
this work. This is due to our focus on tumour cords, where the necrotic population
develops at the mass’s edge and can be reached by macrophages responsible for its
elimination. In contrast, in tumour spheroids, the necrotic core forms inside the mass
due to hypoxic conditions induced by oxygen consumption. It would be fruitful to
apply the same model to tumour spheroid formation and consider the effects of a
necrotic core on mass morphology and invasion ability. The extension of the necrotic
core could be a significant parameter to predict, as histopathology samples often
propose a substantial proportion of necrosis as an indicator of tumour aggressiveness
and poor clinical outcomes.

From the evolutionary point of view, it can be of interest to improve our mod-
elling approach including in a more realistic way the trade-offs that affect tumour
evolution. Biologically, the intensity of a trade-off can be defined as how much, in a
population, the development of a determined characteristic is made at the expense
of the improvement of another. As reported in literature, it is affected by ecological
conditions since the availability of the resources and the hazards of the environment
influence how the increase in fitness associated to a change in one trait correlates
with a decrease in fitness due to a change in another one.

In this respect, it could be interesting to introduce an environment-driven dynam-
ical evolution of the intensity of trade-offs to analyze the double influence of (i) the
epigenetic predisposition and (ii) the ecological pressures on the actual behaviour
assumed by the cell population. This approach would enable us to consider the whole
spectrum of trade-off intensity involving both convex and concave profiles, thus
improving our results. The model aims to give a mathematical coherent description
of the so-called phenotypic plasticity i.e. the capability of cells to change their be-
haviour reversibly (i.e. their phenotypic characterisation) as a result of the interaction
between (i) the constraints imposed by their genetic heritage (that is intrinsic in
individuals) and (ii) the environmental conditions faced. Two phenomena that play a
fundamental role in the development of tumour masses development can be achieved
in this context: the so-called fingering formation that drives the invasion phenomena
and the dispersal mechanisms of cells at the basis of metastasis formation, [380].
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Finally, one of the most important and triggering extension for this model (only
partially implemented in next chapter) is to include therapies. The kinetics inves-
tigated, as well as the choice of the abiotic factor considered, are indeed able to
capture, as done in the simulations, some dynamics that directly impact on therapies
efficacy in an early stage tumour, in particular in the case of radiotherapy. With
respect to resection, as already anticipated in Section 3.3.2, our model indeed gives
the possibility of considering spatial heterogeneity and different environmental lay-
outs, showing its potential in predicting the location and shape of the tumour. From
a therapeutic and surgical point of view, this could have a great impact and would
deserve further investigations.

In this light, the model presented in this chapter laid the groundwork to develop
a new mathematical model to investigate how the pre-therapeutic history of a tumour
could affect the effectiveness of radiotherapy, how the treatment can be designed
to be improved in terms of potency, and how a tumour could evolve in the case of
non-eradication (resistance ability acquisition), taking into account the impact of
environmental geometric characterisation and selection forces in the development.
This aspect is particularly suitable to be investigated via our approach since, in
an eco-evolutionary perspective, the emergence of a resistant population can be
described in terms of tumour evolution and stems from its intrinsic heterogeneity.
All the treatment procedures have indeed a strong impact on our body and act as
an environmental stressor on tumour cells, [193]. This implies, coherently with the
results presented in this chapter, that therapeutic agents, inducing modifications of
tumour ecology and, consequently, of the fitness landscape of tumour cells, could
allow substantial variations in tumour composition. Resistance to therapies reflects,
in this sense, the temporal and spatial heterogeneity of the tumour microenvironment
as well as the evolutionary potential of cancer phenotypes to adapt to therapeutic
perturbations. The treatment-resistant hypoxic cells serve indeed as a nidus for
subsequent tumour regrowth and repopulation, as well as for regional and distant dis-
semination, representing a therapeutic dilemma that needs to be deeply investigated
to guarantee the most effective treatment protocol to possibly avoid relapses.

Furthermore, an extension in this direction of the model could take into account
how the effects of radiotherapy doses differ according to the heterogeneity faced at
the instant and the location at which the therapy is applied (from both a physical
and a phenotypical point of view) investigating how this divergent response could
be explicated via niche construction theory. In our eco-evolutionary setting, the
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experimental evidence of patient-specific response can be indeed justified as a
mirror of the inter-patient heterogeneity in the tumour microenvironment, tumour
composition and the ways in which these two aspects mutually interact. Our work,
under this light, could represent a first step towards the development of a model
of radiotherapy which could adapt to patient-specific characteristics, in line with
the innovative personalized medicine approach, [179]. As potential expansions
of the model we have presented, various aspects emerge as particularly intriguing
from both evolutionary and physical perspectives. One avenue of interest involves
incorporating additional components of the tumour environment and exploring their
effects on the geometric evolution of the tumour mass. This entails considering: (i)
the mechanical properties of intracellular fluid, (ii) interactions with the extracellular
matrix during expansion dynamics, (iii) competition for space and resources with
healthy host tissue cells, and (iv) the interplay among metabolically active, quiescent,
and necrotic cells.

From an evolutionary standpoint, enhancing our modelling approach to more
realistically incorporate trade-offs that affect tumour evolution is of interest. Bio-
logically, trade-off intensity reflects how much development of one characteristic
occurs at the expense of another. Ecological conditions influence trade-off intensity,
as resource availability and environmental hazards affect how changes in one trait
correlate with changes in another. In this regard, it could be valuable to introduce
an environment-driven dynamic evolution of trade-off intensity, analyzing how epi-
genetic predisposition and ecological pressures influence cell population behaviour.
This approach would consider a full spectrum of trade-off intensities, including both
convex and concave profiles, thereby refining our results.

The model aims to mathematically describe phenotypic plasticity, where cells
reversibly change behaviour due to genetic heritage constraints and environmental
conditions. Two critical phenomena in tumour development, fingering formation driv-
ing invasion and cell dispersal mechanisms underlying metastasis, can be understood
within this context.

Lastly, a significant extension of the model, partially implemented in the next
chapter, involves incorporating therapies. The kinetics studied, and the abiotic factor
considered capture dynamics are impacting therapy efficacy in early-stage tumours,
particularly in radiotherapy. Regarding resection, our model offers the possibility to
assess spatial heterogeneity and various environmental layouts, showcasing potential
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in predicting tumour location and shape. From a therapeutic and surgical standpoint,
this could have substantial implications and warrants further investigation.

Our model lays the groundwork for developing a new mathematical model to
explore how a tumour’s pre-therapeutic history affects radiotherapy efficacy, how
treatment can be optimized for potency, and how tumours evolve in the case of non-
eradication (acquisition of resistance). This aspect is suitable for investigation via
our approach, as the emergence of a resistant population can be described in terms of
tumour evolution and arises from intrinsic heterogeneity. Therapeutic agents induce
modifications in tumour ecology and the fitness landscape of tumour cells, leading to
variations in tumour composition. Resistance to therapies reflects the temporal and
spatial heterogeneity of the tumour microenvironment, as well as cancer phenotypes’
evolutionary potential to adapt to therapeutic perturbations.

Furthermore, an extension of the model could explore how radiotherapy dose
effects differ based on the heterogeneity encountered at the instant and location of
therapy application. Investigating this divergent response through niche construction
theory could provide insights into patient-specific responses, reflecting inter-patient
heterogeneity in tumour microenvironment and composition. Our work may serve as
a first step toward developing a model of radiotherapy that adapts to patient-specific
characteristics, aligning with the personalized medicine approach.



Chapter 4

Continuous modelling for
radiotherapy and geometric
characterisation of resistant traits
according to oxygenation

Basing on the study presented in Chapter 3, we now move to take into account
therapies. The eco-evolutionary dynamics we included in the investigation in the
previous chapter are of particular interest also in the study of therapeutic strategies
for the treatment of cancer. In fact, the characteristics of the tumour population, the
interaction with the environment, and the effects of the treatment influence the geo-
metric and epigenetic characterisation of the tumour with direct consequences on the
efficacy of the therapy and possible relapses. Considering different therapies move
the attention on different environmental factors that influence the treatment effective-
ness. Here, we concentrate on radiotherapy, in which oxygen concentration plays a
central role both in determining the effectiveness of the treatment and the selective
pressure due to hypoxia. In Chapter 3 we settled in the framework of epigenetically
structured population dynamics and formulated a model for tumour mass evolution
in terms of systems of coupled non-linear integro-differential equations. Here we
extend the model, aiming to catch the previously intoduced clinical phenomena and
to provide a predictive tool for the tumour mass evolution and therapeutic effects.
The content of this chapter is published in Ref. [111].
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4.1 Introduction

Because of its high cytotoxic potential, radiation therapy is a standard of care in many
solid tumours [47]. Since its inception, the objective of cancer research has been to
discover novel methods of quality treatment approaches to eradicate malignancies.
Presently, due to its high diffusion, over 60% of all ongoing medical quality treatment
trials worldwide are concentrating on them [1].

In this light, the main goal of radiotherapy is to deprive cancer cells of their
multiplication potential, damaging their genetic material and thus blocking their
ability to divide and proliferate further via high-energy radiation (we recall the
content of Section 1.4.1). Tumour cells are, in general, not as efficient as normal
cells in repairing the damage caused by radiation, resulting in differential cell killing.
For this reason, radiotherapy is mainly delivered through fractionated schemes to
maximise the radiation effects on abnormal cancer cells while minimising exposure
to normal ones [48].

Prediction of tumour response after irradiation has been a challenge at the very
beginning since it became rapidly clear that the biological effect of irradiation is
a complex phenomenon not uniquely determined by the total dose but also by the
characteristics of the treatment protocol (such as fraction dose and dose schedule)
as well as by physiological conditions in which it is applied that can widely range
between patients [151].

The success of radiotherapy depends indeed on multiple sub-cellular, cellular,
and microenvironmental parameters, together referred to as the "6Rs of radiation
therapy”: repair of irradiation-induced DNA damages, redistribution of cells within
the cell cycle, repopulation of mass after radiation, reoxygenation of the tumour
microenvironment, intrinsic radiosensitivity of different cell subpopulations and
reactivation of the anti-tumour immune response [376].

A crucial factor that impacts all these aspects is tumour heterogeneity in terms
of both microenvironmental conditions and cancer cell populations. In particular, it
has been observed that the local oxygen concentration can significantly influence
radiation-induced cell death, with well-oxygenated regions being shown to exhibit
up to threefold greater radiosensitivity than hypoxic tumour populations [225].
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Hypoxia is a consequence of the high tumour cell proliferation rate and the
abnormal structure of the tumour vasculature. Oxygenation level is generally reduced
and heterogeneous within malignant masses, compared to the oxygenation found
in associated healthy tissues; this lack of oxygen is a critical feature in tumours
promoting their progression. It is indeed clinically observed that, in solid tumours,
oxygen tissue deprivation acts as an environmental stressor, promoting a long series
of genetic, but especially, epigenetic mutations that strongly impact the tumour
eco-evolutionary dynamics. Cancer cells are indeed able to adjust their cellular
physiology and metabolism via the up-regulation of different genes such as p53, HIF-
α or GLUT-1 or IAP-2, acquiring the ability to grow in hypoxic microenvironments
and to evade apoptosis [187].

The reason for which low oxygen tensions are associated with radiation resis-
tance relies on the mechanism of cell killing by ionising radiation. It is indeed
experimentally shown that oxygen plays a fundamental role in fixing the damage
on cancer cells induced by radiotherapy that leads to their death [265]. In fact, it
is observed that hypoxia can cause topographically defined cellular subpopulations
protected at the time of radiation without being killed by severe oxygen starvation;
the oxygen tension for hypoxic cells could be indeed high enough to allow for clono-
genic survival but low enough to protect them from the effects of ionising radiation
[381].

In this view, it is clear that hypoxia impacts all the 6Rs mentioned before,
becoming a fundamental factor to be considered in a successful treatment protocol.
In particular, we are interested in investigating its effects on three of them: (i)
radiosensitivity, (ii) repopulation and (iii) reoxygenation. Radiosensitivity defines
the intrinsic sensitivity of tumour cells to the therapy; it is influenced by hypoxia at
two levels: a direct one since, as underlined before, oxygen is responsible for the
enhancement of the detrimental effect of ionising radiation implying that radiotherapy
is less efficient in the areas in which a lack of oxygen is observed; an inverse one
by the fact that hypoxia selects for cells equipped by high resistance to hostile
environments and low proliferative rates. Repopulation defines instead the renewal
and proliferation of surviving cancer cells following irradiation and is affected by
hypoxia since it promotes treatment-resistant hypoxic cells that serve as a nidus
for subsequent tumour regrowth and repopulation. Finally, reoxygenation defines
the fact that, between radiotherapy fractions, well-oxygenated cell death leads to
oxygen release, reduction of oxygen demand, and tumour bulk shrinkage, allowing
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better oxygen diffusion, turning back initially refractory hypoxic areas to a more
radiosensitive state [376].

The emergence of a resistant population can be described in terms of tumour evo-
lution and stems from its intrinsic heterogeneity. In an eco-evolutionary perspective,
a tumour can be indeed interpreted as a cell population characterised by an accumu-
lation, via natural selection, of genetics and epigenetics alterations that appear both
due to intrinsic cell variability and to their mutual interactions with the surrounding
microenvironment. In this light, all the treatment procedures could act as an environ-
mental stressor on tumour cells, inducing strong modifications of tumour ecology
and, consequently, of the fitness landscape of tumour cells, promoting variations in
tumour composition. The resulting strong selective bottleneck enriches for resistant
phenotypes within cancer cells as a mirror of the evolutionary capacity of cancer
phenotypes to adapt to therapeutic perturbations as well as of the modifications of the
temporal and spatial heterogeneity of the tumour microenvironment [193, 78, 165].
In this view, ecologically informed therapeutic strategies can potentially define and
use novel treatment approaches that could vary among patients whose landscapes
could be completely different. Such an adaptive approach implies that each patient
therapeutic protocol is strictly personalised on the basis of the tumour state and
response rather than a one-size-fits-all fixed treatment regime [72, 131].

Mathematical models constitute a good investigative instrument in this sense
since they can allow testing different environmental conditions, different tumour
compositions, as well as different therapeutic protocols. They can be seen as in
silico laboratories to evaluate the mutual interactions between the above-mentioned
aspects and their consequences on tumour development. In this respect, the effect
of tumour-host interaction, in particular considering tissue oxygenation and its role
in shaping the phenotypic composition of tumour masses and their double impact
on radiotherapy efficacy has been deeply investigated via a wide range of modelling
techniques [36, 418, 437, 300, 301, 436, 175]. For example, in Ref. [94], the authors
presented a mathematical model that describes how tumour heterogeneity in terms of
stemness evolves in a tissue slice oxygenated by a single blood vessel, determining
the proliferative capacity, the apoptosis propensity and the response to radiotherapy
protocols. A similar dynamics is investigated in Ref. [210] via a hybrid cellular
automaton in which the authors analysed the spatio-temporal dynamics and the
evolution of the intratumoral heterogeneity of a mass under the action of radiotherapy,
showing how the treatment results more effectively in well-oxygenated tumours than
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in the poorly oxygenated ones. In the same veins but with particular attention to
tumour cell repopulation, reoxygenation and redistribution of proliferative states,
in Ref. [275], is proposed a spatially-distributed continuous mathematical model
of solid tumour growth treated by fractionated RT. Other interesting results are
collected in Ref. [285], in which numerical and analytical techniques are developed
to investigate the radiation response of tumours with different intratumoral oxygen
distribution profiles. Finally, without an explicit description of tumour oxygenation
but in a more general framework of tumour-host interaction in terms of competition
for space and resources and tumour heterogeneity, in Ref. [363], the authors proposed
a prognostic factor for personalised radiotherapy, named Proliferation Saturation
Index (PSI), to identify the best fractionation scheme.

Following this research line, a particularly promising treatment modality is
Intensity-Modulated Radiotherapy (IMRT), which has the potential to be an effective
method for delivering customised radiation therapy to small, specific regions of
a tumour based on its oxygenation level [290, 49]. This approach is called dose
painting and involves selectively boosting doses to regions of the tumour that are
known to be particularly resistant to treatment [206]. To fully exploit this technique,
however, additional information about the tumour composition, specifically in terms
of its resistance to hypoxia, is necessary in order to define the most effective radiation
dosimetry plan.

Motivated by the above considerations, in this work, we are interested in investi-
gating how low oxygen levels and hypoxia-associated tumour cell adaptions affect
radiotherapy efficiency in the specific case of solid tumours. We aim, in this sense,
to develop a tool which could adapt to patient-specific characteristics, in line with
the innovative personalised medicine approach [179].

In our previous work presented in Ref. [112], we deeply investigated how
the mutual interactions between the tumour mass and oxygen distribution (i) can
result in a geometric characterisation of tumour niches in terms of masses spatial
extension, how this characterisation could affect the phenotypic composition in terms
of survival and invasive abilities and finally how both these two aspects in synergy
affect the mass growth. This approach naturally laid the groundwork to investigate
how the pre-therapeutic history of a tumour dictated by oxygen distribution could
determine therapeutic failures. This is due to the possibility of taking into account the
differences in tumour conformation and invasive ability coupled with the emergence
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of treatment-resistant hypoxic cells that result from this dynamics. It indeed perfectly
matches with the necessity to take into account two crucial events: (i) hypoxia selects
for cells equipped by high resistance to hostile environments and low proliferative
rates; (ii) these cells are intrinsically less exposed to treatment action with respect
to the normal cells since radiotherapy damages the DNA consequently blocking the
replication process.

This setting clearly results in being particularly suitable to investigate radiosen-
sitivity development dictated by hypoxia since we can naturally map cell mitotic
potential with their intrinsic resistance ability. A low proliferant cell is indeed intrin-
sically more resistant to the action of radiotherapy in light of what we previously
observed. Moreover, the eco-evolutionary approach that we there adopted allows us
to investigate the effects on tumour growth and regrowth of therapeutic perturbations
coupled with the spatial and temporal variations observed in the tumour microenvi-
ronment, leading to the investigation of the dynamics that govern the repopulation
of a tumour mass after the treatment. Finally, considering the interaction between
the tumour mass and the microenvironment in which it lives also allows us to focus
on the dynamics of oxygen and to evaluate the impact of reoxygenation phenomena.

In this work, we present an extension of the previous model in Ref. [112] to
describe how the effects of radiotherapy differ according to the heterogeneity faced at
the instant and the location at which the therapy is applied (from both a physical and a
phenotypical point of view) investigating how a divergent response could be observed
within and among patients. In this perspective, we consider a specific formulation
for the survival fraction of the already treated tumour cells, able to capture both
parameters directly associated with clinical data and specific mortality rates with
respect to different doses and treatment timings. This new modelling structure
of radiotherapy gives the possibility to explore the tumour-therapy interaction in
two mutual directions, i.e. (i) the impact of tumour developmental dynamics on
the efficacy of therapy, (ii) the impact of therapy on the spatial and epigenetic
characteristics of the tumour mass.

Moreover, the action of the environmental selection is taken into account to
characterise the spatial heterogeneity of proliferative potential, identify the tumour
regions composed of cells with low proliferative rates, and study how their evolution
could largely influence treatment success. Since the terms phenotypic and epigenetic
(both already introduced in this work) are often used in the literature with the same
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meaning, we specify that in the sequel of this chapter, we refer to the epigenetic trait
(and the relative mutation) when we intend to refer to the molecular imprint on the
genotype which determines the degree of activation of the genes, keeping unaltered
their sequence. Instead, we refer to the phenotype as the observable actualisation of
interactions between its genome, epigenome, and local environment.

The rest of the chapter is organised as follows: in Section 4.2, we present the
proposed model with the underlying assumptions (see Subsection 4.2.1); details
on the parameters estimate and on its numerical implementation as well as on the
indices that quantity tumour progression is given in Subsection 4.2.2 and Subsection
4.2.3, respectively. We then turn on describing the model results in Section 4.3.
Specifically, we simulate the growth of the malignancy in two specific settings,
referred to as Case 1 - highly efficient single vessel (see Subsection 4.3.1) and Case
2 - inefficient single vessel (see Subsection 4.3.2) that differ with respect to the
oxygenation level of the tissue. We compare them applying the same radiotherapy
protocol to highlight the differences that could be observed in tumour response
due to tumour-host interaction. Subsection 4.3.3 is instead devoted to investigating
possible variations of radiotherapy efficacy varying the total dose amount delivered
in the two experimental settings to explore the potency of dose painting. Finally, in
Subsection 4.3.4, we analyse the effect of spatially heterogeneous distributions of
the intra-tumoural blood vessels to highlight their role in the creation of ecological
niches due to the relative blood vessels dispersal that influence the treatment response.
The discussion ends in Section 4.4 with a summary of the main results with hints for
possible developments.

4.2 Materials and methods

4.2.1 Mathematical model

As mentioned in the introduction, building upon our previous work [112], we extend
the model to include the effects of radiotherapy. To this aim, we set a spatial bi-
dimensional domain Ωs ⊂ R2 in which the mass can expand, assuming to observe
a tumour evolving in a tissue slice. In particular, in our setting: (i) oxygen is the
main environmental factor that affects tumour evolution, and in the determination
of the different areas of therapeutic efficacy; (ii) tumour cells’ behaviour will be
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influenced by the epigenetic characteristics of individuals in terms of their double
resistance to hypoxia and radiotherapy, the environmental conditions faced and the
mutual interaction between these two aspects.

In this respect, the virtual tumour mass is differentiated in metabolically active
(i.e., viable) and necrotic individuals. As in the previous model, the necrotic subpop-
ulation is assumed to be undifferentiated, with number density given by the function
n(t,x) : T ×Ωs 7→ R+

0 . The viable tumour portion is structured with respect to the
same epigenetic trait u ∈ Ωp = [0,1], which in this model not only describes the
double resistance level of malignant cells i.e. w.r.t. the ability to survive in hypoxic
tumour areas, but is also associated with their radiosensitivity (we formalise this in
mathematical term later). We recall that the epigenetic state u = 0 characterises the
cells that show the highest mitotic potential and, relatively, the highest sensibility
to both lack of oxygen and radiotherapy action (proliferation promoting or sensible
cells); the epigenetic state u = 1, instead is linked to cells that show the potentially
highest survival ability but the lowest duplication capacity (survival promoting or
resistant cells).

The evolution of the tumour mass distribution, based on Equation (3.2.2), reads:

∂a(t,x,u)
∂ t

= µp
∂ 2a(t,x,u)

∂u2︸ ︷︷ ︸
epigenetic variations

+µs∆xa(t,x,u)︸ ︷︷ ︸
movement

+R(u,O(t,x),ρ(t,x),n(t,x))a(t,x,u)︸ ︷︷ ︸
proliferation/selection/necrosis

.

(4.2.1)
in which O(t,x) : T ×Ωs 7→ R+

0 represents the oxygen concentration and ρ(t,x)
denotes the local number density of the non-necrotic tumour area, computed as in
Equation (3.2.1). With respect to the previously introduced model, we keep unaltered
the random epigenetic transitions and the diffusive spatial dynamics. Reaction term
reads:

R(u,O(t,x),ρ(t,x),n(t,x)) =

proliferation︷ ︸︸ ︷
P(u,O(t,x),ρ(t,x),n(t,x))−

selection︷ ︸︸ ︷
S(u,O(t,x))

− N(O(t,x))︸ ︷︷ ︸
lack of oxygen

−T (u,O(t,x))︸ ︷︷ ︸
radiotherapy

.
(4.2.2)

It includes a simplified proliferation expression P, unaltered selective pressures by
environmental conditions S (see Equations (3.2.8) and (3.2.9)) and necrosis terms
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which include the already presented N due to lack of oxygen (see Equation (3.2.10))
and add the new T due to irradiation.

In detail, the proliferation rate P is factorised as in Equation (3.2.4), p1 and p3 ,
respectively depending on the epigenetic trait and the cell densities, defined as in
Equations (3.2.5) and (3.2.7). We simplify the oxygen-dependent term p2 with the
following classical Michaelis-Menten law:

p2(O(t,x)) =
O(t,x)

αO +O(t,x)
, (4.2.3)

With respect to the previous model, we allow cells proliferation even under the On

oxygen threshold, enhancing the role of the necrotic term responsible for death of
cells below this reference oxygen concentration. As a consequence, the variable
appearing in the Michaelis-Menten term is the oxygen concentration itself, without
considering a basal level On under which the presence of oxygen is not significant in
the count of available nutrient.

Finally, the term T (u,O(t,x)) represents the radiobiological response of cells
under the action of the treatment. To define it, we rely on the standard linear-
quadratic (LQ) model [249], which describes the surviving fraction SF of cells in
response to a single radiation dose. In our setting, cell mortality is defined following
an innovative approach in the light of what we mentioned before, i.e. in the function
of both (i) oxygenation of the tissue and (ii) intrinsic radiosensitivity of cell clones
with respect to their epigenetic firm. Generally, the main parameters of the LQ
model α and β are tissue-specific coefficients, and we introduce variability in the
action of radiotherapy according to the biological situations in which the therapy
is applied [431]. Specifically, we consider that the effectiveness of radiotherapy is
related to hypoxia, which affects therapeutic efficacy in two ways. A direct one
is the fact that, as underlined before, oxygen is responsible for the enhancement
of the detrimental effect of ionising radiation, which implies that radiotherapy is
less efficient in the areas in which a lack of oxygen is observed. An inverse one
by the fact that hypoxia selects for cells equipped with high resistance to hostile
environments and low proliferative rates; this second characteristic makes cells, as
already mentioned, intrinsically less exposed to radiotherapy action with respect
the normal cells since the power of radiotherapy is to be able to damage the DNA
consequently blocking the replication process. In this light, we assume that the
coefficients α and β coefficients depend on introducing a variable z which takes
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into account both the oxygen concentration (to simulate that the treatment is less
effective in hypoxic areas) and the epigenetic characterisation of cells (to simulate
that hypoxia-resistant cells are even less sensitive to radiotherapy). This concept is
formalised describing z as a product of two weights: (i) the former, here named wu,
which depends on the epigenetic trait of the cell u and (ii) the second, here named
wO, from the oxygen concentration O(t,s):

z(u,O(t,x)) = wu(u) ·wO(O(t,x)) (4.2.4)

where
wu(u) =

p1(u)
γmax

and wO(O(t,x)) = p2(O(t,x)), (4.2.5)

to highlight the relation that exists between proliferation and survival (proliferation-
survival trade-off ). In this light, inspired from the work presented in Ref. [95], we
model the increasing dependence of α and β parameters on the eco-evolutionary
variable z as:

α(z) = αmin +(αmax −αmin)z, (4.2.6)

and
β (z) = βmin +(βmax −βmin)z, (4.2.7)

where αmin,αmax,βmin andβmax are non-negative constants with αmin < αmax and
βmin < βmax, which represent the maximum and minimum sensitivity to treatment
(estimations of their values can be found in Ref. [248]). Finally, we characterise cell
mortality under the action of radiotherapy as follows:

T (u,O(t,x)) = (α(z)d +β (z)d2) ·δtimes(t) (4.2.8)

where: (i) δtimes(t) = ∑T∈times δT (t), being δ the Dirac-delta, models the fact that
the death factor due to therapy is only present during the administration time of the
chosen protocol and (i) d is the administered dose. To complete the modelling of
cancer cells, we include Equation (3.2.11) in the models.

Switching on the molecular scale, in the same setting presented in Ref. [112], the
local concentration of oxygen is governed by a parabolic PDE where the spatially
heterogeneous source term V (x) captures the presence of intra-tumoural blood
vessels which bring oxygen into the tumour tissue. Moreover, oxygen diffuses within
the tissue, naturally decays, and is consumed by viable cells. The equation regulating
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oxygen dynamics is directly derived from Equation (3.2.12) and reads

∂O(t,x)
∂ t

= µO∆xO(t,x)︸ ︷︷ ︸
diffusion

− λOO(t,x)︸ ︷︷ ︸
natural decay

− ζOρ(t,x)O(t,x)︸ ︷︷ ︸
consumption by

active tumour cells

+ V (x)︸︷︷︸
inflow from

the blood vessels

, (4.2.9)

Here, the sole modification is introduced in the consumption term, which appears
simplified with respect to the one used in Equation (3.2.12). There, consumption
formally depends on proliferative activity of the cells. In this new model, oxygen
is consumed at a rate ζO by all viable tumour cells. We point out that this, while
retaining the advantage of leaner modelling, does not lose the biologically coher-
ent connection between proliferation and increased oxygen consumption. In fact,
cells that proliferate more increase cell density more, consequently increasing con-
sumption via the term introduced here. Concerning the inflow, we recall the source
description provided by Equation (3.2.13).

4.2.2 Simulation details

The spatial domain Ωs represents a bi-dimensional section of a four cm-large tissue,
i.e. Ωs = [−2,2]2 cm. The final observation time is denoted by tF and varies among
simulations in correspondence with the relapse, identified as the time at which the
total cell count reaches the detection threshold (4 ·106) again after the radiotherapy
administration.

Initial and boundary conditions: Equation (4.2.1) that establishes cell dynamics, is
equipped by the following initial condition:

a(0,x,u) = A exp
(
−(x−xC)

2

2σ2
x

− (u−uC)
2

2σ2
u

)
, for x,u ∈ Ωs ×Ωp; (4.2.10)

n(0,x) = 0, for x ∈ Ωs, (4.2.11)

with A > 0 s.t. ρ(0,x) =
∫

Ωp
a(0,x,u)du < k. The geometric point around which

the cancer cell population is located at the initial time is denoted by xC; without loss
of generality, we consider the case in which it is fixed at the centre of the domain
xC = (0,0). Biologically, this setting reproduces, at the beginning of the numerical
realisations, a node of malignant viable cells already present within the tissue, with



4.2 Materials and methods 131

the following characteristics: (i) each cell epigenetic state has a full Gaussian profile
along the spatial dimension, centred at the starting point xC and with a variance
of σ2

x = 0.008 cm2 and (ii) the cell mass has a half-normal distribution in the trait
space, with peak at uC = ϕO(O(0,xC)) which is the optimal epigenetic trait with
respect to the oxygen concentration given by the initial condition and with variance
σ2

u = 0.08. The initial cell configuration has a maximum value of A= 89.20 cell/cm2.
In this respect, at t = 0, the overall density ρ of active individuals is symmetrically
disposed w.r.t. xC and, in normoxic condition, it is mainly composed of proliferative
promoting cell variants with only a small fraction of survival-promoting agents.

Equation ((4.2.1)) has zero-flux conditions at the boundary of the epigenetic do-
main, i.e., ∂ua(·, ·,0) = ∂ua(·, ·,1) = 0. This is consistent with the fact that malignant
cells can not be characterised by a trait smaller than 0 or higher than 1. The same
holds on the domain Ωs under the assumption of considering the growth of the mass
in a tissue slice where physical barriers (for instance, bones) bounds of breast ducts
or the lack of extra-cellular matrix prevent the expansion of the mass out of them.

Turing on chemical kinetics, Equation (4.2.9) is completed with initial con-
dition O(0,x) that represents the steady-state of oxygen distribution in the tissue
in the absence of tumour cells with respect to different vessels intensity whose
value is specified case by case. We couple Equation (4.2.9) with zero-Dirichlet
conditions at the boundary of the spatial domain Ωs under the assumption of con-
sidering a sufficiently large tissue in which anoxic areas at the boundaries of the
domain. In this respect, two geometrical layouts for blood vessels are adopted
in this work: (i) one with a single vessel at the centre of the domain, consid-
ering two inflow cases; we refer to them as ϒFV = {((0,0), Ĩ)} (full vessel lay-
out) and ϒHV = {((0,0),0.5Ĩ)} (half vessel layout); (ii) the other is a three ves-
sel layout, where all the vessel are around the antibisector in the configuration
ϒ3V = {((−1.3,1.3),0.5Ĩ),(1.4,−1.2),0.65Ĩ),(1.2,−1.4),0.65Ĩ)}. In the sequel,
we set the reference oxygen inflow Ĩ = 1.57µmol/(cm2day).

Parameters estimate: The majority of model coefficients have a clear and direct bio-
logical meaning, and therefore, a proper estimate has been done by taking advantage
of the empirical literature. In this respect, we have referred to experimental works
dealing with a wide spectrum of diseases since we here account for a generic tumour.
The full parameters set up is listed in Table 5.1.
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Parameter Description Value [Units] Reference(s)

ce
ll

dy
na

m
ic

s
µp epigenetic variation rate 8.64 ·10−9 [day−1] [158]
µs spatial diffusion rate 3.11 ·10−5 [cm2/day] [312]
γmin minimal cell duplication rate 3.46 ·10−1 [day−1] [312]
γmax maximal cell duplication rate 6.94 ·10−1 [day−1] [312]
k tissue carrying capacity 106 [cell/cm2] [400]
ηO oxygen selection gradient 1 [day−1] model estimate
η rate of necrotic transition 1 [day−1] model estimate
αmin Minimum α value for radiotherapy 0.007 [Gy−1] [248]
αmax Maximum α value for radiotherapy 0.21 [Gy−1] [248]
βmin Minimum β value for radiotherapy 0.003 [Gy−2] [248]
βmax Maximum β value for radiotherapy 0.15 [Gy−2] [248]

ox
yg

en
ki

ne
tic

s

µO oxygen diffusion coefficient 8.64 ·10−1 [cm2/day] [312]
λO oxygen natural decay rate 8.64 ·10−3 [day−1] [136]
αO Michealis-Menten oxygen constant 4.28 ·10−9 [µmol/ cm2] [140]
ζO oxygen consumption rate 8.64 ·10−16 [µmol/cell] model estimate
On oxygen necrotic threshold 1.20·10−9 [µmol/cm2] [74]
Om oxygen hypoxic threshold 2.57·10−9 [µmol/cm2] [74]
OM oxygen normoxic threshold 1.37·10−8 [µmol/cm2] [74]

Table 4.1 Reference parameters setting.

Numerical method: For the domain mesh and the implementation of the numerical
resolution algorithm, a Python code is developed using FEniCS and Dolfin packages
[279]. Specifically, we adopt a uniform discretisation for the temporal and epigenetic
domains and a triangular mesh with radial symmetry for the two-dimensional geomet-
ric domain. The system of partial differential equations is solved via a mixed solution
scheme. We couple an explicit Euler method for the one-dimensional components of
the domain (time and epigenetic trait) and a Galerkin finite element method for the
dynamics of the geometric domain.

4.2.3 Quantification of model results

Following our previous approach [112], to provide some qualitative indicators of
tumour evolution and a more quantitative description of epigenetic trait distribution
inside the mass, we divide the epigenetic domain Ωp in three epigenetic bands,
denoted with L (low), M (medium) and H (high): Ωp = ΩL

p ∪ΩM
p ∪ΩH

p with ΩL
p =

[0,0.3), ΩM
p = [0.3,0.7], ΩH

p = (0.7,1]. We link the epigenetic bands to the tissue
regions in which they are the "optimal" ones in terms of environmental selection
via the function ϕo(O(t,x)), Equation (3.2.9). We obtain a time-dependent partition
of the spatial domain Ωs(t) = ΩL

s (t)∪ΩM
s (t)∪ΩH

s (t)∪ΩN
s (t), ∀t ∈ T where L, M,

H superscripts correspond to the areas of the domain where the fittest epigenetic
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trait belongs to the correspondent epigenetic band and ΩN
s (t) is the necrotic area

(oxygen below On). To analyse the results of our simulations, we use local and
global indicators.

In order to spatially characterise the tumour mass, we take into account the
local number density ρ(t,x) already presented in Section 4.2 and we introduce the
band-specific local number densities:

ρ j(t,x) =
∫

ΩI
p

a(t,x,u)du for j ∈ {L,M,H} (4.2.12)

To give some global indicators and analyse their evolution over time, we introduce
the following:

• the total cell count, providing the size of the tumour population:

Γ(t) =
∫

Ωs

ρ(t,x)dx (4.2.13)

• the average epigenetic trait, providing a representation of the epigenetic
spectrum present in the mass:

ḡ(t) =
1

Γ(t)

∫
Ωp

u
(∫

Ωs

a(t,x,u)dx
)

du, (4.2.14)

• the average radiosensitivity index:

ᾱ(t) =
1

Γ(t)

∫
Ωp

∫
Ωs

α(z(u,O(t,x)))a(t,x,u)dxdu, (4.2.15)

With respect to the radiotherapy parameters, we here use α as a qualitative indicator
since we are interested in the relative variation with respect to minimum and maxi-
mum values, and β has the same dependence on the z function, just rescaled in its
range, Eqs. (4.2.6), (4.2.7).

Finally, we introduce a global index for the environment description, which is
the oxygen total amount

O(t) =
∫

Ωs

O(t,x)dx . (4.2.16)
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4.3 Results

The rationale of this work is to investigate how differences in the tumour radiotherapy
response could be related to the spatially heterogeneous distribution of intratumoral
blood vessels in tumour tissues. One of the factors that may lead to therapeutic
failures is the development of intra- and inter-patient resistance. Different ecological
niches, in terms of vessel potency and relative dispersal, lead to the selection of cells
with different characteristics that may pave the way to the emergence of therapeutic
resistance. In these veins, the resulting heterogeneous tumour microenvironment is
of clinical interest to find the optimum patient-specific protocol.

To investigate this phenomenon, according to the approach settled in our previous
work [112], we firstly focus on studying these evolutionary dynamics in a relatively
simple setting choosing, as a prototype of a growing malignant mass, a tumour
cord i.e. a cylindrical mass formed by tumour cells that wrap around a blood
vessel. Specifically, we are interested in two different environmental conditions
designed to represent a high- and low-efficient vascular network, respectively, and
finally, we are comparing them in terms of therapy efficacy. In both cases, we
assume that the treatment is applied only in the presence of a sufficient highly
concentrated tumour mass to reflect that, to be treated, masses have to be visible via
diagnostic imaging. Specifically, we set a detecting threshold in correspondence of
masses constituted by 4 ·106 cells. With respect to the applied protocol, we focus
on one of the most common in conventional clinical practice, according to which
patients receive the same radiation dose in all the different subregions of the tumour
volume, following a fractionation schedule that provides for a dose of approximately
2 Gy (Gray) delivered once a day, Monday to Friday, up to a total of 50-70 Gy.
Specifically, in our case, the therapy ends up in 6 weeks for a total dose amount of
60 Gy. The mass evolution is described in terms of numerosity, morphology and
epigenetic characterisation, investigating the relation between these different aspects
in repopulation phenomena. Moreover, special emphasis is devoted to tumour-host
interaction, looking to oxygen dynamics in relation to the radiosensitivity of the
mass considered.
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4.3.1 Case 1 - highly efficient single vessel

In the first simulation setting, Fig. 4.1, we observe the growth of a tumour mass
in a sufficiently oxygenated environment provided by ϒFV layout. Looking at the
evolution of its total cell count Γ(t), panel (A) of Fig. 4.1, the presence of a functional
blood vessel guarantees an efficient nutrient supply, leading to a rapid evolution of
the mass. The malignant cell number shows a Gompertz-like profile, coherently with
the biological evidence, see for instance Ref. [346, 181]. Assuming that the tumour
burden can be diagnosed as soon as the mass approaches the detection threshold,
radiotherapy is applied, according to the above-mentioned protocol, leading to quasi-
total tumour eradication. The shape of the curve, week by week, fits the decreasing
strength of the treatment in time, showing a strong efficacy in the first phases that
gradually reduces in correspondence of a smaller portion of cells that could be hit. As
it can be observed, once the treatment protocol is completed, the failed eradication
allows for a quick relapse of the mass that restarts to grow even faster than the
settlement phase, a restored bulk of the same dimension as the one before the clinical
intervention could be observed at the end of the simulation.

The three-phase expansion-contraction-expansion dynamics is even more high-
lighted by looking at the evolution of the local density ρ(t,x), represented in panel
(C) of Fig. 4.1. Specifically, we focus on observing its profile at four representative
time points: i) the tumour detection (DG - diagnosis), ii) the end of the treatment
(PT - post-treatment), iii) during the tumour regrowth (RP - repopulation) and iv)
the final configuration (RL - relapse). As can be observed, the mass develops almost
radially around the vessel, and no differences in terms of shape could be highlighted
comparing the first and the last panel. This is coherent with the fact that the tumour
invasion is the result of the proliferative and diffusive potential with respect to the
environmental conditions faced. Interestingly, at the end of radiotherapy administra-
tion, the cell density of the mass is widely underneath the detection threshold, see
panel (D)-PT of Fig. 4.1; however, looking at the corresponding DG and PT panels
in panel (D) of Fig. 4.1, where the tumour densities of the three different epigenetic
bands ρ j for j = L,M,H, are locally summed in space, the radiotherapy reduction
corresponds to approximately the 99% of both tumour bulk and edges, switching
in number from 106 to 104 and 105 to 103 [cells/cm2], respectively. The remaining
small node of cells, constituted by the 1% of the original mass, is responsible for
tumour relapse, in accordance with the repopulation phenomena. The rapid growth
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Fig. 4.1 Simulation of tumour mass, growing from the centre of the domain, with oxygen
provided by the full vessel layout ϒFV . (A) Global cell count evolution. (B) Total oxygen
amount evolution. (C) Average radiosensitivity index and average epigenetic trait evolution.
(D) ρ(t,x) for t corresponds to diagnosis (DG), post-treatment (PT), repopulation (RP) and
relapse (RL) times. Contour lines detect the optimal areas for high (green), medium (orange)
and low (blue) epigenetic bands (necrotic area outside the green line). (E) Slice of ρ(t,x)
taken on the positive bisector in logarithmic scale. The edge represents the total amount
ρ(t,x) while coloured areas represent the epigenetic composition of the tumour (blue for
low, orange for medium and green for the high epigenetic band). Caption and Figure from
Ref. [111].

of the mass observed could be reasonably linked to tumour-host interaction and, in
particular, to the reoxygenation after the radiotherapy. From a local point of view,
this can be seen by analysing the contour lines at different time steps in panel (D)
of Fig. 4.1, which detects the optimal areas for the three epigenetic bands (green
for high, orange for medium and blue for low). The areas enclosed by the contour
are wider after therapy (PT plot) due to the lowering of oxygen consumption as a
consequence of the elimination of the tumour mass by the radiation administration.

From a global point of view, looking indeed to the evolution in time of total
oxygen amount available in the tissue slice, panel (B) of Fig. 4.1, a rapid increase in
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terms of its concentration occurs during the treatment administration. The rationale,
as already anticipated in the Introduction chapter, is that the reduction in number of
tumour cells during the treatment is reflected in a minor consumption of the available
nutrients, leading to restored oxygen delivery in the tissue that was, in the early
development phases, compromised due to the high metabolic requirement. As we
can see, at the end of the radiotherapy protocol, the survived tumour cells could
completely exploit the available oxygen, leveraging all their duplication potential
and leading to quick mass regrowth.

