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Chapter 1

Introduction

1.1 Metals

In the field of materials science, metals constitute a fundamental class of material that
possess unique properties and that have been crucial in technological and industrial
advancements. The distinctive attributes of metals, such as high electrical and thermal
conductivity, prominent mechanical properties, ductility, and malleability, are highly
related to their atomic structure and to the nature of the metallic bonding[1–5]. The
unique characteristics of metallic bonding arise from the fundamental properties
of metal atoms, which distinguish them from nonmetals. Metal atoms typically
possess a high number of electrons, yet only a few reside in the valence shell. Indeed,
these valence electrons are relatively distant from the nucleus and are shielded by
numerous inner-shell electrons, resulting in a weak binding force. Consequently,
metal atoms are unlikely to form one-to-one covalent bonds. Instead, they organize
into crystalline lattice structures, where multiple neighboring atoms surround each
atom. In these configurations, the valence electrons are not localized into the
individual atoms but are shared collectively across the entire lattice, creating a "sea
of electrons." This delocalization enables the electrons to move freely throughout
the lattice, which accounts for the exceptional thermal and electrical conductivity
characteristic of metals[6–9]. Furthermore, these delocalized electrons interact with
positively charged metal ions through electrostatic forces, creating a cohesive lattice
structure with characteristic ductility and malleability, which maintain its integrity
even under significant mechanical stress. All these peculiar features make metallic
bonding very different from other types of chemical bonds.
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The strength of metallic bonds, rooted in the electrostatic attraction between
metal ions and the delocalized electrons, ensures that metals can withstand plastic
deformation before breaking. This ductility is a key feature that makes metals
indispensable for applications where materials are subjected to varying levels of
stress and strain[10].

The sharing of electrons among metal atoms stabilizes the lattice structure while
simultaneously enhancing electrical conductivity. This shared electron cloud fa-
cilitates the movement of electrons and electric conductivity through the lattice,
enabling efficient electrical conduction with minimal resistance (ohmic conductors)

Understanding the intricacies of metallic bonding not only provides insights
into the fundamental properties of metals but also distinguishes them from other
materials. This understanding is essential for advancing scientific knowledge and
driving innovation across a wide range of technological applications.

1.1.1 Metals’ role in modern technological applications

Metals play an important role across a wide range of technological applications,
showcasing their versatility in modern industry and technology. The inherent proper-
ties of metals, such as strength, ductility, and conductivity, are not only fundamental
to their application but also highlight the dynamic interplay between their struc-
tural characteristics and functional performance[1–3]. This short overview provides
insight into the modern technological applications of metals across various sectors.

Metals are essential to technological advancements in many industries, serving as
the foundation for modern engineering applications. In the aerospace sector, metals
are chosen for their strength-to-weight ratio, crucial for airframes and propulsion
systems[11, 12]. Alloys like titanium and aluminum are valued for their weight and
high mechanical strength, leading to more fuel-efficient and safe aircraft.[11–14]

In electronics, metals such as copper and silver are indispensable for their excel-
lent electrical properties[9, 14–16]. Their high electrical conductivity is essential
for reliable electrical circuits and connectors, ensuring consistent performance in
electronic devices.

The automotive industry relies on metals for their structural integrity and durabil-
ity. High-strength steels are used for their impact resistance in critical components
like chassis and brakes, meeting safety and durability standards[17–19].
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Fig. 1.1 Illustration of metallic bonding and related phenomena (a) presents an enlarged
view of the ‘electron sea’ model within a metallic lattice, highlighting the fluid mobility of
electrons amongst the positively charged metal ions, a key factor in the conductivity and
malleability of metals. (b) depicts the mechanism of electrical conductivity, characterized by
the free flow of electrons across the lattice, facilitating electrical current. (c) captures the
deformation of the metallic lattice under applied mechanical stress, displaying both distortion
and subsequent realignment of ions that contribute to the metal’s ductility. Finally, (d) shows
the process of alloying, where the introduction and substitution of different metallic elements
alter the lattice structure and improve the material’s overall properties.

In renewable energy, metals are crucial for constructing wind turbines and pho-
tovoltaic panels. Alloys of steel, iron, and copper provide the necessary durability
and efficient energy transmission, ensuring long-lasting and effective renewable
energy installations.[20–22] Metals combine strength and ductility, allowing them
to undergo plastic deformation while maintaining structural integrity[23–28]. Al-
loying, the process of combining metals with other elements, enhances properties
like stiffness, strength, and corrosion resistance, resulting in materials with unique
characteristics[29–32].

Metal drawing is a key manufacturing process for producing wires, rods, and
tubes. This plastic deformation process involves compressing the metal’s cross-
sectional area and extending its length, reshaping the metal efficiently[33, 34].
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In this context, the concept of tribology—the science of wear, friction, and
lubrication—becomes crucial. Tribology in metals is vital in numerous industrial
applications where metals undergo continuous mechanical interaction, either with
other metals or different materials. The wear and tear metals endure, the friction
they encounter in different environments, and the need for effective lubrication to
minimize damage are all factors that significantly influence their performance and
lifespan [35, 36].

Understanding the tribological properties of metals is crucial for designing more
durable and efficient mechanical systems[37, 38]. In the automotive industry, the
wear resistance of engine components, the efficiency of transmission systems, and
the reliability of braking systems all rely on the tribological properties of the metals
used. Likewise, in aerospace, the performance and safety of aircraft heavily depend
on the tribological characteristics of their metal components, which must endure
extreme pressure, temperature, and mechanical stress conditions. Furthermore,
advancements in nanotechnology have facilitated the creation of nanostructured
surfaces with tailored tribological properties. Nanoscale surface features such as
nanocrystalline grains, nanotubes, and nanoporous structures have shown promise in
reducing friction and enhancing wear resistance by modifying the contact mechanics
at the surface interface.

In addition to their crucial role in tribology, metals are also fundamental in the
field of heterogeneous catalysis. Heterogeneous catalysis is a process in which the
catalyst and the reactants exist in different phases, most commonly involving solid
catalysts and gaseous or liquid reactants. This type of catalysis is highly valued for its
efficiency and selectivity in facilitating chemical transformations, which are essential
in numerous industrial processes. The significance of metals in heterogeneous
catalysis arises from their electronic structures and surface geometries, which enable
them to efficiently adsorb and activate reactant molecules. Transition metals are
particularly effective catalysts due to their partially filled d-orbitals. These d-orbitals
can engage in a variety of bonding interactions with the orbitals of reactant molecules,
which is critical for several reasons.

Firstly, the partially filled d-orbitals of transition metals can accommodate elec-
trons from adsorbed molecules, weakening the bonds within these molecules and
making them more reactive. This is often described by the d-band model, which
explains that the energy levels of the d-electrons play a critical role in determining
the strength of adsorption and the activation energy of the reaction. For example,
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metals like platinum (Pt) and nickel (Ni) have d-band centers that are well-suited for
interacting with a variety of reactant molecules, thus lowering the activation energy
and increasing the reaction rate.

Secondly, the d-orbitals of transition metals can overlap with the orbitals of
reactant molecules, forming transient bonds. This interaction brings the reactants
into close proximity and correctly orients them for the reaction. For instance, in
heterogeneous catalysis, the reactant molecules are adsorbed onto the surface of the
metal catalyst. The d-orbitals of the transition metal interact with the electron clouds
of the reactants, stabilizing the transition state and lowering the activation energy
required for the reaction to proceed.[39, 40]

Additionally, the variable oxidation states of transition metals allow them to
participate in redox reactions, alternating between different oxidation states. This
ability is essential in processes such as the Haber-Bosch process for ammonia syn-
thesis, where Fe acts as a catalyst by facilitating the conversion of nitrogen (N2) and
hydrogen (H2) into ammonia (NH3) through repeated oxidation and reduction cycles.
Also copper surfaces demonstrate exceptional catalytic efficiency in the synthesis
of methanol from carbon dioxide and hydrogen. The unique electronic structure
of copper enhances the adsorption and activation of the reactants, facilitating the
reaction under milder conditions than traditional stoichiometric processes [41–46].
This shows the intricate relationship between surface geometry and catalytic activity,
where the unique electronic structure of copper enhances reactant adsorption and
activation, allowing for reactions to proceed under significantly milder conditions
than traditional stoichiometric processes [47, 48]. Transition metals can also form
complex compounds with ligands, stabilizing reactant intermediates through coor-
dination bonds, thus increasing the reaction rate. For example, in homogeneous
catalysis, transition metal complexes, such as those involving Pd in the Heck reaction,
can activate alkene substrates through coordination with the metal center, making
the reactants more reactive towards nucleophilic attack [49].

Furthermore, the surface geometry of metals significantly impacts their catalytic
properties.[39] Metal surfaces are composed of various atomic arrangements, includ-
ing terraces, steps, and kink sites, each offering different catalytic properties. The
availability of these different sites means that metal surfaces can provide multiple
pathways for reactions, enhancing overall catalytic activity. For instance, the step
and kink sites on a metal surface are often more reactive than the flat terrace sites
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because they have under-coordinated atoms, which are more likely to form bonds
with reactant molecules[50].

On the other hand, nanoparticles, namely particles with sizes between 1 and 100
nanometers, have significantly advanced the field of catalysis due to their unique
properties. These systems are more effective than larger bulk materials in catalytic
processes mainly because of their greater surface area relative to their volume and
more sites available for chemical reactions. This increased surface area allows for
more reactant molecules to interact with the catalyst, improving the efficiency and
speed of the reactions.[41, 42, 51–54] For instance, gold nanoparticles can catalyze
the oxidation of carbon monoxide at room temperature, demonstrating abilities that
go beyond the expected chemical activity of bulk gold.[55–57] The strategic design
of these nanoparticle catalysts, grounded in the Sabatier principle [58] and enhanced
through site coordination strategies, is instrumental in crafting nanocatalysts with
tailored reactivity and selectivity.

By adjusting the electronic structure and surface configuration of nanoparticles,
it is possible to control catalytic behavior, optimizing efficiency and selectivity for
specific reactions.[54] Furthermore, the concept of site coordination plays a vital role
in fine-tuning catalytic activity. By strategically arranging and electronically tuning
the catalyst’s active sites, it is possible to directly influence the reaction’s activation
energy and the orientation of reactants, steering the reaction kinetics and pathways.
This level of control at the nanoscale allows for the facilitation of complex reactions
that were once considered unfeasible, broadening the scope of catalytic chemistry.[59–
61] For example, in the production of pharmaceuticals, nanoparticles engineered
with specific site coordination can catalyze the synthesis of complex molecules with
high purity and fewer by-products.[62–64] In environmental applications, catalysts
designed at the nanoscale are used to efficiently convert harmful pollutants like
nitrogen oxides in automotive exhaust into harmless nitrogen and water, showcasing a
significant reduction in environmental impact.[65] Additionally, in the energy sector,
nanoparticles with tailored electronic properties enhance the conversion efficiency
of solar cells by optimizing light absorption and charge separation processes[66–68],
demonstrating the broad applicability of these advanced catalytic systems [69, 70]

In situ characterization techniques are indispensable in this context, to provide
deep insights into the active sites and underlying mechanisms of catalytic processes.
These techniques enable real-time investigation of catalysts under experimentally-
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relevant conditions, revealing the dynamic interaction between the catalyst’s structure
and its performance[71–73].

This quick overview of the technological applications of metals highlights the
extensive influence metals have on modern technology and industry. By highlighting
specific applications and the role of metals within them, we not only appreciate
their versatility but also understand the critical need for continuous research and
development in material science, with a constant pursuit to optimize metal properties
for current and future applications, ensuring their relevance and sustainability in
addressing global challenges.

1.1.2 Shifting perspectives: the dynamic nature of metals under
experimentally-relevant conditions

The field of materials science has increasingly recognized the importance of under-
standing the behavior of metals under operational conditions. Before the melting
temperature, metals are perceived as a perfect and static lattice structure, and their
theoretical models are built on this assumption. However, real-world applications
expose metals to many environmental stresses that lead to significant deviations
from these idealized structures [74–77]. Advances in operando characterization
techniques have allowed the observation of these deviations in real-time, shedding
light on the structural transformations that occur and how they impact the material’s
properties [78–80].

For instance, Shi et al.(2021) emphasized the importance of operando conditions
in understanding the real-time dynamics of heterogeneous catalytic processes. They
highlighted how these techniques provide insights into reaction mechanisms and
active sites that would be impossible to observe under ex situ conditions. Their
work shows that advanced characterization techniques reveal dynamic structural
changes that directly correlate with catalytic performance[79]. Understanding metals
in operando conditions is thus essential to unlocking their full potential and under-
standing how changes in structure affect their performance. This need stems from the
differences often seen between how metals behave in real-world situations compared
to how they are expected to behave according to theoretical models [74, 81, 82].
In experimental setups, metals face various environmental factors such as tempera-
ture, pressure, and exposure to reactants that can drastically change their structure
[83–87, 81]. This is different from theoretical models and simulations, where met-
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als are often assumed to have perfect and static crystal structures. Even at lower
temperatures, metals can undergo significant structural changes under operando
conditions, which can influence their mechanical and catalytic properties; Yang et al.
(2021) demonstrated that advanced operando methods enable direct visualization of
changes in metal catalysts under realistic conditions. Their work showed that surface
restructuring, defect formation, and lattice relaxation significantly impact catalytic
efficiency and selectivity [87].

Colic and Bandarenka (2016) also pointed out that the surface structures of
metal alloys change significantly in real-world conditions, which are different from
idealized models. They showed that varying temperatures and pressures create
stress and rearrange the atoms, leading to unexpected behaviors [81]. As this thesis
progresses, we will introduce the mechanisms of structural changes, such as defect
formation, lattice relaxation, and surface reconstruction, and explore their effects on
structural-related properties. This examination aims to highlight the intricacies of
metal behavior under operando conditions, emphasizing the critical role of dynamic
structural transformations in advancing material science and engineering for diverse
applications. This process is crucial for understanding how surface properties differ
from bulk properties and how these differences impact the overall behavior of the
material. By exploring surface relaxation in detail, we can gain insights into the initial
steps of surface reconstruction, setting the foundation for a deeper understanding of
how metals adapt to their environments in real-world conditions.

1.1.3 Surface relaxation

Every crystalline solid consists of crystallographic lattice planes arranged period-
ically in space. Within the bulk of the material, these planes exhibit a consistent
structure when separated by a multiple of the crystal’s spatial period. However, near
the surface, the arrangement and crystallographic properties of these planes, as well
as the behavior of constituent atoms, can differ significantly.

Surface relaxation refers to the rigid shift of one or more entire lattice planes
near the surface relative to their equilibrium positions in the bulk. This displacement,
which can be either parallel or perpendicular to the surface, occurs as the system
responds to the imbalance of forces created when a surface is cleaved from the crystal
[88]. This process is illustrated in Figure 1.2, which shows the atomic positions in a
five-layer metal slab model before and after relaxation. The left side of the figure
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depicts the original slab with atoms at bulk-like positions, while the right side shows
the model after the top three layers have relaxed. Surface relaxation generally leads
to a lower energy state compared to the original unreconstructed surface.

Fig. 1.2 Schematic illustration of relaxation of surface atoms in a slab model. The top
three layers were allowed to relax, while the bottom two layers remained fixed at ideal, bulk
positions.

The abrupt termination of a surface significantly modifies the atomic coordination,
often leading to a reduction in the distance between the first and second atomic layers,
denoted as d12. The variation in this distance, ∆d12, is expressed as a percentage
relative to the interlayer spacing in the bulk material. Table 1.1 presents the interlayer
spacing relaxations for Cu(100) and Cu(111) surfaces, computed using DFT for
various slab thicknesses.

Cu(100) Cu(111)
Layers δ d12 (%) δ d23 (%) δ d34 (%) δ d12 (%) δ d23 (%) δ d34 (%)

5 3.84 0.50 0.53 0.61 0.08 +0.08
6 1.93 +0.83 +0.37 0.64 0.11 +0.27
7 2.30 +0.55 -0.25 0.56 0.04 +0.32
8 2.14 +0.85 +0.00 0.59 0.32 +0.51

Expt. 2.0±0.5[89] +1.0±0.7[89] 0.7±0.5[90]
Table 1.1 Interlayer relaxations for Cu(100) and Cu(111) surfaces computed using Density
Functional Theory with the PBE exchange-correlation functional.

The Cu(100) surface, with its square planar arrangement, tends to exhibit more
significant changes in interlayer spacing due to its more open structure, as illustrated
in Figure 1.2. In contrast, the Cu(111) surface, which features a hexagonal close-
packed arrangement, exhibits smaller relaxations due to its more tightly packed
atomic arrangement. This difference in atomic arrangement and surface density
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directly impacts their surface energy and stability, making Cu(100) surfaces more
likely to relaxation phenomena as they seek to minimize surface energy, resulting in
greater changes in interlayer spacing.

1.1.4 Defects in metals

The study of point defects in metals is critical for understanding their mechanical
and physical properties, as Lomer (1959) emphasized in his work on defects in pure
metals [91]. Point defects, which result from deviations in the perfect lattice arrange-
ment, significantly impact key material properties such as diffusion rates, mechanical
resilience, and electrical conductivity. Vacancies and interstitials are significant
among these defects. The former is missing atoms in the lattice structure, while the
latter occurs when extra atoms occupy spaces between regular lattice positions. The
presence of these defects can fundamentally change how a material behaves, influ-
encing its ability to conduct electricity, withstand mechanical stress, and enable the
movement of atoms through diffusion. Li and Lu (2017) highlight that managing and
manipulating defects in metals, such as vacancies and dislocations, can significantly
enhance their mechanical properties[92]. By strategically controlling these defect
structures, it is possible to modify metals to have specific desirable properties. The
generation of defects can be intentional, through processes like alloying, heat treat-
ment, or mechanical deformation, or unintentional, due to environmental factors like
radiation or temperature changes. Understanding how to control these factors and
their impact on defect formation is crucial for optimizing the performance of metals
in various applications.[92] Factors such as temperature, pressure, and environmental
interactions are critical in driving structural transformations in metals. Elevated tem-
peratures increase atomic mobility, leading to diffusion processes that promote defect
formation or the migration of existing defects, resulting in surface reconstruction or
phase changes that alter the crystal lattice. Environmental interactions, including
chemical reactions, radiation, and corrosion, can introduce impurities or alter the
atomic structure of metals, leading to surface modifications, defect generation, and
changes in lattice structure[93]. Incorporating these factors into the study of metals
helps understand their behavior under various operando conditions, influencing
the development of materials with tailored properties; these transformations are
known to significantly improve properties like electrical conductivity and mechanical
strength by modifying dislocation dynamics.[94–96]. As noted by Gourdin et. al
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(2021), employing in situ and operando characterization techniques is crucial for
detailing these changes, thereby advancing our understanding and application of
electrochemical devices.[97]

Furthermore, the dynamic equilibrium maintained by operational environments
suggests that metal structures continually adapt, exhibiting transient properties
that are difficult to capture with traditional analysis methods. For instance, Li
et al. (2015) demonstrated that correlated imaging and spectroscopy probes under
operando conditions could uncover the complex structural dynamics of nanocatalysts,
providing invaluable insights into the behavior of metal species across various
states.[72]

Fig. 1.3 Illustration of various surface defects on a metal crystal lattice. Isolated atoms
on the metal surfac can migrate and cluster together to form structures known as surface
islands. Kinks are abrupt changes in the direction at the edge of atomic planes, while steps
with (100)-oriented ledges are linear defects where additional atomic layers begin. The
presence of vacancies—sites where an atom is missing—also affects the surface properties.
These features play a significant role in the properties and behavior of metal surfaces Adapted
with permission from Springer Nature[88].

Incorporating these observations strengthens the understanding of how defects
are integral to the dynamic and responsive nature of metal structures to environmental
conditions, leading to profound changes in material behavior and performance. This
understanding aligns with findings from other significant works [98–100].

The study of these defects has advanced through both theoretical and experimen-
tal lenses. Theoretically, the exploration of the energy landscapes that govern defect
formation, migration, and interaction provides critical insights into their behavior.
This approach allows for the prediction of equilibrium concentrations of defects and
their impact on material properties at various temperatures. Experimentally, sophisti-
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cated techniques such as electron microscopy, positron annihilation spectroscopy,
and electrical resistivity measurements have enabled the direct observation and
quantitative analysis of these defects, shedding light on their roles in the underlying
mechanisms of material behavior[101–105].

Figure 1.3 serves as a visual compendium of surface defects that can exist on
metal crystals. Vacancies, kinks, and steps are illustrated, each playing a distinct role
in the surface dynamics and overall behavior of the metal.

The understanding of point defects is further complicated when considering
the effects of operational conditions on defect formation and evolution. High tem-
peratures, for instance, can increase the mobility of defects, accelerating diffusion
processes [106], while applied stresses can drive the formation of new defects or
the migration of existing ones, impacting mechanical properties such as creep and
fatigue [107].

Advancements in computational modeling and in situ characterization techniques
are enhancing our ability to simulate and observe these defects in real-time, providing
unprecedented insights into their formation, migration, and interactions at the atomic
scale [108]. This progress paves the way for developing new metal alloys and
materials engineered to optimize performance and longevity by utilizing the intrinsic
properties of point defects [109].

1.1.5 Surface reconstruction

Before exploring surface reconstruction, it is important to distinguish this phe-
nomenon from surface relaxation, as both alter surface properties through different
mechanisms. Surface relaxation involves minor adjustments in the positions of atoms
near the surface, responding to unbalanced forces to lower surface energy while
maintaining the basic lattice structure. In contrast, surface reconstruction entails
significant atomic rearrangement, creating new surface structures and periodicity to
minimize energy under varying conditions. This often leads to changes in surface
geometry and properties, affecting the material’s overall performance[110–112].
Indeed, the electronic structure of closed-packed metal surfaces is different from that
in the bulk, with an abrupt decrease in the density of conduction electrons. This can
result in a change in bond lengths between surface atoms and occasionally a recon-
struction involving a change in the number of atoms in the first surface layer. These
transformative adaptations significantly deviate from the internal crystalline arrange-
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ment, influencing the surface’s chemical, physical, and electronic properties, and
thereby affecting a material’s overall performance in various applications[111, 113].

While some surfaces may retain the structural integrity of the bulk crystal,
dubbed as ’ideal unreconstructed surfaces,’ these instances represent exceptions.
The majority of surfaces encountered in practical situations exhibit some degree
of reconstruction, where the arrangement of atoms in the topmost layers diverges
from the bulk structure. Such reconstructed surfaces manifest a two-dimensional
periodicity that may diverge from that of the bulk lattice planes, introducing novel
properties and behaviors not present in the idealized models. The importance of sur-
face reconstruction is underscored by its significant impact on material performance,
particularly in environments subjected to high temperatures, corrosive media, or
mechanical stresses. These reconstructed surfaces may exhibit improved resistance,
enhanced catalytic activity, or superior electronic properties, diverging markedly
from expectations based on the bulk properties alone[110, 111, 114]. The modifica-
tion in the electronic structure brought about by surface reconstruction alters surface
energy states, affecting electron mobility and thereby the electrical conductivity
and catalytic efficiency of the material. Furthermore, the operational durability of
metallic systems, especially in catalytic and sensor applications, is closely linked
to their surface configuration. Reconstructed surfaces can present an energetically
more favorable arrangement under certain environmental conditions, thus enhancing
the material’s stability and extending its useful applications under those specific
conditions[110, 115].

1.1.6 Advancements in in situ experimental characterization tech-
niques

Recent developments in in situ characterization techniques have significantly en-
hanced the understanding of the complex interplay between the structure and re-
activity of metallic systems at the atomic and molecular scales [116–119]. In situ
and operando spectroscopy, along with state-of-the-art electron microscopy, stand
at the forefront of these advancements, offering unprecedented insights into the
dynamic nature of metallic systems and the active sites critical for their properties.
Technologies such as synchrotron-based spectroscopy bring to light the detailed
electronic structures and bonding states within metals, thanks to their high-intensity
X-rays. X-ray Absorption Spectroscopy (XAS) explores the local atomic structure



16 Introduction

and electronic states, making it invaluable for assessing changes in oxidation states
and coordination environments [120–123]. Ambient Pressure X-ray Photoelectron
Spectroscopy (AP-XPS)[124] pushes the boundaries of surface chemistry analysis,
allowing for investigations under more realistic pressure and temperature conditions.
Meanwhile, Environmental Transmission Electron Microscopy (ETEM)[125] and
Scanning Transmission Electron Microscopy (STEM)[126, 127] provide a lens into
the nanoscale world, capturing real-time structural changes, defect formations, and
the dynamics of catalytic processes. Collectively, these methods have revolutionized
our ability to monitor the electronic and geometric alterations in metallic systems
under actual reaction conditions.

Fig. 1.4 Illustration of in situ characterization techniques used to analyze a metallic slab.
These techniques, including synchrotron-based spectroscopy, X-ray Absorption Spectroscopy
(XAS), Ambient Pressure X-ray Photoelectron Spectroscopy (AP-XPS), and advanced
electron microscopy methods like Environmental Transmission Electron Microscopy (ETEM)
and Scanning Transmission Electron Microscopy (STEM), provide detailed insights into
the electronic structures, bonding states, and dynamic nature of metallic systems under
realistic conditions. This comprehensive approach enables the observation of electronic
and geometric changes in real-time, facilitating a deeper understanding of the interplay
between structure and reactivity in catalytic processes. Reproduced with permission from
Elsevier[119].

Advancements in technology have demonstrated how temperature influences
structure and active sites, yet these experimental methods come with inherent lim-
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itations. Their inability to track individual atoms or capture the rapid processes
fundamental to observation highlights the critical role of computational methods. By
simulating and tracking the behavior of individual atoms across various timescales,
which are difficult to observe directly, these methods fill the gaps left by experimental
techniques.

1.2 The role of simulations in the study of metals

Computational methods have significantly advanced the study of metallic systems by
providing profound insights into their complex behaviors at the atomic and electronic
levels. These techniques facilitate a comprehensive understanding of the intricate
interactions within these systems under diverse conditions, often challenging to
replicate precisely in traditional experimental setups. Unlike experimental methods,
which can struggle with replicating exact operational environments or directly ob-
serving atomic-level phenomena, computational models offer a detailed perspective
of the microscopic interactions governing metal properties. This paradigm shift
has enhanced the understanding of metallic systems, illustrating how minor atomic-
scale adjustments can profoundly influence macroscopic properties such as electrical
conductivity, mechanical strength, and chemical reactivity[128–130].

Computational models allow us to simulate a wide range of conditions, adjusting
parameters to explore the effects of temperature, pressure, and chemical environ-
ments on metal performance. This flexibility enables a thorough investigation of
metal behavior across various scenarios, significantly advancing our understanding
beyond what is typically achievable in experimental settings. Moreover, the effi-
ciency and cost-effectiveness of computational simulations stand in contrast to the
typically time-consuming and expensive nature of experimental research.

Historically, Density Functional Theory (DF) has played a fundamental role in
studying various properties of metals. Introduced by Hohenberg and Kohn [131]
and further developed by Kohn and Sham [132], DFT has become an indispensable
tool in computational materials science. It allows precise calculations of electronic
structures, cohesive energies, and other properties critical to understanding metallic
systems, as shown in the dedicated section in the next chapter. Significant works
using DFT have provided deep insights into the behavior of metals; for instance,
Jones and Gunnarsson [133] discussed the successes and challenges of DFT in de-
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scribing electronic properties and bonding in metals. Hafner [134] used DFT to
explore the phase stability and structural properties of transition metals, contributing
substantially to the understanding of their phase diagrams and transformation mech-
anisms. More recently, studies by Curtarolo et al. [128] and Rogal et al. [135] have
employed DFT to investigate the thermodynamic properties and phase behavior of
complex metallic alloys, illustrating the method’s versatility and depth.

However, DFT primarily focuses on the static properties of materials, providing
a snapshot of the electronic structure under specific conditions. While it excels
in offering detailed information on ground-state properties, DFT’s application to
dynamic processes is limited due to its inherently static nature. Despite these
limitations, DFT has been invaluable to metal studies. It has laid the groundwork for
understanding the fundamental properties of metals and continues to be fundamental
in the computational study of metallic systems.

To address the dynamic behavior of metallic systems, Car and Parrinello [136]
introduced an innovative approach that combines DFT with molecular dynamics,
known as Car-Parrinello Molecular Dynamics (CPMD). This method allows for the
simultaneous optimization of electronic and ionic configurations, enabling the study
of both electronic properties and atomic movements in a unified framework. CPMD
has significantly enhanced the ability to investigate the time-dependent behavior
of metals under various conditions. Furthermore, CPMD allows the application of
DFT to much larger systems than was previously feasible, significantly enhancing
the ability to study the time-dependent behavior of metals and other materials under
various conditions.

Several studies have successfully used CPMD to explore metal systems. For
example, Car and Parrinello’s initial work demonstrated the application of their
method to simple metals like lithium, revealing insights into atomic diffusion and
phase transitions[136]. Subsequent studies have expanded the use of CPMD to
more complex systems. For instance, Billeter et al.[137] used CPMD to study the
melting behavior of aluminum, providing detailed information on the atomic-level
mechanisms driving the melting process. Classical Molecular Dynamics has also
played a crucial role in the study of metallic systems. Significant early works in
classical MD focused on understanding fundamental properties such as diffusion,
phase transitions, and mechanical properties of metals. For example, Parrinello
and Rahman [138] developed a method to simulate phase transitions in crystalline
solids, which has been extensively applied to study structural changes in metals under
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different conditions. Another notable example is the work by Foiles et al. [139],
who used MD simulations to investigate the diffusion of atoms in metals, providing
insights into defect dynamics and materials’ behavior at high temperatures.

In parallel, the accurate description of force fields has always been a central
focus due to the complexity of interactions within metallic systems. Force fields
are mathematical models used to predict the energy and forces in a system of atoms
or molecules. The development and refinement of force fields have been crucial
for studying metals, where the interactions between atoms are highly complex and
require precise modeling to accurately simulate material behavior.

One of the most influential force fields for metals is the Embedded Atom Method
(EAM), introduced by Daw and Baskes [140]. EAM has been widely adopted
for its ability to accurately simulate metallic bonding and defect structures. It
accounts for the many-body interactions that are characteristic of metallic systems,
making it suitable for modeling properties such as cohesion, surface energies, and
vacancy formation. Another important force field is the Modified Embedded Atom
Method (MEAM), which extends EAM to handle more complex metallic alloys and
compounds, as shown in the work of Baskes et al.[141].

Other significant force fields from the past include the Finnis-Sinclair potentials
[142] and the Second Moment Approximation of tight-binding models [143], both
extensively used to study a variety of metallic properties and behaviors. These force
fields enable simulations that capture the essential physics of metallic bonding and
have been fundamental tools for understanding the mechanical and thermal proper-
ties of metals. This historical overview highlights the crucial role of computational
methods in advancing the understanding of metallic systems. Recent advancements
in computational power and analytical tools have further enhanced this field. Im-
proved computational resources now allow for more detailed simulations over longer
timescales, while better analytical techniques offer improved validation and insights
into models. These developments provide a deeper understanding of metal behavior
under realistic conditions, driving innovation and increasing the predictive power of
computational studies. This sets the stage for our next section, where we explore
recent progress in computational modeling and molecular simulations.
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1.2.1 Unveiling metal dynamics: computational modeling and
molecular simulations

The integration of advanced computational power and sophisticated analytical tools
has significantly advanced the study of metallic systems. This progression has en-
abled the examination of increasingly complex systems under a variety of conditions,
revealing diverse properties and behaviors of metals.

Recent advancements in computational power have dramatically expanded the
scale and scope of simulations that can be performed. For instance, Schlexer et al.
(2018) highlighted the cost-effectiveness of computational methods in screening
catalytic reactions to understand structural changes and predict behavior [144].
Similarly, Zhai et al.(2014) explored how additive manufacturing technologies,
enhanced by computational modeling, have revolutionized metal design. These
technologies reduce material and energy costs, facilitating more innovative and
complex designs at reduced expenses. This capability enables broad exploration
of metallic systems with minimal resource expenditure, accelerating research and
development. It also opens the door to exploring innovative metal designs and
applications that might have been considered too risky or costly to pursue through
experimental methods alone.[145]

The predictive power of computational models is a crucial advantage, offering
the ability to forecast the behavior of metallic systems accurately. These models
are instrumental in designing and optimizing new metals and alloys, serving as
essential tools in materials engineering. For instance, Gatsos et al. (2020) discussed
how computational modeling predicts and enhances the mechanical properties and
structural characteristics of metal components in additive manufacturing.[146]

In the field of tribology, computational methods provide crucial insights into
wear mechanisms and lubrication processes under operational conditions. For in-
stance, Righi and Loehlé (2018) utilized ab initio molecular dynamics simulations to
investigate tribochemical reactions at sliding iron interfaces, revealing mechanisms
that reduce friction and wear.[147] Further insights into the tribological behavior of
lubricant additives were explored, detailing the interactions that govern the tribolog-
ical properties of these interfaces. This study illustrates the broad applicability of
computational models for predicting chemical interactions and optimizing tribologi-
cal behavior, enabling the development of advanced materials for diverse industrial
uses.[38]
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Fig. 1.5 Overview of Computational Methodologies Across Different Length and Time
Scales (a) Schematic representation of computational methodologies spanning from quantum
chemistry to finite elements. The figure illustrates the progression from quantum mechani-
cal methods (such as quantum chemistry and many-body perturbation theory) to classical
approaches (like force fields and finite element methods), with increasing system size and
complexity. Machine learning is shown as a unifying tool that can enhance accuracy and
efficiency across these methods. (b) Trade-off between accuracy and simulation time for
different computational methods. Quantum chemistry offers high accuracy but is limited to
short simulation times, while methods like molecular dynamics and finite elements allow
for longer simulations at the expense of accuracy. Machine learning aims to bridge this gap
by improving the efficiency and accuracy of simulations across different scales. (c) The
application of various computational methods to different scientific problems. Quantum
many-body methods and mean-field theories are essential for studying strongly correlated
effects and spectroscopies at microscopic scales. As the system scale increases, methods
such as molecular dynamics and force fields are used for chemical reactions, ground-state
properties, and biological processes. Finite elements are applied to macroscopic phenomena,
like the continuum properties of soft matter and biological tissues. Reproduced with permis-
sion from Springer Nature[148].

Moreover, computational approaches excel in elucidating aspects of metal be-
havior that are beyond the reach of direct experimental observation. These models
provide a comprehensive understanding of the principles governing metal behavior
by investigating transient and elusive phenomena, such as intermediate species,
electronic density distributions, and the initiation of deformation and wear processes.
For instance, Vogiatzis et al. (2018) explored the role of 3d transition metals in
catalysis, shedding light on the intricate structure and behavior of complex molecular
species, often elusive in experimental setups. This work underscores the critical
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role of computational methods in revealing the dynamic processes of intermediate
species formation and their influence on catalytic activity[149]. Similarly, Harvey
et al. (2019) emphasized the scope and challenges of computational methods in
studying the mechanism and reactivity in homogeneous catalysis, highlighting the
formation and role of intermediates in these systems. These studies demonstrate the
capability of computational tools to predict and analyze the dynamic and complex
nature of catalytic processes, offering insights into the behavior of metals that are
often impossible to observe in traditional experiments.[150]

Given the insights shared thus far and the technological advancements in compu-
tational modeling, it is becoming increasingly evident that incorporating the effects
of dynamic changes is essential for studying metals. Indeed, as discussed in subsec-
tion 1.1.6, recent advancements in technology have enabled in situ and in operando
characterization of catalytic materials, highlighting the substantial impact these
conditions have on the structure and corresponding activity [151, 152]. These tech-
niques allow for real-time observation of changes, providing crucial insights into the
dynamic behavior of metals under realistic operating conditions. This progress has
underscored the importance of considering the dynamic aspects of metallic systems
to fully understand their behavior and properties.

Theoretical calculations have also emphasized the necessity of considering dy-
namics [153–162]. For instance, Gazzarrini et al. demonstrated that atom mobility
in copper nanoparticles can cause variations in the number of vertex, edge, and face
atoms, subsequently affecting the efficiency of these nanoparticles in catalyzing CO2

conversion to methane [161].

Recent studies have further highlighted the dynamic behavior of catalytic inter-
faces. Lavroff et al. (2022) demonstrated how computational models could simulate
realistic reaction conditions to predict surface restructuring and particle behavior
[157]. This underscores the importance of incorporating dynamic models that ac-
count for structural changes in metals to enhance our understanding of catalytic
behavior in real-world applications. Zhang et al. (2020) discussed how metastable
states influence catalysis on dynamic interfaces [158]. Similarly, Li et al. (2021)
emphasized the critical role of thermal fluctuations in CO binding on electrocatalytic
metal surfaces [159].

Further studies, such as those by Grajciar et al. [160] and Wang et al. [163],
underline the importance of including dynamics in operando computational mod-
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eling to achieve a more realistic understanding of catalytic processes. This is also
demonstrated in the work of Van Speybroeck et al., who used first-principles molec-
ular dynamics simulations to model zeolite-catalyzed reactions under operando
conditions [162].

Despite these insightful examples, most computational studies still tend to treat
metallic systems as static entities, focusing primarily on their chemical reactivity
or physical properties without fully considering their dynamic nature[164–170].
Such approaches often overlook the fact that metal atoms and clusters are inher-
ently dynamic, exhibiting significant mobility, reactivity, and the ability to un-
dergo deformation, relaxation, and surface restructuring under realistic experimental
conditions[161, 171–173].

However, computational calculations this field are frequently constrained by
short timescales or by dynamically treating only a subset of the system’s degrees
of freedom. Traditionally, computational studies have focused on the chemistry of
reactions within these systems while neglecting the dynamics of active sites, thus
underestimating the importance of these dynamic changes on the overall behavior
and performance of metals. A shift towards modeling that integrates the dynamic
aspects of metallic systems can provide a more accurate representation of these
materials under real-world conditions.

To accurately study the structural dynamics of these systems, it is crucial to
treat atomic interactions with precision while also simulating these systems on
large enough spatial and temporal scales. This approach is necessary to avoid
finite-size effects and ensure that microscopic dynamic transitions, and not only
vibrations, are sampled with sufficient statistical relevance. Yet, accurate DFT
calculations are limited by their short timescales and small system sizes, while
classical atomistic force fields may lack the accuracy needed to effectively capture
the structural dynamics of these systems, as shown in Figure 1.5.

Addressing these limitations requires the development of more sophisticated
models and methods capable of capturing the full range of interactions and behaviors
in metallic systems over longer timescales. These advanced models should integrate
the atomic degrees of freedom (the positions and movements of atoms) to provide
a more comprehensive understanding of the structure-related properties. The con-
tinued integration of advanced techniques, such as machine learning and enhanced
sampling, promises to overcome these challenges. In particular Machine learning
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techniques offer the potential to predict complex interactions and behaviors with
greater accuracy and can effectively bridge the gap between different length and
time scales (Figure 1.5a). The integration of these advanced computational methods,
particularly Machine Learning potentials, has fundamentally transformed the field of
materials science[174–179]. ML potentials are capable of achieving the accuracy of
Density Functional Theory calculations while simultaneously managing the larger
system sizes that are typical of classical simulations[180–183, 176, 184, 179, 185].
These advancements facilitate a dynamic approach to studying metallic systems,
taking into account their mobility, reactivity, and structural changes. By adopting
these advanced techniques, it is possible to overcome the limitations of traditional
methods, enabling more accurate and comprehensive simulations of metallic systems.
Furthermore, by handling system sizes comparable to those in classical molecular
dynamics simulations, these methods allow for proper sampling of the system, en-
abling the study of relevant properties with higher precision. The concept of neural
network potentials was first introduced by Behler and Parinnello (2007)[186], who
proposed a method to represent high-dimensional potential energy surfaces with
machine learning models. Their approach marked a significant breakthrough in
modeling complex atomic interactions with high accuracy, setting the foundation for
subsequent research in the field. Nearly a decade later, Behler (2016) expanded on
this foundational work, providing a comprehensive perspective on how ML models
could achieve predictive reliability akin to quantum mechanical accuracy [187].
This further bridged the gap between empirical potentials and quantum mechanical
methods, solidifying the potential of ML models in atomistic simulations. Smith et
al. (2017) built upon these foundations by demonstrating the extensibility of neural
network potentials; their work showed that these models could accurately capture
complex chemical behaviors while reducing the computational cost [188].

Mueller et al. (2020) explored the rapid advancements in machine learning
potentials, demonstrating the evolving ability to model material properties with
unparalleled accuracy. The study emphasized that these advancements are reshaping
the field of materials science, enabling the investigation and prediction of complex
material behaviors that were previously challenging due to computational limitations
[189]. These advancements underscore the transformative potential of ML potentials
in revolutionizing atomic simulations, offering unparalleled opportunities for explor-
ing material properties and behaviors and undertaking studies that were once limited
by computational constraints [176, 190–196, 184, 197–199].
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The advent of machine learning potentials has opened new doors to studying
concepts introduced decades ago, like the dynamical steady state of catalyst surfaces,
proposed by Spencer over forty years ago [200]. Dynamic changes observed, such as
surface atom mobility and instability, challenge traditional static models of catalysis,
prompting a shift toward dynamic modeling. These dynamic behaviors extend
beyond catalysis, influencing a range of structural properties of metals, including
mechanical, electronic, and magnetic characteristics. Confirming this, recent studies
have underscored the crucial importance of considering the dynamic behavior of
metal surfaces in catalysis through the use of machine learning potentials.

In his work, Bonati et al. [185], investigate the dynamic behavior of the Fe(111)
surface and its impact on nitrogen decomposition. Utilizing ML potentials and ad-
vanced simulation techniques, the study reveals that under operando conditions, the
surface undergoes significant dynamical changes. The step structure of the surface
becomes destabilized, leading to the continuous formation and disappearance of
catalytic sites. These findings highlight the dangers of extrapolating low-temperature
results to operando conditions and underscore the necessity of incorporating dynam-
ics into catalytic activity calculations. Then Perego et al. [201] demonstrate that
the dynamic behavior of the iron surface at high temperatures significantly alters
reaction pathways and the stability of catalytic sites. Both studies emphasize that
the catalytic process is driven by the transition to highly fluctuating interfacial envi-
ronments, highlighting that catalytic activity can only be accurately inferred from
dynamic models. Incorporating the dynamic characteristics of metallic systems into
computational methodologies is therefore essential. To this end, Machine learning
offers advanced predictive tools that can unravel the complex interactions influencing
metal behavior at the atomic level.

1.3 Aim of the thesis

The investigation of structural and microscopic dynamics within various materials,
with a particular focus on metallic systems, forms the foundation of my research.
This thesis aims to uncover the complex behaviors and intrinsic properties that
characterize these materials under relevant conditions. This study integrates compu-
tational methods like Density Functional Theory, Molecular Dynamics, and Deep
Potential Molecular Dynamics (DPMD) with advanced machine learning algorithms
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to achieve this goal. Machine learning is employed in this research not only to
train potentials that enable the study of microscopic dynamics of metal surfaces
but also to optimize methods for encoding, classifying, and comparing different
metallic systems. Specifically, descriptors of atomic environments, such as the
Smooth Overlap of Atomic Positions (SOAP)[202] and the Local Environments
and Neighbors Shuffling (LENS)[203], are used to transform raw simulation data
into detailed fingerprints of atomic arrangements and dynamics. By decoding the
intrinsic microscopic dynamics, we aim to provide a comprehensive depiction of
the behaviors of metallic systems. This research broadens our understanding of
metal behavior and lays the groundwork for designing systems with tailored char-
acteristics for specific applications. Additionally, this thesis seeks to transcend
traditional boundaries by adapting and developing analytical methodologies applica-
ble to different materials. By taking inspiration from approaches from other fields,
such as soft materials and self-assembling systems[204, 205], and applying them to
metallic systems, we aim to deepen our understanding of metal properties. These
approaches have demonstrated that by starting from and resolving the microscopic
dynamics of a system, one can reconstruct the macroscopic properties of the system.
Viewing metals as complex systems of interacting atoms and tracking their relative
atomic motions within the lattice, we can reconstruct their dynamic complexity.
This approach aspires to bring about a paradigm shift, moving the focus from static
structural analysis and internal thermodynamics to the study of atomic dynamics.
This new perspective reveals how microscopic dynamics and atomic interactions
influence the macroscopic properties of metals, providing valuable insights that
could transform the methodologies used in metal studies. By adopting a perspective
focused on microscopic dynamics, this thesis not only provides a detailed depiction
of the complex nature of metallic systems but also lays the groundwork for future
research to explore these dynamic properties further. By linking these concepts, we
present a comprehensive and cohesive approach to studying the dynamic behaviors
of metallic systems, ultimately contributing to a more profound understanding of
their properties and potential applications.



Chapter 2

Methods and theoretical backgrounds

This chapter explores the theoretical foundations of computational methods in ma-
terials science, with a particular focus on their application to metallic systems. It
will concentrate on the specific techniques utilized in the manuscripts presented in
this thesis, illustrating how these methods have been applied throughout my research
activity.

