
Doctoral Dissertation

Doctoral Program in Pure & Applied Mathematics (36thcycle)

Statistical models for understanding
biomedical data

By

Hiu Ching Yip
******

Supervisor(s):
Prof. Gianluca Mastrantonio, Supervisor

Prof. Enrico Bibbona, Co-Supervisor

Doctoral Examination Committee:

Politecnico di Torino

Tuesday 8th October, 2024



Declaration

I hereby declare that, the contents and organization of this dissertation constitute my own
original work and does not compromise in any way the rights of third parties, including those
relating to the security of personal data.

Hiu Ching Yip
Tuesday 8th October, 2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D. degree in
the Graduate School of Politecnico di Torino (ScuDo).



Abstract

This work is a collection of statistical models that can be applied in biomedical research.
It focuses on the development of statistical methods in the following research areas: cross-
species comparison in bio-acoustic analysis, meta-analysis of randomized clinical trials and
preferential attachment of an evolving network.

A statistical model is presented for each of the corresponding areas. In particular, these
models and their implementation integrated novel techniques and methodologies in order
to tackle challenges that are induced by the characteristics of real-world data sets. The first
is a spatio-temporal model for bio-acoustic data that consists of periodic artifacts and is
temporally non-stationary. The second is a modified proportional hazards model that can
account for the impacts of the follow-up time of the trials in mixed treatment comparison.
The third is a correction of a specific preferential attachment model that exhibit the power-law
degree sequence which is empirically observed in real-world network data.

The models and the methodologies involved in the implementation have solid theoretical
basis. More importantly, these models are useful quantitative tools for biomedical researchers
to analyze and learn from data sets that possess the problematic characteristics encountered
in this work. Extensive simulation studies and testings on real data sets were conducted.
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Chapter 1

Introduction

1.1 Some history of mathematics in biology

The use of mathematics in research areas of other disciplines has a long history across the
scientific communities. Mathematical biology and biostatistics are some of the most promi-
nent fields that represent this type of inter-disciplinary research. However, the application
of mathematical theories and theoretical tools for the purposes of understanding biological
systems or decision-making in public healthcare management have been met with numerous
challenges in terms of theoretical solidarity and technical practicality.

Topics that exemplify the use of mathematics in bio-medical research include the studies
of evolutionary biology, statistically-based clinical trial studies and epidemic modeling.
Firstly, the formal study of animal behaviors began with Darwin’s evolutionary theory and
the concept of natural selection. Subsequent empirical research on evolutionary paths of
living organisms have since employed many mathematical tools with the most popular ones
being the Poisson process for coalescent trees and the Wright-Fisher model for population
genetics, among others. (Deonier et al., 20005; Durrett, 2008) Secondly, modern randomized
controlled trials appear in the aftermath of World War II as a result of wartime scarcity, the
development of new drugs for the war effort and the necessity of human trials. During the
war, a series of human trials were conducted on over 170 patients to test the effectiveness of
penicillin, which later became known as The Penicillin Project. (Lobanovska and Pilla, 2017)
Following the success of the first randomized control trial that was conducted in 1946 to test
antibiotics for tuberculosis, statistically-based study design gradually became universal in
clinical trials and statistical methods such as random sampling, randomized allocations and
hypothesis testings have been widely utilized in pharmaceutical research. (Council, 1948;
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Hart, 1999) Finally, the mathematical modeling of the spread of infectious disease in human
populations stretches back to the development of inoculation by Daniel Bernoulli in 1766
and the tracking of cholera outbreak by John Snow in 1857. (Brauer, 2017) Since the last
century, the most popular tool for epidemic modeling is the compartmental model by the
pioneering work of Kermack and McKendrick (1927) and most of the succeeding research
thenceforth focused on the analytical solutions to the original or extended framework of this
model.

Major issues remain in the application of theoretical tools from the mathematical sciences
in bio-medical research. First and foremost, many technical limitations and assumptions of
these tools have either inhibited or outright prevented researchers from obtaining accurate
or even meaningful results. An example of this issue is the assumption of homogeneous
mixing by the compartmental model in epidemic modeling. This assumption implies that
the probability of disease transmission is identical for all members of the population, which
was found to be unrealistic and non-factual by many disease and demographic case studies.
(Anderson, 1991; Brauer, 2017)

Furthermore, the application of mathematical tools automatically raises new questions
that need to be addressed. For example, the statistically-based study design of randomized
control trial entails questions regarding the stopping points of different treatment phases and
the minimum sample sizes, among others. The work by Bryant and Day (1995); Conaway and
Petroni (1995), for instances, address these questions for the study designs of multiple-phase
clinical trials.

Issues regarding the proper applicability of mathematical tools in bio-medical research
topics have led to further investigations that continue to this date and have opened up new
opportunities for inter-disciplinary studies. Specifically, the application of conventional
mathematical tools often raise more questions than answers due to the discrepancy caused
by the generality of mathematical tools and the particularity of biological questions. This
has induced the need for the development of more suitable and specific quantitative tools for
each respective bio-medical research topic.

1.2 Recent developments in biomedical data science

Recent developments in the disciplines of statistical sciences, theoretical computer science
and mathematics have led to the emergence of new perspectives and novel approaches
across many research topics in the fields of mathematical biology and biostatistics. As
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previously elucidated, statistics has been practiced in biomedical research starting from the
20th century and earlier. Most of these statistical methods have their basis on frequentist
statistics, which was systematically formalized by the work of Ronald Fisher, Jerzy Neyman
and Egon Pearson. Recently, Bayesian statistics, which was first formulated by Thomas
Bayes in the 16th century, has also gained popularity as an alternative to the conventional
frequentist statistics due to the rise of modern computational power. Prior to the emergence
of modern computational capacity, Bayesian statistical methods would have been deemed
impossible and would have only been used when analytical solutions to the calculations are
easily available. This increasing ubiquity of computational methods nowadays has enabled
the statistical learning of enormous and highly complex biomedical data sets. Following
the previously introduced topics in biomedical research, it can be seen that the these recent
developments have indeed led to improvements in the understanding of the biomedical
research topics under considerations here.

In recent years, empirical research in evolutionary biology began to focus on understand-
ing how social structures and communicative systems might have impacted the evolution
of different species. Empirical studies of this kind analyze interactive behaviors and vocal
signals of social animals. This new perspective has arisen due to the prevalence of many
computational methods which allow more complex bio-acoustic sequences to be studied.
Signal processing techniques such as Fourier transform have allowed the bios-acoustic se-
quences to be analyzed in time-frequency format using statistical methods. (Kershenbaum
et al., 2016) Quantitative tools that have been used to conduct such bio-acoustic analysis
include feature engineering methods, time series as well as unsupervised clustering methods.
(Sainburg et al., 2020) Results obtained by Gamba and Giacoma (2007) and Gamba et al.
(2016), among other studies, have shown that bio-acoustics investigators are able to make use
of statistical tools for identifying meanings in the vocal communication of a specific species.
Bayesian cluster analysis method was also used in the bio-acoustic study by Valente et al.
(2019).

Many randomized clinical trials have been independently conducted since their post-
war success for understanding penicillin and antibiotics. As previously mentioned, the
statistically-based study design is an issue that is left to be addressed by the researchers
responsible for each trial. However, many of these trials might have aimed to evaluate the
same treatment or drug even though they might have different study designs from each other.
For this reason, historical data obtained from these trials could show conflicting statistical
results on the very same treatment in question. As a result, a new approach called meta-
analysis has appeared as a new statistical methodology to synthesize results from independent
but related trials. (Normand, 1999; Schwarzer et al., 2015) The study by Gili et al. (2016) is
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an example of meta-analysis that aims to understand the effectiveness of statin therapy on
total cholesterol levels of HIV patients. Lately, the usage of Bayesian methods are also being
investigated by clinical researchers such as the work by Hu et al. (2020). Many models and
methodologies for meta-analysis are still being proposed or under development in order to
further improve clinical research. (Schwarzer et al., 2015; van Houwelingen et al., 2002)

Since the introduction of random graphs and complex networks as a field of study in its
own right, network models were shown to possess far more realistic assumptions in contact
and transmission patterns than the classical compartmental model in epidemic modeling.
(Newman, 2002) Subsequent research has confirmed the revolutionary success of the network
approach in terms of applicability as well as computational efficiency. Therefore, epidemic
network models have attracted considerable research interest in infectious disease modeling.
A case study by Cauchemez et al. (2011) on H1N1 confirmed the impact of social network
structure on the modeling of spread of disease and the recent study by Maheshwari and Albert
(2020) also made use of the network model with edge-deletion for analyzing Covid-19. The
computational efficiency of the network approach to epidemic modeling was demonstrated by
the variational Bayesian approximation method in the work of Karrer and Newman (2010).

Altogether, these indicate that gradual improvement is being made in the understandings
of the biomedical sciences due to the progress being made in the computational sciences,
especially in computational statistics. It should be noted that most of the aforementioned
computational methods for biomedical sciences are mostly based on the statistical sciences
and therefore naturally require the availability of large data sets.