In eco-evolutionary terms, it is interesting to investigate how the cooperation
and/or out-competition phenomena could potentially influence these dynamics. In
particular, as shown in our previous work [112], the selection dynamics occurring
in the tumour-host interaction could carry out a crucial role in terms of tumour
aggressiveness and treatments could act, in terms of environmental stressors, as
bottlenecks that fuel these dynamics. Three aspects are of particular interest from
our point of view: i) how the pre-treatment history of a tumour could impact the
radiosensitivity of the mass at the beginning of treatment delivery; ii) the effect of
radiotherapy as a bottleneck selecting for resistant epigenetic traits and finally iii)
How could the consequences of the treatment action on the tumour microenvironment
impact the future of tumour mass?

In this direction, we focus on investigating the evolution in time of the global
average epigenetic expression of the mass ḡ(t), Equation (4.2.15) and the corre-
sponding one of the radiosensitivity index ᾱ(t), Equation (4.2.14). Analysing the ḡ
profile in time, we can observe that the high oxygenated environment that charac-
terises the early phases of tumour growth leads to an initial deflection of the average
epigenetic expression. Indeed, in proximity to the blood vessel, proliferating cells
have a strong evolutionary advantage with respect to all the other epigenetic traits
present in the mass, out-competing them and becoming the predominant ones in
the mass. As the mass expands, conquering less oxygenated regions, the action of
natural selection slowly leads to the emergence of more resistant epigenetic traits,
mildly shifting the tumour towards resistance to hypoxia development. However,
a strong epigenetic switch in terms of the average composition of the mass during
and after the treatment is not remarkably highlighted. Indeed, under these specific
environmental conditions, the growth of the mass is only slightly affected by natural
selection in the short time interval before detection, and thus, it is mainly composed
of proliferating cells. Reoxigenation after the treatment gives a further advantage to



138 Radiotherapy and hypoxia resistance: continuous modelling

the proliferating cells. This is confirmed by looking at the epigenetic composition in
terms of specific epigenetic band densities represented in panel (E) of Fig. 4.1. In
this light, ḡ(t), coherently, remains pretty constant with only small fluctuations. The
jagged ḡ(t) profile is due to the fact that: on the one hand, during the resting days of
the treatment, in accordance with resources availability, proliferating cells quickly
repopulate the tumour mass; on the other hand, during the effective treatment days,
the higher effect of radiotherapy on proliferating cells leads to their decrease.

A more dynamic profile characterises the evolution in time of the radiosensi-
tivity of our mass. As we can observe, in the early expansion phases, despite the
promising tumour composition in terms of radiotherapy efficacy, the radiotherapy
index rapidly decreases. This is due to the fact that the growing mass approaches
less oxygenated regions due to both an increased oxygen consumption by the mass
and the further distance from the vessel, and thus, the tumour results are less sensible
to radiotherapy administration, independently by its epigenetic characterisation. In
contrast, the reoxygenation phenomenon observed during the radiotherapy leads
instead to increasing the responsiveness of mass to the treatment. The jagged profile
of ᾱ(t) is less regular with respect to the one observed for the average epigenetic
index ḡ(t), and, in this respect, our results suggest that the heterogeneity in terms
of radiotherapy efficacy are mostly oxygen-driven with a minor role of epigenetic
mass composition. The latter seems to become more crucial when reoxygenation
phenomena completely restore the oxygen level (at time t = 85day in the panels
(B) and (C) of Fig. 4.1). In this case, oscillations due to the selection of more
resistant epigenetic traits or the out-competition of proliferating epigenetic traits are
indeed more evident. Unfortunately, coherently with the experimental evidences
[224], the benefits of radiotherapy in terms of reoxigenation and thus, the increase of
radiosensitivity of the mass has only a temporary effect: in a quick time window, the
tumour mass re-acquires its scarce sensibility, being able to conquer and to survive in
hypoxic regions where oxygen concentration is high enough to allow for clonogenic
survival, but it is low enough to protect tumour cells from the effects of ionising
radiation.

4.3.2 Case 2 - inefficient single vessel

In the second simulation setting, we observe the growth of a tumour mass in a harsher
environment as a consequence of an inefficient tumour vasculature.
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Fig. 4.2 Simulation of tumour mass, growing from the centre of the domain, with oxygen
provided by the half vessel layout ϒHV . Plot description as in caption of Fig. 4.1. Caption
and Figure from Ref. [111].

From this perspective, we consider that the tissue is supplied by a blood vessel
whose influx is halved, with respect to the previous case, and we analyse the same eco-
evolutionary features. Looking at the results shown in Fig. 4.2, marked differences
can be observed in tumour evolution with respect to the previous case.

First of all, the evolution of tumour cells total count Γ(t) is significantly different
(panel (A) of Fig. 4.2); the smaller amount of available resources slows down the
tumour development, leading to a mass that needs approximately four times more to
reach the detecting threshold (280 days vs 65 days). Its profile, moreover, reveals that
the radiotherapy protocol is less effective with respect to the previous case; the mass
reduces again, but, as evident in (panel (A) of Fig. 4.2), over the 10% of the cell
population is not eradicated. Additionally, once the treatment protocol is completed,
the failed eradication allows for a quick relapse of the mass; the restored bulk at
the end of the simulation is indeed morphologically identical to the one before the
clinical intervention, but it reaches the same volume, in a shorter time-window with
respect the early stages of the mass growth (approximately 230 days vs 30 days).
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The characteristic three-phase expansion-contraction-expansion dynamics is again
observed. However, it is affected by completely different mechanisms with respect
to the previous case, as it is shown by the rest of the eco-evolutionary dynamics.

The evolution in time of the tumour density ρ reveals, in contrast with the
previous scenario, a moderately dense ring of resistant cells still present at the end
of the treatment protocol. Its presence naturally affects the regrowth of the mass;
and, as it could be observed in panel (D)-RP of Fig. 4.2, two simultaneous dynamics
could be detected: i) a repopulation of the tumour region that starts from the centre
of the mass in the proximity of the vessel, suggesting that, also in this case, a silent
mass is not eradicated coupled with ii) an uninterrupted expansion of the rim of
resistant cells.

This macroscopic difference between the two cases strongly depends on the
different interactions between the tumour and the microenvironment that lead to
completely different radiosensitivity and, consequently, different repopulation and
reoxygenation dynamics in the mass. In particular, two are the aspects that have to be
considered to identify the underpinning dynamics: i) a less oxygenated environment
could lead to the emergence of intrinsically more resistant epigenetic traits; ii) An
inefficient vasculature naturally suppresses the efficacy of radiotherapy.

Focusing on the first aspect, coherently with what we showed in our previous
work [112], in the early stages of mass development, the tissue colonisation results
from the cooperative relations between different specialised cell variants, enhancing
the importance of epigenetic composition on tumour development. Analysing the
local number densities of the different sub-groups ρ j for j = L,M,H, it can be
noticed that the tumour composition is affected by the spatial variability of oxygen
concentration and environmental gradients leads to the selection for cells with epi-
genetic characteristics that vary with distance from the blood vessel. In particular,
cells characterised by medium and high resistance start to colonise the mass in
percentages that increase, moving far away from the nutrient source. This emerging
dynamics suggests the development of the classical ring structure that characterises
both tumour cords and spheroids; in this specific case, the mass is evolving, devel-
oping an inner core of proliferation promoting epigenetic traits surrounded by two
concentric rims of medium and high resistant cells. A mixed composition of this type
shapes the radiosensitivity of the mass and results in a heterogeneous response with
respect to the cellular subtypes involved. In this sense, a double effect is particularly
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visible. On the one hand, the presence of a greater number of resistant cells, environ-
mentally favoured by the poor oxygenation, causes a lower general effectiveness of
the treatment. On the other hand, the evident greater effectiveness on proliferative
cells, initially hindered only by environmental selection, leaves more space and
resources for resistant cells, which can thus consolidate and increase their presence
in the tumour mass following treatment. We can in fact notice that proliferating cells
strongly reduce in percentage, being out-competed by cells characterised by medium
and high resistance with increasing intensity in lower oxygenated regions. These
results highlight how, in tumour-host interaction, the selection dynamics could carry
out a crucial role in terms of tumour aggressiveness and that treatments could act
as environmental stressors and bottlenecks that fuel these dynamics. In particular,
looking at panels DG and PT of (D) plots of Fig. 4.2, two aspects of particular
interest naturally emerge: i) the impact of pre-treatment history of a tumour could
impact on the radiosensitivity of the mass; ii) the role of radiotherapy as a bottleneck
in selecting resistant epigenetic traits.

From this perspective, the residual ring that emerges at the end of the treatment
is the result of the presence of pre-existing, more resistant epigenetic traits in the
region of interest. This is perfectly in line with the biological hypothesis that the
action of radiotherapy is affected by the tissue oxygenation level in a two-fold
way: i) low oxygenation levels promote the emergence of radio-resistant cells,
and we refer to it as epigenetic-driven resistance; ii) oxygen is fundamental to fix
on the DNA of the cells the damage induced by radiation, and we refer to it as
purely oxygen-driven resistance. Notably, also in this second case, reoxygenation
could be observed as a consequence of tumour cells killing by radiotherapy, but its
restoring dynamics is characterised by a slower slope with respect to the previous
case. The underpinning reason relies on tumour mass composition: the presence
of a heterogeneous mass with medium and high resistant cells implies that not all
the viable cells are killed by the treatment and, thus, that the oxygen consumption
does not stop during the treatment. Despite the slower dynamics, reoxygentation
fuels more remarkably the tumour repopulation. The larger nidus of survived cells is
indeed strongly advantaged by the presence of newly available resources, favouring
their proliferation. It is interesting to notice how the repopulation of the mass is
the result of cooperation phenomena in which more proliferating cells completely
exploit their evolutionary advantage, colonising the inner region of the tumour tissue,
as well as harsher regions are instead repopulated by increasing resistant epigenetic



142 Radiotherapy and hypoxia resistance: continuous modelling

traits. This phenomenon is highlighted in panel (D-RL) of Fig. 4.2 in which the
ring structure, previously sketched, definitively emerges; an entire rim completely
constituted by medium and high resistant epigenetic traits bounds indeed the tumour
mass.

The eco-evolutionary indices that we are considering, the average epigenetic
trait, Equation (4.2.14), and the radiosensitivity index, Equation (4.2.6), are able to
reveal additional interesting information. Looking at the average epigenetic trait
evolution, the interaction with a harsh environment strongly forces the hypoxia-
resistance development trend. The epigenetic shift that is observed rapidly converges
towards resistant epigenetic traits in the class of medium and high resistant cells,
and thus, the mass is constituted in a higher percentage by these cellular subtypes.
Its profile moreover highlights: i) the strength of the selective bottleneck induced
by the action of the treatment that provides a further shift towards an increasing
radio-resistance and ii) the effect of reoxygenation on radiosensivity of the mass as
confirmed by the deflection in the immediate time window after the treatment. The
last information could be exploited from the therapeutic point of view, being a mass
sensible to proliferation targeting approaches. In the same vein, the evolution of the
radiosensitivity index shows a decreasing profile during the entire time window of
observation. This sharp trend is due to the harsh environment in terms of oxygenation:
Hypoxia, already by itself, constitutes a valid element to decrease the radiosensitivity
of the mass, which is affected by oxygen deprivation also in an indirect way via the
selection of resistant epigenetic traits. Notably, the radiosensitivity index suggests
that this specific protocol could not be the best therapeutic choice; indeed, in the
current condition, it acts as a further bottleneck that forces the tumour to be more
insensible to the treatment, as highlighted by the deflection that can be observed in
the time-window of intervention. Moreover, the radiosensitivity index shows more
irregular dynamics with respect to the previous case, coherently with the fact that, in
this case, the radiotherapy response is guided by both the oxygenation levels and its
epigenetic characterisation.

To summarise, a comparison of the dynamics is plotted in Fig. 4.3; bold and thin
lines refer respectively to low and high-oxygenated microenvironments. Interestingly,
our results suggest that nominal tumour size alone is insufficient to predict growth
dynamics and that personalised indices are needed to define an efficient therapeutic
plan. In fact, the time evolution of the total cell counts, panel (A) of Fig. 4.3, reveals
how two patients with a similar tumour volume could have a distinct tumour–host
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Fig. 4.3 Comparison between case 1 and case 2. The figure shows an overlap of (A), (B),
and (C) plots presented in Fig. 4.1 and Fig. 4.2). The time axis has been rescaled so that
time zero coincides with the beginning of the therapy for both experiments, and plots are
zoomed around it. Caption and Figure from Ref. [111].

co-evolution history, which results in different responses to the same radiotherapy
protocol, coherently with the clinically observed inter-patient variability in terms
of therapy response. Furthermore, a particular behaviour is highlighted: tumour
volumes close to their carrying capacity (the maximum tumour extension that can
be reached with respect to the available resources) result in being less sensitive to
radiation-induced damage (low oxygen case); on the other hand, tumours far from
their carrying capacity are instead more sensitive to the radiation (high oxygen case).
In this light, our results are interestingly in line with the ones presented in Ref.
[363], in which a patient-specific index, named the Proliferation Saturation Index
(PSI), estimated on patient data, is introduced as a predictive tool of the radiotherapy
response. In their work, the authors hypothesise that tumours characterised by a high
PSI, i.e. close to their carrying capacity, are composed of only a small proportion of
proliferating cells highly sensitive to radiation-induced damage; thus, a less effective
therapeutic impact could be expected. Our results confirm this hypothesis, further
revealing the dynamics that determine the differences in tumour composition as a
result of the heterogeneity from patient to patient in the tumour microenvironment.
In this respect, see panel (B) of Fig. 4.3, our findings moreover suggest that even if
the restoring oxygenation is, in percentage terms, the same in the two cases (close
to the 25%), a completely different dynamics is observed. Indeed, in the first case
(high oxygen level), looking at the in-time evolution of the radiosensitivity ᾱ in
panel (C) of Fig. 4.3, the radio-induced reoxygenation is sufficient to prompt the
mass towards a higher sensibility to the treatment; at the contrary, in the case of low
oxygenation, a degenerating dynamics towards a more resistant mass is observed,
even in presence of higher quantity of available oxygen. In this view, our approach
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enriches the number of information that can be harvested, providing a platform that
targets both the microenvironment and the epigenetic characteristics of the mass.
Therefore, it can potentially used to make predictions based on the state of the mass
once discovered and to guide the protocol choice.

4.3.3 Dose painting

In conventional clinical practice, most patients treated with radiotherapy receive a
similar dose and fractionation scheme. In particular, at present, the same radiation
dose is delivered to all subregions of the tumour volume, regardless of their individual
biology and radiosensitivity. As shown, oxygen concentration can greatly modify the
patient response; in this light, new treatment modalities such as Intensity-Modulated
Radiotherapy (IMRT) have emerged, aiming to modulate the delivered dose over
small volumes that are distinguished with respect to the oxygenation level, see e.g.
Ref. [290, 49]. This customisation of radiotherapy, based on spatial information
drawn from hypoxia imaging, is generally known as dose painting and, in principle,
it consists of the delivery of selective boosting dose to radio-resistant regions [206].
However, to fully exploit the strength of these new techniques, information on
hypoxia levels needs to be coupled with knowledge of tumour composition in terms
of therapy resistance that, as mentioned, strongly impacts treatment efficacy. Thus,
detailed information about the internal structure of the tumour in terms of epigenetic
traits and phenotypes is required to define the best radiation dosimetry plan.

In these veins, we handle our modelling approach to investigate the dose-efficacy
relationship with dose escalation to suggest the optimal total dosage while reducing
treatment-induced toxicity; specifically, our aim is to explore how a different pre-
scription of radiation in regions characterised by higher hypoxia may or may not
affect the success of treatment. To do this, we compare our previous results with two
additional radiotherapy protocols that differ from the previous one in terms of the
total radiation dose administered; in particular, we study the effect of a lower and a
higher dosage compared to the previous case (46 total Gy and 74 total Gy vs. 60 Gy,
respectively) while maintaining once-daily administration from Monday to Friday
for 6 weeks. Fig. 4.4 shows a representative indication of the differences in efficacy
for the three different scenarios in relation to tumour microenvironment oxygenation
and epigenetic composition of the mass.
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Fig. 4.4 Normalised radiotherapy effectiveness depending on the epigenetic trait (x-axis) and
oxygen density (y-axis) in the cases of a total dose of 46, 60, 74 Gy. Caption and Figure
from Ref. [111].

The results of the experiment in terms of repopulation, reoxygenation, and
radiosensitivity are shown in Fig. 4.5: the first row (FV) refers to the case of high
oxygenation, while the second row (HV) refers to the case of low oxygenation. The
colour code indicates that lighter colours correspond to higher total doses. As we
can see in both cases, the effectiveness of the treatment is strictly dependent on the
dose administered. In fact, higher doses correspond to smaller portions of the tumour
that can survive, although, as previously mentioned, it is observed that, at the same
dosage, radiation therapy is less efficient in the case of low oxygenation compared to
panels (A-FV) and (A-HV) of Fig. 4.5.

Regarding reoxygenation phenomenon, both panels (B-FV) and (B-HV) of Fig.
4.5 reveal that, in both low and high hypoxia case, the higher the dosage, the more
effective is the tissue reoxygenation. In the case of high oxygenated tissues, the
epigenetic composition that characterises a mass under this condition, shown in
panel (D) of Fig. 4.1, is mainly composed by proliferating cells at the time of
treatment administration; therefore, as expected, a lower dosage of radiotherapy
implies a lower percentage of destruction of highly sensitive cells. Comparing
the two cases with different oxygenation (FV) and (HV), the different speeds at
which the tissue reoxygenates in all three tested dosages are consistent with the
selection phenomenon mentioned above. We indeed expect that, as indicated by
the radiosensitivity index and by the average epigenetic composition in the case of
low oxygenation (shown in plots (C-FV) and (C-HV) of Fig. 4.5, there will be a
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Fig. 4.5 Simulation of tumour mass, growing starting from the centre of the domain, with
oxygen provided by the full vessel layout ϒFV (first row) and half vessel layout ϒHV (second
row). In each row, plot descriptions follow Figure4.1 caption. Different colours depict
experiments in which different total amounts of radiation are used (46, 60 and 74 Gy as
indicated in legends). Caption and Figure from Ref. [111].

smaller portion of radiosensitive cells, therefore a smaller portion of cells killed and
consequently a slower reoxygenation, due to higher oxygen consumption.

The dynamics revealed by the model in terms of radiosensitivity and epigenetic
composition of the mass, as a function of the dose amount, are interesting from a
therapeutic point of view. Indeed, looking at the results shown in panel (C) of Fig.
4.5, in the presence of high oxygenation, it is strongly visible how radiotherapy
acts as an evolutionary bottleneck: the higher the selective pressure exerted by its
administration (higher dosage corresponds to higher selective pressure), the more
the mass is pushed to develop radio-resistance, even in the presence of complete
reoxygenation. In fact, at the highest radiation dosage, a more marked epigenetic
shift (light blue curve) and a more rapid decrease in the radiosensitivity of the mass
(pink curve) are observed, panel (C) of Fig. 4.3. In particular, the latter profile reveals
how, under oxygenation conditions that do not strongly affect the effectiveness of
therapy, the heterogeneity of the mass plays a crucial role in the development of
treatment resistance. It is indeed observed how the selection of progressively more
resistant epigenetic traits leads to a drastic and increasingly evident decrease in
radiosensitivity as the treatment is iteratively applied.
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In the same veins, the dynamics observed in the case of low oxygenation are
even more interesting in terms of dose painting. As we can indeed see, the selective
pressure exerted by the treatment is less evident; in fact, variations of lower intensity
with respect to the previous case are observed as the dosage increases in terms of
both radiosensitivity and epigenetic firmness (pink and light blue curve, respectively
of panels (C-FV) and (C-HV) of Fig. 4.3). This is particularly fascinating in terms
of potentially heterogeneous radiation delivery; the predictions reveal, indeed, a
greater reduction in mass for higher doses but, at the same time, not an equally
large variation in terms of composition and radiosensitivity compared to those
observed at lower doses. This supports the idea of targeting hypoxic areas with
higher doses since no stronger selection with respect to treatment resistance is
observed. In this view, we hypothesise that the sensibility of the model in describing
these dynamics potentially lays the groundwork to investigate, via this modelling
approach, different administration scenarios in the case of, for example, innovative
techniques as Stereotactic Body Radiation Therapy (SBRT) in which a small number
of high doses of radiation are delivered to a target volume using highly accurate
equipment in order to maximise cancer control, while minimising side effects on
healthy tissues, see, e.g. [292].

4.3.4 Heterogeneous vasculature

In this last experiment, we focus on a heterogeneous vasculature, considering three
blood vessels in the υ3V configuration. With such a blood vessels layout, the most
oxygenated areas are concentrated at the ends of the domain antibisector, leaving
a condition of low oxygenation between them and along the bisector (see plots (D)
of Fig. 4.6 where the optimal oxygenation areas are outlined). Thus, keeping the
starting point of the tumour unchanged at the centre of the domain, the optimal trait,
determined by the initial condition of the oxygen, is in the high epigenetic band.
Consequently, our tumour is initially characterised by a low reproductive rate and
a high resistance; thus, at the beginning of the simulation, the average epigenetic
trait is very high, see plot (C) of Fig. 4.6. Then, in the first phase, there is a slow
decrease due to the fact that the tumour remains in areas where the low oxygenation
selects high epigenetic traits and slows down cell reproduction. However, when the
tumour reaches areas of high oxygenation, the selection of low epigenetic traits leads
to a clear decrease in the medium epigenetic trait. This dynamic is confirmed (in
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Fig. 4.6 Simulation of tumour mass, growing from the centre of the domain, with oxygen
provided by the three vessel layout ϒ3V . Plot description as in caption of Fig. 4.1. Caption
and Figure from Ref. [111].

the same plot) by the fact that this steep descent corresponds to a rapid increase
in the mean radiosensitivity. The small decrease in tumour oxygenation due to
consumption, plot (B) of Fig. 4.6, has little impact compared to the clear change in
the average epigenetic trait due to the higher oxygenation of the local environmental
conditions. Consistently, plot (A) of Fig. 4.6 shows a slow initial growth of the
population size. Then, when therapy is applied, despite an initial high mortality rate
due to radiotherapy, its effectiveness decreases significantly in the second phase of
administration, see plot (A) of Fig. 4.6. On the one hand, in this experiment, the total
oxygen level has no significant variations, and reoxygenation fails to substantially
influence and enhance the outcome of the therapy. On the contrary, the low level of
oxygenation in the central area of the domain maintains an important effect both of
direct reduction of the therapeutic efficacy in this area and of selection of treatment-
resistant epigenetic traits, plot (D)-PR of Fig. 4.6. Thus, therapy speeds up and
assists the same dynamic that occurs due to environmental selection.
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Analysing the temporal phases of each epigenetic band, plots (D) and (E) of Fig.
4.6, it is clear how the overlap of selective dynamics and therapy can modify the
conformation of the tumour mass. In fact, comparing the first and last image, which
refer to the moment of diagnosis (DG column) and to the moment of relapse (RP
column), while The tumour is the same size in terms of numerosity, but it shows
many differences from the point of view of the shape and of the composition. Indeed,
in the first phase (until diagnosis time), the high epigenetic band has the selective
fitness advantage (except the area in the lower right corner), but it suffers from the
proliferative dominance of lower epigenetic signatures. During therapy, the overlap
of therapeutic resistance and environmental selection gives the high epigenetic band
an advantage, which is largely maintained in the repopulation phase, with the only
exception of the lower right corner, where the fitness of the low epigenetic band
promotes an accumulation of highly proliferative cells, plot (E)-RP of Fig. 4.6. When
the relapse occurs, from an epigenetic composition point of view, Low epigenetic
band cells maintained their unaltered ratio with respect to the total mass near the
corner but were almost absent at the centre of the domain, which is different from
the previous times.

The above results highlight how a heterogeneous vasculature may lead to pro-
found differences between the epigenetic composition of the tumour and its geometric
characterisation at the time of diagnosis and relapse. In conclusion, this experiment
therefore shows the deep impact of therapy on the environment and on the charac-
teristics of the tumour, and it highlights, even more than the previous experiments,
the potential of the model as a basis for therapeutic optimisation strategies based on
knowledge and predictive ability of the development of the mass.

4.4 Conclusions and future perspectives

In this work, we presented a mathematical approach to explore how low oxygen
levels and hypoxia-associated tumour cell adaptions affect radiotherapy efficiency in
the specific case of solid tumours. Specifically, we compared the effect of tumour
microenvironment in the case of efficient or inefficient tumour vasculature, evaluating
(i) how it can influence the heterogeneity in terms of proliferative potential of tumour
cells and (ii) how its evolution could strongly influence the treatment success. The
rationale of the work was (i) to identify the tumour regions composed of cells with
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low proliferative rates that are intrinsically more resistant to radiotherapy action,
(ii) to study the consequences of the treatment in influencing their geometrical
characterisation and (iii) to investigate if and how they can be potentially separately
treated to maximise the tumour response, in a dose painting perspective [206].

The results show how the proposed approach is, first of all, able to reproduce
the biological effect of irradiation as the result of both the total dose delivered and
the physiological conditions in which it is applied. Moreover, the findings support
the ability of the model to show specific eco-evolutionary features of different
tumour masses, making predictions based on conditions that can widely range
between patients. Specifically, our tool suggests how three of the 6R that characterize
tumour response after radiotherapy administration, repopulation, reoxygenation
and radiosensitivity, could display different dynamics in dependence on tumour
oxygenation and the consequent distinct tumour-host interaction [376]. In summary,
the model keeps two relevant dynamics from a clinical point of view. Firstly,
coherently with the clinically observed inter-patient variability in terms of therapy
response, the nominal tumour size alone is insufficient to predict growth dynamics
and personalised indices are needed to define an efficient therapeutic plan. In this
respect, the model results suggest that two patients that present a similar tumour
volume could have a distinct tumour–host co-evolution history, which results in
different responses to the same radiotherapy protocol [363]. In this respect, in the two
cases analysed, the in-time evolution of the radiosensitivity of the mass is significantly
distinct, guided by both the different radio-induced reoxygenation and epigenetic
composition. Our predictions show indeed that, in the case of high oxygenation,
reoxygenation is sufficient to prompt the mass towards a higher sensibility to the
treatment; on the contrary, in the case of low oxygenation, a degenerating dynamics
towards a more resistant mass can be observed, even in the presence of a higher
quantity of available oxygen, highlighting the central role of epigenetic heterogeneity
in tumour therapy response. Secondly, to maximise the effect of the treatment in
terms of a balance between the portion killed and the selective bottleneck induced,
the choice of dose administration turns out to be necessary in relation to tumour
oxygenation. The model results suggest indeed that, under oxygenation conditions
that do not strongly affect the effectiveness of therapy, the heterogeneity of the
mass plays a crucial role in the development of treatment resistance; at the highest
radiation dosage, a marked epigenetic shift towards resistant epigenetic traits and
a rapid decrease in the radiosensitivity of the mass are indeed observed. On the



4.4 Conclusions and future perspectives 151

contrary, in strongly hypoxic conditions, the predictions reveal a greater reduction
in mass for higher doses but, at the same time, not an equally large variation in
terms of composition and radiosensitivity compared to those observed at lower doses,
supporting the idea of dose painting, which consists in delivery selective boosting
dose to radio-resistant (in this specific case hypoxic) regions.

Supported by the results, we speculate that the sensibility of the model in catching
these dynamics potentially paves the way to investigate, via this modelling approach,
different administration scenarios in the case of, for example, innovative techniques
such as Stereotactic Body Radiation Therapy (SBRT) in which a small number
of high doses of radiation are delivered to a target volume using highly accurate
equipment in order to maximise cancer control [206]. As natural evolution, future
studies will focus on the model outcomes varying the total dosage, the target regions
but additionally the fractionation scheme. There is indeed biological evidence that
alternative radiation fractionation protocols sometimes improve the outcome while
worsening in other cases; altered schemes, such as hyperfractionation, accelerated
fractionation and hypofractionation, have been suggested as alternatives for certain
indications [277, 427]. This, in addition to the results already shown, potentially
allows us to exploit our tool to investigate possible therapeutic strategies to optimise
the radiotherapy outcome in light of the epigenetic and geometric inhomogeneities,
considering the inter-patient variability experimentally observed.



Chapter 5

Novel heterogeneity-based hybrid
modelling approach for EMT in
tumours

5.1 Introduction

Tumour masses are only an example of a vast set of biological systems composed
of cells that are heterogeneous for genotype and phenotype. This heterogeneity is
usually a time-evolving phenomenon which depends on the response to internal or
external stimuli. As stated in Chapter 2, a variety of modelling strategies exists,
and the need to represent a specific biological process make it necessary the choice
and development of specific mathematical structures in order to optimise the quality
of the description. The aim of this chapter is to introduce a modelling setting in
which cells have a distinct mathematical description according to their genotype and
phenotype so that their dynamics can be affected by both.

To do that, it is important to clarify the biological understanding of the concept
of genotype and phenotype. Genotype can be considered as the determinant for cell
potential, like a code that determines what a cell can do. Phenotype, on the other
hand, can be seen as the actual behaviour of the cell in the range of its possibility
according to its genotype. In this light, we can think of making the following
assumption.
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• Cells can have different behaviour, and every behaviour has an optimal mathe-
matical representation.

• The behaviour is induced by external pressure.

• Within the same behaviour, the cell performance is regulated by its potential.

In order to take these aspects into account, we here propose a modelling frame-
work in which a specific mathematical representation (i.e., individual/pointwise
vs. collective/density-based) is assigned to each individual based on its phenotypic
hallmarks, while a discrete structuring variable distinguishes cells according to their
genotype. In order to reproduce phenotypic plasticity, switches between mathemati-
cal representations have to be made possible. The spatial distribution of the mass of
a single cell is provided via the definition of a bubble function. The role played by
stochasticity and environmental conditions is included as a driver for these pheno-
typic (and thus modelling) transitions. The proposed modelling environment is then
enriched with the inclusion of further cell behaviour, such as migratory dynamics
and duplication/apoptotic processes, as well as with chemical kinetics.
After having set this resulting multi-scale hybrid approach in a generic biological
context, we pass to a direct application to the scenario of a heterogeneous tumour
aggregate cultured in vitro. More in detail, we use this formulation to catch the
reversible transition between epithelial and mesenchymal phenotype. Contents of
this chapter are published in Ref. [110].

5.2 The modelling strategy

We propose a theoretical and computational approach to characterise cells both at
the genotypic and phenotypic levels. A discrete trait variable structures the cell
population based on individual genetic makeup, where each value corresponds to a
specific gene sequence. A mathematical representation is employed to distinguish
cells by their phenotype or effective behaviour, utilizing either a discrete or continu-
ous approach, depending on the phenotype’s nature. Cells with a specific phenotype
are represented by a set of particles, while a continuous density function depicts
those with an alternative phenotype.

The connection between a cell phenotype and its mathematical representation
is established based on plausible biological reasoning. A pointwise description is
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deemed more fitting for specialised, activated, highly metabolic cells or those with
mesenchymal characteristics, displaying individual directional movement in response
to environmental cues. Conversely, a density-based representation, offering lower
individual detail, is better suited for non-specialised, quiescent, poorly metabolic cell
ensembles or those with epithelial characteristics, engaging in collective dynamics
primarily guided by intercellular communication. See that, even if it could seem
counterintuitive, proliferative dynamics usually characterise epithelial cells, but these
do not need individual precision, so a continuous modelling approach, in which
divisions can be caught as a cell density increases, is suitable.

In our model, the “discrete vs. continuous" dichotomy is not referred to the
spatial scale at which the system is modeled (i.e., “microscopic vs. macroscopic”)
as in the classical approaches introduced in Chapter 2; rather it is employed to
differentiate cell behavior.
As previously introduced, the transition between mathematical formulations is made
possible by defining a bubble function that represents a plausible spatial distribution
of the mass of a single individual. This strategy was firstly proposed in Ref. [122,
392] and can be considered as the mathematical mean to allow the representation
of phenotypic plasticity, defined as the genotype-independent ability of cells to
switch back and forth among multiple phenotypes [229]. Specifically, we posit that
environmental signals, contingent on cell genetic traits and subject to randomness,
instigate phenotypic conversions. The incorporation of this stochastic element
constitutes a notable departure from prior works [122, 392]. While some models
acknowledge the potential for cells to undergo phenotype evolution, as seen in
individual-based/cellular automata models like the Cellular Potts Model [393], our
approach introduces a distinctive feature: the discrete setting governs cell dynamics,
and variations in mathematical representation accompany phenotypic changes.

Other methods employ a hybrid approach, utilizing discrete populations to de-
scribe distinct phenotypes Ref. [30]. However, in contrast to our modelling strategy,
they employ a discrete setting for cell dynamics and a continuous description for
microenvironmental dynamics, such as oxygen or the extracellular matrix; these
models rely on a discrete setting for all cell dynamics.

Continuous cell description models, within the framework of the Theory of Mix-
tures, often associate each subpopulation with a distinct density function. Phenotypic
conversions are implemented through mass-exchanging terms in the evolution equa-
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tions for cell dynamics, as demonstrated in Ref. [199, 448]. For a comprehensive
review of mathematical approaches addressing cell plasticity in tumour growth, we
direct readers to [446].

Structured population models, where the trait variable pertains to behavioural
determinants rather than cell genotype, often introduce random phenotypic transi-
tions through a diffusion term on the trait domain, as exemplified in[175, 300, 301].
Nevertheless, these transitions do not entail variations in the mathematical represen-
tation of cells, a novel aspect introduced in the previously cited works [122, 392],
and extended in our model to include genetic traits and probabilistic elements. Our
model is further enhanced with cell migratory and growth dynamics, contingent on
cell genotype and phenotype.

5.3 Applicative potential of the model

The presented modelling approach adeptly captures and depicts the genetic and phe-
notypic diversity within a given cell system, along with key mechanisms governing
phenotypic adaptability. Its versatility allows for a broad range of applications, as
the dynamics of cell aggregates, ranging from small clusters to large populations,
are inherently shaped by cooperative interactions among individuals with variations
both at the DNA and protein levels.

For instance, in collective cell movement scenarios, a minority of specialised
individuals capable of sensing environmental chemical signals often act as guiding
entities for the entire system. In contrast, the remaining components displace pas-
sively due to adhesion forces, as seen in processes like angiogenesis [232, 263]. In
angiogenesis, a small subset of endothelial cells within pre-existing vessels adopts
a leader/tip phenotype, serving as migratory cues for neighbouring cells exhibiting
a follower/stalk behaviour [64]. We recall tha these mechanisms are initiated by
diffusing growth factors (e.g., vascular endothelial growth factor - VEGF, hepato-
cyte growth factors - HGF) and are mediated through well-established Delta-Notch
signalling pathways [291, 447].

Likewise, in the process of skin healing following an injury, the cells situated
at the leading edge of the epidermal monolayers invading the wounded area exhibit
actin-rich lamellipodia and pseudopodia, facilitating active movement. These cells
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can synthesise a new basement membrane. In contrast, individuals located at the
rear regions undergo passive displacement, primarily driven by cell-cell adhesive
interactions.

Cell heterogeneity is evident in pathological conditions, such as tumour growth.
Varied gene sequences and phenotypic determinants have been identified in indi-
viduals with various diseases, including breast cancer [9], colorectal cancer [343],
brain cancer [406], and prostate cancer [120]. Intriguingly, even within the same
tumour mass, malignant cells with identical genetic alterations exhibit diverse be-
haviours [313]. Cancer cells demonstrate the ability to transition between alternative
phenotypic states either spontaneously or in response to environmental cues. For
instance, under nutrient deprivation, malignant cells activate pathways leading to
a shift toward more aggressive behaviour. During this epithelial-to-mesenchymal
transition, cells lose epithelial traits, such as high adhesiveness and duplication
capacity, and acquire mesenchymal features, including enhanced motility, enabling
more effective tissue invasion. EMT is not limited to pathological scenarios; it is
also involved in physiological processes such as morphogenesis and organogenesis.
Conversely, tumour cells with mesenchymal characteristics can revert to an epithelial
state, expressing junctional proteins, in response to sufficient environmental sub-
strates [337]. Phenotypic differentiation and conversions among genetically identical
tumour cells contribute to disease survival, adaptation to therapeutic regimes, and
subsequent genetic evolution [382, 433, 73, 324].

5.4 Proposed approach and representative simulation

We are interested in modelling the evolution of an aggregate of cells in a time
range T = [0, tF]⊂ R+

0 (we denote t the time variable). We consider a closed two-
dimensional domain D ⊂ R2 that may reproduce a planar section of an in vivo tissue
or the surface of a Petri dish. Characterisation of the space setting can be given when
inserting the relative specific dynamics.

Fig. 5.1 (A) sketches the differentiation of the cells composing the system
according to the two previously introduced determinants:

• their genotype, by the use of a discrete trait variable u;

• their phenotype, by the use of different mathematical representations.
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Our approach operates under the assumption that there is not a deterministic or
necessary connection between a cell’s genetic traits and its phenotype. The phenotype
is determined at the protein level, influenced by effective gene transcription and
expression levels, which can be subject to stochasticity and external stimuli or
conditions (referred to as the surrounding ecology).

The variable u is designed to take on a specified number of values, denoted as K,
meaning u ∈U = uk

Kk = 1. In this context, the particular state uk̂ represents the cell
clone identified by the k̂-th genetic composition, i.e., the k̂-th gene sequence.

We then consider two distinct cell phenotypes, labelled as "A" and "B", and assign
each of them to a unique mathematical representation, as proposed in Ref. [122, 392].
Specifically, for a given cell variant with genotypic trait uk̂ ∈U , individuals exhibiting
phenotype A are characterised by a discrete representation: they are represented
as dimensionless points with concentrated unitary mass and are identified by their
specific spatial position (refer to panel (A) in Fig. 5.1). This subgroup of agents can
be gathered in the following set:

XXXA
uk̂
(t) =

{
xxx1,uk̂

(t), . . . ,xxxNA
uk̂
(t),uk̂

(t)
}
, (5.4.1)

with xxxi,uk̂(t) ∈ D, where i = 1, ...,NAuk̂(t), and NAuk̂(t) represents the number
of cells with phenotype A and genotype uk̂ at time t. The total count of individuals
with phenotype A within the entire population can be calculated as

NA(t) =
K

∑
k=1

NA
uk
(t). (5.4.2)

The rest of the cell clone with the k̂-th genetic trait is instead marked by phenotype
B and is collectively represented by the number density function aB(t,yyy,uk̂) : T ×D×
U 7→ R+

0 (depicted in Fig. 5.1 (A)). The local count of individuals with phenotype B
can then be determined as

ρ
B(t,yyy) =

K

∑
k=1

aB(t,yyy,uk). (5.4.3)

In this context, aB(t,yyy, ·) can be understood as the local distribution of cells with
phenotype B in the genotype space U . The total number of agents with phenotype B
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currently within the entire domain D can be approximated by integrating ρB across
the spatial variable and rounding down the obtained value:

NB(t) =
⌊∫

D
ρ

B(t,yyy)dyyy
⌋
. (5.4.4)

The total number of cells composing the aggregate at any given time t is given
by N(t) = NA(t)+NB(t).

For the sake of completeness, some remarks must be provided on the above-
proposed modelling framework:

• The correspondence between various cell genetic make-ups and the respective
values of the variable u is arbitrary.

• The correlation between a cell phenotype and its corresponding mathematical
representation is guided by biological considerations, as detailed before.

• In theory, our approach has the potential to incorporate more than two cell
phenotypes. This extension would necessitate the use of hybrid mathematical
representations capable of combining microscopic granularity within a macro-
scopic/continuous portrayal of the system. Such an incorporation could be
achieved, for example, by employing tools from Measure Theory [123, 121].

• The proposed modelling framework is currently hybrid but not multi-scale.
This indicates that different mathematical entities (e.g., material points and
number densities) coexist but represent biological elements at the same spatial
scale—distinct types of cells.

Modelling cell phenotypic plasticity. In a wide range of biological phenomena, cells
are able to change phenotype while maintaining their genetic makeup, i.e., to vary
the expression level of one or more of their genes. To reproduce this phenomenon in
our modelling framework, we need to set up a procedure to switch between the two
cell descriptive instances. It is indeed necessary to define a proper correspondence
between the pointwise and the density-based representation of a single cell. In
this respect, we use the approach of Ref. [122, 392] and we introduce a function
ϕxxx(yyy) : D×D 7→ R+

0 such that: ∫
D

ϕxxx(yyy)dyyy = 1. (5.4.5)
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Fig. 5.1 (A) In our modelling environment, each cell is characterised by a discrete structuring
variable u ∈U , catching its genotype, and by a specific mathematical representation deter-
mined by its phenotype. In particular, we only consider two alternative individual phenotypes,
which are set to correspond either to a pointwise or to a density-based descriptive instance.
(B) For representative purposes, 2-dimensional and 3-dimensional plots of the bubble func-
tion centred in xxx = (0,0), i.e., ϕ(0,0) (cf. Equation ((5.4.6))). We recall that the radius r
of the round support of ϕ is constantly taken equal to 15 µm. (C) We here set that cell
dynamics such as growth, migration, and phenotypic switches are affected both by individual
genetic trait and by variations in environmental (i.e., ecological) conditions. Stochasticity
plays a role as well. In particular, A-to-B phenotypic transition of the generic cell i with
genotype uk̂ is implemented by the removal of the material point located in xxxi,uk̂

and the
simultaneous addition of the corresponding bubble function ϕxxxi,uk̂

to the mass distribution
aB(·, ·,uk̂). Conversely, a B-to-A phenotypic switch, stimulated in the domain point xxxs and
involving the cell variant with genotype uk̂, amounts in the local creation of a new material
point xxxNA

uk̂
(t)+1,uk̂

and in the simultaneous removal of the bubble function ϕxxxs to the mass

distribution aB(·, ·,uk̂).

ϕxxx approximates the spatial distribution of a cell whose centre is located in xxx ∈ D.
In principle, there exist several possible options to explicit ϕxxx(yyy). However, in
accordance with Ref. [122, 392], we hereafter use the following bubble function,
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which assumes a greater amount of cell mass around xxx, as shown in Fig. 5.1 (B):

ϕxxx(yyy) =


4

πr8 (r
2 −|yyy− xxx|2)3, if |yyy− xxx| ≤ r;

0, otherwise.
(5.4.6)

In Equation ((5.4.6)), | · | identifies the Euclidean norm while r is set to approximate
a mean cell radius: hereafter, it will have a value of 15 µm.

Let us now assume that, at a certain time t, the i-th cell with phenotype A
and genotype uk̂ ∈ U undergoes a transition to phenotype B. From a biological
perspective, this may be the result of environmental stimuli (triggered by chemical
signals or by intercellular communication) or of the fact that the individual i is
able to maintain phenotype A only for a limited period of time (e.g., due to high
metabolic costs). The proposed A-to-B phenotypic switch can be then implemented
in our modelling framework by removing the material point located in xxxi,uk̂

(t) and by
simultaneously adding the equivalent mass function ϕxxxi,uk̂

(t) to the density of the cell
variant characterised by the same trait uk̂, as shown in Fig. 5.1 (C). In mathematical
terms, we indeed get the following relations:

XXXA
uk̂
(t+) = XXXA

uk̂
(t)\{xxxi,uk̂

(t)};

XXXA
uk
(t+) = XXXA

uk
(t), for all k ̸= k̂;

aB(t+,yyy,uk̂) = aB(t,yyy,uk̂)+ϕxxxi,uk̂
(t)(yyy), for all yyy ∈ D;

aB(t+,yyy,uk) = aB(t,yyy,uk), for all k ̸= k̂; and yyy ∈ D.