These computational models offer invaluable insights into the atomic-scale pro-
cesses governing the structural evolution, phase transitions, and mechanical proper-
ties of metals. Simulations allow us to unravel the intricate atomic and electronic
structures, shedding light on phenomena that are impossible to observe directly
through experimental means. Through a short review of these methods, we aim
to provide a solid foundation for understanding their principles and applications
in the context of materials science. The discussion begins with the concept of the
Hamiltonian, essential in building the theoretical framework in computational simula-
tions. We then move to Density Functional Theory, a quantum mechanical modeling
method able to compute the electronic structure of metals, alloys, and other materials.
DFT shifts the focus to electron density rather than wave functions, making it a more
feasible approach for solving the Schrödinger equation in complex systems.

We then transition from the quantum mechanical framework of DFT to Classical
Molecular Dynamics, marking a significant shift in perspective and scale. This
transition moves from considering electrons and their interactions to a classical
approach modeling atoms and molecules under classical mechanics laws. Our
discussion follows with the introduction of Deep Potential Molecular Dynamics
(DPMD), which integrates deep learning with molecular dynamics simulations for
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higher accuracy and efficiency in modeling complex material systems. Thanks to
ML potentials trained on quantum mechanical data, DPMD enhances traditional
MD simulations, enabling the study of larger systems and longer timescales with
quantum-level precision. We then discuss enhanced sampling techniques, which
offer efficient strategies to explore the energy landscape and better understand rare
events and phase transitions within metallic systems. Finally, the chapter introduces
the role of descriptors in molecular dynamics simulations; descriptors are essential
tools that aid in identifying and quantifying structural motifs and dynamic processes,
bridging the gap between raw computational data and interpretable scientific insights.

2.1 The Hamiltonian

In theoretical physics and chemistry, understanding a system begins with defining
the system itself and identifying the fundamental interactions within it. Central to
this analysis is the Hamiltonian, which encapsulates the total energy of the system,
allowing us to derive all physical and chemical properties.

When dealing with microscopic entities like electrons and atoms, quantum
mechanics is the ideal framework. This field allows us to describe and predict the
behavior and interactions of particles at atomic and subatomic levels. The key to
these predictions lies in solving the Schrödinger equation, which provides insights
into the quantum states and properties of systems composed of nuclei and electrons.

This microscopic understanding is vital as it forms the foundation for explaining
and predicting the macroscopic properties of materials.

In our context, primary attention is given to electrostatic interactions. Relativistic
effects are generally negligible, especially when considering only valence electrons,
while magnetic effects, arising from the movement of electrons generating magnetic
fields, are typically disregarded due to their minimal impact on the overall system
properties.

Consequently, a system comprising nuclei and electrons is described by the
nonrelativistic Schrödinger equation:

HΨ = EΨ, (2.1)
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where H is the Hamiltonian operator, Ψ is the wave function of the system,
and E is the energy eigenvalue. The Hamiltonian operator H includes the kinetic
energy of the electrons and nuclei, as well as the potential energy from electrostatic
interactions. The wave function Ψ contains all the quantum mechanical information
about the system, and solving this equation provides the possible energy levels E
that the system can occupy.

The Hamiltonian H for the system is expressed as:

H = Tnuc +Tel +Vnuc-nuc +Vnuc-el +Vel-el, (2.2)

In this expression, Tnuc and Tel are operators corresponding to the kinetic en-
ergy of the nuclei and electrons, respectively. The terms Vnuc-nuc, Vnuc-el, and Vel-el

are potential energy operators representing the nuclear-nuclear, nuclear-electron,
and electron-electron interactions. These operators act on the wave function of the
system, and their expectation values yield the corresponding energy contributions.
Specifically, the operators encode the quantum mechanical rules for how these ener-
gies are derived from the wave function, translating the abstract wave function into
physically observable quantities. For simplicity, spin effects are initially neglected in
this formulation.

The explicit components of the Hamiltonian are outlined as follows:

Tnuc =
L

∑
I=1

P2
I

2MI
, (2.3)

Tel =
N

∑
i=1

p2
i

2m
, (2.4)

Vnuc-nuc =
1
2 ∑

I ̸=J

ZIZJe2

|RI −RJ|
, (2.5)

Vnuc-el =−∑
i,I

ZIe2

|ri −RI|
, (2.6)

Vel-el =
1
2 ∑

i ̸= j

e2

|ri − r j|
. (2.7)

In these equations, PI and MI represent the momentum and mass of the I-th
nucleus, pi and m the momentum and mass of the i-th electron, and ZI the charge
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of the I-th nucleus. The positions of the nuclei and electrons are denoted by RI and
ri, respectively, and e is the elementary charge. The factor of 1

2 in Vnuc-nuc and Vel-el

prevents the double counting of interactions between the same pairs of particles.

2.1.1 The Born–Oppenheimer approximation

The Born–Oppenheimer, or adiabatic, approximation is fundamental in theoretical
descriptions due to the significant mass difference between electrons and nuclei.
This difference allows nuclei to be treated as moving much slower than electrons,
leading to the assumption that electrons can instantaneously adapt to the positions of
the nuclei.

Within this framework, the system’s Hamiltonian, as presented in eq 2.2, can
be partitioned into electronic and nuclear components. The electronic Hamiltonian
Hel({R}) for a fixed configuration of nuclei is given by:

Hel({R}) = Tel +Vnuc-el +Vel-el +Vnuc-nuc, (2.8)

where Tel is the operator for the kinetic energy of the electrons, Vnuc-el is the
operator for the attractive interaction between nuclei and electrons, Vel-el is the
operator for the repulsive interaction between electrons, and Vnuc-nuc represents the
fixed repulsive interaction between nuclei.

Given this Hamiltonian, the electronic Schrödinger equation for a fixed nuclear
configuration is:

Hel({R})Ψ(r,{R}) = Eel({R})Ψ(r,{R}), (2.9)

where Eel({R}) represents the electronic energy for that specific configuration
of nuclei, which defines the potential energy surface (PES) upon which the nuclei
move.

The total energy of the system within the Born–Oppenheimer approximation is
then obtained by adding the kinetic energy of the nuclei Tnuc to the electronic energy
Eel({R}) and the fixed repulsive interaction between the nuclei Vnuc-nuc. Thus, the
total energy is given by:

Etotal = Eel({R})+Tnuc +Vnuc-nuc. (2.10)
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This approximation enables:

1. Decoupling of Nuclear and Electronic Motion: The assumption that nuclei
move much more slowly than electrons allows the electronic Schrödinger
equation to be solved for fixed positions of the nuclei, with the resulting
electronic energy providing the PES for nuclear motion.

2. Simplification of Computational Calculations: By reducing the dimension-
ality of the problem, the approximation allows the electronic and nuclear
wavefunctions to be treated separately, thus decreasing computational com-
plexity and making it feasible to study larger and more complex systems.

3. Understanding Molecular Dynamics: The PES derived from electronic
structure calculations is fundamental in studying nuclear dynamics, either
using classical or quantum mechanical methods, and is crucial for simulating
molecular dynamics and chemical reactions.

To compute the forces acting on the nuclei, the Hellmann–Feynman theorem
provides a direct method based on the ground state wavefunction:

FI =−∇RI Eel({R}) = ⟨Ψ(r,{R}) |∇RI Hel({R})|Ψ(r,{R})⟩ . (2.11)

This theorem, coupled with the Born–Oppenheimer approximation, not only
simplifies the treatment of electronic and nuclear motions but also provides a practical
way for calculating forces, which is fundamental in molecular dynamics simulations.

2.1.2 Bridging the gap to Density Functional Theory

The study of the Hamiltonian and the simplifications introduced by the Born–Oppenheimer
approximation are essential for understanding atomic and molecular behavior. How-
ever, these concepts also underscore the challenges associated with solving the
many-body Schrödinger equation, particularly due to the complex electron-electron
interactions. The traditional wavefunction-based approach in quantum mechanics
requires a detailed description of the system through a many-body wavefunction,
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which depends on the coordinates and spins of all electrons and nuclei. This wave-
function is a high-dimensional object that, while complete in its description, is
computationally intractable for systems with many particles.

In contrast, DFT offers a profound simplification by shifting the focus from the
many-body wavefunction to the electron density—a physically observable quantity
that depends only on three spatial coordinates, regardless of the number of electrons
in the system. This transition from wavefunction to electron density reduces the com-
putational complexity while providing a more direct connection to experimentally
measurable quantities.

The foundation of DFT lies on the Hohenberg–Kohn theorems, which establish
that all ground-state properties of a system are uniquely determined by its electron
density ρ(r). According to the first Hohenberg–Kohn theorem, the ground-state
electron density ρ(r) uniquely determines the external potential Vext(r) acting on
the electrons, and consequently, the Hamiltonian and all other properties of the
system. This insight, which earned Walter Kohn the Nobel Prize in Chemistry in
1998, underscores the central role of electron density in quantum systems.

According to the second Hohenberg–Kohn theorem, the ground-state energy of a
system can be obtained by minimizing the total energy functional E[ρ] with respect
to the electron density ρ(r). This energy functional is expressed as:

E[ρ] = T [ρ]+Vext[ρ]+VH [ρ]+Exc[ρ], (2.12)

where:

• T [ρ] is the kinetic energy functional of the electrons,

• Vext[ρ] is the external potential energy functional,

• VH [ρ] is the Hartree energy functional, describing the classical electrostatic
interaction between electrons, and

• Exc[ρ] is the exchange-correlation energy functional, accounting for complex
quantum mechanical effects beyond the Hartree term.

The exact form of the exchange-correlation functional Exc[ρ] is not known, but it
is universal, meaning it applies to any electronic system. The exchange-correlation
functional can be decomposed as:
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Exc[ρ] = (T [ρ]−TS[ρ])+(Eee[ρ]− J[ρ]) , (2.13)

where:

• T [ρ] is the true kinetic energy functional of the interacting electrons,

• TS[ρ] is the kinetic energy functional of a non-interacting reference system
with the same density ρ(r),

• Eee[ρ] is the exact electron-electron interaction energy, and

• J[ρ] is the classical Coulomb energy functional representing the electrostatic
repulsion energy between the electrons.

Thus, the exchange-correlation functional Exc[ρ] consists of two key parts: the
difference between the true and non-interacting kinetic energy (the correlation en-
ergy) and the difference between the exact and classical electron-electron interaction
energy (the exchange energy).

2.1.3 The Kohn-Sham formulation

The Kohn-Sham formulation of DFT simplifies the many-body problem by intro-
ducing a set of fictitious non-interacting particles that reproduce the exact electron
density of the interacting system. The Kohn-Sham equations, derived from the
variational principle, describe the behavior of these non-interacting electrons in an
effective potential Veff(r), and are given by:

[
− ℏ2

2m
∇

2 +Veff(r)
]

φi(r) = εiφi(r), (2.14)

where:

• φi(r) are the Kohn-Sham orbitals,

• εi are the corresponding orbital energies, and

• Veff(r) is the effective potential, which includes contributions from:

– the external potential Vext[ρ],
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– the Hartree potential VH [ρ], and

– the exchange-correlation potential Vxc[ρ].

The electron density is then constructed as a sum over the square of the Kohn-
Sham orbitals:

ρ(r) = ∑
i
|φi(r)|2. (2.15)

By minimizing the total energy functional E[ρ] with respect to the electron
density, subject to the normalization constraint, the Kohn-Sham equations provide
a self-consistent solution to the electronic structure problem. These equations,
along with the effective potential in the Kohn-Sham formalism, form the basis of
practical DFT calculations, allowing for the determination of ground-state properties
of complex systems at a relatively low computational cost [206].

Exchange-Correlation functionals

In DFT, the exchange-correlation functional Exc[ρ] is crucial for determining the
accuracy of the calculations. This functional encapsulates the complex many-body
interactions within a system, including both exchange interactions, which arise from
the Pauli exclusion principle, and correlation interactions, which account for the
dynamic electron-electron correlations.

A significant framework for categorizing exchange-correlation functionals was
introduced by Perdew, commonly referred to as "Jacob’s ladder" of exchange-
correlation functionals. This ladder metaphorically represents the progression from
simpler to more sophisticated functionals, starting from the Local-Density Approxi-
mation (LDA) at the base and moving up to more accurate methods such as hybrid
functionals, which incorporate exact exchange.

1. Local-Density Approximation (LDA): LDA is the simplest rung on Jacob’s
ladder. It assumes that the exchange-correlation energy at each point in space
can be approximated by that of a uniform electron gas at the same density.
Mathematically, this is expressed as:

ELDA
xc [ρ] =

∫
ρ(r)εunif

xc (ρ(r))dr, (2.16)
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where εunif
xc (ρ) is the exchange-correlation energy per electron for a uniform

electron gas at density ρ(r). While LDA is effective for systems with slowly
varying electron densities, it tends to be less accurate for systems with sig-
nificant density gradients, such as those involving van der Waals forces or
hydrogen bonding.

2. Generalized Gradient Approximation (GGA): The next rung is the General-
ized Gradient Approximation (GGA), which improves upon LDA by including
the gradient of the electron density, ∇ρ(r), in the functional form. This allows
GGA functionals to more accurately account for variations in electron density,
making them particularly suitable for systems with non-uniform densities. The
exchange-correlation energy in GGA is generally expressed as:

EGGA
xc [ρ] =

∫
fGGA(ρ(r),∇ρ(r))dr, (2.17)

where fGGA is a function that depends on both the local electron density
and its gradient. Well-known GGA functionals include PBE (Perdew-Burke-
Ernzerhof) and B88 (Becke 88).

3. Meta-GGAs: Meta-GGAs build upon GGAs by incorporating additional in-
formation, such as the second derivatives of the electron density and/or kinetic
energy densities. This allows for a more accurate description of exchange-
correlation effects, especially in cases where traditional GGAs might fall short,
such as in transition states or weakly interacting systems. A typical Meta-GGA
functional is expressed as:

Emeta-GGA
xc [ρ] =

∫
fmeta-GGA(ρ(r),∇ρ(r),∇2

ρ(r),τ(r))dr, (2.18)

where τ(r) represents the kinetic energy density.

4. Hybrid Functionals: Hybrid functionals combine part of the exact exchange
energy from Hartree-Fock theory with DFT approximations. Exact exchange
accounts for the antisymmetry of the electronic wavefunction, which removes
self-interaction errors found in pure DFT. By blending this with DFT exchange-
correlation functionals, hybrid functionals improve accuracy in predicting
electronic properties. A typical hybrid functional is written as:



36 Methods and theoretical backgrounds

Ehybrid
xc [ρ] = aEexact

x [ρ]+ (1−a)EDFT
x [ρ]+EDFT

c [ρ], (2.19)

where a is a mixing parameter, Eexact
x [ρ] is the exact exchange energy from

Hartree-Fock, and EDFT
x [ρ] and EDFT

c [ρ] are the DFT exchange and correlation
energies. Popular hybrid functionals like B3LYP and PBE0 are widely used
for their ability to accurately predict properties of complex systems.

In contrast to the Hartree-Fock model, which approximates electronic struc-
ture by assuming the wavefunction can be described by a single Slater determi-
nant, the Kohn-Sham approach within DFT maintains a formally exact framework.
The approximation in DFT arises primarily from the specific form chosen for the
exchange-correlation functional Exc[ρ] and its corresponding potential Vxc[ρ].

2.1.4 Basis Sets in DFT Calculations

To solve the Kohn-Sham equations, the electron wavefunctions φi(r) are often
expanded in terms of basis sets. In DFT calculations, two types of basis sets are
commonly used: plane waves and localized Gaussian functions.

Plane Waves are particularly well-suited for periodic systems, such as crystals,
because they naturally align with periodic boundary conditions. In this method, the
wavefunction is expanded into a series of sinusoidal functions, which can efficiently
describe the periodic nature of crystalline materials. However, representing the
wavefunction near atomic nuclei requires a very large number of plane waves,
especially due to the rapid variations of the wavefunction in these regions. This can
make calculations computationally expensive.

Localized Gaussian Functions, on the other hand, are often used for molecules
and finite systems. These basis sets consist of functions that are centered on atoms
and decay rapidly with distance, making them highly effective for describing the
local environment of atoms in non-periodic systems (such as isolated molecules or
clusters). Gaussian basis sets are particularly efficient for systems where electron
density is localized around atoms, especially in regions far from nuclei or in covalent
bonds. However, while Gaussian functions are generally computationally efficient,
the basis sets may become computationally demanding when trying to capture the
detailed behavior of the wavefunction near atomic nuclei due to the rapid changes in



2.1 The Hamiltonian 37

electron density in that region. In these cases, one often needs to include additional,
specialized functions in the basis set to accurately describe the steep gradients near
the nucleus[207].

2.1.5 DFT for material science

As discussed in the previous section, Density Functional Theory (DFT) has revolu-
tionized materials science by providing a robust theoretical framework for predicting
material properties with high accuracy. This section addresses the crucial role of
pseudopotentials in simplifying complex interactions within materials, the strategic
selection of k-points for accurate surface studies, and the importance of periodic
boundary conditions in simulating the infinite nature of metallic solids and surfaces.

Pseudopotentials

Pseudopotentials are a fundamental component in Density Functional Theory (DFT)
calculations, used to simplify the complex interactions between electrons and atomic
nuclei. By replacing the true Coulomb potential of the nucleus and tightly bound
core electrons with a smoother, effective potential, pseudopotentials significantly
enhance computational efficiency. This approach focuses primarily on the valence
electrons, which are most important for determining chemical bonding and material
properties.

In the vicinity of atomic nuclei, the electron wavefunctions exhibit rapid oscil-
lations due to the strong Coulomb potential and the need to satisfy orthogonality
with core states. Accurately representing these oscillations requires a large number
of basis functions, leading to high computational costs. Pseudopotentials address
this challenge by smoothing out the potential in the core region, thereby eliminating
the need to explicitly account for the core electrons and reducing the number of
basis functions required. This allows computational resources to be concentrated on
accurately describing the valence electrons.

There are three primary types of pseudopotentials, each tailored to specific
computational needs:

• Norm-conserving pseudopotentials ensure that the pseudo wavefunction
outside a certain cutoff radius matches the true all-electron wavefunction and
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that the integral of the charge density within the cutoff radius is conserved.
This type maintains physical accuracy while simplifying the wavefunction,
making it effective in systems where precise charge distribution is crucial.

• Ultrasoft pseudopotentials further reduce the computational burden by allow-
ing for even smoother pseudo wavefunctions that require fewer plane waves
for accurate representation. Unlike norm-conserving pseudopotentials, ultra-
soft pseudopotentials relax the constraint on charge conservation within the
core region. This flexibility reduces the plane-wave cutoff energy needed for
convergence, making it especially advantageous in systems with transition
metals, heavy elements, or complex materials. For these reasons, as discussed
in Chapter 3, we have selected ultrasoft pseudopotentials for our calculations
to achieve a balance between computational efficiency and accuracy.

• The Projector Augmented-Wave (PAW) method provides a more refined ap-
proach by reconstructing the all-electron wavefunction in the core region. The
PAW method combines the efficiency of pseudopotentials with the accuracy of
all-electron calculations, making it ideal for high-precision simulations that
require detailed electron density near the nucleus.

An alternative to plane-wave-based pseudopotential methods is the use of local
Gaussian basis sets, as implemented in codes like CRYSTAL [77]. Gaussian-type
orbitals can efficiently represent both core and valence electrons without the need for
pseudopotentials, allowing for all-electron calculations with reduced computational
cost compared to other all-electron methods.

The effectiveness of pseudopotentials depends on their construction and applica-
tion to specific systems. A critical factor in their development is transferability, the
ability of the pseudopotential to accurately represent the true potential across various
atomic environments. This becomes particularly challenging in systems where atoms
exhibit different oxidation states or coordination geometries [208–210].

Choosing k-points for surface calculations

In DFT, k-points are specific points in reciprocal space used to sample the electronic
states of a periodic system. They are essential for integrating over the Brillouin zone,
which represents the periodicity of the crystal lattice in reciprocal space. Accurate
k-point sampling is crucial for obtaining reliable results in DFT calculations[77]
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When performing surface calculations using slab models, the choice and dis-
tribution of k-points are particularly important to accurately describe both surface
and bulk properties of the material. The Monkhorst-Pack scheme is a widely used
method for generating a uniform and systematic grid of k-points over the Bril-
louin zone [211]. This scheme ensures that the integration over reciprocal space is
performed efficiently and accurately.

In the context of slab models, the supercell is extended along the surface normal
direction (usually the z-axis) due to the inclusion of the vacuum region. As a
result, the corresponding reciprocal lattice vector b3 is much smaller in magnitude
compared to b1 and b2, which are associated with the directions parallel to the
surface. Consequently, the Brillouin zone is much narrower along the kz direction,
and fewer k-points are required in that direction for accurate sampling.

For example, in a supercell with lattice vectors:

a1 = a(1,0,0), a2 = a(0,1,0), a3 = a(0,0,L),

the corresponding reciprocal lattice vectors are:

b1 =
2π

a
(1,0,0), b2 =

2π

a
(0,1,0), b3 =

2π

L
(0,0,1).

Here, a is the lattice constant, and L is the length of the supercell along the z-axis,
including both the slab and the vacuum region. Since L ≫ a, |b3| ≪ |b1|, |b2|.

Therefore, a typical approach is to use an M × N × 1 k-point mesh, where
M,N > 1, to effectively sample the Brillouin zone in the kx and ky directions, while
using only one k-point along kz.

The selection of k-points is critical, as it directly affects the accuracy of DFT
calculations. Insufficient sampling can lead to inaccurate results, such as incorrect
total energies or densities of states. Conversely, using an excessively dense k-
point mesh can significantly increase computational costs without proportional
gains in accuracy. Therefore, choosing an appropriate k-point mesh that balances
computational efficiency with the required precision is essential.
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Periodicity in bulk and surface metal simulations

Periodicity is a fundamental concept in simulations of crystalline materials, including
metallic surfaces. In bulk materials, atoms are arranged in a repeating lattice that
extends infinitely in all three dimensions. This periodicity allows us to model
extensive systems by considering a single unit cell that is repeated throughout
space using periodic boundary conditions (PBC). In surface studies, we adjust this
periodicity by introducing a vacuum gap along one dimension, while maintaining
periodicity in the other two dimensions to simulate an infinite surface.

Applying PBC provides significant computational advantages by reducing the
problem to a finite system while preserving the essential physics of an infinite crystal.
A key theoretical foundation for this approach is Bloch’s theorem, which simplifies
the mathematical treatment of electrons in a periodic potential[77].

Bloch’s theorem states that the wavefunction ψnk(r) of an electron in a periodic
potential can be expressed as:

ψnk(r) = eik·runk(r),

where:

• k is the crystal wavevector (also called the Bloch wavevector),

• n is the band index,

• unk(r) is a function that has the same periodicity as the lattice, i.e., unk(r+
R) = unk(r) for any lattice translation vector R.

This theorem indicates that the electron wavefunction in a periodic potential can
be written as a plane wave modulated by a function that shares the periodicity of
the lattice. This formulation greatly simplifies the calculation of electronic states in
crystals.[77]

When applying PBC to a finite-sized simulation cell, we impose that the wave-
function repeats itself after translations by the supercell lattice vectors:

ψ(r+Niai) = ψ(r),

where Ni is the number of unit cells along the i-th lattice vector ai.



2.1 The Hamiltonian 41

Using Bloch’s theorem, this condition becomes:

ψ(r+Niai) = eik·Niaiψ(r).

Combining the two expressions, we find that:

eik·Niai = 1,

which implies that:

k ·Niai = 2πmi,

where mi is an integer. This leads to the quantization of the allowed k-values:

ki =
2πmi

Niai
,

where ai = |ai|. The quantization of k-points allows us to sample the Brillouin
zone with a finite set of wavevectors, which is essential for practical calculations of
electronic properties.

In surface simulations using the slab model, a supercell is constructed that
contains several layers of the material and a vacuum region to separate periodic
images along the surface normal direction. PBCs are applied in all three dimensions,
but the vacuum gap ensures that there is minimal interaction between the slabs along
the direction perpendicular to the surface.

For accurate modeling, the vacuum region must be large enough so that the
electron density decays to nearly zero, preventing interactions between periodic
images of the slab. The thickness of the slab and the size of the vacuum gap are
chosen to balance computational efficiency with the need for physical accuracy.

In reciprocal space, the periodicity of the supercell leads to a set of reciprocal
lattice vectors bi defined by:

bi = 2π
a j ×ak

a1 · (a2 ×a3)
,

where (i, j,k) is a cyclic permutation of (1,2,3). The quantization of k-points in the
supercell corresponds to discrete sampling points in reciprocal space.
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Fig. 2.1 The slab model. (a) Representation of a supercell modeling a solid surface
with periodic boundary conditions applied in the x, y, and z directions to emulate an infinite
material. (b) Two-dimensional schematic of the supercell, showing repeated units demarcated
by bold lines. Shaded and white areas represent atomic positions and vacuum, respectively.
(c) Perspective of a slab used to model a surface within a fully periodic simulation framework.

In the context of slab calculations, the supercell is typically much larger along
the surface normal direction (which we can take as the z-axis) due to the inclusion
of the vacuum region. As a result, the corresponding reciprocal lattice vector b3 is
much smaller in magnitude compared to b1 and b2. Therefore, fewer k-points are
needed along the kz direction for accurate Brillouin zone integration.

For example, in FCC metals like copper, we can define the supercell lattice
vectors as:

a1 = a(1,0,0), a2 = a(0,1,0), a3 = a(0,0,L),

where a is the lattice constant, and L is the length of the supercell along the z-axis,
including both the slab and the vacuum region.

The corresponding reciprocal lattice vectors are:

b1 =
2π

a
(1,0,0), b2 =

2π

a
(0,1,0), b3 =

2π

L
(0,0,1).

Since L ≫ a, the magnitude of b3 is much smaller than that of b1 and b2, indicating
that the Brillouin zone is much narrower along kz than along kx and ky.

Therefore, when choosing a k-point mesh for the slab calculations, it is common
to use a mesh that is dense in the kx and ky directions but sparse along kz, such as an
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M×N ×1 mesh. This approach ensures sufficient sampling of the Brillouin zone
while maintaining computational efficiency.

By carefully selecting the number of layers in the slab, the size of the vacuum
region, and the k-point sampling, we can obtain reliable results that accurately
represent the physical properties of the surface under study.

2.1.6 Calculation of surface energies

In the study of metallic surfaces, a fundamental quantity is the surface energy, which
indicates the energy required to create a new surface. The basic principle is that the
energy needed to split a bulk material into two surfaces is equivalent to the surface
energy. This relationship can be mathematically expressed as follows:

γ =
1

2A
(Eslab −nEbulk) (2.20)

where Eslab is the total energy of the slab model representing the surface, Ebulk is the
energy per atom or formula unit in the bulk material, n is the number of atoms or
formula units in the slab, and A is the total area of the surfaces (both top and bottom)
in the slab model. The calculation of surface energy in DFT involves comparing the
energy of the surface to that of the bulk. The surface calculation often uses a larger
supercell with a vacuum gap and fewer k-points, while the bulk calculation employs
a denser k-point grid and potentially smaller supercells. To minimize discrepancies
due to different theoretical treatments, it is crucial to ensure that both energies are
well-converged with respect to parameters such as slab layers, k-points, energy cutoff,
and supercell size. Notably, when comparing DFT-calculated surface energies for
different copper surfaces, it is observed that the surface energy of Cu(111) is lower
than that of Cu(100). This suggests greater stability or a more "bulk-like" nature for
Cu(111), as shown in Chapter3, aligning with the trend that surfaces with denser
packing of surface atoms are usually more stable in simple materials.
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2.2 From Density Functional Theory to Molecular
Dynamics

DFT provides profound insights into the electronic properties of materials, while
Molecular Dynamics offers a dynamic and temporal perspective, enabling us to
simulate and understand molecular systems’ behavior over time. By complementing
DFT, MD shifts focus from electronic structures to the thermodynamic and kinetic
properties that govern the interactions and movements of molecules. This section pro-
vides a short overview of the theoretical background behind molecular modeling and
simulations, laying the groundwork for the presented research. By starting with key
concepts in statistical mechanics, we will explore molecular mechanics, force fields,
and the fundamental methods of MD. Emphasis will be placed on advanced sampling
techniques such as Metadynamics, which are crucial for overcoming the limitations
of traditional simulations and offering a more comprehensive understanding of the
systems under study.

2.2.1 Molecular Dynamics: theoretical foundations and applica-
tions

Classical Molecular Dynamics is a classical simulation approach where electrons
are not modeled explicitly, and their presence is approximated. This allows for
the simulation of larger time and spatial scales compared to the quantum methods
explained previously;

In this context, let’s consider a system consisting of N particles in three di-
mensions, each characterized by their positions {r1(t), . . . ,rN(t)} and momenta
{p1(t), . . . ,pN(t)} at any given time t. The behavior of this system is governed by
Newton’s second law, which, in conjunction with the Hamiltonian formulation of
classical mechanics, provides a comprehensive description of its dynamics. The
Hamiltonian H of the system is defined as the sum of kinetic and potential energies:

H({r1, . . . ,rN ,p1, . . . ,pN}) = K({p1, . . . ,pN})+U({r1, . . . ,rN}), (2.21)
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where the kinetic energy K is given by:

K({p1, . . . ,pN}) =
N

∑
i=1

p2
i

2mi
, (2.22)

and U({r1, . . . ,rN}) represents the potential energy of the system, which is a
function of the positions of all the particles. The potential energy encompasses all
the system’s interactions, including intermolecular and intramolecular forces. The
equations of motion for the particles are derived from the Hamiltonian:

ṙi =
∂H
∂pi

, ṗi =−∂H
∂ri

. (2.23)

These equations describe how the positions and momenta of the particles evolve
over time, allowing us to simulate the dynamical behavior of the molecular system
under study.

MD solves equations of motion numerically and generates trajectories for a
system of N interacting particles. According to Newton’s second law, the acceleration
of a particle of mass mi is given by:

d2ri

dt2 =
Fi

mi
, (2.24)

where the force Fi acting on particle i is a function of the positions of all N particles.

The solution to the equations of motion requires numerical integration schemes,
as analytical solutions are not feasible for general N-particle systems. Integration is
done in small steps separated by a fixed time parameter ∆t. At each step, the total
force on each particle at time t is calculated, and from this, acceleration, velocity,
and position are updated to obtain the values at t +∆t.

One of the common integration methods used in MD simulations is the Verlet
algorithm. The Verlet algorithm calculates the position of particles at time t +∆t
using the following formula:

ri(t +∆t) = 2ri(t)− ri(t −∆t)+
∆t2

mi
Fi(t). (2.25)
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This method is particularly valued for its numerical stability and simplicity, as it
does not explicitly require velocity for the integration of positions, making it highly
suitable for systems where only positional data is needed.

The choice of the time step ∆t is crucial, as it must be small enough to capture the
fastest motions in the system while being large enough to conserve computational
efficiency. A general guideline is to select ∆t as one-tenth of the period of the fastest
motion in the system.

In statistical mechanics, the behavior of a system is analyzed using the con-
cept of statistical ensembles, which represent groups of microstates sharing the
same thermodynamic properties. These ensembles include the Micro-Canonical
(NVE), Canonical (NVT), Isothermal-Isobaric (NPT), and Grand-Canonical (µVT)
ensembles. The introduction of these ensembles highlighted that understanding the
macroscopic properties of a system doesn’t require tracking every particle’s precise
motion. Instead, it relies on averaging over a multitude of microscopic configurations.
This is done through the ensemble average of a physical observable A(r,p), which is
computed as an average over all possible microstates of the system.

⟨A⟩=
∫∫

A(r,p)P(r,p)drdp, (2.26)

where

P(r,p) =
1
Z

e−βH(r,p), (2.27)

and

Z =
∫∫

e−βH(r,p) drdp. (2.28)

A key principle in MD is the ergodic hypothesis, which states that, given enough
time, a system’s dynamics will cover all possible states in phase space equally. This
means we can use time averages from a single long simulation to represent ensemble
averages, accurately reflecting the system’s behavior over time.

⟨A⟩= lim
τ→∞

1
τ

∫
τ

0
A(r(t),p(t))dt, (2.29)

where
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⟨A⟩= 1
M

M

∑
n=1

A(r(tn),p(tn)). (2.30)

The choice of the integration domain in simulation time, known as the integration
domain, is crucial. It’s essential to select an appropriate integration domain relevant
to our purpose. The finite timescale that can be explored in MD simulations has
significant implications for both the accuracy and interpretation of the results. Lim-
ited sampling can introduce errors or biases in the estimation of thermodynamic and
kinetic properties, such as free energies, entropies, and reaction rates. Additionally,
short simulation times may limit the relevance of MD simulations for systems or
phenomena that require longer timescales to be properly captured. To overcome these
challenges, various techniques have been developed to accelerate the exploration of
phase space and extend the timescales accessible in MD simulations, as discussed in
the following sections.

2.2.2 Ab Initio Molecular Dynamics

Ab initio molecular dynamics (AIMD) is a computational technique that combines
the principles of quantum mechanics with classical molecular dynamics to study the
behavior of materials at an atomic level. This method allows for the simulation of
systems where electronic structure calculations are essential for understanding their
properties and behavior, especially in the context of surface phenomena.

AIMD is based on solving the electronic Schrödinger equation within the frame-
work of DFT alongside the classical Newtonian equations of motion for the nuclei.
The system’s electronic structure is determined by solving the Kohn-Sham equations,
reported previously in equation 2.14

The forces acting on the nuclei are obtained from the Hellmann-Feynman theo-
rem:

FI =−∇IEtot =−∇I [Eelec +Enuc-nuc] , (2.31)

where Etot is the total energy of the system, Eelec is the electronic energy, and
Enuc-nuc is the nuclear-nuclear repulsion energy.

These forces are then used to integrate the equations of motion for the nuclei,
typically using Verlet or other numerical integration algorithms. The combined
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quantum-mechanical and classical approach of AIMD makes it particularly well-
suited for studying surfaces, where the interaction between adsorbates and the
substrate, surface reconstructions, and reaction mechanisms are of interest.

2.2.3 Molecular mechanics and classical force fields

Molecular mechanics, a classical approach within molecular modeling, describes
molecular systems using classical mechanics. Molecules are modeled as point
masses with charges, connected by springs representing covalent bonds, simulating
vibrational, stretching, and angular motions. Non-bonded interactions, like van der
Waals forces and electrostatic interactions, are captured using potential functions
such as the Lennard-Jones potential and Coulomb’s law. The Lennard-Jones potential
approximates van der Waals forces, while Coulomb’s law models electrostatic inter-
actions between charged atoms. This approach efficiently simulates large systems
over long timescales, providing insights into their structural, thermodynamic, and
kinetic properties.

In classical MD, the potential energy can be described using a general functional
form that depends on the atomic coordinates rN . Let V be this functional form, also
known as the force field, it can be expressed as:

V =Vbonded +Vnon-bonded (2.32)

In Fig. 2.2 it is reported the schematic representation of the main contributions
in molecular mechanics force fields, where the following summations give the two
terms:

Vbonded =Vbonds +Vangles +Vdihedrals (2.33)

Vnon-bonded =Velectrostatics +Vvan der Waals (2.34)

The terms in the above equations can be modeled using different approaches, with
various functional forms and parameter sets. Numerous molecular modeling force
fields in the literature adopt a functional form that characterizes the energy variations
arising from deviations in bond lengths or angles, bond rotations, and interactions
among non-bonded atoms:
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Fig. 2.2 Representation of Bonded and Non-Bonded Interactions: Schematic repre-
sentation of key molecular interactions in molecular mechanics. The top row illustrates
non-bonded interactions: electrostatic interactions (left) and van der Waals interactions
(right). The bottom row depicts bonded interactions: bond stretching (left), angle bending
(middle), and torsion motions (right). These interactions are fundamental in defining the
potential energy components in molecular mechanics.

V (rN) = ∑
bonds

kbi

2
(li − li,0)2 + ∑

angles

kθi

2
(θi −θi,0)

2

+ ∑
dihedrals

Vni

2
(1+ cos(niωi − γi))

+
N

∑
i=1

N

∑
j=i+1

(
4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]
+

qiq j

4πε0ri j

) (2.35)

In this general form of FF, the initial term models the interaction between bonded
atoms using a harmonic potential, where kbi represents the bond stretching constant,
li,0 is the equilibrium bond length (the bond length when all other force field terms
are zero), and li is the actual bond length. The second term accounts for angle
deviations from their equilibrium values through a harmonic potential, where kθi

is the force constant, θi,0 is the equilibrium angle, and θi is the actual angle. The
third term represents a torsional potential, depicting the energy changes due to bond
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rotations: Vni corresponds to the rotation barrier, ni indicates the periodicity (the
number of minima in the function), ωi is the dihedral angle, and γi is the phase
angle. The final term describes non-bonded interactions, typically modeled using
van der Waals forces and Coulombic interactions, with the Lennard-Jones potential
approximating the van der Waals forces and Coulomb’s law governing electrostatic
interactions.

Employing internal coordinates, such as bond lengths, angles, and dihedrals,
rather than absolute atomic positions, offers significant advantages. Internal coordi-
nates lead to a more intuitive potential energy function, directly linked to structural
changes in the molecule, and provide a clearer physical interpretation of each term.
This approach also simplifies the parametrization process, enhancing the transfer-
ability of the force field across different molecular systems.

Van der Waals interactions

The van der Waals forces are commonly described using the Lennard-Jones 12-6
pair potential:

VLJ = 4εi j

[(
σi j

ri j

)12

−
(

σi j

ri j

)6
]

The Lennard-Jones potential function, illustrated in Fig. 2.3, includes a short-
range repulsive term that scales with 1/r12, modeling the Pauli exclusion principle’s
repulsion between electron clouds, and a long-range attractive term that scales with
1/r6, representing van der Waals attraction. This potential is advantageous because
it only requires two parameters: σi j, the collision diameter, indicating the distance
where the potential energy is zero, and εi j, the depth of the potential well, indicating
the strength of the interaction.

The parameters ε and σ are typically provided for pure substances. Cross-
interaction parameters σi j and εi j for different species can be determined using
mixing rules. The Lorentz-Berthelot rule [212] is commonly used, where σi j is the
arithmetic mean and εi j is the geometric mean of the pure species parameters:

σi j =
1
2
(σii +σ j j), εi j =

√
εii · ε j j
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Fig. 2.3 Graphical representation of the Lennard-Jones potential, U(r), showing the re-
lationship between potential energy and interatomic distance r. Key features include the
equilibrium distance σ where the potential is zero, and the well depth ε , indicating the
strength of the attractive forces.

The computational cost of evaluating these non-bonded interactions can be
substantial, as it scales with the square of the number of particles. However, because
van der Waals interactions are short-range and decay rapidly with distance, they
can be efficiently calculated using truncation methods, where interactions are only
considered within a specified cutoff distance. Beyond this cutoff, the potential can
be ignored or approximated using tail-correction methods.

While the Lennard-Jones potential is widely used, there are other methods
to model van der Waals interactions in molecular dynamics. For example, the
Buckingham potential, which uses an exponential term for repulsion, and the Morse
potential, which provides a more accurate description of bond interactions, are
alternative approaches[213–215]. Additionally, the use of polarizable force fields
can provide a more accurate depiction of van der Waals interactions by allowing the
electron cloud to respond to the local environment dynamically.

Modeling Electrostatic Interactions

The electrostatic interaction between two atoms is determined using Coulomb’s law:
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Velectrostatic =
qiq j

4πε0ri j

where qi and q j are the partial charges assigned to atoms i and j, ri j is the
distance separating these atoms, and ε0 is the vacuum permittivity. To efficiently
calculate these long-range interactions in systems with periodic boundaries, and to
avoid significant inaccuracies that simple cutoff methods might introduce, advanced
techniques such as the Ewald summation[216] and fast multipole methods[217] are
often employed.

2.2.4 Force Field parametrization

Creating and parameterizing a classical force field for non-standard molecules in-
volves several challenges. The initial steps include constructing the molecular
structure and assigning atom types, which encode the atom’s hybridization and
surrounding environment, both critical for the force field.

A key aspect of force field parametrization is determining the molecular charge
distribution, often represented by partial atomic charges centered on the atoms. These
charges can be derived from the electrostatic potential, typically by fitting them to
quantum mechanical electrostatic potential data around the molecule. However,
such quantum mechanical calculations can be computationally prohibitive for large
systems. In these cases, semi-empirical methods like Austin Model 1 (AM1) are
employed. AM1 simplifies the calculation by using empirical parameters combined
with quantum mechanics[218].

For biological systems, experimental data from sources such as X-ray or neutron
diffraction studies, and databases like the Protein Data Bank or the Cambridge Struc-
tural Database, are essential for parameter derivation. In the absence of experimental
data, quantum mechanical calculations provide necessary parameters.

Force fields are typically optimized for specific molecular classes and may
perform poorly when applied to different systems. For instance, force fields like
AMBER [219], CHARMM [220], and GROMOS [221] are specifically tuned for
biomolecules such as proteins, lipids, and nucleic acids. The concept of transferabil-
ity is critical, enabling the same parameter set to be used across various molecules.
However, if a force field lacks parameters for the molecules under study, its pre-
dictive accuracy may be compromised. To address such gaps, the General Amber
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Force Field (GAFF)[222] was developed, extending AMBER to include parameters
suitable for a broad range of organic molecules.

2.2.5 Generalized AMBER Force Field (GAFF)

GAFF, considered one of the most comprehensive and versatile force fields has a
structure similar to other AMBER force fields and is expressed as follows:

V (rN) = ∑
bonds

kbi(li − li,0)2 + ∑
angles

kθi(θi −θi,0)
2 + ∑

dihedrals

Vni

2
(1+ cos(niωi − γi))

+
N

∑
i< j

[
Ai j

r12
i j

−
Bi j

r6
i j
+

qiq j

εri j

]
(2.36)

For calculating partial atomic charges in GAFF, the restrained electrostatic
potential (RESP) algorithm is commonly employed [223]. This method derives from
the electrostatic potential technique (ESP), incorporating restraints on non-hydrogen
atoms to enhance accuracy. The derivation of RESP charges involves ab initio
calculations, generally using the Hartree-Fock method with the 6-31G* basis set.

2.3 Classical force field for metal systems

Applying classical force fields, such as pair potentials, to simulate metallic materials
poses significant challenges due to the peculiarities of the metallic bond, as described
in Chapter 1. The classical force field methods, shown in previous sections, based on
pairwise interactions between atoms, are effective in modeling the ionic and covalent
bonds typical of non-metallic materials. However, accurately describing the motion
of atoms in a metal requires a force field that can account for the complex interactions
characteristic of metallic bonds while also being computationally accessible for large
system sizes and long simulation times.

To achieve this balance, multibody force fields are introduced. These force
fields consider not just pairwise interactions but also the collective effect of multiple
neighboring atoms on each atom’s behavior, thereby providing a more accurate
representation of atomic interactions in metals. The necessity of this approach
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Fig. 2.4 Illustration of the concept of multiscale modeling. This figure highlights how
spatial resolution correlates with observable temporal scales. The x-axis spans from quantum
mechanical to macroscopic distances, while the y-axis ranges from femtoseconds to hours,
demonstrating the adaptability of modeling techniques to capture phenomena at varying
scales.

arises from the unique nature of metallic bonds, where electrons are not localized
between specific atoms but are instead delocalized over the entire metallic structure.
This delocalization leads to a complex interplay of forces that cannot be accurately
captured by simple pair potentials.

In metallic systems, the properties and behavior of each atom are significantly
influenced by its local environment, including the positions and types of neighboring
atoms. This means that the energy of a given atom is not just a function of its distance
to another single atom but is also affected by the cumulative effect of the surrounding
atoms.

The Embedded-Atom Method (EAM), pioneered by M. S. Daw and M. I. Baskes
in 1984 [140], addresses these complexities by incorporating the influence of the
entire local atomic environment. Unlike classical force fields that treat atomic
interactions as simple pairwise forces, EAM accounts for the effect of local electron
density on each atom. This method has proven particularly effective in capturing
atomic phenomena in metallic systems, including impurities, surfaces, and defects,
providing a more realistic and accurate description of metallic bonding.
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EAM is based on the concept that the energy of an atom in a metallic environ-
ment can be described as a function of the local electron density contributed by its
neighboring atoms. This approach allows for the simulation of more realistic metallic
behavior, enabling the study of complex phenomena such as plastic deformation,
phase transitions, and surface reconstructions with higher accuracy and computa-
tional efficiency. In this context, we will explore how the EAM method represents an
effective alternative to classical force fields for modeling metallic systems, providing
insights into their atomic-scale behavior with greater fidelity. Mathematically, the
total energy E of a metallic system is given by:

E =
N

∑
i=1

Fi(ρi)+
1
2

N

∑
i=1

∑
j ̸=i

φi j(Ri j) (2.37)

where:

• Fi(ρi) represents the embedding energy function, which describes the energy
of atom i as a function of the local electron density ρi. This term reflects the
cohesive energy the surrounding atoms contribute and captures the effects of
metallic bonding.