1.3 Challenges of biomedical data modeling

In spite of these recent breakthroughs, many challenges remain unresolved in the statistical
learning of bio-medical data sets due to many methodological issues such as high dimen-
sionality, statistical heterogeneity and inconsistency. However, it is beyond the scope of
this introduction to explain the many methodological problems involved in the learning and
analysis of biomedical data sets using statistical methods. Therefore, only the methodological
issues that are relevant to the rest of this thesis are elucidated here. These relevant issues
include high dimensionality, inapplicability of generic statistical tools or models as well as
properties of some novel mathematical tools for modeling.

The issue of high dimensionality refers to the fact that the sizes of biomedical data
sets are usually enormous. This often renders the direct application of many contemporary
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statistical methods computationally infeasible. This is known as the “Big N Problem”. Many
approximation methods have been proposed for the different types of statistical models in
both the frequentist and the Bayesian framework accordingly. For example, the “Big N
Problem” in spatial statistics is explained in details in the work by Banerjee and Fuentes
(2012). In biomedical data modeling, studies on biodiversity and wildlife populations such
as the work by Bondo et al. (2023, 2024) often encounters this particular problem in their use
of multivariate spatial process models and therefore requires suitable approximation methods
to be applied on the statistical modeling of spatial data sets. For example, the work by Bondo
et al. (2023, 2024) made use of the approximation method proposed by Rue et al. (2009) to
model diseases in wildlife populations. The development and proper application of statistical
models and approximation methods in biomedical data modeling require further research
and investigation. In addition, the improvement of approximation methods for the purposes
of easing computation and wider applications in different settings is also a research area of
interest.

Another common issue in biomedical data modeling is the peculiar characteristics intrinsic
to biological data which beget the inapplicability of many generic statistical tools. These
peculiar characteristics of biomedical data sets almost always imply the need of distinctive
statistical models or methodologies specialized to answer the biomedical research question
of interest using the available data set. Examples of this include the study on microbiome by
Denti et al. (2021) and the study on gene microarrays by Zou and Hastie (2005). Another
example is clinical trial data sets that are obtained from different study designs, which
require different statistical models and methodologies for trial data analysis. In light of the
characteristics of different biomedical data sets, the role of statistician is required in such
studies in order to build or apply specific statistical models or methodologies.

Another aspect that needs to be taken care of is the theoretical properties of the novel
statistical tools. The theoretical properties and behaviors of many novel models and method-
ologies are not well established and is a topic of active research. This is particularly true for
models that are based on random graphs and complex networks since the network science
has only become a field of study on its own not so long ago. (Albert and Barabási, 2002;
Newman, 2010)

There are many issues regarding the statistical analysis and modeling of large biomedical
data sets that are beyond the scope of this thesis. In summary, the rise and challenges of
biomedical data modeling have led to statisticians playing an ever more important role in
biomedical research.
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1.4 Content of this thesis

Many statistical methods, whether frequentist or Bayesian, are available and can be used
for understanding the biomedical research topics that were discussed in this introduction.
Nonetheless, as previously pointed out, many issues remain to be resolved and the previously
introduced methodological challenges have led to the formation of the research projects that
form the content of this thesis.

This thesis focuses on four research areas: the Bayesian learning of a set of bio-acoustic
data (Chapter 2), the Bayesian meta-analysis of randomized clinical trials (Chapter 3) and
the asymptotic behavior of the degree of a network model (Chapter 4). Each chapter of this
thesis corresponds to a published or submitted article of a journal. The opening remark of
each chapter indicates the corresponding published or submitted article.

Chapter 2 presents a novel Bayesian methodology that can learn from a set of bio-
acoustic signals and can be used for cross-species comparison. The proposed model is a
spatio-temporal model that obtains the latent spectral shape of the species-specific acoustic
signals. This is achieved by accounting for periodic artifacts and synchronization in time.
The implementation of the proposed model involves an approximation method due to the
size of the data set.

Chapter 3 is the Bayesian network meta-analysis of a set of clinical trial data. The
methodology utilized to perform the analysis is based on a modified proportional hazard
model. A comparison of different approaches and the diagnostic statistics involved in the
comparison are described.

Chapter 4 rigorously establishes a corrected statement regarding the behavior of the
expected degree of a specific preferential attachment model, which is a type of network
model that exhibits the power-law degree sequence and is highly suitable for modeling
real-world network data. A simulation study is also conducted to numerically demonstrate
the validity of the results.

Chapter 5 provides a concluding remark.



Chapter 2

Bayesian inference of latent spectral
shapes

Background

This chapter was submitted as a journal article and was partially published in a conference
proceedings:

Yip H.C., Mastrantonio G., Bibbona E., Gamba M. and Valente D. Under review.
Bayesian inference of latent spectral shapes.

Yip H.C., Mastrantonio G., Bibbona E., Gamba M. and Valente D. Nearest neighbours
Gaussian process model for time-frequency data: An application in bio-acoustic analysis.
July 18-22, 2022. Conference Proceedings of the 36th International Workshop on Statistical
Modelling. 603-607. ISBN: 978-88-5511-309-0.

The statistical model and results by Prof. Gianluca Mastrantonio, Prof. Enrico Bibbona
and PhD candidate H.C. Yip in this work are based on the biological knowledge and bio-
acoustic data set provided by Prof. Gamba and Dr. Valente. The candidate would like to
express her deepest gratitude to all collaborators whose knowledge and expertise are the
reasons for the success of this work.
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2.1 Introduction

Bio-acoustic analysis is of significant research interests across different disciplines due to the
potential insights into evolutionary biology that can be given by the information contained
in animals’ acoustic sequences. Exemplary areas of interests in the biological studies of
bio-acoustics include cross-species animal behavioral studies, their vocal repertoire and
anatomy. The work of Dunn and Smaers (2018) and McComb and Semple (2005), for
example, made use of the repertoire size as an indicator for the level of communication
complexity of primates.

Recent development in computational statistics has given rise to a form of bio-acoustic
analysis that focuses on the spectral properties rather than the behavioral or biological
contexts of the recorded analogue signals. In this form of analysis, the recorded analogue
signals are usually processed and discretized by the Fourier Transform which results in a
discretized signal being represented in a time-frequency format, called spectrogram, which
consists of a time axis, a frequency axis and amplitude at each time-frequency coordinate.
Bio-acoustic analysis therefore becomes a form of time-frequency analysis.

The recent survey by Sainburg et al. (2020) provided an overview of the contemporary
computational methods for the spectrographic representations of bio-acoustic data. The
most common practice generally involve the selection of a set of basis-features from the
spectrograms for quantitative comparison between various sets of bio-acoustic data. The
most common type of features are musical features such as pitch, timbre and harmony, whilst
features in the signal domain such as amplitude, period and fundamental frequency are also
very popular. Depending on the goal of the particular study, bio-acoustic investigators can
make use of a combination of several types of features obtained from the spectrograms
alongside with factors that are grounded in the biological contexts of the signals. Examples
of these studies include the work of Gamba and Giacoma (2007); Gamba et al. (2016) and
Valente et al. (2019).

The survey by Kershenbaum et al. (2016) provided additional background on several
paradigms of basis-features and suggested a protocol to analyze them. However, it was also
suggested that the identification of meaningful basis-features are often inaccurate by virtue
of human subjectivity and difficult to generalize for cross-species comparison. Furthermore,
these manually selected basis-features are almost always treated as independent features
by bio-acoustic investigators such that the effects of time are customarily ignored. As
pointed out by Sainburg et al. (2020), ignoring the relative relationships between the time-
varying components and the spectral shape might result in the failure to capture the relevant
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Table 2.1 Descriptions of the set of recordings of the “grunt” call-type.

Species

EC ER FL FU II MA MO PD

# recordings 1966 6594 1174 1041 1144 3615 1492 145
min. length 0.025 0.020 0.020 0.021 0.011 0.020 0.031 0.027
max. length 4.016 0.374 0.474 0.513 0.238 2.057 1.135 0.105

# length > 0.1 1311 4531 542 464 25 1599 1277 2
# length > 0.2 412 180 15 33 4 204 268 0
# length > 0.3 87 12 2 13 0 47 73 0

characteristics of the signal. A study conducted by Bregman et al. (2016) also challenges
the conventional view that songbirds rely exclusively on the absolute pitch at a specific
frequency for tone sequence pattern recognition. Instead, it was argued that songbirds are
able to perceive and recognize tone sequences as long as the overall pattern of the spectral
amplitudes are preserved.

This chapter presents a spatio-temporal model for bio-acoustic data in spectrogram repre-
sentation for the purpose of facilitating cross-species comparison in bio-acoustic analysis.
Specifically, this work deals with the problem of information extraction by parametric esti-
mation of a Gaussian process model in the presence of non-stationary covariance structures
in the time dimension. The aim of the proposed model is to obtain the latent spectral shape
of the acoustic structure of a species. The latent spectral shape is then used to measure the
dissimilarity between different species.

The subsequent sections are organized as follows. Section 2.2 describes and illustrates
the available set of bio-acoustic data that motivates the work in this chapter. Section 2.3
thoroughly explains the proposed spatio-temporal model. Section 2.4 discusses the method-
ologies utilized in the implementation of the model. Finally, the analysis of the results
obtained from applying the proposed model on the data set are provided in Section 2.5. A
simulation study can be found in the Appendix A.