(5.4.7)

Finally, the remaining particles with phenotype A and genotype uk̂ are renumbered
according to the rule

xxx j,uk̂
(t+) =

 xxx j,uk̂
(t), if j < i;

xxx j−1,uk̂
(t), if j > i.

(5.4.8)

In Equations ((5.4.7)) and ((5.4.8)), as well as in the following, the notation t+ is
used to specify that, from a numerical point of view, phenotypic transitions are not si-
multaneously implemented with the other processes, e.g., cell movement, duplication,
death, that occur at the same time instant (see also Ref. [122, 392]). The generalisa-
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tion of the above procedure to more cells that actually switch from phenotype A to
phenotype B, possibly with different genotypic traits, is straightforward.

Let us then conversely assume that, at time t, an environmental stimulus that is in
principle able to trigger a transition from phenotype B to phenotype A in individuals
with the generic genotype uk̂ ∈U , is active in a given domain location, say xxxs ∈ D.
Such a switch can occur only if there is a sufficient density of the cell variant of
interest to have a localised agent placed in xxxs. In mathematical terms, this amounts
to satisfy the following local constraint:

aB(t,yyy,uk̂)≥ ϕxxxs(yyy), for all yyy ∈ D. (5.4.9)

In this case, the cell phenotypic transition from B to A (and the corresponding rep-
resentation switch) results from the removal of ϕxxxs from the distribution aB(t, ·,uk̂),
accompanied by the addition of the corresponding new element to the set XA

uk̂
(see

panel (C) in Fig. 5.1):

XXXA
uk̂
(t+) = XXXA

uk̂
(t)∪{xxxNA

uk̂
(t)+1,uk̂

(t)≡ xxxs};

XXXA
uk
(t+) = XXXA

uk
(t), for all k ̸= k̂;

aB(t+,yyy,uk̂) = aB(t,yyy,uk̂)−ϕxxxs(t)(yyy), for all yyy ∈ D;

aB(t+,yyy,uk) = aB(t,yyy,uk), for all k ̸= k̂ and yyy ∈ D.

(5.4.10)

Furthermore, the following rules are set:

• in the case of B-to-A phenotypic transitions involving the same cell clone,
e.g., with genotype uk̂, and simultaneously stimulated in two distinct domain
points xxxs1 and xxxs2 such that ϕxxxs1 and ϕxxxs2 overlap, two alternative options
are accounted for: (i) if aB(t,yyy,uk̂) ≥ ϕxxxs1(yyy)+ϕxxxs2(yyy) for any yyy ∈ D, then
both behavioral switches occur; (ii) if, otherwise, aB(t,yyy,uk̂)≥ ϕxxxs1(yyy),ϕxxxs2(yyy)
but aB(t,yyy,uk̂) < ϕxxxs1(yyy)+ϕxxxs2(yyy) for at least one domain point, then only
one transition takes place, which is randomly established. The same rule is
extended in the case of more than two phenotypic transitions with analogous
characteristics;

• B-to-A phenotypic transitions are not allowed in any domain point effectively
occupied by a pointwise agent (regardless its genotype). Coherently, only
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Fig. 5.2 Initial condition of the representative simulation, as specified by Equation ((5.4.11)).
The subpopulation with phenotype B has a radial symmetry: in particular, the cell variant
with genotype u1 is mainly located at the bulk of the cluster, the cell variant with u3 forms an
external ring, whereas the cell variant with u2 is distributed in the intermediate region. A
group of individuals with phenotype A is then dispersed around and within the distribution of
cells with phenotype B. In particular, we hereafter use light blue circles to indicate particles
with phenotype A and genotype u1, dark blue triangles to indicate particles with phenotype A
and genotype u2, and black squares to indicate particles with phenotype A and genotype u3.
Such an initial cell configuration is maintained in the case of the model application proposed
in Section 5.5.

one B-to-A phenotypic switch is allowed (and arbitrarily established) at the
same time in the same domain point. These constraints are consistent with the
observation that, in a wide range of phenomena, a cell that activates inhibits
the surrounding individuals to undergo the same process. It is the case, for
instance, of the tip cell selection and lateral inhibition mechanism controlled
by the Delta-Notch pathways during physio-pathological angiogenesis;

• simultaneous B-to-A phenotypic switches occurring at far enough spatial
regions are instead always permitted.

It is useful to remark that the rules above are somewhat arbitrary and therefore can
be in principle neglected and/or replaced by other assumptions.

Sample simulation. Before including in the proposed modelling framework more
realistic biological mechanisms and dynamics, let us propose and comment a repre-
sentative numerical realisation. It deals with a colony of cells which do not grow or
move but only undergo arbitrarily selected phenotypic transitions. In more detail,
in the spatial domain D = [−150 µm,150 µm]2, we place an aggregate whose com-
ponent individuals can have three different genetic make-ups, i.e., U = {u1,u2,u3},
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while showing the usual dycothomy in the phenotype, i.e., A and B. The initial
system configuration is then given by the following distribution of cells:

XXXA
u1
(0) =

{
xxx1,u1 = (−45,15)

}
;

XXXA
u2
(0) =

{
xxx1,u2 = (75,0); xxx2,u2 = (−45,75)

}
;

XXXA
u3
(0) =

{
xxx1,u3 = (60,75); xxx2,u3 = (90,−105); xxx3,u3 = (−105,−45)

}
;

aB(0,yyy,u1) = 3.1 mϕ exp
(
−|yyy|2

325

)
;

aB(0,yyy,u2) = 2.4 mϕ exp
(
−|yyy−25|2

325

)
;

aB(0,yyy,u3) = 1.7 mϕ exp
(
−|yyy−50|2

325

)
,

(5.4.11)
for all yyy ∈ D, being mϕ = 4/πr8 the maximum of the bubble function (cf. Equation
((5.4.6))), see Fig. 5.2. The overall number of cells at the onset of the simulation,
which remains constant in time due to the absence of duplication/death mechanisms,
amounts to:

N(0) = NA(0)+NB(0)

= [XXXA
u1
(0)]+ [XXXA

u2
(0)]+ [XXXA

u3
(0)]+

⌊∫
D

ρ
B(0,yyy)dyyy

⌋
= 6+

⌊∫
D
[aB(0,yyy,u1)+aB(0,yyy,u2)+aB(0,yyy,u3)]dyyy

⌋
= 6+188 = 194,

(5.4.12)

where [Q] indicates the cardinality of a generic set Q.

At a given time t1, an external input able to stimulate a switch from phenotype
B to phenotype A for all cell clones, regardless their genetic trait, activates in an
arbitrary set of domain points, radially disposed along the main axies: xxxs1 = (15,0),
xxxs2 = (50,0), xxxs3 = (85,0), xxxs4 = (0,15), xxxs5 = (0,50), xxxs6 = (0,85), xxxs7 = (−15,0),
xxxs8 = (−50,0), xxxs9 = (−85,0), xxxs10 = (0,15), xxxs11 = (0,−50), and xxxs12 = (0,−85),
see top panels in Fig. 5.3. In this respect:

• no transition takes place in xxxs3, xxxs6, xxxs9, and xxxs12 due to the lack of sufficient
mass density of any cell genetic variant;

• in xxxs2, xxxs5, xxxs8, xxxs11, only the subpopulation with genetic trait u3 is able
to undergoes phenotypic switch, as aB(0,yyy,u3) ≥ ϕxxxsj(yyy) for all yyy ∈ D and
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Fig. 5.3 Sample simulation showing how phenotypic switches are implemented in the
proposed modelling environment. In the left panels, we represent the evolution of the entire
aggregate of cells: in particular, we plot both the overall density of the subpopulation with
phenotype B, i.e., ρB (cf. Equation ((5.4.3))), and the set of particles with phenotype A.
Within this subgroup, the light blue circles identify cells with genotype u1, the dark blue
triangles identify cells with genotype u2, and the black squares identify cells with genotype
u3. The right panels depict the dynamics of a representative section of the domain.

sj ∈ s2, s5, s8, s11, a condition that instead is not satisfied by the distributions
of the other cell genotypes;
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• in xxxs1, xxxs4, xxxs7, xxxs10, both the cell clone with genotype u1 and the cell clone
with genotype u2 have in principle enough mass to undergo a single-cell switch
from phenotype B to phenotype A (i.e., aB(0,yyy,u1),aB(0,yyy,u2)≥ ϕxxxsj(yyy) for
all yyy ∈ D and sj ∈ s1, s4, s7, s10). However, as previously mentioned, only a
single B-to-A phenotypic switch is allowed to occur at a given time in a given
domain location: in this respect, we arbitrarily establish that in each of the
four points only the genetic variant u2 is subjected to phenotypic conversion.

The above-described dynamics are schematically visualised, in the case of a repre-
sentative domain section, in the top-right graph of Fig. 5.3. The updated system
configuration then reads as1



XXXA
u1
(t1) = XXXA

u1
(0);

XXXA
u2
(t1) = XXXA

u2
(0)∪

{
xxx3,u2 ≡ xxxs1;xxx4,u2 ≡ xxxs4;xxx5,u2 ≡ xxxs7;xxx6,u2 ≡ xxxs10

}
;

XXXA
u3
(t1) = XXXA

u3
(0)∪

{
xxx4,u3 ≡ xxxs2;xxx5,u3 ≡ xxxs5;xxx6,u3 ≡ xxxs8;xxx7,u3 ≡ xxxs11

}
;

aB(t1,yyy,u1) = aB(0,yyy,u1);

aB(t1,yyy,u2) = aB(0,yyy,u2)−ϕxxxs1(yyy)−ϕxxxs4(yyy)−ϕxxxs7(yyy)−ϕxxxs10(yyy);

aB(t1,yyy,u3) = aB(0,yyy,u3)−ϕxxxs2(yyy)−ϕxxxs5(yyy)−ϕxxxs8(yyy)−ϕxxxs11(yyy),
(5.4.13)

for all yyy ∈ D. We indeed have that N(t1) = NA(t1)+NB(t1) = 14+ 180 = 194 =

N(0).

Successively, at t2, an analogous local signal is present in the following set of
points: xxxs13 = (45,0), xxxs14 = (0,45), xxxs15 = (−45,0), and xxxs16 = (0,−45), see the
central panels in Fig. 5.3. In all cases, no phenotypic switch actually occurs. In fact,
no cell genetic variant has a sufficient amount of mass over the support of ϕxxxsj (with
j=13,14,15,16) despite the overall mass of individuals with phenotype B, measured
by ρB would be in principle high enough. In this respect, the system does not vary
with respect to ((5.4.13)).

We finally set that at time t3, the cell xxx1,u2 , located in (75, 0) from the beginning of
the observation time, is triggered to turn back to phenotype B, as shown in the bottom
panels of Fig. 5.3. The pointwise particle is indeed replaced by the corresponding

1Notation remark: since in this simulation setting cell dynamics only include phenotypic plasticity,
the differentiation between ti and t+i (for i = 1,2,3) is not necessary and therefore avoided for the
sake of simplicity.
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bubble function, which is added to the mass of the proper cell genetic variant, as

XXXA
u1
(t3) = XXXA

u1
(t2) = XXXA

u1
(t1) = XXXA

u1
(0);

XXXA
u2
(t3) = XXXA

u2
(t2)\

{
xxx1,u2

}
= XXXA

u2
(t1)\

{
xxx1,u2

}
;

XXXA
u3
(t3) = XXXA

u3
(t2) = XXXA

u3
(t1);

aB(t3,yyy,u1) = aB(t2,yyy,u1) = aB(t1,yyy,u1) = aB(0,yyy,u1);

aB(t3,yyy,u2) = aB(t2,yyy,u2)+ϕxxx1,u2
(yyy) = aB(t1,yyy,u2)+ϕxxx1,u2

(yyy);

aB(t3,yyy,u3) = aB(t2,yyy,u3) = aB(t1,yyy,u3),

(5.4.14)

for all yyy ∈ D, so that N(t3) = NA(t3)+NB(t3) = 13+ 181 = 194 = N(0). For the
sake of reader’s convenience, we recall that the element belonging to the set XXXA

u2

have to be renumbered according to ((5.4.8)).

Remark. As already discussed and sketched in Fig. 5.1 (C), a cell is stimulated to
undergo phenotyic plasticity by environmental signals, but the effective transition
depends on its genetic makeup and on the intrinsic stochasticity of the mechanism.
These aspects have not been accounted for so far, as all the proposed cell phenotypic
switches have been set to actually take place (provided a sufficient cell mass in the
case of B-to-A conversions). Such a model shortcoming is tackled in the next section,
where more realistic rules underlying variations in cell phenotype will be given.

5.5 Model application: early dynamics of an in vitro
tumour aggregate

We now apply the proposed model to one of the scenarios introduced in Section 5.2,
i.e., the tumour growth. In particular, we hereafter show how our approach can be
used to reproduce selected aspects of the early dynamics of a malignant aggregate
cultured in vitro. In the context of our interest, the trait variable u is set to assume
three values, i.e., U = {u1 = 0;u2 = 0.5;u3 = 1}, each indicating a distinct sequence
of genes. In this respect, the higher the value of u the more the corresponding
genotype is associated to cells that in principle have high migratory potential and
low proliferation capacity, see Fig. 5.4 (A).
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Fig. 5.4 (A) In the proposed application, the trait value u is set to qualitatively evaluate the
cell motility/proliferation potential. In particular, the higher the value of u, the more a tumour
individual is assigned a sequence of genes that, if expressed, enhances its migratory ability
while dropping its duplication capacity. The phenotype A, and therefore the corresponding
pointwise representation, is given to malignant cells with mesenchymal characteristics;
the phenotype B, and the corresponding density-based representation, is instead assigned
to tumour agents with epithelial hallmarks. The thickness of the vertical arrows gives a
qualitative indication of the probability that a cell with a given genotype has to undergo
one of the two phenotypic transitions. In particular, as also shown in the bottom graph of
the panel (B), cells with genotype u = u1 = 0 are more likely to acquire (or maintain) an
epithelial behaviour. In contrast, cells with genotype u = u3 = 1 are more likely to acquire
(or maintain) mesenchymal hallmarks. (B) Top plot: influence of the genetic trait of a cell
on the probability of phenotypic conversions (see Equations ((5.5.3)) and ((5.5.6))). Bottom
plot: genotypic-dependent duplication rate of malignant epithelial cells (p1, see Equation
((5.5.9))) and speed of mesenchymal individuals (v, see Equation ((5.5.13))).

The definition of the structuring variable u is indeed coherent with the “Go or
Grow” (GoG) assumption, which finds support from both the experimental [197,
198] and the theoretical literature [215]. Phenotype A, and therefore an individual
pointwise representation, is then assigned to describe tumour cells with mesenchymal
determinants (i.e., that show an effectively high invasiveness and a poor mitotic
activity). Phenotype B, as long as a collective density-based representation, is instead
assigned to malignant individuals with epithelial hallmarks (i.e., low migratory
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ability but high duplication rates). Such modelling assumptions are sketched in the
already-cited panel (A) of Fig. 5.4.

In agreement with the scheme shown in Fig. 5.1 (C), we then assume that
phenotypic transitions are:

• stimulated by variations in environmental conditions, in particular in the
availability of oxygen, whose local concentration will be given by the field
variable O(t,yyy) : T ×D 7→ R+

0 . In this respect, hypoxia has been widely
shown to boost phenotypic instability, acting as a fuel of selective pressure
that stimulates tumour cells to shift towards more aggressive (mesenchymal)
hallmarks [254]. For instance, tumour cells displaying high levels of hypoxia-
inducible factors, such as HIF-1, have been demonstrated to overexpress
genes relative to the migratory machinery and underexpress genes related
to mitotic processes, see Ref. [44] and references therein. In the case of a
sufficient amount of resources, malignant individuals have been instead shown
to maintain or recover a less invasive (epithelial) behaviour. In this respect,
cells with low levels of HIF-1 have been shown to transcript mainly genes
implicated in duplication activities [44];

• affected by the cell genetic makeup: for instance, a variant characterised by
a sequence of genes mainly relative to the migratory machinery more likely
maintains or acquires a mesenchymal behaviour (and vice versa)[380];

• subjected to randomness, which is a critical aspect in most biological phenom-
ena.

In principle, transition probabilities have to be given as random variables defined
on spatio-temporal continuous domains. However, in the perspective of numeri-
cal realisations of the proposed model, we here account only for their discretised
counterpart. According to these considerations, the probability of a cell xxxi,uk̂

(t) with
phenotype A and genotype uk̂ ∈U to undergo phenotypic transition in an interval of
time (t −∆t, t]⊂ T , being ∆t the size of the time grid (see below), is equal to:

PA→B(O(t,xxxi,uk̂
(t)),uk̂) = qA→B(O(t,xxxi,uk̂

(t))) pA→B(uk̂). (5.5.1)
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In ((5.5.1)), the first factor evaluates the environmental conditions experienced by
the i-th individual, i.e.,

qA→B(O(t,xxxi,uk̂
(t))) = H(O(t,xxxi,uk̂

(t))−OM) (5.5.2)

being

H(O(t,xxxi,uk̂
(t))−OM) =

{
1 , if O(t,xxxi,uk̂

(t))≥ OM; 0 , if O(t,xxxi,uk̂
(t))< OM

}
the Heaviside function and OM the amount of molecular substance needed by tumour
cells to remain in a normoxic condition., i.e., to avoid hypoxia. With Equation
((5.5.2)), we are assuming that mesenchymal cells experiencing oxygen deprivation
do not undergo phenotypic transitions. The second factor in ((5.5.1)) instead reads
as:

pA→B(uk̂) = (pmax
A→B − pmin

A→B)(1−uk̂)
2 + pmin

A→B. (5.5.3)

It indeed sets a quadratic dependence between the genetic makeup of the cell and its
possibility to switch phenotype. In this respect, in the case of normoxic conditions,
mesenchymal individuals with genotype u1 = 0 acquire epithelial hallmarks with a
probability equal to pmax

A→B whereas particles with genotype u3 = 1 with a probabil-
ity equal to pmin

A→B where, according to the above-explained biological arguments,
pmin

A→B < pmax
A→B, see Fig. 5.4 (B-top plot).

Conversely, considering the same time and space discretisation of the previous
case, a cell clone with genotype uk̂ and phenotype B, i.e., whose distribution is given
by the density aB(t, ·,uk̂), is set to acquire mesenchymal determinants at a certain
point xxxs ∈ D of the discretised space and in an interval of time (t −∆t, t]⊂ T with a
probability equal to

PB→A(O(t,xxxs),uk̂) = qB→A(O(t,xxxs)) pB→A(uk̂), (5.5.4)

where, recalling ((5.5.2)),

qB→A(O(t,xxxs)) = H(OM −O(t,xxxs)). (5.5.5)

The above formula implies that only hypoxic conditions can trigger epithelial-to-
mesenchymal transitions, whose probability to effectively occur also depends in this
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case by the cell genotype:

pB→A(uk̂) = (pmax
B→A − pmin

B→A)u
2
k̂ + pmin

B→A, (5.5.6)

where pmax
B→A characterises the cell clone with trait u3 = 1 and pmin

B→A the cell variant
with u1 = 0, being pmax

B→A > pmin
B→A, as plotted in the top graph of Fig. 5.4 (B).

Obviously, the B-to-A phenotypic transition actually takes place if the uk̂-th cell
variant has enough mass over the support of ϕxxxs .

Remarks. For the sake of completeness, we now give some comments on the above-
proposed modelling framework:

• as we will see in details in the section devoted to the simulation details, the
sizes of the time and space discretisation steps affect the estimate of the
parameters pmax

A→B, pmax
A→B, pmax

B→A and pmin
B→A;

• phenotypic transitions are actually employed according to the corresponding
procedures explained in the previous section;

• in the case of simultaneously possible epithelial-to-mesenchymal switches
occurring in the same domain point, it only takes place the one involving the
cell variant with the highest value of u;

• in Equations ((5.5.3)) and ((5.5.6)), we have assumed a quadratic relationship
between the value of the structuring variable u and the transition probabilities.
Different laws may of course be chosen: however, they have to maintain the
same qualitative trends of those proposed here;

• more sophisticated functions may be set also to describe the influence of
oxygen on phenotypic variations. For instance, the probability of a cell to
acquire mesenchymal determinants may increase upon decrements in the
chemical concentration below the threshold OM. One could also consider two
different oxygen thresholds OM1 < OM2 such that the phenotypic switch from
A to B occurs for oxygen concentrations above OM1 and the phenotypic switch
from B to A occurs for oxygen concentrations below OM2.

Cell dynamics. Malignant cells with epithelial determinants are here assumed to
proliferate and undergo random movement. The evolution of the density of the uk̂-th
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variant with phenotype B can be indeed described by means of the following partial
differential equation (PDE), whose boundary and initial conditions will be specified
later on:

∂aB

∂ t
(t,yyy,uk̂) = DB∆aB(t,yyy,uk̂)︸ ︷︷ ︸

diffusive movement

+ p(uk̂,ρ(t,yyy)) aB(t,yyy,uk̂)︸ ︷︷ ︸
proliferation

, (5.5.7)

where ρ(t,yyy) account for the local tumour mass (see below Equations ((5.5.11))
and ((5.5.12))). The diffusion term at the r.h.s. of Equation (5.5.7), with constant
coefficient DB > 0, models Brownian cell displacements. The reaction term instead
expresses local variations in the mass of the uk̂-th epithelial cell variant. In particular,
they are assumed to depend on (i) individual genetic traits and (ii) physical limitations
determined by the available space. In this respect, p can be factorised as it follows:

p(uk̂,ρ(t,yyy)) = p1(uk̂) p2(ρ(t,yyy)). (5.5.8)

The duplication law p1 accounts for the fact that higher proliferation rates charac-
terise cell variants with lower values of the trait variable u (that, as previously seen,
are associated to sequence of genes mainly implicated in the mitotic machinery). In
this respect, to avoid overcomplications, we assign to p1 a linear trend, see Fig. 5.4
(B-bottom plot):

p1(uk̂) = (γmax − γ
min)(1−uk̂)+ γ

min, (5.5.9)

being γmax a maximal duplication rate, characteristic of cells with genotype u =

u1 = 0, and γmin the corresponding minimal value, that is instead assigned to in-
dividuals with genotype u = u3 = 1. The factor p2 in Equation ((5.5.8)) instead
models the fact that the mitotic cycle is typically disrupted in overcompressed cells,
although abnormal proliferation is a relevant characteristic of malignant masses.
This phenomenon can be replicated by setting the following logistic law:

p2(ρ(t,yyy)) = 1− ρ(t,yyy)
c

, (5.5.10)

where c > 0 is a carrying capacity while

ρ(t,yyy) = ρ
A(t,yyy)+ρ

B(t,yyy), (5.5.11)
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being ρB defined as in Equation ((5.4.3)), and

ρ
A(t,yyy) =

3

∑
k=1

NA
uk

∑
i=1

ϕxxxi,uk (t)
(yyy). (5.5.12)

In Equation ((5.5.10)), we consider that the available space is reduced by the presence
also of mesenchymal individuals, whose influence on the overall mass distribution
can be accounted by the use of the corresponding set of bubble functions, as given in
Equation ((5.5.12)). Equation (5.5.7) is then complemented by Neumann homoge-
neous boundary conditions on the spatial domain D, which are consistent with the
fact that cells can not physically cross the border of an experimental Petri dish.

The dynamics of tumour cells with mesenchymal determinants only include a
directional movement towards domain regions with higher oxygen concentrations.
In this respect, for the i-th individual with phenotype A and generic genotype uk̂, we
set:

dxxxi,uk̂

dt
(t) =

∇O(t,xxxi,uk̂
(t))

|∇O(t,xxxi,uk̂
(t))|

v(uk̂), (5.5.13)

with v(uk̂) = (vmax−vmin)uk̂+vmin, see the bottom graph in Fig. 5.4 (B). In Equation
((5.5.13)), cell speed and direction of movement are decoupled, given their distinct
physical meaning. The former depends on the pattern of available resources, the
latter, quantified by the scalar functions v : U 7→ [vmin,vmax], is instead affected by
individual genetic makeup. In this respect, recalling that higher values of u imply
higher motile potential, vmax is the speed of cells with genotype u = u3 = 1, whereas
vmin of cells with genotype u = u1 = 0. It is finally useful to underline that Equation
((5.5.13)) is based on the overdamped force-velocity assumption: it establishes that,
in extremely viscous regimes such as biological environments, the velocity of moving
agents and not their acceleration is proportional to the sensed forces (see Ref. [393]
and references therein for a detailed comment). When a mesenchymal cancer cells
reaches a point of the border of D, the component of its velocity locally normal to
the boundary itself is arbitrarily set equal to zero.

Summing up, it is possible to conclude that, in this sample model application,
genetic traits and ecological/environmental conditions affect not only the phenotypic
transitions of the cancer cells but also their effective growth and migratory dynamics,
as sketched in panel (C) of Fig. 5.1.
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Chemical dynamics. We assume that oxygen diffuses within the domain and is
consumed equally by all tumour individuals, regardless of their genotype and pheno-
type. Its kinetics can be therefore described by the following reaction-diffusion (RD)
equation:

∂O
∂ t

(t,yyy) = DO∆O(t,yyy)︸ ︷︷ ︸
diffusion

−λO ρ(t,yyy)O(t,yyy)︸ ︷︷ ︸
consumption by

tumour cells

−αOO(t,yyy)︸ ︷︷ ︸
decay

, (5.5.14)

where DO, λO, and αO are constant coefficients, that quantify chemical diffusion,
consumption by malignant cells and natural decay, respectively, being ρ defined as in
Equation ((5.5.11)). Equation (5.5.14) is finally completed with Dirichlet conditions
along the entire domain boundary ∂D, i.e., O(t,∂D) =O, for all t ∈ T : we are indeed
assuming a continuous and constant chemical supply within our virtual Petri dish.
The initial oxygen pattern will be specified below instead. It is useful to remark that
the inclusion of chemical dynamics gives to our model a multi-scale aspect, as it now
deals with elements characteristic of both the cellular and the subcellular levels.

Numerical details. For the spatial domain D, we have employed a triangular mesh
with radial symmetry with respect to the centre point (0,0). The characteristic
diameter of each grid element has been taken equal to ∆x = 5 µm. For the time
domain T , we have used an uniform discretisation with step equal to ∆t = 1 h.

Equations (5.5.7) and ((5.5.14)), describing the dynamics of the continuous
population and of the oxygen, have been solved employing a time-explicit Euler
method coupled with a Galerkin finite-element technique. An explicit Euler method
has been also employed for the system of ODEs describing movement of pointwise
cells (cf. Equation ((5.5.13))). At any discrete time-step, phenotypic switches are
implemented (as explained in Section 5.4) just after the numerical solution of the
above-cited equation for cell dynamics.

Considering B-to-A switches, the following algorithmic rules are implemented
for each numerical node of the domain:

1. the oxygen level is checked: if it is higher than OM, then no phenotypic
transition occurs and we pass to another domain point;

2. otherwise, we check the mass of the cell subpopulation with u = u3 = 1: if it
satisfies condition (5.4.9) then a random number from the uniform distribution
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between 0 and 1 is drown. If this number is lower than the value of the
probability given in (5.5.4) and evaluated in the case of our interest, then the
phenotypic transition occurs, and we pass to another domain point (recall
that a B-to-A phenotypic transition of a given subpopulation locally inhibits
analogous processes involving other subpopulations);

3. otherwise, the same evaluations described at point (ii) are performed for the
other subpopulations in descending order with respect to u (to be coherent
with the fact that cells with higher genotypic traits u are more likely to switch
phenotype).

We keep into account that, when a B-to-A transition takes place in one point, it
affects the possibility of transition in neighboring points, as some of the continuous
mass is removed. Thus, in order to avoid biases in spatial location of B-to-A
phenotypic switches, at every iteration we randomise the order in which the points
of the numerical lattice are visited.

We then turn on considering possible A-to-B transitions, which take place in
areas with oxygen concentration above OM with probability given by (5.5.1) (using
the same drawing algorithm described above). We finally remark that the order in
which cells with phenotype A are checked for possible transitions does not affect
numerical outcomes since A-to-B transitions are independent of each other. Note
that all numerical computations have been performed in Fenics, see Ref. [20, 294].

Parameter estimate. As previously commented, the probabilities of phenotypic
transitions introduced in Equations ((5.5.1)) and ((5.5.4)) are the discretised approx-
imations of the corresponding continuous-in-time (and in-space) laws. In more
detail, the coefficient pmax

A→B (pmin
A→B, rsp.) defines the probability that the i-th cell

with genotype u = u1 = 0 (u = u3 = 1, rsp.) undergoes phenotypic transition at a
given time step, i.e., in the case of normoxic conditions. The estimation of these
values is based on the average time that a cell with mesenchymal characteristics
takes to re-acquire epithelial hallmarks; in our model we assume that it ranges from
T min

A→B = 50 h to T max
A→B = 200 h. Such quantities (poorly measured in the empirical

literature, see [7] for one of the few contributions in this respect) have been fixed
in order to have a reasonable number of phenotypic transitions in the period of
observation. By recalling that our model is based on the assumption that cells with
lower values of the trait variable are more likely undergo A-to-B transitions, we can
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indeed set
pmax

A→B =
∆t

T min
A→B

and pmin
A→B =

∆t
T max

A→B
,

so that pmax
A→B = 2×10−2, pmin

A→B = 5×10−3. The coefficients pmax,min
B→A instead give

the probability that a single-cell-fraction of mass with phenotype B and centred
in xxxs changes phenotype at a given time step when falls in hypoxic conditions. A
proper estimate can be obtained by taking into account three aspects: (i) epithelial
cells experiencing oxygen deprivation are here assumed to acquire mesenchymal
determinants in a time lapse that ranges from T min

B→A = 8.8 h to T max
B→A = 35.4 h; (ii)

in our modeling framework higher values of the genotypic variable implies more
possibility to switch towards phenotype A; and (iii) a finer spatial grid requires
a smaller transition probability for each node xxxs, otherwise an higher amount of
possible nodes of the domain in principle could allow a higher number of transitions.
Taken together, the above considerations lead to

pmax
B→A ∝ ∆t,(T min

B→A)
−1,∆x2 and pmin

B→A ∝ ∆t,(T max
B→A)

−1,∆x2.

In particular, after preliminary simulations, we have fixed pmax
B→A = 4×10−3, and

pmin
B→A = 10−3, which have allowed us to have a reasonable rate of B-to-A phenotypic

conversions.

The diffusion coefficient of epithelial cell movement, i.e., DB, has been taken
equal to 1.29×103µm2/h, as in Ref. [312]. The coefficients γmin and γmax quantify
the minimal and maximal mitotic rate of cells with phenotype B, in the case of
fully available space. The chosen values γmin = ln(2)/48 h−1 and γmax = ln(2)/24
h−1 fall within the range quantified for glioblastoma cell lines in either hypoxic or
normoxic conditions, see again Ref. [312]. The carrying capacity c has been set
equal to 1.69 cell/µm2, in order to maintain a quasi-monolayered cell configuration,
in agreement with the bi-dimensional nature of experimental cultures in a Petri dish.

Cells with phenotype A are allowed to freely move within the domain. In this
respect, the maximal value of their speed vmax, which characterise mesenchymal
individuals with trait u3 = 1 has been fixed to 10 µm/h, whereas the minimal
threshold vmin, which characterises mesenchymal individuals with trait u1 = 0, is
set to 2.5 µm/h. These parameters have been taken from Ref. [188] and assure that
the modulus of the overall cell velocity substantially falls within the range of the
corresponding experimental counterparts evaluated for different malignancies.
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Parameter Value [Units] Reference(s)

r 15 [µm] [11]

pmin
A→B 5×10−3 model estimate

pmax
A→B 2×10−2 model estimate

pmin
B→A 10−3 model estimate

pmax
B→A 4×10−3 model estimate

DB 1.29×103 [µm2/h] [312]
γmin ln(2)/48 [h−1] [312]
γmax ln(2)/24 [h−1] [312]
c 1.69 [cell/µm2] model estimate
vmin 2.5 [µm/h] [312]
vmax 10 [µm/h] [312]

DO 3.60×106 [µm2/h] [312]
λO 1.67×10−10 [µm2/(cell ·h)] model estimate
αO 3.60×10−4 [h−1] [136]
OM 2.56×10−15 [µmol/µm2] [312]

Table 5.1 Simulation parameter setting.

The chemical threshold that leads to hypoxia, i.e., OM, has been set equal to
2.56×10−15 µmol/µm2 and the diffusion coefficient of oxygen has been fixed to
DO = 3.60×106 µm2/h, and taken again from Ref. [312]. The chemical consump-
tion rate then amounts to λO = 1.67×10−10 µm2/(cell ·h): it has been empirically
measured taking into account of the proposed computational setup, in order to
have a realistic time-evolution of the molecular pattern. The oxygen decay co-
efficient has been fixed to αO = 3.60× 10−4 h−1, according to Ref. [136]. The
constant production of oxygen at the domain border, i.e., O, has been set equal to
2.8×10−15 µmol/µm2: for the reader’s convenience, we remark that this value is
1.1×OM. The final observation time tF has been instead set equal to 35 h. The
employed parameter setting is listed in Table 5.1.

Simulation results. The spatial domain D, as well as the initial configuration of the
cell system, is the same employed in the representative simulation given in Section
5.4, specified by Equations ((5.4.11)) and ((5.4.12)), and shown in Fig 5.2. At the
onset of the forthcoming numerical realisation, we indeed have a tumour aggregate
with few mesenchymal cells (heterogeneous for genotype) dispersed within and
around a cluster of malignant epithelial individuals.
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Fig. 5.5 Representative time instants of the evolution of our virtual tumour aggregate. The
initial condition of the cell system is exactly the same as in Section 5.4; see Fig. 5.2. At
the onset of the numerical realisation, the oxygen is quasi-homogenously present within the
entire domain with a level that is higher than the hypoxic threshold OM. Subsequent oxygen
consumption results in harsh conditions for malignant epithelial cells: some of them are then
able to acquire mesenchymal hallmarks (according to the genotype-dependent probabilistic
rule given in ((5.5.4))) and move towards domain regions with more availability of resources
(see top and middle panels, i.e., those relative to t = 1 and 7 h). Arrived close to the border of
our virtual Petri dish, few of them experience normoxia and recover epithelial determinants
(see the bottom panels, i.e., those relative to t = tF = 35 h). We remark that light blue circles
identify mesenchymal cells with genotype u1, dark blue triangles identify mesenchymal
cells with genotype u2, and black squares identify mesenchymal cells with genotype u3. The
same empty geometric labels instead identify mesenchymal cell variants that have undergone
the inverse, i.e., A-to-B, phenotypic transition. The arrow attached to each mesenchymal
individual identifies its velocity: its length is qualitatively proportional to the individual
genotype-dependent speed.
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In particular, the node of tumour cells with phenotype B has a radial distribution
w.r.t. the centre of the domain, with the bulk mainly constituted by the cell variant
with u1 = 0 and the external region by the cell variant with u3 = 1. The initial
oxygen concentration is instead given by the stationary solution of Equation (5.5.14),
evaluated in the absence of cancer cells (i.e., in the case only of chemical diffusion
and decay): given the low value of the decay rate αO (see above and Table 5.1), it
consists of a spatially quasi-homogeneous pattern with a chemical level approxi-
mately equal to 2.8×10−15 µmol/µm2. The initial oxygen level indeed exceeds the
hypoxic threshold OM in the entire domain.

Oxygen consumption then starts to occur at the domain area occupied by the
tumour aggregate, with the extent of local decrements obviously determined by the
density of malignant individuals. The level of chemicals at the inner part of the mass
indeed drops to the critical value OM, and an increasing number of epithelial tumour
cells (characterised by negligible motility) experiences hypoxia. Some of them are
then able to undergo phenotypic transition and acquire mesenchymal determinants,
see Fig. 5.5. This group is mainly composed of individuals with a trait value u3 = 1,
which is associated with the sequence of genes that favours (from a probabilistic
point of view) such a phenotypic switch.

The just-differentiated mesenchymal cells, as long as those already present at
the onset of the simulation, crawl towards oxygenated domain regions: in particular,
each of them moves with speed dictated by its genetic trait, as shown by the length of
the arrows attached to the particles in Fig. 5.5. The remaining fraction of epithelial
individuals is instead not able to escape harsh environmental conditions: in the case
of long-term hypoxia (e.g., long-lasting oxygen deprivation), their fate would be an
irreversible necrosis.

As the simulation proceeds, the domain region with a low chemical level enlarges:
as a result, the above-described cell dynamics take place in more peripheral areas
of the tumour aggregate and involve an increasing amount of epithelial mass. In
particular, at the end of the observation time (i.e., at t = tF = 35 hours), the cell
configuration consists of a hypoxic cluster of epithelial tissue, mainly formed by
individuals with a trait variable equal to u1 = 0. It is surrounded by scattered
mesenchymal cells, that have reached the external regions of the domain, i.e., those
with higher oxygen availability. Interestingly, few of these agents have been able
to undergo the inverse transition and reacquire epithelial hallmarks (see the bottom
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panels of Fig. 5.5). During the entire observation time, the fraction of malignant
epithelial mass goes on proliferating (cf. the variations in the values of the colorbar
in Fig. 5.5).

Our numerical results qualitatively agree with a wide range of experimental
evidence, which has shown that malignant cells with different phenotypic proper-
ties occupy tumour regions characterised by different oxygen levels. For instance,
glioblastoma spheroids cultured in vitro have the core mainly populated by cells with
a proliferative activity higher than those located at the invasive edges [3, 93, 262, 415].
Analogously, mesenchymal cancer stem cells have been found to be abundant near
the tumour-stroma boundary (i.e., at the external region of the malignant mass) [291].
Similar phenotypic spatial heterogeneity has been observed in malignant spheroids
of ovarian [77, 402] or breast [194] carcinomas grown in spinner cultures.

Similar growth of tumour masses, i.e., characterised by an inner region of poorly
motile individuals unable to escape nutrient deprivation and by an external possibly
scattered ring of aggressive cells, has also been predicted by a wide spectrum of
theoretical models, as illustrated in the comprehensive books [134, 370] and the
excellent reviews [34, 53, 80, 100, 373].

5.6 Conclusions and future perspectives

We have here proposed a modelling framework where cells are distinguished in
terms of genotype by a discrete structuring variable and in terms of phenotype by the
assigned mathematical representation (i.e., pointwise or density-based). A procedure
to consistently switch between the two descriptive instances, which is based on the
definition and the use of a bubble function, has then allowed for phenotypic plasticity
to be accounted for.

We have then presented a representative simulation to show how phenotypic
transitions actually take place within our theoretical environment, which has been
finally applied to a more realistic scenario, i.e., the early evolution of a heterogeneous
tumour aggregate hypothetically cultured in vitro. In particular, we have assumed that
malignant cells can have one of three distinct genotypes and one of two alternatives,
i.e., mesenchymal vs epithelial, behaviour. Phenotypic conversions have been set
to depend on (i) oxygenation levels, (ii) intrinsic genotype, and (iii) randomness,
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which is a novelty of this work respect to existing literature [122, 392]. The resulting
numerical realisation has captured the realistic emergence of a hypoxic core within
the tumour cluster with the consequent cell tendency to acquire a more aggressive
and invasive (i.e., mesenchymal) phenotype.

Model improvements. The proposed mathematical environment may be improved at
least in two directions.

From a strictly modelling perspective, it would be relevant to account for genetic
alterations that may be induced by cell-cell communication and changes in envi-
ronmental conditions but that are usually determined by random mutations. This
last aspect can be included in the proposed modelling environment by stochastic
variations of the value of the trait variable u assigned to one or more pointwise
individuals and/or to one or more portions of the cell mass with the density-based
representation. Furthermore, one could consider a continuous trait u that takes values
in a given interval (e.g., [0,1]). This would amount to using a structuring variable
to represent not only genetic heterogeneity (as in our model) but also epigenetic
heterogeneity: each value of u, in fact, would represent the (normalised) expression
of a gene or a group of genes (or the level of one or more proteins). In this case,
epigenetic variations in the cell population could be accounted for by including a
diffusion term in the trait domain, as done in the already cited works [175, 300, 301].

From an application perspective, our model could be extended to reproduce the
evolution of a malignant mass in vivo, i.e., to shed light on the effect of intratumoral
heterogeneity and phenotypic plasticity on the invasiveness of the disease. In this
respect, one may include the presence of both the preexisting and the tumour-induced
vasculature in the picture. As a natural extension of our model assumptions, we
would have to take into account that cancer cells in hypoxic conditions not only
shift towards more aggressive phenotypes but also secrete proangiogenic factors
that induce the formation of new blood vessels departing from existing ones [360].
In addition, our model could be developed to incorporate a more comprehensive
description of the metabolism of the different cell variants. However, to provide
consistent results of such an in vivo scenario, model parametrisation should be better
calibrated, for instance, by focusing on a specific tumour type and using proper sets
of existing data.



Chapter 6

Multiscale modelling for the impact of
Snail-mediated response to hypoxia
on tumour progression

As we have already underlined in Chapter 1, migration of tumour cells into the
normal tissue under the influence of biochemical and biophysical components of the
micro-environment is one of the hallmarks of cancer [214].

However, because of the highly complex biology at the cellular and molecular
level and in the interactions with the surrounding environment, the exact dynamics
driving cell migration are still not completely well understood. In this chapter, we
keep our interest in the invasive and proliferative dynamics of tumour cells, deepening
our biological investigation. In particular, we try to link microscopic dynamics,
using a multiscale approach, in order to include their effect in a macroscopic model.
The investigations here presented are part of joint work with Dr. Martina Conte
(Politecnico di Torino, Beckman Research Institute City of Hope National Medical
Center), whose results are collected in a paper titled "Multi-scale modelling of Snail-
mediated response to hypoxia in tumour progression" (arXiv and as Ref. [109]),
submitted in April 2024 to Communications in Nonlinear Science and Numerical
Simulation journal.



182 Snail-mediated response to hypoxia: multiscale modelling

6.1 Introduction

In the context of the interaction between tumour and its micro-environment, tissue
oxygenation is one of the prominent traits. It has been suggested that oxygen
concentration highly influences the switch between migrating and proliferating cell
behaviour, the invasiveness and aggressiveness of the tumour cells, and that the
deprivation of oxygen acts as an environmental stressor, promoting a long series of
mutations that strongly impact the tumour dynamics. It has been clinically observed
that, in solid tumours, the oxygen distribution is heterogeneous, with oxygen levels
ranging from normal to hypoxic and severe hypoxic [312].

Hypoxia has long been recognised as a contributing factor to the tumour mi-
croenvironment (TME) [107]. Not only can these induce a pronounced migratory
bias of the cells towards favourable areas, but they can even determine their phe-
notype and interaction strategies. Under hypoxic conditions, tumour cells undergo
morphological and molecular changes to adjust their behaviours and acquire the
abilities to adapt to hypoxia and escape apoptosis [386]. There are several adaptive
responses of tumour cells to hypoxia [107], which may involve the secretion of spe-
cific transcription factors, like hypoxia-inducible factor 1 (HIF-1), the upregulation
of hypoxia-inducible angiogenic factors, sustaining new vessels formation [458], or
glycolysis activation [389]. Among others, HIF-1 activation controls the expression
of Snail transcription.