• φi j(Ri j) is the pair potential function that represents the direct interaction
between two atoms i and j, separated by distance Ri j. This term usually
models electrostatic and van der Waals forces and often has a repulsive core
and an attractive tail.

The local electron density ρi at atom i is computed as:

ρi = ∑
j ̸=i

ρ j(Ri j) (2.38)

where ρ j(Ri j) represents the electron density contribution from atom j at a
distance Ri j from atom i. The function ρ j(Ri j) is often derived empirically or from
first-principles calculations to accurately model the physical behavior of metals.
EAM has been particularly useful in predicting properties like surface energy, lattice
constants, and vacancy formation energy, formation of fractures and defects in
metallic systems.[224–226]

While the EAM is known for its accuracy in modeling many-body interactions
within metallic systems, it is computationally intensive. The Gupta potential, how-
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ever, employs a more computationally efficient method [227]. It is rooted in the
tight-binding theory, specifically using the second-moment approximation of the
density of states to capture metallic bonding. This approximation simplifies metallic
bonding representations, which is particularly advantageous for studies involving
complex metallic systems such as alloys and nanoparticles.

The mathematical expression for the Gupta potential is:

E =
N

∑
i=1

A

√√√√∑
j ̸=i

e−2q
(Ri j

r0
−1
)
−∑

j ̸=i
Be−p

(Ri j
r0

−1
) (2.39)

where:

• A and B are empirical constants tuned through experimental or theoretical data
to define the interaction strengths.

• p and q adjust the decay characteristics of the potential.

• r0 is typically set at the equilibrium bond length found in the bulk metallic
lattice.

The second-moment approximation relies on the concept that the energy of
an atom in a metallic system is influenced by the local electron density, which
is related to the square root of the sum of the squared bond lengths (hence, the
"second moment" of the bond length distribution). This allows the Gupta potential
to capture many-body effects indirectly by focusing on the statistical distribution of
bond lengths around each atom, rather than explicitly modeling all interactions.

This approximation allows the Gupta potential to distinguish itself by effectively
approximating the many-body interactions found in metallic bonding while reducing
the computational complexity. It focuses on the local density effects around each
atom, thereby enhancing its performance and accuracy in predicting the properties
of nanostructures.

Gupta’s formulation addresses a critical limitation in classical potentials like
Morse and Lennard-Jones, which typically predict an expansion in interlayer sepa-
rations that contradicts experimental observations of contraction in many metallic
surfaces. These features make the Gupta potential especially suitable for simulations
of metallic nanoparticles. Its efficient computation of energy states based on local
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electron densities enables accurate predictions of structural properties in nanopar-
ticles, notably gold, where traditional methods may falter due to computational
constraints. For these reasons, we chose this potential to simulate these systems, as
discussed in Chapters 4 and 5.

2.4 Machine Learning potentials and DeePMD simu-
lations

In the field of molecular dynamics, machine learning potentials—particularly those
implemented in the Deep Potential Molecular Dynamics (DeePMD) framework
[180]—have significantly advanced the study of metallic systems. These potentials
combine the accuracy characteristic of ab initio methods with the computational
efficiency of classical force fields.

DeePMD is a novel approach that utilizes deep learning algorithms to accurately
predict the potential energy and forces in molecular systems. This method has
proven to be especially effective in studying systems where traditional computational
approaches may be inadequate due to computational cost or inability to capture
complex interactions.

Potential Energy Representation

At the core of the DeePMD representation is a deep neural network that models the
potential energy of a system based on atomic positions. The total potential energy
V (R) is expressed as the cumulative sum of individual atomic contributions:

V (R) =
N

∑
i=1

Vi(R), (2.40)

where Vi denotes the potential energy contribution from the i-th atom, R repre-
sents the set of atomic positions, and N is the total number of atoms.

A foundational concept of neural network potentials, including DeePMD, is the
incorporation of local atomic environments. This approach considers not only the
positions of individual atoms but also the relative positions of neighboring atoms
within a specified cutoff radius. DeePMD enhances this methodology by introducing
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a local coordinate frame for each atom. This ensures that the potential energy
model remains extensive and adheres to symmetry invariance properties, such as
translational, rotational, and permutational invariance. By assigning a local reference
frame, DeePMD accurately captures the intricate interactions within the system.

More precisely, the local atomic environments are processed using two key com-
ponents: the embedding network and the fitting network. The embedding network
transforms the relative positions of neighboring atoms into invariant descriptors. It
processes the distances and angular information between the central atom and its
neighbors, applying smooth and continuous functions to ensure differentiability. This
transformation results in descriptors that are invariant under translations, rotations,
and permutations of identical atoms, preserving the essential physical symmetries of
the system.

These invariant descriptors are then fed into the fitting network, a deep neural
network that predicts the atomic energy contributions Vi. The fitting network maps the
complex, non-linear relationships captured by the descriptors to the potential energy
of each atom. Each local environment is described using a smooth and adaptive
embedding network that transforms the coordinates of neighboring atoms into a
lower-dimensional space in a continuous and differentiable manner. This approach
addresses the limitations of non-smooth models, which can introduce discontinuities
in the potential energy surface, leading to inaccuracies in force calculations and
unstable dynamics.

DeePMD’s potential energy representation is extensive—scaling linearly with
system size—and invariant under system translations and rotations. This consistency
ensures that the energy remains the same regardless of the system’s absolute position
or orientation, preserving the physical realism of simulations.

Network architecture and optimization

DeePMD employs an advanced multi-layer neural network architecture to accurately
model complex interatomic interactions. The core of this approach lies in the ability
of neural networks to learn intricate relationships within data, which is crucial when
dealing with the non-linear and highly variable nature of interatomic potentials.

The neural network in DeePMD processes data through multiple hidden layers,
each consisting of neurons. In each layer l, the input to a neuron is a linear combina-
tion of the outputs (or activations) from the neurons in the previous layer l −1. This
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linear combination is computed as a weighted sum of these activations, along with a
bias term. Mathematically, for a neuron j in layer l, this transformation is expressed
as:

z(l)j =
nl−1

∑
i=1

w(l)
i j a(l−1)

i +b(l)j ,

where:

• w(l)
i j is the weight connecting the i-th neuron in layer l −1 to the j-th neuron

in layer l,

• a(l−1)
i is the activation of the i-th neuron in layer l −1,

• b(l)j is the bias term for neuron j in layer l,

• nl−1 is the number of neurons in layer l −1.

The neuron then applies a non-linear activation function φ to this linear combina-
tion to produce its output:

a(l)j = φ(z(l)j ).

The role of this non-linearity is to enable the network to capture and model the
complex, non-linear relationships inherent in interatomic potentials.

In DeePMD, the hyperbolic tangent function (tanh) is commonly used as the
activation function. The tanh function is defined as:

φ(x) = tanh(x) =
ex − e−x

ex + e−x ,

which outputs values in the range between −1 and 1. Applying this function
to z(l)j normalizes the neuron outputs and helps prevent issues such as vanishing
gradients during training.

To optimize the network’s parameters, DeePMD utilizes the ADAM optimizer, an
adaptive variant of stochastic gradient descent. The ADAM optimizer is well-suited
for training deep networks on large datasets, as it dynamically adjusts the learning
rates of individual parameters based on estimates of the first and second moments of
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the gradients. This helps achieve faster convergence and improves the stability of the
training process. The update rule for ADAM is given by:

θt+1 = θt −
η√

v̂t + ε
m̂t ,

where:

• θ represents the network parameters (including weights w(l)
i j and biases b(l)j ),

• η is the learning rate,

• m̂t and v̂t are estimates of the first and second moments of the gradients,

• ε is a small constant added to prevent division by zero.

The training process involves minimizing a specially designed loss function,
which quantifies the difference between the network’s predictions and the reference
data derived from quantum mechanical calculations. The loss function used in
DeePMD is a weighted sum of the errors in predicting the energy, forces, and virial
tensor, which are critical quantities in molecular simulations. The loss function is
defined as:

L(pε , p f , pξ ) = pε∆ε
2 +

p f

3N

N

∑
i=1

|∆Fi|2 +
pξ

9
∥∆ξ∥2,

where ∆ε denotes the difference between the predicted and reference energy per
atom, ∆Fi represents the difference in forces on atom i, and ∆ξ is the difference in the
virial tensor. The prefactors pε , p f , and pξ are tunable parameters that control the
relative importance of each term in the loss function, allowing for balanced training
across different physical quantities. This flexibility is crucial because it enables the
network to learn the most relevant features of the system under study, whether that
be energy, forces, or stress.

One of the most significant advantages of DeePMD is its scalability. The archi-
tecture is designed to support efficient parallelization, which is essential for handling
large-scale molecular simulations; the computational cost of DeePMD scales lin-
early with the number of atoms, making it suitable for studying complex systems,
such as metallic materials, where traditional methods might be computationally too
expensive.
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2.4.1 DeePMD-kit training procedure

The DeePMD framework works as a bridge between AIMD and classical MD.
Its application to metallic systems has consistently demonstrated its capability to
accurately capture complex behaviors, enabling the investigation of larger systems
over extended timescales. As described in section 3, we have chosen DeePMD to
train a ML potential for copper surfaces.

Fig. 2.5 Schematic representation of the development process for a machine learning
potential using deep neural networks. The workflow is divided into several key stages: (1)
Structure shows the atomic structure of a metallic slab. (2) Local Environments illustrates
individual atoms and their nearest neighbors within the structure. (3) Descriptors calculate
a probability density function, ρ(r), capturing the spatial distribution of atoms around a
central atom, which encodes geometric and topological local information. (4) Regression via
Neural Networks involves feeding the computed descriptors into a neural network trained to
approximate the energy function based on these descriptors. (5) Sum aggregates the energy
contributions from each local environment predicted by the neural network to compute the
total system energy, E.

To better understand the process of developing a machine learning force field
using DeePMD-kit for such complex systems, we outline the primary steps:

1. Data Collection and Preprocessing: A comprehensive dataset was compiled,
including atomic coordinates, potential energies, and forces, all computed with
DFT-level accuracy. The dataset was meticulously preprocessed to ensure it
was fully optimized for use in training the ML model

2. Neural Network Architecture Setup: We employed a deep, feedforward
network structure, selecting the appropriate number of hidden layers and
neurons per layer, choosing the hyperbolic tangent as activation function.
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3. Hyperparameter Configuration: Critical hyperparameters, including the
learning rate, batch size, and training epochs, were carefully configured.

4. Model Training Process: Using the prepared dataset, we trained the neural
network, continuously monitoring and adjusting hyperparameters based on the
loss function to optimize model performance.

5. Validation and Testing for Generalization: The model’s generalization capa-
bilities and efficacy were assessed using separate validation and test datasets,
ensuring an accurate representation of the system’s physical properties.

6. Analysis and Interpretation of Results: Post-training, detailed analysis and
interpretation of the model’s predictions were conducted against reference data
to confirm the accuracy and reliability of the ML force field.

We will discuss the validation and application of this potential in the dedicated
section 3.2.2 in Chapter 3.

2.5 Enhanced Sampling Molecular Dynamics: Meta-
dynamics

As discussed before, MD simulations are indispensable for understanding the dy-
namic behavior of molecular systems. However, conventional MD often struggles
to efficiently explore phase space, especially in complex energy landscapes with
multiple metastable states—local minima in the potential energy surface where the
system can become trapped. This trapping limits the sampling of configurations,
leading to incomplete and potentially biased insights into the system’s behavior.
Insufficient sampling can result in inaccurate free energy surfaces, which are crucial
for understanding molecular interactions, reaction mechanisms, and conformational
changes.

To overcome these limitations, enhanced sampling methods such as Metadynam-
ics (MetaD) have been developed [228, 229]. MetaD introduces a history-dependent
bias potential that encourages the system to escape from local minima and explore a
broader region of phase space, ultimately providing a more accurate estimation of
the Free Energy Surface (FES).
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The key concept in MetaD is the introduction of collective variables (CVs), which
are functions of the system’s atomic coordinates R. Each CV is defined as:

si = Πi(R),

where Πi maps the high-dimensional coordinate space R to a lower-dimensional
space representing essential degrees of freedom. The CVs capture crucial motions
within the system, such as transitions between metastable states and reaction path-
ways. Selecting appropriate CVs is vital for the efficiency and accuracy of the
sampling process.

In MetaD, the potential energy function of the system is modified to include a
time-dependent bias:

Ũpot(R, t) =Upot(R)+VG(s(R), t),

where VG(s(R), t) is the bias potential applied to the CVs, and s(R)= {s1(R), . . . ,sN(R)}.

The bias potential is introduced as a sum of Gaussian functions added incremen-
tally to the CV space based on the system’s sampling history:

VG(s, t) =
t

∑
t ′=τG,2τG,...

W exp

(
−

N

∑
i=1

(si − si(t ′))2

2σ2
i

)
,

where:

• s = {s1,s2, . . . ,sN} represents the set of CVs,

• σi is the width of the Gaussian function associated with the i-th CV,

• W is the height of the Gaussian functions,

• τG is the time interval between successive Gaussian depositions,

• si(t ′) is the value of the i-th CV at time t ′.

As these Gaussians accumulate, the bias potential VG(s, t) modifies the underlying
FES, allowing the system to overcome energy barriers and explore new regions of
phase space. The cumulative effect flattens the energy landscape, enhancing the
sampling of different states. The inverse of the deposited potential can then be used
as an estimate of the free energy F(s).
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The probability distribution function associated with the collective variables P(s),
is directly related to the Boltzmann distribution of the system’s atomic coordinates
R:

P(s) =
∫

dRP(R)δ
(
s−Π(R)

)
,

where:

• P(R) =
1
Z

exp
(
−βUpot(R)

)
is the Boltzmann probability distribution, with

β =
1

kBT
, with kB being the Boltzmann constant and T the temperature, and Z

is the partition function,

• δ
(
s−Π(R)

)
is the multidimensional Dirac delta function,

• Π(R) = {Π1(R),Π2(R), . . . ,ΠN(R)} represents the set of collective variables
as functions of the atomic coordinates.

The free energy as a function of the CVs s is then defined by:

F(s) =− 1
β

lnP(s).

This expression links the probability distribution P(s) to the free energy land-
scape, allowing the reconstruction of F(s) from the sampled distribution.
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Fig. 2.6 Schematic comparison of MD simulations demonstrating the effects of potential
energy surface exploration with and without bias. (A) In an unbiased MD simulation,
the system explores accessible configurations solely based on thermal fluctuations, often
becoming confined to local minima, such as at point B. (B) In a biased MD simulation, an
energy bias is introduced, which alters the free energy landscape, depicted by the shaded
area. This modification enables the system to explore previously inaccessible regions of
the phase space, allowing a comprehensive exploration from point A through B to C, thus
overcoming the barrier limitations present in the unbiased scenario.

However, MetaD also presents challenges. Determining when a simulation has
converged is non-trivial. Continuous bias deposition can introduce artifacts in the
energy landscape, potentially pushing the system into physically unrealistic regions.
Therefore, careful monitoring is required to avoid over-biasing and to ensure that the
reconstructed FES is accurate.

Different versions of MetaD have been developed to improve the method’s
efficiency and accuracy, particularly in how the bias VG(s, t) is added and how the
original (unbiased) FES profile is retrieved.

Well-Tempered Metadynamics

Well-Tempered Metadynamics (WT-MetaD) is a variation of MetaD that addresses
the issue of bias over-deposition by gradually decreasing the rate of bias addition
over time. This ensures a more controlled and systematic exploration of the phase
space [230]. In WT-MetaD, the height of each Gaussian added to the potential is
rescaled based on the time already spent at that point in the CV space. The potential
in WT-MetaD is given by:
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V (s, t) = kB∆T ln
(

1+
ωN(s, t)

kB∆T

)
,

where:

• N(s, t) is the histogram of the variable s sampled in the biased simulation,

• ∆T is related to the **bias factor** γ = T+∆T
T , controlling how much bias is

added compared to the system temperature T ,

• ω is a frequency parameter controlling how often bias is added.

In this context, ∆T helps control the amount of bias applied relative to the
physical temperature. A higher bias factor γ leads to smoother exploration of the
free energy surface, while a lower bias factor speeds up the system’s convergence.

As WT-MetaD evolves, it converges to a modified free energy expression:

V (s, t → ∞) =−1
γ

F(s)+C,

where C is a constant and F(s) is the free energy. This shows that WT-MetaD
leads to a modified free energy surface, with the bias factor γ controlling the explo-
ration of the free energy landscape.

WT-MetaD has been successfully applied to study various conformational changes
in molecular systems. For instance, it is particularly useful in investigating isomer-
ization processes, as discussed in Chapter 7.

Infrequent Metadynamics

Infrequent Metadynamics, an extension of the WT-MetaD framework, is utilized to
estimate kinetic rates for rare events.

The main idea behind Infrequent Metadynamics is to deposit bias infrequently
enough so that the system has sufficient time to naturally explore the configuration
space without being artificially driven over energy barriers. By doing so, it is
possible to collect unbiased transition times and construct an empirical distribution
of these escape times. This method helps in understanding the kinetics of rare events,
which are typically difficult to capture due to their low occurrence probability within
conventional simulation timescales.
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In practice, multiple independent simulations are conducted to gather a robust
set of escape times. Each simulation starts from the same initial state but evolves
independently, providing a diverse sampling of transition events. The collected
escape times are used to build an empirical distribution, which is compared to the
ideal Poisson distribution expected for rare events. This comparison is often per-
formed using statistical tests such as the Kolmogorov-Smirnov test, which assesses
the goodness-of-fit between the empirical distribution and the Poisson distribution.

Unlike conventional MetaD, which focuses on achieving convergence of the
FES, Infrequent Metadynamics aims to cross energy barriers to observe transition
events. Therefore, full convergence of the FES is not necessary; instead, the goal
is to collect accurate transition times reflecting the system’s natural kinetics. The
unbiased transition time tun can be obtained using:

tun =
nMD

∑
i=1

∆t eβV (s(ti),ti), (2.41)

where tun is the unbiased transition time, nMD is the total number of MD steps, ∆t
is the MD time step, V (s(ti), ti) is the Metadynamics bias at time ti, and s(ti) is the
collective variable at time ti.

The reliability of the dynamics reconstructed from Metad can be assessed by
performing a statistical test that evaluates how well the computed distribution fits
with the ideal Poisson distribution expected for rare events:

Pn≥1 = 1−P0 = 1− e−t/τ (2.42)

where τ is the characteristic timescale of the transition.

Convergence criteria and limitations

Convergence in Metadynamics is typically assessed by monitoring how effectively
the system explores the collective variable space and how consistent the free energy
profiles remain over time. A common method for quantifying convergence is by
observing the time-dependent function c(t), which estimates the reversible work done
by the bias potential during the simulation. This function can be used as an indicator
of whether the system has sufficiently explored the phase space. To quantitatively
measure this, block-analysis techniques are often employed, wherein the simulation
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data is divided into time blocks to evaluate the stability and consistency of the free
energy estimates over time.

While WT-MetaD enhances convergence by tempering the bias potential, it
presents certain challenges. One notable limitation is the requirement for prior
knowledge of the free-energy surface to properly select the bias factor, which governs
how quickly the bias is applied. Additionally, accurately identifying a small number
of effective CVs for complex processes is essential for efficient sampling, but this
can be difficult for high-dimensional systems.

Reweighting Metadynamics bias

To obtain the unbiased probability distribution from a biased simulation, reweighting
techniques are employed. This approach, pioneered by Tiwary and Parrinello, takes
into account the time dependence of the bias potential[231]. The unbiased average
of any observable O dependent on atomic positions is calculated as follows:

⟨O(r)⟩= ⟨O(r)eβ [V (s,t)−c(t)]⟩MetaD

⟨eβ [V (s,t)−c(t)]⟩MetaD
, (2.43)

where c(t) is a time-dependent constant related to the Metadynamics bias.

2.5.1 Limitations in the selection of CVs for Metadynamics

One of the primary challenges in metadynamics is selecting CVs that accurately
represent the physical phenomena under study. CVs, functions of the atomic coor-
dinates, are usually chosen based on physical and chemical insights, providing a
low-dimensional projection of the crucial degrees of freedom in the original confor-
mational space. The selection of CVs should meet two criteria: different metastable
states should be clearly separated in the projected phase space, and the CVs should
efficiently sample the transition states. Poorly chosen CVs can lead to incorrect
free-energy estimates, fail to accelerate the dynamics, and offer no improvement in
sampling. If the CVs do not capture the essential dynamics and transitions within
the system, the FES may fail to converge correctly, causing distinct states to merge
indistinguishably.

Moreover, the number of CVs should be kept low, as exploring a high-dimensional
space requires more computational time and makes convergence difficult. The sub-
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jective nature of selecting CVs often relies on intuition and prior knowledge, which
can lead to variables that do not capture the system’s dynamics effectively.

Choosing a CV is similar to selecting a descriptor of the atomic environment.
Both processes involve identifying key features that govern the system’s behavior.
Just as descriptors quantitatively characterize the local environment around atoms,
providing a systematic way to capture relevant features, CVs must encapsulate
the essential degrees of freedom and transitions. Both should highlight significant
movements and changes within the system, ensuring that important dynamics and
barriers are not overlooked. Using atomic environment descriptors can thus enhance
the selection of CVs, offering a more structured and quantitative approach. In
the following section, we will explore how atomic environment descriptors can be
employed to achieve a deeper understanding of the system’s characteristics and
behavior.

2.6 Descriptors of Atomic Environments

Understanding atomic environments is crucial for grasping the physical properties
of metallic systems and the fundamental processes that govern them. Processes
such as phase transformations and mechanical deformations span multiple scales,
influencing both atomic and macroscopic behaviors. Atomistic simulations serve
as a bridge between these scales, offering insights into the dynamic evolution of
these systems. However, the complexity inherent in these behaviors necessitates
advanced analytical techniques to fully capture and comprehend them. In this
context, machine learning has significantly enhanced our ability to detect and predict
molecular patterns, providing powerful tools that complement traditional simulation
methods.

For effective application of machine learning, a detailed representation of atomic
and molecular environments is essential. Molecular dynamics simulations typically
produce data in the form of tuples A = {ri,αi} for i ∈ N, where ri are the Cartesian
coordinates in R3 and αi represents the identity of the i-th particle. While these
coordinates contain all the necessary structural information, they are not sufficient for
a complete description of the system due to their non-unique nature and sensitivity
to transformations such as permutation, rotation, and translation.
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To address this issue, descriptors of atomic environments transform Cartesian
coordinates into a unique descriptor space, providing clear fingerprints of atomic
neighborhoods. This approach is analogous to selecting collective variables, as
described in the previous section, focusing on the most significant degrees of freedom.
Traditionally, structural descriptors, also known as order parameters [232], have been
used to identify phases in condensed matter and liquid crystals. These descriptors
are based on human understanding and prior knowledge of physical systems and
are essential for providing insights into local atomic environments, particularly in
metallic systems.

2.6.1 Human-Based Descriptors

For metallic systems, notable descriptors include the centrosymmetry parameter
(CSP), adaptive common neighbor analysis (a-CNA), and Steinhardt order parameters
such as the widely used Q4, Q6, and Q12 parameters.

The CSP quantifies the degree of local symmetry around an atom, making it
particularly useful for detecting defects in crystalline structures such as dislocations
and grain boundaries. It is calculated by evaluating the vector sum of the forces
experienced by an atom due to its neighbors, which measures how much an atom’s
local environment deviates from perfect centrosymmetry.

Adaptive common neighbor analysis enhances structural classification accuracy
in systems with varying atomic densities by adapting to the local atomic environ-
ment. This method extends the common neighbor analysis by classifying atomic
environments based on the connectivity and types of bonds between neighboring
atoms. The adaptability of a-CNA to specific local densities makes it more versatile
and accurate, particularly for complex and heterogeneous systems.

Steinhardt order parameters, introduced by Steinhardt et al. in 1983 [232],
are crucial for quantifying the local orientational order around an atom. These
parameters, including Q4, Q6, and Q12, are particularly effective in studying phase
transitions and nucleation processes. The indices 4, 6, and 12 correspond to the
specific orders of spherical harmonics used in their calculation. For example, the Q6

parameter employs spherical harmonics of order 6 to measure the degree of local
orientational order.
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Mathematically, the Steinhardt order parameter Ql for a given atom is defined as:

Ql =

(
4π

2l +1

l

∑
m=−l

∣∣Q̄lm
∣∣2)1/2

,

where Q̄lm represents the average of the spherical harmonics Ylm calculated over the
nearest neighbors of the atom. These parameters are sensitive to variations in the
local structural arrangement, enabling the identification of different phases and local
structural motifs within a metallic system [233].

However, these descriptors have limitations. They heavily rely on human exper-
tise and detailed prior knowledge of the system, which can introduce biases and limit
their generality across different systems and conditions. Additionally, the selection
and design of these descriptors are often based on a trial-and-error approach, which
may not capture all the relevant features and subtleties of the atomic environments,
potentially overlooking important details.

The advent of machine learning has driven the development of new, more so-
phisticated, data-driven descriptors. These modern descriptors are designed to
automatically learn the most relevant features from data without requiring explicit
human intervention or detailed prior knowledge of the system. In the next section,
we will explore such modern descriptors, focusing on the Smooth Overlap of Atomic
Positions (SOAP) [202], which plays a primary role in the research presented in this
thesis.

2.6.2 Smooth Overlap of Atomic Positions (SOAP)

The Smooth Overlap of Atomic Positions[202] descriptor offers a sophisticated
method to describe atomic environments. A key aspect of the SOAP descriptor is its
ability to capture the local order around an atom, describing how the surrounding
atoms are spatially arranged. Each unique spatial arrangement corresponds to a
distinct subspectrum. Mathematically, SOAP vectors provide a high-dimensional
embedding that represents the local order and disorder surrounding each atom within
the system. This high-dimensional representation acts as a fingerprint—a data-
driven local order parameter that characterizes the atomic environment. The function
employed by SOAP captures rotational and translational invariant many-body density
correlation features within a defined cutoff sphere.
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Originally developed for approximating potential energy surfaces and interatomic
potentials, SOAP effectively represents chemical environments. The vectorized
SOAP representation for the i-th local environment is constructed by considering the
local density, formulated as a sum of Gaussian contributions:

ρ
(α)
i (r) = ∑

j
exp
(
−
|r− ri j|2

2σ2

)
frcut(|r− ri j|) (2.44)

Here, frcut is a cutoff function ensuring the inclusion of particles within a certain
radius.

The density function undergoes an expansion using orthonormal radial basis
functions and spherical harmonics:

ρ
(α)
i (r) = ∑

n
∑

l

l

∑
m=−l

cα
nlmgn(r)Ylm(θ ,φ) (2.45)

where cα
nlm represents the expansion coefficients. The SOAP representation’s unique-

ness comes from forming the partial power spectrum of these coefficients:

pαα ′
nn′l =

√
8π2

2l +1

l

∑
m=−l

cα,i
nlm · cα ′,i

n′lm (2.46)

In this context, a molecular dynamics snapshot is represented as a collection of these
vectors:

Γ = {pi,αi}i∈N (2.47)

The dimensionality of these vectors is determined by the radial and angular basis
expansions and the number of atomic species considered. The number of components
of the vectors in this representation depends on the extent of the radial and angular
basis expansions, and on the number of different atomic species taken into account.
The dimensionality is given by the formula:

Nfeatures = Nα ·nmax ·
(Nα ·nmax +1) · (lmax +1)

2
(2.48)

Here, Nfeatures represents the total number of features. The involved parameters,
Nα (the number of atomic species), nmax (the maximum radial basis), and lmax

(the maximum angular momentum), can be tuned during the analysis. Due to the



2.6 Descriptors of Atomic Environments 73

quadratic dependence on the number of elements and on the radial basis number, the
number of features reaches a very high value. Therefore, the SOAP vectors associated
with an MD trajectory constitute a substantially high-dimensional dataset, which
can be interpreted only after further processing, such as dimensionality reduction
techniques, as shown later in our works.

2.6.3 Similarity between Atomic Environments

In the analysis of molecular structures and atomic environments, it is essential to
quantify the similarity between different configurations to facilitate the classification
and comparison of materials. Descriptors, such as SOAP vectors, provide a way
to represent complex atomic environments in a high-dimensional feature space. To
compare these environments effectively, we employ similarity measures that are
capable of handling the high-dimensional and nonlinear nature of the data.

The similarity between SOAP vectors, denoted as pi ∈RD, derived from molecu-
lar dynamics simulations, is evaluated using a kernel function, κ(·, ·). This function
takes two vectors as input and provides a measure of their similarity, which is
bounded and typically calculated as the dot product of the two vectors:

κ(a,b) = a ·b, ∀a,b ∈ RD. (2.49)

From this, the kernel distance can be derived, providing a way to quantify the
difference between two points in the feature space:

Dκ(a,b) =
√

κ(a,a)+κ(b,b)−2κ(a,b) =
√

2(1−κ(a,b)). (2.50)

In simpler terms, the kernel distance between two points in the feature space is
determined by their self-similarities and mutual similarity, κ(a,b). This approach is
fundamental for comparing various SOAP vectors, as will be demonstrated in the
results discussed in Chapters 3, 4, and 5 of this thesis.
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2.6.4 The Local Environments and Neighbors Shuffling (LENS)
Descriptor

Understanding the dynamic behavior of particles in a molecular system requires
more than just static structural descriptors. The Local Environments and Neighbors
Shuffling (LENS) descriptor provides a time-dependent method for monitoring
changes in the local environments of particles over time, offering deeper insights
into system dynamics that traditional methods may overlook.

LENS tracks how the local environment of a particle evolves throughout its trajec-
tory by monitoring changes in the identities of its neighboring particles. Specifically,
it measures the extent to which neighbors are added, removed, or reshuffled between
consecutive time intervals. The LENS descriptor, δi(t +∆t), for a particle i at time
t +∆t is defined as:

δ
t+∆t
i =

∣∣∣Ct
i ∪Ct+∆t

i −Ct
i ∩Ct+∆t

i

∣∣∣∣∣∣Ct
i +Ct+∆t

i

∣∣∣ (2.51)

where Ct
i represents the set of neighbor identities (IDs) around particle i at time t,

and ∆Ct+∆t
i denotes the symmetric difference between the neighbor sets at times t

and t +∆t.

LENS has proven to be particularly effective in detecting rare local fluctuations
that are often missed by average-based analyses. This capability is highlighted
in the study of various metallic systems, where LENS identified dynamic regions
coexisting with more static areas, illustrating how local fluctuations can drive larger
collective rearrangements.

To apply LENS effectively, a sufficiently sampled trajectory dataset is required,
containing detailed sequential information on the relative positions and identities of
neighboring particles across different time intervals. This time-series nature allows
LENS to monitor changes in the local environment of each particle over time, making
it possible to detect both common and rare dynamic events.

The abstract and flexible nature of LENS makes it well-suited for analyzing a
wide range of complex systems beyond molecular structures. Its versatility has been
demonstrated in various test cases, from soft materials to crystalline molecular and
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atomic systems, and across different molecular dynamics simulation models and
force fields.

The application of LENS has enriched the analysis presented in this thesis by
revealing dynamic behaviors and structural rearrangements of single or few atoms,
phenomena typically missed by standard descriptors like SOAP. These insights are
discussed in detail in Chapters 5 and 6.

2.6.5 Combining LENS and SOAP descriptors

The macroscopic properties of complex systems often depend on microscopic dy-
namic events, which are challenging to detect due to their fleeting and intricate
nature. To address this, combining the structural insights from SOAP with the
dynamic sensitivity of LENS offers a comprehensive analysis of molecular systems.

Starting, for example, at time t1, a SOAP spectrum is computed for each particle
i in the system. We also calculate its LENS value for the immediately subsequent
time interval ∆t. By including the LENS term as an extra component into each
SOAP power spectrum, we thus obtain a new vector χ

t1
i containing information on

the structural properties in the neighboring environment surrounding atom i at time
t1 and its evolution in the subsequent time interval t1 +∆t.

The combination is expressed as:

χ
t1
i = (pt1

i ,δ
t1+∆t
i )

The SOAP spectrum and LENS scalar component are normalized to have equal
weight in the dataset. Despite their different forms—a high-dimensional vector for
the SOAP spectrum and a scalar for LENS—this normalization ensures they have
the same ’statistical weight’ within the dataset. By applying this procedure across
the entire trajectory, we generate a new dataset (SOAP&LENS dataset) containing
N vectors, each with a dimension of n+1, where n represents the SOAP spectrum
dimension (structural information) and 1 corresponds to the LENS (dynamic) com-
ponent. This updated dataset effectively captures information on the instantaneous
environments surrounding each particle i and their propensity to change over time
at the analysis’s resolution ∆t. The decision to combine the structural insights of
SOAP and the dynamic sensitivity of LENS into the comprehensive SOAP&LENS
descriptor was informed by the distinct strengths observed from each individual
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Fig. 2.7 Scheme of the SOAP&LENS combined dataset. The SOAP power spectrum of
each particle at every time step (pt

i) is combined with the LENS scalar value calculated at
the subsequent time interval (δ t+∆t

i ), obtaining a new dataset χ t
i = (pt

i,δ
t+∆t
i ). Adapted with

permission from [234]

descriptor. The SOAP descriptor captures rich structural information by representing
the local atomic environment with high precision, while the LENS descriptor high-
lights the dynamic changes in particle neighborhoods over time, providing a clear
picture of the microscopic events that drive macroscopic behaviors. This combined
approach allows for the detection of rare but significant dynamic events that might
be missed using only structural descriptors. It also improves classification accuracy
by distinguishing between different dynamical behaviors within structurally similar
environments. Consequently, the SOAP&LENS descriptor offers a more detailed
and accurate characterization of molecular systems, capturing the intricate interplay
between structure and dynamics that governs their macroscopic properties.

In Chapter 6, we demonstrate the application of this new descriptor on a metallic
system, such as Cu(211) [234], revealing detailed structure-dynamics relationships
that improve our predictive understanding of these intricate systems.



Chapter 3

Innate dynamics and identity crisis of
a Copper surface

Despite their crystalline order, which typically suggests rigidity and structural regu-
larity, metals experience significant structural changes at temperatures much lower
than their melting point[75, 76, 200]. These changes are the results of the complex
dynamic behavior within the crystalline lattice that profoundly impacts material
properties. Recognizing and understanding such structural dynamics is essential,
as they play a crucial role in determining the functionality and performance of
metallic surfaces in various applications, from catalysis to the design of functional
materials. However, traditional studies often treat metal surfaces as static[164–170],
overlooking the complex atomic interactions that significantly influence material
functionality.[235–239, 185] This chapter will demonstrate how advanced compu-
tational techniques and ML are essential tools for comprehending these dynamic
behaviors at the atomic scale, providing deeper insights into the intricate nature of
metallic surfaces. Building on these considerations, this chapter focuses on the dy-
namics of copper surfaces at different temperatures, providing new insights into their
behavior using deep-potential molecular dynamics simulations (DPMD), previously
introduced in Chapter 2. By training a deep neural network potential on DFT data,
we obtained a dynamically accurate force field for Cu surfaces. This allows us to
simulate surfaces composed by more than 2000 atoms for 150 ns, scales on which
interesting dynamical events occur on these surfaces, even at temperatures in which
they are assumed to be solid. Then utilizing high-dimensional structural descriptors
and unsupervised machine learning, we could classify and track all atomic environ-
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ments that populate these surfaces in relevant conditions. This method reveals the
transient nature of atomic environments that compose such Cu surfaces, where non-
native atomic states continuously appear and disappear in dynamic equilibrium with
native ones. This also allows us to introduce the concept of a "statistical identity"
of metal surfaces, a concept that we believe will help to rationalize their behavior
and properties under relevant conditions. Describing the findings reported in the
paper "Innate Dynamics and Identity Crisis of a Metal Surface Unveiled by Machine
Learning of Atomic Environments"[172], this discussion elucidates the complex be-
havior of different copper slabs that transform yet partially retain their identity under
specific conditions. The insights gained here are of great theoretical significance for
the understanding of metallic dynamics and have practical applications where surface
properties are critical. The following section will delve deeper into the methodology
and findings of this study, showcasing how these advanced techniques provide a
comprehensive understanding of the dynamic behavior of copper surfaces at the
atomic level.

Full bibliographic reference: Cioni, M., Polino, D., Rapetti, D., Pesce, L., Delle
Piane, M., & Pavan, G. M. (2023). "Innate dynamics and identity crisis of a metal
surface unveiled by machine learning of atomic environments." Journal of Chemical
Physics, 158(12), 124701.1

3.1 Introduction

As highlighted in Chapter 1, metallic surfaces present an intriguing paradox in
materials science. Despite their crystalline order, which typically suggests rigidity
and structural regularity, they may exhibit dynamic properties, even below their
melting point, more commonly associated with non-crystalline states. This has
significant practical implications, ranging from catalysis, sensing, nanotechnology
to the design of functional materials. As temperatures approach the Hüttig tem-
perature—about one-third of their melting point—metallic surfaces can undergo
transformative behaviors such as "deconstruction," "preroughening," faceting, rough-
ening, and surface premelting[240–243]. While these transformations indicate that

1My contribution to this article, as the first author, involved the development of the deep neural
network potential trained on density functional theory calculations. I conducted all the atomistic
simulations and analyses, contributed to the interpretation of the results, and contributed to the writing
of the manuscript.
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dynamics is present on these surfaces well below the melting temperature, these
complex structural transformations, observed experimentally and theoretically, are
not yet fully understood.

To fully grasp the behavior of metallic systems, it is essential to move beyond
their static properties and examine in detail the dynamics that emerge within them
in response to thermal and mechanical stimuli. Recent advances in computational
modeling and simulation have enabled the dynamic representation of these systems,
which is crucial for accurately describing their behaviors at the atomic scale[244–
246, 235–239, 185, 159].

The dynamic behavior of metallic surfaces is crucial because it directly influences
their properties and performance in various applications. For instance, Gazzarrini et
al. demonstrated how atom mobility in copper nanoparticles can produce variations
in the number of vertex, edge, and face atoms, affecting the nanoparticles’ efficiency
in catalyzing CO2 conversion to methane[161]. Similarly, Nelli et al. studied the
dynamic diffusion of atomic impurities in copper-cobalt icosahedral nanoparticles
via metadynamics simulations.[247]

These studies provide preliminary evidence that metal lattices are complex
systems where atoms are in dynamic equilibrium and continuous exchange, similar
to what has been observed in soft self-assembling systems.[204, 205, 248, 249]

The appearance and disappearance of specific atomic environments and their
dynamic evolution on a metal surface are crucial in determining properties directly
related to the structural features of the surface[250, 251] In this context, machine
learning plays a primary role in disentangling complex structural dynamics. ML
potentials trained on quantum mechanical data provide accurate force fields that
enable the simulation of metals on relevant spatiotemporal scales, as discussed in the
second chapter.

Since the pioneering work of Behler and Parrinello introduced high-dimensional
neural network potentials[186], various approaches have been developed over the
past decade,[190, 252–254, 179, 255, 180, 256, 257] allowing for investigations with
ab initio accuracy in increasingly complex systems.

For example, unsupervised clustering of SOAP data extracted from molecular
dynamics simulations has recently allowed the reconstruction of the structural and
dynamical complexity of a variety of molecular materials and systems,[202, 258,
259, 204, 260, 248] leading to the development of robust data-driven metrics for
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their classification.[261, 259, 248] Similar data-driven approaches have also been
used to explore the mechanism of gold nanoparticle melting.[262]

Building on these considerations, we will study four slabs of copper with different
surface orientations: (111), (110), (211), and (210), each comprising 2400 atoms
(2304 for the (210) surface). These slabs will be simulated at three temperatures:
500 K, 600 K, and 700 K employing a machine learning potential trained on DFT
calculations, enabling us to capture the dynamic atomic interactions accurately.

The analysis of these simulations will be conducted using two complementary
approaches, which we define as bottom-up and top-down analysis. The bottom-up
approach involves unsupervised clustering of SOAP data extracted from molecular
dynamics simulations to reconstruct the structural and dynamical complexity of the
systems. The top-down approach uses a pre-constructed dictionary of SOAP atomic
environments to classify and track the dynamic evolution of these environments on
the metal surfaces. Through these methods, we aim to provide a comprehensive
understanding of the dynamic behaviors of metallic surfaces and their implications
for material properties and functionalities, as detailed in the subsequent sections.

3.2 Results

3.2.1 Modeling the dynamics of large Cu surfaces using a NN
potential

In the present work, we use Cu as an example of a metal widely used for various
applications, that express a non-trivial surface dynamics even well below the melting
temperatures (see Results below)[263–267] We focus on the study of Cu surface
models at 500-700 K, just above the Hüttig temperature (447 K for Cu). Noteworthy,
although this is not central in this work, such conditions are of interest, e.g., for cat-
alytic applications (CO2 hydrogenation),[268, 269] where the structural/dynamical
features of the Cu surface are important.
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Fig. 3.1 Atomistic DPMD simulations of Cu surfaces near the Hüttig temperature. a
Scheme of the DeepMD[180] model developed in this work: Atomic configurations and
energies obtained from DFT calculations have been used to train an inter-atomic NN-potential
for the Cu surfaces. b Atomistic models for bulk and surface Cu environments (top view)
used for the training (left: atoms are colored based on their coordination). DFT configurations
and energies extracted in the range of temperature of 500-700 K have been used to train the
Cu NN-potential. c Starting ideal configurations of the Cu surface models investigated in this
work: we compare the behaviors of (111), (211), (110), and (210) Cu surfaces (atoms colored
based on their coordination). d Cu surfaces after 150 ns of DPMD simulations at 700 K
show structural rearrangements, atomic mobility and coordination changes (left-to-right,
the surfaces are ordered according to their mobility). Reproduced with permission from
Ref [172].

Studying the structural dynamics of metal surfaces requires sufficient accuracy in
the treatment of the Cu-Cu interactions and, at the same time, one needs to simulate
these atomic systems on sufficiently large spatiotemporal scales to prevent finite-size
effects and guarantee that microscopic dynamic transitions (and not only vibrations)
are sampled with sufficient statistics. Accurate DFT[132] calculations are limited to
timescales and sizes that are too short/small to this end, whereas classical atomistic
forcefields[141, 227, 270–272, 225] may not guarantee sufficient accuracy in the
treatment of the structural dynamics of the metal surface. To obtain a dynamically-
accurate atomistic force field, we turned to ML. In particular, we developed an
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inter-atomic interaction potential for Cu surfaces via training a deep NN on data
extracted from DFT calculations (see Methods section for more details) adopting
the Deep Potential Molecular Dynamics (DeePMD) scheme developed by Zhang
et al.[273, 180] (Figure 3.1a), following the procedure described in the dedicated
section 2.4 of Chapter 2

An extensive campaign of AIMD simulations of small Cu FCC bulk, (100), (110),
(111), (211), and (210) surface environments conducted at temperatures between
500 and 700 K (Figure 3.1b) provided a rich dataset of atomic configurations,
forces and energies used to train a first guess NN-potential (see first subsection of
Methods section for more details) An active (iterative) learning strategy[274, 275]
was then adopted to ensure a good sampling of the reconstructed configurations in
the Cu surface and the local atomic transitions leading to such reconstructions. It
is important to note that, although the surface portions simulated at DFT level and
that are used for the training (Figure 3.1b: ∼ 100 atoms, depending on the surface
type – sufficient to account up to the ∼ 4− 5 atom neighbors) are smaller than
the surfaces that are then simulated at atomistic level (Figures 3.1c,d: containing
∼ 2400 atoms), the iterative nature of the approach and our tests demonstrate that
the obtained potential is robust and reliable. In fact, even if the first trained NN-
potential initially contains DFT-level information only on the small ideal surface
patches (limited sampling), the new conformations that are then discovered via
deep-potential molecular dynamics (DPMD) simulations using such incomplete NN-
potential are then re-simulated at DFT-level and added to the dataset. Such a process
is conducted iteratively, and at each iteration, the data on the newly discovered
atomic configurations are added to the training set. The training process ends when
no new configurations are discovered in the successive iterations, and the obtained
NN-force field can be thus considered complete (the reduced spatial sampling is
compensated by temporal sampling guaranteed by the iterative DPMD simulation
scheme).