2.2 The data set

The available data set is a set of vocal signals of lemurs in Madagascar. Each signal was
emitted by an individual lemur and was recorded as an audio file. A total of 39741 analogue
audio recordings were obtained from 9 different species of lemurs. The format of the data
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set resembles that of Pozzi et al. (2010). Each recording is categorized by a species label
and a behavioral call-type label which respectively characterizes the biological species and
behavioral context from which the signal came. The descriptions of some of the call-type
labels can be found in the work of Maretti et al. (2010) and Pozzi et al. (2010), for example.
The total number of behavioral call-types ranges from 9 to 20 for each species. The analysis
of the entire data set is outside the scope of this work and thus the focus is put on a single
call-type, called “grunt”. The “grunt” call-type is of particular interest because it is a type of
multi-contextual call that demonstrates species-specific characteristics and is used by each
species to coordinate their collective movements. (Gamba et al., 2012; Sperber et al., 2017)

Table 2.1 summarizes the characteristics of the analogue signals that are labeled as
“grunt”. The “grunt” call-type is common to 8 out of 9 species. Note that each analogue
audio recording lasts for a unique duration of time. The time lengths of the recordings are
summarized in Table 2.1 from the second to the last row. Note that the maximum time length
largely differs from the minimum time length for each species. It should also be noted that
the number of recorded signals of longer time-lengths, e.g. # length > 0.3 in the last row, are
especially few relative to that of shorter time-lengths, e.g. # length > 0.1 in the fourth row.

The analogue audio signals are discretized and converted into the time-frequency format,
called the spectrogram, by means of the Short-Time Fourier Transform with a constant
time-step of 0.01 seconds. The frequency axis of each spectrogram ranges from log 63 to
log 20000 decibels and is divided into 26 evenly spaced frequency intervals of step size
0.221 approximately. On the other hand, the time axis of each spectrogram is discretized
by a constant time-step of 0.01 seconds. As a consequence, all spectrograms have the
same number of frequency coordinates, but each of them has a distinctive number of time
coordinates of its own due to the varying time-lengths of the recordings as described in
Table 2.1.

Two motivating examples of the spectrograms from the data set are shown in Figure 2.1
and Figure 2.2. The x−axis and y−axis are the discretized time and frequency domain,
respectively. The sound points of the acoustic structure are measured at the time-frequency
coordinates as amplitudes. Upon inspection of these figures, one can spot several noticeable
attributes associated with the time domains of the spectrograms, which affect the acoustic
structures in various ways.

Firstly, there exists misalignment between the starting time and ending time of different
signals. The two spectrograms in Figure 2.1 depict the same “grunt” sound from the ER
species. A closer look reveals the misalignment in the two acoustic structures: the higher
amplitudes between the log-frequencies of 5.3 and 7.0 on the y−axis commence at time
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Figure 2.1 Two discretized signals from species ER
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(b) ER - sound 26
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Figure 2.2 Two discretized signals from species MO

(a) MO - sound 2
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(b) MO - sound 100
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0 for Figure 2.1 (b) but approximately at 0.06 for Figure 2.1 (a). It is not unreasonable to
contemplate the possibility that the actual beginning of Figure 2.1 (b) is 0.06 relative to the
x−axis of Figure 2.1 (a).

Secondly, there is a possibility that the spectrograms are asynchronous in time. Figure 2.2
shows two spectrograms of the same sound from the MO species. Though it is not apparent
to the naked eyes, Figure 2.2 (b) might be a portion of Figure 2.2 (a) being depicted at a
different speed. This is because two individual animals may produce different parts of the
same sound at different speeds, which lead to non-linear warping of the same sound and thus
the dissimilarity between the two acoustic structures in Figure 2.2.

Lastly, it can be observed that there exists oscillations along the observed time domains
of the spectrograms. For example, the temporal pattern of the spectrograms in Figure 2.1
exhibit oscillations along the time domains wherein a time bin of high sound intensity is
immediately followed by 1 or 2 bins with lower intensity. However, the temporal pattern of
Figure 2.2 (a) exhibits an oscillation that differs from those in Figure 2.1. In Figure 2.2 (a), it
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seems that a time bin of the highest sound intensity appears approximately every interval of
0.15 seconds. These oscillating temporal patterns are induced by the presence of sampling
artifacts that arise from the windowing effect of the Short-Time Fourier Transform (STFT),
which is a well known phenomena that was explained in Tan and Jiang (2018).

In summary, the uniqueness of the recordings’ time-lengths entails distortions in the
acoustic structures, whilst the constant time-step of the STFT entails the presence of sampling
artifacts. Regarding the distortions, the time axis of different signals might be misaligned or
non-linearly warped with respect to one another. This distortion of each recording that arises
from asynchronous time will have to be quantified. Regarding the sampling artifacts, they
appear as cyclic components along the observed time domains in the spectrograms and so
their periodicity will need to be accounted for.

In order to enable cross-species comparison between the bio-acoustic signals of the same
call-type label, each recorded signal is assumed to be a noisy realization of a latent acoustic
structure that is representative of the species to which the signal belong. This species-specific
latent acoustic structure is envisioned to be the realization of a zero mean and stationary
Gaussian process (GP) over a three-dimensional space. All recorded signals of the same
species are assumed to be conditionally independent given this latent and stationary GP in
three-dimensional space. Marginally, a recorded signal is the realizations of a temporally
non-stationary GP over a two-dimensional space. The major novelties in this work lay in the
features of the latent and stationary GP which represents a species’ acoustic structure as well
as its connection to the non-stationary GPs for the recorded signals. As will be discussed in
the next Section 2.3, these major novelties are the resolutions to the issues illustrated by the
above motivating examples.

The size of the available data set in Table 2.1 presents a computational challenge within a
GP-based modeling framework, which arises from the inversion of the covariance matrix.
This is commonly referred to as the Big N Problem and is usually addressed by replacing the
original GP with an approximated but comparably close one that requires less computational
power to be estimated. Many approaches have been proposed to obtain such an approximation
, including the sparse nearest neighbor approach by Vecchia (1988), the low-rank approach
by Banerjee et al. (2008), and the Gaussian Markov random field approach by Rue and
Martino (2007), among many others.

In this work, the Nearest neighbor Gaussian Process (NNGP) method that was formulated
in Datta et al. (2016a) is employed. This approach has been successfully applied to another
data set with circular time that is similar to the periodic artifacts in this work. Datta et al.
(2016b); Mastrantonio et al. (2017) A detailed description of the NNGP method and other
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techniques involved in the implementation of the GP model will be provided in Section 2.4.
The results are the posterior samples from the predictive distribution of the GP model. These
samples can be interpreted as the smooth acoustic structure that is representative of a single
species, which can then be used by bio-acoustic investigators for cross-species comparison.
Moreover, the posterior values of the model parameters also allow investigators to explain
and describe the acoustic structure of a specific species. The posterior samples are obtained
by the Markov Chain Monte Carlo (MCMC) method.

2.3 The model

All the following notations are referred to the recorded signals of the same call-type from the
same species. Signals of different species are assumed to be independent from each other and
signals of the same species are assumed to follow the same model with the species-specific
parameters. Let N be the total number of recorded signals of one call-type from the same
species. Let Ti be the number of time coordinates on the observed time-axis of the i−th
recorded signal where i = 1, . . . ,N and let H be the number of log-frequency bins on the
frequency-axis, respectively. Let

Ti = {0.01(k−1)|k = 1, . . . ,Ti}, H= {0.23k+ log63|k = 1, . . . ,H}, (2.1)

such that the time-length of the i−th recorded signal is denoted by li = max(Ti).

Let each i−th recorded signal be denoted by yyyi = (yi,t,h)t∈Ti,h∈H, then yyyi is assumed
to be the discrete realizations of a two-dimensional process that is defined over time and
log-frequency, denoted by Yi(t,h) ∈ R where t ∈ R≥0 is time and h ∈ R is log-frequency.
The two dimensional process Yi(t,h) is further assumed to be the noisy and non-stationary
version of a noise-free latent process that is denoted by Ai(t,h). The model is

Yi(t,h) = µi +Ai(t,h)+ εi(t,h),

εi(t,h)
i.i.d.∼ GP(0,τi),

(2.2)

where µi ∈ R is the mean sound intensity level and τi ∈ R>0 is the variance term, otherwise
known as the nugget effect. The latent process Ai(t,h) is defined to be the weighted average
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of two stationary GPs that have two separate roles. The latent process Ai(t,h) is given by

Ai(t,h) = σ

(√
λW1

(
ψi(t),h

)
+
√

1−λW2(t,h)
)
,

W1(d,h)∼ GP(0,Cg(·, ·;θθθ)) ,
W2(t,h)∼ GP(0,Cc(·, ·;θθθ)) ,

(2.3)

where Cg(·, ·;θθθ) and Cc(·, ·;θθθ) are the correlation functions that are dependent on the vector
of parameters θθθ . The two components of Ai(t,h) respectively address the aforementioned
distortion and periodic artifacts as shown by the previous Section 2.2. The first component
W1(d,h) is called the common-time component that models the distortion of recorded signals
through a specific transformation encoded in the synchronization function ψi(t) = d. The
common-time component and the construction of the synchronization function are discussed
in details in Section 2.3.1. The second component W2(t,h) is an additional component that
is used solely for modeling the periodic artifacts and is called the cyclic component as such.
The cyclic component is further discussed in Section 2.3.2.