The Snail superfamily of transcription factors includes Snail1, Slug, and Scratch
proteins [258]. It is well documented that Snail protein directly represses E-cadherin,
and thus, it is a key inducer of epithelial-mesenchymal transition, a biological process
defining progression from a polarised epithelial cell phenotype to a mesenchymal
phenotype [351, 226]. In addition to regulating epithelial-to-mesenchymal transition
(EMT) and cell migration, overexpression of Snail induces resistance to apoptosis
and tumour recurrence [247]. The Snail-mediated survival of epithelial cells may
thus enhance the ability of tumour cells to invade and metastasize. Overexpression
of Snail has been reported to be a sufficient inducer of EMT as well as a predictor
for an aggressive tumour phenotype. It has recently been demonstrated that Snail
expression is induced by hypoxic conditions and is regulated by HIF-1α expression
at the transcriptional level [85, 305, 233]. Up-regulation of Snail-1 correlates with
metastasis and poor prognosis, whereas silencing of Snail-1 is critical for reducing
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tumour growth and invasiveness [45]. Since such complex processes and their mutual
conditioning scenarios are difficult to assess experimentally, mathematical models
can help understand the underlying biological mechanisms, test hypotheses, and
even make predictions.

Cancer progression is a complex process involving several factors and taking
place as both an individual and a collective process. Microscopic intracellular dy-
namics, occurring at the individual level, influence the mesoscopic cell behaviour
of cells, which determines the macroscopic evolution of the cell population density.
Previous models for tumour invasion have been proposed in discrete or continuous
frameworks. The former is based on the description of individual cell dynamics
moving on a lattice [200, 420] and can involve continuous equations for the evolution
of external factors (e.g., chemoattractant concentration, the density of ECM fibres,
low pH levels) - the so-called hybrid models [241, 23, 29]. Concerning the latter,
different classes of fully continuous models for tumour cell migration have been
developed. Many of them are versions or extensions of a classical reaction-diffusion
model proposed by Murray [331], while more recent works take into account the
advection bias of tumour cells describing motility adjustment to extracellular signals.
Some of these are directly set on the macroscopic scale and rely on balance equa-
tions for mass, flux, or momentum [22, 99, 24], or on integro-differential equations
accounting for the development of specific intra-tumour structure [36, 175, 418, 112]
(see also the review in Ref. [270] for settings with multiple taxis in the larger context
of cell migration). More recently, the use of kinetic transport equations (KTEs) in
the kinetic theory of active particles (KTAP) framework has been largely applied
to the study of cell migration, in general [96, 126, 221, 302, 102, 127, 260], and
in the specific context of tumour evolution [125, 169, 75, 170, 270, 295, 464]. Ki-
netic models are intrinsically multi-scale models that characterize the dynamics of
distribution functions of densities of tumour cells which may depend, besides time
and position, on several kinetic variables, such as microscopic velocity or activity
variables. These models use Boltzmann-type equations for the cell population den-
sity and scaling arguments to derive the macroscopic setting. Among those models
[124, 128, 171, 129, 273] accounts for effects of hypoxia or hypoxia-driven acidity
on the migration and invasion process of tumour cells. Concerning the taxis terms
obtained in this class of models [124, 171, 169, 155] they are derived from the mod-
elling of subcellular dynamics for receptor binding, which leads in the mesoscopic
KTE to transport terms w.r.t. the activity variables. In Ref. [128, 273, 302], instead,
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the use of turning rates depending on the pathwise gradient of some chemotactic
signal leads to various types of taxis at the macroscopic level. Moreover, in Ref.
[102, 129, 155], forces and stress, acting on the cells and depending on the chemical
and physical composition of the environment, translates into transport terms w.r.t.
the velocity variable in the corresponding KTE. In particular, in Ref. [155], the
authors consider the flux-limited description of the transport terms. Flux limitations
have been introduced in the modelling of cell motility to reduce the infinite speed
of propagation triggered by linear diffusion and the excessive influence of the latter
on the spread of cells. Their derivation from KTEs has been provided formally
in Ref. [52] and rigorously in Ref. [356]. In both cases, the derivation is based
on an appropriate choice of the signal response function involved in the turning
operator and depending on the directional derivative of the signal. In Ref. [155],
instead, an alternative approach based on characterizing velocity dynamics at the
single-cell level is proposed. Lastly, concerning the mathematical modelling of
Snail dynamics, several works have been proposed for theoretically studying Snail’s
role in the epithelial-to-mesenchymal transition process, especially looking at the
interactions among microRNAs and transcription factors - miR-34, miR-200, Zeb,
and Snail - at the single cell level [242, 303, 425], while its connection to cellular
motility has been largely investigated.

In the KTAP framework, in the present work, we propose a multi-scale math-
ematical modelling approach for describing tumour invasion in response to tissue
hypoxia, investigating the interplay between molecular signalling pathways and cell
dynamics. The model connects single-cell behaviour driven by Snail expression with
macroscopic scale dynamics describing tumour migration in the tissue. Starting from
the approach proposed in Ref. [155], we introduce a novel description of the internal
variable dynamics for Snail expression, and we account for flux-limited operators in
the single-cell velocity dynamics. At the mesoscopic level, cell evolution is described
in terms of a classical kinetic transport equation with different formulations for the
proliferative operator. From this description, using proper up-scaling arguments, we
derive the macroscopic setting. Moreover, we numerically investigate the model’s
capability of capturing different biologically relevant scenarios concerning hypoxia
and Snail effects on cell migration and proliferation. We show how the model is
reliable in replicating different experimental results and offers new perspectives for
interpreting experimental findings.

The paper is organised as follows. Section 6.2 provides the set-up of micro-
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scopic and mesoscopic equations for the dynamics of tumour cells. Section 6.3
contains the derivation of the macroscopic equation for tumour cell density evolution,
which features flux-limited chemotaxis towards increasing oxygen concentrations
and self-diffusion, as well as a proliferation term modelling the inverse correlation
between moving and proliferating cell capability in two possible manners. In Section
6.4, four numerical tests are proposed to show both the qualitative behaviour of the
proposed model in different scenarios and its capability to qualitatively replicate
experimental data concerning the Snail impact of tumour cell migration in different
oxygen conditions. Finally, Section 6.5 provides a discussion of the main outcome
of our model, along with some perspectives.

6.2 Modelling

In this note, we propose a multi-scale model for describing tumour progression in
response to tissue hypoxia, whose influence on the cancer cells is mediated by Snail
dynamics. Following well-established literature regarding the multi-scale models for
tumour invasion [260, 169, 171, 129, 125], the model setting proposed here is built
using the classical tools and methods of kinetic theory. Our main aim is to obtain a
detailed description of the tumour cell dynamics, taking into account the effect of
microscopic signalling pathways in the mechanisms of tumour response to hypoxia.

Starting from the microscopic level of interaction between cells and oxygen,
we consider the dynamics of the Snail signalling pathway, which is involved in
the cell response to hypoxic microenvironmental conditions. Moreover, following
[155], we provide a microscopic description of velocity dynamics that depend
on oxygen and macroscopic cell density tactic gradient, and the Snail expression
influences the cell motility. Then, we set up the corresponding kinetic transport
equations (KTEs) describing the evolution of the cell distribution in relation to the
prescribed microscopic dynamics. Performing a proper model upscaling, we obtain
the equations for the statistical moments of the cell distribution. These describe
the dynamics of tumour cells, which are driven by limited diffusion and oxygen-
mediated drift, and the evolution of the average Snail expression of the tumour
population.
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6.2.1 Microscopic scale

At this level, we model the dynamics of the microscopic variable y ∈ Y, describ-
ing the expression of the Snail protein and the microscopic cell velocity v ∈ V,
both influenced by the oxygen levels. We assume oxygen to be time-independent,
i.e., O2 = O2(x) has a fixed distribution which does not evolve in time. Possible
extensions of this approach are discussed in Section 6.4.

Dynamics of Snail protein expression

Concerning Snail protein expression, we model the process of protein synthesis
from gene transcription and its regulation depending on the oxygen dynamics. Snail
proteins are transcription factors involved in the regulation of hypoxia-driven cell
migration and invasion [233, 465]. It has been shown in several different types
of human cancer that overexpression of Snail induces invasion and metastasis [62,
385, 367, 465]. The expression of Snail protein is controlled by the oxygen levels,
decreasing when the tumour mass is properly oxygenated. Relying on the description
of the temporal evolution of the total level of Snail proposed in Ref. [425], here we
model its dynamics with the following equation:

dy
dt

= gsH(y)H(O2)− γsy , (6.2.1)

where gs and γs represent the basal transcription and degradation rates, respectively,
while the functions H(·) model the transcription activation/inhibition mechanisms.
We recall here that O2 = O2(x). Generally, the functions H(G) can be described as

H(G) =
1+λG

G
G0

1+ G
G0

,

where G is a generic agent influencing the transcription and G0 is its reference value.
In particular, λG > 1 models an activation mechanism supported by the agent G,
while λG < 1 refers to an inhibition mechanism driven by G. In the case of Snail,
it has been shown that it has a self-regulatory (inhibition) mechanism [143, 304],
which we describe as

H(y) =
1

1+ y
y0

,
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with y0 maximum Snail expression.

Observation 1. The assumption λG = 0 is made to avoid overloading the model
with further parameters. However, other choices of this function can be included in
the model.

Concerning O2, it exerts an inhibitory mechanism on the transcription of Snail.
However, for the definition of the microscopic dynamics and the derivation of the
macroscopic model, we keep a general expression for the function H(O2). We specify
the value of the parameter λO2 in Table 6.1. Rescaling y/y0⇝ y and gs/y0⇝ gs, we
simplify the notation as

dy
dt

= gs
1

1+ y
H(O2)− γsy := G(y,O2). (6.2.2)

with y ∈ Y = (0,1). Looking at its quasi-steady state solutions y∗, we observe that

dy
dt

= 0 ⇐⇒ gs
1

1+ y
H(O2)− γsy = 0

⇐⇒ [gsH(O2)− γsy(1+ y)]
1

1+ y
= 0

⇐⇒ y(1+ y) =
gs

γs
H(O2)

⇐⇒ y2 + y− gs

γs
H(O2) = 0

⇐⇒ y = −1
2

(
1±
√

1+4
gs

γs
H(O2)

)
.

As y represents a biological quantity accounting for the expression of Snail, no
negative values are admitted. Thus, the only acceptable steady-state solution for our
system is given by

y∗ =
1
2

(√
1+4

gs

γs
H(O2)−1

)
.

Observation 2. To ensure that the equilibrium distribution y∗ belongs to Y, we have
to require that

gs

γs
max
x∈Rn

{H(O2(x))}< 2 . (6.2.3)

If we consider an inhibitory function H(O2) such that λO2 = 0, than the condition
reads gs < 2γs.
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Dynamics of cell velocity

Concerning the microscopic velocity v, we model the mechanism by which cells tend
to migrate by aligning to two different gradients. Precisely, increasing gradients of
oxygen attract tumour cells towards better-oxygenated areas, while tumour cells tend
to avoid crowded regions of high cell densities. In both cases, the smaller the amount
of Snail expression, the lower the cell’s tendency to move along the directions of
these gradients. Under these assumptions, the preferred direction of a cell can be
modelled by a weighted sum of the two gradients. Thus, velocity dynamics are
modelled with the following equation.

dv
dt

= g(y,O2,M)−a2v , (6.2.4)

where the function g(y,O2,M) describes cell acceleration, while the second term
models cell deceleration, with a2 a positive constant scaling cell deceleration. In
fact, cells tend to slow down or randomly move in the absence of external signals.
Concerning cell acceleration, we set

g(y,O2,M) = a1b(y,O2,M) . (6.2.5)

Here, b(y,O2,M) is the vector gradient modelling cell alignment along the directions
given by the gradient of oxygen O2 and the gradient of macroscopic tumour cell
density M, while a1 is a positive constant scaling cell acceleration. As introduced
above, we assume that the cell’s tendency to follow oxygen gradient is enhanced by
high Snail expression, which is one of the mechanisms of cell response to hypoxia. At
the same time, since low levels of Snail promote high levels of E-cadherin expression
[443, 258], which is responsible for cell-cell adhesion, we assume that cell tendency
to avoid high cell density region is also positively regulated by y. In fact, high levels
of Snail would promote less adhesion between cells and, thus, a more enhanced
tendency to escape from the tumour core. Thus, we choose

b(y,O2,M) = y

β
∇xO2√(

O2,0

X

)2

+ |∇xO2|2
− (1−β )

∇xM√(
KM

X

)2

+ |∇xM|2

 .

(6.2.6)
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Here, KM and O2,0 are reference values for tumour cells and oxygen, X > 0 is a
constant to be selected in correspondence to appropriate time and length scales, while
the parameter β ∈ (0,1) weights the contributions of the two tactic terms, depending
on the main microenvironmental cues. Thus, (6.2.4) can be written as

dv
dt

= a1y

β
∇xO2√(

O2,0

X

)2

+ |∇xO2|2
− (1−β )

∇xM√(
KM

X

)2

+ |∇xM|2

−a2v

= : S(v,y,O2,M) .

(6.2.7)

We observe that g(y,O2,M) is bounded

|g(y,O2,M)| = |a1 b|< a1

and, thus, the speed s = |v| < a1

a2
:= sub, with sub an upper bound for cell speed.

Finally, we complete the microscopic level system by modelling the changes in the
cell position x ∈ Rn as

dx
dt

= v . (6.2.8)

Thus, collecting Equations (6.2.2), (6.2.7), and (6.2.8), the complete system for the
microscopic level dynamics reads

dx
dt

= v ,

dv
dt

= a1 y

β
∇xO2√(

O2,0

X

)2

+ |∇xO2|2
− (1−β )

∇xM√(
KM

X

)2

+ |∇xM|2

−a2v ,

dy
dt

= gs
1

1+ y
H(O2)− γsy .

(6.2.9)
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6.2.2 Mesoscopic scale

At this level, we consider the cell density distribution p(t,x,v,y) : [0,T ]×Rn ×
V×Y → R, depending on time t, position x ∈ Rn, microscopic velocity v ∈ V, and
internal variable for Snail protein expression y ∈ Y. In particular, the microscopic
velocity vector v can be written as v = sθ with cell speed s ∈ (0,sub) and cell
direction θ ∈ Sn−1. For describing the mesoscopic dynamics of tumour cells, we
consider the following kinetic transport equation:

∂ p
∂ t

+∇x · (vp)+
∂

∂y
(G(y,O2)p)+∇v · (S(v,y,O2,M)p) = P[p] . (6.2.10)

Here, the functions G(y,O2) and S(v,y,O2,M) are given by (6.2.2) and (6.2.7), re-
spectively, while the operator P[p] describes the proliferation process. We generally
describe it as

P[p] = µ1(M,O2,s)
∫

Y
µ2(y′)χ(t,x,y,y′)p(t,x,v,y′)dy′ .

Here, the coefficient function µ1(M,O2,s) accounts for the possible effect of cell
speed and oxygen level changes, as well as the crowdedness of the environment, on
cell proliferation. Instead, the integral operator, involving the coefficient function
µ2(y) and the kernel χ(t,x,y,y′), describes the role of Snail expression in the pro-
liferation process. In particular, χ(t,x,y,y′) is the probability kernel representing
the likelihood of cells to receive a Snail expression regime y after the division of
a cell with expression y′. We propose two possible choices for the proliferation
term expression, both based on the assumption that cells’ capabilities of moving and
proliferating are inversely correlated (go-or-grow dichotomy)[463].

• In the first case, we assume that

µ1(M,O2,s) := µ
sub − s∗

sub

(
1− M

KM

)
O2

O2,0 +O2
and µ2(y) := 1∀y ∈ Y.

Moreover, we assume that the level of Snail expression in a daughter cell is
equal to the one of its mother, i.e., the kernel χ(t,x,y,y′) = δ (y− y′). With
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these assumptions, the proliferative operator reads

P1[p] = µ
sub − s∗

sub

(
1− M

KM

)
O2

O2,0 +O2
p(t,x,v,y) (6.2.11)

With this choice, the mentioned dichotomous behaviour is taken into account
by relating µ1(M,O2,s) to cell speed in a decreasing manner, thus accounting
for the impact of y only in an indirect manner, namely through the variation
of s. Moreover, as the adaptation of speed to the surrounding environment is
faster than the proliferation time, the velocity is approximated by its steady
state v∗ and the corresponding speed is denoted by s∗ = |v∗|.

• As a second case, we assume that

µ1(M,O2,s) := µ

(
1− M

KM

)
O2

O2,0 +O2
and µ2(y) := 1−y ∀y ∈ Y.

With this choice, the mentioned dichotomous behaviour is taken into account
in the integral term, which models a reduced proliferation for a high level of
Snail expression. In particular, we assume that the kernel does not depend
on the level of Snail expression of the mother cell, i.e., χ = χ(t,x,y) and
distribution of the level of Snail expression in a daughter cell is symmetrical
around the quasi-steady state y∗, i.e.,∫

Y
(y− y∗)χ(t,x,y)dy = 0

and with these assumptions, the proliferative operator reads

P2[p] := µ

(
1− M

KM

)
O2

O2,0 +O2

∫
Y

(1− y′)χ(t,x,y)p(t,x,v,y′)dy′

(6.2.12)

In both cases, the macroscopic cell density M is given by

M :=
∫
V

∫
Y

p(t,x,v,y)dydv . (6.2.13)

In both cases, the introduced descriptions of the proliferation process are such that
proliferation is reduced for highly motile cells, with a direct or indirect effect of
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Snail expression. We will compare, then, the macroscopic models derived in the
cases in Section 6.4.

6.3 Derivation of macroscopic system

Due to the high dimensionality of (6.2.10), solving directly this kinetic equation has
to face several challenges, especially related to its complexity and a high computa-
tional cost. Therefore, in this section, we aim at deducing a macroscopic counterpart
of (6.2.10).

6.3.1 Assumptions

In order to obtain a closed system of macroscopic equations from the integration of
(6.2.10) w.r.t y and v, we need to make the following assumptions on the moments
of the distribution function:

∇x ·
∫
V

(v−v∗)(vi − v∗i )pdv ≈ 0

∫
V

∫
Y

(vi − v∗i )(y− y∗)pdydv ≈ 0

∫
V

∫
Y

(y− y∗)2 pdydv ≈ 0 .

Precisely, with vi, we indicate the i-th component of the velocity vector v, while y∗

and v∗ are the steady-state solutions of microscopic equations (6.2.2) and (6.2.7), re-
spectively. With these assumptions, we state that some of the second-order moments
for the tumour cell distribution w.r.t. deviations of v and y from their steady-states
are negligible, as well as the second-order moment w.r.t y. These are reasonable
choices since the microscopic dynamics of protein expression and velocity changes
happen faster in comparison to the kinetic behaviour of tumour cells.

Considering the rescaling described in the above Sections, the domains Y and V
are given by Y = (0,1) and V = Bn

sub
(0) = (0,sub)×Sn−1. Following the approach

proposed in various references [155, 125, 128, 169], we assume the distribution p to
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be compactly supported in the V×Y space. Precisely, for equation (6.2.10), bound-
ary conditions w.r.t. these variables need to be prescribed at the inflow boundary
of Y and V. Considering the dynamics in Ref. (6.2.2), a protein expression state
y ∈ ∂Y is part of the inflow boundary if G(y,O2) ·n ≤ 0 for n outward normal on
the boundary. Given ∂Y = {0,1}, it holds

G(0,O2) ·n = gsH(O2) · (−1)< 0

G(1,O2) ·n = (2gsH(O2)− γs) · (1)≤ 0 if condition (6.2.3) holds.
(6.3.1)

Thus, the inflow boundary of Y coincides with ∂Y and boundary conditions can
be prescribed on the whole ∂Y. Instead, considering the dynamics in (6.2.7) and a
velocity vector v ∈ ∂V, we have that |v| = sub and the outward normal n = v/sub.
The velocity vector v is part of the inflow boundary if S(v,y,O2,M) ·n ≤ 0, i.e.,

S(v,y,O2,M) ·n =
a1

sub
(b(y,O2,M) ·v)− a2

sub
(v ·v)

≤ a1

sub
|b(y,O2,M)| |v|− a2

sub
|v|2

≤ a1 −a2sub = 0 .

(6.3.2)

Thus, the inflow boundary of V coincides with ∂V and boundary conditions can be
prescribed on the whole ∂V. Precisely, (6.3.1) and (6.3.2) allow us to conclude that
the characteristics of the transport part of equation (6.2.10) that start in Rn ×V×Y
do not leave this set.

6.3.2 Equation for the moments

Here, we upscale (6.2.10) to obtain the equation for the macroscopic cell density
M(t,x). Firstly, we rescale the quantities introduced above as

p/KM⇝ p, M/KM⇝M, O2/O2,0⇝ O2, and s∗/sub⇝ s∗.

Then, we introduce a small parameter ε ≪ 1 to rescale time and space as
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t̂ = ε
κt , x̂ = εx ,

ĝs = ε
−νgs , γ̂s = ε

−ν
γs ,

with κ,ν > 0. The rescaling of reaction gs and γs means rescaling of dy/dt, while
the negative epsilon power is chosen to reflect the fact that these dynamics are the
fastest among all included processes. Moreover, assuming that 1/X is of order ε , we
observe that v̂∗ = v∗. For simplicity of writing, we drop the hat symbol from all
variables and, thus, equation (6.2.10) reads

ε
κ ∂ p

∂ t
+ ε∇x · (vp)+ ε

−ν ∂

∂y
(G(y,O2)p)+∇v · (S(v,y,O2,M)p) = ε

κPk[p]

(6.3.3)
where

G(y,O2) = gs
1

1+ y
H(O2)− γsy ,

S(v,y,O2,M) = a1y

(
β

∇xO2√
1+ |∇xO2|2

− (1−β )
∇xM√

1+ |∇xM|2

)
−a2v ,

and Pk[p] would be given by either

P1[p] = µ(1− s∗)(1−M)
O2

1+O2
p(t,x,v,y) (6.3.4)

or
P2[p] := µ (1−M)

O2

1+O2

∫
Y

(1− y′)χ(t,x,y)p(t,x,v,y′)dy′ , (6.3.5)

which corresponds to the rescaled versions of (6.2.11) or (6.2.12), respectively.
Together with the introduced macroscopic tumour density (6.2.13), let us consider
the following notations for the moment of the distribution function p:
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m(t,x,y) :=
∫
V

p(t,x,v,y)dv , mv(t,x,y) :=
∫
V

vp(t,x,v,y)dv ,

mv
i (t,x,y) :=

∫
V

vi p(t,x,v,y)dv , Mv
i (t,x) =

∫
Y

∫
V

vi p(t,x,v,y)dvdy ,

Mv(t,x) =
∫
Y

∫
V

vp(t,x,v,y)dvdy , My(t,x) =
∫
Y

∫
V

yp(t,x,v,y)dvdy .

Considering (6.3.3) and integrating w.r.t v we derive the equation for m(t,x,y), i.e.,

ε
κ ∂m

∂ t
+ε∇x · mv+ε

−ν ∂

∂y
(G(y,O2)m)+

∫
V

∇v · S(v,y,O2,M)pdv = ε
κ

∫
V

Pk[p]dv .

(6.3.6)
Here ∫

V

∇v · S(v,y,O2,M)pdv = 0

for the boundary conditions imposed on v, while for the proliferative operator we
have either ∫

V

P1[p]dv =
∫
V

µ(1− s∗)(1−M)
O2

1+O2
p(t,x,v,y)dv

= µ(1− s∗)(1−M)
O2

1+O2
m(t,x,y)

= P1[m]

or ∫
V

P2[p]dv =
∫
V

µ (1−M)
O2

1+O2

∫
Y

(1− y′)χ(t,x,y)p(t,x,v,y′)dy′dv

= µ (1−M)
O2

1+O2

∫
Y

(1− y′)χ(t,x,y)m(t,x,y′)dy′

= P2[m] .
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Thus, the equation for m(t,x,y) reads

ε
κ ∂m

∂ t
+ ε∇x · mv + ε

−ν ∂

∂y
(G(y,O2)m) = ε

κPk[m] . (6.3.7)

Considering again (6.3.3), multiplying it by vi and integrating w.r.t v we derive the
equation for mv

i (t,x,y), which is the i-th component of the vector mv, i.e.,

mv :=


mv

1

mv
2

...

mv
n

 .

The equation for mv
i reads

ε
κ

∂mv
i

∂ t
+ ε

∫
V

vi∇x · (vp)dv+ ε
−ν

∫
V

vi
∂

∂y
(G(y,O2)p)dv

+
∫
V

vi∇v · (S(v,y,O2,M)p)dv = ε
κ

∫
V

viPk[p]dv .

Here,∫
V

vi∇x · (vp)dv = ∇x ·
∫
V

vi(vp)dv

= ∇x ·
∫
V

(vi − v∗i )(v−v∗)pdv+∇x ·
∫
V

(viv∗+ v∗i v− v∗i v∗)pdv

= ∇x · (v∗mv
i + v∗i mv − v∗i v∗m)

for the assumption done on Section 6.3.1, while
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∫
V

vi∇v · (S(v,y,O2,M)p)dv =
∫
V

vi∂vi(Si p)dv+
N

∑
j=1
j ̸=i

∫
V

vi∂v j(S j p)dv

=
∫
Vc

i

∫
Vi

vi∂vi(Si p)dvi dṽ+
N

∑
j=1
j ̸=i

∫
VC

j

vi

∫
V j

∂v j(S j p)dv j dṽ

where VC
i =

N⋃
j=1
j ̸=i

V j and dṽ is (n-1)-th components vector such that

v = (vi, ṽ) ∈ Vi ×
⋃
j=1
j ̸=i

V j .

Under the boundary conditions in Section 6.3.1, the second term on the right-hand-
side is equal to 0, while using the chain rule, the first term reduces to

∫
N⋃

j=1
j ̸=i

V j

∫
Vi

vi∂vi(Si p)dvi dṽ =
∫

N⋃
j=1
j ̸=i

V j

[
vi (Si p)|∂Vi −

∫
Vi

Si pdvi

]
dṽ = −

∫
V

Si pdv

= −a1 y

(
β

(∇xO2)i√
1+ |∇xO2|2

− (1−β )
(∇xM)i√
1+ |∇xM|2

)
m+a2mv

i

= −gi(y,O2,M)m+a2mv
i ,

where gi(y,O2,M) represents the i-th component of the vector function g(y,M,O2)

defined in (6.2.5). Concerning the proliferative operator, we have either∫
V

viP1[p]dv =
∫
V

viµ(1− s∗)(1−M)
O2

1+O2
p(t,x,v,y)dv

= µ(1− s∗)(1−M)
O2

1+O2
mv

i (t,x,y) = P1[mv
i ]
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or∫
V

viP2[p]dv =
∫
V

viµ (1−M)
O2

1+O2

∫
Y

(1− y′)χ(t,x,y)p(t,x,v,y′)dy′dv

= µ (1−M)
O2

1+O2

∫
Y

(1− y′)χ(t,x,y)mv
i (t,x,y

′)dy′ = P2[mv
i ] .

Thus, the equation for mv
i reads

ε
κ

∂mv
i

∂ t
+ε∇x · (v∗mv

i + v∗i mv − εv∗i v∗m)+ ε
−ν ∂

∂y
(G(y,O2)mv

i )+

− (gi(y,O2,M)m−a2mv
i ) = ε

κPk[mv
i ] .

(6.3.8)

Therefore, the system for the n+1 variables (m,mv
1,m

v
2, ..,m

v
n) is given by



ε
κ+ν ∂m

∂ t
(t,x,y)+ ε

1+ν
∇x · mv(t,x,y)+

∂

∂y

(
G(y,O2)m(t,x,y)

)
= ε

κ+νPk[m](t,x,y) ,

ε
κ+ν

∂mv
i

∂ t
(t,x,y)+ ε

1+ν
∇x ·

[
v∗mv

i + v∗i mv − v∗i v∗m
]
(t,x,y)

+
∂

∂y

[
G(y,O2)mv

i (t,x,y)
]
= ε

ν
[
gi(y,O2,M)m(t,x,y)−a2mv

i (t,x,y)
]
+

+ ε
κ+νPk[mv

i ](t,x,y) ∀i = 1...n .
(6.3.9)

We remark that ∇x ·mv =
n
∑

j=1
∂x jm

v
j . Then, integrating (6.3.7) w.r.t y, for the

assumptions in Section 6.3.1 we immediately get

ε
κ ∂M

∂ t
(t,x)+ ε∇x ·Mv(t,x) = ε

κ

∫
Y

Pk[m] (6.3.10)
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where for the proliferative operator, we have either∫
Y

P1[m]dy =
∫
Y

µ(1− s∗)(1−M)
O2

1+O2
m(t,x,y)dy

= µ(1− s∗)(1−M(t,x))
O2

1+O2
M(t,x)

or ∫
Y

P2[m]dy =
∫
Y

µ (1−M(t,x))
O2

1+O2

∫
Y

(1− y′)χ(t,x,y)m(t,x,y′)dy′dy

= µ (1−M)
O2

1+O2

∫∫
Y

(1− y′)χ(t,x,y)m(t,x,y′)dy′dy

= µ (1−M(t,x))
O2

1+O2
(M(t,x)−My(t,x)) .

Instead integrating (6.3.8) w.r.t. y, we obtain

ε
κ

∂Mv
i

∂ t
+ ε∇x · (v∗Mv

i + v∗i Mv − v∗i v∗M)+ ε
−ν

∫
Y

∂

∂y
(G(y,O2)mv

i )dy+

−
∫
Y

(gi(y,O2,M)m−a2mv
i )dy = ε

κ

∫
Y

Pk[mv
i ]dy ,

where the first integral vanishes for the boundary conditions in Section 6.3.1. Con-
cerning the second integral on the left-hand-side, we have∫

Y

(gi(y,O2,M)m−a2mv
i )dy = g̃i(O2,M)My −a2Mv

i ,

where

g̃i(O2,M) = a1

(
β

(∇xO2)i√
1+ |∇xO2|2

− (1−β )
(∇xM)i√
1+ |∇xM|2

)
. (6.3.11)
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Instead, the proliferative operator reads either∫
Y

P1[mv
i ]dy =

∫
Y

µ(1− s∗)(1−M)
O2

1+O2
mv

i (t,x,y)dy

= µ(1− s∗)(1−M)
O2

1+O2
Mv

i (t,x) = P1[Mv
i ]

or∫
Y

P2[mv
i ]dy =

∫
Y

µ (1−M)
O2

1+O2

∫
Y

(1− y′)χ(t,x,y)mv
i (t,x,y

′)dy′dy

= µ (1−M)
O2

1+O2

Mv
i −

∫∫
Y

y′χ(t,x,y)mv
i (t,x,y

′)dy′dy


= µ (1−M)

O2

1+O2
·Mv

i −
∫
Y

∫
V

(vi − v∗i )y p(t,x,v,y)dydv− v∗i

∫
Y

∫
V

y p(t,x,v,y)dydv


= µ (1−M)

O2

1+O2

(
Mv

i −
∫
Y

∫
V

(vi − v∗i )(y− y∗) p(t,x,v,y)dydv

− y∗
∫
Y

∫
V

(vi − v∗i )p(t,x,v,y)dydv− v∗i

∫
Y

∫
V

y p(t,x,v,y)dydv

)

= µ (1−M(t,x))
O2

1+O2
(Mv

i (t,x)− y∗Mv
i (t,x)− v∗i My(t,x)+ y∗v∗i M(t,x)) .

Therefore, we obtain

ε
κ

∂Mv
i

∂ t
(t,x)+ ε∇x · [v∗Mv

i + v∗i Mv − v∗i v∗M] (t,x)+

− [g̃i(O2,M)My(t,x)−a2Mv
i (t,x)] = ε

κ

∫
Y

Pk[mv
i ]dy .

(6.3.12)
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Finally, multiplying (6.3.7) by y and integrating w.r.t. y we obtain

ε
κ ∂My

∂ t
+ ε∇x ·

∫
Y

yMvdy+ ε
−ν

∫
Y

y
∂

∂y

(
G(y,O2)m

)
dy = ε

κ

∫
Y

yPk[m](t,x,y)dy .

Here,

∇x ·
∫
Y

yMvdy = ∇x ·
∫
Y

∫
V

y(vp)dvdy

= ∇x ·

∫
Y

∫
V

(v−v∗)(y− y∗)pdvdy+
∫
Y

∫
V

(v∗y+vy∗−v∗y∗)pdvdy


= ∇x · (v∗My + y∗Mv −v∗y∗M)

thanks to the assumption in Section 6.3.1, while

∫
Y

y
∂

∂y

(
G(y,O2)m

)
dy =

y(Gm)|∂Y −
∫
Y

G(y,O2)mdy


= −

∫
Y

G(y,O2)mdy

= −
∫
Y

(
gs

1
1+ y

H(O2)− γsy
)

mdy

= γsMy −gsH(O2)
∫
Y

1
1+ y

mdy .

Considering the Taylor expansion of
1

1+ y
around y∗ we get

1
1+ y

=
1

1+ y∗+ y− y∗

≈ (1+ y∗)−1 − (1+ y∗)−2(y− y∗)+(1+ y∗)−3(y− y∗)2 +O((y− y∗)2) .

Thus, ignoring the higher-order terms of this expansion, we obtain
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∫
Y

1
1+ y

mdy =
∫
Y

(
(1+ y∗)−1 − (1+ y∗)−2(y− y∗)+(1+ y∗)−3(y− y∗)2)mdy

= (1+ y∗)−1M− (1+ y∗)−2My + y∗(1+ y∗)−2M ,

i.e.,

∫
Y

y
∂

∂y

(
G(y,O2)p

)
dy = γsMy −gs

H(O2)

1+ y∗

(
M− 1

1+ y∗
(My − y∗M)

)

= −gs
H(O2)

(1+ y∗)2 (1+2y∗)M+

(
γs +gs

H(O2)

(1+ y∗)2

)
My .

The proliferative operator, instead, reads either∫
Y

yP1[m]dy =
∫
Y

µ(1− s∗)(1−M)
O2

1+O2
ym(t,x,y)dy

= µ(1− s∗)(1−M)
O2

1+O2
My(t,x)

or

∫
Y

yP2[m]dy =
∫
Y

µ (1−M)
O2

1+O2

∫
Y

y(1− y′)χ(t,x,y)m(t,x,y′)dy′dy

= µ (1−M)
O2

1+O2

∫
Y

yχ(t,x,y)dy
∫
Y

(1− y′)m(t,x,y′)dy′



= µ (1−M)
O2

1+O2
(M−My)

∫
Y

(y− y∗)χ(t,x,y)dy+ y∗
∫
Y

χ(t,x,y)dy


= µ (1−M(t,x))

O2

1+O2
y∗ [M(t,x)−My(t,x)] .
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Thus, the equation for My reads

ε
κ ∂My

∂ t
(t,x)+ ε∇x · [v∗My + y∗Mv −v∗y∗M] (t,x)+

− ε
−νgs

H(O2)

(1+ y∗)2 (1+2y∗)M(t,x)+ ε
−ν

(
γs +gs

H(O2)

(1+ y∗)2

)
My(t,x)

= ε
κ

∫
Y

yPk[m](t,x,y)dy .

(6.3.13)

Thus, the system for M(t,x), Mv(t,x), and My(t,x) reads

εκ−1 ∂M
∂ t

(t,x)+∇x ·Mv(t,x) = εκ−1
∫
Y

Pk[m](t,x,y)dy ,

ε
κ

∂Mv
i

∂ t
(t,x)+ ε∇x · [v∗Mv

i + v∗i Mv − v∗i v∗M] (t,x)+

− (g̃i(O2,M)My(t,x)−a2Mv
i (t,x)) = ε

κ

∫
Y

Pk[mv
i ](t,x,y)dy , ∀i = 1...n ,

ε
κ+ν ∂My

∂ t
(t,x)+ ε

1+ν
∇x · [v∗My + y∗Mv −v∗y∗M] (t,x)+

−gs
H(O2)

(1+ y∗)2 (1+2y∗)M(t,x)+
(

γs +gs
H(O2)

(1+ y∗)2

)
My(t,x)

= ε
κ+ν

∫
Y

yPk[m](t,x,y)dy .

(6.3.14)

Now, we consider the expansion of the previously introduced model in the form.

M = M0 + εM1 +O(ε2) ,

Mv = Mv
0 + εMv

1 +O(ε2) ,

My = My
0 + εMy

1 +O(ε2) ,
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such that M0 = lim
ε→0

M. As the focus of this study is on the tumour response to

hypoxia and, thus, the influence of the environmental chemotactic cue given by the
oxygen levels, cell movement has a very clear directional component. Therefore,
following the well-established literature [223, 51, 50, 177, 126], we consider here
a hyperbolic limit of the moment system (6.3.14), i.e., we choose κ = 1. Passing
formally to the limit ε → 0 in (6.3.14), from the first equation we get

∂M0

∂ t
(t,x)+∇x ·Mv

0(t,x) =
∫
Y

Pk[m0](t,x,y)dy , (6.3.15)

where m0 is the zero-order term in the expansion of the moment m(t,x,y). Then,
from the equation for Mv

i in (6.3.14), we get

g̃i(O2,M0)M
y
0 −a2Mv

i,0 = 0 ⇐⇒ Mv
i,0 =

g̃i(O2,M0)

a2
My

0 (6.3.16)

that, considering the vector Mv
0 with i-th component Mv

i,0, means

Mv
0 =

g̃(O2,M0)

a2
My

0 (6.3.17)

with

g̃(O2,M0) = a1

(
β

∇xO2√
1+ |∇xO2|2

− (1−β )
∇xM0√

1+ |∇xM0|2

)
.

Finally, from the last equation in (6.3.14), we obtain

−gs
H(O2)

(1+ y∗)2 (1+2y∗)M0 +

(
γs +gs

H(O2)

(1+ y∗)2

)
My

0 = 0

~w�
My

0 =
gsH(O2)(1+2y∗)

γs(1+ y∗)2 +gsH(O2)
M0 . (6.3.18)

Thus, substituting (6.3.18) into (6.3.17), and the latter in (6.3.15), we obtain the
following equation for the evolution of the macroscopic cell density M0

∂M0

∂ t
(t,x)+∇x · [F(y∗,O2(x))M0(t,x) ˜̃g(O2,M0)] = Pk[M0](t,x) (6.3.19)
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where

˜̃g(O2,M0) = a1

(
β

∇xO2√
1+ |∇xO2|2

− (1−β )
∇xM√

1+ |∇xM|2

)
.

We set the velocity field (or chemotactic sensitivity) as

F(y∗,O2(x)) :=
a1

a2

gsH(O2(x))(1+2y∗)
γs(1+ y∗)2 +gsH(O2(x))

, (6.3.20)

while the proliferative operator is given by either

P1[M0](t,x) =
∫
Y

P1[m0](t,x,y)dy = µ(1− s∗)(1−M0(t,x))
O2(x)

1+O2(x)
M0(t,x)

(6.3.21)
or

P2[M0](t,x) =
∫
Y

P2[m0](t,x,y)dy

= µ (1−M0(t,x))
O2(x)

1+O2(x)

(
1− a2

a1
F(y∗,O2(x))

)
M0(t,x) .

(6.3.22)

Since we are interested in the impact of the microscopic protein expression of the cell
on the overall macroscopic evolution of the population, for the simulation described
in Section 6.4, we also analyse the evolution of My

0 that is linked to the average
expression of the Snail protein in the cell population. Thus, discarding the zero
subscripts, the resulting macroscopic system reads

∂M
∂ t

(t,x)+∇x · [F(y∗,O2(x))M(t,x) ˜̃g(O2,M)] = Pk[M](t,x) ,

My(t,x) =
a2

a1
F(y∗,O2(x))M(t,x) .

(6.3.23)
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6.4 Numerical experiments

We perform 2D numerical simulations of the resulting macroscopic system (6.3.23)
to analyse in-silico scenarios of tumour progression under varied oxygen conditions
and Snail expressions. Numerical simulations are conducted using a self-developed
code in Python 3.10.12, whose details are provided in Section 6.4.1. The parameter
values used for the simulations are reported in Table 6.1. Sections 6.4.2, 6.4.3, 6.4.4,
and 6.4.5 present the results of the four main numerical experiments we performed.

Experiment 1 - In Section 6.4.2, we analyse the differences in cell migration
and Snail distribution over time between a chemotactic-dominated scenario
and an anti-crowding-dominated scenario by varying the value of the weighting
parameter β and, thus, its impact on cell motion.

Experiment 2 - In Section 6.4.3, we investigate the impact of Snail expression
on cell proliferation, and we compare the model’s evolution using two different
choices of the proliferative operator given in (6.2.11) and (6.2.12).

Experiment 3 - In Section 6.4.4, we show our model capabilities to quan-
titatively replicate experimental results from two different studies on human
cancer cells. Firstly, we consider the findings of [305] regarding the effect
of Snail over-expression or knockdown on the migration capability of human
breast cancer cells. Secondly, we refer to the comparison presented in Ref.
[459], where the effects of hypoxia and a combination of hypoxia and Snail
knockdown on the motility of human hepatocarcinoma cells are studied.

Experiment 4 - In Section 6.4.5, we analyse the hypoxia-driven spatial distri-
bution of Snail expression within a tumour, and we show its consistency with
the results shown in Ref. [305].

6.4.1 Numerical method

To perform numerical simulations of the model, we adapt the numerical method
presented in Ref. [88] to our problem structure. In detail, we rewrite the first equation
of (6.3.23) as

∂M
∂ t

(t,x) = −T (y∗,O2,M)(t,x)+Pk[M](t,x) (6.4.1)
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Parameter Description Value (unit) Source

gs basal Snail transcription rate 1.5 (molecules · min−1) [304]

γs basal Snail degradation rate 0.0021 (min−1) [303]

a1/a2 scaling velocity parameter 0.1 (mm · min−1) This work

β
weighting parameter
for tactic contribution varying in [0-1] This work

µ tumour proliferation rate [6-9]· 10−4 (min−1) [445, 128]

Table 6.1 Model parameters. The table provides the dimensional values for the parameters
involved in setting (6.3.23) that are used in the numerical experiments.

where

T(y∗,O2,M))(t,x) =

∇x ·

[
F(y∗,O2(x))M(t,x)

(
β

∇xO2(x)√
1+ |∇xO2(x)|2

− (1−β )
∇xM(t,x)√

1+ |∇xM(t,x)|2

)]
(6.4.2)

rules the movement of cells while Pk[M](t,x) is the proliferation term defined in
(6.3.21) (k = 1) and (6.3.22) (k = 2). Setting x = (x1,x2), we consider the geomet-
ric domain Ω = [x1,min,x1,max]× [x2,min,x2,max]⊆ R2, where we introduce a uniform
Cartesian mesh consisting of the cells C j,k := [x1, j− 1

2
,x1, j+ 1

2
]× [x2,k− 1

2
,x2,k+ 1

2
], for

j = 0, . . . ,Nx1 and for k = 0, . . . ,Nx2 , of size ∆x1×∆x2. We adopt a splitting method,
accounting first for the conservative part T(y∗,O2,M) and, then, for the reaction term
Pk[M]. Precisely, defining

M j,k(t)≈
1

∆x1∆x2

∫
C j,k

M(x1,x2)dx ,

for the conservative part we adopt the general semi-discrete finite-volume scheme
given by

Tj+ 1
2 ,k

= u+
j+ 1

2 ,k
ME

j,k +u−
j+ 1

2 ,k
MW

j+1,k
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Tj,k+ 1
2
= v+

j+ 1
2 ,k

MN
j,k + v−

j+ 1
2 ,k

MS
j+1,k .