To ensure that no residual spurious finite-size effects could affect the trained NN-
force field, we also conducted additional tests using larger surface patches than those
of Figure 3.1b (∼ 600 atoms, six times larger). Nonetheless, these tests demonstrated
that the maximum deviation in the forces provided by the obtained NN-potential in
the two cases is negligible (estimated forces within the training error in the 99.95%
of the cases), confirming the robustness and consistency of the obtained Cu NN-
potential. We also note that the discovery-and-sampling approach adopted herein to
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create the training data-set is based on the collection and sampling of configurations
along the DPMD simulations with a time-frequency suitable to effectively follow
with fine-temporal resolution the motions of the atoms on the surfaces. In particular,
the training set contains information not only on the local minima configurations
but also on the intermediate configurations and on the transition barrier states that
are visited. In this way, the trained NN-potential has DFT accuracy in reproducing
both the energy differences and the transition barriers between the various atomic
configurations visited along the DPMD simulations. This provides a structurally and
dynamically accurate force field having DFT precision in the treatment of the atomic
configurations (energies, forces, etc.) and of their dynamic interconversion within
the Cu surfaces. The NN-potential was finally validated against some copper bulk
and surface properties, as reported in the following section.

3.2.2 Details about the NN-potential validation

To validate the NN-potential, we calculated the lattice constant, the vacancy and
interstitial formation energies, and the surface energies at 0 K for the unreconstructed
surfaces. The computed values, reported in Table 3.1, are in agreement with those
computed at the DFT level, with the embedded atom model (EAM) of Mendelev et
al.[225], and with available experimental values.[276–278]

First, the lattice parameter was calculated by optimizing the atomic positions and
cell dimensions of the supercell. The vacancy formation energy was calculated by
removing a copper atom from the bulk and allowing the remaining atoms to relax,
using the formula:

Ef = Evac −
(

N −1
N

)
Ebulk (3.1)

where Ef is the vacancy formation energy, Ebulk is the energy of the bulk, N is the
number of atoms in the bulk, and Evac is the energy of the slab with one copper atom
removed.

The interstitial formation energy (IFE) was calculated by first relaxing the crystal
cell structure to obtain the initial energy E0. An atom was then inserted into the
relaxed structure, and the system was relaxed again to obtain the final energy E i

f. The
IFE was calculated using the formula:

E i
f = Ef −

(
N +1

N

)
×E0 (3.2)
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where E i
f is the interstitial formation energy, Ef is the total energy of the system with

the interstitial atom, E0 is the total energy of the perfect crystal, and N is the number
of atoms in the unit cell.

Surface energies for each slab, including the (110) missing-row (1×2) recon-
structed surface, were calculated using the formula:

γ =
Eslab −NslabEbulk

2A
(3.3)

where γ is the surface energy, Eslab is the total energy of the slab, Ebulk is the total
energy of bulk copper per atom, Nslab is the number of atoms in the slab, and A is the
surface area of the slab.

Additionally, we calculated the surface energy of the (110) (1×2) missing-row
reconstruction at 0 K and found it to be larger than that of the unreconstructed (110)
surface. This finding aligns with experimental evidence showing that the Cu (110)
surface at low temperatures does not undergo the (1×2) missing-row reconstruction
typical of other noble metals, such as Au and Ag.

Lastly, the diffusion barriers of single adatoms on the (100), (110), and (111)
surfaces were computed. The results, reported in Table 3.2, are in good agreement
with available theoretical and experimental data.[279–282, 224, 283–287] This test
validates the potential’s ability to reproduce the dynamic properties of the surface
atoms accurately.

NN-potential DFT EAM Expt.
lattice parameter (Å) 3.626 3.630 3.639 3.615
Vacancy formation (eV) 1.14 1.10 1.07 1.27
Interstitial formation (eV) 3.28 3.49 3.87 2.8-4.2

Surface energies (eV Å−2)
(111) 0.99 1.07 1.04 1.79a

(100) 1.10 1.19 1.21 1.79a

(110) 1.29 1.36 1.31 1.79a

(110)(1×2) 1.30 1.38 1.30 1.79a

(211) 1.21 1.28 1.24 1.79a

(210) 1.36 1.50 1.39 1.79a

Table 3.1 Lattice parameter, vacancy and interstitial formation energies, and surface energies
computed with our trained NN-potential, DFT and the embedded atom model (EAM) of
Mendelev et al.[225] and compared with available experimental data[276–278]. aFor average
orientation.
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These values were derived by sampling approximately 80 diffusion events at 500,
600, and 700 K. The diffusion times were fitted to a Poisson distribution, providing
a characteristic time for each event. The inverse of these times was then fitted to an
Arrhenius plot to calculate the diffusion energy barriers.

Surface NN-potential Theory Expt.
(100) 0.43 0.39-0.53 0.28-0.40
(110) in channel 0.28 0.23-0.53
(110) cross channel 0.31 0.26-0.49
(111) 0.11 0.1 0.1-0.15

Table 3.2 Adatom diffusion energy barriers (eV) on Cu (100), (110), and (111) computed
with our trained NN-potential and compared with available theoretical and experimental
literature data.[279–282, 224, 283–287]

Figures 3.2 and 3.3 illustrate the structural and environmental changes in Cu
(211) and Cu (110) surfaces with missing-row reconstructions. The figures show
side and top views of the surfaces initially and after 150 ns at 700 K, highlighting
significant atomic rearrangements due to thermal effects. Coordination number and
SOAP environment coloring emphasize changes in atomic coordination and local
atomic environments, showing the emergence of new atomic configurations and
structural transformations.
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(a) Side and top views of the Cu (211) surface with missing-row recon-
struction (2x1), colored by coordination number. Left: initial structure,
Right: after 150 ns at 700 K.

(b) Side and top views of the Cu (211) surface with missing-row recon-
struction (2x1), colored by SOAP environments. Left: initial structure,
Right: after 150 ns at 700 K.

Fig. 3.2 Structural and environmental changes in Cu(211) surface with missing-row recon-
struction (2x1). Reproduced with permission from Ref [172].
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(a) Side and top views of the Cu (110) surface with missing-row reconstruc-
tions (1x2 and 1x3), colored by coordination number. Left and middle:
initial structures, Right: after 150 ns at 700 K.

(b) Side and top views of the Cu (110) surface with missing-row recon-
struction (1x3), colored by SOAP environments. Left: initial structure,
Right: after 150 ns at 700 K.

Fig. 3.3 Structural and environmental changes in Cu (110) surface with missing-row recon-
structions (1x2 and 1x3). Reproduced with permission from Ref [172].

Figure 3.4 shows the radial distribution functions (RDF) of surface atoms at
different temperatures for Cu(111), Cu(110), Cu(211), and Cu(210) surfaces. The
RDF peaks are sharper and more defined at 0 K, indicating well-ordered atomic
arrangements. As temperature increases, peaks broaden and decrease in height,
reflecting increased atomic vibrations and disorder. Cu(111) shows the most distinct
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peaks, suggesting higher stability compared to other surfaces, aligning with the
known stability of the (111) surface in FCC metals like copper.

Fig. 3.4 Radial distribution functions of surface atoms at short (left) and longer distances
(right) calculated at 0 K (with grey short-dashed impulses), at 500 (dashed lines) and 700
(solid lines) K for Cu(111) (yellow), Cu(110) (red), Cu(211) (green) and Cu(210) (blue).
Reproduced with permission from Ref [172].

3.2.3 Investigating Cu surface dynamics and structures with
DPMD simulations

We used such NN-potential to simulate large FCC(111), (211), (110), and (210)
surface models composed of 2400 Cu atoms (2304 for (210)) via deep potential
molecular dynamics (DPMD) simulations. All Cu surface models have depth > 15Å
and replicate on the xy plane through periodic boundary conditions, effectively
modeling a portion of the bulk of infinite surfaces (Figure 3.1c). During the DPMD
simulations, the 2 bottom layers in the surface models are kept fixed, while all other
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atoms are free to move. Such setup and system sizes prevent finite-size effects and
guarantee reliable modeling of the structural dynamics of these Cu surfaces.

Fig. 3.5 Dynamic diversity in a metal surface. a The Cu(210) surface after 150 ns of
DPMD simulations at 500, 600 and 700 K of temperature (top-to-down). Atoms are colored
based on their coordination. b Relative diffusion velocity in the (210) surface at the different
temperatures: the Cu atoms are colored with the relative velocity, estimated for each atom in
the system as the atomic displacement in the time interval of ∆t = 1500 ps (∆r/∆t, expressed
in Å ns−1). Dark vs. light colors in the snapshots identify static vs dynamic regions on the
Cu surfaces (bulk and sub-surface atoms are shown transparent for clarity). c Correlation
between average coordination number and velocity for the atoms in the (210) surface at the
three temperatures. Solid lines are exponential fits to guide the eye. d Histograms of the
atomic velocity distributions in the (210) surface at 500, 600 and 700 K. e Zoomed detail of
the coordination analysis for the (210) surface at 700 K, highlighting the emergence of (100)
and (111) domains along the DPMD simulation (yellow and green details). Reproduced with
permission from Ref [172]

All systems underwent 150 ns of DPMD simulations at 500, 600 and 700 K, the
last 75 ns of the simulations being representative of the equilibrium of the surfaces.
Changes in the atoms’ colors in Figure 3.1d indicate changes in atomic coordination,
atomic movements and reconfigurations along the DPMD simulations. The DPMD
simulations show how the various surfaces have different dynamic behaviors: (111)
is substantially persistent/static, while (211) and (110) surfaces are much more
dynamic. The (210) surface is found the most dynamic of the studied surfaces. These
results are in agreement with the order of stability determined by the corresponding
surface energies, and more importantly with experimental evidences. For example,
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experimental studies proved that the (111) surface does not undergo any structural
modification or premelting below the melting temperature, but the surface enters a
disordered state only at the melting temperature.[288, 289]

For what concerns the (110) surface, it has been demonstrated that this orientation
is characterized by an increasing disorder induced by thermal energy already at T >
550 K[290–292]. This degree of disorder could not be simply assigned to thermal
anharmonicity because it was much larger and for this reason, was named "enhanced
anharmonicity"[290]. Tosatti and coworkers attributed this phenomenon to a missing-
row type reconstruction, given the small difference between the surface energies of
the reconstructed and unreconstructed surfaces[293, 240]. Our simulations confirm
this interpretation as can be observed in Figure 3.3. Here we compare the snapshot of
our Cu (110) surface after 150 ns at 700 K with the corresponding ideal (110)(1×2)
and (1×3) reconstructions coloring the atoms according to their coordination. It is
immediate to notice the formation of a (1×3) missing-row type reconstruction in the
section highlighted by the dashed box.

More recently, also Cu(211) has been the object of several studies, given its
reactivity toward the methanol synthesis.[268]. Witte et al. have found that upon
oxygen adsorption already below room temperature also the (211) surface undergoes
reconstruction forming a (211)(2×1) surface[294]. The same type of reconstruction
is observed in our simulations at 600 and 700 K. In figure 3.2 we compare the ideal
(211)(2x1) reconstructed surface with a snapshot of the (211) surface after 150 ns at
700 K. As for the (110), also in this case it easily detectable a reconstruction of the
surface toward the (211)(2×1) surface.

From a dynamic perspective, the (210) surface is found dynamic at all tempera-
tures and its dynamics increases with temperature (Figure 3.5a). Deeper microscopic
analyses reveal a considerable dynamic diversity in the behaviors of the atoms in the
(210) surface. While the temperature is set globally in these DPMD simulations, the
data show that there are atoms that move faster and atoms that are more static on the
surface. This can be inferred via estimating along the DPMD the displacement of
the individual atoms in the surface in the time interval ∆t = 1500 ps (∆r/∆t).

For example, bright atoms in Figure 3.5b move by tens of nanometers during the
DPMD simulations, while black atoms just vibrate around their lattice position.

While in these simulations the atomistic surface models are thermostated and on
average their temperature plateau to 500, 600 and 700 K, these analyses demonstrate
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that on a nanosecond timescale window, the structure and dynamics on the surfaces
is not uniform. In particular, the plots of Figure 3.5b show that these surfaces are dy-
namically diverse, being populated by domains that are more static and others that are
more dynamic. Still, it is noteworthy to add that all these domains are continuously
destroyed and formed with different time-scales, and are also in continuous dynamic
exchange with each other as it will be characterized in detail in Figures 3.6, 3.8,
and 3.9. The plots of Figure 3.5c relate the average velocities and coordination
numbers of the atoms. The minimum atomic coordination increases from ∼ 6 (black
data) to ∼ 8 (in pink) while increasing the temperature in the (210) surface. The
histograms of the atomic velocity distributions (Figure 3.5d) indicate the variability
with which the (210) surface atoms move, a few having high relative mobility while
the majority of them are more static. Figure 3.5a shows that at 500 K (top) the ideal
structure of the Cu (210) surface is better preserved during the DPMD than at 700
K (bottom), where the increased kinetic/thermal energy triggers more considerable
disordering and faceting which in turn produces a surface configuration populated
by more stable atomic arrangements (facets) with increased coordination which
corresponds to (111) facets (in green) and (100) facets (in yellow). A zoom onto
the (210) surface at 700 K (Figure 3.5e) shows how such green domains correspond
to (111) islands, non-native of this surface. Yellow-colored (100) square domains,
non-native of (210), are also visible. It is interesting to note that similar results
have been observed in the experimental work of Kirby et al.[295] In particular, the
authors detected a faceting phenomenon of the Cu(210) surface induced by activated
nitrogen already at room temperature. Another interesting aspect revealed by our
analysis comes from the comparison of the colored domains in Figures 3.5e vs. 3.5b,
which provides an insight into the dynamic diversity of the surface, revealing how
non-native (111) domains (Figure 3.5e: green) are more static while (100) ones (in
yellow) correspond to more dynamic regions in Figure 3.5b. Noteworthy, along
the DPMD simulations the atoms change color dynamically in these Cu surfaces,
demonstrating the dynamic equilibrium present within them.

3.2.4 Unsupervised machine learning of microscopic structure
and dynamics of a copper surface

To obtain a more robust and general quantitative analysis, we turned to an ad-
vanced data-driven approach recently proven useful for reconstructing the struc-
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tural/dynamical complexity of various types of molecular systems.[248, 260, 204,
259, 261] This descriptor was introduced and explained in Chapter 2 of this thesis (for
detailed information, please refer to the dedicated section 2.6). We use SOAP vectors
as high-dimensional descriptors of the local environments surrounding each atom on
these surfaces. Calculation of the SOAP spectra of all atoms along the DPMD simula-
tions allows (i) to classify the local atomic environments that populate/emerge within
the Cu surface in equilibrium conditions based on their levels of order/disorder and
similarity, and (ii) to reconstruct the entire Cu surface dynamics.[248, 260, 261, 204]
Key advantages of such analysis are that the SOAP descriptor is agnostic[202] and
the analysis is unsupervised and data-driven: i.e., it does not require prior knowledge
of the systems, while the SOAP detected environments emerge directly from the
DPMD trajectories (bottom-up analysis).[248, 260, 261, 204] We perform our SOAP
analysis on the DPMD trajectories of the various simulated Cu surfaces[172]. For all
systems, the SOAP descriptors were calculated under periodic boundary conditions
along the xy dimensions using nmax = 8 radial basis function and lmax = 8 maximum
number of spherical harmonics. The choice of the cut-off radius (rcut) determines
the size and the shape of the neighborhood considered in characterizing the atomic
environment for each SOAP center; in this work, we opted for rcut= 6.0 Å, the same
cutoff adopted for the training of the Cu NN-potential. After 75 ns of DPMD, all
surfaces reach a microscopic equilibrium where the atomic environments populating
the systems do not change anymore [172] The last 75 ns of DPMD, representing the
equilibrium of the modeled surfaces, are thus retained for the analyses. From these,
250 snapshots – one every ∆t = 300ps – are extracted and analyzed. In particular,
we calculate the SOAP spectra of each of the topmost 1300 atoms in the Cu surface,
obtaining at each DPMD sampled snapshot 1300 SOAP spectra representative of the
pristine arrangements/dynamics of the atomic surfaces in the studied regimes, and
a dataset of 325’000 SOAP spectra in total for each simulated case. Unsupervised
clustering of the SOAP data via the Hierarchical Density-Based Spatial Clustering
of Applications with Noise* (HDBSCAN*) algorithm [296, 297] identifies the main
SOAP clusters (states/environments) populating the equilibrium DPMD trajectories
(Figure 3.6a,b).
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Fig. 3.6 ML of atomic environments in the Cu(211) surface and of their dynamics. a
Cu atoms on the (211) surface colored based on the SOAP environments emerging along the
equilibrium (last 75 ns) DPMD simulation at 700 K. b Hierarchical dendrogram connecting
the 11 detected SOAP clusters, corresponding to 6 internal atomic environments – 5 sub-
surface (ss) and 1 bulk (b) – plus 5 surface environments (s). c Projection on the first two
principal components of the SOAP data PCA with density isolines. The colored dots indicate
the position on the PCA of the native SOAP states present in the ideal (211) surface at the
DPMD simulation start (a, left: at 0 K). d Unsupervised clustering (HDBSCAN*) of SOAP
data identifies 11 main SOAP environments (microstates) that emerge at the equilibrium in
the (211) surface at 700 K. e Transition matrix reporting the normalized probabilities (in %)
for atoms to undergo a transition between the SOAP clusters in a sampling time interval of
dt = 300 ps. f Free Energy Surface (FES) computed from the PCA of the SOAP density
data (c). g PCA projection of the SOAP dataset colored based on atomic coordination. f
Transition matrix reporting the normalized probabilities (in %) for atomic transitions between
the various coordination states along the DPMD (dt = 300 ps). Reproduced with permission
from Ref [172].

As an example, HDBSCAN* identifies 11 main SOAP clusters in the Cu(211)
surface at 700 K (Figure 3.6a,b). These correspond to the density peaks seen in
the PCA of the SOAP data in Figure 3.6c,d, namely, to the most “visited” atomic
environments during the DPMD simulation. The dendrogram of Figure 3.6b shows
the adjacency between the detected SOAP micro-clusters (based on their similarity),
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revealing three main macro-groups: surface (s), sub-surface and bulk (b) atomic
environments. Shades of gray in Figures 3.6a,b correspond to deeper sub-surface
layers connected to the bulk (light gray). Dark blue and green identify states at the
interface between sub-surface and surface. Brighter colors identify the different
surface states (s). The colored dots on the PCA projection of Figure 3.6c indicate
which SOAP states are present in the ideal (211) surface at 0 K (at DPMD start).
Comparing Figure 3.6c and Figure 3.6d it is clear how, in terms of external surface
states, only the orange, light-green and blue SOAP environments are native of the
ideal (211) surface (at 0 K). All other surface environments that emerge along the
DPMD at 700 K (yellow, cyan, purple, etc.) are non-native states, which emerge
with temperature.

Since the detected SOAP environments are well-sampled along the DPMD,
we know the clusters density at the equilibrium, and we have information on the
SOAP environment each atom belongs to at every sampled DPMD snapshot, we
can reconstruct the dynamics and thermodynamics of the Cu surface. The transition
matrix of Figure 3.6e reports the normalized probabilities for an atom belonging
to a given SOAP environment at a time t to remain in that environment (diagonal
entries) or to undergo transition to a different SOAP environment (off-diagonal
entries) at t +∆t (i.e., after ∆t = 300 ps in this analysis) in the Cu(211) surface at
700 K. Such transition matrices are non-symmetric as they are normalized to have
the rows summing to 100, while the raw non-normalized matrices are conversely
symmetric, as the Cu surface is at the equilibrium [172]. In general, the higher
are the numbers on the diagonal of the matrix, the more persistent is the surface.
Vice versa, the higher are the off-diagonal probabilities, the more probable are the
atomic transition between the SOAP states in ∆t and the more dynamic is thus the
surface. The fact that the transition matrix of Figure 3.6e is rich of off-diagonal
entries demonstrates the rich dynamics present in this surface. From such transition
probabilities, one can estimate the characteristic transition rates/frequencies (i.e.,
by dividing the off-diagonal entries by 100×∆t, being ∆t = 300 ps in the analyses
reported herein). For example, in the (211) surface at 700 K, the atoms belonging to
the purple SOAP environments undergo transition to blue with a probability of ∼ 6%
every 300 ps, which corresponds to a transition rate of ∼ 0.2 ns−1 and transitions
occurring in the timescale of tens of nanoseconds (assuming a single-step transition).
A consistent dynamics is obtained even changing the temporal resolution of the
analysis (∆t), which proves the robustness of the obtained results.[298–300] All
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entries < 1% should be taken as qualitative, as they refer to events observed only
sparsely along the DPMD.

This analysis shows that, in the timescales that can be exlpored in this simulation,
there is no direct communication/exchange between bulk and surface states, while
these may communicate only through intermediate sub-surface states. Even at
700 K, where the (211) surface is considerably dynamic, the transitions occur on a
nanoseconds timescale. This demonstrates how the (211) surface has a "discrete"
dynamics.

Such a "discrete" dynamics is observed also for the (110) surface. Also here the
atoms of the first layers move via jumps across different crystallographic positions.
This type of motion is correlated to the fact that when computing the g(r) of the
surface the peak positions remain unchanged, however the surface atoms motion leads
to a reduction of the peak intensities and a more diffuse background, as observed in
Figure 3.4. This type of atomic motion could explain the anomalous reduction of the
intensity peaks of Cu (110) at T>550 K obtained by diffraction experiments.[241,
240, 243] This phenomenon was referred to as "enhanced anharmonicity" since
the only corresponding property was an enhanced mean square displacement of
the surface atoms. However, here we reinterpret this "enhanced anharmonicity"
suggesting that its origin comes from the frequent jump-motion of the surface atoms.

The same analysis for the other surfaces studied herein shows that (210) is the
most dynamic surface, with more fluid-like dynamics. This behavior is also mirrored
by a quasi-liquid like g(r) at 700 K (see Figure 3.4). On the other hand, (111) surface
is more static: only sparse transitions can be observed even at 700 K.

From the inverse exponential of the PCA density, it is also possible to estimate
a Free Energy Surface profile (FES) for the Cu(211) surface model at 700 K (Fig-
ure 3.6f). Such FES shows how at 700 K all surface SOAP states are separated
from each other by relatively low free energy barriers within ∼ 10−15 kJ mol−1

(10 kJ mol−1 corresponds to ∼ 2 kT at 700 K). Their transitions can be thus effi-
ciently sampled during an equilibrium DPMD[172]. The SOAP analysis of Fig-
ures 3.6d-f reveals how – since the SOAP states have characteristic lifetimes and
transition rates, and are in continuous interchange with each other – at 700 K the (211)
surface has just an average configuration that is purely statistical. The great flexibility
and the agnostic nature of such data-driven analysis come with the disadvantage of
a non-straightforward interpretation. There is no-straightforward correspondence
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between the detected SOAP states and their physical differences. Figure 3.6g shows
the same SOAP PCA colored according to the coordination number of each atom.
This shows how the SOAP analysis captures very well differences in coordination
number between the atomic environments in the Cu surface, while at the same time
a simple coordination analysis is less sensitive – see, e.g., green domains in the PCA
having the same coordination number (∼ 9) but corresponding to different SOAP
density peaks (Figure 3.6g).

From a broader perspective, this data-driven analysis shows that such Cu surfaces
possess a non-trivial structural/dynamical complexity well below melting. At the
same time, these results underline the importance of relying on a structurally and dy-
namically accurate force field (as the NN-potential used herein) to obtain meaningful
insights on such a complexity. The fact that new states, non-native/present in a given
(ideal) surface may appear at finite temperature along the DPMD simulations poses
fundamental questions on the elusive identity of these surfaces. For example, are
the new environments that emerge with a temperature closer to native environments
present in the ideal surface (at 0 K), or, e.g., to other ones, native of different types of
surfaces? To answer such questions we designed another complementary (top-down)
analysis.
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3.2.5 A dictionary of SOAP atomic environments

Fig. 3.7 A SOAP dictionary for classifying atomic environments in Cu surfaces. a
Hierarchical dendrograms for the SOAP environments detected in the different ideal Cu
surfaces (at 0 K): Cu(111) environments are shown in yellow, (211) in green, (110) in
red, and (210) in blue. b Distance matrix: the color scale indicates the distance in the
high-dimensional SOAP feature space (dsoap) between all SOAP environments in the Cu
surfaces. c Left: Hierarchical dendrogram (in blue) showing the similarity between all SOAP
environments (also reported on the left of the dsoap matrix, b). Right: same dendrogram cut
at dsoap ≥ 0.01 (in black). This results in grouping very similar SOAP environments into
common macro-clusters: e.g., bulk (b*), sub-surface (ss*), surface (s*). Reproduced with
permission from Ref [172]

We created a dictionary of SOAP atomic environments by computing the SOAP
spectra for all atoms in the optimized Cu(111), (110), (211), and (210) surfaces (at 0
K). The analysis identifies 3 SOAP atomic environments in the ideal (111) surface
– Figure 3.7a (yellow): one bulk (b(111)), one sub-surface (ss(111)) and one surface
environment (s(111)). The other surfaces are more structurally diverse: the ideal
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(110) is characterized by 5 main SOAP atomic environments (in red), while the ideal
(210) and (211) are characterized by 7 SOAP environments (Figure 3.7a: blue and
green respectively). In total, we obtain 22 distinct SOAP spectra characteristic of the
bulk, surface and sub-surface atomic environments proper of these ideal surfaces.
We created a unique SOAP data-set containing all these SOAP environments and
computed from their characteristic SOAP power spectra their mutual distances (dsoap)
in the global high-dimensional SOAP feature space.[248, 261, 259] More precisely,
we can define a measure of the similarity between two environments centered in two
sites, building a linear polynomial kernel of their density representations; this can be
simply reduced to the dot product of power spectra, defined in eq. 2.46 of Chapter 2.
The SOAP distance between two SOAP spectra a⃗ and b⃗ can be calculated by:

dSOAP

(⃗
a,⃗b
)
=

√
2−2K

(⃗
a,⃗b
)

(3.4)

where, with the SOAP power spectrum representation that we are using,

K
(⃗

a,⃗b
)
=

a⃗ · b⃗

∥⃗a∥
∥∥∥⃗b
∥∥∥ (3.5)

Such dsoap metrics allows quantifying the similarity between the various char-
acteristic SOAP spectra, providing a rich data-driven classification of all detected
atomic environments present in these ideal surfaces.

The result is the distance matrix of Figure 3.7b. The colors of the matrix cells rep-
resent the SOAP distance (dsoap) between the various SOAP atomic environments:
dark colors indicate very similar environments (dsoap ∼ 0), light colors identify
structurally different atomic environments. The dendrogram adjacent to the matrix
(Figure 3.7b: left) shows the hierarchical clustering of the various SOAP environ-
ments based on their similarity. The matrix reveals dark macro-areas indicating
SOAP environments that are nearly identical in the various surfaces – i.e., bulk
(b) environments, some high-coordination sub-surface ones (ss), etc. In general,
deep atomic environments are found quite similar in the various ideal surfaces. The
matrix also reveals non-obvious similarities between the high, medium, and low
coordination surface environments: e.g., s(111) vs. sm

(211) and sm
(210), or sl

(110) vs.
sl
(210).
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Figure 3.7c shows how the complete dendrogram (left, in blue) can be cut in order
to consider only detected SOAP distances greater than a minimum value, offering
the opportunity of a variable resolution in the analysis. For example, Figure 3.7c
(right) shows what the dendrogram becomes when considering only dsoap ≥ 0.01 (in
black), i.e. when considering different AEs only above a certain dSOAP At this level
of resolution, the bulk environments of all surfaces are grouped in a single bulk state
(b*). The same happens for other very similar sub-surface (ss*) and surface (s*)
environments. While complete information is encoded in the pristine dendrogram,
this offers the opportunity to modulate the noise/relevance trade-off of the analysis,
focusing on differences that are really meaningful (e.g., distinguishing between the
bulk states of these surfaces is useless, as these are identical SOAP environments).
As it will be demonstrated in the next section, this is important, for example, when
using such SOAP data and dsoap metric to track the similarity between the atomic
environments emerging in the metal surface in equilibrium condition and those
included in the SOAP dictionary (top-down classification).
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3.2.6 Atomic dynamic, structural reconstructions and statistical
equivalent identities of Cu surfaces

Fig. 3.8 Dynamic reconstructions and equivalent identity of a Cu(211) surface. a
Cu(211) at 0 ns (left) and after 150 ns of DPMD at 700 K (right): SOAP environments native
of the ideal (211) surface are colored in green. Red, blue and yellow colors identify non-
native atomic domains, proper of (110), (210) and (111) surfaces. b Populations of the native
and non-native environments (in %) in the (211) surface at 700 K as a function of DPMD
time. c Equilibrium composition of (211) at 700 K (% and standard deviations) in terms of
native (green) and non-native domains (yellow, blue, red, combined in pink in the inset). d
Breakdown of (211) composition at 700 K. Dashed lines indicate the composition at DPMD
start. e Transition matrix showing the probabilities for atomic transitions in (211) between
native and non-native environments at 700 K (within ∆t = 300 ps). f-l Same analyses for the
(211) surface at 600 K. Reproduced with permission from Ref [172]
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Starting from the Cu(211) surface at 700 K, at each timestep along the DPMD
simulation we measure the dsoap distance between the SOAP spectrum of each
atom and all SOAP spectra characteristic environments present in the dictionary
of Figure 3.7. At each DPMD timestep, each atom is then attributed to the closest
SOAP environment/class (smallest dsoap) in the SOAP dictionary. This allows us
to track the transformations in the surface along the DPMD and to estimate the
reconstruction of non-native domains, their lifetime and dynamics in terms of atomic
transitions between them.

Since we are interested in microscopic surface reconstructions and atomics dy-
namics, in this phase we focus only on the five top-most layers of the simulated
surfaces. Figure 3.8a shows how the (211), ideally composed only of green native
SOAP sites at 0 K (left), convert into local non-native domains, proper of (111),
(110) and (210) ideal surfaces (right: yellow, red and blue respectively), along 150
ns of DPMD at 700 K. The environment populations of Figure 3.8b show that the
surface reaches a microscopic equilibrium along the DPMD, being populated of na-
tive and non-native domains. Along the DPMD, ∼ 40% of native domains disappear
converting into non-native domains (Figures 3.8b,c). On a statistical level, the (211)
surface thus preserves its own identity only by ∼ 60% at 700 K (Figure 3.8c: inset).
In particular, ∼ 19% of the emerging domains correspond to (111) environments,
∼ 17% to (210), and ∼ 6% to (110) ones (Figure 3.8c). Such surface reconfiguration
is rather fast in this system (Figure 3.8b). Figure 3.8d shows a breakdown of the
detailed native and non-native environments that populate the surface in equilib-
rium conditions. Among all the emerging non-native environments, s(111) is the
predominant one (∼ 12%), followed by ss(111) and ssm

(210), both constituting ∼ 7%
of the (211) surface at 700 K. While such analysis provides detailed quantitative
information on the composition, structural diversity, and reconfiguration in the metal
surface, it is interesting to interrogate on the dynamical features of such phenomena.

The transition matrix of Figure 3.8e reports the normalized probabilities for the
atom transitions between native and non-native environments in the (211) surface at
700 K (in ∆t = 300 ps). The diagonal entries show that only the native (green) and
yellow (111) domains have a residence probability > 50%. This means that at the
temporal resolution of this analysis, these are somewhat persistent domains. On the
contrary, (210) and (110) atomic environments have persistence probabilities well
< 50%. Such domains are considerably more dynamic, and the atoms composing
them have a higher probability to re-convert into native domains (red-to-green and
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blue-to-green transition probabilities ∼ 42−43%) than to remain there in ∆t = 300
ps. This provides a picture reminiscent to what seen in Figure 3.5 for the (210)
surface, where above the Hüttig temperature such dynamically diverse surface
appears as composed of stable domains coexisting in equilibrium with more dynamic
ones [172].

Decreasing the temperature to 600 K, the behavior of (211) does not change
substantially (Figures 3.8f-l). In general, the transformation of the (211) surface is
rather similar, while it occurs slightly slower at 600 K than at 700 K (Figure 3.8g).
The appearance of (111) domains is just slightly reduced than at 700 K (Figures 3.8h,i:
∼ 12% at 600 K vs. ∼ 19% at 700 K). The transition matrix of Figure 3.8l is also
very similar to that of Figure 3.8e. This demonstrates how the phenomena occurring
in these regimes are thermodynamically driven, being, e.g., the surface energy
of (111) lower than that of (211) (See Table 3.1).Conversely, the same analysis
demonstrated how the (211) surface appears as substantially static [172] at 500 K
(Hüttig temperature of Cu: 447 K) in the same DPMD timescales. In such a regime
the thermal bath is insufficient to trigger the reconfiguration and the surface remains
trapped in the ideal (211) configuration (Supplementary Figure 3.2).

Previously, we highlighted the similarity between the final state of the simulated
Cu (211) surface and the corresponding missing-row (211)(2×1) reconstruction.
We deemed thus interesting to analyze with our SOAP-based approach the ideal
(211)(2×1) reconstructed surface, and noticeably this surface, as reported in Figure
3.2 shows a number of yellow (111) atomic domains which is in line with what
has been observed for the Cu (211) surface simulated at 700 K. This confirms the
ability of the present approach to detect (111) facets in reconstructed surfaces. The
differences between the simulated and reconstructed (211) surfaces originate from
the actual motion of the atoms which undergo frequent changes in their surrounding
environment.
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Fig. 3.9 Dynamic reconstructions and equivalent identity of other Cu surfaces. a
Cu(110) at 0 ns (left) and after 150 ns of DPMD at 700 K (right): SOAP environments
native of ideal (110) are colored in red. Green, blue and yellow colors identify non-native
environments proper of (211), (210) and (111) surfaces. b Environment populations in the
(110) surface at 700 K as a function of DPMD time. c Equilibrium composition of (110)
at 700 K (% and standard deviations). Inset: native domains in red, non-native in pink. d
Breakdown of (110) composition at 700 K. Dashed lines indicate the composition at DPMD
start. e Transition matrix showing the probabilities for atomic transitions in (110) at 700 K
(within ∆t = 300 ps). f-l Same analyses for the (210) surface at 500 K. Reproduced with
permission from Ref [172]

Comparing the behavior of the other Cu surfaces, the same analysis reveals
that the (110) surface is highly dynamic and substantially unstable at 700 K (Fig-
ures 3.9a-e). The snapshots of Figure 3.9a show how during 150 ns of DPMD, the
surface becomes largely populated of non-red colors, and mainly of green (211)
domains[172]. Figure 3.9b indicates a substantial reconfiguration of the (110) sur-
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face. The instability of (110) at 700 K manifests in the fact that the surface is
reconstructed by ∼ 85%. The native red environments drop to < 20% of the surface,
reconstructing in large part (211) green domains (Figure 3.9c: rising to ∼ 50%).
Starting from an ideal (110) configuration, such surface evolves towards reconstruct-
ing a different, more stable surface. Similar to what seen for (210) at 700 K, the
transition matrix of Figure 3.9e reveals how the residual red native domains are also
highly dynamic (survival probability < 40%), which fits well with their relatively
high surface energy,[301, 302] while the persistent domains in this surface are non-
native environments. As seen experimentally for other metals,[303–305] also the
Cu(110) surface appears unstable at 700 K and reconstructs large surface domains
structurally/dynamically similar to the (211) surface ones (Figure 3.8). Also at 600
K, the (110) surface has a dynamics similar to that of (211) at the same temperature,
while the reconstruction of (211) domains is much slower than at 700 K. Like for
(211), at 500 K also the (110) surface is substantially immobile and preserves its
identity: the thermal bath is insufficient to trigger the reconstruction in the timescales
accessible via these DPMD simulations[172]

The emergence of a large number of green (211) atomic domains can be quite
puzzling. However, it can be explained through a SOAP analysis of the missing-row
(110)(1×3) reconstructed surface. When coloring this surface with our SOAP-
based dictionary we observe that the atoms of the surface are composed mainly of
green (211) and yellow (111) atomic domains. This evidence shows that the atomic
environments that are native of the (110)(1×3) reconstructed surface are actually
very close in terms of soap distance to those of the (211) surface (See Figure 3.3).

The Cu(210) surface is found way more dynamic than both (211) and (110)
surfaces. Figures 3.9f-l show the analysis for (210) at 500 K. Even so close to the
Hüttig temperature, this surface undergoes considerable reconstruction[172]. The
(210) reconstructs non-native domains by > 60%, preserving its identity only by
< 40% (Figures 3.9g,h). Increasing the temperature to 600 K or 700 K has the
unique effect of accelerating such reconfiguration, while the equilibrium populations
remain substantially preserved[172]. This fits well with the higher energy of this Cu
surface.[301, 302] One difference is in the dynamics of such atomic environments.
The transition matrix of Figure 3.9l shows diagonal entries very close or higher than
50%. At the resolution of our analysis, the dynamics that emerges in this surface at
500 K is discrete (solid dynamics). Conversely, increasing the temperature to 700 K
creates dynamically-persistent solid-like domains – native blue (210) and non-native
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green (211) domains – coexisting with dynamic domains. This confirms that, also
in this case, increasing the temperature does not generate a uniform increase of the
dynamics of atoms, but the emergence of local dynamic domains and a non-uniform
dynamically-diverse surface.

The last case that we compare is the close-packed Cu(111) surface. Even the
simple coordination analysis of Figure 3.1 clearly shows that this surface is very
stable[301, 302] and does not undergo any considerable reconstructions in such
regimes. Even at 700 K surface atoms with coordination ̸= 9 emerge only sparsely
and as statistical local fluctuations, indicating vibrations rather than reconstructions.

3.3 Conclusions

This chapter reports a data-driven approach that allows resolving at atomistic resolu-
tion the complex structural dynamics of metal surfaces above the Hüttig temperature.
As a case study, we use Cu surfaces. However, the approach is versatile and can be
applied to other metal systems, as we present in the two following chapters. The
approach provides a detailed microscopic characterization of the atomic environ-
ments composing such dynamically diverse surfaces, the rates with which these
emerge/disappear, their residence time and persistence (see, e.g., Figure 3.6). The
development of a dictionary of SOAP atomic Cu surface environments (Figure 3.7)
allows for a data-driven analysis of the similarity/differences between the local
motifs that appear in dynamic equilibrium conditions on the different Cu surfaces
(Figures 3.8,3.9c,d,h,i). This provides an exquisitely statistical picture of these
metal surfaces, and a data-driven estimation of their "statistical identity" in dynamic
regimes (Figures 3.8,3.9). Knowing what local environments emerge, how often, for
how long is a prime requisite to understand what a metal surface looks like and its
properties in determined thermodynamic conditions.

The developed NN-potential allows dynamically-reliable DPMD simulations
of relatively-large Cu surface models composed of 2400 atoms (replicating on xy
through periodic boundary conditions). Noteworthy, the transition matrices of Fig-
ures 3.8,3.9 show transition probabilities ranging ∼ 5−40% in ∆t = 300 ps, revealing
a rich microscopic dynamics in such metal surfaces with characteristic times for
the transitions between the various environments in the order of nanoseconds. On a
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technical standpoint, this shows how such simulations provide access to information
extremely difficult to attain with other approaches.

From a scientific point of view, metal surfaces in most cases are still studied
treating the surface as a rigid object, however, the rich structural dynamics seen in
these metallic materials at temperature-regimes of 500-700 K in our simulations
indicate that the actual scenario is much more complex and that the intrinsic dynamics
of the metal surface must be explicitly accounted to understand surface properties.
In particular, it is intriguing to note that the results of Figures 3.6, 3.8, 3.9 provide a
picture of such metal surfaces that is quite far from that of hard materials, revealing
internal dynamic equilibria and a structural/dynamical diversity that, in a sense, is
reminiscent of that of soft dynamic materials.[204, 248, 249]

In perspective, our data-driven approach offers remarkable opportunities to relate
the innate structural dynamics of metals to their properties. While here we are
interested in resolving the complex structural dynamics of metal surfaces per se,
we envisage that this will have a considerable impact in various fields intricately
controlled by the AEs or structural sites available over time. This is especially
important in applications for metal surfaces such as heterogeneous catalysis and
sensing, where the effectiveness and activity of the surfaces depend on the dynamic
atomic environments present. These surface dynamics influence interactions with
the surrounding environment, thereby affecting overall performance[306, 307, 269,
308, 268, 309, 161, 310]. This detailed control over surface and bulk dynamics can
lead to significant advancements in areas such as electrochemical energy storage,
corrosion resistance, and nanotechnology [311, 312]

In conclusion, this work reveals the intricate and dynamic nature of metals across
various regimes, demonstrating the limitations of studying them solely as static
structures, even at low temperatures. Our approach highlights the importance of ex-
amining microscopic dynamics for a deeper and more comprehensive understanding
compared to traditional methods focused only on the reconstruction of internal ther-
modynamics. By analyzing the atomic dynamics, we can determine energy barriers,
reconstruct the free energy surface, and establish the probability distributions and
lifetimes of various states. Consequently, directly addressing the microscopic dynam-
ics, we gain the ability to accurately determine macroscopic properties, ensuring a
deeper and more comprehensive understanding of metallic behaviors under relevant
conditions, in contrast with methods that focus solely on internal thermodynamics
that do not possess the broad applicability and potential of our approach, as they are
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unable to independently evaluate the system’s dynamics. Thus, our work represents a
paradigm shift in the study of metals, transitioning the focus from static structures to
system dynamics. This shift enables a more thorough understanding of the behaviors
and properties of metallic systems, uncovering complexities that structural analyses
fail to capture.

3.4 Methods

3.4.1 DFT Database generation for training Cu NN-potential

The DFT database for training the Cu NN-potential was created using configura-
tions from ab initio molecular dynamics trajectories of small Cu systems. Simu-
lations were conducted with the PWscf code of Quantum ESPRESSO.[313] PBE
exchange-correlation functional[314] was used to propagate nuclear dynamics, cho-
sen for its balance between accuracy and computational cost. This functional has
also proven reliable for other metals like gold and silver.[315] Ultrasoft RRKJ
pseudopotentials[316] were employed to replace explicit core-valence electron in-
teractions. Electron density and wavefunctions were expanded in plane-waves with
energy cutoffs of 220 and 50 Ry, respectively. Occupations were treated using the
cold smearing technique of Marzari[317] et al. with a Gaussian spreading of 0.01
Ry. The Brillouin zone was sampled with a 2× 2× 2 Monkhorst–Pack k-point
grid[211] for bulk structures and 2×2×1 for slab models. Convergence tests for
cutoff energy, k-point sampling, and occupation led to the chosen setup. AIMD
simulations used a 1.0 fs time step in an NVT ensemble with the stochastic velocity
rescaling thermostat.[318] Temperatures ranged between 500 and 700 K to explore
a broad configurational space. The AIMD systems included both bulk and surface
structures. Bulk was modeled by a periodic super-cell of 7.1638×7.1638×7.1638 Å
containing 32 atoms. Surface calculations involved four slab models for the (100),
(110), (111), (211), and (210) surfaces (90-128 atoms). Slabs varied in atomic layers
(6-8 layers), with a vacuum layer in the z-direction(16-20 Å ), and the bottom two
Cu layers were fixed during simulations.
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3.4.2 Training the Cu NN-potential using DeePMD-kit

As discussed in Chapter 2, We trained the Cu NN-potential using the DeePMD-kit
package.[273, 180] The smooth version of the deep potential model was used with a
cutoff radius of 6.0 Å. The network construction included a cosine shape function
to smoothly switch off the 1/r term from 1.0 to 6.0 Å. The filter network comprised
three layers with (25, 50, 100) nodes per layer, and the fitting network had three
layers with 240 nodes each. Training was performed with the ADAM optimizer,[319]
using an exponentially decaying learning rate from 1.0×10−3 to 5.0×10−8. The
batch size was set to 4. Energy and force terms in the loss function changed during
optimization from 1 to 10 and from 1000 to 1, respectively. The final model used for
production runs was trained for 10.0×106 steps.

Fig. 3.10 Root mean square (RMS) testing error of energy and forces during the
training process. The blue line represents the RMS error for energy (mse_e_val), while the
orange line represents the RMS error for forces (mse_f_val). The training process involves
10 million steps, during which the errors are minimized using an exponentially decaying
learning rate. Reproduced with permission from Ref [172]

In figure 3.10 it’s possible to observe that, as training progresses, both errors
decrease, demonstrating the model’s improved accuracy in predicting both energy
and force values. The fluctuations observed in the error values are typical during the
training of complex neural network potentials, reflecting the ongoing optimization
and adjustment of the network parameters.

The selection of the training dataset is critical for NN-potential training. Config-
urations from DFT MD simulations were used to train an initial Cu NN-potential.
This potential was then employed in several DPMD simulations for different sur-



3.4 Methods 109

faces and temperatures to explore a broader configurational space (500-700 K) and
extract new configurations for the training set. This active learning protocol follows
the procedure by Deringer and Cs’anyi[274] and was implemented in DeepMD by
Zhang et al.[275] The criterion for selecting new configurations was based on the
agreement of force predictions by an ensemble of four NN-potentials trained on
the same dataset but with different initial weights. Model deviation was measured
as the maximum standard deviation of the force components. Configurations with
deviations in the range of [27−240×10−3] eV/Å were added to the training dataset.
The process continued until no new configurations were encountered, ensuring the
NN-potential was complete for the sampled conditions. A total of 10,000 configura-
tions were used for training, achieving root mean square errors of 1.0 meV/atom for
energy and 40 meV/Å for force. To confirm the robustness and completeness of the
NN-potential, additional tests with larger surface patches (about 600 atoms) were
conducted. The deviations in forces and energies were within the training-testing
errors, demonstrating the reliability of the approach and the obtained NN-potential.
The fine sampling of atomic configurations and associated energies from DFT MD
calculations allowed the inclusion of both local minima and transition states in the
training dataset. This ensured the NN-potential could accurately represent energy
differences, transition barriers, and kinetics with DFT precision.