Note that dependence between all recorded signals of the same species is introduced
through the latent process Ai(t,h) in equation (2.2). However, Ai(t,h) is defined over a
three-dimensional space that consists of two different time dimensions and one frequency
dimension such that

Cov
(
Ai(t,h),Ai′(t

′,h′)
)

:= σ
2(

λCg(·, ·;θθθ)+(1−λ )Cc(·, ·;θθθ)
)

: R2
≥0 ×R→ R>0

where (i, t,h) ̸≡ (i′, t ′,h′) and (σ2,λ ) ∈ θθθ is the variance and weight, respectively. Note that
Ai(t,h) and Ai′(t ′,h′) are distinct from each other only through the data-specific synchro-
nization functions, ψi(t) and ψi′(t ′). Meanwhile, the common-time component W1(d,h)
and the cyclic component W2(t,h) are defined across all time and frequencies. This implies
that Ai(t,h) and Ai′(t ′,h′) where (i, t,h) ̸≡ (i′, t ′,h′) are just different instances of the same
latent process. Hence, the two-dimensional realizations of this three-dimensional latent
process can be treated as though it is the representative acoustic structure of the species. The
latent process Ai(t,h) specified by equation (2.3) is henceforth named the “Basic Acoustic
Structure of Species” (“BASS”) throughout this work.
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2.3.1 Synchronization function & common time component

The synchronization function ψi(·) : Ti → R≥0 in the definition of “BASS” in equation (2.3)
is constructed to synchronize the observed time axis of the i−th recorded signal with a time
frame that is common to all signals. This common time frame is one of the time dimensions
for “BASS” and is henceforth called the common-time dimension. The coordinates within the
common-time dimension, d ∈R≥0, are henceforth termed the common-time coordinates. The
issue of asynchronous time that was demonstrated by Figure 2.1 and Figure 2.2 in Section 2.2
can be addressed by mapping the real time coordinates t ∈ Ti for the non-stationary process
Yi(t,h) to the common-time dimension wherein temporal stationarity holds. Intuitively, the
parameters of the synchronization function ψi(t) should describe the portion of the common-
time dimension to which the observed time axis Ti corresponds. The synchronization function
is therefore defined as

ψi(t) = αi +βiΩi (t/li) li (2.4)

where αi ∈ R≥0 is the translation parameter, βi ∈ R>0 is the scaling parameter and Ωi(q) is
the non-linear time-warping function that depends on the vector of warping parameters. The
time-warping function Ωi(q) must be defined such that the boundary conditions Ωi(0)= 0 and
Ωi(1) = 1 are always met. Furthermore, it must be continuous and strictly increasing in [0,1]
as a way to avoid the folding effect. Interpretation-wise, the boundary conditions imply that
the beginning and the end of the i−th signal at real time t = 0 and t = li always correspond to
ψi(0) = αi and ψi(li) = αi +βili, respectively. This means that the synchronization function
maps the observed real-time coordinates t ∈ Ti ⊂ [0, li] to the the common-time coordinate
d ∈ [αi,αi +βili]⊂ R≥0 within the common-time dimension for W1(d,h).

In principle, any function with the necessary features can be used as the time-warping
function in theory. However, the choice of Ωi(q) must retain an easy interpretation and
flexibility with as few parameters as possible so as to avoid over-parametrization. The choice
of Ωi(q) is therefore the Beta cumulative distribution function (CDF) that is given by

Ωi (q) =
Γ(expζi + expδi)

Γ(expζi)Γ(expδi)

∫ q

0
xexpζi−1(1− x)expδi−1

∂x, q ∈ [0,1], (2.5)

where (ζi,δi) is the vector of warping parameters with ζi ∈ R>0 and δi ∈ R>0. Figure 2.3
shows several examples of the time-warping function under different parametrization. Indeed,
a special case of equation (2.5) is when δi = ζi = 0, then Ωi(q) = q and the Beta CDF is
basically reduced to the Uniform CDF in which case non-linear time-warping is completely
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absent such that ψi(t) = αi +βit. If further αi = 0 and βi = 1, then there is no distortion in
the signal whatsoever. Hence, the difference

∂

∂q
Ωi (q)−1

can be used to evaluate how the i−th recorded signal has been accelerated in time with
respect to the common-time dimension for the latent process in equation (2.3). It is clear
from Figure 2.3 that if |ζi|⪆ 0.75 or |δi|⪆ 0.75, then the warping becomes so severe that the
derivative of Ωi(q) evaluated at q ≈ 0 or q ≈ 1 is close to either 0 or ∞. This is unjustifiable
from an application perspective and the parametric values need to be limited to a certain
threshold. This argument will be reckoned with later in Section 2.4.3 when the distributions
over the warping parameters are decided.

To simplify notations, let ξξξ i = (ζi,δi) be the vector of warping parameters for the time-
warping function in equation (2.5) and let χχχ i = (αi,βi,ξξξ i) be the vector of all parameters of
the synchronization function in equation (2.4). Let the distance between ψi(t) and ψi′(t ′)
within the common-time dimension be denoted by

∆(t, t ′;χχχ i,χχχ i′) = |ψi(t)−ψi′(t
′)|

=
∣∣αi +βiΩi (t/li) li −αi′ +βi′Ωi

(
t ′/li′

)
li′
∣∣ (2.6)

where t ∈ Ti, t ′ ∈ Ti′ and i ̸= i′. The common-time component W1(d,h) in equation (2.3)
models the natural change in the spectral shape of “BASS” across the common-time and
frequency dimensions. The correlation function Cg(·, ·;θθθ) for the common-time component
is

Cg(|h−h′|, |d −d′|;θθθ) = 1
φd∆(t, t ′;χχχ i,χχχ i′)+1

exp

(
− φh|h−h′|(

φd∆(t, t ′;χχχ i,χχχ i′)+1
)ρ/2

)
(2.7)

where (φh,φd,ρ) ∈ θθθ . This is a parametrization of the Gneiting correlation function that was
proposed in Gneiting (2002). The non-separable parameter ρ ∈ [0,1] is the time-frequency
interaction parameter, φd is the common-time decay and φh is the frequency decay. Since the
temporal lags in Cg(·, ·;θθθ) must be measured for all real time coordinates in the common-
time dimension, the data-specific synchronization function becomes an intrinsic part of the
covariance function for “BASS”. Note that there exists the issue of identifiability since only
the relative difference between the translation parameters, αi and αi′ , affects the correlation
function in equation (2.7). Similar issue arise for the scaling parameters, βi and βi′ , as well as
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Figure 2.3 Time-warping function Ωi(q) under different parametric values.
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the time decay, φd . The issue of identifiability will be discussed in details in the subsequent
Section 2.4.2.

2.3.2 Cyclic component

As illustrated by Figure 2.1 and Figure 2.2 (a) in Section 2.2, there exists oscillations in
the temporal patterns in the sound intensities of the signals due to the presence of periodic
sampling artifacts. Figure 2.4 is a toy example that illustrates how periodic sampling artifacts
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Figure 2.4 Periodic sampling artifacts that arise from the STFT
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arise from the STFT. When the time-step used by the STFT is less than the period of the
true waveform, the sampled frequency does not capture the original periodicity of the true
waveform and therefore becomes an artifact. In contrast to Figure 2.4 (d) in which the
time-step of 0.5 seconds perfectly captures the fundamental period of Figure 2.4 (a), the
periodic artifacts can be seen in both Figure 2.4 (b) and (c) when the time-steps are less than
the fundamental period. Since real acoustics and sounds almost inevitably vary with time,
their waveform are usually highly complex and non-periodic with respect to time. Thus, it is
highly unlikely for the STFT to be able to capture the true waveform cycle. Furthermore,
the size of the time-step of STFT cannot be easily changed or adapted to mitigate this
problem as it is dictated by the Heisenberg uncertainty principle. (Graps, 1995; Kumar and
Foufoula-Georgiou, 1997) Due to these reasons, the cyclic component W2(t,h) is defined to
model the relations of the periodic artifacts with the frequency dimension.

Let the circular distance between two real-time coordinates be defined as

∆c(|t − t ′|;γ) = min(|t − t ′| mod γ, γ −|t − t ′| mod γ) (2.8)
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which measures the distance between two angle t and t ′ on a circle of circumference γ . This
means that the circular distance between any two observed time coordinates is restricted to a
circular scale with period γ/2 such that ∆c(|t − t ′|;γ) ∈ [0,γ/2] ∀ t, t ′. Similar to the works
of Shirota and Gelfand (2017) and Mastrantonio et al. (2017), the circular distance is then
used to define the cyclic component which is

Cc(|t − t ′|, |h−h′|;θθθ) = 1
φc∆c(|t − t ′|;γ)+1

exp

(
− φh|h−h′|(

φc∆c(|t − t ′|;γ)+1
)ρ/2

)
(2.9)

where (φc,γ) ∈ θθθ with φc being the circular-time decay and γ being the periodicity. The
positive definiteness of this correlation function has been proven by Shirota and Gelfand
(2017). The frequency decay parameter φh and the interaction parameter ρ are the same as
those in the common-time component Cg(·, ·;θθθ) in equation (2.7). Note that the synchroniza-
tion function is noticeably absent in Cc(·, ·;θθθ) owing to the fact that the cyclic component
W2(t,h) depends only on the periodic distances between the artifacts, which can only be
given by the real time coordinates that are taken directly from the observed time axis Ti.