Here:

• (·)+ and (·)− indicate the positive and negative parts of their arguments,
respectively, i.e., (·)+ = max{0, ·} and (·)− = min{0, ·};

• the apices E, W, N, S indicate East, West, North and South and correspond
to the evaluation of the piecewise linear reconstruction using the following
first-order truncation of Taylor expansion

M̃(x1,x2) = M j,k+(∂x1M) j,k(x1−x1, j)+(∂x2M) j,k(x2−x2,k), (x1,x2)∈C j,k

at the cell interfaces (x1, j+ 1
2
,x2,k), (x1, j− 1

2
,x2,k), (x1, j,x2,k+ 1

2
), (x1, j,x2,k− 1

2
),

respectively;

• defined

U j,k =F(y∗(x1, j,x2,k),O2(x1, j,x2,k))·(
β

∇xO2(x1, j,x2,k)√
1+ |∇xO2(x1, j,x2,k)|2

− (1−β )
∇xM(t,x1, j,x2,k)√

1+ |∇xM(t,x1, j,x2,k)|2

)
,

then u := Ux1 and v := Ux2 are the components of U along the horizontal and
vertical axis respectively.

Note that the derivatives in the middle points are evaluated as

(∂x1M) j+ 1
2 ,k

=
M j+1,k −M j,k

∆x1
, (∂x2M) j,k+ 1

2
=

M j,k+1 −M j,k

∆x2

while the derivatives in the nodes are initially evaluated as

(∂x1M) j,k =
M j+1,k −M j−1,k

2∆x1
, (∂x2M) j,k =

M j,k+1 −M j,k−1

2∆x2

and then corrected using a generalised minmod limiter in order to preserve the
positivity of the linear reconstruction M̃ (for further details, see [88]). For the time
discretisation, we use the forward Euler method. We denote the discretised time step
with apex l, i.e.,

t l = t0 +
l−1

∑
i=1

∆t i .
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In order to optimize the performances, we use adaptive time steps obtained by
imposing the positivity-preserving CFL.

∆tl ≤ ∆Tl := min
{

∆x1

4a
,
∆x2

4b

}

where a = max
j,k

(
|ul

j+ 1
2 ,k
|
)

and b = max
j,k

(
|vl

j,k+ 1
2
|
)

. Therefore, starting from

a discretised initial condition M0
j,k provided for each j = 0, . . . ,Nx1 and for k =

0, . . . ,Nx2 , the numerical scheme reads
M

l+ 1
2

j,k = Ml
j,k −

∆tl
∆x1

(
T l

j+ 1
2 ,k

−T l
j− 1

2 ,k

)
− ∆tl

∆x2

(
T l

j,k+ 1
2
−T l

j,k− 1
2

)
Ml+1

j,k = M
l+ 1

2
j,k +∆tlP

l+ 1
2

j,k

(6.4.3)

for l = 1, . . . ,Nl . In the proposed experiments, we set the spatial domain Ω =

[0,50]× [0,50]mm2 and we consider the time t ∈ [0,T ], with T > 0. Dealing with a
limited domain, we set no entry flux boundary conditions.

6.4.2 Experiment 1: chemotactic or anti-crowding dominated
motion

In this first experiment, we simulate our model with the aim of comparing cell
behaviours in two different scenarios. We consider a first scenario in which cell
movement is dominated by a chemotactic attraction toward increasing oxygen concen-
trations, strongly reducing the impact of the natural cell anti-crowding mechanisms.
Instead, in a second scenario, we emphasize the role of anti-crowding dynamics,
which helps cells to avoid highly dense regions.

Considering the macroscopic system (6.3.23), we note that the parameter β ∈
(0,1) impacts the motility behaviour of cells, weighting the influence of oxygen and
cell density gradients on the direction of tumour cell migration. Higher values of β

imply a stronger impact of chemotaxis compared to anti-crowding dynamics. Thus,
to capture the two described scenarios, we choose β = 0.98 to emphasize the role
of chemotactic movement toward increasing oxygen concentrations, while β = 0.8
to account for a stronger effect of the anti-crowding mechanism. In our experiment,
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we consider a fixed oxygen source located in the top-right corner of the domain Ω

and whose expression is given by

O(x) = AO e
−
(x−xO)

2

θ 2
O (6.4.4)

with AO = 0.8, xO = [45,45]mm, and θO = 34mm. For the tumour cell, we
assume that the initial tumour mass M(t = 0,x) := M0(x) is located in the opposite
(bottom-left) corner of the domain Ω and it is defined as

M0(x) = AM e
−
(x−xM)2

θ 2
M (6.4.5)

with AM = 0.9, xM = [9,9]mm, and θM = 3mm. The initial configuration of this
setting is shown in Fig. 6.1.

Fig. 6.1 Experiment 1: initial conditions and setting. Left: initial Gaussian distribution
of the tumour cells M0, centred in xM = [9,9]mm in the domain Ω = [0,50]× [0,50]mm2,
together with the level plot for the fixed Gaussian distribution of oxygen O2(x), centred
in xO = [45,45]mm. Right: 1D profiles of tumour (continuous line) and oxygen (dashed
line) distributions along the bisecting line (light grey line in the 2D plot) of the domain Ω. x̄
indicates the spatial position along this bisecting line.

To better characterised the dynamics we divide the domain in 4 different zones
depending on the relative oxygen conditions, which trigger cell motility and pro-
liferation. Fig. 6.2 and the related Table 6.2 summarize the combination of the
environmental conditions in each of these areas in the 1D section the domain.
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Fig. 6.2 Experiment 1: spatial distribution of the environmental conditions triggering
cell motility. Graphical representation of the 1D section defined by the bisecting line of
the domain Ω and its subdivision into four different areas depending on the combination
between high/low motility, random/directed motion, and low/high proliferation capability of
the tumour cells. Profiles of the oxygen distribution (black dashed line) and tactic sensitivity
F(y∗,O2(x̄)) (blue dashed line) are shown, together with the oxygen gradient direction (red
arrow). x̄ indicates the spatial position along this bisecting line.

Zone O2 ∇O2 F motility direction proliferation

0 low low high high random low

1 low high high high directed low

2 high high low low directed high

3 high low low low random high

Table 6.2 Summary of the environmental conditions. The table reports and summarizes
the information received by the cells in the four identified areas shown in Fig. 6.2.

The results of this first experiment are illustrated in Fig. 6.3. Precisely, the left
column refers to the simulations obtained for β = 0.98 (chemotactic dominated
scenario), while the right column to β = 0.8 (anti-crowding dominated scenario).

The simulations track the evolution of the tumour mass over a time range of ap-
proximately T = 21 days. In the first row of Fig. 6.3, we illustrate the progression
of the tumour mass in the domain Ω at four different temporal steps. The contour
plot illustrates the density map, while the contour lines represent the tumour’s edge
(defined by a density threshold corresponding to 10% of the carrying capacity).
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Fig. 6.3 Experiment 1: chemotactic or anti-crowding dominated motion. Evolution
of model (6.3.23) in a chemotactic dominated (β = 0.98, left column) or anti-crowding
dominated (β = 0.8, right column) scenario. Top row: evolution of the tumour mass in
the domain Ω = [0,50]× [0,50]mm2 at four different time steps, i.e., initial time t = 0 d
(continuous light pink line), and progression at t = 6.25 d (dot pink line), t = 12.5 d (dashed
dark pink line), and t = 20.8 d (dot-dashed purple line). Middle row: 1D profiles of the
tumour mass evolution along the bisecting line (light grey line in the 2D plot) of the domain
Ω at the same time steps used in the top row. x̄ indicates the spatial position along this
bisecting line. Bottom row: evolution in the (t,y)-space of the distribution cy∗(t,y), together
with its mean η(t), standard deviation σ(t), and mode ψ(t). References to the four selected
time steps are repeated in each graph using consistent color and line styles. Parameter values
are set as reported in Table 6.1.
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To better visualize the differences in the tumour evolution in the two scenarios
we consider a 1D section of the domain Ω illustrating the tumour profile along the
bisecting line. Moreover, in order to account for the epigenetic trait information, for
every value y ∈ Y and every time t, we evaluate the fraction of tumour mass having
an equilibrium Snail expression y∗ lower than y, i.e.,

Cy∗(t,y) =
∫
Dy

M̄(t,x)dx

where Dy = {x ∈ Ω : y∗(x) ∈ (−∞,y)} and M̄(t,x) is the normalised tumour density
distribution, and we introduce the quantity

cy∗(t,y) = ∂yCy∗(t,y) ,

which provides an indication of the fraction of mass that, at a given time t, has a
certain Snail expression y ∈ Y. For this quantity, we evaluate mean η(t), mode ψ(t),
and standard deviation σ(t) as

η(t) =
∫
Y

ycy∗(t,y)dy ,

ψ(t) = argmax
y∈Y

(cy∗(t,y)) ,

σ(t) =
√∫

Y

y2cy∗(t,y)dy−η(t)2 .

Integrating the information about the environmental conditions (Fig. 6.2) with the
data concerning the expression of Snail (third row of Fig. 6.3), we can better grasp the
features characterizing the two depicted scenarios. Depending on β , cell behaviours
towards more oxygenated regions show evident differences. Initially, low oxygen
concentration corresponds to high Snail expression and they collectively contribute
both to a high tactic sensitivity F(y∗,O), driving cell drift, and a low proliferation
rate. Thus, as the mass is situated in an area characterised by low oxygenation, this
oxygen deprivation triggers cell motility. As the mass progresses towards the upper
right corner (temporal step t1), the low oxygen levels still induce a more motile than
proliferative cell phenotype, enforced by a high mean η(tt) of cy∗(y, t) (depicted
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in the third row of Fig. 6.3). By time t1, the mass has spread enough to develop
a smoother profile, resulting in a reduced density gradient in favour of stronger
chemotactic motion due to the oxygen gradient. This is particularly evident for
β = 0.98. Cells are, thus, accelerated and move more compactly towards the oxygen
source, and this is evidenced in both columns of Fig. 6.3 by the reduction in mass
width orthogonal to the chemotactic gradient between times t1 and t2, confirming
cell convergence towards the oxygen Gaussian distribution. As the cells reach areas
closer to the source (temporal step t2), a still strong oxygen gradient is countered
by increased oxygenation levels, and, thus, inhibition of motility in favor of an
enhanced proliferation rate. This results also in lower level of η(t) (third row of
Fig. 6.3). This combination results in masses developing a distinct tail to the left,
with some cells remaining outside the region of orderly motility due to lower oxygen
levels. Many motile cells originating from less oxygenated areas "push" against a
slowing front where cells are less motile, but contributes to the increase of the density
due to their proliferative capability. At final time t3, the mass has reached a region
characterised by high oxygenation levels with an almost negligible oxygen gradient.
At this stage, ordered motile dynamics become nearly absent and the mean η(t) has
stabilize its value. This is particularly evident in the scenario with β = 0.98, where
the mass tends to regain a more radial symmetry around its centroid and slightly
expands under the influence of density pressure driven by proliferative dynamics and
anti-crowding.

From a qualitatively viewpoint, in both scenarios the dynamics are initially
characterised by a diffusing mass that expands orthogonally to the direction of
chemotactic motion (more evident for β = 0.8) and then by a direct movement
towards the oxygen source. Moreover, in both case, the presence of flux-limited
operator in the drift term determines steep and well-defined invasion fronts, reducing
the typical artificial tails characterizing linear diffusion and, thus, its excessive
influence on cell spread. However, comparing the experiments conducted for the two
scenarios makes it evident how conditions favoring anti-crowding dynamics can lead
to significant changes in tumour shape even for small variations in β . In fact, when
anti-crowding is the dominant mechanisms, cells tend to move toward the location
of the oxygen source with an evident large spread in the domain, with respect to the
chemotactic dominated scenario, which shows cells compactly migrating towards
more oxygenated regions. Looking at the tumour profiles at time t1 and t2 (second
row in Fig. 6.3), the differences in height and the size of the mass support are evident.
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This is reflected also in the evolution of mean, mode, and standard deviation of
cy∗(y, t). In fact, for higher value of β , mean η and mode ψ show a similar trends
over time. However, the lower β , the greater the differences in their evolution. This
is because the larger spread of the tumour mass and the slower cell movement in
the domain keeps the value of the mean higher for longer time. Moreover, this
determines the wider variety of values covered by the distribution and, thus, a larger
standard deviation.

6.4.3 Experiment 2: impact of Snail expression on cell prolifera-
tion

In the second experiment, we focus on the proliferative dynamics characterizing
tumour cells. Here, we concentrate on the scenario where chemotaxis drives cell
motility and compare two proliferative models: P1, introduced in (6.3.21), and P2,
introduced in (6.3.22). It is worth to recall that the shared elements in these two mod-
elling choices are: (i) a proliferative rate inversely proportional to cell density; (ii)
an increase in proliferative activity correlating with higher levels of available oxygen;
(iii) the assumption that cells capabilities of moving and proliferating are inversely
correlated. What distinguishes these approaches is the epigenetic or phenotypic
characterisation of the duality between cells’ motility and proliferative dynamics.
In the case of P1, the factor (1− s∗) ensures a direct correlation between higher
Snail expression and lower proliferative activity. Instead, the environmental factor
has a indirect impact on the trade-off characterisation, as oxygen density influences
proliferative activity only indirectly by determining Snail expression. In contrast,
for P2, the factor 1− a2

a1
F
(
y,O2(x)

)
ensures that the proliferative activity decreases

as F(y∗,O2(x)) increases, which is directly proportional to Snail expression and
inversely proportional to oxygen density.

To compare these two proliferative choices, we conduct two simulations under
identical environmental and initial conditions for tumour and oxygen, as well as
model parameters. The only difference between the simulations lies in the formula-
tion of the proliferative term. To quantify the results, we consider the 1D section of
the domain Ω along the bisector (similar to the previous example) and we shown the
difference between the tumour densities resulting from (6.3.23) with P1 (MP1(t,x))
or P2 (MP2(t,x)).
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Fig. 6.4 Experiment 2: impact of Snail expression on cell proliferation. Top: 1D profiles
representing the evolution along the bisecting line of Ω of the difference between the solution
of the tumour equation in (6.3.23) with the proliferation term given in (6.3.21) (MP1(t, x̄))
and the solution of tumour equation (6.3.23) with the proliferation term given in (6.3.22)
(MP2(t, x̄)) at four different time steps, i.e., t = 5.2 d, t = 10.4 d, t = 15.6 d, and t = 20.8 d.
x̄ indicates the spatial position along this bisecting line. Bottom: quantification of percentage
tumour mass increment (left plot) and velocity of the centre of mass (right plot) over time
with the two choices of the proliferative operator. Continuous grey line refers to the choice
(6.3.21), while dashed black line to (6.3.22). The four time steps represented in the plot in the
top rows are reported here with four different vertical bars. Vertical lines in the bottom-row
plots mark the selected times depicted in the first row. References to the four selected time
steps are repeated in each graph using consistent color and line styles. Parameter values are
set as reported in Table 6.1.
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We consider four equally spaced time points: t1 = 5.2d, t2 = 10.4d, t3 = 15.6d,
and t4 = 20.8d. Moreover, defined

Q(t) =
∫
Ω

M(t,x)dx (6.4.6)

as the total amount of tumour cells in the spatial domain, we introduce the percentage
mass increment of tumour mass from the initial configuration as

I%(t) = 100 ·
(

Q(t)−Q(0)
Q(0)

)
, (6.4.7)

and we compute the centre of mass of the tumour

ϒϒϒ(t) =
∫
Ω

xM̄0(t,x)dx

with M̄(t,x) = M(t,x)/Q(t), and the velocity of the centre of mass

V(t) = ∂tϒϒϒ(t) . (6.4.8)

Results of this experiment are shown in Fig. 6.4. Precisely, the top row illustrates
the evolution of the difference between MP1(t,x) and MP2(t,x) along the 1D section
In the bottom row, we depict the temporal evolution of the mass increase I% defined
in (6.4.7) (left plot) and the velocity of the centre of mass along the bisector defined
in (6.4.8) (right plot).

Analysis of the plot in the top row reveals that the difference is consistently
positive, supporting the intuitive notion of a stronger trade-off is determined in
the case of P2, where both the epigenetic trait and environmental factor directly
contribute to module proliferation. This observation is further corroborated by the
bottom-row plots of Fig. 6.4. In fact, we notice that the final percentage increment
is six times higher for the epigenetic-driven duality (P1) with respect to the case
in which there is a direct contribution of both epigenetic trait and environmental
factor (P2). Considering, instead, the evolution for the centre of mass, from the
bottom-right plot of Fig. 6.4 we observe a perfect overlap of its velocity dynamics
throughout the experiment. This confirm the fact that any observed differences can
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be solely attributed to the proliferative dynamics resulting from the distinct trade-offs
under analysis, while the spatial dynamics are not affected.

6.4.4 Experiment 3: impact of Snail expression and hypoxia on
cancer cell migration

In this third experiment, we aim to assess the impact of Snail expression and exposure
to hypoxia on cancer cell migration. Our goal is to validate our model by replicating
experimental results which investigate the role of hypoxia in cell migration and
determine whether motility can be triggered by various factors, including inhibition
of Snail expression. To achieve this, we specify the parameter values and the
environmental conditions such that they replicate different experimental scenarios,
and we compare the resulting outcomes with the empirical observations.

We consider the parameter gs, accounting for Snail transcription and, from the
reference value of gs = 1.5(molecules ·min−1), used for the experiments in Section
6.4.2 and 6.4.3, we define up-regulation and down-regulation of Snail expression
by setting as gs = 2.1(molecules ·min−1) and gs = 0.9(molecules ·min−1) respec-
tively. This corresponds to variations of 0.6 above and below the reference value.
To ensure that the condition (2) holds true, we consider a slightly higher value for
Snail degradation rate, i.e., γs = 0.03(min−1). For the environmental conditions, by
referring to [320] we considering levels of oxygenation compatible with physoxia
(7%) and pathological hypoxia (1%) and we set the scaling factor O2,0 such that, in
our model, these conditions are represented by O2 = 0.7 and O2 = 0.1.

We aim at qualitatively replicate the experimental findings proposed in Ref. [305]
and [459]. Specifically, in Ref. [305] the authors investigate human breast cancer
cells (cell lineage MCF-7). In their experiment, they analyse fold change in tumour
cell migration by migration assays using Transwell migration chambers. Precisely,
cells were suspended in upper Transwell chambers in serum-free media and allowed
to migrate towards a serum gradient (10%) in the lower chamber for 6 hours. The
experiment was repeated in normoxic conditions by transiently overexpressed and
silenced the protein expression. Instead, in Ref. [459], the authors employed a
similar methodology with the human hepatocellular carcinoma (cell lines HepG2).
They assessed cell motility with the same migration assays comparing experiments
conducted in normoxic and hypoxic conditions.
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We replicate the chamber setup by considering our square domain Ω intersected
by a vertical membrane aligned parallel to the x2 axis and positioned at x1 = 25mm.
A 1D section of the chamber setup is illustrated in Fig. 6.5.

Fig. 6.5 Experiment 3: initial conditions and setting. 1D graphical illustration of the
setting implemented for studying the impact of Snail expression and hypoxia on cancer
migration. The domain Ω is divided in two chambers. Tumour cells are distributed in the
upper chamber, i.e., in ΩU = [0,25]× [0,50]mm2, accordingly to Equation (6.4.9), while no
cells are initially located in the bottom chamber, i.e., in ΩB = [25,50]× [0,50]mm2. Two
different linear oxygen distributions (for normoxia and hypoxia scenarios) are represented as
dashed black lines. The central membrane dividing the two chamber is shown in green.

Here, the left part of the domain (for x1 < 25 mm) represents the upper chamber,
where all cell are initially distribute following

M0(x) =


A x1 < xs

Ae
−
(x1 − xs)

2

θ 2
M x1 ≥ xs

(6.4.9)

where A = 0.9, xs = 10mm and θM = 3mm. We consider the following linear
expression for the oxygen distribution

O(x) = Omin +
(Omax −Omin)

50
x1

with Omin = 0.7 and Omax = 1.0 in normoxic conditions, while Omin = 0.1 and
Omax = 0.4 in hypoxic conditions. This choice establish a fixed oxygen gradient
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along the chamber, which is consistent with the biological setting. We conduct five
experiments, which are summarised in Table 6.3.

Name Oxygenation Snail expression

A normoxia control

B normoxia up-regulated

C normoxia down-regulated

D hypoxia control

E hypoxia down-regulated

Table 6.3 Summary of the conducted experiments. The table show the information
regarding tissue oxygenation and Snail expression in the five scenarios analysed in Section
6.4.4.

Under the aforementioned conditions, we allow cells to move in response to the
environmental stimuli for a duration of T = 6 hours. Subsequently, we measure the
quantity of tumour mass that has pass through the membrane as

Q̃(t) =
∫

ΩB

M(t,x)dx ,

where ΩB = [25,50]× [0,50]mm2 represents the bottom chamber.

We designate the results obtained in scenario (A) as the control case and we use
them to normalize the outcomes of other experiments. Fig. 6.6 collects all the results
of the five tests. In the top row, we show the results related to the scenarios (A), (B),
and (C) and we compare them with the data taken from [305], while in the bottom
row, we refer to scenarios (A), (D), and (E) and we compare the results with the data
taken from [459]. Each column comprises two column. The left column provides a
map of the values taken by F(y∗,O2) against various levels of oxygenation and Snail
transcription, while the right column provides histograms comparing the results of
in-vitro (black) and in-silico (black) experiments. As clearly shown in Fig. 6.6, for
both the breast cancer and the hepatocarcinoma cases the model is able to effectively
replicate the experimental data.
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Fig. 6.6 Experiment 3: impact of Snail expression and hypoxia on cancer cell migration.
Left: representation of the level curve of the tactic sensitivity F(gs,O2) with respect to the
Snail transcription rate gs and the oxygen concentration O2. The parameter combination
referring to the five analysed scenario are indicated with grey bullets. Right: comparison be-
tween in-vitro (black) and in-silico (red) results concerning the fold change in cell migration
(relative to control) in the five different scenarios. Precisely, in the top-right panel MCF-7
cells are considered in normal condition (control, scenario A), with Snail overexpression (B),
or with Snail knockdown (C). In-vitro data were obtained from Figure 3B and 3D in Ref.
[305]. In the bottom-right panel, HepG2 cells are considered in normoxic condition (control,
A), hypoxic conditions (D), or hypoxic condition with Snail silencing (E). In-vitro data were
obtained from Figure 1A and 1E in Ref. [459]. In both cases, In-silico results were obtained
by simulating equation (6.3.23) under normoxic and hypoxic conditions and for different
values of the parameter gs. Means ± std in the simulations are obtained by varying the the
parameter gs within a range of ±0.05.

Specifically, in the case of breast cancer, the in-silico results closely resemble
those obtained in the in-vitro experiments for the scenario (B). In scenario (C), any
discrepancy appears to be merely apparent, as the in-silico results fall within the error
band of the in-vitro experiment, which notably exhibits a wider range of data. For
hepatocarcinoma, there is a remarkably high correspondence between the in-vitro
and in-silico data, experiments (D) and (E) showing a notable match. Furthermore, it
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is worth to note how the level curves of F(gs,O2) (left column of Fig. 6.6) provides
insight into the experimental observations. Specifically, previous experimental work
have noticed that the knockdown of Snail nullifies the motility advantage gained
under hypoxic conditions (D) compared to normoxia (A), bringing the motility to
a level comparable with the control case (as observable by comparing scenarios
(E) and (A)). In our case, this can be observed by looking at the location of the
corresponding bullets on the level plot of F(gs,O2): (A) and (E) are located, in fact,
almost on the same level curve. This implies that, given equal cell density (ensured
at least initially with identical initial conditions) and a consistent oxygen gradient
(maintained at the same value across the domain and for all oxygenation conditions
in this experiment), the term governing cell speed assumes comparable values in both
experiments (slightly lower for (E)). Consequently, the discrepancy in the number of
cells passing through the membrane between the two cases differs slightly.

6.4.5 Experiment 4: hypoxia-driven ring structure in tumour
and Snail distributions

As last experiment, we refer to additional results shown in Ref. [305], where the
authors investigate the expression of Snail in non-invasive ductal carcinoma in situ
(DCIS), an early breast cancer, considering a model system of hypoxia in-vivo.
Considering a central necrotic area, their analysis of several DCIS samples revealed a
typical pattern of HIF-1α expression, with increasing staining intensity approaching
the areas necrosis, and similar spatial distribution for the nuclear expression of
Snail, gradually increased approaching the necrosis (see Figure 6 in Ref. [305]). In
particular, the authors show that hypoxia induces Snail expression independently of
other EMT markers.

To qualitatively reproduce these observations, we simulate an initial tumour mass
located in the centre of the domain. We assume an oxygen distribution that decreases
towards the centre of the domain, leading to highly hypoxic (or necrotic) areas due
to higher consumption in regions with higher cell density. The initial condition for
cancer cells is given in (6.4.5) setting AM = 1, xM = [25,25]mm, and θM = 5mm
while for oxygen the fixed distribution is given by 1−O(x), with O(x) defined in
(6.4.4) and AO = 0.8, xO = [25,25]mm, and θO = 13mm. The initial condition for
tumour and oxygen are illustrate in Fig. 6.7.
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Fig. 6.7 Experiment 4: initial conditions and setting. Left: initial Gaussian distribution
of the tumour cells M0, located at position xM = [25,25]mm in the domain Ω = [0,50]×
[0,50]mm2, together with the level plot for the fixed Gaussian distribution of oxygen O2,
located at the same position. Right: 1D profiles of tumour (continuous line) and oxygen
(dashed line) distribution along the bisecting line (light grey line in the 2D plot) of the
domain Ω. x̄ indicates the spatial position along this bisecting line.

Fig. 6.8 collects the results of this experiment at four time steps: t0 = 0, t1 = 5,
t2 = 20, and t3 = 35 hours. The first row depict a 2D representation of the tumour
mass, including density map and contour lines highlighting the tumour’s edge
(defined by a density threshold corresponding to 10% of the carrying capacity).
From system (6.3.23), defined the average expression of the Snail protein in the cell
population as

M̄y(t,x) =
My(t,x)
M(t,x)

=
a2

a1
F(y∗,O2) for x ∈ supp(M) , (6.4.10)

we illustrate its evolution in the second row of Fig. 6.8. Finally, in the third row, the
1D section of the tumour mass density along the bisector at the four specified times
is shown.

We observe that, initially, both anti-crowding and chemotactic stimuli point in
the same direction, which tend to move the cells away from the central hypoxic
region, where cell density is high and oxygen concentration is low. Consequently,
in this initial phase, cell migration is rapid, leading to a fast transformation of the
peaked initial Gaussian cell distribution into a smoother bubble profile (as shown at
time t1).
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Fig. 6.8 Experiment 4: hypoxia-driven ring structure in tumour and Snail distribution.
Evolution of model (6.3.23) with the initial conditions shown in Fig. 6.7. Top row: evolution
of the tumour mass M(t,x) in the domain Ω = [0,50]× [0,50]mm2 at four different time
step, i.e., initial time t0 = 0 h (continuous light pink line), progression at t1 = 5 h (dot pink
line), t2 = 20 h (dashed dark pink line), and t3 = 35 h (dot-dashed purple line). Middle row:
evolution of the average My(t,x) defined in (6.4.10) at the same time steps. Bottom row:
1D profiles of the tumour mass evolution along the bisecting line (light grey line in the first
2D plot) of the domain Ω at the same time steps. x̄ indicates the spatial position along this
bisecting line. References to the four selected time steps are repeated in each graph using
consistent color and line styles. Parameter values are set as reported in Table 6.1.

As time progresses, the prevalence of chemotactic motion results in a depletion
of cells from the central mass, gradually giving rise to a ring-like structure (times
t2 and t3). During this phase, movement starts to slow down due to two main
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factors. Firstly, comparing the position of the ring with respect to the oxygen profile
(shown in Fig. 6.7), we observe a decrease in motility caused by both high levels
of oxygenation (reducing the tactic sensitivity F(y∗,O2)) and low oxygen gradients
(reducing the chemotactic stimulus). Secondly, the slowdown is due to the anti-
crowding mechanism, which, once the void forms at the centre of the mass, would
induce cells from the inner part of the ring to move towards the centre, conflicting
with the chemoattractant-driven movement. These observations are also consistent
with the plots in the second row of Fig. 6.8, where M̄y(t,x) is shown. They illustrate
how, initially the average expression of Snail is high, inducing rapid cell migration,
and it increases approaching the central hypoxic region. Then, while the tumour
mass moves outward, this expression decreases as cells reach more oxygenated areas,
still maintaining higher values around the inner border of the ring. It is interesting
how the model is able to qualitatively capture the two main dynamics shown in the
data from [305]. In fact, the model reproduces both the experimentally observed ring
shape of the tumour mass and the spatial distribution of the average Snail expression,
mirroring the findings of the experimental study.

6.5 Conclusion and future perspectives

The migration of tumour cells in response to oxygen concentration gradients re-
mains a critical area of investigation in cancer biology. While the role of hypoxia
in promoting tumour aggressiveness and metastasis is well recognised, the exact
mechanisms driving cell migration in response to oxygen levels are still an area of
investigation and understanding these mechanisms may be crucial for developing
effective therapeutic strategies.

In this study, we developed a novel mathematical model to investigate the inter-
play between hypoxia, molecular signaling pathways, and tumour cell migration.
Specifically, we proposed a multi-scale model that naturally integrates single-cell
behaviour driven by Snail expression with macroscopic scale dynamics describing
tumour migration in the tissue. Our approach employs tools and methods from
the kinetic theory of active particles to construct a kinetic transport equations that
describe the evolution of the tumour cell distribution based on detailed microscopic
dynamics. By employing proper scaling arguments, we formally derived the equa-
tions for the statistical moments of the cell distribution. These capture cells density



226 Snail-mediated response to hypoxia: multiscale modelling

dynamics, influenced by limited non-linear diffusion and oxygen-mediated drift,
and the evolution of the average Snail expression within the tumour population,
which directly relates to tumour migratory capability. Overall, our model offers a
detailed description of macroscopic tumour cell dynamics, considering the effect
of microscopic Snail signalling pathways in the mechanisms of tumour response to
hypoxia. This modelling approach represents a promising way to integrate molecular
signaling pathways with cell migration dynamics.

We validated the model in different scenarios with biological relevance, focusing
on the role of chemotactic-dominated motion and anti-crowding effects, and analyz-
ing the effect of Snail expression on cell migration and proliferation. We also tested
the reliability of our approach by testing its ability to quantitative replicate exper-
imental experimental results from two different studies published in the literature.
We investigated the effect of hypoxia and Snail knockdown on the motility of cancer
cells, comparing our results with those presented by [459] on human hepatocarcino-
mas. Moreover, we considered the findings of [305] and we replicate in-silico the
results regarding the effect of Snail over-expression and Snail knockdown on the
migration capability of human breast cancer cells. We also analysed the spatial distri-
bution of Snail expression within the tumour mass in response to hypoxia, showing
how the model is able to reproduce the ring patterns observed experimentally in Ref.
[305]. These results support the idea that our mathematical framework offers new
perspectives for interpreting experimental data and understanding the underlying
biological mechanisms driving tumour migration.

Moving forward, it will be important to explore the implications of our findings
in the context of clinical outcomes and therapeutic interventions. Particularly, our
results highlight the importance of considering the dynamic regulation of Snail
expression in response to hypoxia. This finding underscores the potential signifi-
cance of developing strategies to target Snail as a therapeutic approach to control
tumour cell migration and metastasis. Furthermore, incorporating heterogeneous and
dynamic environmental factors, such as a non-stationary oxygen distribution with
its consumption by tumour cells, could improve the predictive power of our model
and enhance the quantitative fitting of the experimental data, ultimately leading to a
better understanding of tumour invasion.

In summary, the proposed mathematical modelling approach is a novel and
valuable tool to integrate the detail microscopic cell dynamics with cell migration
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dynamics at a macroscopic (tissue) level. In particular, the multi-scale modelling
approach allows to properly derive the macroscopic terms driving cell evolution
from a detailed description of the single-cells dynamics, instead of phenomeno-
logical stating them directly at macroscopic level. Our findings offer interesting
interpretations of the complex dynamics underlying tumour progression and motility,
providing new perspectives for interpreting experimental data and understanding
the biological mechanisms driving tumour development. This paves the way for
personalised medicine approaches tailored to individual tumour characteristics.



Part III

Future perspectives





Chapter 7

Continuous modelling for go or/and
grow: mathematical hints for tumour
edge analysis

7.1 Introduction

Motility and proliferation are two essential aspects to be considered when analysing
tumour mass development. As already stated, the "go or grow" hypothesis [215],
arising from the observation of glioblastoma multiforme, states that glioma cells
either favour proliferation or migration at the expense of the other. Multiple factors,
such as ECM components, microRNAs and transcription factors, could regulate this
migration/proliferation dichotomy.

In previous chapters, we have highlighted the role of the environment in determin-
ing both the intake and the localisation of different phenotypic traits. In this chapter,
however, we focus on the fundamental dynamics of tumour cell movement and try
to understand how a simple mathematical model can capture different structures
deriving from them. In this way, temporarily suspending the role of the environment
on phenotypic determination and localisation, we try to find an explanation both for
the possible existence of an effective trade-off between proliferation and motility
and for the generation of niche spaces for each phenotype.
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In Ref. [278], recent research has unveiled the role of glucose metabolism in
driving these distinct phenotypes. Specifically, the authors identified an oxygen-
dependent metabolic switch between the pentose phosphate pathway (PPP) and the
preparatory phase of glycolysis in glioma stem-like cells and tissues, each associated
with unique cellular behaviours. Under hypoxic conditions, there is an upregulation
of glycolysis enzymes and an increase in glycolytic flux, which correlates with
enhanced cell migration. Conversely, the PPP is favoured when oxygen is available,
promoting cell proliferation [256]. The dichotomous hypothesis of go or grow,
however, seems to be too strong: recent investigations have concluded that if, on the
one hand, the interaction with the environment and transcription factors can favour
one phenotype over the other, it is not granted an a priori exclusion of the other. In
Ref. [191], authors showed that highly invasive cells exhibited exclusive biological
activities, including invasion, migration, urokinase-type plasminogen activation,
and branching morphogenesis. In contrast, the highly proliferative subcloned cells
demonstrated distinct traits such as anchorage-independent growth in soft agar and ro-
bust tumourigenicity when transplanted as xenografts in immune-compromised mice.
Upon exposure to HGF/SF, the highly invasive cells activated the MAPK pathway,
whereas the highly proliferative cells favoured signalling through Myc. Interestingly,
subcloned cells displaying both invasive and proliferative characteristics exhibited
concurrent activation of both signalling pathways in response to HGF/SF stimulation.
These findings underscore the collaborative role of the mitogen-activated protein ki-
nase and Myc pathways in conferring invasive and proliferative phenotypes to tumour
cells. Moreover, the authors establish a model for investigating how the interplay
between invasion and proliferation transitions contributes to malignancy progres-
sion. The role of hypoxia, considered in Ref. [215] as the primary environmental
stressor for the phenotypic switch, is controversial. In most cell types, exposure to
hypoxia typically results in decreased cell proliferation, as the increased cellular
density, accompanied by higher oxygen demand, would further intensify hypoxic
conditions. However, specific cell populations exhibit sustained cell proliferation
despite hypoxic environments. This phenomenon is frequently observed in cancer
pathology, where malignant cells continue to proliferate vigorously even under low
oxygen conditions. Interestingly, this ability to maintain proliferation in hypoxia
is not exclusive to cancer cells but also serves a physiological role, particularly in
preserving stem cell populations residing within hypoxic niches. In such cases, the
capacity for sustained proliferation enables stem cells to perpetuate their pool and
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contribute to tissue homeostasis and regeneration despite the limited oxygen avail-
ability in their microenvironment [227]. Moreover, in Ref. [289], authors show that
HIF-1α exerts an influence on mouse embryonic fibroblast cell migration unrelated
to hypoxia-induced effects. In Ref. [438], authors test the validity of the go-or-
grow hypothesis using two-dimensional in vitro assays involving melanoma cells
tagged with fluorescent cell-cycle indicators and treated with cell-cycle-inhibiting
drugs. They present evidence indicating that cell motility remains unaffected by the
cell-cycle phase, and non-proliferative arrested cells exhibit comparable motility
to actively cycling cells. This does not counter the observations of inhibition of
one phenotype over the other but makes the hypothesis that the trade-off is due to
energy optimisation (i.e., the cell must decide whether to invest in movement or
proliferation) less plausible. More likely, this leads us to believe that the activation
pathways, triggered by environmental factors, which lead to the two different phe-
notypes, are often mutually inhibitory but, in some cases, can coexist. Both in the
proliferation/motility dichotomy and in considering the EMT, it therefore makes
more sense to talk about plasticity and transition rather than switches.

What is certain is that heterogeneity of proliferation and motility coexists within
the same tumour mass and that these different traits lead to a geometric characteri-
sation of the acquired phenotypes. Understanding the localisation of the different
phenotypes is particularly important for understanding the leading dynamics of
tumour evolution and from the perspective of a targeted therapeutic or surgical
intervention. As an example, in Ref. [322], it is noticed how the molecular and
phenotypic characteristics of cells at the invasive tumour periphery in unresectable
glioblastoma (GBM) are not yet fully understood. Their findings indicate that within
the invasive edge and central core of the tumour, there exist two distinct varieties
of glioma stem-like cells (GSCs), resembling the proneural (PN) and mesenchymal
(MES) subtypes, respectively. In Ref. [398], authors propose a stratification model
in which an external proliferation rim is separated by an inner necrotic core by an
intermediate rim of quiescent cells. How these two structures intersect (proliferative
and migratory rims) is still unknown.

From a biological point of view, different rims can be detected by analysing
medical images. We refer to Magnetic Resonance Imaging (MRI) and Positron
Emission Tomography (PET) techniques. In particular, MRIs differentiate between
T1 and T2. T1 MRI emphasises anatomy, delivering clear images and depicting
fluids as dark. In contrast, T2 MRI is tailored to highlight pathology, rendering fluids
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bright, which proves advantageous in visualising inflammation, oedema, and specific
lesions. The differentiation between T1 and T2 sequences is pivotal for precise
medical diagnoses. Essentially, while T1 delineates structures, T2 detects anomalies.
Moreover, PET provides physiological data instead of morphological information,
such as MRI. The procedure begins with the injection of a radiopharmaceutical
composed of a radioisotope chemically bound to a metabolically active molecule
(carrier). When the active molecule reaches a specific concentration within the
organic tissues to be analysed, the atoms of the isotope decay, each emitting a
positron, which annihilates after a few millimetres with an electron, producing a
pair of gamma photons emitted in opposite directions. These photons are detected
when they reach a scintillator and only if they are in pairs. The hypothetical position
of the body from which they were emitted can be reconstructed by measuring the
position where the photons hit the detector. In oncology, the most common tracer
is based on a modified molecule of glucose, which is taken up to a greater extent
by metabolically hyperactive neoplastic cells having anaerobic glycolysis as their
primary metabolic pathway for energy supply.

In this chapter, our modelling procedure pays attention to building a mathematical
structure that allows for descriptors comparable to the medical images introduced so
far.

Some works have already moved in the direction of this characterisation in
mathematical terms. In Ref. [118], the pivotal role of mechanical alterations in
the progression of solid tumours is studied. It is shown how changes in stromal-
epithelial interactions can lead to a sustained elevation in cytoskeletal tension, thereby
promoting the expression of malignant traits. Authors model the avascular tumour as
an expanding elastic spheroid, with growth occurring through both volume expansion
and mass production within a cellular rim, integrating growth rate, solid stress, and
the diffusion of biomolecules within a heterogeneous mass. In Ref. [246], authors
validate with PET images diverse in silico modelling techniques to capture tumour
heterogeneity, hypothesising that regions exhibiting heightened metabolic activity
would relocate towards the periphery as tumours progress towards a more aggressive
state. Moreover, in Ref. [188], authors hypothesise different reasons for selective
processes for various phenotypes such as tumour’s specific niche, cell turnover rates,
the nature of the trade-off between different traits, and the causes of cell deaths
(demographic or environmental). They use a spatially explicit ABM in order to
investigate the evolution of proliferative and motile traits, noticing a geometric
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characterisation of niches, having migration favoured at the tumour’s edge and
proliferation favoured in the interior. Higher cell turnover rates marginally decelerate
tumour growth but expedite the evolutionary process for both proliferation and
migration. Without a trade-off, proliferation and migration values tend to increase
continuously, while a convex trade-off typically promotes proliferation, fostering the
coexistence of generalist and specialist phenotypes. Conversely, a concave trade-
off favours migration at lower death rates but switches to proliferation at higher
rates. Demographic stochasticity-induced mortality favours proliferation, whereas
environmental stochasticity favours migration. Other relevant works in this direction
also exist in Ref. [330, 397, 195, 309, 413, 455, 401, 383].

In the next section, we introduce and analyse two continuous mathematical
modelling approaches that are able to describe cell movement, proliferation, and
epigenetic characterisation of both motile and proliferative traits. The results ob-
tained so far are part of a joint project with the Mathematical Oncology Laboratory
(MOLAB) of Ciudad Real (Spain), in particular under the supervision of Profes-
sor Victor M. Pérez García and in collaboration with Professor Gabriel Fernández
Calvo, Dr. Julián Pérez Beteta, Dr. Carmen Ortega Sabater, and Dr. Juan Jiménez
Sánchez. The chapter is organised in the following sections. In Section 7.2, we
give an overview of the adopted modelling framework, explaining the derivation
procedure (in Section 7.2.1) and presenting the derived models (in Section 7.2.2)
organised in two macro-settings. In Section 7.3, we conduct a theoretical analysis of
the models, investigating the specific characteristics of two settings and comparing
them. In Section 7.4, we present the results obtained so far via numerical simulations
of the models, and we compare the two settings considering mathematical aspects
and biological coherence. Finally, Section 7.5 summarises the findings so far and
shows this work’s next steps and future perspectives.