Chapter 4

Miscroscopic analysis of atomic
dynamics and statistical identities in
Gold nanoparticles

In the previous chapter, we explored the dynamic behaviors of copper surfaces,
emphasizing the necessity of considering these dynamics to fully understand the
properties and functionalities of metallic materials. That work introduced a novel
perspective by addressing and quantifying the impact of atomic dynamics on the
structural properties of metallic systems. By thoroughly examining the dynamic
behavior of metal atoms, we provided significant insights into how these dynamic
behaviors influence the overall structure and functionality of the material[172]. This
innovative approach resolved complex dynamic phenomena and elucidated their
implications at a fundamental level, and, essentially proposed a new paradigm in
studying metallic systems, moving the attention from structure to dynamics. Given
that we already showed explicitly how the dynamics of metal surfaces can be strongly
different (and more pronounced) than that of bulk, such dynamics becomes more
and more prominent in metallic systems that are dominated by surface (over bulk)
properties-i.e. small metal clusters and nanoparticles. Building on that analytical
framework, we now extend our investigation to gold nanoparticles, taken as a case
study of prototypical metal nanoparticles in our study "Machine Learning of Atomic
Dynamics and Statistical Surface Identities in Gold Nanoparticles" (Rapetti et al.,
2023)[171]. Here, we focus on the intricate dynamics of gold nanoparticles, which
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exhibit even more complex behaviors than copper slabs at a very low temperature
due to their reduced size and increased surface area.

As in previous work on copper slabs[172], our methodology combines bottom-up
and top-down SOAP-based data-driven analyses to reveal the atomic environments
that statistically populate Au NPs during MD simulations at various temperatures.
This method allows us to track native and non-native atomic environments—those
typical of other types of NPs—that continuously emerge and resorb on the NPs. By
quantifying these properties, our analysis elucidates the complex dynamic behavior
that characterizes such systems at temperatures well below their melting point.

Our approach achieves an atomistic-level understanding of Au NP behavior
across various temperatures, a detail rarely achieved in experimental studies due
to the challenges of tracking individual atomic motions over time. This in-depth
understanding of the dynamic properties of atomic sites on Au NP surfaces is of
practical significance, promising to enhance the design of more effective NP-based
heterogeneous catalysts and improve industrial process efficiencies.

Furthermore, this research demonstrates that the methodologies developed for
copper slabs can be effectively applied to other systems, highlighting the versatility
and adaptability of the analytical techniques used. The approach presented here is
not limited to gold nanoparticles but can be extended to other metal NPs, enabling
a comprehensive understanding of their dynamic properties and enhancing their
application in various fields. This cross-applicability underscores the broad potential
impact of our methodologies, suggesting wide-ranging implications for the study
and utilization of metal nanoparticles in diverse applications.

The following sections will delve deeper into the temperature-dependent prop-
erties of Au NPs, the application of machine learning in modeling these dynamic
systems, and the broader implications of our findings for the design and optimization
of nanoparticle-based catalysts and other functional materials.

Full bibliographic reference: Rapetti, D., Delle Piane, M., Cioni, M., Polino, D.,
Ferrando, R., & Pavan, G. M. (2023). "Machine learning of atomic dynamics and
statistical surface identities in gold nanoparticles." Communications Chemistry, 6(1),
143. Nature Publishing Group UK London. 1

1In this work, my contributions included preparing the analytical framework, analyzing the results
and contributing to the interpretation of the results
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nanoparticles

4.1 Introduction

Gold nanoparticles (Au NPs), with their unique electronic, catalytic, and optical
properties, represent a significant area of interest in nanotechnology and materials
science. Despite bulk gold often being considered an inert catalyst, Au NPs exhibit
high catalytic activity[320–323], capable of oxidizing CO into CO2[324, 320] and
facilitating various other oxidative transformations. Additionally, Au NPs feature
surface plasmon resonance (SPR)[325] and other distinct physical and chemical
attributes, making them suitable for sensor devices and biomedical applications[325,
326].

Understanding the dynamic properties of atomic sites on the surfaces of nanopar-
ticles and their evolution over time is crucial for the rational design of more effective
NP-based heterogeneous catalysts[327, 328]. Seminal work in the field has high-
lighted the importance of understanding the dynamic formation of transient active
sites on the surface of Au NPs[163]. These sites, which form only under specific
reaction conditions, play a crucial role in catalytic processes, underscoring the need
for methods capable of accurately predicting and studying these transient sites and
their dynamics.

Moreover, as described in Chapter 2, recent advancements in experimental
techniques have increased resolution up to single particles[329] or even individual
atoms[330, 322]. High-angle annular dark-field scanning transmission electron mi-
croscopy (HAADF-STEM) experiments of supported Au NPs have provided direct
evidence that atoms move within the NPs at finite temperatures[331]. However, un-
raveling such atomic motion and obtaining quantitative insights remains challenging
due to structural dispersion, the variable distribution of atomic surface sites, and the
limitations of ensemble-averaged characterizations. Additionally, experimentally
reconstructed NP models often lack information on the identity of individual atoms,
making it impractical to track their dynamics over time.

Computational modeling, widely used for studying metals and metal clusters,
holds considerable potential in addressing these challenges[244, 245, 236–238, 172,
235, 79, 239, 246]. Indeed atomistic simulations can capture individual atomic
motions and track them over time, providing valuable insights into the internal atomic
dynamics of Au NPs[332, 262, 322, 333–335]. Additionally, recent advancements
in machine learning have enhanced the analysis of molecular dynamics trajectories



4.2 Results 113

of various complex molecular systems, including Au NPs[204, 260, 248, 259, 261,
172, 262], thereby enriching the understanding of their behavior.

Building on these considerations, we investigate various shapes of Au NPs to
understand how their atomic environments evolve at different temperatures. By
simulating these nanoparticles We track the emergence, annihilation, lifetime, and
dynamic interconversion of the AEs, allowing us to estimate a "statistical identity"
for the nanoparticles, as already shown in previous work on Cu slabs[172](See
Chapter 3). Using classical MD simulations, we analyze the atomic dynamics of Au
NPs of different shapes and sizes, focusing on three primary geometries: icosahedral
(Ih309, containing 309 atoms), decahedral (Dh348, containing 348 atoms), and
truncated-octahedral (To309, containing 309 atoms) nanoparticles. The simulations
were performed at various temperatures (300 K, 400 K, and 500 K) to capture the
temperature-dependent behavior of these nanoparticles.

4.2 Results

4.2.1 Characterizing the innate dynamics of a gold NP via ma-
chine learning of atomic environments

As a first representative example of ideal Au NPs, we investigate, analyze and
reconstruct the innate atomic dynamics of a 309-atoms icosahedron (Ih309) at various
temperatures. An icosahedral NP can be imagined as a series of concentric shells
that envelop a single central atom. The first shell that resembles an icosahedron
is constituted by the first 12 atoms surrounding the central one. Larger icosahedra
can be generated by adding further surrounding atomic shells. In contrast, at each
new larger shell, the NP resembles more and more the ideal platonic solid with 20
equilateral triangles as faces and 12 vertexes. Ideal atomic icosahedral NPs can
be thus obtained as composed of 13, 55, 147, 309, 561, 923, etc., atoms) – the
so-called "magic atomic numbers" for icosahedral NPs. As a relevant example, here
we start by studying the behavior of an ideal Au icosahedral NP composed of 309
atoms (Fig.4.1: Ih309) at different temperatures via classical molecular dynamics
simulations.



114
Miscroscopic analysis of atomic dynamics and statistical identities in Gold

nanoparticles

Fig. 4.1 Bottom-up machine learning of atomic environments (AEs) and AEs’ dynamics
in Ih309 at 300 K. (a) A SOAP vector is centered in each atom of the Au NP (in blue),
obtaining a SOAP spectrum which is a characteristic fingerprint of the level of order/disorder
in the displacement of the neighbor Au atoms (in gold) within a cutoff (shown as a transparent
sphere). The SOAP spectra of all atoms in the NP (309) are calculated on 1000 frames taken
every 1 ns along the last 1 µs of MD, obtaining a SOAP dataset containing 309’000 SOAP
spectra in total. The main AEs that populate the Ih309 NP are identified via unsupervised
clustering using the HDBSCAN* algorithm. (b,c) Main AEs present on the surface (b) and
in the interior (c) of the ideal Ih309 NP before simulation start (at 0 K). (d) Color legend
showing a structural interpretation of the AEs detected by the SOAP clusters. (e) Snapshot
of Ih309 taken from the MD simulation (at 2 µs) at 300 K, with Au atoms colored based
on the detected SOAP clusters. (f) PCA projection on the two first principal components
of the SOAP dataset. The different colors identify the various main clusters detected by
HDBSCAN*. (g) The inverse logarithm of the density of the SOAP dataset, identifying the
SOAP clusters (AEs) as local energy minima. (h) Normalized transition matrix reporting
the probabilities for an atom in a given AE at time t to remain in that AE (pii) or to undergo
a transition to a different AE (pi→ j) in dt (i.e., at t + dt, with dt = 1 ns in our analyses).
Reproduced with permission from Ref [171].

As a first step, we built an atomistic model of Ih309 (Fig.4.1a-c) that we simulated
via 2 µs of MD at 300 K (see Methods section for complete computational details).
From the resulting MD trajectories, we extracted 1000 frames sampled every 1 ns
from the last 1 µs of MD (during which the population of the detected AEs plateau).
Recently proven useful to reconstruct the structural and dynamical complexity of
various types of self-organizing molecular/atomic systems[204, 248, 260, 261, 172],
we used the smooth overlap of atomic positions (SOAP) vectors [202, 258] as abstract
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high-dimensional descriptors capable of retaining rich information on order/disorder
in the AEs – i.e., in the local atoms’ displacement (Fig.4.1a: in yellow) around
each atom in the NP (in blue) within a cutoff. In particular, our SOAP analysis is
performed using a cutoff of rcut = 4.48 Å, which was found as the best compromise
between the cost of the calculation and the highest retained information in this
case (see subsection 4.4.2 of Methods for more details.) We used SOAP rather
than other geometrical analysis tools (such as polyhedral template matching[336] or
common neighbors analysis[337]), because it is a non discreet descriptor that can
capture the local atomic environment more accurately and robustly than conventional
methods that tend to ignore the surface details of the system. SOAP also has the
advantage of being easier to extract data from it out of the box. These features
make SOAP suitable for studying dynamic materials with diverse structures and
properties. At each sampled frame (1000) during the MD simulation, we calculated
the SOAP [202, 258] power spectrum for each atom (309) at that frame in the Ih309

NP, obtaining a global SOAP dataset composed of 309’000 SOAP spectra in total.
From this SOAP dataset, we then identified the main AEs that populate the Ih309 NP
at 300 K via unsupervised clustering using the HDBSCAN* algorithm.[338]

This analysis finds 8 different clusters (AEs) emerging in the Ih309 at 300 K
(Fig.4.1 (b-f). Particularly evident in Fig.4.1b-c, the identified SOAP clusters cor-
respond to different structural AEs on the Ih309 NP. In detail (4.1d), we obtain an
"Ico" AE, corresponding to the central atom of the icosahedral Ih309 NP (in blue).
Shown in Fig.4.1c, such AE is different from the "Bulk" AEs (in violet) surrounding
it in the bulk of the NP (this 13 atoms AE is non-crystalline, i.e. it is not possible
to cover the whole space by units of this AE). The analysis detects "SubSurf " and
"5foldedSS" AEs, identifying the atoms in the first layer below the NP surface (deep
blue) and vertexes (characterized by a 5-folded symmetry axis: in light blue). On
the surface of the (ideal) Ih309 NP (Fig.4.1b), our analysis detects a "Faces" (dark
green) – close compact FCC(111) facet environments –, "Edges" (light green) and
"Vertexes" AEs (the lowest coordinated atoms in the NP, in yellow). Shown in
Fig.4.1d, the analysis also detects an additional pink cluster, namely, a "Concave"
AE identifying the centers of the so-called rosettes (Fig.4.1e).[335] Noteworthy, such
concave AEs are not present in the ideal Ih309 NP (Fig.4.1b) but they emerge along
the MD, while their formation is known to be an energetically favored event on the
surface of icosahedral NPs.[335, 247]. Fig.4.1e shows a representative MD snapshot
of the Ih309 at 300 K, where a rosette triplet – formation of rosettes pertaining to
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three neighbor vertexes, known experimentally – is clearly visible. (notably, each
rosette center (pink) has six atom neighbors while classic vertexes (yellow) have five
in a Ih309 NP). In particular, once a rosette triplet is formed, this configuration is
found stable during the MD simulation, while even at 300 K, this is accompanied
by continuous collective atoms motions that do not change the overall shape of the
surface of the icosahedral NP.

Fig.4.1f shows the PCA (projection on the two first components PC1 and PC2)
of the SOAP power spectra dataset, colored based on the SOAP clusters detected
via unsupervised HDBSCAN* clustering. From the inverse logarithm of the PCA
density, it is also possible to obtain the corresponding free energy surface of Fig.4.1g.
From these two plots, we can clearly distinguish three different zones on the PCA
and obtain the first qualitative information on their interconnection. The clump of
AEs on the left collects the bulk and sub–surface environments (dark blue, violet, and
light blue). These SOAP environments correspond to quite dense areas in the PCA,
which indicates substantially low mobility at 300 K of the atoms that belong to these
AEs in the Ih309 NP. The right part of the PCA is much less compact, indicating
that the surface AEs (dark-, light-green, and yellow AEs: faces, edges, and vertexes)
are in comparison much more dynamic at 300 K. Between the bulk and surface
areas, there is a smaller zone in the PCA connecting them. The vast majority of
these environments are classified as "Concave" (pink), which suggests that at room
temperature the interior and exterior of these NPs communicate essentially via the
creation of local “point defects” created on their surface – if we think of rosettes
in this sense, as they are not present in the ideal icosahedral NP. The free energy
surface of Fig.4.1g is derived from the density of points in each cluster, but the
population of each cluster does not weight it. This means it does not fully represent
the probability of an individual atom visiting the landscape. Nonetheless, this shows
(i) how the various detected SOAP clusters (AEs) correspond to local density maxima
and energy minima and (ii) that the barriers separating the surface states are relatively
low, which allows for the considerable atomic exchange between these AEs.

Quantitative information on the internal dynamics of the NP can be obtained by
tracking the SOAP spectra of all atoms at each sampled MD snapshot and monitoring
their change. In particular, this allows us to analyze to what SOAP AE each atom
belongs to at time t and at each successive timestep (i.e., at t +dt, with dt = 1 ns
in our analyses). Fig.4.1h shows a normalized transition matrix for the Ih309 NP
at 300 K. This contains all probabilities (all values reported in the matrix are to be
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intended as multiplied by ×10−2) for an atom in a given AE i to remain in that AE
(pii) or to undergo transition to a different AE (pi→ j) in dt (the rows of the matrix
sum to 1).

Fig.4.1h shows that at 300 K the deep/core AEs tend to be rather stable (pii ∼ 1:
atoms belonging to such AEs have a high probability of remaining in such state in
dt = 1 ns). On the other hand, a significant inter-AE exchange is already observable
(pi→ j ≥ 1) at this temperature on the NP surface. Indeed, the matrix shows that
in such conditions most of the action takes place in the sub-square in the matrix
connecting the ’Faces’, ’Edges’, and ’Vertexes’ AEs (dark-, light-green, and yellow
AEs).

From the transition probabilities of Fig.4.1h, it is possible to estimate the average
lifetime of the various AEs and the transition rates between them. In particular,
the off-diagonal entries (pi→ j) divided by dt give the transition rates between two
AEs i → j, ki→ j, from which one can estimate the characteristic timescales for the
various transitions as: τi→ j = k−1

i→ j. The number of times a given transition event
i → j is registered in the system along the last 1000 ns can be estimated as: ni→ j =

[i] ·1000/τi→ j, where [i] is the average number of atoms in the ith AE. For example,
in the Ih309 NP at 300 K an atom in the Faces AE (dark-green) has a transition
probability to the Edges AE (light-green) of pFaces→Edges ∼ 0.12 (∼ 12× 10−2),
indicating a transition rate of kFaces→Edges ∼ 0.12 ns−1 and characteristic transition
timescale τFaces→Edges ∼ 8.3 ns Furthermore, since this is the fastest transition
involving the Faces AE, this sets the bottom limit for the lifetime of an atom in the
(111) faces of this NP at 300 K (minimum residence time) as τFaces ∼ 8.3 ns.

Similar estimations for other dynamic transitions between the AEs within the
NP can be calculated from the transition matrix of Fig.4.1h in an analogous way.
We note that given the time window used for the analysis we report herein (dt =
1 ns), any observed communication/exchange between the AEs involves processes
happening on the ns scale or slower, thus reducing the probabilities that the AE
exchanges are related to thermal vibrations (values related to pi→ j < 0.01 (i.e., 1
×10−2 in Fig.4.1h) should be considered as purely qualitative, as these pertain to
events that are only sparsely observed along the MD simulation). We also underline
that, while the exact estimated values for AEs’ lifetimes, probabilities and transition
rates may slightly change depending on the employed FF,[227, 271, 339, 334] tests
conducted with different types of FFs[270, 315] provided very similar results in
terms of NP dynamics, confirming the generality of our observations.
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Fig. 4.2 Effect of temperature on the Ih309 NP dynamics. (a) MD frame of the Ih309
NP taken from the equilibrated-phase MD simulation at 400 K (atoms colored based on
SOAP clusters of Figure 1). (b) PCA projection of the SOAP dataset obtained from the
MD simulation of the Ih309 NP at 400 K. (c) Free energy surface (FES) obtained from
SOAP PCA. (d) Normalized transition matrix indicating the residence (pii) and transition
probabilities between the AEs in the Ih309 NP at 400 K of temperature in the time interval
dt = 1 ns (all pii and pi→ j values are ×10−2). (e) MD frame of the Ih309 NP taken from
the equilibrated-phase MD simulation at 500 K. (f) PCA projection of the SOAP dataset
obtained from the MD simulation of the Ih309 NP at 500 K. (g) Associated free energy
surface (FES). (h) Normalized transition matrix indicating the residence (pii) and transition
pi→ j) probabilities (×10−2) between the AEs in the Ih309 NP at 500 K in the time interval
dt = 1 ns. Reproduced with permission from Ref [171].

We simulated the Ih309 NP also at 400 K and 500 K by running 2 µs of MD.
During this timescale, the NP attains an equilibrium state, with numerous dynamic
events and transitions occurring on its surface [171]. We then extracted the SOAP
spectra for all atoms from 1000 frames taken from the last 1 µs of MD following the
same protocol used at 300 K. Fig.4.2 shows the results of these additional analyses.
In particular, in these analyses, we used the simulation at 300 K as the training
set for both the PCA computation and clustering (HDBSCAN*) analyses of the
MD trajectories of the Ih309 NP at 400 K and 500 K. The PCA of Fig.4.2b and
Fig.4.2g show how the clusters on the surface of the NP become more adjacent
to each other at 400 K and 500 K than at 300 K. Moreover, the FES of Fig.4.2c
and Fig.4.2h indicates that the minima corresponding to different surface AEs at
300 K tend to merge together when the temperature increases. In particular, at
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500 K, the surface AEs constitute a unique large minimum, meaning that at such
temperature, e.g., Faces and Edges AEs are in continuous exchange with each other
and that these effectively form a unique fuzzy surface state (i.e., computing the PCA
on the MD trajectory at 500 K would not find at all two distinct Faces and Edges
AEs, but one single environment) The communication between Faces, Edges, and
Vertexes AEs increases with increasing the temperature. This is even more evident
in the normalized transition matrices of Fig.4.2d and Fig.4.2i. The sub-square in
the matrices connecting the ’Edges’, ’Faces’, and ’Vertexes’ AEs shows that atoms
belonging to these environments have larger probabilities to exchange with each
other at 400 K and 500 K than at 300 K. In particular, at 400 K, such a surface atomic
mobility is evident, but these atoms have still a higher probability of remaining in
their environment than of jumping into another one in dt = 1 ns (pii > 50%). On the
other hand, at 500 K the residence probability for atoms in the surface AEs drops
close to, and in some cases also below 50 %, suggesting that in such conditions the
NP surface is pre-melting.[340] We note that, in good approximation, the number
of atoms in each environment does not vary much during the simulations at all
temperatures[171]. This suggests that, despite such rich atomic mobility, the Ih309

NP surface remains structurally that of an icosahedron at all analyzed temperatures.
It is also interesting to note that the transition matrix of Fig.4.2f shows sparsely
observed dynamic interconnections between the central atom of the NP and the
surface AEs at 500 K. This does not mean that the central atom is diffusing to the NP
surface, but rather that at such temperature internal voids may rarely form in the NP
center, which makes the SOAP spectrum of deep bulk atoms change occasionally and
become similar to that of surface AEs. This fits well with previous reports showing
similar central vacancies in Ih309.[173, 247]

While evidence of surface dynamics in Au NPs have been reported,[327, 322]
obtaining clear insights as on the processes that characterize such dynamics, or
on whether this is essentially due to, e.g., local atomic reconfigurations or atomic
diffusion is non-trivial. Tracking the motions and the fluctuations in the SOAP
spectra of the individual atoms in the NP, our approach provide clear evidence that
the dynamics of these NPs is not due only to oscillations between adjacent/similar
AEs, but to real microscopic atomic diffusion. As a representative example, in
Fig.4.3 we show the detail of the evolution during 1 µs of MD of an atom that
is an Ih309 vertex at the start of the simulation. Fig.4.3a,b show respectively the
temporal trajectory of the atom and the SOAP AEs that this visits in this time frame,



120
Miscroscopic analysis of atomic dynamics and statistical identities in Gold

nanoparticles

revealing how even at 300 K such atom visits a surprisingly large collection of
different (surface and sub-surface) SOAP AEs (Fig.4.3b). In particular, such vertex
atom diffuses first to surface AEs, and then also penetrates into the sub-surface. Its
diffusion is described in detail also in the plot of Fig.4.3c, showing how such an
atom also becomes at a certain point (∼820 ns of MD) a rosette center (pink).

Fig. 4.3 Atomic diffusion on the Ih309 NP. (a) MD trajectory of an atom in the Ih309 NP
at 300 K, colored based on simulation time. (b) MD trajectory of the same atom colored
based on its SOAP AE (Fig.4.1): being initially a vertex, the atom diffuses on the NP surface
visiting various surface and even sub-surface AEs. (c) AEs visited by the tracked atom during
the MD of the Ih309 NP at 300 K. (d) AEs’ transitions of all (309) atoms in the Ih309 NP at
300 K: at room temperature, only the surface of the NP appears as dynamic. (e) AEs’ atomic
transitions in the Ih309 NP at 400 K. (f) AEs’ atomic transitions in the Ih309 NP at 500 K:
surface pre-melting. Reproduced with permission from Ref [171].

Fig.4.3d-e show us AE visited by all the 309 atoms in the NP at 300 K (d),
400 K (e), and 500 K (f). These graphs reveal which environments are most prone to
exchange in this NP. In particular, at 300 K only Faces and Edges surface AEs are
dynamic. At 400 K the dynamics of the NP surface increases, but remains similar to
that at 300 K (which fits well with the transition matrices of Fig.4.1h and Fig.4.2d).
On the other hand, at 500 K the atoms exchange between all surface and sub-surface
AEs (surface pre-melting).

We underline how all the analyses reported above are purely bottom–up, meaning
that all information on the AEs, their similarity, classification, and dynamics are
reconstructed only from the MD trajectories and in an unbiased data-driven way. At
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the same time, such data-driven analyses are not always straightforward to interpret.
For example, given the surface of such NPs is in continuous motion and new non-
native states may also emerge in these NPs (e.g., concave ones), a relevant question
is whether such new non-native emerging AEs are closer to the native ones (proper
of that type of ideal NP) or, e.g., to other AEs native of different types of NPs. To
answer such questions and obtain a more complete picture, we employed a different
type of analysis.

4.2.2 A dictionary of Au NPs SOAP environments

To complement our study, we designed a different top–down analysis. We defined
a "general" and transferable dictionary of SOAP environments analyzing ideal Au
NPs (at 0 K) of different sizes and morphologies. We then used it to identify the
native and non-native AEs that emerge in the simulated NPs and to analyze their
dynamics at different temperatures. As described in the work on Cu slabs, at this
point we created a dictionary of Au AEs (Fig.4.4) that contains all AE typical of
different shape NPs. In particular, we calculated the SOAP atomic spectra of two
ideal icosahedral Au NPs: Ih309, simulated in Fig.4.1 and in Fig.4.2, and a larger
one composed of 923 Au atoms (Fig.4.4a, right: in blue). We also calculated the
SOAP atomic spectra of three decahedra composed of 348 (Dh348, simulated in the
next section), 1086 and 1734 Au atoms, and two truncated octahedra, composed of
309 (To309, simulated in the next sections) and 807 Au atoms (To807). In the AE
dictionary, we also added an additional To976 (not included in the figure). Such a
collection of NPs allowed us to maximize the number of sample AEs, obtaining a
complete SOAP dictionary for Ih, Dh, and To Au NPs.
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Fig. 4.4 The dictionary of atomic SOAP NP environments. (a) Icosahedral (blue),
decahedral (green) and truncated-octahedral Au NPs used to generate the SOAP dictionary
of AEs. Together with the NPs that we simulate herein (the three on the left), also larger size
NPs are included in the dictionary, in order to guarantee that this contains all AEs typical of
the NP families. (b) Dendrogram connecting the various SOAP AEs proper of icosahedral
NPs (blue) connected based on their SOAP distance. (c) Dendrogram for the SOAP AEs
native of ideal decahedral NPs (green). (d) Dendrogram for the SOAP AEs native of ideal
decahedral NPs (purple). (e) Global dendrogram connecting all the AEs of the various NP
types, hierarchically classified based on their SOAP similarity using the SOAP distance.
Cutting the dendrogram at a certain SOAP distance provides a coarse-grained dictionary that
groups together the AEs with SOAP distance dSOAP ≤ 0.08. Reproduced with permission
from Ref [171].

The obtained AE dictionary contains a total of 47 different SOAP environ-
ments(see Methods subsection 4.4.3 for details about the creation of this dendrogram).
Fig.4.4b shows the 12 ones typical of icosahedral Au NPs, organized hierarchically
in a dendrogram based on their SOAP distance and similarity (see previous Chapter
for more detail about this metrics). Fig.4.4c shows the dendrogram containing the 22
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environments characteristic of the decahedral Au NP. Fig.4.4d shows the dendrogram
of the 13 SOAP AEs typical of truncated-octahedral and cuboctahedral NPs. Finally,
Fig.4.4e shows the complete SOAP dictionary, containing all AEs proper of Ih, Dh
and To Au NPs, organized based on their SOAP distance and similarity. Such a
dictionary of SOAP spectra can be then used to compare and classify the AEs that
emerge along the MD simulations of a given NP, and to understand if on specific
NP AEs emerge that are closer to those present in NPs of other shapes. While the
dendrogram of Fig.4.5e contains the complete information, this also shows, e.g., that
most of the bulk environments across different-shape NPs are basically identical
to each other, as expected. Thus, to ensure to capture of relevant variations in our
analysis, we opted to “truncate” the dendrogram at the distance of dSOAP = 0.08 (and
considering as relevant only differences larger than this), see Fig.4.12 and Fig.4.11
for an example on how the choice of this parameter influences the environments
and the analysis of the dynamics. The cut at dSOAP = 0.08 reduces the 47 AEs to 10
AEs, improving the clarity and the statistical relevance of the subsequent analysis.
Nonetheless, the resolution of such analysis can be in principle adapted, based on the
relevance of the difference between the AEs. This “cut” provides a coarse-grained
analysis, which regroups all AEs with dSOAP < 0.08 in macro-clusters all SOAP
environments

In particular, the truncated dendrogram of Fig.4.5a shows the final 10 AEs
considered in the analysis. The b AE collects all NP bulk environments. The ss and
ss’ AEs collect all sub-surface AEs: ss identify the AEs under the FCC(111) and
FCC(001) NP faces and those under the NP edges, ss’ identify the "non-standard"
subsurface AEs under the vertexes and the convex elements. The c and c’ AEs
enclose the concave environments. The s, e and e’ enclose all surface AEs: s collects
the AEs proper of FCC(111) and FCC(001) faces, e and e’ collects edge AEs, while
v and v’ those proper of vertexes. We used the "coarse-grained" SOAP dictionary
for analyzing our MD simulations and distinguishing between native and non-native
AEs emerging in the simulated NPs.
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4.2.3 A dynamic dance of native and non-native AEs shaping the
surface identity of Au NPs

In Fig.4.5b we show the Ih309 NP in its ideal configuration (at 0 K: after minimiza-
tion) and at various temperatures (top-to-bottom: 300 K, 400 K, 500 K). In particular,
the Ih309 snapshots at 300 K, 400 K, 500 K correspond to the same MD frames of
Fig.4.1e, and Fig.4.2a and e, but in Fig.4.5b the atoms are colored based on the
similarity of their atomic environments and those contained in the SOAP dictionary
of Fig.4.5a (top–down analysis). This analysis allows us to track in detail which
ones of the AEs populating the Ih309 NP at the various temperatures belong to the
family of the native ones, typical of icosahedral NPs, and which ones are non-native
– namely, closer to those natives of different shape NPs, such as e.g., decahedra or
truncated octahedra. For each NP snapshot, a pie chart (bottom-right) shows the
percentage of surface atoms belonging to native (in gray) and non-native AEs (in
pink) in the Ih309. The analysis shows how the percentage of emerging non-native
environments increases with increasing temperature, essentially due to increased
thermal fluctuations and surface reconstructions. The histograms of Fig.4.5c re-
port the average number of atoms belonging to each AE in the last 1 µs of MD
(equilibrated-phase MD trajectories). For each AE, we represent the count with
four columns (Fig.4.5c): the first one refers to the AE populations in the ideal Ih309

NP, and the other three columns refer to the AE populations in the same NPs at the
three simulated temperatures. The v’ (purple), s’ (light green), c (green) AEs are
non-native AEs, in that these are not present in the ideal Ih309 (identified by arrows),
and in icosahedral NPs in general, but emerge in Ih309 with temperature.

At each MD time-step we know the cluster each atom belongs to so that we can
track where the atoms come from and where they go in terms of AEs all along the
MD trajectories. This allows us to draw the chord diagrams of Fig.4.5d, showing the
dynamic interconnections between the various AEs populating the NP.
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Fig. 4.5 Top-down data-driven reconstruction of the innate dynamics and statistical
identity of the Ih309 NP. (a) Dictionary of AEs and associated dendrogram used for the
top-down analyses, obtained via cutting the complete dendrogram at dSOAP = 0.08 (as shown
in Fig.4.4e). (b) The Ih309 NP before simulation start (top, 0 K), in steady state MD frames,
taken from the MD simulations at temperature 300 K, 400 K, or 500 K (top-to-down).
Coloring based on the dictionary AEs (a): the pie charts indicate in magenta the percentage
of atoms on the NP surface that do not belong to environments native to ideal icosahedral
NPs. (c) Histogram counting the average number of atoms in each cluster during the last
1 µs of MD at 300 K, 400 K, 500 K (second-left to right columns for each AE), compared
to the AE populations in the ideal (0 K) Ih309 NP (leftmost column for each AE). Standard
deviations as vertical black lines. An arrow in place of the first column highlights the absence
of certain AEs in the ideal Ih309 NP – i.e., these AEs are non-native of ideal icosahedral,
and emerge with temperature (e.g., in Ih309: v′, c′ and c AEs in light-purple, light- and
dark-green respectively). (d) Chord diagrams showing the interconnection between all AEs
communicate with each other in Ih309 at various temperatures. Non-native AEs emerging in
Ih309 are identified by colored arrows in the chord plot at 300 K (cf. main text for details).
(e) Normalized transition matrices reporting the probabilities for atoms in the Ih309 NP at the
various temperatures to remain in a given AE (pii) or to exchange into another one (pi→ j) in
the time interval of dt = 1 ns. Reproduced with permission from Ref [171].

Qualitatively, the width of the corona arcs represents the total number of transi-
tions(or not) that happened to a given cluster during the simulation, and the chords
between two clusters show the interconnections between the various AEs, the more
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the base of the chord is extended the more the cluster has given atom to the one
it is connected to. The color of the chords indicates the net flux (e.g., the chord
connecting the red (s) and violet (v′) clusters is violet, meaning that more atoms are
observed to undergo a transition in v′ → s direction than vice versa). The results
qualitatively show with what AEs the non-native v’, s’, and c ones are primarily
connected, suggesting where these non-native AEs come from and where they go. In
particular, v’ is connected with e edge atoms (light orange). The non-native concave
c and c’ AEs are connected with edge (orange), surface (red), and vertex (violet)
atoms. The chord diagrams show that the exchange between the AEs increases with
temperature (increasing number of chords and of chords’ widths moving left-to-right
in Fig.4.5d). As seen also in Fig.4.1, this analysis confirms that at 300 K only
surface AEs exchange dynamically, while ss and b clusters remain relatively static
and separated (dynamic surface and static interior). Increasing the temperature, and
in particular, at 500 K (Fig.4.5d: right), the interior of the NP starts to communicate
with the surface (see cyan and gray chords going towards surface AEs).

To obtain more quantitative information on the complex atomic dynamics present
in the NPs, we calculated the transition probabilities for atoms belonging to such AEs
to remain in or undergo a transition into the different AEs in ∆t = 1 ns (same analysis
of Fig.4.1h, Fig.4.2d and Fig.4.2h, but with this new set of top-down detected AEs).
The transition matrices of Fig.4.5e show that deep AEs (b and ss) have diagonal
entries residence probabilities pii ∼ 1 (dark colors). This confirms the rather static
behavior of the interior of the NPs at all temperatures. At 500 K the blue ss’ AE
starts to communicate with the surface of the NP and, in particular, with the green c
and c’ concave AEs. The matrices of Fig.4.5e thus show that the formation of the
rosettes on Ih309 comes from such deep states, as well as (in large part) from the
surface (red, s) and edge (e,e’) AEs. From the transition matrices of Fig.4.5 it is
possible to estimate, e.g., the transition probabilities, rates, timescales, and lifetimes
of all these top-down detected AEs as done from that of Fig.4.1h. For example, in
the Ih309 NP at 300 K the non-native concave c’ AE (light green) has a transition
probability to the surface (red, s) AE of pc′→s ∼ 0.4, indicating a transition rate of
kc′→s ∼ 0.4 ns−1 and characteristic transition timescale τc′→s = 2.5 ns [171]Given
that in the c’ row of the matrix the c′ → s transition is by far the fastest one, in good
approximation, this allows estimating the bottom limit of the lifetime of one atom
in the c’ AE in the range of τc′ ∼ 2.5 ns. Similar estimations of the characteristic
timescales for all transitions between the AEs in the NP can be easily performed



4.2 Results 127

from all the pi→ j reported in the transition matrices of Fig.4.5e. Such analyses thus
provide not only an estimation of the average composition of an NP but also, and
perhaps even more interestingly for practical applications (e.g. reactivity), detailed
information on the lifetime of all the native and non-native AEs populating it. In fact,
the capability of an AE to activate a chemical reaction is directly related to its lifetime
vs. by the characteristic time of the reaction itself on that AE. For example, while it
is known that different atomic sites have, e.g., different reactivity and efficiency in
catalyzing chemical reactions,[161] obtaining a structural/dynamical map showing
how long all AEs in the NPs live (τi) and how quickly they interconvert into other
ones (τi→ j) is key to understand their effective efficiency . In fact, from a statistical
point of view, if one AE has a given average lifetime τi, but the characteristic
timescale for the reaction to occur on that specific AE is τreact > τi, the probability
for effectively activating the reaction on that AE would be proportional to τi/τreact .
This would indicate of how many times, in principle, the reactant should get in touch
with the same AE to effectively activate a given reaction. Of course, performing
practical estimations in this sense would require focusing on a realistic case and
also estimating the reactivity of all visited AEs in the NP. While this is not the main
point of this chapter, this is certainly feasible, which underlines the potential of the
approach. Moreover, we stress that such a purely probabilistic interpretation stands
as far as the reactive species do not significantly alter the dynamics and features of
the AEs present on the NP – e.g., no or negligible chemisorption (if such a condition
does not hold, a proper reactive parametrization and simulation of the system is
needed, where new AEs may appear on the NP surface upon interaction with the
reactants).[341]

Similar as to what was observed in the matrix of Fig.4.2h, the matrix of Fig.4.5e
(right) shows that at 500 K the surface of Ih309 NP is basically pre-melted[340] (pii

of surface AEs < 0.5, meaning that in ∆t = 1 ns the atoms in those AEs have a
higher probability to move to another AE, rather than to remain in the same one).
This indicates that the entire Ih309 has atomic dynamics faster than the nanosecond
scale (liquid-like dynamics). On the other hand, at the resolution of our analyses, the
atomic dynamics on the NP surface appear as more “discrete” at 300 K and 400 K
(solid-like dynamics).
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Fig. 4.6 Top-down analysis of AEs in the Dh348 NP. (a) Snapshots of the ideal Dh348
(0 K) and at 300 K, 400 K and 500 K. Atoms within the NPs are colored based on the AEs
dictionary. (b) Histogram counting the average number of atoms in each AE during the last
1 µs of MD simulation at 300 K, 400 K, 500 K (second-left to right columns for each AE).
Standard deviations as vertical black lines. (c) Normalized transition matrices reporting the
probabilities for atoms in the Dh348 NP to remain in a given AE (pii) or to exchange into
another one (pi→ j) in the time interval of dt = 1 ns at the various temperatures. (d) The
chord diagrams show the dynamic interconnections between all AEs detected in the NP at
different temperatures. Reproduced with permission from Ref [171].

We repeated the same analysis for the Dh348 NP (Fig.4.10). The data show that
this NP is more stable than Ih309 at all simulated temperatures. This NP has been
chosen because its ideal conformation shows at least one atom per each cluster in
the set that we identified with the cut. Consequently, this results in the pie charts
of Fig.4.10a showing always 0 % pink. At 300 K and 400 K, the internal b and ss
AEs are not in communication with the surface. At 500 K, some communication
arises but also at such high temperatures in this case the atomic dynamics on the NP
surface appear as "discrete" and closer to that of Ih309 at 300 K and 400 K (solid-like
dynamics).

Among the investigated NPs, To309 (Fig.4.7) is a very interesting case. In fact,
the To309 arrangement is known to be a non-favorable FCC arrangement. Indeed,
To309 is more dynamic than Dh348 at all investigated temperatures. Interestingly,
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at 300 K this NP is found less stable and more dynamic than Ih309, with ∼ 24%
of its surface atoms in non-native AEs (pie charts in Fig.4.10a and histograms of
Fig.4.10b). However, at 500 K, To309 is found more stable than Ih309 and its surface
shows "discrete" atomic dynamics.

We compared the chord diagrams obtained with the top-down and bottom-up
analysis (see Fig.4.9) to evaluate their consistency in terms of fluxes. The results
show that the two analyses are consistent in this regard. However, comparing actual
kinetics is not straightforward because the AEs identified by the two analyses are not
directly related. The top-down analysis defines AEs based on a dictionary, while the
bottom-up analysis derives them from the MD trajectories. Moreover, the consistency
between the two analyses strongly depends on the cutoff for the dendrogram in the
top-down analysis. Both analyses are therefore complementary and provide different
insights into the atomic dynamics of Au NP’s.
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Fig. 4.7 Top-down analysis of AEs in the To309 NP. (a) Snapshots of the ideal To309
(0 K) and at 300 K, 400 K and 500 K. Atoms within the NPs are colored based on the AEs
dictionary (the pie charts indicate in magenta the percentage of atoms on the NP surface
that do not belong to environments native to ideal truncated-octahedral or cuboctahedral
NPs. (b) Histogram counting the average number of atoms in each AE during the last
1 µs of MD simulation at 300 K, 400 K, 500 K (second-left to right columns for each AE).
Standard deviations as vertical black lines. (c) Normalized transition matrices reporting the
probabilities for atoms in the To309 NP to remain in a given AE (pii) or to exchange into
another one (pi→ j) in the time interval of dt = 1 ns at the various temperatures. (d) The
chord diagrams show the dynamic interconnections between all AEs detected in the NP at
different temperatures. Reproduced with permission from Ref [171].

Altogether, these results show that such analysis is transferable and flexible. In
particular, this can be used (i) to obtain a thorough characterization of the complex
atomic dynamics of the NPs that is difficult to attain with other approaches, and ii to
compare and classify different types of metal NPs based on the AEs that emerge and
populate their structure and on their complex dynamics.
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4.2.4 Thermal effects on structural stability and dynamics of
Ih309 Gold Nanoparticle

This section delves deeper into the structural stability and dynamic behavior of
gold nanoparticles, specifically focusing on the Ih309 configuration, to enhance our
understanding of the underlying mechanisms governing these systems, serving as
confirmation and support for the analyses presented earlier.

As depicted in Fig.4.8, the histograms show the average number of atoms per
cluster (AE) for the Ih309 nanoparticle at three distinct temperatures: 300 K, 400 K,
and 500 K. This analysis, carried out using the bottom-up classification approach,
reveals notable shifts in the distribution of atomic environments as the temperature
increases. Specifically, at higher temperatures, we observe a significant increase
in atomic mobility and reconfiguration within the nanoparticle. This indicates an
enhanced dynamism, suggesting potential alterations in structural stability as the
system is subjected to thermal agitation.

Fig. 4.8 Histograms of AEs for Ih309. Histograms showing the average number of atoms
per cluster, calculated for the simulations Ih309 at 300 K, 400 K, and 500 K analyzed with
the bottom-up classification. Reproduced with permission from Ref [171].

To further complement these findings, 4.1 presents detailed energy calculations
for various 309-atom gold clusters, including the Ih309 and To309 configurations.
The Best309 configuration, which approximates a decahedral structure, exhibits
the lowest energy, underscoring its higher stability relative to other configurations.
Interestingly, the Ih309 configuration with three rosettes, though slightly higher in
energy, demonstrates significant stability, implying its energetic favorability under
certain conditions. This nuanced energy landscape suggests that while Best309 is the
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most stable, Ih309 configurations can also maintain stability depending on specific
environmental factors.

cluster Energy ∆E from Lowest
Ih309 -1125.87 eV +3.16 eV

Ih309 With3Rosette -1126.86 eV +2.17 eV
To309 -1125.3 eV +3.73 eV

Best309(∼ Dh) -1129.03 eV 0
Table 4.1 Energies of the ideal 309 Au clusters, for an Au309 near the global minimum
configuration, and an Ih309 with 3 rosettes making an anti-Mackay face.

Delving deeper into the differences in net fluxes and the influence of varying
cutoff distances on the clustering of AEs, Fig.4.9 compares the net fluxes of atomic
environments in the Ih309 nanoparticle across different temperatures using both
bottom-up and top-down analyses. The discrepancies observed between these two
methodologies highlight the inherent complexity of atomic dynamics. This under-
scores the necessity of employing multiple classification approaches to garner a
comprehensive understanding of nanoparticle behavior, as each method offers unique
insights into the atomic interactions and transitions occurring within the system.

Fig. 4.9 Chord diagrams for Ih309 at various temperatures. A parallel of the net fluxes in
the Ih309 at various temperatures, for the BU and the TD analyses. The two analyses are not
completely overlapping due to a missing one-to-one relationship between the AEs found in
the BU analysis and the AE selected in the TD analysis. Reproduced with permission from
Ref [171].
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Fig. 4.10 Top-down analysis of AEs in the Dh348 NP. (a) Snapshots of the ideal Dh348
(0 K) and at 300 K, 400 K and 500 K. Atoms within the NPs are colored based on the AEs
dictionary. (b) Histogram counting the average number of atoms in each AE during the last
1 µs of MD simulation at 300 K, 400 K, 500 K (second-left to right columns for each AE).
Standard deviations as vertical black lines. (c) Normalized transition matrices reporting the
probabilities for atoms in the Dh348 NP to remain in a given AE (pii) or to exchange into
another one (pi→ j) in the time interval of dt = 1 ns at the various temperatures. (d) The
chord diagrams show the dynamic interconnections between all AEs detected in the NP at
different temperatures. Reproduced with permission from Ref [171].