The cyclic component is defined as such because the sampling artifacts that are induced by
the discretization of the analogue signal almost always lead to the appearance of oscillations
along the time domain as shown by Figure 2.1 and Figure 2.2 (a). There is no reason to
assume that φh or ρ here in the cyclic component will be any different from that of the
common-time component, especially with regard to the fact that the two correlation functions
are just separate parts of the same covariance function. Ergo, for the purpose of avoiding
over-parametrization, the frequency decay parameter φh and the non-separable interaction
parameter ρ are the same for both equations (2.7) and (2.9).

2.3.3 Representative sound of species

The main objective of this work is to obtain a species-specific representative sound for
cross-species comparison in bio-acoustic studies. This sound can be attained in the form of
the finite realizations of the predictive “BASS”, denoted by AN+1(t,h). Care must be taken
in the selection of the time-length and the corresponding synchronization function for the
predicted sound. Since the realizations of AN+1(t,h) serve as a comprehensive representative
sound of a species, conditions must be imposed in order to ensure that it encompasses all
available information from the recorded signals. Let the time-length and the synchronization
function for the latent predictive “BASS” be denoted by lN+1 and ψN+1(t), respectively.
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Then, the constraints on lN+1 and ψN+1(t) are defined as

ψN+1(0) = mini∈{1,...,N}ψi(0),
ψN+1(lN+1) = maxi∈{1,...,N}ψi(li),
lN+1 > γ.

(2.10)

These conditions ensure that all time-frequency coordinates of the observed sound points and
at least one cycle of the cyclic component are included. The constraints on the synchronization
function ψN+1(t) specified in equation (2.10) implies a set of constraints for its vector of
parameters χχχN+1 = (αN+1,βN+1,ξξξ N+1). Let D be a set that is defined as

D =

χN+1 ∈ R2
+×R2

∣∣∣∣∣∣∣∣∣
αN+1 = mini∈{1,...,N}αi,

αN+1 +βN+1lN+1 = maxi∈{1,...,N} (αi +βili) ,

lN+1 > γ

 , (2.11)

If χχχN+1 ∈ D, then the constraints in equation (2.10) are satisfied. Note that there exists no
constraints on the warping parameters ξξξ N+1 but only the translation parameter αN+1 and the
scaling parameter βN+1 are constrained. Let yyy = (yyy⊤1 ,yyy

⊤
2 , . . . ,yyy

⊤
N )

⊤ be the collection of all
recorded signals in which the elements in yyyi are sorted in the ascending order of time and
log-frequencies. The representative sound of a species can be given by the two-dimensional
realizations from the posterior distribution

AN+1(t,h)|yyy,χχχN+1 ∈ D

which is defined over “BASS”, conditional on the data and subject to the constraints in
equation (2.10) being satisfied. The details of the sampling procedure will be shown in
Section 2.4.4.

2.3.4 The marginal model

Although the model is defined by the introduction of the “BASS”, and is much easier to
perceive conceptually, the sampling from “BASS” considerably impedes the direct MCMC
implementation of the model since the latent process Ai(t,h) must be estimated at every
time-frequency coordinate where a data point is observed. In particular, evaluating W1(d,h)
at different common-time coordinates requires the sampling of χχχ i of the synchronization
function ψi(t) for all i = 1, . . . ,N. Due to the size of the data set, it is more practical to
marginalize the model with respect to the latent processes, W1(d,h) and W2(t,h), which
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is a common practice in geo-spatial modeling. The covariance function that gives the
cross-covariance, Cov

(
Yi(t,h),Yi′(t ′,h′)

)
, is easily derived to be

Cy
i,i′
(
(t,h),(t ′,h′);χχχ i,χχχ i′,θθθ

)
=

CA
i,i′
(
(t,h),(t ′,h′);χχχ i,χχχ i′,θθθ

)
+ τ

2
i 1{(i,t,g)≡(i′,t ′,g′)}

(2.12)

where 1E is the indicator function for the event E and

CA
i,i′
(
(t,h),(t ′,h′);χχχ i,χχχ i′,θθθ

)
=

σ2λ

φd∆(t, t ′;χχχ i,χχχ i′)+1
exp

(
− φh|h−h′|(

φd∆(t, t ′;χχχ i,χχχ i′)+1
)ρ/2

)
+

σ2(1−λ )

φc∆c(|t − t ′|;γ)+1
exp

(
− φh|h−h′|(

φc∆c(|t − t ′|;γ)+1
)ρ/2

)
.

(2.13)

The observed processes, Yi(t,h) and Yi′(t ′,h′) where i ̸= i′, are conditionally independent
given the “BASS” in equation (2.2). Clearly, this marginal covariance function is able to
provide more insights into the actual relationship between the recorded signals than“BASS”
alone since dependence between the observed processes are introduced through the marginal-
ization with respect to the stationary latent processes, W1(d,h) and W2(t,h). Even though
the stationary latent processes are essential to the formulation of the model, it is clear from
equation (2.13) that the observed processes Yi(t,h) is not assumed to be stationary because
the marginal covariance function explicitly depends on t and t ′ instead of solely on |t − t ′|.
Another important issue regarding the warping parameters, ξξξ i ∈ χχχ i and ξξξ i′ ∈ χχχ i′ , is the fact
that they act exclusively as the non-stationary parameters of the marginal covariance function
and are thus weakly identifiable in general. (Gelfand et al., 2010; Perrin and Meiring, 1999)
This issue will be discussed later when the prior distributions for the warping parameters are
specified in Section 2.4.2.

2.4 Implementation methodologies

This section concerns the methodologies that are utilized to resolve the aforementioned
issues in the implementation of the model. In particular, the issues being addressed here are
the non-identifiability of parameters in Section 2.4.1, the selection of prior distributions in
Section 2.4.2, the approximation method NNGP in Section 2.4.3 and the posterior sampling
from “BASS” in Section 2.4.4.
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2.4.1 Identifiability

In general, the problem of non-identifiability in parametric models refers to the observational
equivalence of multiple unique parametric estimates from whence the likelihood distributions
given by the estimates are equal. Upon the inspection of the common-time component and
the marginal covariance function, it is immediately revealed that the proposed model suffers
from the problem of non-identifiability regarding the translation parameter, αi, the scaling
parameter, βi, and the time decay parameter, φd . If a constant c ∈R is added to all (αi)i=1,...,N

or if all (αi,βi)i=1,...,N are multiplied by a constant c ∈ R with time decay φd being divided
by the same constant, then the values of Cg(·, ·;θθθ) remain the same despite the changes in
parametric values, thereby leading to the same corresponding likelihood densities. To resolve
this issue of non-identifiability, the MCMC algorithm explores the posterior space without
constraints and proceeds to remap each retained posterior samples to an identifiable version
using the constraints given bymin(α1, . . . ,αN) = 0,

max(α1 +β1l1, . . . ,αN +βN lN) = 1.
(2.14)

This means that the earliest common-time coordinate always starts at 0 and the longest
recorded signal always has a maximum time-length of u in the common-time dimension.
To explain this more thoroughly, let (α(b)

i ,β
(b)
i ,φ

(b)
d ) be the b−th posterior samples. Let

α
(b)
min = min

(
α
(b)
1 , . . . ,α

(b)
N

)
and let l(b)max = max

(
α
(b)
1 +β

(b)
1 l1, . . . ,α

(b)
N +β

(b)
N lN

)
−α

(b)
min.

Then, each b−th posterior samples are remapped to

α
(b)∗
i =

(α
(b)
i −α

(b)
min)

l(b)max

,

β
(b)∗
i =

β
(b)
i

l(b)max

,

φ
(b)∗
d = l(b)maxφ

(b)
d

(2.15)

such that the identification constraints given by equation (2.14) are obeyed. Consequently,
the marginal covariance function in equation (2.13) evaluated at the remapped samples,
(α

(b)∗
i ,β

(b)∗
i ,φ

(b)∗
d ), equals the one computed with (α

(b)
i ,β

(b)
i ,φ

(b)
d ).
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2.4.2 Priors specifications

Under the Bayesian framework, a prior distribution must be chosen for the data-specific
parameters as well as the general parameters. For each i−th recorded record, the vector of
data specific parameters are denoted by ηηη i = (µi,τi,αi,βi,ξξξ i) as per equations (2.2), (2.4)
and (2.5).The general parameters of the correlation functions are θθθ = (σ2,λ ,φd,φc,φh,ρ,γ)

as per the definitions in equations (2.7) and (2.9).