7.2 The modelling framework

7.2.1 Model derivation

In this section, we want to highlight how different continuous formulations, with
respect to spatial dynamics, arise from a discrete-continuous limit when considering
different dynamics at the cell level. Firstly, let us consider a one-dimensional domain
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for space. Note that we consider two traits, referring to them with U and W , which
are responsible for epigenetically characterising tumour cells. In particular, trait U
defines the proliferative potential of cells while trait W define their motility potential.
Thus, considering NU and NW possible states for, respectively, U and W traits and
labelling them with u = 1, . . . ,NU and w = 1, . . . ,NW , we consider a number NU ·NW

of cell populations including all possible combinations. We adopt a voxel structure,
discretising the space with a step h, and we use the following notation: au,w

k, j is the
density of population having traits u and w, at time step k in voxel j where tk = kτ

and voxel j is centered at x j = jh and of size h. Let us define ρk, j = ρ(tk,x j) :=

∑
NU
u=1 ∑

NW
w=1 au,w

k, j as the total cell density at time step k in voxel j (summing up all
cell populations). Let Pu,w

k, j = P1(u)P2(ρk, j) be the net growth rate of population u,w
at time tk in voxel x j. P is such that dP2

dρ
< 0, P2(K) = 0 where K is the carrying

capacity, and P1(u) > P1(u− 1) ∀u = 2, . . . ,NU and P1(1) > 0. This means that
cells, regardless of their characterisation, proliferate proportionally to the available
space and that populations are ordered, with respect to U trait, so that a higher trait
corresponds to a higher proliferation rate. Defining (·)+ and (·)− as the positive and
negative part, for the net growth rate, we say that cells of population u,w which are
in voxel j at the time tk will divide with probability τ(Pu,w

k, j )+, die with probability
τ(Pu,w

k, j )− and stay quiescent with probability 1−τ(Pu,w
k, j )+−τ(Pu,w

k, j )− = 1−τ|Pu,w
k, j |.

The anti-crowding case

Now, let us consider, for the first case, a density-dependent probability of movement.
We refer to this scenario as the anti-crowding modelling strategy, as cells tend to
move away from high-density (crowded) zones. In particular, we let cells move
toward a less dense zone with a probability proportional to the strength of the

negative gradient in that direction. LFu,w
k, j = ν(w)

(ρk, j−ρk, j−1)+
2K is the probability that

cells of the population u,w in voxel j at time k move to the voxel at their left and

RGu,w
k, j = ν(w)

(ρk, j−ρk, j+1)+
2K the probability they move to the right. Here ν(w) is such

that ν(w) > ν(w−1) ∀w = 2, . . . ,NW and ν(1) > 0. Considering the principle of
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mass balance, we obtain:

au,w
k+1, j = RGu,w

k, j−1

[
2τ(Pu,w

k, j−1)++1− τ|Pu,w
k, j−1|)

]
au,w

k, j−1

+LFu,w
k, j+1

[
2τ(Pu,w

k, j+1)++1− τ|Pu,w
k, j+1|)

]
au,w

k, j+1

+

(
1−LFu,w

k, j −RGu,w
k, j

) [
2τ(Pu,w

k, j )++1− τ|Pu,w
k, j |
]

au,w
k, j .

Considering the mathematical definition of |.| and the possible sign of P we
obtain:

au,w
k+1, j = ν(w)

(ρk, j−1 −ρk, j)+

2K

(
1+ τPu,w

k, j−1

)
au,w

k, j−1

+ν(w)
(ρk, j+1 −ρk, j)+

2K

(
1+ τPu,w

k, j+1

)
au,w

k, j+1

+

(
1−ν(w)

(ρk, j −ρk, j−1)+

2K
−ν(w)

(ρk, j −ρk, j+1)+

2K

) (
1+ τPu,w

k, j

)
au,w

k, j .

We rewrite the equation as follows:

au,w
k+1, j = au,w

k, j + τPu,w
k, j au,w

k, j

+
ν(w)
2K

[
(ρk, j−1 −ρk, j)+au,w

k, j−1 +(ρk, j+1 −ρk, j)+au,w
k, j+1

]
− ν(w)

2K

[
(ρk, j −ρk, j−1)+au,w

k, j +(ρk, j −ρk, j+1)+au,w
k, j

]
+

ν(w)τ
2K

[
(ρk, j−1 −ρk, j)+Pu,w

k, j−1au,w
k, j−1 +(ρk, j+1 −ρk, j)+Pu,w

k, j+1au,w
k, j+1

]
− ν(w)τ

2K

[
(ρk, j −ρk, j−1)+Pu,w

k, j au,w
k, j +(ρk, j −ρk, j+1)+Pu,w

k, j au,w
k, j

]
.
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We can consider the continuous formulation of indices in time and space, assuming
ak, j = a(t,x), ak±1, j = a(t ± τ,x) and ak, j±1 = a(t,x±h)

au,w(t + τ,x) = au,w(t,x)+ τP1(u)P2(ρ(t,x))au,w(t,x)

+
ν(w)
2K

[
(ρ(t,x−h)−ρ(t,x))+au,w(t,x−h)

]
+

ν(w)
2K

[
(ρ(t,x+h)−ρ(t,x))+au,w(t,x+h)

]
− ν(w)

2K

[
(ρ(t,x)−ρ(t,x−h))+au,w(t,x)

]
− ν(w)

2K

[
(ρ(t,x)−ρ(t,x+h))+au,w(t,x)

]
+

ν(w)τ
2K

[
(ρ(t,x−h)−ρ(t,x))+P1(u)P2(ρ(t,x−h))au,w(t,x−h)

]
+

ν(w)τ
2K

[
(ρ(t,x+h)−ρ(t,x))+P1(u)P2(ρ(t,x+h))au,w(t,x+h)

]
− ν(w)τ

2K

[
(ρ(t,x)−ρ(t,x−h))+P1(u)P2(ρ(t,x))au,w(t,x)

]
− ν(w)τ

2K

[
(ρ(t,x)−ρ(t,x+h))+P1(u)P2(ρ(t,x))au,w(t,x)

]
.

With all the necessary regularity hypothesis, moving au,w(t,x) term to the left, we
use Taylor expansion considering infinitesimal time step τ and space step h to obtain:
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τ∂tau,w(t,x)+
τ2

2
∂

2
tt a

u,w(t,x)≈ τ P1(u)P2(ρ(t,x)) au,w(t,x)

+
ν(w)h2

2K
au,w(t,x) ∂

2
xxρ(t,x)

+
ν(w)h2

2K

[(
∂xρ(t,x)

)
+
−
(
−∂xρ(t,x)

)
+

]
∂xau,w(t,x)

+
ν(w)τ

2K
au,w(t,x) P1(u)P2(ρ(t,x−h))

(
−h∂xρ(t,x)

)
+

+
ν(w)τ

2K
au,w(t,x) P1(u)P2(ρ(t,x+h))

(
h∂xρ(t,x)

)
+

− ν(w)τ
2K

au,w(t,x) P1(u)P2(ρ(t,x))
(
h∂xρ(t,x)

)
+

− ν(w)τ
2K

au,w(t,x) P1(u)P2(ρ(t,x))
(
−h∂xρ(t,x)

)
+

Calculating:

τ∂tau,w(t,x)+
τ2

2
∂

2
tt a

u,w(t,x)≈ τ P1(u)P2(ρ(t,x)) au,w(t,x)

+
ν(w)h2

2K

(
au,w(t,x) ∂

2
xxρ(t,x) + ∂xau,w

∂xρ(t,x)
)

+
ν(w)τh

2K
F(t,x)

with

F(t,x) =
[

P1(u)P2(ρ(t,x−h))(−∂xρ(t,x))+ +

+P1(u)P2(ρ(t,x−h)
)(

∂xρ(t,x)
)
+

]
au,w(t,x)

−
[(

∂xρ(t,x)
)
+
+
(
−∂xρ(t,x)

)
+

]
P1(u)P2(ρ(t,x)) au,w(t,x)
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We divide by τ:

∂tau,w(t,x)+
τ

2
∂

2
tt a

u,w(t,x)≈ P1(u)P2(ρ(t,x))au,w(t,x)

+
ν(w)h2

2Kτ

[
au,w(t,x) ∂

2
xxρ(t,x) + ∂xau,w

∂xρ(t,x)
]

+
ν(w)h

2K
F(t,x)

And then compute the limit for τ → 0, h → 0 such that ∀w ν(w)h2

2τ
→ D(w):

∂tau,w(t,x) = P1(u)P2(ρ(t,x)) au,w(t,x) +

+
D(w)

K

[
au,w(t,x)∂ 2

xxρ(t,x) + ∂xau,w
∂xρ(t,x)

]
= P1(u)P2(ρ(t,x)) au,w(t,x) +

D(w)
K

∂x

(
au,w(t,x)∂xρ(t,x)

)

The Fisher-like case

For the second case we assume that cells move because of random motion, meaning
that LFu,w

k, j = RGu,w
k, j =

ν(w)
2 is the probability that cells of the population u,w in voxel

j at time k move to the voxel at their left or right. We refer to this as Fisher modelling
approach since (as we show below) this translates into a Fisher-like diffusive model
when we infer the continuous model. Considering the principle of mass balance and
inviting the reader to reproduce the previously considered steps for the current case,
we arrive at the following:

au,w
k+1, j =

ν(w)
2

(1+ τPu,w
k, j−1) au,w

k, j−1 +
ν(w)

2
(1+ τPu,w

k, j+1) au,w
k, j+1

+(1−ν(w))(1+ τPu,w
k, j ) au,w

k, j
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We rewrite the equation as follows:

au,w
k+1, j = au,w

k, j + τPu,w
k, j au,w

k, j

+
ν(w)

2
(
au,w

k, j−1 +au,w
k, j+1 −2au,w

k, j

)
+

ν(w)
2

τ
(
Pu,w

k, j−1au,w
k, j−1 +Pu,w

k, j+1au,w
k, j+1 −2Pu,w

k, j au,w
k, j

)

As previously, we pass to the continuous counterpart and use Taylor expansions to
get:

τ∂tau,w(t,x)+
τ2

2
∂

2
tt a

u,w(t,x)≈ τ P1(u)P2(ρ(t,x)) au,w(t,x)

+
ν(w)

2
h2

∂
2
xxau,w(t,x)

+
ν(w)

2
h2

τ
(
∂

2
xxau,w(t,x)ρ(t,x)

)
+

ν(w)
2

h2
τ
(
∂

2
xxρ(t,x)au,w(t,x)

)
We can divide by τ to get:

τ∂tau,w(t,x)+
τ2

2
∂

2
tt a

u,w(t,x)≈ P1(u)P2(ρ(t,x)) au,w(t,x)

+
ν(w)h2

2τ
∂

2
xxau,w(t,x)

+
ν(w)

2
h2 F(t,x)

with

F(t,x) = ∂
2
xxau,w(t,x)ρ(t,x)+∂

2
xxρ(t,x)au,w(t,x)

And then compute the limit for τ → 0, h → 0 such that ∀w ν(w)h2

2τ
→ D(w):

∂tau,w(t,x) = P1(u)P2(ρ(t,x)) au,w(t,x) + D(w)∂ 2
xxau,w(t,x)
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In both cases, we can also consider the continuous counterpart of the epigenetic trait.
Thus we can consider a domain Ωu ×Ωw, discretize with steps hU and hW and put
au,w(t,x) = a(t,x,u,w). We can also admit a random mutation dynamics, analogous
to the one occurring in the space domain in the second case presented (and thus
resulting in a diffusive continuous element) with speed diffusive term ηu and ηw.
Thus, the final equations for the two systems are:

∂ta = P1(u)P2(ρ) a + D(w) ∂
2
xxa + ηu∂

2
uua + ηw∂

2
wwa (7.2.1)

∂ta = P1(u)P2(ρ) a +
D(w)

K
∂x
(
a∂xρ

)
+ ηu∂

2
uua + ηw∂

2
wwa (7.2.2)

Note that the procedure considering higher dimensions for the space domain
does not change, providing the following equations:

∂ta = P1(u)P2(ρ) a + D(w) ∆xa + ηu∂
2
uua + ηw∂

2
wwa (7.2.3)

∂ta = P1(u)P2(ρ) a +
D(w)

K
∇x ·

(
a∇xρ

)
+ ηu∂

2
uua + ηw∂

2
wwa (7.2.4)

7.2.2 The models

We are interested in considering both models in the three cases: (i) without epigenetic
structure, (ii) only with the epigenetic characterisation of proliferation (as in Ref.
[246]), and (iii) with both the motility and proliferation epigenetic traits. Moreover,
we consider three-dimensional tumours with the constraint of radial symmetry.
We set u ∈ Ωu = [0,1] and w ∈ Ωw = [0,1]. Variables u and v can be interpreted
as measures of the expression (epigenetic state) of two (sets of) genes independent
of and responsible for proliferation and motility. The higher the expression, the
higher the proliferative or motility rate. Note that u and w are normalised between
a minimum and a maximum level of expression here. We move from Cartesian
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(x1,x2,x3) to spherical coordinates (r,θ ,ϕ), where

r =
√

x2
1 + x2

2 + x2
3

θ = arccos
x3√

x2
1 + x2

2 + x2
3

ϕ = sign(y)arccos
x1√

x2
1 + x2

2

and exploit radial symmetry to write a(t,r,θ ,ϕ,u,w) = a(t,r,u,w).
We consider a domain Ωt = [0, t f in] for time t and Ωr = [0,rmax] for radius r. Let us
remember that, under radial symmetry conditions, we have:

∇xa = ∂x1ax̂1 +∂x2ax̂2 +∂x3ax̂3 = ∂rar̂

∆xa = ∂
2
x1x1

a+∂
2
x2x2

a+∂
2
x3x3

a =
1
r

∂r
(
r∂ra

)
∇x ·a = ∂x1a+∂x2a+∂x3a =

1
r

∂r
(
r∂ra

)
This way, formulating derivatives in the new coordinate system, we obtain the six
following models:

∂ta = P̃1P2(ρ) a + D̃
1
r

∂r
(
r∂ra

)
(F )

∂ta = P1(u)P2(ρ) a + D̃
1
r

∂r
(
r∂ra

)
+ ηu∂

2
uua (Fu)

∂ta = P1(u)P2(ρ) a + D(w)
1
r

∂r
(
r∂ra

)
+ ηu∂

2
uua + ηw∂

2
wwa (Fu,w)

∂ta = P̃1P2(ρ) a +
D̃
K

1
r

∂r
(
r a∂rρ

)
(A )

∂ta = P1(u)P2(ρ) a +
D̃
K

1
r

∂r
(
r a∂rρ

)
+ ηu∂

2
uua (Au)

∂ta = P1(u)P2(ρ) a +
D(w)

K
1
r

∂r
(
r a∂rρ

)
+ ηu∂

2
uua + ηw∂

2
wwa (Au,w)

where a : (Ωt ×Ωr)→ R for A and (F ), a : (Ωt ×Ωr ×Ωu)→ R for Au and Fu,
and a : (Ωt ×Ωr ×Ωu ×Ωw)→ R for Au,w and Fu,w.
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Here, ρ(t,r) is the cell density, considering all cells regardless of the epigenetic
trait they show, and is defined as follows:

ρ(t,r) =


a(t,r), for F ,A∫

Ωu

a(t,r,u)du, for Fu,Au∫
Ωw

∫
Ωu

a(t,r,u)dudw, for Fu,w,Au,w

Moreover, we set:

D(w) = νmin +(νmax −νmin)w (7.2.5)

P1(u) = γmin +(γmax − γmin)w, P2(ρ) = 1− ρ

K
(7.2.6)

and we consider P̃1 = γmin and D̃ = νmin.

For the boundary conditions concerning the epigenetic variables, we have the
following:

{
∂ua(t,r,0,w) = ∂ua(t,r,1,w) = 0
∂wa(t,r,u,0) = ∂wa(t,r,u,1) = 0

(7.2.7)

Considering the boundary condition for the domain Ωr, we also set:

∂ra|r=0 = ∂ra|r=rmax
= 0 (7.2.8)

.

Notation statement and interpretation: to give a more immediate reading through-
out the chapter, we point out here that we will not refer to the models with the usual
numbering of equations (so as to avoid a continuous reference to the reading of the
same) but we denote with F and A respectively the Fisher-like and anti-crowding
modelling approaches in their radially symmetric 3d versions. We then use the
subscripts to characterise, in order, unstructured models (absence of subscript), struc-
tured with respect to the proliferative trait alone (subscript u) and with respect to both
the proliferative and motile traits (subscripts u,w). In this sense, we say that a model
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has an "higher degree of structure" (or is "more structured") the higher the number
of structuring variables it has(referring to models as non-structured, mono-structured
and bi-structured). In biological terms, this corresponds to a more precise population
characterisation from an epigenetic point of view.

7.3 Theoretical analysis

We now want to study some theoretical aspects of the models we introduce. In order
to do that, we set a simple case of the model and for the sake of simplicity, we
carry out the analysis adopting the one-dimensional models in Equations (7.2.1) and
(7.2.2). We define two quantities to indicate the average proliferation and motility
rate at a given space point and at a fixed time, introducing:

• the average proliferation rate:

P̄(t,x) =
1

ρ(t,x)

∫
Ωu

∫
Ωw

[γmin +(γmax − γmin)u]a(t,x,u,w)dudw

= γmin +
(γmax − γmin)

ρ(t,x)

∫
Ωu

∫
Ωw

ua(t,x,u,w)dudw; (7.3.1)

• the average motility rate:

D̄(t,x) =
1

ρ(t,x)

∫
Ωu

∫
Ωw

[νmin +(νmax −νmin)w]a(t,x,u,w)dudw

= νmin +
(νmax −νmin)

ρ(t,x)

∫
Ωu

∫
Ωw

wa(t,x,u,w)dudw (7.3.2)

Integrating both Equations (7.2.1) and (7.2.2) with respect to variables u and w,
and using the boundary conditions in Equations (7.2.7), we obtain:

∂tρ = P̄P2(ρ) ρ + ∂
2
xx
(
D̄ρ
)

(7.3.3)

∂ta = P̄P2(ρ) ρ + ∂x

(
D̄
K

ρ∂xρ

)
(7.3.4)
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In order to facilitate the calculation, we now consider the following simplification:

γmax = γmin = γ, νmax = νmin = ν .

From a biological point of view, this is the same as considering non-structured
populations with respect to the two traits under analysis, i.e., having all populations
displaying the same proliferation and motility rates.
This results in:

P̄(t,x) = γ, D̄(t,x) = ν

and leads to
∂tρ = γ P2(ρ) ρ + ν∂

2
xxρ (7.3.5)

∂tρ = γP2(ρ) ρ +
ν

K
∂x

(
ρ∂xρ

)
(7.3.6)

Equations of the form of the ones introduced in Equation (7.3.3) and Equation
(7.3.4) were studied respectively in Ref. [331] and [336], showing to admit trav-
elling wave solutions. Due to the centrality of the theoretical investigation in the
interpretation of the experimentation conducted in this chapter, we reproduce those
calculations presented in[331] and [336], adapting them to our models, which are
only slightly different in formulation.

Both for Equation (7.3.3) and Equation (7.3.4), we look for travelling wave
solutions of the form ρ(t,x) = ρ(x− ct), where c is the propagation velocity of the
wavefront. Formally, let ζ = x−ct and set φ(ζ ) = ρ(ζ )

K , together with ψ(ζ ) = φ ′(ζ ).

The Fisher-like case

When considering Equation (7.3.3) this translates into: φ ′ = ψ

ψ ′ =− c
ν

ψ − γ

ν
(1−φ)φ

(13)

We can then analyse the phase plane trajectories on the portrait (φ ,ψ), having:

dψ

dφ
=−cψγ(1−φ)φ

νψ
(7.3.7)
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Two steady states are possible: (1,0) and (0,0). Evaluating eigenvalues λ1 and λ2

of the referred jacobian matrix we get:

λ1 =
1
2
(
− c−

√
c2 −4γν

)
, λ2 =

1
2
(
− c+

√
c2 −4γν

)
for (0,0)

λ1 =
1
2
(
− c−

√
c2 +4γν

)
, λ2 =

1
2
(
− c+

√
c2 +4γν

)
for (1,0)

resulting in an unstable equilibrium for (1,0) (that is, a saddle point) and a stable
equilibrium for (0,0). In particular, denoting cmin = 2

√
γν , we obtain a spiral for

|c|< cmin and a node for |c| ≥ cmin.
Note that if |c| < cmin, having a spiral around point (0,0) implies negative values
for φ , which is not admissible in our case. Thus, we do not consider this case of
travelling waves. By continuity arguments, there is a trajectory from (1,0) to (0,0)
lying entirely in the fourth quadrant in the case of |c| ≥ cmin.
Now, we want to find a shape for the solution. In order to do that, we linearise
Equation (7.3.5) considering that in the proliferative term, we have

γρ

(
1− ρ

K

)
= γ

(
ρ − ρ2

K

)
= γK

(
ρ

K
−
(

ρ

K

)2
)
≈ γK

(
ρ

K

)
= γρ

since ρ

K < 1 and then we can consider only the linear term ρ

K as the quadratic one is
negligible in comparison to that. Thus we obtain:

∂tρ = γρ + ∂
2
xx
(
νρ
)

(7.3.8)

Considering arbitrary α > 0 and A > 0, one can impose an initial condition with a
behaviour like ρ(0,x)∼Ae−αx for x→∞ and look for solutions of the form ρ(t,x) =
Ae−α(x−ct). Inserting it in Equation (7.3.8), we obtain the following relation:

c =
γ

α
+να.

Note that this is a convex function, with a minimum in α =
√

γ

ν
where c = cmin =

2
√

γν . Considering that if α ≥ γ

ν
then e−αx is bounded by e−

γ

ν
x and the front with

wave speed c = cmin = 2
√

γν , we can state that, with such initial conditions, the
asymptotic wave speed of the travelling wave solution of (7.3.8) is

c =
γ

α
+να for 0 < α <

γ

ν
, c = cmin = 2

√
γν for α ≥ γ

ν
.
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From a biological point of view, the most relevant waves are the ones that propagate
with minimum speed. It is biologically coherent to adopt compact support functions
as initial conditions that do not show a sufficiently slow decay to allow for faster
wavefronts.

The anti-crowding case

Now let us take into account Equation (7.3.4). In this case, defining φ and ψ as
before, the equation translates into: φ ′ = ψ

φψ ′ =− c
ν

ψ −ψ2 − γ

ν
(1−φ)φ

(7.3.9)

Let us observe that the same linearisation procedure as above does not provide a
minimum propagation speed, and a different procedure is needed. Upon analysing
the phase plane trajectories on the portrait (φ ,ψ), corresponding to the solutions of
the following autonomous ordinary differential equation

dψ

dφ
=−cψ +νψ2 + γ0(1−φ)φ

νφψ
,

there is a straight line, having slope σ > 0, that connects the critical point (1,0) with
point (0,−σ). Qualitatively, this is because in the half-plane φ < 0 the trajectories
tend to the left and considering values of φ between 0 and 1, the ψ ′ is positive in an
interval of ψ between two negative values ψ1 < ψ2, meaning that there is a rectangle
[0,1]× [ψ2,0] in which all the trajectories go down left and among them there is
one with constant dψ

dφ
. Hence, ψ =−σ(1−φ). When inserting this expression into

Equation (7.3.9) we find that c ≥ 4γνφ(1−2φ) providing a minimum propagation
velocity of

cmin =

√
γν

2

Moreover, σ = c
ν

. Putting them together, we obtain

φ
′ = ψ =−σ(1−φ) =− c

ν
(1−φ) =

√
γ

2ν
(1−φ).
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As done previously, we now impose initial condition φ (ζ0) = φ0 ≥ 0. Since φ(ζ )≥ 0
for all ζ ∈R, we must require that φ(ζ ) = φ0 for ζ ≥ ζ0. Recalling that φ(ζ ) = ρ(ζ )

K
and ζ = x− ct, we obtain the exact solution that reads

ρ(t,x) =

K
(

1− (1−φ0)e
√

γ

2ν
(x−cmint−ζ0)

)
, for x− cmint < ζ0

Kφ0, for x− cmint ≥ ζ0

(7.3.10)

corresponding to the minimum propagation velocity cmin.
Let us notice that choosing φ0 = 0 is the same as taking into account a compact
support function as an initial condition. Thus, solution (7.3.10) ensures that the
compactness of the initial data is preserved.

Comparison of the modelling approaches

Now, comparing the two models, one can notice two important differences:

1. the minimum propagation velocity for (7.3.4) is smaller (by a factor 2
√

2) than
the minimum propagation velocity associated with (7.3.3);

2. Taking into account solutions at a fixed time t, the derivative of the solution
of (7.3.4) with respect to x has a discontinuity at x = ζ0 + cmint (see Equation
(7.3.10)), which is responsible for the jump from the concave profile of the
solution x < cmint + ζ0 to its constant behaviour for x ≥ cmint + ζ0. This is
a feature not encountered in the solution of (7.3.3), which, as shown in the
paragraph relating to the Fisher-like case, displays a progressive and decaying
infiltrative front instead. In the case of compact support initial condition, this
leads to a solution preserving the compactness in the anti-crowding approach,
contrary to the Fisher-like approach.

A common consideration, valid for both the modelling approaches, is that it is
possible to exploit the finding, both in Ref. [331] and in Ref. [336], that the results
obtained so far are proved to be asymptotically valid also for the radial symmetry 3d
counterpart of the models.
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7.4 Results

7.4.1 Descriptors

To analyse and quantify our results, some useful descriptors are introduced. First of
all, we define the quantity

N(t) =
∫
Ωr

ρ(t,r)dr (7.4.1)

as the total number of cells.

Moreover, to provide indications regarding the geometry of the tumour, we
consider:

RQ(t) = max
r

{r s.t. ρ(t,r)> QK/100} (7.4.2)

RMET (t) =

∫
Ωr

P1(u)P2(ρ)r3

∫
Ωr

P1(u)P2(ρ)r2
(7.4.3)

Considering the aim of comparing our results with the ones obtained from
medical images described in Section 7.1 we consider R80 as the reference radius
for T1 (RT 1 = R80) and R10 for T2 (RT 2 = R10) so that RT 1 limits high-density
areas, recognisable as the main structure. In contrast, RT 2 defines the edge of the
infiltrating part of the mass. Moreover, we use RMET as a comparison radius for the
one provided by PET imaging. Furthermore, we define:

VI =
4
3

πR3
I for I = 10,80,MET (7.4.4)

To end with the descriptors relating to the temporal evolution of the geometric
characterisation of the tumour mass, we define the radial velocity as follows:

vRI =
dRI

dt
for I = 10,80,MET. (7.4.5)
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With respect to the epigenetic characterisation of the mass, we introduce the
following quantities:

• local average proliferation and motility traits:

ū(t,r) =

∫
Ωw

∫
Ωu

ua(t,r,u,w) dudw

ρ(t,r)
w̄(t,r) =

∫
Ωw

∫
Ωu

wa(t,r,u,w) dudw

ρ(t,r)

• global average proliferation and motility traits:

¯̄u(t) =

∫
Ωr

ū(t,r)ρ(t,r) dr

N(t)
¯̄w(t) =

∫
Ωr

w̄(t,r)ρ(t,r) dr

N(t)
.

Moreover we denote

ūT 1(t) = ū(t,R80(t)), ūT 2(t) = ū(t,R10(t)), ūMET (t) = ū(t,RMET (t)),

and respectively the same for w̄.

7.4.2 Comparison of invasiveness and speed

In the following section, we perform numerical simulations of our model. We adopt a
finite difference scheme applying an explicit Euler discretisation for the time domain.

We consider a closed spatial domain Ωr = [0,rmax] = [0,10]cm. As initial conditions,
we set:

a(0,r) = AI{r≤0.1}e
− r2

2θ2r for F ,A

a(0,r,u) = AuI{r≤0.1}e
− u2

2θ2u for (Fu),Au

a(0,r,u,w) = Au,wI{r≤0.1}e
− u2

2θ2u
− v2

2θ2w for (Fu,w),Au,w
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where θr = 3 ·10−1 cm, θu = θw = 3 ·10−3, and A = 5 ·10−7 cell/cm3 while Au and
Au,w are evaluated so that ρ(0,r) for Fu, Au, Fu,w, Au,w are equal to a(0,r) for
(F ), A .

Moreover, with interest in validating the biological reliability of our work, we
keep coherent parameter values with the ones used by previous authors in Ref. [246],
which had already proved to be able to reproduce medical data. Thus, we set a
diffusive coefficient on the epigenetic variable equal to ηu = ηw = 3.6 ·10−6 1/day,
and we adopt a carrying capacity of 8 · 107 cell/cm3. Moreover, we fix a basal
proliferation rate of P̄1 = γmin = 1.7 ·10−2 and a basal motility rate of D̄ = νmin =

3.5 · 10−4 cm/day and we let random mutation on the epigenetic variables (when
present) increase P1(u) up to γmax = 1.4 ·10−1 1/day and D(w) up to νmax = 3.5 ·10−2

cm/day.

ρ(t)

Fig. 7.1 From lighter to darker colors, time evolution of ρ(t,r) for the six models introduced.
Rows differentiate modelling strategies (first row: Fisher-like, second row: anti-crowding).
Columns differentiated degree of structure (first column: no structure, second column:
proliferation structure, third column: proliferation and motility structure). Reported time (in

years, in the legend) refers to the time at which
K −ρ(t,6)

K
> 0.1.
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Analysis of the edge shapes and speeds

Fig. 7.1 collects the evolution in time of ρ(t,r), considering all six models in their
radially symmetric version ((F ),(Fu),(Fu,w), A ,Au,Au,w). Every plot shows the
final time in the legend, expressed in years, corresponding to the instant at which the
tumour density at a radius of 6 cm is bigger than 90% of the carrying capacity.

A qualitative analysis of the plots shows a more delineated edge of the tumour in
the case of the anti-crowding modelling strategy: this is coherent with the preserva-
tion of compactness of the initial data support observed in Section 7.3 (we are here
referring to compactness in the spatial domain).

Observing the final times of the simulation, it appears evident that Fisher-like
models are faster than the anti-crowding ones. In our models, structuring is responsi-
ble for admitting a wider range of proliferation and motility rates, higher than the
ones set in non-structured models. Thus, it is not surprising that the higher the degree
of structure, the higher the speed of tumour progression. Nevertheless, the speed-up
is more consistent with the anti-crowding modelling. Let us also observe that, even
if keeping a concave profile (theoretically coherent with the solution in Equation
(7.3.10)), the inclusion of both the epigenetic variables causes the appearance of
a wider invasive rim in the anti-crowding model. This is easily noticeable if we
observe, in the plot for Au,w, the portion of tumour at carrying capacity, and we
compare the position of its external edge with the foot of the profile of ρ(t,r). This is
an important feature. In fact, when switching from a Fisher-like to an anti-crowding
modelling approach, one of the costs of the advantage of compact support is given
by the loss of the ability to reproduce tails. On the contrary, this observation ensures
that the inclusion of epigenetic structures, particularly those relating to the motil-
ity potential of cells, allows us to reproduce invasive lower-density rims even by
adopting an anti-crowding approach, thus maintaining consistency with biological
observations. In fact, if, on the one hand, in practice, an instantaneous dispersion of
cells throughout the domain is not reasonable (as happens when adopting diffusion
models), on the other hand, the hypothesis of a tumour with precise edges, charac-
terised by a spatially homogeneous high density within and the total absence of cells
in the immediate surroundings, is also unrealistic.
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V (t)

Fig. 7.2 Evolution in time of VT 1 (orange), VT 2 (blue) and VMET (green) volumes, defined as
in Equation (7.4.4). Plot organisations and end time are considered as in Fig. 7.1.

Radii, volumes and radial speeds

To analyse more quantitatively the observations made so far, in Fig. 7.2, 7.3 and
7.4, we analyse respectively the time evolutions of volumes, radius and radius speed
for the six models. To define these quantities, let us recall Section 7.4.1. First of
all, let us notice that when considering Fu, Fig. 7.1 shows that the wavefront is the
steepest among the Fisher models. This is reflected by the comparison between times
and volumes in Equation (F ) and Equation (Fu) shown in Fig. 7.2. The final time,
taken with the same condition as before, is smaller for (Fu) than for (F ), which
is coherent with the higher speed of the front wave. Nevertheless, the volume of
T2 is more extended in Equation (F ), meaning that in Equation (Fu), the invasive
rim is nearer the high-density one (thus, we have a smaller invasive finger). The
same consideration stands for the corresponding anti-crowding models. In Fig. 7.4,
in the plot referring to (F ) and (A ), a horizontal black dotted line indicated the
theoretical minimum speed of propagation evaluated in Section 7.3. First of all,
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R(t)

Fig. 7.3 Evolution in time of RT 1 (orange), RT 2 (blue) and RMET (green) volumes, defined as
in Equations (7.4.2) and (7.4.3) . Plot organisations and end time are considered as in Fig.
7.1.

let us remark that considering the dynamics of ρ(t,r) for (F ) and A is the same
as considering the radial symmetry 3D version of the model analysed in Section
7.3. Thus, the convergence of the computational speed to this value confirms the
asymptotic prediction made elsewhere [331, 336]. Considering Fig. 7.3, it seems
relevant that, as expected, the insertion of the epigenetic variables causes the loss of
linear behaviour in the radius growth in both modelling strategies. The change in
this behaviour opens up the question for the next section.

Comparison with universal growth law

Even though with different gradients and speeds, the volume behaviours in Fig. 7.2
are similar to an exponential function. In Ref. [371], authors propose universal
scaling laws to describe the explosive growth in human cancers. In this direction,
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vR(t)

Fig. 7.4 Evolution in time of vRT 1 (orange), vRT 2 (blue) and vRMET (green) radial velocities,
defined as in Equations (7.4.5). Plot organisations and end time are considered as in Fig. 7.1.

one of the models introduced is the following: dV
dt = αV β

V (0) =V0
(7.4.6)

with V (t) being the tumour volume. Here, β is biologically interpreted as the growth
parameter, providing the speed of reproduction and invasion of the tumour. At the
same time, α is an indicator of the speed with which the tumour begins its actual
growth curve after what can be approximated as an initial plateau. The solution of
this system is

V (t) =


[
V 1−β

0 −α(β −1)(t)
] 1

1−β for β ̸= 1

V0eαt for β = 1
(7.4.7)
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and if β > 1 it blows up in a finite time given by

tcrit =
V 1−β

0
(β −1)α

.

Note that it is impossible to reproduce such a behaviour with our model. In fact,
either if we consider (F ) and (A ) with boundary conditions ∂xa(t,r)

∣∣
∂Ωr

= 0
(see Equation (7.2.8)), or (Fu), (Au) , (Fu,w), and (Au,w) with relative boundary
conditions of Equation (7.2.7), we obtain:

dN
dt

=
∫
Ωr

P̄(t,r)
(

1− ρ(t,r)
K

)
ρ(t,r)dr ≤ γmaxN(t,r)

from which we deduce that N(t) is bounded from above by a standard exponential
growth Nsup(t) = N0 eγmaxt , where N0 is the number of tumour cells at t = 0 and that
is the solution of Eq. (7.4.6) with β = 1.

We use a non-linear least squares error minimisation strategy to fit the data in Fig.
7.2 with a solution of the form (7.4.7). In Fig. 7.5, we plot with a continuous line
the volume evolutions in time introduced in Fig. 7.2, and we overlap the plot of the
solution (7.4.7) evaluated with optimised parameters (starred scatter). In Table 7.1,
we collect the parameter values obtained with the fitting procedure, considering VT 1,
VT 2, VMET for all six models. First, let us consider that the model in Equation (7.4.6)
differs consistently from the six proposed models since it is formulated using an
ODE that directly uses the volume as the dependent variable. Instead, our models are
based on PDE formulation; the volumes are obtained via geometric considerations
and dimension reduction through integration. This observation enhances the already
visible quality of the fit presented in Fig. 7.5. Moreover, analysing the results from
a quantitative point of view, we observe that a general trend is the increment of
parameter value considering models with a higher degree of structure. Given the
biological interpretation of parameters α and β introduced before, this reflects the
speed up in the tumour growth when considering epigenetic characterisation already
observed in the previous section. Concentrating on the different volumes considered,
in all the models, T1 is the one having the lower β and the higher α . In comparison
(with the only exception of Au), the metabolic radius has the lower α and the higher
β and T2 the intermediate values for both.
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(F ) A

Radius α β Radius α β

T2 3.296 ·10−2 6.151 ·10−1 T2 6.804 ·10−3 6.814 ·10−1

T1 3.723 ·10−2 5.925 ·10−1 T1 7.914 ·10−3 6.569 ·10−1

MET 1.863 ·10−2 7.009 ·10−1 MET 6.231 ·10−3 6.958 ·10−1

Fu Au

Radius α β Radius α β

T2 5.163 ·10−2 7.325 ·10−1 T2 1.353 ·10−2 7.663 ·10−1

T1 8.099 ·10−2 6.708 ·10−1 T1 2.007 ·10−2 6.979 ·10−1

MET 3.080 ·10−2 8.236 ·10−1 MET 1.434 ·10−2 7.554 ·10−1

Fu,w Au,w

Radius α β Radius α β

T2 5.587 ·10−2 8.839 ·10−1 T2 2.575 ·10−2 9.316 ·10−1

T1 8.861 ·10−2 8.510 ·10−1 T1 5.182 ·10−2 8.460 ·10−1

MET 2.274 ·10−2 9.999 ·10−1 MET 2.337 ·10−2 9.508 ·10−1

Table 7.1 Values for parameters α and β obtained via the fitting of V10,V80,VMET (defined
in Equation (7.4.4)) resulting from numerical simulation of our models with a solution in
Equation (7.4.7).



258 Go or/and grow: continuous modelling

Fig. 7.5 V10,V80,VMET plots (continuous lines) and fit (starred scatter) with parameter estima-
tion of α and β parameters in Equation (7.4.7). Colours, plot organisations and end time are
considered as in Fig. 7.1.

Fig. 7.6 Equation (7.4.7) computed adopting same VO and α , β resulting from the fit of
VT2 (first row), VT1 (first row), and VMET (first row) of the six models. Blue shades refer to
the Fisher-like approach and red shades to anti-crowding. Dotted, dashed and solid lines
correspond to non-structured, mono-structured, and bi-structured modelling strategies.
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Fig. 7.7 Study of Equation (7.4.7). First plot varies α as indicated in the legend with two
fixed β values (β = 0.99 solid thick line, β = 0.5 dotted thin line) Second plot varies β as
indicated in the legend with two fixed α values (α = 1 solid thick line, α = 0.5 dotted thin
line)

.

To compare the behaviour of different models, in Fig. 7.6, we overlap the initial
times of the temporal evolutions of the various models and group them by type of
volume considered (T1, T2, metabolic). With an analogue study of the one in Ref.
[344], in Fig. 7.7, we separately analyse the impact of the variation of α and β

parameters. In the latter, it is clear that the α parameter influences the starting time
of the blow-up, in the sense that the higher α , the shorter the initial latency behaviour.
On the other side, β influences the slope of the curve, increasing its steepness as
it assumes higher values. What appears evident from 7.6 is again that the more
we structure the models, the more the anti-crowding modelling strategy tends to
be able to catch all the dynamics observed using Fisher models, which are well
established in the literature. We can then finalise this initial study by saying that, in
the case of double-structured modelling strategies, considering the analytical aspects
(and so the parameter values to be used) makes it possible to equalise the speed
of the processes. In the context of proliferative and motile tumours, anti-crowding
modelling keeps the advantages of Fisher modelling (invasive rim and analytical
prediction) unaltered, adding the benefit of preserving compactness. One could ask
if adding two dimensions to the problem (extending the spatial domain with the
2D epigenetic domain) is worth gaining this only additional feature. In the next
section, we observe that double epigenetic structure is not only a means to allow
anti-crowding modelling to have the same beneficial features as Fisher modelling,
but it is moreover true that anti-crowding modelling itself guarantees some additional
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advantages in the consideration of tumour mass geometric characterisation of these
two biologically relevant aspects.

7.4.3 Spatial epigenetic distribution

In this section, we want to investigate the geometry of the tumour with respect to
its epigenetic composition. Thus, we concentrate on bi-structured models. In a
first analysis, we consider the time evolution of (ūI(t), w̄I(t)) for I = T 1,T 2,MET
(introduced in Equation (7.4.1)), collecting the results in Fig. 7.8.

Fig. 7.8 Time evolution of (ūI(t), w̄I(t)) for I = T 1,T 2,MET as defined in Section 7.4.1 for
bi-structured models.

Already from this first plot, we notice two aspects. The first one is that in Fisher’s
modelling, the epigenetic condition is quite homogeneous in space, having a similar
behaviour for the three evolving radii considered. The second one is that, although
the diffusive dynamics on the two epigenetic traits (i.e. the epimutation speed) have
the same coefficient ηu = ηw, the evolutionary dynamics favour the evolution on the
proliferative trait way more than on the motile one. Conversely, the anti-crowding
model characterises the tumour population at different locations with respect to its
epigenetic traits. In fact, cells belonging to the invasive rim (T2) tend to evolve
faster in their motility trait, while cells belonging to the edge of the high-density
zone (T1) tend to evolve faster in their proliferative trait. The metabolic radius in
the first phase shares its epigenetic characterisation with T2 and, in a later phase,
becomes more similar to T1 cells. This could be explained by the fact that space
availability has a bigger impact on proliferation in the first phase. In contrast, in the
second moment, the increase in the proliferation rate provided by the accumulation
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of epigenetic mutation weighs more. This is also recognizable in Fig. 7.3, where
RMET starts nearer to RT 2 and then approaches RT 1. Anti-crowding modelling has a
more equilibrated evolution comparing the two traits, slightly favouring the motile
one.

Now let us take into account three reference times t̄0, t̄1, t̄2, which are different
for the two models and correspond to the instants in which the detectable tumour
radius is respectively 2cm, 4cm, and 6cm. Fig. 7.9, 7.10, and 7.11 refer respectively
to these times.

t = t̄0

Fig. 7.9 Graphic analysis of the spatial characterisation of epigenetic traits according to
tumour evolution phases. Plot refers to t = t̄0 corresponding, for every simulation, at the
time at which tumour detectable radius is about 2 cm. The first column presents the profile
of ū(t,r), w̄(t,r), column two shows ρ(t,r) state at the chosen time, and third column
(ū(t,r), w̄(t,r)) where darker colours define small distance from the centre of the tumour
and lighter regions near the outer edge. In all the plots, the region of the tumour (and relative
data) with a density lower than the detectable threshold is obscured.