Building on this, Fig.4.11 explores how different cutoff distances affect the tran-
sition probabilities and net fluxes for the Ih309 nanoparticle at various temperatures.
The transition matrices, which display the grouped AEs from the 0.08 cutoff used in
the main analysis, illustrate how varying cutoff values can significantly impact the in-
terpretation of atomic transitions and dynamic behavior. This analysis highlights the
critical role of cutoff selection in effectively capturing the nuances of atomic move-
ments and interactions, thereby providing a more accurate depiction of the system’s
dynamic behavior. These detailed analyses clearly highlight how the different atomic
environments within the Ih309 nanoparticles significantly influence their structural
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stability and dynamic behavior as a function of temperature. The energy data show
that, although the Best309 configuration is the most stable, the Ih309 configuration
with three rosettes also maintains significant stability under certain conditions. The
differences in net fluxes between the bottom-up and top-down analyses reveal the
intrinsic complexity of atomic dynamics, underscoring the necessity of multiple
approaches for a comprehensive understanding.

Fig. 4.11 The influence of the number of AEs due to the chosen cut (0.22, 0.17, 0.11
and the used 0.08) on the transition probability and on the net flux for the Ih309 at various
temperatures. In the transition matrices, we show the grouped AEs from the cut=0.08 that
we used in the main analysis. Reproduced with permission from Ref [171].

Furthermore, the impact of varying cutoff distances on the clustering of atomic
environments emphasizes an important trade-off between detail and clarity in the anal-
ysis. Accurate selection of the cutoff is crucial for capturing the atomic transitions
and interactions within the nanoparticle, allowing for a more precise representation
of the system’s dynamic behavior. This level of detail in atomic transitions and fluxes
at different temperatures provides valuable insights into the mechanisms governing
stability and structural transformations in gold nanoparticles.
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4.3 Conclusions

Understanding the intricate atomic dynamics on the surface of metal NPs in relevant
regimes is paramount for unveiling the physical chemistry and diverse properties of
the nanoparticles. This characterization, while fundamental, typically poses signifi-
cant challenges, both experimentally and computationally. In this work, maintaing
the same approach described in Chapter 3, we achieve such a detailed character-
ization via the use of a concerted ML approach that includes a combination of a
bottom-up and top-down data-driven analyses of steady-state MD trajectories of
various types of Au NPs. In the first step, the bottom-up ML analysis detects in a
purely data-driven way the main atomic environments that populate an NP in MD
steady state based on the levels of order/disorder and the structural similarity between
them as captured by high-dimensional SOAP data extracted from the MD trajecto-
ries, and further dimensionality reduction and unsupervised clustering (Figures 4.1
and 4.2). The choice of the SOAP descriptor, having a defined distance metric,
allows us to perform advanced analysis techniques, i.e. density-based clustering, to
better understand and classify the atomic environments at the surface. Tracking the
individual atoms along the MD and classifying them based on the detected SOAP
environments allows resolving the complex atomic dynamic that is present on the NP
surface at different temperatures (see transition matrices in Fig.4.1 and in Fig.4.2).
In particular, this allowed us to identify in a data-driven unbiased way all the AEs
that populate the NPs in the MD local equilibrium and to understand where these
come from and where they go in terms of interconversion into other AEs. On a
second step, a top-down data-driven classification based on the similarity/distance
between/from the SOAP spectra of each atom at each sampled step of the steady
state MD trajectories and the SOAP spectra characteristic of a variety of different Au
NPs contained in a SOAP spectra dictionary. Such a SOAP dictionary contains the
SOAP spectra of all AEs proper of ideal, e.g., icosahedral, decahedral, and truncated-
octahedral Au NPs, which allows us to learn which ones of the AEs appearing on
the surface of a given simulated NP in MD steady state are “native” of that type of
NP, and which ones are “non-native” (i.e., typical of ideal NPs of a different shape).
We repeat such analysis on three types of different-shape Au NPs (Figures 4.5,
4.7 and 4.10: i.e., Ih309, Dh348 and To309). Notably, such analysis allows us not
only to estimate the “statistical identity”[172] of the various NPs – namely, what
do the NPs look-like in relevant dynamic regimes (histograms of Figures 4.5, 4.7
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and 4.10) –, but also obtain relevant dynamic information as on the average lifetime
and interconnection rates of all visited atomic (native and non-native) environments
present on their surface (transition matrices in Figures 4.5, 4.7 and 4.10). While the
dictionary of AEs presented herein is based on the analyzed set of Au NPs, it can
be easily expanded to include more particle geometries. Nevertheless, the provided
analysis already shows the generality of such an approach, i.e., it can be applied to
any metal NP. Moreover our analysis can be easily applied without further tuning to
metallic systems in which vacancies arise, i.e., on that case the user would just need
to add some new environments to the AE dictionary.

In conclusion, this study highlights a paradigm shift from static structural analy-
ses to dynamic evaluations, a transition that is even more crucial for NPs than for
surfaces due to the dominance of surface dynamics, even at very low temperatures.
By focusing on these dynamics, we can determine energy barriers, reconstruct the
free energy landscape, and establish probability distributions and lifetimes of various
atomic states. In contrast, approaches that rely solely on the internal thermodynamics
of the system are unable to resolve these dynamic aspects and thus cannot provide the
same detailed insights as our methods based on reconstructing the system’s behavior
from its dynamics.[172, 342, 234, 205]

This knowledge can optimize the performance of Au NPs in applications that
depend on surface properties and features, such as catalysis, sensor devices, and
biomedical applications. We anticipate that the methodologies presented will find
broad applications in other metallic NP systems, opening new avenues for discover-
ing structural-dynamic-property relationships across a variety of similar metal NP
systems. This approach enhances our understanding of metallic NPs’ behaviors and
properties, revealing complexities that traditional static analyses fail to capture.

4.4 Methods

4.4.1 Atomistic models and MD simulations of the NPs

The atomistic models for the Ih309, Dh348, and To309 NPs were built with the tool
"clusterCreator".[343] Preliminary basin hopping calculations showed that, at these
sizes, Au favors the formation of decahedral NPs, followed by the icosahedron
and the cuboctahedron. To simulate the NPs, we used the SMATB [227, 271, 339]
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potential available in LAMMPS [344] .[334] (see dedicated section on FF of Chapter
2 for insights about this potential) The NP models were initially minimized using
the built-in command in LAMMPS (set up with etol = 10−6 ftol = 10−8, maxiter
= 1000 and maxeval=10000), then we performed a small thermalization of 20000
MD steps with the timestep set to 1 fs on the NP with the velocities initialized to
the desired temperature and with the thermostat with the same settings of the main
simulation. We then simulated different Au NPs at temperatures of 300 K, 400 K,
and 500 K. All MD simulations were conducted in the canonical ensemble using the
LAMMPS’s Langevin thermostat, using a timestep of 5 fs, and a damping parameter
for the Langevin thermostat set to 100 ps. We simulated each NP system for a total
of 2 µs of MD. During the simulations, all NP systems reached a steady state in
the MD regime (equilibrium)[171]. All our analyses were thus conducted on 1000
frames taken every 1 ns along the last 1 µs of each MD simulation.

4.4.2 SOAP analysis

The SOAP spectra of each atom in the NPs (Fig.4.1a) were calculated at each of
the 1000 MD snapshots taken from the last 1 µs of the simulations (every 1 ns).
We thus come out with SOAP datasets containing a total of 309’000, 348’000, or
309’000 SOAP spectra for Ih309, Dh348, and To309 simulated systems respectively,
at each temperature. We used dscribe [345] to generate the SOAP vectors with the
following parameters: rcut =∼ 4.48 Å (corresponding to 110 % of the Au FCC lattice
parameter, which includes in the calculation up to the first two neighbors in FCC,
and up to the third in the HCP case even in case of some small local fluctuations.
This specific value was determined through various tests and trials, and comparisons
with other descriptors, representing the best compromise between computational
cost and retained information, ensuring a comprehensive and precise representation
in our analysis. We set up the lmax parameters for the spherical harmonics to 8, and
the nmax parameter to set up the number of radial basis functions to use to 8. With
these parameters, the SOAP spectrum for each atom is a vector of 576 components
(of which 324 are unique).
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4.4.3 Top–down analysis: similarity, distance and dictionary

To apply the SOAP classification we built a dictionary, with the same approach de-
scribed in the previous chapter: we attempted to create the most complete dictionary
for icosahedral, decahedral, and octahedral NPs’ AEs by choosing the most different
environments from various minimized Au NPs.

Fig. 4.12 The influence of the chosen cut (0.22, 0.17, 0.11 and the used 0.08) on the
dendrogram of Fig.4.4: by increasing the cut distance we reduce the number of clusters,
and so we lose details about the geometry of the AEs. Reproduced with permission from
Ref [171].

To enrich our dictionary, together with the NPs that we effectively simulated
in this work, we also included larger size NPs possessing a higher variety of AEs
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in their ideal state. We obtained a dictionary of 47 elements. To simplify its
usage, we hierarchically classified its elements using the hierarchical clustering
algorithms implemented in scipy[346]. First of all, we used the dsoap (see previous
chapter for the mathematical derivation) for calculating the distance between each
of the environments belonging to the dictionary. Then we created a binary tree
that represents this classification by using the “complete” algorithm for hierarchical
clustering, which at each step couples the closest elements in the set and assigns to
the newly formed couple the largest distance from each remaining element of the set,
and uses the new distance in the next steps until it has completed the classification.
We represent this tree in the dendrogram in Fig.4.4e, where we show that we have
chosen to apply a cut at the distance of 0.08 [dSOAP].

Fig.4.12 elucidates the impact of different cutoff distances (0.22, 0.17, 0.11, and
0.08) on the dendrogram clustering of AEs . As the cutoff distance increases, there is
a notable reduction in the number of clusters, which consequently leads to a loss of
detailed geometric information about the AEs. This figure accentuates the trade-off
between detail and clarity in AE analysis, emphasizing the importance of selecting
appropriate cutoffs to balance comprehensive insight with manageable complexity.
The careful selection of cutoff distances is thus crucial for accurately capturing the
intricacies of atomic arrangements and transitions within the nanoparticle. This cut
at 0.08 [dSOAP] leads to the creation of 10 different groups of dictionary entries
(that can be seen more clearly in Fig.4.5a) with similar geometrical characteristics,
from the original 47 AEs. During the MD simulations analysis, we assigned an
environment to one of these 10 clusters in two steps. The first step is to classify it as
one of the 47 elements of the original environment dictionary: we do this simply by
assigning it to the closest element of the dictionary in terms of the SOAP distance.
The second step is to classify our analyzed environment by assigning it to the cluster
to which its closest reference belongs.



Chapter 5

Sampling real-time atomic dynamics
in metal nanoparticles by combining
experiments, simulations, and
machine learning

This work has been carried out in collaboration with the experimental groups of
Prof. Sara Bals and Prof. Sandra Van Aert at the University of Antwerp (Belgium).
Our study emphasizes the computational results while also briefly summarizing the
experimental methods, reported in subsection 5.4.2 and 5.4.3 of the Methods sections.
For more comprehensive details on the experimental techniques, please refer to the
paper titled "3D Atomic Structure of Supported Metallic Nanoparticles Estimated
from 2D ADF STEM Images: A Combination of Atom-Counting and a Local Minima
Search Algorithm "[331].

The work presented in this section marks a transition from theoretical inves-
tigations to a more complete understanding that integrates both experimental and
computational approaches. A critical aspect of computational simulations is the
challenge of sampling and the risk of becoming trapped in local energy minima.
MD simulations, while powerful for revealing atomic-level dynamics, typically start
from predefined structural models of the systems under investigation. These initial
structures are often idealized and might not fully embody the complexity and het-
erogeneity of NPs synthesized under experimentally relevant conditions, which can
feature a range of defects, dislocations, and surface irregularities, as we described
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in previous chapters. This discrepancy between the starting configurations used in
simulations and the actual structures of NPs in experimental settings may introduce
inaccuracies, specifically in the simulations’ ability to accurately reproduce NPs’
equilibrium dynamics. The main issue lies in the sampling methodology inherent in
classical MD simulations, which explore the potential energy landscape of the system
to predict its behavior over time. However, if the initial structure is an idealized
version, the simulation may only explore a limited portion of the potential energy
landscape, thereby increasing the risk of the system becoming trapped in a local
energy minimum, especially at relatively low temperatures that correspond to the
experimental conditions (300-700 K). These local minima can significantly differ
from the true equilibrium state (the global minimum) of the NP under experimentally
relevant conditions. Consequently, this leads to results that are heavily dependent on
the initial structure, providing only an indicative, rather than accurate, representation
of the NP’s properties and behavior. For this reason, to ensure reliable predictions, it
is crucial to use realistic initial configurations that embody the actual physical state
of the NPs. This approach helps the simulations capture true dynamics and interac-
tions, making the insights more applicable to real-world conditions. Indeed, in this
context, computational simulations also offer several significant advantages. They
allow for direct tracking of atomic movements over time and provide continuous and
detailed insights into microscopic dynamic processes, capturing fast dynamics that
experimental methods might miss. Additionally, they can explore a wide range of
conditions and variables, including different temperatures, pressures, and chemical
environments.[171, 54, 347–351]

In contrast, state-of-the-art experimental approaches can capture the actual physi-
cal state of NPs under real-world conditions, reflecting true environmental conditions,
including defects, dislocations, and surface irregularities[331]. This real-world appli-
cability ensures that the results are relevant and accurate under practical conditions.
Furthermore, experimental data provide a fundamental check for computational
models, helping to refine and validate simulations, thus ensuring that theoretical
predictions align with observed behaviors. Recent advancements, such as annular
dark-field scanning transmission electron microscopy (ADF-STEM), have enabled
the accurate reconstruction of the 3D atomistic structures of NPs from microscopy
images taken at temperatures relevant to various applications. However, experi-
mental approaches also have limitations. A major issue is the discrepancy between
the frequency of image acquisition and the timescales of NP dynamics. Typical
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ADF-STEM setups capture snapshots of the nanoparticle structure at intervals of
approximately 0.1 to 1 second[331]. However, the real atomic dynamics often occur
on much shorter timescales, typically in the ps to ns range. This limited time resolu-
tion hinders the ability to track individual atomic movements accurately, which is
crucial for our analysis and essential for studying the dynamics of the system with
the high resolution needed to resolve the specific behaviors we aim to understand.

Integrating experimental data into computational analyses is essential to over-
come the limitations of each method when used independently[331, 352–355]. By
grounding simulations in experimentally derived structures, we can enhance their
accuracy. This strategy enables a more precise exploration of the potential energy
landscape, ensuring that simulations reflect the true dynamics of NPs as they exist in
real-world applications.

Recognizing these challenges, this chapter introduces an innovative, integrated
experimental-computational strategy designed to resolve the atomistic dynamics
of metal NPs under conditions that represent real-world scenarios. This approach
enables a detailed exploration of the NPs’ dynamic properties over timescales and
conditions directly relevant to their applications. By combining the strengths of both
methods, we can achieve a more comprehensive and realistic understanding of NP
dynamics and properties, ultimately leading to more accurate and applicable insights.

Full bibliographic reference: Cioni, M., Delle Piane, M., Polino, D., Rapetti, D.,
Crippa, M., Irmak, E. A., Van Aert, S., Bals, S., & Pavan, G. M.(2024). "Sampling
Real-Time Atomic Dynamics in Metal Nanoparticles by Combining Experiments,
Simulations, and Machine Learning." Advanced Science, 2307261. Wiley Online
Library. 1

5.1 Introduction

As described in Chapter 1 and shown in the previous Chapter 4, the high surface
mobility of Au NPs is a characteristic feature that plays a critical role in determining
their unique properties [327, 171, 356]. This is particularly important in small NPs,
where the high surface-to-volume ratio results in a significant proportion of atoms

1My contribution to this article, as the first author, involved collaborating with the experimental
team, performing the simulations and analyses, contributing to the interpretation of the results, and
contributing to the writing of the manuscript.
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residing on the NP surface, displaying greater mobility compared to those in the bulk
even at fairly low temperature.[330, 357, 320, 358] The dynamic atomic rearrange-
ments occurring on the NP surface significantly influence the optical, electronic,
and catalytic properties.[359, 321, 327, 360, 361] However, the high atomic mobil-
ity of NPs introduces substantial challenges for both experimental and theoretical
investigations into NP structures. Capturing both the static structure and real-time
atomic dynamics of NPs is crucial to fully grasp their behavior and effectively control
their properties for different applications. Recent experimental advancements, as
described in Chapter 1, such as annular dark-field scanning transmission electron
microscopy (ADF-STEM) have allowed reconstruction of the atomistic structure
of NPs from microscopy images taken at relevant temperatures.[330, 322, 331]
However, the time resolution of these techniques is insufficient to capture the rapid
atomic dynamics, which typically unfold at much shorter timescales (ps to ns).[171]
Techniques like ultrafast electron diffraction (UED) and high-resolution transmis-
sion electron microscopy (HRTEM) provide enhanced temporal resolution, but
HAADF-STEM stands out by providing indispensable three-dimensional structural
information.[331, 362] Combining HAADF-STEM with MD simulations provides
detailed spatial and 3D structural insights along with higher temporal resolution,
offering a comprehensive approach to understand NP dynamics.[171, 247, 351]
Advanced structural and dynamical descriptors, such as smooth overlap of atomic po-
sitions (SOAP)[202], local environments and neighbors shuffling (LENS)[203], and
TimeSOAP[363], enhanced by ML, allow reconstruction of atomic environments and
dynamics within NPs. It should be noted, however, that such analyses are obtained
from MD trajectories acquired from simulations that start from ideal nanoparticle
structures, which may differ from the structure typical of the same NPs under experi-
mentally relevant conditions. This makes it difficult to guarantee that the extracted
data provide a reliable reconstruction of the equilibrium dynamics of these NPs since
one of the main limitations of classical MD simulations lies in the sampling and in
the risk of entrapment in local energy minima. In this work, we demonstrate the
potential of combining state-of-the-art experimental and computational approaches
to overcome these limitations. By integrating high-resolution ADF-STEM images
with MD simulations, we capture the real-time dynamics of Au NPs. This method
provides a comprehensive analysis of NP dynamics, closely reflecting real-world
conditions. This approach begins with the acquisition of high-resolution ADF-STEM
images, enabling precise 3D reconstructions of the NP.[331] These reconstructed
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structures serve as starting points for MD simulations, allowing us to study the
dynamics of Au NPs at different temperatures. Our analysis shows that the dynam-
ics reconstructed from MD simulations represent an equilibrium ensemble. This
combined experimental/computational approach provides deep insights into the real
atomic-scale dynamics of metal NPs and links these to their macroscopic properties.

5.2 Results

5.2.1 A combined experimental-computational approach

The research group of our collaborators S.Bals and S. Van Aert recently developed
a novel approach that combines atom-counting and iterative local minima search
algorithms to reconstruct the 3D structure of supported NPs from experimental
single-view 2D ADF-STEM images (Figure 5.1a).[331] This technique has been
applied for example in the demonstrative case study reported herein to Au NPs
supported on CeO2 at a temperature of 673 K. The methodology begins with ADF
STEM imaging, essential for attaining atomic-level details of NPs. This step is
enhanced by advanced atom-counting techniques employing statistical parameter
estimation, which precisely determines the composition and density of the NP. The
data obtained from these techniques lay the groundwork for the next phase, involving
the integration of these findings into MD simulations to create a preliminary 3D
model of the NP[331].

Further refinement of this initial model is achieved through a local minima search
algorithm which adjusts atomic positions within the model and thoroughly evaluates
the system’s energy landscape. These careful adjustments are key in approximating
the NP’s real structure.

An innovative element of this approach is the incorporation of molecular dy-
namics structural relaxation at an experimental temperature of 673 K. This step is
vital to ensure that the reconstructed models are not only theoretically accurate but
also realistically represent the NPs’ behavior under specific, experimentally rele-
vant temperature conditions [364–368]; indeed, aligning the models with real-world
scenarios is crucial for their practical applicability.

Validation of the reconstructed 3D structures is conducted through an extensive
comparison with experimental data. This validation focuses on the precision of atom
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positions and the overall morphology of the NPs, ensuring that the reconstructed
models are not only theoretically reliable but also congruent with observed exper-
imental behaviors. This step is crucial in confirming the practical viability and
accuracy of the reconstructed models.

For more details on the 3D reconstruction process, see the Methods section
(subsections 5.4.3 and 5.4.2 ). Additionally, for a more complete overview and
detailed methodological insights, reference paper [331] offers extensive information.

In particular, this approach was used as a first step to generate a series of atom-
counting maps from 10 snapshots taken every 0.6 s along a 6 s of ADF-STEM
sampling( Figure 5.1a). This represents the intrinsic limitations of this experimental
approach: a 0.6s is too long to track the motion of atoms between two consecutive
frames. In Figure 5.1b we present snapshots of the obtained NPs, color-coded based
on a scheme that corresponds to the number of atoms in each atomic column. As
previously mentioned, the reconstructed 3D structures of the NPs correspond to
10 frames, captured over a total observation time of 6 s using ADF-STEM[331]
(Figure 5.1c). Although the time intervals between the reconstructed NP structures
are relatively long (0.6 seconds), they significantly contribute to our comprehension
of atomic surface dynamics in environments similar to practical applications[365,
364, 366, 368]. This provides a profound insight into the dynamic activities on NP
surfaces, reflecting conditions encountered in real-world experimental settings.

To extract information on the atomic environments emerging on the NP during
the experimental data acquisition, we employed the same approach[171] based on
SOAP power spectra[202] (Figure 5.1d), to analyze and better interpret what happens
into the atomic structure of these real NP experimental snapshots. For this reason,
in this chapter, the section concerning the choice of SOAP parameters will not be
explained as it is the same as in the previous chapter.

The extracted SOAP spectra ( 2 × 106 for each of the 10 frames) of the Au
atoms have been then classified based on a general AE dictionary[171] of SOAP
AEs, the same as the previous Chapter 4 (see subsection 4.2.2). Such comprehensive
AE dictionary, not explained in detail in this chapter, includes 47 SOAP spectra of
all the AEs present in ideal Au NPs (at 0 K) of various sizes and morphologies at
0 K (Figure 5.1d). This provides us with an essential tool for monitoring the AEs
that are present in the real NP under experimental conditions and classifying them
based on their similarity to the AEs contained in the dictionary. Figure 5.1e displays
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the 47 AEs defined in our SOAP environments dictionary, presented in a circular
dendrogram arranged according to their similarity based on SOAP fingerprints. The
dotted inner circle indicates that truncating the dendrogram, we consider only SOAP
distance larger than 0.8 as relevant [171] (an excessive resolution increases the noise
and would emphasize irrelevant differences). This choice simplifies the dictionary
from 47 to 11 without sacrificing significant variations[171] (Figure 5.1f). In the
adopted color scheme of the dendrogram of Figure 5.1f, the colors belonging to the
purple palette refer to native AEs typical of ideal truncated octahedral NPs, while all
the other colors identify AEs that are more similar to AEs proper of other ideal NPs’
morphologies (e.g. icosahedral, decahedral, etc.)

Considering such "coarse-grained" dictionary, we colored the atoms in the ten
experimentally reconstructed NP structures based on the similarity of their SOAP
atomic environments to those within our SOAP dictionary (Figure 5.1g). This first
analysis reveals the dynamic nature of the atomic environments within the NPs
in experimental conditions over the 6-second data acquisition, during which the
atoms of this octahedral Au NP move, and non-native AEs (colored in yellow, green,
and red) emerge on the NP surface. Far from being static, these NP structures
show remarkable variability driven by thermal effects. The positions of vertices
and edges within the NP displayed substantial shifts, underscoring the ongoing
structural transformations. Our method thus provides a unique view of the atomic-
level dynamics of NP, using Machine Learning (ML) analysis to illuminate structural
evolution from experimental static frames.

Such atomic-level ML analysis underlines that understanding the atomic dy-
namics present in these NPs is key to understand their properties in experimentally-
relevant conditions. While these experimental snapshots of the NP structures provide
initial important evidence, they are spaced by time intervals of 0.6 s (Figure 5.2a).
This is a substantial time gap, especially considering that atomic dynamics typically
unfold on much faster timescales, such as pico- and nano-seconds. This temporal
mismatch makes it impossible to reconstruct the atomic dynamics directly from such
ADF-STEM reconstructed snapshots, as, e.g., it is not possible to attribute an identity
to the individual atoms nor to monitor their movements from one snapshot to the
subsequent one.

To address this issue, we utilized the high spatiotemporal sampling resolution
provided by atomistic MD simulations and the advantage that MD can keep track of
the atomic ID over time allowing for more detailed tracking of atomic movements.
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Fig. 5.1 Stepwise process of applying the SOAP analysis to the experimental structures
of Au NPs. (a) Left: Schematic representation of the High-Angle Annular Dark Field
Scanning Transmission Electron Microscopy (HAADF-STEM). Right: Ten consecutive
ADF-STEM frames of observed Au NPs at 673 K. (b) Atom-counting maps corresponding
to the ten frames from (a), with the color indicating the atom count per column. (c) Final
reconstructed 3D structures of the observed NPs. (d) Top: Each atom in an Au NP (depicted in
blue) is assigned a SOAP vector, with the cutoff radius shown as a transparent sphere (rcut =∼
4.48 Å, corresponding to 110 % of the Au FCC lattice parameter). Bottom: Construction
of a SOAP dictionary of atomic environments (AEs) using icosahedral (blue), decahedral
(green), and truncated-octahedral (purple) Au NPs, which also includes larger NPs for
comprehensive AE representation. (e) A global dendrogram connecting AEs from different
NPs. This dendrogram visualizes hierarchical clustering of AEs based on SOAP distances,
with branches connecting the different clusters. By cutting at a SOAP distance threshold of
0.08 we form a coarse-grained dictionary, reported in (f). (g) Final 3D structures, with atoms
colored according to the SOAP classifications from the AEs dictionary. Reproduced with
permission from Ref [342]
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5.2.2 Combining atomistic-scale MD simulations and experimen-
tal level sampling

We started 10 independent MD simulations using the 10 experimentally reconstructed
configurations depicted in fig. 5.2a, with each starting structure containing a varying
number of atoms ranging from 1031 to 1044. These simulations were conducted
at temperatures of 300 K and 673 K (consistent with experimental conditions[365,
364, 366, 368]), enabling us to obtain trajectories from which it is possible to
track the movements of the individual atoms in the NP and between the AEs that
emerge within them; in these simulations, we employed the SMATB potential
[227, 271, 339], which has been demonstrated to accurately describe the dynamics
of gold NPs[171] as shown in previous Chapter. It is important to note that we did
not include the substrate in our simulations. For more detailed information on our
simulation methodology, please refer to subsection 5.4.1 of the Methods section.
Each MD simulation lasts for 2 µs, and we collected 1000 frames (every 1 ns in
MD) from the final 1 µs of the trajectory. This allows for a sampling frequency of 1
ns−1, which is a sufficient sampling frequency to track the atomic motions of this
system in 300-673K conditions. During this period, we computed SOAP spectra
for all the atoms in the NP. It’s important to mention that the chosen time window
for our analysis ensures that any observed communication or exchange among the
AEs pertains to processes occurring on the nanosecond timescale or slower. This
effectively reduces the likelihood that the AE exchanges are influenced by thermal
vibrations. This led to ∼106 SOAP spectra for each MD, comprehensive for 107

SOAP spectra for all the 10 MD simulations. As demonstrated in the previous
Chapter (see subsection 4.4.2 of Chapter 4 ), we utilized a cutoff radius of 4.48 Å,
corresponding to 110% of the lattice pair distance of gold, which includes in the
calculation up to the first two neighbors[171]. The selection of the cutoff is a critical
decision[369], and for this reason, this specific value was chosen to achieve a balance
between computational efficiency and the fidelity of information retained, ensuring
a thorough and accurate representation in our analysis[171]. Differently from the
previous analysis on the static experimental frames, these MD simulations permit
us to track the SOAP AEs to which each atom of the NP belongs to over time. This
allows us, e.g. to quantify the propensity of each atom to remain in a certain AE
or to undergo a transition to a different one at every δ t (1ns). By delving deeper
into the dynamics of these atomic environments, we were able to quantify the NP’s
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stability and analyze the dynamics of exchange between its various constitutive AEs.
We generated histograms from the final 1 µs of the MD simulations, which provide
an average atom count associated with the population of each AE (Figure 5.2c).
Comparing the histograms obtained, e.g., at 673 K vs those of the starting NP
configurations, provides information on the NP stability and it is interesting to note
how the AEs histograms calculated from the MD at 673 K do not deviate much from
those obtained from the experimental structures, despite the considerable dynamics
observed along the MD.

Figure 5.2b-c show that during the various MD runs, dynamic atomic rearrange-
ments can be observed; vertical arrows in the histograms indicate AEs that are not
present in the starting frame, but that may emerge with temperature: e.g. red "v" AE.
Furthermore, Figure 5.2b-c (left to right) show that, while some variability between
the MD runs can be expected, the histograms do not change much in the various
systems configurations. This implies that these MD simulations offer a detailed
view of the atomic dynamics within these NPs. By observing them at an atomistic
resolution over microsecond-long time windows, we can track their equilibrium
trajectories under conditions that are relevant to real-world experiments. This allows
concatenating the various 1µs-long analyzed MD trajectories, obtaining 10 µs of
sampling of the equilibrium MD of the Au NP.

We repeated the same analysis, as a control case, by running the 10 MD simula-
tions at a lower temperature (300 K). In this case, the analysis shows, as expected, less
dynamic activity in the NPs compared to 673 K. However, the overall conclusions
remain the same [342]

The next step involves a statistical analysis of the SOAP data, which allows
us to quantify the dynamics of the NP. Figure 5.3a illustrates the initial structures
taken at 0, 2.4, and 6 s, and the corresponding structures obtained after 2µs of MD
at 673 K (color code according to the dictionary of Figure 5.1) The NP surface
maintains its structural integrity throughout the simulation, suggesting that the
truncated octahedral structure remains relatively stable overall, despite the high
atomic mobility. To characterize the intricate atomic dynamics present in the NPs,
we calculated the transition probabilities for atoms between these AEs.

The transition matrices in Figure 5.3b indicate the probability of an atom, with a
specific AE at time ti, remaining in the same AE (diagonal entries) or transitioning
into a different AE (off-diagonal entries) within the analysis time interval (δ t).
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Fig. 5.2 Schematic representation of the combined approach for capturing atomic-
scale dynamics in Au NPs. (a) Experimental frames showing the time resolution of 0.6
s, highlighting the temporal gaps between the snapshots. (b) Final frames after 2 µs MD
simulations, with atoms colored according to the dictionary developed from the SOAP
spectra analysis, effectively filling the temporal gaps between experimental snapshots. (c)
Histograms displaying the average count of atoms associated with each atomic environment,
providing a measure of system stability. Standard deviations as vertical black lines. (d)
Conceptual representation of the full 6-second movie reconstruction, with gaps filled by MD
simulations. Reproduced with permission from Ref [342].

At 673 K, all cells in the transition matrix are colored, indicating non-zero
transition probabilities across all AEs within the NP. This observation indicates a
marked increase in atomic mobility and interchange between various NP regions at
higher temperatures [171, 172, 248, 204].
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A visual representation of these dynamic exchanges is well rendered by the use
of chord diagrams of Figure 5.3c, where the size of the arc sections is proportional
to the population of the various AE, while the width of the chords corresponds to the
intensity of atomic exchanges between them. At 673K, these analyses show high
communication and dynamic exchange in the NP. This does not pertain to surface
AEs only but this atomic exchange can also be observed between the innermost
NP bulk (b) and the least coordinated surface AEs, e.g. vertexes AEs (v and v′),
or between sub-surface and surface AEs (ss→v and ss→e’). On the other hand, at
300K, dynamic exchanges are predominantly observed among AEs with similar
coordination numbers, such as v→v’, b→ss, indicating limited atomic mobility and
constrained transitions. Despite the striking internal atomic dynamics observed at
673 K, in such conditions, the NP still preserves its truncated octahedral structure
(Figure 5.3); it is interesting to note that these analyses performed on the MD
trajectories starting from the experimental configurations captured at 0 s, 0.6 s,...,6.0
s provide very similar results (Figure 5.3b-c left-to-right). This demonstrates that
these MD provide reliable pictures of the internal atomic dynamics present in these
NPs in equilibrium regimes and in experimental relevant conditions. Furthermore,
this also allows us to concatenate all data in a unique dataset, useful to improve the
statistical confidence of our analysis.

5.2.3 Reconstructing the realistic atomic dynamics in Au NPs in
experimentally-relevant conditions

Merging together the results obtained from the 10 (independent) MD trajectories,
we could obtain an average and comprehensive picture of the dynamics of Ceria-
supported Au NPs. Figure 5.4 averages the data derived from our MD trajectories
providing meaningful insight into the atomic ensemble’s dynamics and transitions
present in these NPs over the entire experimental sampling timescale. Figure 5.4a and
Figure 5.4c provide an equilibrium representation of the AEs dynamics at 300K and
673K respectively. The average histograms, similar to those in Figure 5.3, confirm
our earlier observations of the AE distribution, showing that the NP’s dynamics
at thermal equilibrium maintain similar characteristics over the full experimental
time-scale. The chord diagrams and transition matrices, displayed in Figure 5.4a
(middle and right) and Figure 5.4c (middle and right), capture at atomistic resolution
the average AEs transition probabilities that characterize such NP in experimental
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Fig. 5.3 Quantitative analysis of atomic transitions and stability in reconstructed Au
NPs at different temperatures. (a) Initial structures at time points 0.0 s, 2.4 s, and 6.0 s,
and the corresponding final structures post-MD simulations at 673K, color-coded according
to the SOAP dictionary. (b) Histograms representing the average number of atoms per
AE during the final microsecond of MD simulations. The leftmost column for each AE
indicates the initial population, with standard deviations represented by vertical black lines.
The absence of certain AEs in the initial structures is denoted by arrows. (c) Normalized
transition matrices demonstrating the probability of atoms remaining in a given AEi (pii) or
transitioning to a different AE j (pi→ j) within a time interval of δ t = 1 ns. Reproduced with
permission from Ref [342].

conditions and in relevant observation timescales, obtained from the 10 individual
1µs MD windows. These average diagrams reveal similar patterns to the ones
observed in (Figure 5.3), taken along 6s of global experimental samplings, providing
a statistically robust perspective of the equilibrium atomic structure and dynamics of
these NPs. The details of panels Figure 5.4b and Figure 5.4d, show how, selecting one
specific AE (e.g. s), from the matrices one can obtain specific transition probability
of the dynamic interconnections with the other ones in the NP.
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Fig. 5.4 Detailed analysis of atomic transitions and mobility in Au NPs across the
experimental time-scale. (a) Equilibrium representation of atomic environments at 673K,
featuring histograms similar to Figure 5.3, confirming AE distribution. The inset shows the
equilibrium 3D structure of the NP, cut to show the interior. In the middle and right panels,
chord diagrams and transition matrices encapsulate the aggregated fluxes and transition
probabilities for the combined trajectories, representing atomic behaviors over the full
experimental time. (b) Focused examination of specific transition probabilities from the
surface (s) AEs at 673K, demonstrating the likelihood of atoms on the NP’s flat faces
transitioning to other AEs. The rightmost panels display the characteristic times (in ns)
of transitions related to surface AEs. (c) and (d) report the same results, but at 300K.
Reproduced with permission from Ref [342].

From transition probabilities, between AEi and AEj (pi→ j) one can obtain infor-
mation on the average lifetimes of different AEs within the NP and on the average
transition rates for the atomic exchange between them. The off-diagonal elements
of the transition matrix, denoted as pi→ j, provide data on the probability for tran-
sitioning from AEi to AE j over the sampling time interval (δ t), which we preset
at 1 ns for our investigation. This choice represents the best compromise between
capturing significant atomic AE exchanges and managing computational costs. This
period effectively balances resolution and computational efficiency, ensuring that
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observed AE exchanges reflect sustained, dynamic processes within the NPs. This
timeframe minimizes the influence of transient thermal fluctuations, focusing on the
more substantial changes we aim to observe, and aligns with our goal of accurately
depicting meaningful dynamics in nanoparticle behavior. We observe a high mo-
bility of atoms within this AE at 673K, where transitions are observed to/from all
other AEs, including the innermost bulk AE, behaving similarly to a viscous liquid.
Specifically, at 673K, surface atoms have a probability of approximately 61% of
remaining in AE s during the 1-ns sampling interval, behaving like a viscous liquid.

This probability increases to ∼ 91% at 300K. However, even at this lower
temperature, transitions from the surface (s) to the concave AEs (c,c′) and edges (e)
can still be observed with probabilities significantly above ∼ 1% (in dt = 1ns).

By dividing pi→ j by dt, one can estimate the transition rate (ki→ j), and con-
sequently calculate the characteristic timescale (τi→ j) expected for each transition
(the reciprocal of ki→ j). The right parts of Figure 5.4b and Figure 5.4d show the
characteristic timescale of transitions involving surface AEs (s). Comparing the data
extracted at 673 and 300K, the transition times diminish substantially at higher tem-
peratures, exemplified by the characteristic timescales for s→c transition shrinking
from ∼ 66 ns at 300K to ∼11 ns at 673K. Such different dynamics as a function of
temperature, are even more pronounced for transitions between the inner AEs; the
interior of the NP is almost static at 300K e.g., the s→ss’ (i.e., surface to subsurface)
transition time drops from ∼ 104 ns at 300K to ∼14 ns at 673K, a diminution of
three orders of magnitude. These analyses demonstrate how such a combined ex-
perimental/computational approach allows achieving a resolution of the ps scale,
to reconstruct the atomic dynamics present over a real 6-second experimental time
window. Such level of detail provides crucial insights, such as, e.g., how long an AE
exists in realistic conditions, which is key to understanding the surface properties of
these NPs.
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5.2.4 Rare local transitions on the NP surface in experimental
conditions

While the equilibrium and average dynamic picture discussed thus far are useful, they
could mask significant local fluctuations, key for the NP properties. Such analyses
based on pattern recognition of the statistically dominant AEs may lose information,
in particular, on fluctuations/transitions that may sparsely occur along the MD
trajectories and that have negligible statistical weight. To address this issue, we have
completed our previous analysis using a different abstract descriptor called "Local
Environments and Neighbors Shuffling" (LENS) [203]. (See Chapter 2 for more
details) LENS allows detecting and tracking rare local fluctuations, by monitoring
how much every Au atom in the NP changes neighbor individual atoms identities
(IDs) every 1 ns along the MD trajectories, which are typically overlooked in pattern
recognition structural (e.g. SOAP) based analyses. Figure 5.5a illustrates the time-
series of LENS signals, denoted as δi(t), obtained from one of the MD trajectories at
300K. These signals were computed starting from the experimentally reconstructed
structure obtained at 2.4 s. Additionally, the figure includes the Kernel Density
Estimate (KDE) of the LENS distribution and the interconnection dendrogram,
covering the final 1µs of our AuNP MD simulation at 300K. Atoms exhibiting
elevated δi(t) values are suggestive of pronounced dynamism within their atomic
environments. These elevated δi(t) values are indicative of considerable variations
in the number and identities of neighboring atoms, signifying notable changes in the
local neighborhood of each atom. Consequently, atoms characterized by persistently
elevated δi(t) values are systematically classified into the more dynamically active
regions. This criterion underpins our methodological approach in differentiating
between various dynamical states of the atoms, with the most dynamically active
clusters comprising those atoms exhibiting the highest values of δi(t).
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Fig. 5.5 Exploring local fluctuations and dynamic domains within reconstructed Au
NPs. (a) Left: Time-series of LENS signals (δi(t)), Kernel Density Estimate (KDE) of the
LENS distribution [203], and interconnection dendrogram for a 1-microsecond window of
our Au NP MD at 300K. The KDE provides an overview of the LENS distribution, while
the dendrogram illustrates the interconnections between dynamic domains. (b) An example
of a local fluctuation, where a small group of Au atoms exhibits rapid diffusion on the NP
surface. Atoms are colored according to the LENS cluster represented in the KDE plot.
The corresponding movements during the MD simulation on the underlying NP surface
are highlighted by black trajectory lines. This dynamic behavior of a localized group of
atoms adds complexity to the overall NP behavior, with potential implications for system
properties and reactivity (c) Four snapshots at different times (indicated above) illustrate the
movement of the aforementioned group of dynamic atoms. The color scheme used is relative
to the simulation time, as represented by the arrow below. Reproduced with permission from
Ref [342].

More precisely, by applying K-means clustering[370] to the LENS data, we
identify 3 distinct environments, represented in the right panel of Figure 5.5a,
characterized by different LENS signals (local dynamics), enabling the construction
of an associated dendrogram illustrating their adjacency.

This detailed dynamic analysis complements our equilibrium SOAP analysis,
highlighting localized dynamic areas amidst a backdrop of relative stability, and
underscoring the complexity of NP behavior. Indeed, in line with the equilibrium
SOAP analysis, the majority of NP atoms remain within a relatively "static" region,
visualized by the green domains. However, a sparse subset of atoms participates
in local transitions and diffusion, leading to the emergence of localized dynamic
regions shown in blue. Figure 5.5b provides an illustrative example of these local
fluctuations, where a few Au atoms demonstrate rapid movements on the NP surface.
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Such infrequent behaviors, which may not be as evident in other analyses like those
in Figure 5.4, are effectively detected by LENS, providing a deeper insight into the
microscopic and macroscopic features characterizing the atomic dynamics of these
metal NPs under experimentally relevant conditions.

5.3 Conclusions

In this work, we presented a combined experimental/computational approach that
allows us to characterize the (complex) atomic dynamics present in Au NPs in real-
istic relevant conditions. Thanks to the capability of high-resolution ADF-STEM
microscopy, we demonstrate the potential of this approach by obtaining ten images
of a real Au NP every 0.6 seconds along a total of 6 seconds of experimental data
acquisition. These images are then used to reconstruct as many atomic precise 3D
structures of the Au NP, which are then used as a starting point for ten microseconds-
long independent MD simulations. By integrating advanced descriptors of atomic
environments with machine learning, we can track the atomic-scale rearrangements
of the individual atoms on the NP over time, combining in this way the high spa-
tiotemporal resolution of fully atomistic MD and the advantage of starting from
multiple (time-decorrelated – experimental dt=0.6 s) NP structures. This allows us
to minimize the typical sampling limitations of MD simulations starting, e.g., from
initially perfect (ideal) NP structures.

MD simulations starting from NP structures taken every 0.6 s along a multi-
second experimental data acquisition show consistent and conserved atomic dynam-
ics within the NP. This is true both at 673 K (same temperature as during the data ac-
quisition) and at 300 K (see Figure 5.2, Figure 5.3 and Figure 5.4). Although the simu-
lations at 673 K show pronounced atomic dynamics, the nanoparticle maintains its oc-
tahedral structure. This stability, observed under experimental conditions, illustrates
that the dynamics in our simulations align with the equilibrium behavior expected
in practical environments where NPs are actively employed.[365, 364, 366, 368]
This means that such an approach allows us to reconstruct in a reliable – notably,
with a spatial resolution of the Å, and the time resolution of the picosecond –
way the structural dynamics that such metal NPs have when observed along an
experimentally-relevant seconds time-window.[331]
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The ML approach used herein to analyze the MD trajectories allows us to identify
and classify all the AEs that emerge within the Au NP in realistic conditions, and
to quantify, e.g., their lifetimes, transitions, etc. The dynamics reconstructed via
SOAP and LENS data identify dominant average dynamic behaviors as well as
sparse concerted movements, such as the "terrace sliding" on the NP face shown in
Figure 5.5 that, being rare events, are typically difficult to capture with conventional
pattern recognition approaches. On the one hand, such insights provide a new,
exquisitely dynamic (qualitative) view of these atomic NPs. At the same time,
the analyses of these MD simulations provide a useful approach to interpret and
rationalize, in the future, the properties of such NPs in experimentally relevant
conditions (e.g., their reactivity, stability, etc.).

We believe that the comprehensive understanding of the internal atomic dy-
namics that it is possible to attain for metal NPs with such a combined experi-
mental/computational approach will offer a fundamental tool for rational control
of NP properties. On a first simpler step, for example, it provides a direct way to
understand the effect of the environmental conditions on the behavior expected from
these NPs. Increasing with the complexity, it will also pave the way toward a better
understanding of the properties of such metal systems, e.g., under the exposure to
various stimuli or revealing, for example, the effect of the interaction with different
entities (e.g., reactants, molecules, etc.) on the structural dynamics of the NP and,
vice versa, the effect of the dynamics of the AEs that populate the NPs on the NPs’
properties (e.g., interactions, reactivity, etc).