The priors for the scalar mean µi and variance term τi are N(mµ ,vµ) and IG(aτ2,bτ2),
respectively, for all i = 1, . . . ,N. Let the variations between the non-linear time-warping of
different recorded signals be random effects such that both (ζi)i=1,...,N and (δi)i=1,...,N are
treated as a vector of independent samples from a common distribution. Although each of
the warping parameters, ζi and δi, are supposed to assume values in domain R theoretically,
it is hardly justifiable due to the case of severe time-warping that was shown in Figure 2.3.
The severe warping means that the spectral structure of a recorded signal is explained only by
an extremely small portion of its finite continuous time-length. Application-wise, this means
that one observed vocalization could be, for example, 10 times faster than that of another
within the very same portion of time-length. Taking these into account, the parameters are
assumed to have a finite domain with ζi ∈ (−bζ ,bζ ) and δi ∈ (−bδ ,bδ ) for all i = 1, . . . ,N.
Given the hyper-parameters, the prior distributions for ζi and δi are defined to be

log

(
ζi −bζ

bζ −ζi

)
∼ N(mζ ,vζ ) ,

log
(

δi −bδ

bδ −δi

)
∼ N(mδ ,vδ )

(2.16)

for all i = 1, . . . ,N. The means, mζ and mδ , and the variances, vζ and vδ , are themselves
random variables. The selection of the distributions for these hyper-parameters must be
conducted with care on account of the restrictions imposed on the domains of the two
warping parameters. For example, a large variance vζ coupled with mζ = 0 induces a prior
distribution over ζi which is bi-modal with modes close to the boundaries of the domain
but with almost zero density everywhere else and so it becomes very informative. This is
apparently the opposite of random effect since a large variance is often used to define weakly
informative priors even in the non-constrained setting. For this reason, the distributions for
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the hyper-parameters are defined to be

mζ ∼ N(−bm,bm)(m0,ζ ,v0,ζ ),

mδ ∼ N(−bm,bm)(m0,δ ,v0,δ ),

vζ ∼ IG<bv(a0,ζ ,b0,ζ ),

vδ ∼ IG<bv(a0,δ ,b0,δ ).

(2.17)

The advantage of random effects on the warping parameters is two-fold. A random effect on
each set of the warping parameters facilitates the estimation since they are non-stationary
parameters, which are generally hard to be estimated. Secondly, as will be shown in the
next Section 2.4.3, the random effect facilitates the sampling of from “BASS”. The prior
distributions for the remaining data-specific parameters of the synchronization function are

αi ∼ Uni(aα ,bα),

β̃i =
βili

1−αi
∼ Uni(aβ ,bβ )

(2.18)

where 0 ≤ aβ < bβ ≤ 1. The assumption, 0 ≤ aβ < bβ ≤ 1, ensures that the last common-
time coordinate will not exceed 1 and that the total possible time-length of the i−th recorded
signal always assumes values in the interval [0,1] within the common-time dimension.

The priors for the weight λ and for the interaction parameter ρ are both Uni(0,1). The
prior for the variance σ2 is IG(aσ ,bσ ). For the decay parameters and the periodicity γ ,
the uniform distribution is employed but some care must be taken during the selection of
their hyper-parameters. If γ is too small such that the periodic distance is smaller than the
minimum distance between two observed time coordinates, then there is no cyclic dependence
on the artifacts at all. On the other hand, if it is too large such that γ > 2max{l1, . . . , lN}, then
the circular distance is equivalent to the distance between any two observed time coordinates
such that ∆c(|t − t ′|;γ) = |t − t ′| as per the definition in equation (2.8), thereby losing its
interpretation as a circular distance. In this case, Cc(|t − t ′|, |h−h′|;θθθ) is no longer a cyclic
component and γ is non-identifiable. In fact, even if γ < 2max{l1, . . . , lN}, the periodicity γ

can still be weakly identifiable if γ < 2li only for a few i−th recorded signals. Hence, the
prior for γ is set as Uni(aγ ,bγ) with aγ = 0.02 which is twice the minimum temporal distance
of 0.01 seconds and with bγ set to be two times the median of the observed time-lengths of
the recordings.

The notion of practical range is invoked in order to ensure the identifiability of the decay
parameters. In general, the correlation is required to be greater than 0.05 at the minimum
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observed distance and less than 0.05 at the maximum observed distance. (Gelfand et al., 2010)
Here the so-called practical range is defined to be the observed time-frequency distances at
which the correlations in equations (2.7) and (2.9) equal 0.05 in the separable case of ρ = 0.
Let prh,prc and prd be the practical ranges of the decays, φh,φc and φd , respectively. The
practical ranges are given by

prh =− log(0.05)
φh

,

prc =
1.0−0.05

0.05φc
,

prd =
1.0−0.05

0.05φd
.

(2.19)

Since the minimum and maximum distances in the frequency domain given by data are
|h− h′| = 0.23 and (H − 1)0.23, respectively, the prior for the frequency decay is simply
defined as φh ∼ Uni(0.521,13.025) using the above equation (2.19). On the other hand, the
minimum and maximum distances between the common-time coordinates and circular-time
coordinates are themselves random variables because both equations (2.6) and (2.8) are
dependent on the model parameters. This implies that the prior distributions for the decay
parameters φc and φd must be conditional on the appropriate model parameters. The prior for
the circular-time decay φc is thus defined to be conditional on γ such that

φc|γ ∼ Uni
(

1.0−0.05
0.05(0.5γ)

,
1.0−0.05
0.05×0.01

)
(2.20)

where 0.01 and 0.5γ are the minimum and maximum circular distance given by equation
(2.7), respectively, for any value of γ . As for the common-time decay φd , the prior is defined
to be conditional on (β1,β2, . . . ,βN) such that

φd|β1,β2, . . . ,βN ∼ Uni
(

1.0−0.05
0.05max({βili}N

i=1)
,

1.0−0.05
0.05 min ({βili/(Ti −1)}N

i=1)

)
(2.21)

where βili/(Ti −1) and βili are the minimum and maximum common-time distance of the
i−th recorded signal, respectively. Note that the minimum distance is computed in the
absence of time-warping. The rationale for the absence of time-warping is similar to the
rationale for the distances being used to define the range of the circular-time decay. For
instance, if only one recorded signal is severely warped in time, then only very few time
coordinates are going to give a distance that is close to the minimal common-time distance,
which makes the common-time decay φd weakly identifiable.
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2.4.3 Sampling from “BASS”

The process Ai(t,h) is defined on a tri-dimensional space that consists of the common-time
dimension, the real time dimension and the frequency dimension. As previously mentioned
in Section 2.3.3, the representative sound of a species are the two-dimensional realizations
sampled from the posterior distribution

AN+1(t,h)|yyy,χχχN+1 ∈ D. (2.22)

Let AAAN+1 be the discrete realizations of AN+1(t,h) at a given set of time-frequency coordi-
nates To simplify notations, let ηηη = (ηηη i)

N
i=1 be the collection of all data-specific parameters

where ηηη i = (µi,τi,αi,βi,ξξξ i) for the i−th recorded signal and let µµµ = (µi111TiH)i=1,...,N be the
collection of scalar means for the collection of signals yyy where µi111TiH is the vector of scalar
means for the i−th recorded signal yyyi. The joint distribution is

AAAN+1

yyy

∣∣∣∣∣ηηη ,θθθ ∼ GP

((
000
µµµ

)
,

(
ΣΣΣA ΣΣΣA,y

ΣΣΣ⊤
A,y ΣΣΣy

))
(2.23)

where ΣΣΣy is the cross-covariance matrix between the observed data given by equation (2.12),
while ΣΣΣA,y and ΣΣΣA are given by equation (2.13). The conditional distriubtion of AAAN+1 can
then be derived from equation (2.23) using standard results from multivariate Gaussian
distribution which results in

AAAN+1|yyy,ηηη ,θθθ ∼ GP
(

ΣΣΣA,yΣΣΣ
−1
y (ΣΣΣy −µµµ),ΣΣΣA −ΣΣΣA,yΣΣΣ

−1
y ΣΣΣ

⊤
A,y

)
. (2.24)

Equation (2.24) can then be used to sample from equation (2.22) since the latter is conditional
on the former over the constraints χχχN+1 ∈ D in equation (2.11). Taking into consideration the
identifiability constraints specified in equation (2.14) and the finite domains of the periodicity
γ , the conditioning implies that αN+1 = 0,βN+1lN+1 = 1 and lN+1 > bγ where bγ is the right
end limit of the uniform prior for γ . This means the posterior distribution of interest is

AN+1(t,h)|yyy,αN+1 = 0,βN+1lN+1 = 1.

which can be marginalized with respect to the warping parameters. The random effects on
the warping parameters specified in equation (2.16) are thus exploited for the sampling from
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the posterior of interest by a standard Monte Carlo procedure with

f
(
AAAN+1|yyy,αN+1 = 0,βN+1lN+1 = 1

)
=∫ ∫ ∫

f (AAAN+1|yyy,αN+1 = 0,βN+1lN+1 = 1,ξξξ N+1) f (ξξξ N+1|ηηη ,θθθ) f (ηηη ,θθθ |yyy)∂ηηη∂θθθ∂ξξξ N+1

2.4.4 Nearest neighbors Gaussian process

The computation of the multivariate Gaussian likelihood of the marginal model requires
the inversion of the covariance matrix of dimension ∏

N
i=1 TiH, which is computationally

infeasible and is known as the Big N Problem. The NNGP method from the work of Datta
et al. (2016a) is therefore adopted in order to counter the Big N Problem.