For both the models, the three figures present the profile of ū(t,r) and w̄(t,r) as
a function of the radius (first column), ρ(t,r) as a function of the radius (second
column), and (ū(t,r), w̄(t,r)) in the phase plane (u,w) (third column). In all the
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t = t̄1

Fig. 7.10 Graphic analysis of spatial characterisation of epigenetic traits according to tumour
evolution phases. Plot refers to t = t̄1 corresponding, for every simulation, at the time at
which tumour detectable radius is about 4 cm. Fig. details as in Fig. 7.9

plots, the region of the tumour (and relative data) with a density lower than the
detectable threshold is obscured. Let us observe that the diffusive dynamics in
Fisher-like models make ρ(t,r) occupies all the domains (even at very low den-
sity) coherently with the lack of compactness preservation exposed in the previous
sections. Comparing the first columns, we see that in the detectable domain, Fisher-
like modelling presents the proliferative trait more expressed than the motile one.
Oppositely, in the anti-crowding model, there is always a switch radius at which
the predominant trait changes. As time advances, the size of the domain where the
motile trait is higher than the proliferative trait increases, showing that the tumour
becomes more infiltrating as time passes. This configuration is confirmed by the
third column, where the coloured part (dark colours correspond to areas near the
centre of the tumour while light colours to the ones near the edge) of the Fisher-like
model has a behaviour similar to a straight line with a low slope. This only proves
the accumulation of mutation at the edge of the tumour, which was already observed
in Ref. [246] without the need to insert a structure with respect to the motility trait.
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t = t̄2

Fig. 7.11 Graphic analysis of spatial characterisation of epigenetic traits according to tumour
evolution phases. Plot refers to t = t̄2 corresponding, for every simulation, at the time at
which tumour detectable radius is about 6 cm. Fig. details as in Fig. 7.9

Conversely, the anti-crowding model is shaped as a "comma", initially growing up in
both traits and then losing in proliferation to gain in motility while approaching the
edge.

This is an essential feature of the anti-crowding model since it is more coherent
with the biological observation presented in Section 7.1, where the tumour spheroid
was presented as a stratified mass with an internal necrotic (or at least quiescent)
core, a proliferative rim near the edge and a motile rim invading nearby tissues.

7.5 Conclusion and future perspectives

In the investigation that has been carried out so far, we have developed and compared
Fisher-like and anti-crowding models with different degrees of epigenetic structure.
We found that adopting bi-structured anti-crowding models allows compactness
preservation of compact support initial data, the emergence of invasive lower-density
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rims, and geometric characterisation of epigenetic and phenotypic traits expressed
by cells.

Given the derivation of the model from the discrete case, we are currently
working on developing the correspondent hybrid stochastic mesoscale model based
on the same setting adopted in Ref. [246] to compare results with the continuous
counterpart.

Moreover, we have introduced clinical-comparable mathematical descriptors to
test the models’ reliability in medical practice. In order to move in this direction,
based on a database of tumour images held by MOLAB, we began to sequence the
data coming from T1 and T2 MRI and PET. In particular, we applied segmentation
and 3D reconstruction techniques of tumour masses to obtain information on the
shape, regularity and phenotype disposition from images. Future perspectives go
in the direction of testing the capability of the models to reproduce geometrical
patterns observed qualitatively. Later, our interest is in applying this procedure
to time-series data for parameter estimation. Furthermore, focusing on an edge
recognition problem that emerged during the experience in applying sequencing
techniques, an inverse approach appears to be of particular interest. In fact, especially
in the case of the segmentation of glioblastomas (which constitute the database on
which we have worked so far), it is significant to note how, despite the rapid and
constant advances in artificial intelligence in the image recognition sector, human
visual inspection and analysis are still necessary for the delineation of tumour edges
and in the distinction of various tissues, which however leaves room for errors in
sensitivity of the operator and individuality in the data interpretation. In this sense, it
would be interesting to be able to develop the model, avoiding radial symmetry and
including environmental factors, in the direction of better catching tumour evolution,
but also offering a supporting tool in image analysis.

One other open question stands in the observation of medical data that, once fitted
with Equation (7.4.7), present β > 1. In Ref. [371], authors present an alternative
non-local model, where proliferative activity increases with the size of the mass, that
is able to reproduce this behaviour. An exciting challenge stands in exploiting the
bi-structure of the model to reproduce similar results.



Chapter 8

Continuous modelling for oncolytic
virotherapy: a study of the influence
of hypoxia

8.1 Introduction

As introduced in Section 1.4.2, the chance of oncolytic virotherapy to circumvent
problems relating to immunoevasion and hypoxia-related resistance makes them a
valid therapy combined with treatments that are in general more effective, but also
sensitive to the problems mentioned above. In this chapter, we analyse the possible
effects of different oxygenations on the outcome of treatment with oncolytic viruses
alone, keeping an eye on the next step of integrating the therapy with more standard
treatments (such as, for example, the radiotherapy analysed in Chapter 4).

More precisely, in this chapter, we aim to investigate this aspect, keeping into
account two characterisations of the tumour mass: (i) its geometry and (ii) its
epigenetic composition. With respect to the second, in detail, we address the trade-
off between proliferation rate and resistance to hypoxia.

Considering oncolytic virotherapy, previous models have been developed without
considering spatial and epigenetic characterisation, adopting ODE systems. A
simple model strategy is to include two populations: one for uninfected tumour cells
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(susceptibles) and one for the infected cells. This strategy does not include abiotic
factors or the virus itself as a player in the model.

In Ref. [271], they identify the dependence of predicted dynamics on particular
mathematical terms as the main limitation of mathematical modelling of oncolytic
virus therapy. In order to solve this dependence, they propose different modelling
strategies both for tumour growth (exponential, linear, logistic) and virus spread,
revealing two categories: fast spread models, in which sufficiently high viral repli-
cation rates can lead to tumour eradication, and slow spread models, in which the
suboptimal diffusion of the virus is the cause of treatment failure even in the case of
high replicative potential. From a mathematical point of view, the virus is not directly
inserted in the model, while they use an infective term that reads as β I f (U, I) where
we call U the uninfected cells and I the infected and the fast or slow spread is given
by the behaviour of function f when U → ∞ (respectively tending to a positive value
or zero).

Also, in the context of Lotka-Volterra models with two populations considered,
in Ref. [342], they suggested a parametric analysis of dynamic regimes, considering
cytotoxicity and transmission rate of the virus and proliferation rate of tumour
cells in both the state (infected and susceptible) as main parameters. Here, the
spread of the virus is expressed as a function of the ratio of susceptible to infected
tumour cells, defining the system with non-trivial equilibrium points. Also, under
specific parameter values, complete eradication is possible (i.e., asymptotically stable
equilibrium in (0,0)).

Moving to models that incorporate virus as a dependent variable separated from
tumour population, in Ref. [239] authors use a Gompertz growth law for tumour
growth and a frequency-dependent function to reproduce the dependence of the
likelihood of a virus infecting a tumour cell based on the number of susceptible
tumour cells. Exploiting local stability analysis and bifurcation plots, they highlight
the singular equilibrium of the system and find long-period oscillations and bistable
states so that they can obtain different outcomes depending on the initial conditions.
From a mathematical point of view, the model introduced here is a follow-up of
Ref. [240], in which they highlight the central role of viral infectivity and, for some
particular values of that of the application profile, as a key parameter in engineering
new treatments.
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When moving to consider geometric space, a different approach is proposed
in Ref. [449] where an agent-based, stochastic model is used to reproduce experi-
mentally observed patterns and long-term outcomes under different conditions. In
the paper, a parameter investigation determines the key parameters that determine
the emergence of particular patterns of virus growth. Remaining in the context
of discrete models, in Ref. [238], the authors put their interest on therapeutical
strategies in terms of timing and location of virus injection. They adopt a 2d Voronoi
Cell-Based model (VCBM) to investigate the sensitivity of the treatment efficacy
applied to differently shaped tumours to the configuration of the treatment injections.

An interest in the geometry of the dynamics can be achieved with continuous
modelling only with the use of partial derivative equations (PDEs). The same
investigation on optimal therapeutical choices leads to the development of a radially-
symmetric epidemic model embedded in a Stefan problem presented in Ref. [452].
The authors express the effectiveness of the therapy with a binary outcome (control
or not control of the virus on the tumour) and delineate conditions that predict it in
three different therapeutical approaches: homogeneous, centred or rim injections
(here not of the virus itself, but of infected cells as the virus itself is not considered
as a dependent variable). In a later work they also incorporate the immune response
[453].

In Ref. [21], authors adopt a moving boundary model for virus-tumour interac-
tion. They follow a multi-scale approach, including, at a micro-scale level, essential
dynamics of the urokinase plasminogen activator (uPA) system. This leads to a
macroscopic model that includes uninfected and infected tumour cells, the oncolytic
viruses and (as a novelty with respect to the previously cited works) extracellular
matrix (ECM), whose degradation as a result of microscopic dynamics directly
influences cancer invasion potential.

Importance of ECM is remarked also in Ref. [266] where a promoted degradation
of extracellular matrix in gliomas obtained with OV-expressing bacterial Chase-ABC
is proven to cause an enhancement of OV spread and an increase of antitumour
efficacy. A free boundary problem is introduced in Ref. [184]. Here, ECM is
substituted by necrotic cell population, and the effects of the therapy are measured
in terms of volume reduction of the tumour, whose surface is considered as the free
boundary.
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Moreover, in a more recent work [366], authors adopt a radial diffusion model
and concentrate on the infective parameter, connecting it with the environment
characteristics. Adopting bifurcation analysis, they devalue the strategy of creating
longer-lasting virus particles or using strategies for reducing infected cell lifespan.

The last category includes models that keep into account some kind of hetero-
geneity, related either to cancer cells, viral particles or both at the same time. We
remark that the most basic kind of heterogeneity is the spatial one, which has al-
ready been extensively mentioned in the previous sections: the ways to deal with it
are PDEs and spatial agent-based model. We now focus on other heterogeneities,
keeping in mind that the addition of the spatial structure is always possible.

In the epidemiological settings, the infectivity of an individual depends strongly
on how much time has elapsed from infection. The inclusion of the time from
the infection as a structuring variable for the infected individuals dates back to the
first modern SI model [261]; an extension of the model taking into account spatial
heterogeneity was later studied in Ref. [153].

Analogous considerations hold true in the case of oncolytic virotherapy, since
it takes some time for a newly infected cell to start the viral production at the
most efficient rate. Indeed, the age-structured approach was adopted in Ref. [156].
An alternative approach to model the phenomenon, which is more widely used, is
through delay differential equations [135, 145, 333, 374, 442, 444], in which there
is a sharp transition between newly infected cells and “mature” infected cells; this
approximation is justified by the fact that the period of transition is relatively short
with respect to other processes, hence the exact dynamics of the transition may be
neglected. These second kind of models differ significantly from the mathematical
formulations of the thesis, therefore we do not provide further details.

Moving our attention on the heterogeneity of traits, the easiest way to model
heterogeneous populations is to structure them in discrete compartments, using an
approach that is common in general epidemic models. For example, the model
developed in Ref. [135] takes into account the fact that vesicular stomatitis viruses
(VSV) is unable to replicate in T-lymphocites in the resting phase. As a consequence,
uninfected cells are divided in a quiescent population, which cannot be infected, and
a susceptible population: as time passes, cells move between the two states. An
analogous approach may be used also to model heterogeneity involving the virus,
either genetically [237] or as a coating level that prevents immune recognition [282].
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Another possible approach is to consider a continuous trait variable and describe
the evolution of the system via PDEs, similarly to the case of age-structured infec-
tions. Several examples can be found in the epidemiological settings [18, 41, 55,
299, 298, 341, 435], as well as in the ecological settings [33, 149]; in the context of
oncolytic virotherapy, this approach was used in Ref. [255] to model several kinds
of heterogeneity (susceptibility to infections, death rates, virulence).

A common characteristic of continuous structured models is the presence of
a trade-off between different features, in the sense that the increase of a specific
ability corresponds to the decrease of a different trait. Under this assumption, the
fittest population depends on the specific situation that is modelled. In the context
of infections, one may consider a trade-off involving the susceptible compartment
between proliferation rate and resistance to the infection [299]; in the context of
oncolytic viral infections, this is a way to model the fact that less proliferative cells
have a slower metabolic activity, resulting in a slower infection. In absence of
infection, the fittest trait is clearly the more proliferative one; on the other hand, the
infection modifies the fitness landscape and the situation becomes less clear.

To our knowledge, there is no extension of the model presented in Ref. [299]
that takes into account spatial heterogeneity in addition to phenotypic heterogeneity.
This motivates the model developed in this work.

Few mathematical models are dedicated to the relationship between oxygen
concentration and virotherapy effectiveness. [66] presents a mathematical model
that simulates the infiltration of macrophages, engineered to release an oncolytic
adenovirus under low-oxygen conditions, into an in vitro tumour spheroid. The
model is employed to forecast the effectiveness of treatment protocols combined
with radiotherapy. The model introduced in Ref. [377] examines the influence of
hypoxia on disease dynamics, accounting for its effects on tumour growth and spread,
as well as its impact on the effectiveness of oncolytic virotherapy as a treatment
method.

In this chapter, we introduce a novel model for oncolytic virotherapy (Section
8.2). The model take into account hypoxia effects and includes an epigenetic
structure for cancer population which addresses the trade-off between proliferation
rate and resistance to hypoxia, involving, as a novelty, the effectiveness of virus
in killing cancer cells. We present preliminary results (Section 8.3), including a
draft of theoretical analysis of the model (Section 8.3.1), an explanation of the
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numerical scheme developed to approximate solutions (Section 8.3.2), the derivation
of the adopted parameter values (Section 8.3.3) and a presentation of the dynamics
resulting from numerical simulations in a simplified scenario (Section 8.3.4). Finally,
in Section 8.4 we summarize the state of the work and we present next steps and
future perspectives.

8.2 Model description

We are interested in studying the influence of hypoxia on the infection of tumour
cells by oncolytic viruses. Let us denote by t ∈ [0,+∞) the time, by xxx ∈ Ω the space
variable and by y ∈ Y the epigenetic variable.

Our model describes the time evolution of four dependent variables: unin-
fected (or susceptible) cancer cells u : [0,+∞)×Ω×Y → [0,+∞), infected can-
cer cells I : [0,+∞)×Ω → [0,+∞), virus v : [0,+∞)×Ω → [0,+∞) and oxygen
O : [0,+∞)×Ω → [0,+∞).

Uninfected cancer cells u(t,xxx,y) are the only elements to be characterised by
the epigenetic structure. We assume a trade-off between proliferation on one side
and resistance to hypoxia and virus infection on the other side. In this sense, we
can assume y as the level of expression of a set of gene responsible for this trade-
off and normalise it so that Y = [0,1], where y = 0 and y = 1 are respectively the
lowest and highest possible expressions. y = 0 corresponds to the highest intrinsic
proliferative rate, lowest resistance to hypoxia and highest infectivity rate. Also,
y = 1 corresponds to the lowest intrinsic proliferative rate, highest resistance to
hypoxia and lowest infectivity rate. The regulating equation reads:

∂tu(t,xxx,y) =Dy

︷ ︸︸ ︷
∂

2
yyu(t,xxx,y)

random mutation
+
︷ ︸︸ ︷
Dxxx∇ · (u(t,xxx,y)∇ρ(t,xxx))

anti-crowding movement
+(

P(y,ρ(t,xxx))︸ ︷︷ ︸
proliferation

−S(y,O(t,xxx)︸ ︷︷ ︸
selection

)
)

u(t,xxx,y)−β (y) u(t,xxx,y) v(t,xxx)︸ ︷︷ ︸
infection

(8.2.1)

Uninfected cancer cells undergo random mutation, described as a diffusive term
along the epigenetic domain with coefficient Dy. Moreover, cancer cells move with
coefficient Dxxx in the spatial domain against the gradient of the local cancer cell
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density

ρ(t,xxx) = I(t,xxx)+
∫

Y
u(t,xxx,y)dy (8.2.2)

that takes into account all infected and uninfected cells, despite their epigenetic
trait (i.e. uninfected cells move away from the crowded zone, so we refer to this
as an anti-crowding movement). Furthermore, cancer cells proliferate at a rate
determined by the intrinsic proliferation rate p(y) and the local cancer cell density
ρ(t,xxx), according to a logistic term where

P(y,ρ(t,xxx)) = p(y)
(

1− ρ(t,xxx)
K

)
. (8.2.3)

The equation for u(t,xxx) includes a death factor caused by environmental selection
driven by oxygen concentration. The fittest trait according to the oxygen availability
is determined by function

ϕ(O) :=


1 if O ≤ Om

OM −O
OM −Om

if Om < O < OM

0 if O ≥ OM.

(8.2.4)

Thus, the selective terms are expressed through a quadratic function of the distance
of trait y from the fittest one

S(y,O(t,xxx)) = η(y−ϕ(O))2. (8.2.5)

Lastly, susceptible cancer cells are infected by the virus according to the density
of virions and the infection rate β (y). Note that y trait is directly involved in
the selection term and both in the proliferation and infection term through the
determination of coefficients p(y) and β (y). In order to catch the above-described
trade-off, we define:

p(y) = pM − (pM − pm)y, β (y) = βm +(βM −βm)y. (8.2.6)
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Infected cancer cell I(t,xxx) dynamics are described by equation:

∂tI(t,xxx) = Dxxx∇ · (I(t,xxx)∇ρ(t,xxx))︸ ︷︷ ︸
anti-crowding movement

+v(t,xxx)
∫

Y
β (y)u(t,xxx,y)dy︸ ︷︷ ︸
infection

−qII(t,xxx)︸ ︷︷ ︸
death

. (8.2.7)

Infected cancer cells move according to the same law that regulates uninfected cancer
cells. All susceptible cells undergoing infection are collected in the infected cancer
cell population. Finally, infected cells die at rate qI . Note that infected cells do not
undergo proliferation, selection or infection, motivating the absence of structure in
the population (since, in this model, these are dynamics influenced by the epigenetic
trait).

Virus v(t,xxx) is expressed in term of virions concentration and governed the
following equation:

∂tv(t,xxx) = Dv∆v(t,xxx)︸ ︷︷ ︸
diffusion

+αqII(t,xxx)︸ ︷︷ ︸
release

− qvv(t,xxx)︸ ︷︷ ︸
natural decay

+vinj(xxx)δTinj(t)︸ ︷︷ ︸
injection

(8.2.8)

The virus diffuses in the space domain with coefficient Dv, is released at rate α by
dying infected cells and decays with rate qv.

Oxygen O(t,xxx) behavior is determined by:

∂tO(t,xxx) = DO∆O(t,xxx)︸ ︷︷ ︸
diffusion

− qOO(t,xxx)︸ ︷︷ ︸
natural decay

− λρ(t,xxx)O(t,xxx)︸ ︷︷ ︸
cancer cell consumption

+Q(xxx)︸︷︷︸
source

(8.2.9)

Oxygen diffuses in the space domain with diffusion coefficient DO, is delivered by
tissue vascularisation with a space-dependent intensity Q(xxx) and is then consumed
both by healthy tissue and cancer cells. Healthy cell consumption is captured
avoiding a direct insertion of the cells in the model, using a decay term at rate
qO that assumes that the carrying capacity of the tissue is filled up by healthy
cells. Moreover, when the tumour begins to populate, the λρ(t,xxx)O(t,xxx)term is
responsible for increasing, from the average rate of healthy cells to that of tumour
cells, the oxygen consumption of the proportion of healthy cells that have been
replaced by tumour cells. Both infected and uninfected cells are responsible for
oxygen consumption.

Putting all equations together, the evolution of the system reads:
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∂tu(t,xxx,y) = Dy∂ 2
yyu(t,xxx,y)+Dxxx divxxx(u(t,xxx,y)∇ρ(t,xxx))+P(y,ρ(t,xxx)) u(t,xxx,y)−

−S(y,O(t,xxx))u(t,xxx,y)−β (y) u(t,xxx,y) v(t,xxx)

∂tI(t,xxx) = Dxxx div(I(t,xxx)∇ρ(t,xxx))+ v(t,xxx)
∫

Y β (y)u(t,xxx,y)dy−qII(t,xxx)

∂tv(t,xxx) = Dv∆v(t,xxx)+αqII(t,xxx)−qvv(t,xxx)+ vinj(xxx)δTinj(t)

∂tO(t,xxx) = DO∆O(t,xxx)−qOO(t,xxx)−λρ(t,xxx)O(t,xxx)+Q(xxx)

ρ(t,xxx) :=
∫

Y u(t,xxx,y)dy+ I(t,xxx)
(8.2.10)

with the already defined ρ(t,xxx) in Eq. (8.2.2), P(y,ρ(t,xxx)) in Eq. (8.2.3), S(y,O(t,xxx))
in Eq.(8.2.5) based on ϕ(O(t,xxx)) in Eq. (8.2.4), and p(y) and β (y) chosen as in Eq.
(8.2.6). We keep V (x) in general form as it will change according to the biological
setting we reproduce. We define the Cauchy problem imposing:

u(0,xxx,y) = u0(xxx,y)

I(0,xxx) = I0(xxx)

v(0,xxx) = v0(xxx)

O(0,xxx) = O0(xxx)

(8.2.11)

where u0(xxx,y), I0(xxx), v0(xxx) and O0(xxx) will be defined in the context of the various
scenarios in Section 8.3. Moreover, we put no flux boundary conditions on ∂Y that
reads

∂yu(t,xxx,0) = ∂yu(t,xxx,1) = 0.

Finally, when considering Ω⊂R2, we put no flux boundary condition for all u(t,xxx,y),
I(t,xxx), v(t,xxx) and O(t,xxx) at ∂Ω.

8.3 Results

In this Section we describe the results of numerical simulations and compare them
with the theoretical analysis performed in Section 8.3.1. For the sake of simplicity,
we first consider a stationary oxygen distribution independent of time, corresponding
to a situation in which the tumour has no influence on the oxygen distribution: while
this is clearly an oversimplification, it allows us to focus our attention on the tumour’s
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evolutionary and infectious dynamics. We then analyse the full model that includes
oxygen dynamics, taking into account different configurations of oxygen sources.
Finally, we briefly mention the case of a virus that specifically infects hypoxic cells,
looking towards the combination of oncolytic virotherapy with other treatments.

In all the simulation we start with an uninfected tumour of the form

u(0,xxx,y) =

Au e−
|xxx−xxx0|

2

θxxx − (y−y0)
2

θy if Au e−
|xxx−xxx0|

2

θxxx − (y−y0)
2

θy > 1

0 otherwise
(8.3.1)

The truncation is performed in order to have an initial condition with compact support;
the form of the equations is such that the solution will still be compactly supported
at all times. In all the simulations we set Au = K

10 , xxx0 = (0,0), y0 = ϕ(O(0,xxx0)),
θxxx = 0.5, θy = 0.5. We then assume that viral injection is performed after some time,
so that the tumour can adapt to the environment. In most of the case, we perform a
central viral injection as soon as the tumour reaches a given size: in mathematical
terms, we set

Tinj := inf
{

t ∈ [0,+∞)
∣∣ d(t)≥ dinj

}
(8.3.2)

where dinj is the tumour size at which we choose to inject the virus and

d(t) := diam
{

xxx ∈ Ω

∣∣∣∣ ρ(xxx, t)≥ K
10

}
We recall that the diameter of a general set E is defined as

diamE := sup{ |xxx1 − xxx2| | xxx1,xxx2 ∈ E }

In the particular situation of a circle, this definition clearly coincides with the standard
diameter; in the general case, the diameter is the longest length that can be found
inside the set. This choice is based on the assumptions that small tumours cannot be
clinically detected, hence the therapy may only start when cancer cells reach a density
of at least one tenth of the carrying capacity in a big region. We set dinj = 5.2 mm,
as in Ref. [264]. The central viral injection takes the form

vinj(xxx) = Av e−
|xxx−xxx0|

2

θv , (8.3.3)
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with Av = 109, θv = 0.5. This allows to equalise the total number of viral particles
in the experiments performed in Ref. [264].

8.3.1 Draft of asymptotic analysis

Let us assume that the tumour dynamics do not significantly affect the oxygen density
so that O(t,xxx)≡ O is stationary and homogeneous. Eq. (8.2.10) then becomes

∂tu(t,xxx,y) =Dy∂
2
yyu(t,xxx,y)+Dxxx divxxx(u(t,xxx,y)∇ρ(t,xxx))

+R(y,ρ(t,xxx),O,v(t,xxx)) u(t,xxx,y)

∂tI(t,xxx) = Dxxx div(I(t,xxx)∇ρ(t,xxx))+ v(t,xxx)
∫

Y β (y)u(t,xxx,y)dy−qII(t,xxx)

∂tv(t,xxx) = Dv∆v(t,xxx)+αqII(t,xxx)−qvv(t,xxx)

ρ(t,xxx) :=
∫

Y u(t,xxx,y)dy+ I(t,xxx)
(8.3.4)

with

R(y,ρ,O,v) := [pM +(pm − pM)y]
(

1− ρ

K

)
−η(y−ϕ(O))2 − [βM +(βm −βM)y]v

Building upon previous models [43, 154], we introduce a small parameter ε and
assume that

Dxxx = ε, Dy = Dv = ε
2

Furthermore, we use the time scaling t 7→ t
ε

(which allows us to study the long-time
behaviour of the system) and define.

uε(t,xxx,y) := u
( t

ε
,xxx,y

)
, Iε(t,xxx) := I

( t
ε
,xxx
)
, vε(t,xxx) := v

( t
ε
,xxx
)

The previous system becomes

ε∂tuε(t,xxx,y) =ε
2
∂

2
yyuε(t,xxx,y)+ ε divxxx(uε(t,xxx,y)∇ρε(t,xxx))

+R(y,ρε(t,xxx),O,vε(t,xxx)) uε(t,xxx,y)

ε∂tIε(t,xxx) = ε div(Iε(t,xxx)∇ρε(t,xxx))+ vε(t,xxx)
∫

Y β (y)u(t,xxx,y)dy−qII(t,xxx)

ε∂tvε(t,xxx) = ε2∆vε(t,xxx)+αqIIε(t,xxx)−qvvε(t,xxx)

ρε(t,xxx) :=
∫

Y uε(t,xxx,y)dy+ Iε(t,xxx)
(8.3.5)
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Let us observe that, letting ε → 0 and assuming that all the functions converge, we
immediately get from the third equation

v(t,xxx) =
αqI

qv
I(t,xxx) (8.3.6)

and from the second equation

I(t,xxx) = 0 ∨
∫

Y
β (y)u(t,xxx,y)dy =

qII(t,xxx)
v(t,xxx)

=
qv

α
(8.3.7)

However, it is important to note that the system may not converge to an equilibrium:
indeed, central oscillations, which persist for very long times, can be observable
when choosing parameter values in specific ranges. This is not surprising, as it
resembles the behaviour of similar models of infections mediated by a virus [366].

We then make for uninfected cells the real phase WKB ansatz [42]

uε(t,xxx,y) = e
nε (t,xxx,y)

ε

which implies

∂tuε =
∂tnε

ε
uε , ∇xxxuε =

∇xxxnε

ε
uε ∂

2
yyuε =

((∂ynε)
2

ε2 +
∂ 2

yynε

ε

)
uε

The first equation of Eq. (8.3.5) yields

ε
∂tnε

ε
uε =ε

2
((∂ynε)

2

ε2 +
∂ 2

yynε

ε

)
uε + ε

(
∇xxxnε

ε
·∇ρ(t,xxx)+∆ρ(t,xxx)

)
uε

+R(y,ρε(t,xxx),O,vε(t,xxx))uε

and this simplifies to

∂tnε = (∂ynε)
2 + ε∂

2
yynε +∇xxxnε ·∇ρ(t,xxx)+ ε∆ρ(t,xxx)+R(y,ρε(t,xxx),O,vε(t,xxx))

Letting ε → 0 and assuming convergence, we obtain

∂tn = (∂yn)2 +∇xxxn ·∇ρ(t,xxx)+R(y,ρ(t,xxx),O,v(t,xxx)) (8.3.8)

All the functions without the subscript ε are the leading order terms of the asymptotic
expansion. Under appropriate concavity hypotheses, we expect n to be a strictly
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concave function of y and we define

ȳ(t,xxx) := argmax
y∈Y

n(t,xxx,y)

Let us fix xxx ∈ supp(ρ). The fact that ρε(t,xxx)<+∞ for all ε implies that

n(t,xxx, ȳ(t,xxx)) = max
y∈Y

n(t,xxx,y) = 0

and therefore trivially
∂yn(t,xxx, ȳ(t,xxx)) = 0

We also observe that

0 =
∂

∂ t
n(t,xxx, ȳ(t,xxx)) = ∂tn(t,xxx,y)|y=ȳ(t,xxx)+∂yn(t,xxx,y)|y=ȳ(t,xxx)∂t ȳ(t,xxx)

implying that ∂tn(t,xxx, ȳ(t,xxx)) = 0; similarly, ∇xxxn(t,xxx, ȳ(t,xxx)) = 0.

We evaluate Eq. (8.3.8) in y = ȳ(t,xxx) to get

[pM +(pm − pM)y]
(

1− ρ

K

)
−η(y−ϕ(O))2 − [βM +(βm −βM)y]v =

= R(ȳ(t,xxx),ρ(t,xxx),O,v(t,xxx)) = ∂tn− (∂yn)2 −∇xxxn ·∇ρ(t,xxx) = 0
(8.3.9)

We can also derive Eq. (8.3.8) with respect to y to get

∂
2
tyn = 2∂yn∂

2
yyn+∂y∇xxxn ·∇ρ(t,xxx)+∇xxxn ·∂y∇ρ(t,xxx)+∂yR(y,ρ(t,xxx),O,v(t,xxx))

which computed at y = ȳ(t,xxx) yields

∂
2
tyn(t,xxx, ȳ(t,xxx)) = ∂y∇xxxn(t,xxx, ȳ(t,xxx)) ·∇ρ(t,xxx)+∂yR(ȳ(t,xxx),ρ(t,xxx),O,v(t,xxx))

If we look for a homogeneous steady state, then the previous equation implies

∂yR(ȳ,ρ,O,v) = (pm − pM)
(

1− ρ

K

)
−2η(y−ϕ(O))− (βm −βM)v

= 0
(8.3.10)
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It is reasonable to consider uε

∗
⇀U δȳ and so∫

Y
β (y)uε(t,xxx,y)dy → β (ȳ)U

With this observation, Eqs. (8.3.6), (8.3.7), (8.3.9) and (8.3.10) constitute a system
of four equations in the four variables U, I,v, ȳ, which in principle can be solved.
The case I = 0 clearly implies v = 0 and there exist two solutions: the first one is
ρ = K, ȳ = ϕ(O); the second one is

ȳ =
2pM

pM − pm
−ϕ(O)>

2pM

pM − pm
−1 =

pM + pm

pM − pm
> 1

U = K +
4p(ϕ(O))

(pm − pM)2 > K

and it clearly has no biological meaning. Let us now assume I ̸= 0, which according
to Eq. (8.3.7) implies

U =
qv

αβ (ȳ)

We need to solve the system

U =
qv

α[βM +(βm −βM)ȳ]

v =
αqI

qv
I

R(ȳ,U + I,O,v) =[pM +(pm − pM)ȳ]
(

1− U + I
K

)
−η(ȳ−ϕ(O))2

− [βM +(βm −βM)ȳ]v = 0

∂yR(ȳ,U + I,O,v) =(pm − pM)
(

1− U + I
K

)
−2η(ȳ−ϕ(O))

− (βm −βM)v = 0

We can easily include the expressions of U and v in the last two equations, obtaining

[pM +(pm − pM)ȳ]
(

1−
qv

α[βM+(βm−βM)ȳ] + I

K

)
−η(ȳ−ϕ(O))2

− [βM +(βm −βM)ȳ]
αqI

qv
I = 0

(pm − pM)

(
1−

qv
α[βM+(βm−βM)ȳ] + I

K

)
−2η(ȳ−ϕ(O))− (βm −βM)

αqI

qv
I = 0
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We then computed I as a function of ȳ from the second equation

I =
pM − pm − qv(pM−pm)

Kα(ȳ[βm−βM ]+βM) +2η(ȳ−ϕ(O))

pM−pm
K +βM −βm

and ȳ is the solution of the equation

(ȳpm − (ȳ−1)pM) ·
(
βm (α(K −2Kȳ)βM −qv +2αη ȳ(ȳ−ϕ(O)))+αKȳβ 2

m
)

α (ȳβm − (ȳ−1)βM)(K (βm −βM)+ pm − pM)
·

+
(ȳpm − (ȳ−1)pM)(+βM (qv −α(ȳ−1)(−2ηϕ(O)−KβM +2η ȳ)))

α (ȳβm − (ȳ−1)βM)(K (βm −βM)+ pm − pM)

−
αKqI (ȳβm − (ȳ−1)βM)

(
qv(pm−pM)

αK(ȳβm−(ȳ−1)βM) − pm + pM +2η(ȳ−ϕ(O))
)

qv (K (βM −βm)− pm + pM)

−η(ȳ−ϕ(O))2 = 0

(8.3.11)

Let us also observe that we may obtain ȳ from the equation ∂yR = 0:

ȳ = ϕ(O)+
1

2η

[
−(pM − pm)

(
1− ρ

K

)
+(βm −βM)v

]
(8.3.12)

This formula has a clear interpretation: ϕ(O) is the epigenetic trait selected by the
oxygen concentration; the fittest trait tends to grow when the total cell population
ρ is low due to the different proliferation rates of cell lines in a situation of low
competition, while it grows in the presence of viral infection.

8.3.2 Numerical method

To perform numerical simulations of the model, we use the finite volume method,
adapting the procedure presented in Ref. [88] to our problem. We firstly consider
equations of the form:

∂ f
∂ t

(t,x) = M (t,x)+R(t,x) (8.3.13)

where
M (t,x) = ∇xxx · (Φ(t,xxx) f ) (8.3.14)
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regulates the movement and R(t,xxx) the reactions.
Concerning the space, we consider a proper closed subset of R2 Ω̃ = [x1,min,x1,max]×
[x2,min,x2,max] ⊆ R2. We introduce a uniform mesh consisting of the cells C j,k :=
[x1, j− 1

2
,x1, j+ 1

2
]× [x2,k− 1

2
,x2,k+ 1

2
], for j = 0, . . . ,Nx1 and for k = 0, . . . ,Nx2 , of size

∆x1 ×∆x2 where ∆xi =
xi,max−xi,min

Nxi+1 for i = 1,2.

We adopt a splitting method, considering separately the movement and reaction
terms. We begin with the conservative part M (t,x). We define:

f j,k(t) =
1

∆x1∆x2

∫
C j,k

f (t,xxx)dxxx.

Then, we adopt a general semi-discrete finite-volume scheme, which is defined as:

M j+ 1
2 ,k

= (Φ1
j+ 1

2 ,k
)+ f E

j,k +(Φ1
j+ 1

2 ,k
)− fW

j+1,k

M j,k+ 1
2
= (Φ2

j,k+ 1
2
)+ f N

j,k +(Φ2
j,k+ 1

2
)− f S

j,k+1 .

Here:

• (·)+ and (·)− indicate the positive and negative part of their arguments, respec-
tively, i.e., (·)+ = max{0, ·} and (·)− = min{0, ·};

• the apices E, W, N, S indicate East, West, North, and South and correspond
to the evaluation of the piecewise reconstruction using the following d-order
truncation of Taylor expansion. In this case we consider d = 0, so we adopt
piecewise constant reconstruction assuming f E

j,k = fW
j,k = f N

j,k = f S
j,k = f j,k.

• Φ1 := Φx1 and Φ2 := Φx2 are the components of Φ1 along the x1 and x2 axis
respectively.

Note that the derivatives in the middle points are evaluated as

(∂x1 f ) j+ 1
2 ,k

=
f j+1,k − f j,k

∆x1
, (∂x2 f ) j,k+ 1

2
=

f j,k+1 − f j,k

∆x2
,

while the derivatives in the nodes are evaluated as

(∂x1 f ) j,k =
f j+1,k − f j−1,k

2∆x1
, (∂x2 f ) j,k =

f j,k+1 − f j,k−1

2∆x2
.
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For the time discretisation, we use the forward Euler method. We denote the
discretised time step with apex l, i.e.,

t l = t0 +
l−1

∑
i=1

∆t i .

To optimise the performances, we use adaptive time steps obtained by imposing the
positivity-preserving CFL

∆tl ≤ ∆Tl := min
{

∆x1

4Φ1
M
,

∆x2

4Φ2
M

}

where Φ1
M = max

j,k

(
|Φ1 l

j+ 1
2 ,k
|
)

and Φ2
M = max

j,k

(
|Φ2 l

j,k+ 1
2
|
)

.

For the reaction term R(t,xxx), we adopt a simple forward Euler method for
the time derivative. We set the discretized initial condition f 0

j,k provided for each
j = 0, . . . ,Nx1 and for k = 0, . . . ,Nx2 , being f l

j,k the numerical approximation of
f j,k(t l). The complete split numerical scheme reads

f
l+ 1

2
j,k = f l

j,k −
∆tl
∆x1

(
Ml

j+ 1
2 ,k

−Ml
j− 1

2 ,k

)
− ∆tl

∆x2

(
Ml

j,k+ 1
2
−Ml

j,k− 1
2

)
f l+1

j,k = f
l+ 1

2
j,k +∆tlR

l+ 1
2

j,k

(8.3.15)

for l = 1, . . . ,Nl . In the proposed experiments, we set the spatial domain Ω =

[−10,10]× [−10,10]mm2 and we consider the time t ∈ [0,T ], with T > 0. Dealing
with a limited domain, we set no flux boundary conditions.

Moreover, we have equations of the form:

∂ f
∂ t

(t,x) = M (t,x)+R(t,x) (8.3.16)

with
M (t,x) = D∆xxx f = D∇xxx · (∇xxx f ) (8.3.17)

so that M expression in Equation 8.3.15 reads

M j+ 1
2 ,k

=−D∂x1 f j+ 1
2 ,k
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M j,k+ 1
2
=−D∂x2 f j,k+ 1

2
,

where derivatives are computed as introduced above.

Lastly, we consider functions of the type

∂ f
∂ t

(t,x,y) = M (t,x,y)+R(t,x,y) (8.3.18)

where
M (t,x,y) = ∇xxx · (Φ(t,xxx) f )+D∆y f (8.3.19)

We discretize the space Ω̃×Y with a uniform mesh consisting of the cells C j,k,m :=
[x1, j− 1

2
,x1, j+ 1

2
]× [x2,k− 1

2
,x2,k+ 1

2
]× [ym− 1

2
,ym+ 1

2
], for j = 0, . . . ,Nx1 , k = 0, . . . ,Nx2 ,

and m = 0, . . . ,Ny of size ∆x1 ×∆x2 ×∆y where ∆xi =
xi,max−xi,min

Nxi+1 for i = 1,2 and

∆y = 1
Ny+1 .

We define:

M j+ 1
2 ,k,m

= (Φ1
j+ 1

2 ,k,m
)+ f E

j,k,m +(Φ1
j+ 1

2 ,k,m
)− fW

j+1,k,m

M j,k+ 1
2 ,m

= (Φ2
j,k+ 1

2 ,m
)+ f N

j,k,m +(Φ2
j,k+ 1

2 ,m
)− f S

j,k+1,m

M j,k,m+ 1
2
=−D∂y f j,k,m+ 1

2

and we consider the following split numerical scheme:



f
l+ 1

3
j,k,m = f l

j,k,m − ∆tl
∆x1

(
Ml

j+ 1
2 ,k,m

−Ml
j− 1

2 ,k,m

)
− ∆tl

∆x2

(
Ml

j,k+ 1
2 ,m

−Ml
j,k− 1

2 ,m

)
f

l+ 2
3

j,k,m = f
l+ 1

3
j,k,m +∆tlR

l+ 1
3

j,k,m

f l+1
j,k,m = f

l+ 2
3

j,k,m − ∆tl
∆y

(
M

l+ 2
3

j,k,m+ 1
2
−M

l+ 2
3

j,k,m− 1
2

)
(8.3.20)
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Parameter Description Value [Units] Reference

pM maximal duplication rate 2.88×10−2 [h−1] [259]
pm minimal duplication rate 1.44×10−2 [h−1] [312]
K tissue carrying capacity 106 [cells/mm3] [293]
Dxxx cell spatial diffusion coefficient 9.74×10−10 [(mm×cells×h)] estimate based on [264]
η selection rate by oxygen 4.16×10−2 [h−1] [112]
Dy cell epigenetic diffusion coefficient 5.00×10−6 [h−1]] [95]

βM maximal infection rate 7.00×10−10 [mm3/(viruses×h)] [185]
βm minimal infection rate 1.75×10−10 [mm3/(viruses×h)] model estimate
qI death rate of infected cells 4.17×10−2 [h−1] [190]
α viral burst size 1000 [viruses/cells] model estimate
Dv virus diffusion coefficient 3.6×10−2 [mm2/h] [264]

Omax maximal oxygen concentration 2.16×10−3 [mm3
O2

/mm3
plasma] [320, 359]

OM oxygen normoxic threshold 1.71×10−3 [mm3
O2

/mm3
plasma] [320, 359]

Om oxygen hypoxic threshold 2.28×10−4 [mm3
O2

/mm3
plasma] [320, 359]

qO oxygen physiological decay 5.60×10−1 [h−1] estimate based on [440]
λ oxygen consumption rate 6.55×10−4 [mm3/(cell×h)] estimate based on [205]
DO oxygen diffusion coefficient 3.60 [mm2/h] [328]

Table 8.1 Reference parameter set.

8.3.3 Parameter values

In Table 8.1, we list the parameters we adopt as a reference in the numerical sim-
ulations. The majority of the parameters have been estimated from the empirical
literature, while a few others are specific to our formulation of the model and have
been set to reasonable values in order to reproduce plausible dynamics. We recall
that our two-dimensional simulations represent the section of a tumour that is ap-
proximately homogeneous along the third spatial dimension (which can, therefore,
be neglected). Hence, the parameters are estimated in the three-dimensional settings.

The maximal duplication rate of uninfected cells pM, corresponding to the
normoxic situation, has been taken equal to log(2)/24 h−1 ≈ 2.88×10−2 h−1; the
duplication time of 24 hours is among the fastest values reported in Ref. [259] for
glioblastoma. On the other hand, we assume that severely hypoxic cells duplicate
in 48 hours, as done in Ref. [312]: this leads to a minimal proliferation rate
pm = 1.44×10−2 h−1. The carrying capacity K has been estimated assuming that a
cell has diameter 10 µm= 10−2 mm [293]: this implies that the carrying capacity is
106 cells/mm3.

The spatial diffusion coefficient of tumour cells Dxxx has been estimated from
the experimental data of the U343 control group in Ref. [264], as already applied
elsewhere in Ref. [366, 326]. In their experiments, the tumour volume passes in 40
days from 70 mm3 to 1000 mm3, which corresponds to a change in the tumour radius
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from approximately 2.6 mm to approximately 6.2 mm. We assume that hypoxia
plays no central role in that process, so the dynamics of uninfected cells in the
absence of viral infection follow the equation:

∂tu(t,xxx) = Dxxx divxxx(u(t,xxx)∇u(t,xxx))+ p
(

1− u(t,xxx)
K

)
u(t,xxx)

with p = pM. It is well-known that there exist travelling waves solutions of this
equation with speed at least

√
DxxxK p/2 and an initial condition with compact support

evolves into a wave that travels with the minimal speed [37, 336]; this yields the
estimate

Dxxx =
2c2

K p
=
(6.2−2.6 mm

40×24 h

)2
× 2

106 × cells/mm3 ×2.88×10−2 h−1

≈ 9.74×10−4 mm2/h
106 × cells/mm3 ≈ 9.74×10−10 (mm× cells×h)−1.

We assume that this coefficient is the same also for infected cells, as we have no
reason to believe that the infection affects cellular movement.