In summary, our work not only advances the current state of the art in studying
metal NPs but also highlights the remarkable stability of these systems under realistic
conditions. By integrating experimental data and computational simulations, we
bridge the gap between theory and practice, offering valuable insights into the
dynamic behavior of metal NPs in real-world scenarios. We are confident that
our approach will serve as a foundation for further advancements in NP research,
enabling precise control and optimization of NP properties for various applications.
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5.4 Methods

5.4.1 Atomistic MD details

To simulate the NPs, we used the SMATB[227, 271, 339] potential, available in
LAMMPS [344], acknowledged for its specific application to Au NP. We also validate
our approach through extensive comparison with experimental data, emphasizing
atom position precision and nanoparticle morphology to ensure theoretical and
practical congruence of our models. The NP models were initially minimized using
the built-in command in LAMMPS (set up with etol = 10−6 ftol = 10−8, maxiter
= 1000 and maxeval=10000), then we performed a small thermalization of 20000
MD steps with the timestep set to 1 fs on the NP with the velocities initialized to
the desired temperature and with the thermostat with the same settings of the main
simulation. We then simulated 10 reconstructed Au NPs[331] at temperatures of
300 and 673 K. The number of atoms in each configuration, starting from the first
structure to the tenth, are as follows: 1038, 1031, 1044, 1044, 1047, 1037, 1042,
1030, 1036, and 1035 All MD simulations were conducted in the canonical ensemble
using the LAMMPS’s Langevin thermostat, using a timestep of 5 fs, and a damping
parameter for the Langevin thermostat set to 100 ps. We simulated each NP system
for a total of 2 µs of MD. During the simulations, all NP systems reached a steady
state in the MD regime (equilibrium). All our analyses were thus conducted on 1000
frames taken every 1 ns along the last 1 µs of each MD simulation, during which the
populations of all detected AEs are plateaued[342]. It is important to note that in
our simulations, we did not explicitly include the ceria (CeO2) substrate on which
the Au NPsarticles are often supported. [371, 367, 372, 373] Instead, to mimic the
effect of the substrate on the NPs, we applied a potential to the last layers of the NPs.
This approach was chosen as our primary interest was in understanding the intrinsic
dynamics of the Au NPss themselves, rather than the interactions between the NPs
and the ceria substrate. By focusing on the Au NPs and employing the SMATB
potential[227, 271, 339], which has been shown to accurately describe the dynamic
behavior of these systems [171], we were able to more effectively investigate the
properties and behavior of the NPs under the conditions of interest. A key observation
from our study is that the structure obtained after MD simulations closely resembles
the structure reconstructed experimentally. This similarity indicates that the potential
we applied successfully reproduces the impact of the substrate on the structure
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of the NP. This decision to omit the explicit simulation of the substrate allowed
us to concentrate our computational resources and analysis on the aspects most
critical to our aim. Indeed, including the substrate would have made our analysis
system dependent, and so we opted for keeping our computational framework more
affordable and gaining in terms of generality and applicability.

5.4.2 Atom-counting for NPs at high temperature

The atom counting is based on so-called scattering cross-sections (SCSs), repre-
senting the total intensity of electrons scattered toward the ADF detector for every
atomic column. These SCSs can be quantified using statistical parameter estimation
theory [374]. To achieve this, images are modeled as a superposition of Gaussian
functions using the StatSTEM software. From the estimated model parameters,
which encompass the positions, heights, and widths of all atomic columns, the SCS
values are determined. In a subsequent analysis, the distribution of the SCSs of
all atomic columns is decomposed into overlapping normal distributions, i.e., a
Gaussian mixture model. This allows us to count the number of atoms in a particular
atomic column with single-atom sensitivity. However, to ensure the reliability of
our results, especially when prior information is lacking, we validate our findings
by comparing them to reference SCS values obtained through accurate multislice
simulations. These simulations, conducted using MULTEM [375], account for
the unique characteristics of the detector, including the non-uniformity of the real
detector surface [376]. Furthermore, to achieve the highest level of quantitative
accuracy, we incorporate the temperature-dependent Debye-Waller factors into our
image simulations. This accounts for changes in the root mean square deviation of
Au atoms concerning temperature variations. An appropriate parameterization [377]
is used for this purpose.

5.4.3 Reconstruction based on atom-counting results

To obtain the 3D atomic structure of the Au NP from the estimated number of atoms
in each atomic column, our collaborator applied the proposed method to a simulated
system as a validation step. They used the atom-counts procedure to generate an
initial 3D model of the Au NP by arranging the atoms symmetrically around the
central plane, based on the known specimen orientation ([110]) and the crystal
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structure. Then they fixed the distance between adjacent Au atoms, along the beam
direction, according to the lattice parameter[331].

After this, they employed an iterative local minima search algorithm to construct
the final 3D structure using the starting input model. This process is designed to
comprehensively navigate the energy landscape and prevent confinement to nearby
local minima. In each iteration, a random atomic column was displaced upwards or
downwards within the interval of [-a, a], where "a" represents the lattice parameter
of the FCC Au structure. Based on the resulting change in the system’s energy ∆E,
calculated as the difference between the energy of the new configuration and the
previous one, they computed the Boltzmann probability factor P[347, 378], utilizing
Boltzmann’s constant kB and a selected temperature of 673 K:

P = e
(
−∆E
kBT

)
(5.1)

If P for the candidate structure exceeded a specified threshold, it was accepted
and used for the next iteration; otherwise, the previous configuration continued.
This process was repeated for 2000 iterations, maintaining the structural integrity
of the nanoparticle until significant deviations occurred due to the displaced atomic
columns. A threshold of 0.9 was selected for efficient exploration within the energy
range near the input model, accounting for computational advantages.

Each candidate structure linked to a local minimum underwent MD relaxation
in a canonical ensemble at 673 K for 5 ns using a Nose-Hoover thermostat. Un-
like standard energy minimization, this temperature-specific MD relaxation enables
studying structures observable at elevated temperatures. Indeed, at elevated tempera-
tures, the anisotropy of surface energy diminishes. This phenomenon leads to the
emergence of rounded features in the equilibrium shape, along with the presence of
kinks and steps on the surface. These surface irregularities serve as sites for atom
sources and growth, facilitating the diffusion of adatoms [379]. During the iterative
search and MD simulations, the EAM potential described Au atom interaction, and
the interaction between CeO2 support and the particle was considered using LJ
interaction[331].

To select the most plausible 3D structure, a fitness function (f) was defined.

f =
E

atom
+αχ (5.2)
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It incorporated the average potential energy per atom ( E
atom) and a quantitative

goodness-of-fit measure (χ) of candidate structures with the reference observation.
The fitness function balanced E

atom and χ using an empirically chosen weighting
parameter (α). This function’s design is taken from Yu et al.[380], utilizing atom
counts and projected atomic column displacements for the discrepancy definition.

The minimum in the fitness graph yielded the final 3D structure aligning best
with the reference ADF STEM image in terms of atom count and projected atomic
column position[331]. The retrieved structure primarily comprises 100 and 111 facets
separated by edges and corners. A quantitative comparison with the exact 3D model
of the reference image verified the proposed methodology[331]. Discrepancies in the
number of atoms between reconstructed and original input model atomic columns
were minimal, attributed to methodological limitations and atom movement during
MD relaxations. Surface structure analysis highlighted an accuracy of over 95%
in identifying the reconstructed Au NP’s surface structure[331]. The iterative local
minima search algorithm was then applied to reconstruct the 3D structure of the
experimentally investigated NPs of Figure 5.1g

It is important to note that in our case, images are recorded sequentially. The
recording dwell time per pixel in this ADF STEM experiment is 0.6 µs, and the
total recording time required to capture one atomic column is therefore in the range
of several microseconds. During this time, the atomic structure is likely to be
averaged out experimentally. Each atomic column is revisited after 0.6 seconds. This
sequential recording approach introduces inherent temporal averaging, which can
contribute to mitigating the effects of atomic vibrations and enhancing the overall
signal-to-noise ratio. It effectively accounts for the dynamic nature of atomic motion
during imaging, particularly at elevated temperatures. By revisiting each atomic
column within a relatively short time frame, the experiment captures a series of
atomic snapshots, contributing to a more accurate representation of the dynamic
behavior of the NP’s atomic structure.

In conclusion, the integration of atom-counting with an iterative local minima
search algorithm, incorporating temperature effects and particle-support interaction,
facilitated the accurate and precise reconstruction of the 3D structures for both
simulated and experimentally observed supported NPs. Unlike approaches solely
relying on energy minimization, our method outperforms previous techniques that
combined 3D atom counting with MC or MD simulations. This approach overcomes
inherent limitations by effectively navigating the local energy landscape to pinpoint
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the local minimum corresponding to the imaged NP structure. This capability
enables the successful estimation of target structures, encompassing atomic column
positions and surface atomic configuration, as observed in ADF STEM images. Thus,
our methodology offers a robust means to retrieve comprehensive 3D atomic-scale
insights into stable and metastable structures in experimental relevant conditions.

5.4.4 Temporal analysis

To investigate the temporal behavior, we calculated transition matrices based on the
cluster information of each atom throughout the simulation [248, 204]. Transition
matrices are constructed by accumulating a table where the elements represent the
number of transitions from state i to state j, or from state i to state i, observed at
each time step. We further obtain the probabilities for an atom to transition to a
specific atomic environment (or to remain in the same environment) after each time
step (with a time interval of δ t = 1 ns in our analyses) by normalizing each row
to 1. In the figures presenting the transition matrices, unobserved transitions are
denoted by blank squares. By employing these methodologies, we were able to
perform a detailed analysis of the atomic environments and their temporal behavior
in the simulated systems. We note that the 1 ns timeframe chosen for our analysis
is crucial in distinguishing processes occurring on the nanosecond scale or slower.
This consideration significantly reduces the likelihood that the exchanges between
atomic environments are merely attributable to thermal vibrations. Additionally, the
SOAP spectra for each atom in the NPs were calculated based on 1000 molecular
dynamics snapshots, taken every 1 ns from the last microsecond of the simulations.
This approach, which uses unprocessed atomic positions, is critical for an accurate
representation of the dynamics within the NPs.



Chapter 6

Local Dynamic Descriptors in the
study of metallic systems

The macroscopic behavior of complex systems is significantly influenced by local
fluctuations, which are critical for understanding the dynamics of these systems but
that are typically difficult to detect and control[203, 363]. These rare events are cru-
cial in various phenomena, including nucleation, defect emergence and propagation,
phase transitions, and triggered atomic motions in metal systems[203, 363, 171, 342].
Understanding and managing these fluctuations are key to advancing our knowl-
edge of these processes. As highlighted in Chapter 2, to enhance the analysis and
interpretation of these complex processes, conventional human-based descriptors
are progressively being replaced by abstract descriptors[202, 381–384, 204, 385],
often combined with supervised and unsupervised ML methods[171, 172, 386–
389, 248, 390, 261, 391].

While human-based descriptors can provide an accurate understanding of in-
tricate physical-chemical mechanisms, they also heavily rely on prior knowledge
of the system. This limits their transferability among different systems. The de-
sign and the use of abstract and high-dimensional descriptors allowing for more
general representations and providing a broader perspective on system behavior
would guarantee a more general applicability to various systems. Consequently,
typical approaches based on dimensionality reduction principles (e.g., linear PCA,
kernel-PCA[392], t-SNE[393]) are frequently employed to extract information from
such datasets. The reduced datasets are then classified using diverse clustering meth-
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ods (e.g., KMeans[394], Gaussian Mixture Models (GMM)[395], DBSCAN[396],
HDBSCAN[297]) to facilitate interpretation.

However, when relying on structure-based descriptors, these approaches may
have limitations. While they effectively detect dominant structural environments in
the system, they may fail to capture local time-dependent events that are sparsely
observed within the trajectory. These transitions, although statistically infrequent,
play a crucial role in the overall behavior of the system[203, 363]. The absence
of an adaptive resolution capable of capturing non-dominant events presents two
significant challenges: firstly, it results in a loss of information by failing to detect
fluctuations within the system; secondly, these fluctuations may be inaccurately
classified within the dominant clusters, thereby contaminating them[234].

Thus far, in the works presented in this thesis, we have primarily focused on
the descriptions provided by SOAP as high-dimensional descriptors for charac-
terizing the most prevalent and persistent atomic environments in our metallic
systems[172, 171, 342]. However, in the last section of the previous chapter, through
the introduction of LENS-based analysis[203], we highlighted the advantages of
using a dynamic descriptor to capture these rare (less statistically significant) but
crucial phenomena that get typically lost in SOAP-based pattern-recondition analysis.
(see Figure 5.5).

Starting from these considerations, the first section of this chapter presents the
results of applying LENS and SOAP to the Cu(211) surface, already studied in
Chapter 3. The results reported here are part of the work: Crippa, M., Cardellini, A.,
Cioni, M., Csányi, G., & Pavan, G. M. (2023). "Machine learning of microscopic
structure-dynamics relationships in complex molecular systems." Machine Learning:
Science and Technology, 4(4), 045044. DOI: 10.1088/26322153/acf1e2[203].1

The second part will discuss the application of LENS to analyze the deformation
of a copper system, as examined in our ongoing project (preprinted not yet available)
"From Local Environments to Overarching Behavior via Tracking and Relating
Structural and Dynamical Events".2 We will demonstrate how LENS can capture
collective phenomena that are essential for understanding the physics of the system.

1My contribution to this manuscript involved analysing and interpreting the results for the Cu
FCC-211, which are reported in this chapter.

2My contribution to this work involved performing simulation and analysis for the Cu sample
reported in this chapter.
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6.1 Introduction

The primary goal of this chapter is to illustrate the limitations of relying solely on
structural descriptors for understanding dynamically evolving metallic systems. To
achieve this, we employed machine learning in the study of microscopic structure-
dynamics relationships in metallic systems, demonstrating the advantages of com-
bining different descriptors to enhance our understanding.

In the first part of this chapter, we will show how to improve the accuracy
of structural and dynamic classifications by integrating dynamic descriptors such
as LENS[203] with structural descriptors like SOAP[202]. This approach aims
to reduce noise and degeneracy issues, providing deeper insights into microscopic
structure-dynamic relationships. Combining these descriptors offers a comprehensive
characterization of complex systems, revealing the origins of dynamic fluctuations.
In the second section, we will present an example demonstrating LENS’s ability
to detect dynamic events that SOAP cannot capture, specifically focusing on the
dislocation of a copper sample. This example will highlight LENS’s potential in
identifying crucial dynamic phenomena essential for understanding the physical
properties of the system. The results from this project will soon be submitted as a
preprint.

6.2 Machine Learning of microscopic structure-dynamics
relationships in complex molecular systems

6.2.1 Results

After the introduction of the new SOAP&LENS descriptor and detailed methodolo-
gies in Chapter 2, we now explore their practical application to a Cu(211) FCC metal
surface [172]. This DPMD simulation at T=600 K reveals that this slab displays
a structurally diverse surface with intricate internal atomic dynamics (Figure 6.1a,
right). Understanding the underlying mechanisms behind such dynamics is essential
for comprehending the properties of such metal systems [244–246].
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Fig. 6.1 Flow of the analysis. (a) FCC 211 copper slab snapshots colored by atom coor-
dination (excluding bulk) at t=0 ns and after 75 ns of an MD trajectory at T=600 K. (b)
LENS and SOAP: given the local neighborhood (cyan sphere) of each atom (red atom) in
the system, LENS tracks the identity of the neighbor atoms within it (no information on
their geometrical organization is retained), while SOAP captures their structural arrangement
(without tracking their identity: it is a permutationally-invariant description). (c) SOAP-
based analysis of Cu(211) system. Left: HC-based dendrogram and dendrogram cutting,
defining the merged macro-clusters. Middle: PCA of the SOAP dataset (first two principal
components), colored based on the detected macro-clusters. Right: chord diagram (fluxes)
and transition probability matrix for the dynamical transitions between the macro-clusters
(SOAP environments). Bottom: surface MD snapshots where atoms are colored based on
the classification: bulk atoms in green, sub-surface in orange and red, surface "valleys" in
yellow, faces in cyan, and edges in blue. (d) LENS analysis of Cu(211) at 600 K. Left: LENS
time-series and classification.[203] Right: chord diagram (fluxes) and transition probability
matrix. Bottom: MD snapshots with atoms colored based on the LENS clusters: more/less
dynamic atoms in brighter/lighter colors. Adapted with permission from Ref [234].

We have already observed that a structural-descriptor-based analysis, such as
using SOAP combined with dimensionality reduction and density-based cluster-
ing, captures the most prevalent and dominant conformation domains within the
system.[172, 203, 363]. In contrast, a pure LENS analysis, based on the reshuffling
of the neighborhood over time, captures the dynamical features of the system (see
Figure 6.1b).

To investigate both the structural and dynamical properties of the Cu(211) sys-
tem, we adopted a similar bottom-up protocol as described in previous chapters.
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This strategy includes, as a first step, a representation of the system via the SOAP
descriptor. One SOAP spectrum is extracted for each of the 900 atoms (three top-
most layers, although the SOAP spectra also consider the presence of the 1500
bottom-side atoms as neighbors, they are not included in the analysis because we
are interested in the dynamics of the surface[172]) in 482 snapshots taken every
∆t=0.3 ns along 145 ns of MD simulation, for a total of 482×900 spectra. A PCA is
then used to reduce the dimensionality of the SOAP spectra dataset, considering the
first n-PCA components to retain at least 99.5% of the variance. An unsupervised
clustering algorithm (HDBSCAN*[297], see Methods sections) is finally adopted to
rationalize the data and identify the dominant AEs on the surface[234]. From the
atoms’ transition between the clusters over time, we compute a transition probability
matrix, as already described in Chapters 3,4 and 5. From the transition probability
matrix, we construct a Hierarchical Clustering (HC) based dendrogram merging the
clusters with high dynamic interconnection. The dendrogram is cut to retrieve only
meaningful clusters, colored accordingly in the PCA plot of Figure 6.1c, where only
the first two PCA components are reported.

The results demonstrate how SOAP can successfully distinguish diverse structural
environments within this system, including the bulk (green), subsurface (orange and
red), surface valleys (yellow), faces, and edges (cyan and blue), identified in different
colors in Figure 6.1c. The dynamic interconnections between the various clusters on
the surface are also represented by the chord diagrams in Figure 6.1c on the right.
In these chord diagrams, the dimensions of the arcs stand for the population of the
various clusters, while the dimensions of the strings connecting them give visual
information on how pronounced the atomic flow is in ∆t, and thus on their dynamic
interconnection. Moreover, we also obtained the transition probabilities matrix (% to
undergo transition in ∆t=0.3 ns) between the HC-merged clusters (Figure 6.1c right).

Separately, we also performed a LENS analysis (see Methods for detail) on the
same 482 snapshots extracted by the same MD trajectory. This analysis of the system
reveals intriguing surface events that are not captured (or highlighted) by the static
SOAP-based analysis of structure as described above. Specifically, a few Cu atoms
are seen to detach from the crystalline structure of the surface and diffuse on it very
fast. On the one hand, since these diffusing atoms are characterized by a high rate
of reshuffling of their neighbors, they are clearly identified by LENS as a separate
environment in the dataset (Figure 6.1d). On the other hand, a comparison of Figure
6.1c and Figure 6.1d shows how, since these points are sparse and have negligible
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statistical weight in the dataset, these are overlooked in a pattern recognition approach
such as that, for example, of Figure 6.1c. In particular, in the SOAP analysis of
Figure 6.1c, it is possible to note that the diffusing atoms (magenta in Figure 6.1d),
are merged into the SOAP cluster identifying the edges of the Cu(211) surface. This
merging causes two problems: it distorts the representation of the SOAP cluster and
results in the loss of important information about dynamic events.

We developed a combined approach based on the basic assumption that a struc-
tural environment at a certain time might influence the dynamical events within
the subsequent time interval. Starting for example at time t1, a SOAP spectrum pt1

i

is computed for each particle i in the system. We also calculate its LENS value
for the immediately subsequent time interval δ

t2−t1
i . By including the LENS term

as an extra component into each SOAP power spectrum, we thus obtain a new
vector χit1 = (pit1 ,δ t2−t1

i ) containing information on the structural properties in
the neighbor environment surrounding atom i at time t1 and its evolution in the
subsequent time interval t2 − t1. The SOAP spectrum and LENS scalar component
are opportunely normalized to have the same weight in the dataset (see Chapter
2 for details). Iterating this procedure for the whole trajectory, we thus obtain
a new dataset (SOAP&LENS dataset) comprising N = Nparticle ×N f rames vectors,
each one of dimension n+1, where n is the SOAP spectrum dimension (structural
information) and 1 the LENS (dynamical) component. Such an updated dataset
effectively contains information on the instantaneous environments surrounding each
particle i and how they are prone to change over time at the resolution ∆t (0.3 ns)
of our analysis. This ensures that each vector has n+ 1 components containing
information about the structural environments of each atom’s neighborhood at time
ti, plus information about the fluctuations emerging from these environments in the
subsequent time interval ∆t. This method allows us to delineate a new concept for
classification, as reported in Figure 6.2. On the left side, Figure 6.2a shows the PCA
of the SOAP dataset projected onto the first two PCA components. On the right side,
Figure 6.2a shows the same projection for the new SOAP&LENS combined dataset.
Notably, while the majority of the data has an almost identical distribution on the
two PCAs, a distinct cloud of points appears as evidently separated from the rest in
the combined dataset (top-right: highlighted by the red circle).This identifies a new
environment that, in the combined SOAP+LENS analysis, appears separate, whereas
in the SOAP-only analysis, it was merged into other environments.
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Fig. 6.2 Combined SOAP&LENS analysis of a Cu(211) surface at 600 K. (a) Left:
First two PCA components of the SOAP power spectra of the Cu(211) system. Right:
First two PCA components of the SOAP&LENS combined descriptor: the new cloud of
points emerging in the PCA projection of the χ vector is highlighted by the red circle.
(b) SOAP&LENS based analysis of Cu(211) system. Left: HC-based dendrogram and
dendrogram cutting, defining the merged macro-clusters (accordingly to clusters in Figure
6.1a, except for a new pink cluster). Middle: PCA of the SOAP&LENS dataset (first two
principal components), colored based on the detected macro-clusters and chord diagram
(fluxes). Right: transition probability matrix for the dynamical transition between the macro-
clusters, highlighting the new cluster in pink. (c) Trajectory of an atom detaching from an
edge, running on the surface, and re-entering into the edge. The trajectory is shown both
on the PCA plot and on the snapshots, colored from blue to yellow according to the time
evolution. (d) Three surface MD snapshots colored based on the classification: bulk atoms
in green, sub-surface in orange and red, surface "valleys" in yellow, faces in cyan, edges in
blue, and pink atoms detaching from the edges and running on the surface (an example of
this process is reported in the zoom below). Reproduced with permission from Ref [234].

As shown in Figure 6.2b, unsupervised HDBSCAN* clustering combined with
HC-based merging reveals that such a separated domain on the SOAP&LENS PCA
identifies a distinct, specific local environment. The clustering parameters used for
the analyses of Figures 6.1c and 6.2b are exactly the same. This comparison shows
how the classification of Figure 6.1c (SOAP only) is enriched via the detection of a
new LENS environment identified by the pink color (highlighted by the arrows in
the transition matrix and chord diagram of Figure 6.2b). As done for both the SOAP
and LENS independent analyses, we can reconstruct the evolution of the detected
environments by following the AE belonging to all atoms at every time step (see the
chord diagram and transition probability matrix in Figure 6.2b, right).
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This combined SOAP&LENS analysis offers distinct advantages over the purely
SOAP-based approach. The decoupling of this additional pink LENS environment
not only provides a more complete description of what happens on the Cu(211)
surface at 600 K but also improves the statistical precision in the classification of the
SOAP environments. Differentiating the structural from the dynamical environments
reduces errors in detecting the SOAP AEs in the SOAP&LENS dataset. The PCA
area identified by the red oval in Figure 6.2b, which corresponds to a well-defined
LENS AE, merges into the SOAP AEs in the PCA of Figure 6.1c, creating errors
and increased uncertainty. Thus, when combined, two distinct descriptors such as
SOAP and LENS complement and improve each other. Furthermore, this approach
allows tracking the origin of local dynamical (LENS) fluctuations occurring on the
surface, outlining microscopic structure-dynamics relationships.

The off-diagonal entry in the matrix of Figure 6.2b representing the transition
of atoms from the edge AE (in blue) to the pink (LENS) environment (about 0.1%
probability) reveals that those atoms diffusing with high-speed on the metal surface
come from the surface edges. After their creation and diffusion, these diffusing
pink atoms are then reabsorbed into the surface edges (about 6.4% probability). The
large imbalance between the probabilities for the creation and annihilation of these
LENS diffusing atoms (about 0.1% vs. about 6.4%) indicates that the emergence
of such fast atoms is a rare event. Yet, detecting such diffusing atoms is key to
understanding the behavior of the system. Figure 6.2c provides an example of the
structural variation of an atom undergoing such a transition, following its trajectory
both on the PCA plot and along the MD. The atom’s trajectory is color-coded based
on the MD simulation time, from dark blue to yellow, showing atoms that, after
residing within the surface edges (dark blue lines, example snapshot 1), detach and
diffuse on the surface becoming part of this pink LENS environment (green lines,
example snapshot 2), and then are reabsorbed into the edges (yellow lines, example
snapshot 3). Figure 6.2d shows a complete representation of the Cu(211) surface
colored based on corresponding SOAP&LENS environments. Unlike the snapshots
of Figures 6.1c and 6.1d, this comprehensive approach captures all the key SOAP
as well as LENS environments, providing a more complete characterization of this
system. By combining these two descriptors, it becomes evident that the motion
of atoms diffusing on the surface (pink AE) originates from fluctuations within the
SOAP environment, which defines the edges of the surface (blue AE).
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6.2.2 Conclusions

In conclusion, the findings presented in this section emphasize the limitations of
relying exclusively on structural descriptors to comprehend the physics of dynami-
cally evolving copper surface. By combining the dynamic descriptor LENS with the
structural descriptor SOAP, we realized multiple benefits. This integration improves
the precision of both structural and dynamic classifications by minimizing noise and
addressing the degeneracy issues that are common in individual analyses. Moreover,
it enables the identification of specific structural environments that generate dy-
namic behaviors, providing deeper insights into microscopic-scale structure-dynamic
relationships. This approach is particularly useful in capturing rare but crucial fluctu-
ations on the Cu(211) surface at 600 K, which are often overlooked by traditional
pattern recognition methods. The combination of SOAP and LENS not only provides
a more complete characterization of the system but also allows for a better under-
standing of the origins of dynamic fluctuations, thereby offering a comprehensive
tool for analyzing complex systems across various domains.

6.2.3 Methods

DPMD simulation

The atomistic model of Cu(211) surface is composed of 2400 atoms. The MD
simulation is conducted at T=600 K via LAMMPS software[344] using a Neural
Network potential built using the DeepMD platform,[180] as described in detail
in Chapter3. The sampled trajectories are 150 ns long. A total of 502 frames are
extracted every ∆t=0.3 ns along the MD trajectory and used for the analysis.

SOAP analaysis

To describe the structural environment surrounding each particle within the simula-
tions, we use the SOAP descriptor. We compute the SOAP spectrum pt

i representing
the local structural environment of each particle i at every timestep t within a cut-off
radius rcut = 6 Å The SOAP vectors are generated using dscribe[345], and both lmax

and nmax parameters for spherical harmonics, and number of radial basis functions
are set to 8, the same values of Chapter 3. Then, we applied the Principal Component
Analysis algorithm to each dataset (as implemented in the SciPy python package
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[346]), reducing the dimensionality of the representation to the first n-components,
in order to reach a certain cumulative variance within each system. To analyze the
reduced data of the we applied the HDBSCAN* [296] clustering algorithm set up
with min_cluster_size=80. We used soft-clustering to assign the point classified
as noise to their closer cluster. From the cluster transition probability matrix we
found the relations within the environments via Hierarchical Clustering algorithm.
Then, merging the ones closer than 1 in terms of the chosen metrics (correlation)
and linkage (average), we obtained 6 macro-clusters.

LENS analysis

We compute the δi(t) signals for Cu(211) following a similar procedure reported
in Crippa et al.[203], reducing the noise by using a Savitzky–Golay [397] filter (as
implemented in the SciPy python package [346]). Each δi(t) signal is smoothed
using a common polynomial order parameter of p = 2 and a time-window of 20
frames.

6.3 LENS tracking of collective phenomena in metals:
the case of dislocation

6.3.1 Results

As widely known, brittle fractures in materials are controlled by the formation and
amplification of microscopic defects. Herein, we focus on an initial test case, namely
a Cu bulk subjected to a constant strain rate at T = 300 K [398], thus mimicking
phenomena occurring during a tensile fracture. Figure 6.3A displays simulation
results featuring a stress-strain curve alongside the potential energy profile. This
visualization clearly shows the transition from elastic to plastic deformation, thereby
validating the simulation’s capacity to capture these critical phases accurately.

Building on this foundation, we use the LENS framework to gain insights into
a selected distinct plastic event, as highlighted in Figure 6.3A. In Figure 6.3B,
the temporal evolution of the LENS descriptor is traced, revealing a pronounced
peak. Specifically, SOAP is not capable of detecting this event because it does not
correspond to any significant structural rearrangement. Instead, the event involves
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the reshuffling of neighboring atoms without altering their relative positions, which
SOAP fails to capture. Indeed, SOAP is designed to be invariant to the permutation
of atoms within the local environment, providing a consistent description of the
structural arrangement of atoms regardless of their order. This invariance is useful
for identifying common structural motifs but limits SOAP’s ability to detect dynamic
events where the identity of neighboring atoms changes without significant structural
rearrangement. Conversely, LENS is not invariant to the permutation of atoms.
LENS specifically tracks how the identities of neighboring atoms change over time,
capturing the dynamics of reshuffling even when the relative positions of the atoms
remain constant. This non-invariance allows LENS to detect rare and significant
dynamic events that are missed by purely structural descriptors like SOAP.

This observation aligns with the traditional view that plastic deformations in
metals are predominantly facilitated through dislocation planes. This assertion
is supported by the findings in Figure 6.3C and D, where temporal and spatial
correlation analyses are reported. These analyses demonstrate that LENS spikes are
both closely timed (within 5 ps) and localized in space (the distance between atoms
experiencing LENS fluctuations corresponds to the inter-atomic spacing, as shown
in g(r) of Panel D). It is important to note that these events not only do not involve
significant structural rearrangements, but they are also statistically rare, occurring
within 5 ps in a comprehensive 150 ns simulation. This brevity is highlighted by
presenting only a short segment of the LENS signals in the graph. Although these
fleeting events are critical for understanding local dynamics, they represent a minor
fraction of the total simulation time and may appear statistically insignificant in the
broader temporal context. Consequently, pattern recognition-based analyses, such as
SOAP, fail to detect these peaks and instead average them out with other signals.

Lastly, Figure 6.3F provides a three-dimensional representation of these regions,
distinctly marking coherent areas of plastic deformation and identifying rows of
high-LENS atoms, corresponding to dislocation lines. Elucidating the microscopic
mechanisms of plastic deformation, such high-resolution analysis highlights the
critical role of the reshuffling within the local atomic neighborhood, as captured by
the LENS component, in understanding the deformation processes under applied
stress. Shifting the focus from structural re-arrangements to dynamical reshuffling
proves the accuracy of our descriptor in detecting such collective phenomena.
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Fig. 6.3 LENS analysis of Cu bulk metal during constant strain rate at T = 300 K[398].
(A) Stress-strain curve (black) over time with corresponding potential energy profile (red),
indicating the regions of elastic and plastic deformation. The inset shows the simulated
bulk copper structure, with arrows indicating the direction of strain.(B) Time-series of the
LENS signal within the same timeframe, color-coded by intensity thresholds (LENS > 0.3
in pink, LENS > 0.6 in red); stars mark snapshots detailed in (E). This panel reveals how
changes in LENS values dominate the LEAP signal over time. (C) Temporal correlation
analysis of high-intensity LENS signals, showing that most LENS spikes occur within 5 ps.
(D) Radial distribution function of atoms with high LENS signals, illustrating their spatial
proximity. (E) Snapshots corresponding to the marked events in (B), color-coded to show
the intensity of their LENS signals, highlighting both spatial and temporal correlations. (F)
Three-dimensional representation of atomic positions with high LENS signals, emphasizing
regions of coherent plastic deformation, identified as dislocation lines.

6.3.2 Conclusions

In this last section, we have demonstrated how LENS can elucidate the complex
behavior of a metallic system by focusing on local neighbor fluctuations. By moni-
toring the identity changes of individual atoms over time, LENS effectively detects
dynamic reshuffling events that are crucial for understanding the system’s physics.

In particular, we examined the deformation mechanism of a copper system under
stress. LENS reveals a distinct pattern where dynamic events, rather than static
structural rearrangements, dominate the process. Such events are not detectable
by SOAP because they do not involve significant structural changes, and their rare
occurrence means they have minimal statistical weight in a SOAP-based analysis.
This ability to capture rapid, localized fluctuations provides a clearer picture of the
time-space correlation of metal deformation activities. LENS uniquely identifies
these subtle but critical phenomena, offering deeper insights into the microscopic
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mechanisms driving macroscopic behaviors in metals. This underscores the impor-
tance of integrating dynamic information for a comprehensive analysis of complex
molecular systems.



Chapter 7

The effects of dynamics on amide
reactivity in the cavity of a
coordination supramolecular cage

The investigation of chemical reactivity is inherently complex, and elucidating
the physicochemical mechanisms that govern these processes poses significant
challenges, particularly from an experimental perspective. This complexity has
driven a substantial interest in the use of computational simulations as a tool to
explore and understand these intricate processes in greater detail.

However, traditional simulation approaches often rely on static models[164–
170, 399], which inherently limit their ability to represent the dynamic nature of
chemical reactions accurately. This simplification overlooks the crucial role of
molecular motion and the dynamic interactions that occur during a reaction[159,
160, 235–239, 244, 245, 185, 201, 400]

In this thesis, we aim to incorporate the concept of dynamics into the study of
reactivity, emphasizing the crucial role of dynamic behavior in computational ap-
proaches across various systems[172, 171, 342]. Our research on Cu surfaces and Au
NPs has shown that under realistic conditions, microscopic dynamics significantly
influence the structure of these systems. The continuous interconversion of atomic
environments affects the availability of reactive sites and specific atomic configura-
tions. This dynamic behavior is fundamental, as it directly impacts the properties and
performance of these materials, which are intricately governed by the reactive sites
and structural configurations available over time.[161, 185, 247, 250, 251]. Another
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compelling example of the necessity of considering dynamic processes, though
applied to a different type of system, is presented in our work "Reactivity in Dynamic
Host-Guest Systems at Atomistic Resolution: Amide Hydrolysis under Confinement
in the Cavity of a Coordination Cage"[401]. This study investigates the hydrolysis
of amides within coordination cages, demonstrating how spatial confinement and
dynamic host-guest interactions can accelerate the reaction. The encapsulation of
amides within the cage cavity not only enhances the reaction rate but also stabilizes
reactive conformers, illustrating the profound impact of dynamic factors on chemical
reactivity.

Building on the foundational work of Takezawa et al.[402], which provided
detailed structural elucidation of host-guest complexes using X-ray crystallography
and NMR spectroscopy, this study goes further. While these techniques offer a
precise but static depiction of the encapsulated system, showing atomic positions
and molecular conformations at a particular time, they do not capture the dynamic
processes of the molecules, such as conformational changes, binding/unbinding
events, and transient states that can significantly influence chemical reactivity.

Capturing these dynamic processes provides a more accurate and predictive
model of material behavior, whether involving metallic surfaces or molecular systems
within coordination cages. The necessity of a dynamic approach becomes clear as it
enables the observation of intermediate states and transient conformers, which are
critical for understanding reaction mechanisms.

Full bibliographic reference: Delle Piane, M., Pesce, L., Cioni, M., & Pavan, G.
M. (2022). Reconstructing reactivity in dynamic host–guest systems at atomistic
resolution: Amide hydrolysis under confinement in the cavity of a coordination cage.
Chemical Science, 13(37), 11232-11245.1 This work, my first manuscript during
my PhD, significantly influenced the direction of my subsequent research activities.
The insights gained here prompted me to extend my focus on the importance of
integrating dynamic analyses in both molecular and metallic systems.

1In this first work, my contribution included performing Well Tempered MetaD and Infrequent
Metad simulations for the isomerization of amide, reparametrization of the dihedral (see Methods)
and contributed to the interpretation of the results.
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7.1 Introduction

Chemists have developed synthetic cavities in the attempt to mimic natural cat-
alytic systems, allowing for high selectivity in reactant encapsulation[403, 402, 404].
Supramolecular coordination cages, in particular, have been designed to host catalytic
reactions within their internal cavities[402, 405–408]. These systems can manip-
ulate reactivity, regio-selectivity, and enantio-selectivity by altering the structural
and electronic properties of the cages or the guests[403, 409].Notably, mimicking
proteolytic enzymes,[410] recent work has shown that encapsulating amide guests in
coordination cages significantly accelerates amide hydrolysis by promoting reactive
(cis isomers) configurations[402].

Designing these synthetic systems requires understanding the molecular and
chemical-physical factors controlling their reactivity and mastering these to create
new catalytic systems. However, the dynamic equilibrium of guest exchange in/out
of the cages complicates this understanding[409].

Several factors control reactivity in these systems, including guest binding/unbinding
dynamics, solubility in the outer solution, reaction timescales, entrapment in metastable
states, and molecular concentrations. Non-covalent cavity–guest interactions play
a major role since they control the binding affinity and, de facto, the probability
of observing the reactant in the reactive site.[409] Despite significant efforts,[403,
408, 411, 412], it remains challenging to experimentally understand the molecular
factors controlling reactivity in systems where reactant and product are in continuous
molecular exchange.

Comprehensive descriptions that explicitly take into account the role of the
internal dynamics of such complex dynamic systems are scarce. As a case study, we
focused on a case study by Fujita’s group,[402] where encapsulating amide guests
within a coordination cage significantly enhanced amide hydrolysis, providing a
test case for studying spontaneous reactions hindered by high kinetic barriers.[413]
X-ray crystallography and NMR characterized the encapsulation of electron-rich
diaryl amides into different octahedral coordination cages. The acceleration of amide
hydrolysis ( 14x) when amide 2 is co-encapsulated with co-guest cage 3 inside cage
1 has been linked to the stabilization of reactive (cis-twisted) amide conformations
within the cage host.[402]

To gain submolecular-resolution insights into this dynamic system, we combined
all-atom MD and MetaD simulations, reconstructing the structural and dynamical
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features of the host-guest system. Ab initio MetaD simulations[414] enabled us
to study the chemical reactivity of the amide guest in its favored conformations
within the cage. Coupling this with thermodynamic/kinetic studies of the amide and
co-guest exchange, we developed a general scheme revealing key factors controlling
the reaction enhancement.

7.2 Results

7.2.1 Atomistic modeling of the host-guest system

As a representative example of a supramolecular host, here we focus on the coor-
dination cage 1 reported in Figure 7.1a recently employed by Takezawa et al. to
host the hydrolysis of encapsulated amide guests.[402] This is an octahedral co-
ordination cage composed of four self-assembled electron-deficient panel ligands
(2,4,6-tris(4pyridyl)-1,3,5-triazine) and six metal-based corners (cis-endcapped Pd(ii)
complexes).[415] As a first step, starting from the X-ray crystal structure reported
in the literature,[402] we built an AA (All-Atom) model for cage 1 which was then
preliminary minimized and equilibrated in explicit water solvent and in standard
(room) conditions of temperature and pressure via a classical MD simulation. As
the main guest, here we focus on guest 2, an N-(2,4-Dimethoxyphenyl)thiophene-2-
carboxamide, an electron-rich diaryl amide (Figure 7.1a) that was experimentally
shown to produce the considerable reaction acceleration following to encapsulation
in cage 1 (Figure 7.1b).[402] The central bond in amide guest 2 can undergo hydrol-
ysis according to the reaction schematized in Figure 7.1b (top). Guest 2 is mildly
apolar (logP=2.77)[401]. Experimentally-obtained crystal structures show that cage
1 can encapsulate at the same time up to two 2 molecules in its internal cavity[402].
An AA model was developed for guest 2, paying particular attention to the accuracy
in the force field parametrization of the central amide bond dihedral, which defines
the trans and cis conformers of the amide, how much one is energetically favored
respect to the other, and the related transition barrier. To achieve this, we optimized
the original amide ω dihedral force field parameters of GAFF, to obtain a trans-to-cis
isomerization free energy profile consistent with the experimental data available for
N-metyl-acetamide (see Methods)[416].



7.2 Results 181

Fig. 7.1 The host-guest systems studied in this work. (a, top) The octahedral coordination
cage 1 used as a reference in this work is composed of four panel ligands (2,4,6-tris(4-
pyridyl)-1,3,5-triazine) and six metal corners (cis-endcapped Pd(II) complexes): chemical
structure on the left and AA model on the right. (a, bottom) Chemical structure of amide
guest 2 and of pirine co-guest 3. AA models are reported on the right of each guest structure
(cis and trans isomers are shown for 2). (b, top) Hydrolysis reaction of the amide bond of 2.
(b, bottom) Experimentally observed percentage of hydrolyzed 2 over time. Conversion data
are reported for the hydrolysis of 2 free in solution (in blue), in the case when two 2 guests
are co-encapsulated in cage 1 (black), and for 2 co-encapsulated with co-guest 3 in cage 1
(in red: ∼ 14× hydrolysis acceleration compared to the blue curve). [402] Reproduced with
permission from Ref [401].

We built inclusion complexes where guest 2 is encapsulated within cage 1 in
different stoichiometries: i.e., 2 ⊂ 1 and 22 ⊂ 1, where respectively one or two 2
amide guests are encapsulated inside cage 1. In particular, the AA model for the
22 ⊂ 1 complex was built starting from the available experimental crystal structure
for this complex[402], while that for the 2 ⊂ 1 was obtained by deletion of one of the
2 guests. Aromatic amides, like 2, exist mainly in a trans-planar conformation in so-
lution. However, experimental evidence demonstrated that 2 may adopt a cis-twisted
conformation within the Td symmetric cavity (forming a pseudo-S4 symmetric
dimer) in cage 1.[402] In particular, X-ray and NMR measurements showed signals
corresponding to a cis:trans 1:1 2 dimer in the 22 ⊂ 1 complex, and to a cis-twisted
conformation in the 2 ·3 ⊂ 1 complex. To the purpose of our investigation, here we
decided to model all possible combinations of conformers, mainly aiming to explore
the presence of any correlation between confinement, crowding and the rotation of
the amide bond. We also parametrized an AA model for co-guest 3 (Figure 7.1a).
Starting also in this case from a corresponding experimentally available crystal
structure,[402] we use this to build an additional AA model for the 2 ·3 ⊂ 1 complex,
a ternary inclusion complex where one 2 guest and one 3 co-guest are simultaneously
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encapsulated in cage 1. Particularly interesting for this study, the 2 ·3 ⊂ 1 system
was observed experimentally to produce the larger hydrolysis acceleration among all
explored cases (Figure 7.1b: ∼ 14x acceleration compared to the free amide).[402]
When in the cage, 2 tends to stay shifted from the geometrical center of the cavity to
maximize interactions with the walls, with the 2trans conformer showing in general
a larger shift compared to 2cis (Figure 7.2b). This is imputable to the thiophene
ring, which tends to partially stick out of the cavity preferring interaction with the
solvent (scheme of Figure 7.2a, top: in cyan). Co-encapsulation with 3 induces a
larger decentralization of the amide guests. Noteworthy, the augmented growth in
such a case is observed to cause a significant reduction in terms of 2cis mobility in
the cage cavity, as evidenced by the narrower distribution in Figure 7.2b (solid red
curve). This behavior correlates with an augmented number of contacts between
2 and the cage 1 (Figure 7.2c). In general, the 2cis guest shows increased contacts
than the 2trans one, while this trend is even increased when co-guest 3 is also present
within 1 (higher crowding). We will discuss in the next section how this affects what
conformer (2trans vs. 2cis) is more favored within the cage in the different complexes.

The Solvent Accessible Surface Area (SASA) of the guests shows that 2 is less
exposed to the solvent when this is encapsulated within 1, and even less when this is
co-encapsulated together with 3 (Figure 7.2d). In general, we observe that the 2cis

conformer has a smaller SASA, and is more compact than 2trans in all cases. These
SASA and contacts data provide information on the different packing of the 2cis

and 2trans conformers within the cage in increasing crowding conditions. These are
consistent with the free-energy surfaces (FESs) reconstructed from the histograms
extracted from the MD of Figure 7.2a, where it is evident how 2cis allows for a tighter
packing within the cage (bottom). At the same time, the 2cis conformer is found less
mobile within 1, as it is demonstrated by a narrower FES dark minimum (minimum
energy configuration) compared to that of the 2trans conformer (top).