Let ni = Ti×H be the number of sound points in the i−th recorded signal yyyi. Let yi, j ∈ yyyi

be the j−th element of the i−th recorded signal yyyi and let yyy1: j
i be the vector composed of the

first j−th elements in yyyi. Define P as an arbitrary permutation of the integers in {1,2, . . . ,N}
and let pi be the i−th element of P . Let yyy{p1,...,pk} = {yyyp1, . . . ,yyypk} for any k. Then, the joint
density of all recorded signals can be decomposed as

f (yyy|θθθ ,ηηη) =

np1

∏
j=1

f (yp1, j|yyy
1: j−1
p1

,θθθ ,ηηη)
N

∏
i=2

npi

∏
j=1

f (ypi, j|yyy
1: j−1
pi

,yyy{p1,...,pi−1},θθθ ,ηηη) (2.25)

which is valid for any permutation. The idea of the NNGP is that, if the covariance function
is monotonic with respect to the distances, then only the immediate neighborhoods rather
than the entire conditional sets are necessary to approximate the likelihoods as the closest
neighbors are strongly correlated with the observations. Let Npi, j be a subset of variables in
the conditional set of ypi, j. The joint density in equation (2.25) can then be approximated by

f (yyy|θθθ ,ηηη)≈
N

∏
i=1

npi

∏
j=1

f (ypi, j|Npi, j,θθθ ,ηηη) (2.26)

where Np1,1 = /0. The elements in Npi, j are called the neighbors of ypi, j and the set Npi, j is
called the neighbor set. To have a good approximation, the elements in the neighbor set must
have a high correlation with ypi, j.

The maximum number of neighbors in the neighbor set is set as 4k and the neighbor set is
divided into four distinct groups with each group having maximum k elements. The elements
of the four distinct groups are then selected using the correlation functions, Cg(·, ·;θθθ) and
Cc(·, ·;θθθ), in equations (2.7) and (2.9), as well as the dependencies between sound points
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within the very same and previous spectrogram. Using Cg(·, ·;θθθ), define N pi,g
pi, j as the group

that contains k elements from the pi−th signal that are most strongly correlated with each
other and define N pi−1,g

pi, j as the group that contains k elements from the pi−1−th signal that
are most strongly correlated with each other. Similarly using Cc(·, ·;θθθ), let N pi,c

pi, j and N pi−1,c
pi, j

be the groups in which the elements are selected from the pi−th signal and pi−1−th signal,
respectively. The full neighbor set is then defined as

Npi, j =N pi,g
pi, j ∪N pi−1,g

pi, j ∪N pi,c
pi, j ∪N pi−1,c

pi, j . (2.27)

If i = 1, then N pi−1,g
pi, j = N pi−1,c

pi, j = /0. Since the correlation functions are dependent on
unknown parameters, the neighbor sets must be adapted in accordance with the changing
values of the parameters during model fitting. Additionally, the arbitrary permutation P is
treated as an additional parameter with a uniform prior over the space of permutations and is
updated by a Metropolis step.

2.5 Results of application on real bio-acoustics

The results obtained by the application of the model on the real data set are shown in this
section. The maximum number of neighbors in the NNGP approximation is set as 4k = 40.
Since the recorded signals that are shorter in time convey much less information and are
much more difficult to analyze, the bio-acoustic analysis in this paper focuses exclusively on
the 100 longest recorded signals of each species. The model is applied on a set of recorded
signals from each of 8 different species. Each of the 8 models is estimated with 60000
iterations. The burning is set at 4800 and the thinning is set at 6. A total of 2000 posterior
samples are obtained from the inference.

The hyperparameters of the prior distributions for the warping parameters in equation
(2.17) are set as m0,ζ = m0,δ = 0 and v0,ζ = v0,δ = 0.75 such that

mζ ∼ N(−5,5)(0,0.75),

mδ ∼ N(−5,5)(0,0.75),

vζ ∼ IG<0.75(0.01,0.01),

vδ ∼ IG<0.75(0.01,0.01).

For the translation and scaling paraters, the prior distributions in equation (2.18) are set as
αi ∼ Uni(0,0.2) and β̃i ∼ U(0.75,1). For the remaining data-specific parameters, the prior
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distributions are set to be τ2
i ∼ IG(1.0,1.0), and µi ∼ N(0,100000). As for the variance, the

prior is set as σ2 ∼ IG(1.0,1.0).

Figure 2.5 displays the 95% credible intervals (CIs) of the general parameters in θθθ of
each species. Note that the CIs of the decay parameters, φd,φh and φc in Figure 2.5 (d), (e)
and (f) are depicted in terms of the practical ranges defined in equation (2.19). In Figure 2.5
(b), the CIs of the weights λ are all consistently below 0.5 which mean that the contribution
of the cyclic component is smaller comparing to the common-time component for all species.
Figure 2.5 (c) shows that, with the exception of PD, the cyclic components for all species
exhibit a period of γ ≈ 0.025. This is unsurprising due to the fact that the spectrograms are
obtained from STFT with the same time-step of 0.01 seconds and the fact that the cyclic
component is interpreted as an artifact, as explained in Section 2.2 and Section 2.3.2. The
deviance of PD from the rest of the species might be caused by the extremely short time
lengths of their signals, which might have hindered the learning of these parameters. Indeed,
going back to Table 2.1, no signals of PD exceed 0.2 seconds and only two signals exceed
0.1 seconds in time length. In Figure 2.5 (d) and (e), the large values of the practical ranges
of φd and φh for all species indicate a strong dependence on both the common-time and
log-frequency distances. Figure 2.5 (g) indicates that the non-separability of the covariance
is almost negligible.

Figure 2.6 displays the distributions of the posterior means of the data-specific parameters,
αi, β̃i, µi, and τ2

i , of all i−th recorded signals for each species. The distributions are
represented by box-plots, which show that the misalignment, means and variability are rather
consistent across species.

The warping function Ωi(q) of each i−th recorded signal is computed using the posterior
means of ξξξ i = {ζi,δi} for all i = 1, . . . ,N of each species. The posterior predictive distribu-
tions of the warping functions are then plotted in Figure 2.7 with the solid lines depicting the
posterior means, the dashed lines depicting the posterior medians, and the two shaded areas
depicting the 50% and 95% CIs, respectively. As explained in Section 2.3.1, the absence
of non-linear warping will result in a 45 degree linear line. Notably, the CIs in Figure 2.7
(b), (c), (e) and (h) reveal that there exists distinctive non-linear warping in the sounds of
species ER, FL, II, and PD. However, the results for PD might not be reliable due to the
aforementioned limitations in the availability of signals that are longer in time. For the other
species in Figure 2.7 (a), (d), (f) and (g), it appears that the warping functions are primarily
asymmetric fluctuations around the linear line.

The posterior means and variances of the posterior distribution of the representative
sound AN+1(t,h) in equation (2.23) are derived under the assumption that the time length
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Figure 2.5 The 95% credible intervals of the general parameters θθθ .
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lN+1 equals the median of the observed time lengths. The time coordinates for AN+1(t,h)
are equally spaced by a constant time step of 0.01 seconds in the exact same way that the
data is observed. The log-frequency coordinates also have the same number and positions
as observed. The posterior means and variances are plotted in Figure 2.8 and Figure 2.9,
respectively. Looking at Figure 2.8, significant differences between the species can be spotted
at 4.14 and at the range of 6.9−8.75 in log-frequencies. All species possess strong sound
intensities at the range of 5.06−6.65 in log-frequencies, which generally persist across time
for all species except EC, MA and PD. Instead, the strong intensities across time gradually
decrease for EC and MA, but gradually increase for PD. Meanwhile, the posterior variances
in Figure 2.9 are approximately constant across the time-frequency grid for all species. The
occasional large values at the first time coordinates can be attributed to the synchronization
function which leads to fewer observations for the estimation at these coordinates. The
apparent cyclic pattern can be attributed to the cyclic component of the process.

The distance between the posterior means of AN+1(t,h) are computed as a mean to
compare the representative sounds of each species. All AN+1(t,h) are evaluated on the
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Figure 2.6 Posterior means of αi, βi, µi and τ2
i of all i−th recorded signals.
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same set of time and frequency coordinates. The distance between two species is then
given by the mean square difference between the two sets of sound intensity points over
the same set of time and frequency coordinates. Figure 2.10 (a) is the resulted distance
matrix and Figure 2.10 (b) is the phylogenetic tree that is associated with the distance matrix.
The phylogenetic tree is computed using the R package, phylogram, given by the work of
Wilkinson and Davy (2018).