The death rate of uninfected tumour cells due to oxygen-driven selection η and
the epigenetic diffusion coefficient of tumour cells Dy are not easily accessible in the
empirical literature, hence they have been taken from previous mathematical papers
about epigenetically structured populations: their values have been set respectively
to 1/24 h−1 ≈ 4.16×10−2 h−1, as in Ref. [112], and 5.00×10−6 h−1, as in [95] .

The maximal infection rate of the oncolytic virus βM has been set to 7.00×
10−10 mm3/(viruses×h), as in Ref. [185]; their model does not explicitly take into
account hypoxia, we are assuming that they are considering normoxic conditions.
Since we are not aware of any experimental estimate of infection rate under hypoxic
conditions, we set βm to one-fourth of the value of βm. The death rate of infected
cells qI has been taken equal to 1/24 h−1 = 4.17×10−2 h−1, following [190]. The
viral load released by the death of infected cells depends highly on the type of virus
and ranges from the value 157 viruses/cells estimated in Ref. [451] to the value
3500 viruses/cells [106]; we chose an intermediate value of α = 1000 viruses/cells.
It is important to remark that all these values are highly dependent on the exact type
of oncolytic virus employed. The outcome of the therapy is mostly determined by the
aggregate value βαqI/qv, and our choices allow us to model significant differences
in the effectiveness of oncolytic virotherapy as the oxygen level varies. The spatial
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diffusion coefficient of tumour cells Dv has been set to 3.6×10−2 mm2/h, as in Ref.
[185].

We consider the oxygen thresholds defined in Ref. [320]: the oxygen partial
pressure (pO2) in arterial blood is 70 mmHg and we consider this as the maximal
oxygen concentration Omax); the physiological pO2 ranges approximately between
57 mmHg and 30.4 mmHg, so we consider the higher value as the normoxic threshold
OM, keeping in mind that we may observe lower oxygen values also in healthy tissue;
the pathological hypoxic pO2 value is 7.6 mmHg, which we consider as Om. All
these pressure values are converted in volume ratios by multiplying them by the
solubility constant 3 ·10−5 mm3

O2
/(mm3

plasma×mmHg) [359].

We assume that the oxygen decay is due to the consumption of the healthy cells
present in the region. According to existing work [440], cells have an average rate
of oxygen utilisation of 9.00×10−15 mol/(cell×h), corresponding approximately to
2.02×10−7 mmO2/(cells×h), but this value may vary several orders of magnitude
among different cell types. We, therefore, assume that a single healthy cell consumes
six times this amount of oxygen when the available oxygen level is at Omax and
the consumption scales linearly with the oxygen concentration, meaning that the
consumption in the case of unitary cell density is given by O(t,xxx) multiplied by

1.21×10−6 mm3
O2

cell×h
1

Omax
= 5.60×10−4 mm3/(cell×h).

Considering K as the healthy cell density in absence of tumour, we obtain a decay rate
qO = 5.60×102 h−1. We adopt a similar way of reasoning for the consumption by
cancer cells, starting from the fact that the consumption of a single cell is estimated to
be 2.62×10−6 mmO2/(cells×h) [205] and assuming again that this is only possible
when the oxygen level is Omax. We then assume that cancer cells take the place of
healthy cells, meaning that they cause an additional consumption of

λ =
2.62×10−6mmO2/(cells×h)

Omax
− qO

K
= 6.55×10−4 mm3/(cell×h).

The oxygen diffusion coefficient DO has been set to 3.60 mm2/h, as in Ref. [328].

For the spatial domain, [−L,L]2, we set L = 10 mm. Numerical simulations are
run until the tumour mass reaches the spatial boundaries.



286 Oncolytic virotherapy and hypoxia: continuous modelling

Fig. 8.1 Overlapped results of the numerical simulation adopting stationary oxygen, for three
spatially homogeneous oxygen condition: O = OM (solid lines), O = OM+Om

2 (dashed lines),
and O = Om (dot-dashed lines). In the representation, we plot data at time t = 1500 h, before
virus injection. Blue lines represent the profile of uninfected cancer cells U(t,xxx), green lines
show the average epigenetic trait µ(t,xxx)).

8.3.4 Stationary oxygen

Homogeneous distribution The most elementary situation is obtained by con-
sidering that the oxygen concentration is constant in space and time. We focus on
three oxygen values, namely OM (normoxia), Om (sever hypoxia) and their average
Om+OM

2 (physiological hypoxia), whose corresponding selected traits are respectively
1, 0 and 0.5; other values clearly produce intermediate situations.

As a starting point, it is helpful to observe how a tumour evolves in these
environmental conditions without treatment, as shown in Fig. 8.1 (for the sake of
clarity, the figure represents the central section of the domain, i.e. the set [−L,L]×
{0}). In this experiments we represent time t = 1500 hours, which in this case
precedes virus injection. Left panel shows total uninfected cancer cell U(t,xxx) profiles.
We naturally define

U(t,xxx) =
∫

Y
u(t,xxx,y)dy

and consider that, since uninfected population I(t,xxx) is still not present because
of the absence of the virus, in this case U(t,xxx) = ρ(t,xxx). Overall, we observe the
behaviour predicted by the theoretical asymptotic analysis in all the cases. The three



8.3 Results 287

Fig. 8.2 Comparison of the results obtained from numerical simulation of stationary oxygen
model, for three spatially homogeneous oxygen condition: O = OM (solid lines, plots (a)),
O = OM+Om

2 (dashed lines, plots (b)), and O = Om (dot-dashed lines, plots (c)). First column
shows U(t,xxx) in blue, I(t,xxx) in red, and ρ(t,xxx) in purple. Second column provide the average
epigenetic trait µ(t,xxx) in green and ϕ(O(t,xxx)) in light-blue. Black lines show theoretical
approximation of asymptotic equilibria (when they are evaluable).
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initial conditions are given by Eq. (8.3.1) with y0 = ϕ(O). However, the density
ρ is much lower than K; hence, unless we are in a normoxic situation, the fittest
epigenetic trait is lower than ϕ(O), as predicted by Eq. (8.3.12); on the other hand,
in the normoxic situation ϕ(O) = 0 is already the lowest attainable value. As time
passes, the cell density grows up to close to carrying capacity and the cancer starts
to invade the surrounding area at a speed approximately proportional to the square
root of the proliferation rate. In the hypoxic scenarios the fittest epigenetic trait
grows with ρ until reaching the value ϕ(O); however, that trait is never completely
selected due to epigenetic diffusion. An important consequence of the presence of
different epigenetic characteristics is the fact that ρ is always slightly below K, as
the oxygen selection never completely stops: this effect is especially evident in the
hypoxic situation, in which the slow proliferation contrasts the selective pressure less
effectively. In order to make the comparison between the epigenetic composition
and spatial characterisation clearer, we introduce the quantity:

µ(t,xxx) =
∫

Y yu(t,xxx,y)dy∫
Y u(t,xxx,y)dy

referring to that as the average epigenetic trait. Right panel of Figure 8.1 shows
µ(t,xxx) for the three experiments. It is important to observe that in all cases the
average epigenetic traits are lower at the invasion front, due to the lower total
densities, and increase as we get close to the tumour centre. Overall, high oxygen
levels are associated with more proliferative tumours, which reach carrying capacity
earlier and invade the surrounding tissues faster.

From the previous discussion, it could appear that hypoxic tumours do not
constitute a significant threat; however, this situation overturns in the presence of
treatment, as the adaptation to hypoxia makes the tumour less susceptible to therapies.
Indeed, Fig. 8.2 shows the effect of oncolytic virotherapy on the tumours described
above. The different growth rates imply that the viral injection is performed at
different times in the three situations: this happens respectively around t = 434 h for
normoxia, 482 h for physiological hypoxia and 663 h for severe hypoxia. In order to
facilitate the comparison between the different scenarios, Fig. 8.2 shows the section
of the simulation approximately 1500 h after the viral injection. In all the three cases,
the central region of the tumour is quickly infected and viral particles are able to
reach the tumour front in a relatively short time due to their fast diffusion. In the
severely hypoxic case, this initial successful infection might appear surprising, but it
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can be easily explained that at Tinj the tumour has not reached the carrying capacity
and the epigenetic characteristics are still not fully adapted to the environment (the
lack of complete adaptation is also true in the other cases, but less evident).

The following dynamics appear quite different in the three cases. In the normoxic
case (Figure 8.2a), cell densities at the centre of the tumour converge with damped
oscillations to the equilibrium predicted by the theoretical analysis. The average of
the epigenetic traits in the central area sensibly increases right after the viral injection,
then oscillates towards the equilibrium. It is interesting to observe that epigenetic
traits at the invasion front are lower, since in this area both ρ and I are lower. In
the physiologically hypoxic case (Figure 8.2b), the situation is qualitatively similar,
but the equilibrium value for ρ is higher. The spatial difference of the average
epigenetic trait is much more evident than in the previous case: the convergence
to the equilibrium value is slower than before and takes place mostly from the
lower side. We remark that, unlike the other two situations, here the dynamics take
place for values of the epigenetic trait in the inner of the interval (0,1), hence we
observe a better agreement with theoretical results (which do not take into account
the constraints on y). While these two situations can be described as partial successes
of the therapy, the severely hypoxic case (Fig. 8.2c) is clearly a complete failure: the
tumour density decreases only for a short time, after which it starts to regrow up to
around 80% of carrying capacity, with just a small fraction of infected cells. The
infection causes a further increase of the epigenetic trait, making the tumour even
less sensitive to therapies than before.

8.4 Conclusion and future perspectives

In this chapter, we have introduced a novel approach to oncolytic virotherapy mod-
elling. The major novelty stands in the combination of epigenetically structured
cancer cell population with hypoxia’s effect and spatial characterization. Even if
numerical simulations are preliminary and still reduced to simplified scenarios, re-
sults show biologically coherent patterns, with environmental selection and abiotic
conditions influencing the capability of the virus to control tumour mass expansions.
From a mathematical point of view, numerical observations show coherence with the
theoretical results obtained.
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Future steps include examining stationary oxygen scenario with spatially hetero-
geneous profiles and then move to consider oxygen evolution, keeping into account
cell consumption and inflow.

Moreover, given the interest on hypoxia influence and considered the radiotherapy
models already developed in the same setting, coherently with the clinical interest in
the use of oncolytic virotherapy in combination with radiation, we aim to develop a
model to study the interaction of the two treatments. Mathematical modelling could
help in designing the optimal combination, considering contemporary, subsequent or
alternating treatments and investigating doses, orders and timing according to the
environmental conditions.



Chapter 9

Continuous modelling for immune
system-cancer interaction: geometric
and epigenetic characterisation to
explain hot and cold tumours

This chapter presents the foundations of a work that has just started in collaboration
with Professor José A. Carrillo (Oxford University). This project takes its idea
from the analysis of [91], in which authors present a macroscopic cell-cell adhesion
continuum model, derived from underlying microscopic dynamics. The model is
designed to catch sharp fronts and mixture invasion fronts between different cell-type
populations. The work investigates different mechanisms and intensities of attraction
and repulsion between cell populations. The experiments leading to this model,
presented in Ref. [257], were analysing the rise of mosaic pattern in the olfactory
epithelium, considering cellular rearrangement dynamics driven by the different
expressions of nectins and cadherins. The similarity of these dynamics with the
interaction occurring between the immune system and cancer cells led to the idea of
adapting the original model in Ref. [91] to describe it.
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9.1 Introduction

An ODE setting is one of the simplest approaches to dealing with tumour-immune
system interaction. The majority of this category of models is based on the prey-
predator model [276] (then generalised [166]), in which authors use two equations
to define the behaviour of tumour cells and cytotoxic T lymphocytes. In Ref. [141],
authors adopt a system of ODEs, omitting tumour escape intrinsic mechanisms,
to concentrate on the anti-tumour immune response generated by the interaction
between macrophage and T cells. In general, non-spatial models often directly
include dynamics of antigen-mediated tumour recognition by T cells [269, 56, 182]
sometime modeled using integro-differential equations [150, 147, 297]. Also, when
moving to immunotherapy, most of the works are based on systems of ODEs and are
mainly interested in the death of tumour cells and inactivation of CTLs [268, 347,
399].

Although this type of modelling is interesting for analysing the effectiveness of
the immune response (in terms of cell number) and the antigenic dynamics in its
activation, it prevents the analysis of the important mechanism of immune invasion,
which requires spatial modelling of the mass. A passage to PDEs can be seen in Ref.
[314], where a Fisher-Kolmogorov-like model is used to describe the logistic growth
of the tumour with T cells being attracted via chemotaxis.

With particular attention on the geometrical characterisation of tumour infiltration
by the immune system, in Ref. [314] they present a model based on a four PDE
system describing tumour cells, immune cells, chemokines and complexes that
focuses upon the attack of tumour cells by tumour-infiltrating cytotoxic lymphocytes
(TICLs). This work is of particular relevance both for its interest in spatial dynamics
and for the biological framework since it considers tumours in the same phase as
the one we take into account (small size, without necrosis, prior to angiogenesis
dynamics). Unlike what is done there, we choose not to model abiotic factors directly,
such as inserting antigens and chemokines as agents with their equations, but we
rather insert their effect as a function of the cells that secrete them. Other PDE’s
approaches to the problem can be found in Ref. [39, 315, 10].

In Ref. [349], they propose a tumour classification with respect to the interaction
with the immune system based on two features: mutational burden and inflammatory
gene signatures. This leads to the description of four tumour types, represented in
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Figure 9.1. We aim to propose a mathematical model able to fill the gap between the
initial conditions of the primary tumor mass and the outcome, classified in one of
these four categories.

Fig. 9.1 tumour classification according to mutational burden and inflammatory gene signa-
tures. Figure taken from [349].

In the following sections, we present a starting model and some possible varia-
tions (Section 9.2) with few very early results (Section 9.3). In addition, we present
future perspectives for this work (Section 9.4).
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9.2 The model

9.2.1 Single population model

In the first version of the model, we consider the tumour mass to be composed of
a single cell population. Therefore, the model includes two main contributors: the
cancer cells ρ(t,x) and the T cells ℓ(t,x). We consider a time domain t ∈ ΩT =

[0, t f in]⊂ R and a 2D space domain x ∈ Ωx = [xmin,xmax]× [ymin,ymax]⊂ R2.

Cancer cell population ρ(t,x) equation reads:

∂ρ

∂ t
=

proliferation︷ ︸︸ ︷
γρ ψ(ρ, ℓ) ρ +

movement︷ ︸︸ ︷
∇ ·
(

ψ(ρ, ℓ) ρ ∇
(
H ′(ρ)+W ∗ρ

))
−

immune effect︷ ︸︸ ︷
λρ

ℓ

ρ + ε
ρ . (9.2.1)

The population is characterised by a proliferation rate γρ , and cell proliferation
replicates a logistic behaviour, where the filling saturation

ψ(ρ, ℓ) = 1−ρ − ℓ

is determined both by cancer and T cells. Moreover, cancer cells move driven by
two different dynamics. The first one is an anti-crowding dynamic defined via the
following factor:

H(ρ) =
νρ

2
ρ

2,

with cancer cells moving away from high cancer cell density zones characterised
with speed influenced by parameter νρ . The second one is an adhesive motion,
keeping cancer cells stuck together, defined by function

W (x) =W (|x|) = Aρ1{|x|<rρ}.

Note that W ∗ρ indicates the convolution product and parameter Aρ characterises
the strength of the attraction between cells. Note that the same term ψ(ρ, ℓ) that
regulates the proliferation is also responsible for the slow down of the migratory
dynamics, reproducing the fact that overcrowding hinders cellular movement. Finally,
cancer cells undergo death caused by the suppressive action operated by T cells, with
a rate λρ that characterises the cancer cell population.
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T cell population ℓ(t,x) equation reads:

∂ℓ

∂ t
= S ψ(ρ, ℓ)︸ ︷︷ ︸

source

+ ∇ ·
(

ψ(ρ, ℓ) ℓ ∇
(
H̃ ′(ℓ)+W̃ ∗ρ

))
︸ ︷︷ ︸

movement

− λT ℓ︸︷︷︸
exhaustion

(9.2.2)

T cells are generated at a maximum S rate, which is slowed down by high cell
density (considering both cancer and T cells). Moreover, T cells move both with a
volume-filling dynamic, moving away from high T cell density zones with speed
coefficient νℓ, and attracted by cancer cells. Equation (9.2.4) shows that functions H̃
and W̃ have the same mathematical formulation of H̃ and W̃ and are just characterized
by different parameters νℓ and Aℓ. In particular, Aℓ is an important parameter, since
it defines the intensity of the attraction on T cells by cancer cell and when addressing
heterogeneity in the cancer population it ise seen as a characterizing parameters
for the subpopulation features, as well as λρ and γρ . Finally, we collect T cells
exhausting and dying in the same linear decaying process, with a rate λℓ.

The final system reads:

∂ρ

∂ t
= γρ ψ(ρ, ℓ) ρ + ∇ ·

(
ψ(ρ, ℓ) ρ ∇

(
H ′(ρ)+W ∗ρ

))
−λρ

ℓ

ρ + ε
ρ

∂ℓ

∂ t
= S ψ(ρ, ℓ)+ ∇ ·

(
ψ(ρ, ℓ) ℓ ∇

(
H̃ ′(ℓ)+W̃ ∗ρ

))
−λℓℓ

(9.2.3)

where we have also defined:

ψ(ρ, ℓ) = 1−ρ − ℓ

H(ρ) =
νρ

2 ρ2

H̃(ℓ) = νℓ
2 ℓ

2

W (x) =W (|x|) = Aρ1{|x|<rρ}
W̃ (x) = W̃ (|x|) = Aℓ1{|x|<rℓ}

(9.2.4)

Furthermore, we impose no flux boundary conditions at ∂Ωx and we define the
Cauchy problem associating initial conditions:{

ρ(0,x) = ρ0(x)
ℓ(0,x) = ℓ0(x)

(9.2.5)



296 Immune system and hot and cold tumour: continuous modelling

We provide an explicit formulation for ρ0(x) and ℓ0(x) when presenting the simula-
tion settings adopted.

9.2.2 Two population model

Extending the model presented in Section 9.2.1, we now allow for a primitive
heterogeneous composition of the tumour mass. In particular we consider cancer
cell population ρ(t,xxx) as composed of two subpopulations a1(t,xxx) and a2(t,xxx) (so
that ρ(t,xxx) = a1(t,xxx)+a2(t,xxx)). We consider such a differentiation for a cancer cell
population with a non-homogeneous proliferation rate and immune effectiveness.
Here, with immune effectiveness, we refer jointly to the killing rate of the immune
system in a population and the strength of its attractive potential on T cells.

The model, with this modification, becomes:



∂a1

∂ t
= γa1 ψ(ρ, ℓ) a1 + ∇ ·

(
ψ(ρ, ℓ) a1 ∇

(
H ′(ρ)+Wρ

))
−λa1

ℓ

a1 + ε
a1

∂a2

∂ t
= γa2 ψ(ρ, ℓ) a2 + ∇ ·

(
ψ(ρ, ℓ) a2 ∇

(
H ′(ρ)+Wρ

))
−λa2

ℓ

a2 + ε
a2

∂ℓ

∂ t
= S ψ(ρ, ℓ)+ ∇ ·

(
ψ(ρ, ℓ) ℓ ∇

(
H̃ ′(ℓ)+W̃1 ∗a1 +W̃2 ∗a2

))
−λT ℓ

(9.2.6)

with: 

ψ(ρ, ℓ) = 1−ρ − ℓ

H(ρ) =
νρ

2 ρ2

H̃(ℓ) = νℓ
2 ℓ

2

W (x) =W (|x|) = Aρ1{|x|<rρ}
W̃1(x) = W̃ (|x|) = Aℓ11{|x|<rℓ}
W̃2(x) = W̃ (|x|) = Aℓ21{|x|<rℓ}

(9.2.7)

See that the mathematical characterisation of the populations is observable in:

• the proliferation being determined by different coefficients γa1 , γa2 ,

• the attractive potential being influenced by different coefficients Aℓ1 , Aℓ2 (but
same radius of detectability rℓ),
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• the effectiveness of the immune action depending on different coefficients λℓ1 ,
λℓ2 .

On the other hand, let us observe that the movement dynamics of the two cancer cell
populations are not modified with respect to the model presented in Section 9.2.1
since anti-crowding shift continues to depend on total cancer cell density despite
their characterisation and all cell subpopulations adhere equally to cells belonging to
the same or the other subpopulation.

9.2.3 Structured population model

In this final version, we structure the cancer population a(t,xxx,u) with a variable u ∈
Ωu = [0,1]. Total cancer cell population is thus defined as ρ(t,xxx) =

∫
Ωu

a(t,xxx,u) du.

Independent variable u has to be interpreted as a normalised quantification of the
gene expression of a set of genes, selected to be responsible for the trade-off between
proliferation and immune effectiveness (defined as in Section 9.2.2). Mathematically,
we catch this aspect defining u = 0 the level of expression that leads to a maximum
proliferation rate γmax, losing in evasion capability and resistance to immune action
(i.e. having maximal killing rate λmax and maximum attractive strength Amax).
Oppositely, cells with u = 1 gene expression present minimum proliferative rate
γmin, but gain in evasion potential (Amin) and resistance to death (λmin). We model
intermediate states with a linear trade-off. Thus, the complete system reads:


∂a
∂ t

= γa(u) ψ(ρ, ℓ) a+ ∇ ·
(

ψ(ρ, ℓ) a ∇
(
H ′(ρ)+W ∗ρ

))
−λa(u)

ℓ

a+ ε
a

∂ℓ

∂ t
= S ψ(ρ, ℓ)+ ∇ ·

(
ψ(ρ, ℓ) ℓ ∇

(
H̃ ′(ℓ)+

∫
Ωu

W̃ ∗a du
))

−λT ℓ

(9.2.8)



298 Immune system and hot and cold tumour: continuous modelling

with: 

γa(u) = γmin +(γmax − γmin)u
λa(u) = λmin +(λmax −λmin)u
Aℓ(u) = Amin +(Amax −Amin)u
ψ(ρ, ℓ) = 1−ρ − ℓ

H(ρ) =
νρ

2 ρ2

H̃(ℓ) = νℓ
2 ℓ

2

W (x) =W (|x|) = Aρ1{|x|<rρ}
W̃ (x,u) = W̃ (|x|,u) = Aℓ(u)1{|x|<rℓ}.

(9.2.9)

9.3 Results

An exhaustive investigation of the model has not yet been conducted and the results
obtained so far are reduced to the outcomes of the first computed numerical simu-
lation.Further, a parametric calibration has not been performed yet; therefore, we
present the results in terms of relative values of the parameters, without focusing on
their quantification. Nonetheless, some valuable insights can be drawn from initial
findings.

9.3.1 Investigation strategy

We developed a model whose mathematical structures can be easily reconnected to
the two features that define the classification presented in Figure 9.1 of [349]. In fact,
the mutational burden can be quantified in mathematical terms with any indication
of tumour heterogeneity with respect to the chosen epigenetic structure. Moreover,
inflammatory gene signatures represent both the killing action of immune cells and
the geometrical effective invasion of T cells in the tumour mass. Our model allows

for a mathematical representation of these: term λa(u)
ℓ

a+ ε
a in Equation (9.2.8) is

quantifiable, locally or integrated on the spatial domain, representing a descriptor for
the inflammatory activity. The model also provides a spatial characterisation of the
interaction between the tumour and T cells, which can result in a quantification of
the infiltration.

At first, considering an epigenetically homogeneous tumour population (see
model in Section 9.2.1), our objective is to determine which range of parameters that
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characterise proliferation and immune effectiveness of the tumour population lead
to each of the four outcomes presented in Figure 9.1. We also insert the data of the
initial condition as a determining factor: in fact, depending on whether the immune
system detects the tumour mass at a primitive or advanced stage, the tumour’s
infiltrability conditions will be different.

Next, once the parameters range is selected, we consider the model with two
different subpopulations (see Section 9.2.2) in order to analyse the impact of (i)
different combinations of values for the two subpopulations, (ii) different proportion
of the two subpopulations in the initial tumour mass, and (iii) different geometrical
layouts in the tumour initial mass.

In the last step, using an epigenetically structured tumour mass (with continuous
structure, as proposed in (9.2.8)), we aim to recognise an index of initial epigenetic
variability and different distribution models along the epigenetic domain that leads
to the four different outcomes.

All these investigations involve an initial qualitative analysis and subsequent
quantification through a numerical bifurcation study.

Numerical methods

Concerning the numerical method, we adopt the same finite elements approach
adopted in the work presented in Chapter 6, with exhaustive explanations provided
in Section 6.4.1. Note that the only difference here is the presence of a convolution
product, which is numerically approximated, according to the discretisation of the
domains, as a discrete convolution [369].

9.3.2 Single population model

Referring to the model of Section 9.2.1, we consider reference values γ̄ρ , λ̄ρ , Āρ and
consider the following initial conditions:

ρ0(xxx) = QρI{|xxx|≤rρ}

ℓ0(xxx) = QℓI{|xxx|>rρ}
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setting Q̄ρ , Q̄ℓ, and r̄ρ as reference values. We consider two different settings for the
initial values:

• early detection, with Qρ = 1
2Q̄ρ , Qℓ = Q̄ℓ;

• late detection, with Qρ = 2Q̄ρ , Qℓ = Q̄ℓ, and rρ = 2r̄ρ .

Furthermore, we take into account two possible population characterisations, coher-
ent with the trade-off used in Section 9.2.3:

• proliferative population, with γρ = 2γ̄ρ , λρ = 2λ̄ρ , and Aρ = 2Āρ ;

• resistant population, with γρ = γ̄ρ , λρ = λ̄ρ , and Aρ = Āρ .

Fig. 9.2 collates results at final simulation time. It appears evident that, in panel (a),
due to an early detected proliferative population, the cancer mass is fully eradicated
by the immune system. The same asymptotic behaviour is shown in panel (b),
considering an early detected resistant population. In this case, the dynamics are
slower since, at the same time, it is clear that the immune population is predominant,
fully infiltrated and manages to control and eradicate the tumour mass, while the
last is still visible. When it comes to considering late detection, the proliferative
population (panel (c)) presents a reduced external rim of infiltration and a high-
density central core that cannot be penetrated by tumour cells crowded outside the
edges of the tumour. It is clear that in this case, the immune system fails both in
infiltrating and in opposing the advance of the tumour front, which is only slowed
down in its dynamics. The resistant population, on the other hand, is characterised
by complete infiltration but with a low percentage of T cells compared to the tumour
density. So, the mass is half-formed, and the final outcome could both go in the
direction of eradication, control or spread of the tumour. The interesting aspect
is that both features adopted to characterise the tumour mass affect the outcome,
resulting in different configurations. Moreover, combining different characteristics
can change the fate of the tumour mass. for example, given the first row, one could
think that resistant populations are harder to contrast, while when moving to the
second row, the scenario is the opposite.

This confirms the relevance of the line of experimentation proposed above and
the presence of open questions that can be investigated with this model.
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Fig. 9.2 Final time of numerical simulation of one population system introduced in Equation
(9.2.3). Cancer cells a(t,xxx) are represented with a blue line, and T cells ℓ(t,xxx) with an orange
line. We consider different cancer population characterisations (proliferative/resistant) and
detection times (early/late). (a) Proliferative population, early detection. (b) Resistant popu-
lation, early detection. (c) Proliferative population, late detection. (d) Resistant population,
late detection.

9.3.3 Two population model

In this next experiment, according to the guidelines presented in Section 9.2.2,
we move to consider a heterogeneous cancer population. In particular, we take
population types (proliferative and resistant) respectively as subpopulation a1 and a2
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that compose the total tumour mass ρ . Let us define the ratio

R =

∫
Ωx

a1 dx∫
Ωx

ρ dx

as the ratio of population ρ belonging to the first subpopulation. Thus, recalling the
definition of ρ , we have:

1−R =

∫
Ωx

a2 dx∫
Ωx

ρ dx
.

We now move to characterise the initial data from a geometrical point of view.
Keeping the initial condition:

ρ0(xxx) = QρI{|xxx|≤rρ}

ℓ0(xxx) = QℓI{|xxx|>rρ}

and we set Qρ = Q̄ρ , Qℓ = Q̄ℓ, and rρ = r̄ρ . We consider two geometrical layouts:

• mixed, with a1,0(xxx) = RQρI{|xxx|≤rρ} and a2,0(xxx) = (1−R)QρI{|xxx|≤rρ}

• in&out, with a1,0(xxx) = QρI{|xxx|≤√
Rrρ} and a2,0(xxx) = QρI{√Rrρ<|xxx|≤rρ}

were mixed is a homogeneous mixture of the two subpopulations, and in&out
corresponds to a concentric figuration.

For this experiment, we consider R = 0.5, i.e. a population with balanced
composition between the two subpopulations, and refer to experiment "(c)" when
adopting mixed initial condition and "(d)" when using in&out configuration. In
Fig. 9.3 we collect results at three times (initial, intermediate, and final, disposed
in three rows). The first row provides a graphical representation of the identic
initial conditions for ρ and ℓ in the two experiments, with (c) (column one) showing
overlapped subpopulations and (d) (column two) presenting concentric layouts.
Moving to intermediate time, in experiment (c), T cells infiltrate the mass slightly
better, and cancer subpopulations continue to cohabit, with some changes in the
spatial disposition, with the proliferative subpopulation more present inside and the
resistant subpopulation pushed in the outer part of the tumour. Experiment (d) is
characterised by steeper edges, with the core of the tumour being populated only by
a proliferative population (denser than in the previous experiment), the external rim
composed of resistant cells, and T cells that struggle to invade the densest area. T
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cells infiltrate the mass slightly better, and cancer subpopulations continue to coexist,
with some changes in the spatial disposition, as the proliferative subpopulation are
more present inside and the resistant subpopulations are pushed in the outer part of
the tumour. Plots at the final time (row three) clarify the two experiments’ different
asymptotic outcomes. In the first, the tumour mass is reduced in total size, highly
invaded by immune cells and presents a smooth edge carved out by the action of the
T cells. On the contrary, in the second case, a more significant number of T cells
accumulate outside the edge of the tumour, which grows in size and can counteract
both the infiltration and the killing activity of the immune system.

Even in lack of a proper model calibration and parameter estimation, these
early results underline that the sole spatial characterisation of tumour epigenetic
heterogeneity is able to change the fate of a tumour with fixed composition and size.

9.4 Conclusion and future perspectives

Although preliminary, the adaptability of the model introduced in Ref. [91] to our
problem and the results obtained so far confirm the interest of the line of research.

It is evident, even from the early results we obtained, that the parameters inserted
in the model and considered for the investigation (proliferation rate, killing rate,
attraction strength and characterisation of composition and geometrical layout of the
initial data) are strictly correlated with the resulting pattern. Moreover, the layouts
obtained as final results are highly comparable with the characterisation adopted for
tumour classification in Ref. [349].

Future steps expect an analytical and numerical investigation of this correlation,
including model calibration, parameter quantification and bifurcation analysis. More-
over, so far, we have only presented the modelling setting relating to the structured
population, which deserves a complete analytical and numerical investigation.

Finally, the parameters taken into account in the investigation are eligible for
the inclusion of ICI therapies in the model. Immunotherapy could be modelled as
the insertion of targeted T cells, i.e. a variation both of the source term S and of the
immune effectiveness on different subpopulations (terms A and λ ).

This paves the way for investigation of immunotherapy alone or as combined
therapy, merging, for example, models presented in Chapter 4 and Chapter 8.
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Fig. 9.3 Initial (first row), intermediate (second row), and final (third row) times of numeri-
cal simulation of two population systems introduced in Equation (9.2.6). Subpopulations
involved are proliferative and resistant populations introduced in Section 9.3.2. Ratio R is
set at 0.5. Experiment (c) (column one) has mixed population as initial data, experiment (d)
(column two) adopts in&out configuration. Cancer subpopulations a1(t,xxx) and a2(t,xxx) are
represented with blue and orange lines, total cancer cell population ρ(t,xxx) with red line, T
cells ℓ(t,xxx) with green line.



Conclusions

The word "conclusion" seems paradoxical in the field of mathematical oncology,
which is still characterised by a large number of unanswered questions, both from
the theoretical and the clinical point of view.

The complex and varied processes involved in tumour dynamics, and by con-
sequence in this thesis, make a global treatment of the problem difficult. For this
reason, we have preferred to dedicate a separate chapter to each dynamic analysed
and accompany it with a discussion of each work’s specific conclusions and future
prospects. Here, we limit ourselves to collecting and summarizing the results ob-
tained from the previous studies and presenting a common guideline for the next
steps.

After dedicating Part I to the introduction of the biological (Chapter 1) and
mathematical (Chapter 2) framework in which the works are set, Part II collects all
the research results obtained so far.

In Chapter 3, we propose a mathematical model able to catch eco-evolutionary
spatial dynamics of tumour cells, considering the impact of hypoxia on the trade-off
between maximizing cell survival and maximizing cell growth affecting cancer cells
[8]. Our findings reproduce experimental observations, allowing us to mathemat-
ically investigate the proven impact of the oxygen map. This influences both the
delineation of niche spaces and the determination of tumour growth speed and epige-
netic composition of the population [386]. The model proves to be a powerful tool in
analyzing the multiplicity of evolutionary pathways that can lead to the development
of hypoxia resistance. Moreover, it reproduces the shift of epigenetic dominance
toward resistant phenotypes, allowing cells to survive both hostile environments and
treatments.
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In Chapter 4, based on the previous model, we enclose a novel mathematical con-
tinuous formulation for radiotherapy, in which the killing potential of the treatments
depends on both the oxygenation of the area and the epigenetic trait assumed by
the cells. Our model is presented as a valuable tool in analyzing the dependence on
tumour oxygenation of repopulation, reoxygenation, and radiosensitivity dynamics
and its effect on tumour-host interaction [376]. In this work, we introduce possible
personalised indicators, complementary to the nominal tumour size, since that proves
insufficient to predict tumour growth and therapy response. The model provides
essential predictive information that could be useful for clinical practice, guiding the
delineation of optimal protocols in terms of doses and timing.

In Chapter 5, we propose a plasticity-oriented modelling framework where
discrete structuring variables distinguish cells in terms of genotype and assigned
mathematical representation to differentiate them in terms of phenotype. The model
proves to be capable of representing the early evolution of an in vitro heterogeneous
tumour aggregate. From a biological point of view, numerical realisation captures the
emergence of a hypoxic core within the tumour cluster with the consequent trigger
of epithelial-mesenchymal transition, resulting in invasive dynamics. In the future,
the model opens the perspective for investigating the influence of oxygenation levels,
intrinsic genotype, and randomness on phenotypic conversions that characterise
metastasis genesis and movement.

In Chapter 6, we develop an innovative mathematical multi-scale model to exam-
ine the interactions between hypoxia, molecular signalling pathways, and tumour cell
migration. This model provides a comprehensive description of macroscopic tumour
cell dynamics, incorporating the influence of microscopic Snail signalling pathways
on the mechanisms of tumour response to hypoxic conditions. We prove the validity
of the proposed mathematical framework as a tool for interpreting experimental data
and understanding the underlying biological mechanisms driving tumour migration.
We successfully replicate experimental results on human hepatocarcinoma [459]
and breast cancer [305], underlining the effect of hypoxia and Snail knockdown or
over-expression on the motility of cancer cells. Our model proves to be decisive
in delineating the spatial distribution of Snail expression with promising clinical
perspectives.

Moving to Part III, which includes not fully completed works, in Chapter 7,
we propose mathematical models able to catch the stratified epigenetic and pheno-
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typic spatial structure of tumour spheroids. Comparison between Fisher-like and
anti-crowding frameworks with different degrees distinguishes bi-structured anti-
crowding models as a successful model for compactness preservation of compact
support initial data, emerging of invasive lower density rims, and geometric character-
ization of traits expressed by cells. The applicability of the model to clinical practice
is enhanced by the introduction of clinical-comparable mathematical descriptors.

In Chapter 8, we have introduced a novel approach to oncolytic virotherapy
modelling, considering epigenetically structured cancer cell population and the effect
of hypoxia on effectiveness. First numerical simulations of the model in simple
scenarios under stationary tissue oxygenation show biologically coherent patterns,
with environmental selection and abiotic conditions that influence the capability of
the virus to control tumour mass expansions.

Finally, in Chapter 9, we introduce a novel mathematical formulation in the
context of tumour-immune system interaction. Although preliminary, the results
already highlight the model’s capabilities to provide a set of parameters whose values
can determine different outcomes in terms of the tumour classification introduced in
Ref. [349]. As presented in the paper, this classification strongly correlates with the
effectiveness of different immunotherapy strategies, making our model a potentially
helpful tool in delineating them and discriminate between "hot" and "cold" scenarios.

The models presented include central dynamics to understanding the evolution
of tumour masses, the impact of interaction with the environment on them, and the
effect of both on the effectiveness of treatments. By exploiting information obtained
with such investigations, the mathematical model is a tool for clinical support in the
optimization of therapeutic protocols. The results obtained so far are promising. On
the one hand, they answer some biological questions that are not directly observable
and introduce novel mathematical approaches developed to catch specific dynamics.
On the other hand, from the point of view of future perspectives, the models have
been developed in such a way as to have natural extensions and characterizations,
opening the field both to an improvement in modelling terms and to an attempt to
exhaust clinical questions that are still open.

From a purely mathematical point of view, the thesis’s theoretical aspects con-
centrate predominantly on the modelling procedure. The need for capturing complex
phenomena motivates the level of mathematical difficulty embedded in the models.
This leads the theoretical studies included in this work to focus on the use of theoret-
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ical analyses to control and forecast behaviours of the examined quantities. Among
them, we consider numerousness and geometry for tumour growth, estimation of
mass advancement speeds and characterization of optimal epigenetic/phenotypic trait.
Addressing the future perspective, next steps include detailed studies of trajectories
and equilibrium points, considering corresponding ODEs of our spatial models or
local analysis. The construction of discrete stochastic models corresponding to the
continuous models presented will also allow a theoretical parametric calibration
(with limit techniques) with the advantage of traceability to measurable quantities.
Again, from a mathematical point of view, investigating bifurcation analysis and
optimal therapy control would allow a quantitative characterization capable of corre-
lating the values of the parameters included and the possible initial conditions with
the outcomes. In these terms, another aspect to consider is that of the stability of
the results, which can be investigated in theoretical terms and by conducting further
sensitivity analyses.

When considering the biologically-driven open questions concerning cancer cell
dynamics, one relevant point is to account for better-described genetic alterations that
may be induced by cell-cell communication and changes in environmental conditions
but are usually determined by random mutations. We actually take into account them
in a few models and with a generic diffusive dynamics modelling that we aim to
improve.
From the epigenetic point of view, medicine and biology practice is moving toward
novel, discovered, and more precisely investigated trade-off dynamics. Thus includ-
ing more realistic trade-offs affecting tumour evolution would be of interest, either
by characterizing the strength and shape of the trade-off or considering different
phenotypical features that define it.
We could move in the direction of a specific characterization of cell state with
respect to their metabolic activity (differentiating, for example, viable, quiescent,
and necrotic cells). Specifically, considering quiescence dynamics would highlight
problems of resistance to therapies based on targeting cells during their replicative
cycle. Considering the formation of a necrotic population due to increased oxygen
consumption as the tumour mass grows would be attractive for its effect on the
morphology and invasion ability of the mass, being it responsible for the secretion
of motility-promoting cytokines [281]. In this context, one can consider fingering
invasive formation and dispersal metastatic mechanisms [380] and their correlation
with necrosis and environmental conditions.
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Moving to consider interaction with the environment and other factors, even
though we consider healthy cell compartments via their effect on tumour cell and
abiotic dynamics, a novel perspective would be to include tissue cells as a direct
agent of the systems describing cell interactions.
Among all possible extension and future perspectives, an interesting aspect is also
the insertion of more mechanical aspects, determinants in the interaction with intra-
cellular fluid or extracellular matrix. This kind of characterization is strictly related
to the spatial analysis of cancer masses and could sensitively improve the work in the
study of tumours in tissues characterized by singular morphologies, such as the brain.
When applying the presented model to reproduce the evolution of in vivo malignant
masses toward invasive and metastatic dynamics, one may also include the presence
of both the preexisting and the tumour-induced vasculature in the picture. In fact,
blood vessels play a central role in tumour dynamics not only as carriers of oxygen
but also as an escape route, through extravasation, for cellular agglomerates, which
will form metastases in other areas of the body.

Let us finally recall that, although they are also interesting from an independent
investigative point of view, this thesis focuses on therapies. This is evident in the
choice to include biological elements and microscopic dynamics strictly related to
their effectiveness and, sometimes, in the inclusion of the therapies themselves in the
model. This focus has currently only been investigated partially and in qualitative
terms and in this sense the works of this thesis are to be considered a first step
in the direction of (hopefully) effective patient-specific modelling that supports
clinical practice. Many works presented here show a clear correlation between
epigenetic characteristics and the consequent phenotype expressed by the various
cell subpopulations on therapeutic efficacy. This offers a starting point, from the
perspective of target therapy, to select the most significant ones to target among
many cellular pathways. The parameters inserted into the models, often taken from
the medical literature to ensure the representative quality of the models, are the
key to the patient-specific characterization. The initial data taken here as a generic
representation of a tumour mass can be obtained from medical imaging and clinical
analyses, being able to adapt the general model to specific situations of individual
patients and use it with predictive intent. Furthermore, data relating to the speed of
proliferation, movement and reaction of cells under external stimuli can be quantified
in the case of the individual patient thanks to clinical tests, which over the years
improve in the variability and precision of the obtainable information. In this sense,
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it is interesting not only for the mathematician to be open to the use of medical data
for the validation of their results, but also for a dialogue with the clinical world so
that the mathematical model is recognized in its support for therapeutic practice and
data collection operated in the field by medical personnel takes into account their
needs in order to have a statistically significant predictive value. In the specific case
of the future perspective for these works, my aim is to characterize my research, also
understood in terms of establishing new collaborations and investigative realities,
intensifying this dialogue and moving toward better medical reliability. This includes
improving the calibration of all model parametrisation, for instance, by focusing on
a specific tumour type and using proper sets of existing data. Once the model is used
to determine the pros and cons of different therapeutical approaches, enlightening the
environmental and tumour characteristics for which a strategy results in the optimal
one, a natural step is to exploit the mathematical modelling to overlap different
therapies (as it happens in combined therapies) and analyse the resulting outcome.
In this direction, a complete sensitivity analysis on the models (already included in
the future developments of the work due to its mathematical relevance) would be
beneficial also in therapeutical terms: evaluating the impact of individual parameters
and initial data on the final outcome would provide an important suggestion in
clinical practice on the relevance of the various patient values.

All these pave the way for personalised medicine approaches tailored to individ-
ual tumour characteristics.

To finish, let me end with the same lack of formality that I used to open my introduction
(and that characterises me more than the style of these hundreds of pages).
I started studying mathematics when I realized I didn’t have the coldness and
emotional detachment to become a doctor. I had never thought about the possibility
of using analytical thinking to expand the possibilities of clinical practice.
The vastness of the unexplored territories and the steps still to be taken to make this
possible is both sad and inspiring.
The conclusion is that I simply can not wait to see what more can be done, and I
really hope to be part of it!
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