As a first and generally rate-limiting step, the amide hydrolysis reaction requires
the nucleophilic attack of water (or of OH−, if the reaction occurs as catalyzed in
basic conditions) to the carbonyl carbon.[413, 417] While the cavity of cage 1 is
markedly apolar, and the encapsulation of the guests in the cavity is essentially driven
by hydrophobic effects, some accessibility by the solvent is therefore still required
for the reaction to take place.
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Fig. 7.2 Into the host-guest complexes at atomistic resolution. (a) Free-energy surfaces
(FESs) computed from the equilibrium MD trajectories, showing the most favorable complex
configurations as a function of the contacts between 1 and 2 (x axis) and of the Solvent
Accessible Surface Area (SASA) of 2 within the cage (y axis). FESs are reported respectively
for the 2trans (top) and 2cis (bottom) co-encapsulated with co-guest 3 in the cage. For
each case, a representative scheme is shown of the encapsulated structures. (b) Histogram
calculated from the equilibrium MD trajectories of the distance between the geometric center
of cage 1 and the center of 2. (c) Histogram of the contacts between 1 and 2. (d) Histogram
of the SASA of 2 in different complexation conditions (dotted distributions at large SASA
values for the free guests in solution are reported for comparison). (e) Number contacts
between the Oxygen atom in the amide of 2 and the water molecules in the system. A color
scale is used in panels (b-e) to show increasing crowding conditions for 2 within the cage.
Reproduced with permission from Ref [401].

We calculated the number of contacts between the solvent molecules and the
carbonyl group of the 2 guest in the various cases. In general, we can observe that
the amide of 2trans is slightly more accessible to the solvent compared to that of 2cis

when the guests are free in solution (dotted distributions), and a similar depletion
is observed upon mono-guest confinement (dashed). However, the situation is
surprisingly switched in the tightly packed 2 ·3 ⊂ 1 systems (Figure 7.2e). In highly
confined conditions, the amide of 2cis is found more exposed to the solvent within
cage 1 compared to that of 2trans (red vs. blue solid curves). This suggests that, while
on the one hand the cis conformer of 2 is more tightly packed within the cage, the
equilibrium configuration of 2cis in the 2 · 3 ⊂ 1 complex may allow, at the same
time, for an increased propensity to react.
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7.2.2 Relationship between amide conformations and reactivity

We explore at a deeper level the difference in terms of reactivity of the trans vs. cis
conformers of 2. We do this by decomposing the study into two phases. First, using
AA MetaD simulations, we compute the free energy landscape for all conformers
accessible by the guests in and out of the cage, obtaining information on the prob-
ability of effectively visiting and observing reactive guest conformers in the cage
cavity vs. in solution. Then, using ab initio MetaD simulations, we estimate the
relative hydrolysis reactivity of the different accessible conformations that the guest
can assume (i.e., characterized by different ω values) in or out of the cage cavity.

In realistic conditions, amide bonds are usually found in trans configurations
with a torsion angle ω close to π , with a sparse population in cis conformation
(ω ∼ 0). The degree of steric conflict of the two residues flanking the amide
bond is typically larger in cis amides, resulting, for example, in only ∼ 5− 6%
occurrence of cis peptide bonds in protein structures[418, 419]. To estimate the
relative probabilities for finding different conformers in different conditions, we used
WT-MetaD simulations, providing free energy profiles of the ω isomerization.

The trans-to-cis isomerization of ω angles consists of a local conformation
change that is often compensated by local variations of the backbone angles φ and ψ

of the residues flanking the amide.[418] To assess how the free energy profile for the
isomerization of ω is affected by the torsion of ψ and φ , we selected these 3 dihedral
angles as our CVs and ran WT-MetaD simulations activating/biasing the trans-to-cis
transition of 2 (i.e., the torsion around the amide bond) in different conditions (Figure
7.3a-b).

Preliminary WT-MetaD simulations showed that the free energy profile of the ω

isomerization is not particularly influenced by the φ and ψ torsions. Well-converged
WT-MetaD runs allowed us to reconstruct the differences in free energies between the
conformers (∆G) and estimate the free energy barriers (to this end we used infrequent
WT-MetaD simulations, as recrossing WT-MetaD simulations may underestimate
the barrier heights, as explained in Chapter 2). The results in Figure 7.3b compare
four cases where: (i) 2 is free in solution (Figure 7.3d: dotted curve, cis conformer
in pink), (ii) 2 is encapsulated in cage 1 (dashed curve, cis in dark pink), (iii) the
isomerizing 2 is co-encapsulated in cage 1 with another trans 2 guest (encapsulated
2 dimer: dot-dashed curve, cis in light red), and (iv) 2 is co-encapsulated in cage
1 with co-guest 3 (dot-dashed curve, cis in light red). The results show that the



7.2 Results 185

Process ∆Gtrans→cis [kcal mol−1] Kcon f ∆G‡
trans→cis [kcal mol−1] ttrans→cis [s] tcis→trans [s]

2trans ⇄ 2cis 6.5 1.8×10−5 22.3 3.5×10+3 1.4×10−1

2trans ⊂ 1 ⇄ 2cis ⊂ 1 5.0 2.3×10−4 22.0 2.3×10+3 1.6×100

2trans ·2trans ⊂ 1 ⇄ 2cis ·2trans ⊂ 1a 4.0 1.2×10−3 25.9 1.5×10+6 4.7×10+2

2trans ·3 ⊂ 1 ⇄ 2cis ·3 ⊂ 1 2.7 1.1×10−2 19.8 5.4×10+1 1.4×100

a The second 2trans guest was kept in trans conformation during the simulation.
Table 7.1 Thermodynamic and kinetic data for 2 isomerization in all simulated
complexes. Free energy differences (∆Gtrans→cis) at 300K related to the trans-to-cis
isomerization, equilibrium constants for the conformational change (Kcon f ), the
height of the free-energy barriers (∆G‡

trans→cis) from the trans state, characteristic
timescales (ttrans→cis and tcis→trans) are reported.

stability of the conformers of 2 is significantly affected by confinement. The free
energy differences between the cis and trans conformers (Figure 7.3b) indicate that,
while trans is always the most stable configuration of the guest, the cis conformer is
more and more stabilized as the crowding in the cage cavity increases. The transition
barrier also decreases while increasing the crowding. This is captured by the ∆G and
the Kcon f values, as well as by the relative probability profiles Pcon f

ω of Figure 7.3b.
In particular, the Pcon f

ω plots the relative probability for different conformers (ω)
of 2 to the trans conformer in all simulated complexes. We move from a cis:trans
ratio of ∼ 10−7:1 for one 2 free in solution to ∼ 10−5:1 in the mono-encapsulated
system (2 ⊂ 1), ∼ 10−4:1 when two 2 guests are co-encapsulated in the cage (22 ⊂ 1),
to ∼ 10−2:1 in the 2 · 3 ⊂ 1 system. The 2 dimer encapsulation (22 ⊂ 1) system,
where one of the two guests is kept fixed in a trans configuration in accordance
with experiments,[402] falls in between the 2 ⊂ 1 and 2 ·3 ⊂ 1 cases. The strongly
twisted at ω = π/4 remains extremely unlikely in all systems, despite a similar
thousand-fold stabilization via confinement. The most crowded case, 2 · 3 ⊂ 1,
shows a ∼ 10000× increase in the probability for finding the more reactive cis
conformer with respect to the case where 2 is free in solution. This is remarkable,
considering that experimentally this case is the one showing the strongest acceleration
in the hydrolysis reaction.[402] These simulations have allowed us to identify the
confinement in the cage cavity as a key factor determining the relative probabilities
of the different conformers of guest 2. As a next step, we investigated the propensity
of the accessible guest conformers to react.

The encapsulation of amide 2 within cage 1 was shown to enhance amide hy-
drolysis considerably in mildly basic conditions (experimental results of Figure 7.1b
have been obtained at [NaOH] = 100 mM[402]).
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Fig. 7.3 Conformers and reactivity of the amide 2. (a) Isomerization of 2 in the cage,
co-encapsulated with 3 (left: trans-2, right: cis-2). (b) Free energy profiles (shown as
smoothed fits between the computed critical points) for the isomerization of 2 (i) when this
is free in solution (dotted curve, cis in pink), (ii) when 2 is encapsulated in 1 (dashed curve,
cis in dark pink), (iii) when this is co-encapsulated with another (trans) 2 guest in cage
1 (dot-dashed curve, cis in light red), and (iv) when 2 is encapsulated in 1 together with
the co-guest 3 (solid curve, cis state in light red). The data show that increasing crowding
stabilizes more and more the reactive 2 conformations (e.g., cis) in the cage cavity. Right
secondary y axis: relative probabilities (Pcon f

ω ) for the different conformations (ω) of 2
in the various host-guest systems calculated based on the ∆G values extracted from WT-
MetaD simulations. (c) Reaction scheme modeling the first step of the hydrolysis, where the
hydroxide anion (OH−) approaches the amide group (state R) attacking the carbonyl group
(formation of the transition intermediate TI). (d) Schemes of free energy profiles (shown as
smoothed fits between the computed critical points) for hydroxide attack along the reaction
coordinate as a function of the ω dihedral of 2 different values. The cyan profile refers to
2 in trans conformation, the red one refers to the reaction when 2 is cis, while the violet
profile refers to the free energy profile of a cis-distorted configuration of 2 with ω = π/4. A
relative reactivity score for each amide conformer (χω ), normalized based on the maximum
measured value (i.e., that for ω=π/4, set to 1), is associated with the simulated conformers
of 2 (right secondary y axis). Reproduced with permission from Ref [401]

To simplify the investigation of the hydrolysis process, we focused on modeling
the reaction of the amide only in free solution, without considering the confinement
effects of the cage.In the absence of other catalysts, the hydrolysis of amides occurs
via hydroxide attack, leading to the formation of a tetrahedral intermediate (TI),
followed by the cleavage of the C–N bond [413].
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The first step of the reaction is typically considered the rate-determining step
of the process[417]. For this reason, here we focused our investigation only on the
formation of the TI via nucleophilic attack by a solvated hydroxide (Figure 7.3c),
when the amide in free in solution. Previously used, e.g., to investigate the hydrolysis
of formamide[417], we relied on ab initio well-tempered metadynamics (WT-MetaD)
simulations[420] to study the reactivity of 2 as free in solution. Considering the
computational cost of these simulations and the complexity of our systems, we
employed a semi-empirical density-functional tight-binding (DF-TB) method,[421,
422] in its self-consistent charge corrected variant SCC-DFTB.[423] Recently shown
to provide comparable accuracy to DFT with large basis sets in terms of prediction of
barrier heights and reaction energies for organic molecules,[424–426] SCC-DFTB
has indeed been already successfully used to investigate hydrolysis reactions in
biological systems.[427, 428]

We simplified our models by studying a system with an OH− near the amide
(Figure 7.3a), and constraining the C–N–C(O)–C dihedral (ω) of amide 2 to rep-
resentative values, to simulate an attack to different conformers. We compared 2
conformers with ω equal to 0 (cis conformer), π (trans conformer), and π/4 (a
twisted cis conformer).

We employed replica infrequent ab initio WT-MetaD simulations[414] to obtain
information on the reaction coefficients (rate of hydroxide attack and TI formation)
for the various conformers of 2. The reaction barrier of ω = π/2 has been also
tested, but this conformer was found too unstable to compute meaningful kinetic
data. From multiple infrequent WT-MetaD runs activating/biasing the transition
(R→TI, and the TI→R processes), we reconstructed the unbiased kinetics for the
transition events and could estimate the characteristic transition times, τo f f and τon.
The kinetic constant for hydroxide release can be calculated as ko f f = 1/τo f f . The
kinetic constant for hydroxide attack (kon) can be obtained in a similar way from the
τon and accounting for the OH− concentration in the system. In our simplified model,
the OH− ion is positioned near the amide at solvation distance and is constrained
from diffusing into the solution. This setup mimics a solvation box where OH−

ions replace water molecules, effectively removing ion diffusion from the reaction
site. This approximation ensures that ion availability is consistent with a pH of 14,
focusing solely on the reactivity without considering diffusion effects.

This simulation approach allowed us to obtain a thermodynamic and dynamic
characterization of the reaction as a function of the amide conformation (for some
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relevant discrete ω values). The results of Figure 7.3d show a strong dependency of
reactivity on the ω dihedral. As expected, the lowest reactivity against hydroxide
attack was observed for the trans conformer, while the cis and the twisted cis amide
conformers were found as more reactive. In particular, the latter is the only conformer
with a Kreac = kon/ko f f >1 (Figure 7.3d: R is higher in free energy than TI).

The higher reactivity of the cis conformer compared to the trans can be attributed
to the fact that, in the cis form, the spatial arrangement of the substituents around
the amide bond leads to reduced steric hindrance, allowing for easier access of the
hydroxide ion to the carbonyl group. In contrast, the trans conformer, being more
extended, results in greater steric constraints, making the nucleophilic attack more
difficult. Furthermore, the twisted cis conformer exhibits even higher reactivity
because its partial structural distortion increases the electrophilicity of the carbonyl
carbon, facilitating nucleophilic attack by the hydroxide ion. This conformational
twist likely destabilizes the ground state, lowering the activation barrier for the
formation of the tetrahedral intermediate (TI).

In particular, from the K data, we can obtain relative reactivity scores (χω ) useful
to compare the reactivity between the different amide conformers. The χω scores
of Figure 7.3d (right secondary y axis) clearly show how, compared to the twisted
cis amide conformer (ω = π/4), the cis amide (ω = 0) is ∼ 1000 times less reactive,
while the reactivity of the trans amide conformer (ω = π) is basically negligible
(∼ 109 times less reactive than the π/4 conformer).

Altogether, the results of Figure 7.3 provide a new perspective to obtain a
reactivity ranking of the conformers in the different systems, which accounts for the
configurations of the amide guest which are more/less probable in or out the cage
cavity and their relative reactivity. (i) The most probable conformer in all states,
2trans, is also the least reactive. (ii) The most reactive twisted conformers (ω = π/4
or, e.g., π/2) are, at the same time, highly improbable, even at increased molecular
crowding. (iii) The 2cis conformer, moderately reactive (but sensibly more reactive
than the 2trans one), is unfavored in solution against 2trans, but it becomes more and
more relatively favored as the crowding increases upon confinement, emerging as
the prominent reactive species in the cage. Our results then converge on the idea that
the reaction acceleration by confinement is strongly governed by the other dynamic
processes of the system, particularly the stabilizing effect of confinement on the
more reactive conformers.
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The available experimental X-ray structures for these complexes show a 2cis–2trans

dimer in the 22 ⊂ 1 case, and a 2cis-twisted conformation in the 2 ·3 ⊂ 1 complex.
This seems to indicate that in these complexes a 2cis conformer is more favored than
2trans. While this may seem to contradict the simulation results discussed above, it
is worth noting that all the results collected up to this phase are valid only under
the assumption that the encapsulated guests remain always within the cage cavity.
Nonetheless, these are host-guest systems, in which the probability of finding the
guests within the cage obeys a well-defined supramolecular equilibrium. Estimating
the effective probability of finding the guests within the cage requires also studying
the dynamics of guest encapsulation/exchange in-and-out the cavity. As it will be
demonstrated in the next section, accounting also for the intrinsic supramolecular
dynamics of these host-guest systems provides results that are globally in very good
agreement with all available experimental evidence.

7.2.3 Dynamics of amide encapsulation/expulsion in-and-out the
cage cavity

Up to this point, we have compared the reactivity of the amide guest in solution
versus when encapsulated in cage 1. To complete the picture, we must consider
the effective probability of reactive guest conformers in the cage cavity. Host-guest
systems follow a supramolecular equilibrium where the affinity between host and
guest determines the likelihood of encapsulation or expulsion. Characterizing the
thermodynamics and kinetics of guest encapsulation/expulsion is crucial.



190
The effects of dynamics on amide reactivity in the cavity of a coordination

supramolecular cage

Fig. 7.4 Equilibrium and kinetics of amide guests encapsulation/expulsion in/out the
cage cavity. (a) Equilibrium and kinetics for the encapsulation/expulsion of 2trans in/out the
cage when 1 is hosting also guest 3. Above and below the arrows of the equilibrium reaction
are reported respectively the kinetic constants ko f f and kon estimated from the WT-MetaD
simulations. The kon values are also reported as considering the concentration present in the
system (in brackets). (b) Equilibrium and kinetics for the encapsulation/expulsion of 2cis

in/out the cage cavity when 1 is hosting also guest 3. (c) Free energy differences and barriers
(∆G and ∆G‡) associated to the encapsulation/expulsion in the cavity of 2 when 1 is also
hosting 3 (solid curves) or when 1 does not contain any other guest (dashed curves). Free
energy profiles are shown as smoothed fits between the computed critical points. Reproduced
with permission from Ref [401].

Encapsulation/expulsion of guests like 2 or 3 in/out of cage 1 involves high free
energy barriers, making them rare events within classical MD simulation timescales.
Using a WT-MetaD simulation protocol, we reconstructed the thermodynamics
and kinetics of amide 2 encapsulation/expulsion in cage 1; data are summarized
in Table 7.2 and Figure 7.4. Comparing the encapsulation of 2 isomers in cage
1, we observe that 2cis encapsulation is generally more favored than 2trans. The
dynamics of 2trans encapsulation/expulsion are minimally affected by other guests
in the cage (ko f f and kon remain similar). However, co-guests significantly impact
the dynamics and stability of 2cis, stabilizing its encapsulation by 2-4 orders of
magnitude in the presence of 3 (lower ko f f : slower 2 expulsion). Table 7.2 shows
ko f f for 2cis expulsion from cage 1 drops from ∼ 7.1×101 s−1 (with only 2cis) to
∼ 1 s−1 or ∼ 5.9×10−2 s−1 with co-encapsulated 2trans or 3. These data suggest
that host-guest equilibrium differences are controlled by affinity between the guest
(2) and the host cavity. From ∆G, we estimate host-guest affinity constants (Kenc)
(Table 7.2). Kenc values for 2cis are generally higher than for 2trans, especially in
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Process ∆G [kcal mol−1] Kenc ∆G‡
o f f [kcal mol−1] to f f [s] ko f f [s−1] kon [s−1]

2trans +1 ⇄ 2trans ⊂ 1 −4.3 1.5×103 13.5 1.2×10−3 8.3×102 1.3×106

2cis +1 ⇄ 2cis ⊂ 1 −7.4 2.1×105 14.9 1.4×10−2 7.1×101 1.8×107

2trans +2trans ⊂ 1 ⇄ 2trans ·2trans ⊂ 1 −4.7 2.7×103 14.5 7.3×10−3 1.4×102 3.7×105

2cis +2trans ⊂ 1 ⇄ 2trans ·2cis ⊂ 1 −9.3 6.9×106 16.7 9.6×10−1 1.0×100 7.1×106

2trans +3 ⊂ 1 ⇄ 2trans ·3 ⊂ 1 −4.5 2.2×103 13.8 2.2×10−3 4.5×102 1.0×106

2cis +3 ⊂ 1 ⇄ 2cis ·3 ⊂ 1 −11.1 1.3×108 19.1 1.7×101 5.9×10−2 7.7×106

Table 7.2 Equilibrium and kinetics of the amide encapsulation/expulsion in/out cavity.
For each simulated host-guest complex, encapsulation free energies (∆G), equilibrium
constants Kenc, expulsion free energy barriers (∆G‡

o f f ), characteristic in-cavity residence
times (to f f ), and the associated transition rates (ko f f and kon) estimated from the WT-MetaD
simulations are reported.

2·3⊂1 complexes. The probability of 2cis co-encapsulation with 3 is ∼ 100,000×
higher than 2trans. This explains why X-ray structures always show encapsulated
2cis guests. High Kenc values indicate the amide guest is generally encapsulated
in the cage cavity. From thermodynamic data, we extrapolate partition probability
Pin = Kenc/(1+Kenc), showing a high probability of guest encapsulation (Pin ∼ 1 in
all cases).

7.2.4 Molecular determinants of reactivity in dynamic host-guest
systems

We have thus far investigated, separately, the three main processes that concur to
define the global dynamic picture of amide hydrolysis under confinement (Figure
7.5a): (i) encapsulation/expulsion of the guests in-and-out the cage cavity; (ii)
isomerization around the ω dihedral in solution and in confinement; (iii) the reaction
itself. For each of them, we have devised a probability metric and observed how
it varies across the different investigated cases. Our last step is thus to put these
processes (and probabilities) together, in order to capture the full dynamic complexity
of the system.

To this end, we can define a reaction acceleration index, a, as the ratio between
the observed reactivity with or without the presence of the cage in the system – i.e.,
when the reactant, guest 2, is encapsulated within the cage cavity (K(⊂ 1)) or when
it is free in solution (K(sol)):

a = K(⊂ 1)/K(sol) (7.1)
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In the real system, amide hydrolysis can in principle take place both when 2 is
encapsulated in the cage cavity or when this is out of the cage (with the observed
reaction coefficients determined by the probabilities for finding the different reactive
conformers – planar or twisted – in the two environments).

In general, the reaction acceleration a will thus depend on the likelihood that the
hydrolysis of 2 occurs in vs. out of the cage. From our simulations, we have seen
that the conformational free energy landscape of the amide guest may change upon
encapsulation (changing the relative free energy difference between cis and trans
conformers). As a consequence, the probability for crossing the rotational barrier
around the amide bond also changes. In particular, we could observe that the more
reactive 2cis conformer is more and more stabilized as the crowding increases in the
cavity of cage 1 (Figure 7.3d). The simulations also show that the encapsulation of
2cis within the cage cavity is considerably more stable than that of 2trans, showing
a higher affinity and retention time (Figure 7.4 and Table 7.2). Altogether, this
indicates that it is more likely to observe 2cis rather than 2trans encapsulated within
the cavity of the cage, which is consistent with the fact that the 2cis conformer is
present in the crystal structures obtained experimentally.[402]

The reactivity in the system depends on the propensity of the visited 2 conformers
to react, their relative population in the different complexes, their probability of
encapsulation (i.e., the relative population ratio between having 2 in the cage vs. in
solution at the equilibrium), and the solvent molecules accessibility to the amide
(i.e., the solvent is another key reactants) upon encapsulation. Noteworthy, are all
these parameters that can be extracted from our simulations. In general, we can
define a global reaction constant for the case when hydrolysis takes place within the
cage cavity, K(⊂ 1), as the sum of the reaction constants (Kω(⊂ 1)) for all amide
conformers (ω) visited by the guest reactant 2 in the cage cavity:

K(⊂ 1) =
π

∑
ω=0

Kω(⊂ 1) =
π

∑
ω=0

(χω ·Pcon f
ω (⊂ 1) ·Pin

ω (⊂ 1) ·NWω(⊂ 1)) (7.2)

where χω is the hydrolysis reaction constant associated to the possible amide con-
formers ω (see Figure 7.3b), Pcon f

ω (⊂ 1) is the relative statistical weight for all
different conformers ω in the cage cavity (Figure 7.3d), Pin

ω (⊂ 1) is the probability
for effectively having each specific conformer ω in the reactive environment – in this
case, inside the cage cavity (see Table 7.2) –, and NWω(⊂ 1) is the average number
of contacts between solvent molecules (water or OH−: key reactants for amide
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hydrolysis) and the amide’s carbonyl (estimated as in Figure 7.2e). Accordingly, the
global reaction constant in the absence of the cage in the system (2 alone in solution),
K(sol), can be defined as:

K(sol) =
π

∑
ω=0

Kω(sol) =
π

∑
ω=0

(χω ·Pcon f
ω (sol) ·Pin

ω (sol) ·NWω(sol)) (7.3)

where in this case Pcon f
ω (sol) and NWω(sol) refer respectively to the relative proba-

bilities for 2, when alone in the solvent, to assume the different conformers ω , and
the corresponding number of amide carbonyl-solvent molecules contacts. In this
case, in the absence of the cage in the system, guest 2 is by definition always out of
the cage, and Pin

ω (sol) = 1. Thus, Equation7.3 simplifies into:

K(sol) =
π

∑
ω=0

Kω(sol) =
π

∑
ω=0

(χω ·Pcon f
ω (sol) ·NWω(sol)) (7.4)

transforming the formula for the acceleration to:

a =
∑

π
ω=0(χω ·Pcon f

ω (⊂ 1) ·Pin
ω (⊂ 1) ·NWω(⊂ 1))

∑
π
ω=0(χω ·Pcon f

ω (sol) ·NWω(sol))
(7.5)

Moreover, it is worth noting that, given the high ∆G values in Figure 7.4c and
Table 7.2, when the cage is present in the system, the guests can be also considered
as always encapsulated within the cage cavity, so that in Equation 7.2 the Pin(⊂ 1)
term tends to ∼1 (vide supra):

K(⊂ 1) =
π

∑
ω=0

Kω(⊂ 1) =
π

∑
ω=0

(χω ·Pcon f
ω (⊂ 1) ·NWω(⊂ 1)) (7.6)

reducing the formula for the acceleration to:

a =
∑

π
ω=0(χω ·Pcon f

ω (⊂ 1) ·NWω(⊂ 1))

∑
π
ω=0(χω ·Pcon f

ω (sol) ·NWω(sol))
(7.7)

This means that, given the high propensity to guest encapsulation (Pin(⊂ 1)
∼1), in this specific case the reaction acceleration in the system is found to be little
dependent on the guest encapsulation/expulsion equilibrium. On the other hand, the
reactivity turns out to be rather controlled by the fact the guest is more favored to
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assume reactive conformations inside the cage cavity (compared to the case when
this is free in solution). This is in full agreement with the available experimental
evidence on these systems[402]. Finally, it is worth noting that while the summations
in Equation 7.6 and Equation 7.4 run in principle over all possible values of ω (which
have different reactivities, as seen in Figure 7.3b), the data in Figure 7.3d clearly
show that, due to the intrinsically high isomerization barrier, the relative probability
of observing twisted (and extremely reactive) 2 conformers (e.g., π/2, π/4, etc.)
is very low. These are distorted, very unstable conformers with a survival lifetime
tending to zero, for which the product χω ·Pcon f ω ≈ 0. The unique conformers with
a non-zero survival life and Pcon f ω ̸= 0 are 2cis (ω = 0) and 2trans (ω = π). The latter,
however, is substantially non-reactive (Figure 7.3b shows χπ ≈ 0), so that also in this
case χπ ·Pcon f π ≈ 0. Based on these observations, in our case, the reactivity of the
system seems to be largely related to (i) how much the reactive 2cis conformer is over-
stabilized and (ii) how accessible the amide is to the co-reactant solvent molecules
in such a conformation within the cage cavity vs. in solution. Combining these
data, we estimate the reaction acceleration a for the various host-guest complexes
reported in Figure 7.5b). We observe that, in this case, the reactivity increases with
the crowding in the system. While a ∼26-fold acceleration is computed for the
mono-encapsulated case (2 ⊂ 1), a double-encapsulation gives a ∼64-fold increase
for the 22 ⊂ 1 system. A dramatic a ∼ 150 is obtained for the 2 · 3 ⊂ 1 complex.
While such estimated a values may differ quantitatively from those obtained from
the experiments (this can be expected, given the deviations of such ideal models
from realistic systems/conditions), the trends can be still safely compared. Figure
7.5c shows a remarkable trend between our calculated acceleration data and the
experimental ones. This validates our simulation approach. It is worth noting that
the mono-encapsulation case (2 ⊂ 1) does not have an experimental counterpart, due
to the tendency of 2 to dimerize within the cage. Nonetheless, this extra-case (where
crowding is lower than in, e.g., 22 ⊂ 1 and 2 · 3 ⊂ 1) provides an additional case
useful for comparison. In particular, the limited computed acceleration seen in this
case supports the evidence that molecular crowding within the cage cavity is a key
player in the reactivity in the host-guest system.
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Fig. 7.5 Reaction acceleration in a dynamic host-guest system. (a) Full dynamic repre-
sentation scheme, showing the processes that need to be taken into account to rationalize the
reaction acceleration observed experimentally. (b) Computed reaction acceleration for the
various investigated host-guest systems: the hydrolysis acceleration index, a, is expressed
relative to the reactivity of the 2 guest alone in solution (see Equations 7.1-to-7.6). (c)
Correlation between the reaction acceleration, a, computed from the simulations, and the
acceleration measured experimentally[402] (linear fit reported by the dashed line). (d-h)
Relationships between the computed reaction acceleration a and various characteristic pa-
rameters of the host-guest systems: (d) relative probability for finding the 2cis over 2trans

conformer in solution vs. in the different host-guest complexes (dashed line: exponential
fit); (e) encapsulation free energy ∆Genc of the 2cis conformer in the different complexes
(exponential fit reported by the dashed line); (f) the weighted number of contacts between
the host and the guest, evaluated as the product between the peak position of the distribution
of Figure 7.2c and its height; (g) the reduction in SASA of the 2cis guest in the different
encapsulation complexes vs. when this is in solution (an indirect measure of solvophobic
effect[429, 430], showing no clear correlation). Reproduced with permission from Ref [401].
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In order to obtain an insight into the key molecular determinants controlling
the reaction acceleration in these host-guest systems, in Figures 7.5d-g we plot
the computed a parameters against some of their key constitutive terms. We have
seen that the difference in affinity between cis and trans conformers among the
different systems is the main factor determining the final reaction acceleration using
Equation7.1, this being shown by the nearly perfect exponential correlation between
a and the relative probability of finding the 2cis conformer with respect to the 2trans

conformer in solution and in the different encapsulation complexes (Figure7.5d).
The trend suggests that small incremental stabilizing effects on this conformation,
e.g. by changing affinity and size of the co-guest, could result in potentially outstand-
ing enhancements of reactivity for guest 2, keeping all other parameters constant.
Noteworthy, a quasi-exponential trend is observed between the computed reaction
acceleration a and the encapsulation free energies (∆Genc) for 2cis in all systems
(Figure 7.5e). In these systems, where the reactivity is observed to increase with
the crowding inside the cage cavity, the a is also clearly related to the host-guest
interaction (namely, to obtain a stable complexation, a strong host-guest affinity is
necessary to compensate for the crowding penalty associated to the binding). This
affinity, as evidenced by a qualitative investigation of how the different components
interact with each other, both in our simulations and in the available experimental
X-ray structures,[402] is mainly driven by π-π stacking between the four triazine
ligands of cage 1 and the aromatic rings of amide 2, particularly favorable in the cis
conformation and by residual solvophobic interactions between such ring groups. A
similar trend can be observed also when looking at the weighted number of contacts
between the host and the guest (Figure 7.5f, evaluated from the distributions of
Figure 7.2c, i.e. a proxy for the host-guest interaction energy). If we consider the
interaction between 2 and cage 1 to be consistent among all the investigated systems,
we can trace the trend back to the interaction between guest and co-guest (or the
absence thereof in the 2 ⊂ 1 case), with 3 showing a greater stabilizing effect for 2cis

within the cage cavity compared to another 2 co-guest. Noteworthy, as revealed by
the obtained trends of Figures 7.5e-f, such favorable affinity can stabilize the reactive
conformer of amide 2 to a higher extent, which results in a remarkable increase in the
reaction acceleration a. The remarkable stabilizing effect of co-guest 3 is driven by a
balance between having an aromatic structure able to participate in π-π stacking with
guest 2, its considerable solvophobicity that makes its encapsulation within the cage
cavity very stable, and a size (volume = 172 Å3)[401] that allows the amide to reside
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comfortably in the cavity in a cis (reactive) conformation. Another 2 co-guest, while
still being able to engage in favorable interactions (Table 2: host-guest complexation
on average more favorable than that of a single 2), has a larger volume (241 Å3)[401]
which constraints the first guest in less favorable configurations and produce a less
stable complex.

To obtain information on how much of the host-guest interaction is due to solvo-
phobic effects, we calculated the reduction in the Solvent Accessible Surface Area
(SASA) of the 2cis conformer when this is encapsulated in the cavity of the various
complexes vs. when this is alone in solution.[429, 409, 430] While a correlation
with the computed reaction acceleration is observed (see Figure 7.5g), the trend
becomes less neat. The trend is respected while moving from the amide in solution
to mono-guest (2 ⊂ 1) and double-guest complexes (22 ⊂ 1 and 2 ·3 ⊂ 1). However,
the differences in acceleration between the various systems do not correlate in a neat
manner with the ∆SASA calculated for the various cases. This reveals that (i) non-
specific hydrophobic effects alone are not sufficient to grasp the complexity of these
reactive systems, and suggests that (ii), like in most of receptor-ligand complexes
in Nature, specific molecular interactions are probably relevant in controlling the
host-guest affinity.

7.3 Conclusions

Using multi-scale modeling and metadynamics simulations, we study the host-guest
system’s intrinsic dynamics and the amide hydrolysis reaction. This allows us to (i)
characterize hydrolysis barriers as a function of amide conformation, (ii) study the
amide guest conformations and their probabilities inside and outside the cage, and (iii)
analyze guest encapsulation/expulsion dynamics. Our approach estimates a reaction
acceleration score, comparing system variants and identifying the stabilization of
reactive amide conformers due to crowding effects in the cage.

In our case study, we compared the amide guest alone, encapsulated in the cage,
and co-encapsulated with other guests. We found that encapsulation stabilizes reac-
tive amide conformers, with higher encapsulation constants favoring this stabilization.
When co-encapsulated, increased crowding further stabilizes the reactive cis con-
former. Our computational results align well with experimental findings by Takezawa
et al.[402], emerging from a detailed study of molecular dynamics and equilibria in
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the host-guest system. This general approach explains confinement-induced reaction
acceleration (or deceleration) by considering all dynamic processes within the system,
providing a high-resolution framework for building structure-property relationships.
It supports the rational design of host-guest systems with molecular-level control of
reactivity, exploring the effects of guest and cage properties, and tuning host-guest
dynamics for reactivity control.

While our method effectively reconstructs dynamic reactivity, it has limitations,
such as not considering possible active roles of intermediate states or the explicit
effect of the cage on hydrolysis. The cage’s effect is implicitly included as en-
capsulation favors reactive conformers or limits solvent access. Methodological
extensions, like hybrid QM/MM approaches, could include the cage explicitly if
necessary. Despite simplicity, our approach links the computational chemistry of
chemical reactions to complex dynamic processes typical of chemical engineering,
highlighting the importance of controlling system dynamics for reactivity.

7.4 Methods

7.4.1 Reparametrization of ω dihedral potential terms of amide

Peptide bonds in protein structures are mainly found in trans conformation with a
torsion angle ω close to π . Due to the small population of the cis conformation [418],
the kinetics of isomerization of peptide bond has always been difficult to characterize
experimentally and, as a consequence, only limited data on the free energy barriers
separating the two isomers are available.[431] Being generally derived from quantum
mechanical calculations on model compounds, or based on experimental data from
thermodynamic and kinetic studies, the AMBER force field shows limitations in
the estimation of the accurate free energy difference between the cis and trans
conformations in peptide bond. Herein, this was evidenced and proven by preliminary
metadynamics tests in this sense. As showed in section 7.3, the description of the
cis-trans equilibrium for the amide 2 has a central role in the study of its reactivity,
and thereby, our aim is to evaluate the accuracy of the potential terms involved in
the process of isomerization of the ω dihedral angle. In the AMBER force field, the
torsional potential energy term is expressed as the Pitzer potential[432], a Fourier
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series term given by:

∑
Vn

2
[1+ cos(nµ − γ)] (7.8)

where Vn, n, µ , and γ are, respectively, the dihedral force constants, periodicity,
torsional angle, and phase angle. To reproduce the torsional energy profile of the
peptide bond, only the first two terms in this series are relevant: V1 (n=1, γ = 0), and
V2 (n=2, γ = 180); the former describes the cis-trans equilibra, while the latter is
responsible for the barriers to rotation about C-N bond. In order to test the accuracy
of the dihedral amide parameters, we compared the free-energy surface (FES) for the
torsion of an N-methylacetamide (NMA) amide – the simplest analog of the peptide
bond within amides, that here we use as a reference to optimize the amide force
field parameters – obtained performing WT-MetaD simulation with the experimental
energy profile obtained with NMR studies.[431] In these WT-MetaD simulations,
as the collective variable (CV) we chose the ω dihedral angle of the amide, with a
bias factor of 30 deposited every 500 steps using Gaussians of initial height of 1.2
kcal/mol and a σ of 0.35 rad.

Fig. 7.6 Comparison of Free Energy Surfaces for the torsion of ω for NMA. We
compared the FES for the torsion of an NMA amide obtained with our reparametrized
dihedral potential terms (in green) or with the original GAFF parameters (in red) vs. the
experiments (blue)[431]. The experimental free energy barriers for the transitions are
21.3kcal/mol for trans to cis and 18.8kcal/mol for cis to trans. Using the original GAFF
parameters, the barriers are higher. Our reparametrized dihedral potential terms yield
barriers of 20.3kcal/mol for trans to cis and 18.0kcal/mol for cis to trans, showing improved
agreement with experimental values. Adapted with permission from Ref[401].

Our simulations indicate that the default ω AMBER potential parameters do
not accurately reproduce the cis-trans equilibrium and free energy barriers for
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isomerization, as compared to experimental estimates (Figure 7.6). To improve
the description of ω isomerization, we replaced the standard AMBER force field
dihedral potential values with those pre-optimized by Doshi and Hamelberg [419],
and further optimized them to align with experimental data (Figure 7.6). Specifically,
we adjusted the dihedral force field parameters to match our cis-trans isomerization
FES with the experimental free energy profile for NMA (Figure 7.6). This involved
modifying the main torsional parameters for ω bond rotation, focusing on the V2

term for the general X-C-N-C torsion, and the V1 and V2′ potential parameters for
the H-N-C-O torsion, while keeping all other non-bonded parameters unchanged.

7.4.2 Conformational Metadynamic simulations

In order to characterize the ∆G associated to the trans-to-cis transition of 2, we
employed WT-MetaD simulations, biasing the 3 dihedral angles – ω , ψ and φ for
the four systems, 2 in solution, 2 ⊂ 1, 22 ⊂ 1 and 2 · 3 ⊂ 1. The starting model
conformations used in the WT-MetaD simulations of these complexes have been
obtained after 1 µs of preliminary NPT MD equilibration. During this WT-MetaD
run, in all simulated systems amide 2 was seen to undergo transition trans-to-cis,
recrossing between the isomers multiple times. For all simulated complexes, we
ran at least 1 µs of WT-MetaD simulation to reach convergence in the calculated
trans-to-cis ∆G. In these WT-MetaD simulations the bias was deposited every 1000
steps (2 ps of simulation time) using Gaussians of initial height of 1.2 kcal/mol, σ of
0.33 rad, with bias factor of 25-35 depending on the system. For the characterization
of the barriers and kinetics of the trans-to-cis isomerization, we turned to infrequent
WT-MetaD simulations. We ran 51 infrequent WT-MetaD simulations, focusing on
the isomerization along ω and ψ dihedral angles for each of our host-guest systems.
This allowed us to compare how the encapsulation, and then the molecular crowding
inside the cage cavity, affect the dynamics of isomerization of 2. In these infrequent
WT-MetaD runs, the bias was deposited every 5000 steps (10 ps of simulation time)
using Gaussians of initial height of 1.2 kcal/mol, σ of 0.23 rad, with bias factors
between 6-16 depending on the system.



Chapter 8

Conclusions

This thesis summarized and described various computational studies conducted dur-
ing my PhD, highlighting the critical role of dynamics in determining the physical
and chemical properties of materials. In the works presented here, we integrated
advanced computational methods, particularly ML algorithms combined with molec-
ular simulation techniques, in order to develop a general and robust framework for
analyzing the atomic structural dynamics of metal surfaces and NPs. This integration
is essential for managing the complex, high-dimensional data generated in these
studies, providing unprecedented insights into the atomic-level behavior of these
materials. The initial focus was on Cu-FCC surfaces. To fully and accurately charac-
terize these systems, we trained a neural network potential with DFT-level data. This
approach allows us to characterize the complex microscopic dynamic behavior of
these surfaces, leading to the introduction of the concept of "statistical identity" for
our metallic systems. In this context high-dimensional descriptors like SOAP were
crucial in characterizing atomic environments, essential for both the bottom-up and
top-down analyses described in Chapters 3, 4, and 5[172, 171, 342].

Our research extended to Au nanoparticles, demonstrating the versatility of
our framework. We created a comprehensive dictionary of atomic environments,
enabling continuous enrichment and detailed analysis of individual atoms in MD
simulations. Then, collaborating with experimental groups, we aligned our models
with practical scenarios, providing a comprehensive understanding of the system’s
dynamics and structural properties. Our methodology enabled us to reconstruct the
structural dynamics of metal NPs with Å spatial resolution and ps time resolution
over 6 s intervals [342, 331]. By using local descriptors like LENS[203], we captured
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rare dynamic events, such as the collective sliding of atomic terrace on the NP face,
providing a dynamic view of atomic NPs useful for interpreting properties under
experimental conditions. The necessity of complementing a structural descriptor
like SOAP with a dynamic one, LENS, is also demonstrated in Chapter 6. Relying
solely on structure-based descriptors, these approaches have limitations due to the
inherent nature of the descriptors themselves. For example, SOAP is permutationally
invariant, which restricts its ability to detect local events that do not involve signifi-
cant structural rearrangements but are still important for understanding the physical
properties of the system. Moreover, while this type of descriptor effectively detects
dominant structural environments, it may fail to capture sparsely observed, local
time-dependent events within the trajectory. These transitions, although statistically
infrequent, play a crucial role in the overall behavior and properties of the system,
as we observed in Chapter 6. Integrating dynamic descriptors allows for a more
comprehensive understanding of these fleeting yet significant transitions, ensuring a
more complete and deeper prediction of system properties.

This thesis also investigates how the dynamics of a (host-guest) system control
reactivity. This has been demonstrated in a case of amide hydrolysis in the cavity
of a coordination cage[401]. This approach is affine to our work on metals: in
both cases, we demonstrate how dynamic behaviors are crucial for understanding
systems properties. In particular, in this specific host-guest system, we revealed how
dynamic processes, such as guest encapsulation and expulsion, significantly influence
reactivity. By coupling dynamic equilibrium with reaction constants, we obtained
a comprehensive understanding of how structural environments dictate dynamic
behaviors. As with metals, static analyses based only on structure fail to capture
these essential dynamic phenomena, highlighting the limitations of structure-based
approaches in fully understanding the behavior of complex systems.

Overall, this thesis discusses a general approach to unravel and characterize
the intricate dynamic nature of complex systems, demonstrating the limitations of
studying them as static structures, even at low temperatures. By analyzing atomic
dynamics, we determine energy barriers, reconstruct the free energy surface, and
establish probability distributions and lifetimes of various states. This direct exam-
ination of microscopic dynamics allows us to accurately determine macroscopic
properties, ensuring, for example, a deeper understanding of metal surface behaviors
under relevant conditions. In general, the works discussed herein represent a new
viewpoint (or, in a sense a paradigm shift), moving the main subject from static
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structure and energy to microscopic dynamics. This generally advances our under-
standing of how complex dynamical systems, from atomic crystals and metals to
supramolecular systems, work, providing insights that are not possible to attain by
employing solely traditional structural and energy-based analysis.

Future Perspectives

The results obtained from this research open several avenues for future investigations.
One key area is the study of the reactivity and activity of atomic environments,
as it has also been recently shown by others[185, 201, 400], which is particularly
important for any property that is finely controlled by the available surface or
structural sites over time.

In general, different atomic sites and environments exhibit distinct properties and
behaviors,[161, 163, 250, 251] making it crucial to obtain a structural/dynamical
map of how long all AEs in the NPs live (τi) and how quickly they interconvert
(τi→ j). Understanding these dynamics is key to assessing their effective performance
in various applications. Statistically, if an AE’s average lifetime τi is shorter than the
timescale for a process τprocess, the probability of utilizing that AE is proportional to
τi/τprocess. This ratio indicates how often a process must interact with the same AE
to be effective.

Estimating this in practical scenarios involves focusing on realistic cases and
evaluating the behavior of all visited AEs in the NP. Although this is not the main
focus of this thesis, it is certainly feasible and highlights the potential of the approach
for future research. Moreover, it is important to note that such a probabilistic
interpretation is valid as long as the interacting species do not significantly alter
the dynamics and features of the AEs present on the NP—e.g., no or negligible
chemisorption (if this condition does not hold, a proper reactive parametrization and
simulation of the system is needed, where new AEs may appear on the NP surface
upon interaction with the species [341, 185, 201]). The methodologies developed
can also be extended to other metal systems, allowing for broader application of the
findings. Our approach has proven to be adaptable to different types of metals, and
developing comprehensive SOAP dictionaries for various metals will enable a more
detailed understanding of their dynamic behavior. Creating a unified dictionary that
includes AEs from different systems could be particularly beneficial for comparing a
wide range of metals. This would facilitate the identification of common patterns
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and unique behaviors across different metallic systems, enhancing our ability to
design materials with specific desired properties. Moreover, these approaches are so
abstract and general that they can also be applied to completely different systems
on different scales[205, 203, 433, 363]. This opens interesting new perspectives for
revisiting traditional methods of classifying condensed matter systems and achieving
a deeper level of understanding in materials science overall.
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