Cross-validation is implemented in order to determine whether all components of the
proposed model are necessary. Specifically, 5% of the time-frequency coordinates from each
spectrogram of each species is removed. The model is then fit to the remaining 95% of the
data under different settings: (i.) the proposed model specified by equations (2.2) and (2.3);
(ii.) the model in the absence of non-linear warping where Ωi(q) = 1 ∀ i (NoWarp); (iii.)
the model in the absence of the cyclic component (NoCirc); and (iv.) the model without
temporal alignment such that αi = 0 and βi = 1 (NoAl). The Continuous Ranked Probability
Score (CRPS) are computed using the holdout sample data and the results are presented
in Table 2.2. The CRPS of the best model is highlighted in bold. The proposed model
exhibits the lowest CRPS in 5 out of the 8 species. In general, the temporal alignment and
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Figure 2.7 Ωi(q) given by posterior values of ξξξ i = {ζi,δi} of all i−th recorded signals.
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non-linear warping produce smaller CRPS values. However, in future it might be a better
option to estimate the model without these components, especially when the data is not
highly informative, since the differences are not substantial. Note that for the species PD, not
only is the proposed model not preferable, but its CRPS is very small for NoAl which yields
the best index. This can be attributed to the short time lengths of the recorded signals which
do not allow for temporal alignment. Interestingly, the removal of the the cyclic component
results in a worsened CRPS for all species with a significant increase in the margin. This
might testify the effects of the periodic artifacts from STFT on the sound intensities over the
spectrograms.

The results in this work generally confirm previous findings on the lemur species. The
variation in log-frequency distributions across the species reflects previous findings on the
Eulemur species. According to Gamba et al. (2012, 2016), distinctive species-specific traits
were found in low-pitched “grunt” vocalizations. In here, the log-frequency distribution
reflects the formant distribution of the respective species, with the frequency variation in
ER, FU, and MA being higher than those in the other species at higher frequencies. This
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Figure 2.8 Posterior means of AN+1(t,h).
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(c) FL
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(d) FU
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(f) MA
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(h) PD
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agrees with the findings on formant distribution and variation across lemur species in the
paper by Gamba et al. (2012), in which the fourth formant in FU, MA and ER was estimated
and measured at frequency 6.

The results in this work also demonstrate the critical role played by communicative
signals in species-specific interactions. The phylogenetic tree generated in this study show a
relatively different picture from previous investigations. According to the distance matrix in
Figure 2.8 (a), MA and FL are more dissimilar than in the other taxa, which is surprising
considering that they are the two former subspecies of the Eulemur macaco. However, a
study by Gamba and Giacoma (2008) has shown differences in the “grunt” vocalizations
among individuals of what were then the two subspecies of the Eulemur macaco. This
suggests that divergence across vocalizations may only partially map the differences at
the phylogenetic level, which is in agreement with the findings by Macedonia and Stanger
(1994). Vocalizations in MA and FL may have diverged to prevent hybridization, which
has been observed in the wild. Gamba and Giacoma (2008) interpreted this divergence
as informative differences for morphological differences that can be mainly attributed to
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Figure 2.9 Posterior variances of AN+1(t,h).
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(c) FL
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(d) FU
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(f) MA
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(g) MO
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(h) PD
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formants and fundamental frequency. It should be noted that phylogenetic reconstructions
from the analyses of the lemuri are often based on very different data sets and that analyses
based on communication data are rare. Research on DNA data must still establish a clear
connection in some clades. (DelPero et al., 2006)

2.6 Discussion

This work has presented a spatio-temporal model for bio-acoustic data with non-stationary
temporal patterns and periodic artifacts. The model combines the novel idea of time synchro-
nization with several techniques, including NNGP, in order to describe the complex structures
that are intrinsic to bio-acoustic data as well as to handle the sheer size of the available data
set. The sources of temporal non-stationarity are the unique time length of each recorded
signal and the ensuing non-linear distortions of the signals’ sound intensities with respect
to each other. This distortion constitutes the most problematic issue that is resolved by the
proposed model. The major novelty of this work is the construction of the synchronization
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Figure 2.10 Quadratic distance between the posterior means of AN+1(t,h) and associated phylogenetic
tree.
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function that is used to project the real time coordinates of the recorded signals into the latent
common-time dimension wherein the latent process for the species-specific representative
acoustic structure, named “BASS”, is stationary. The synchronization function provides
an easy interpretation on the relationships between the observed time dimension of each
recorded signal and the latent common-time dimension. This easy interpretation is attained
by means of the translation, scaling and warping parameters that are specific to each indi-
vidual recording. That is, the major contribution of this work is the construction of a more
interpretable transformation that permits the quantification of temporal non-stationarity in
bio-acoustic data. The presence of periodic artifacts that arise from STFT is resolved by a
circular representation of the observed time coordinates. The computational efficiency of
NNGP allows the model to be estimated by a very large data set.

The results of the application on real bio-acoustic data are very promising. The model is
able to obtain the species-specific representative acoustic structure over a time-frequency

Table 2.2 CRPS index of each model.

Prop NoWarp NoCirc NoAl

EC 0.95 0.95 1.22 0.97
ER 0.91 0.92 1.17 0.98
FL 0.92 0.96 1.31 0.94
FU 0.91 1.02 1.33 0.90

II 0.93 1.06 1.38 0.94
MA 0.82 0.87 1.18 0.81
MO 0.92 0.91 1.29 0.93
PD 1.17 1.35 1.43 0.71
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grid, namely the “BASS”, which is described by features that are used for cross-species
comparison in terms of quadratic distance and the phylogenetic tree. Outputs that are specific
to the individual recordings are also successfully captured by the model and temporal non-
stationarity is quantified through the warping parameters. Cross-validation has shown that
the proposed model is almost always the best for describing the available data set, though not
always true for all species. For bio-acoustic investigators, this work offers a tool to look at all
the information offered by the full recording, rather than just a few hand-picked pitches after
signal decomposition. Information specific to each individual recording such as the scalar
mean and the warping parameters might also prove useful for learning about characteristics
of individual animals of each species.

The future will find the candidate looking for a proper way to extend the proposed model
to become a predictive model for the behavioral call-type labels. Indeed, the proposed model
is limited to a specific call-type of a species. The application of this methodology to a larger
data set that comprises of different call-type labels will provide a better description of the
distances between different species in relation to a phylogenetic tree.



Chapter 3

Anatomic vs ischemia-driven strategies
for percutaneous coronary
revascularization in chronic coronary
syndrome: a network meta-analysis

Background

This chapter is submitted as a journal article:

Giacobbe F., Valente E., Giannino G., Yip H.C. and et al. Anatomic versus ischemia-
driven strategies for percutaneous coronary revascularization in chronic coronary syndrome:
A network meta-analysis. Under review.

The statistical contributions made by Prof. Mauro Gasparini and PhD candidate H.C. Yip
is only possible with the medical expertise of Dr. Federico Giacobbe, Dr. Eduardo Valente,
Dr. Giuseppe Giannino and the other collaborators. The PhD candidate would like to thank
all the collaborators for their invaluable contributions.

3.1 Introduction

Meta-analysis is a statistical methodology that is frequently employed by the medical research
communities in order to pool related results from independent sources. Factors intrinsic
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to the study design such as sample size of patient groups, features of enrolled patients and
hospital management might have substantial impacts on the treatment effects in an individual
clinical trial. Meta-analysis allows conflicting conclusions from various studies on medical
treatments or interventions to be synthesized through estimating the average treatment effect,
thereby producing a more comprehensive picture of the treatment. The tutorial by Normand
(1999) provides a protocol for conducting meta-analysis which includes an overview of the
relevant analytical and statistical methods. Another overview of the more advanced statistical
methods for meta-analysis is available in the tutorial by van Houwelingen et al. (2002).

The network approach to meta-analysis, known as network meta-analysis (NMA), has
recently emerged as a popular tool for the integration of results from several randomized
controlled trials (RCTs) in which multiple treatments are compared. (Ahn and Kang, 2021;
Schwarzer et al., 2015) NMA makes use of both direct and indirect evidence from multi-arms
RCTs to achieve simultaneous mixed treatment comparison. The Bayesian framework of
NMA is explained in the tutorial by Hu et al. (2020).

This chapter presents a Bayesian NMA in order to compare multiple strategies for treating
patients that suffer from chronic coronary syndromes. In contrast to the non-invasive, drug-
based treatment called optimal medical therapy, the overall effects of treatment strategies
that involve the invasive surgery known as percutaneous coronary intervention (PCI) remain
unclear to date. (Boden et al., 2007; Pavasini et al., 2020) In fact, previous RCTs that were
conceived to investigate the benefits of different PCI strategies have demonstrated conflicting
results. (Bruyne et al., 2012; Maron et al., 2020) This might be due to the fact that the
different guidance strategies which PCI depends on have not been thoroughly compared.

A Bayesian NMA is conducted on a set of 18 RCTs data that encompasses a total of
17512 patients. A total of 5 treatments are compared: optimal medical therapy (OMT), PCI
guided by angiography (PCI angio), PCI guided by non-invasive ischemia assessment (PCI
ischemia), PCI guided by fractional flow reserve (PCI FFR) and PCI guided by instantaneous
wave-free ratio (PCI IFR). The primary clinical endpoint concerned by this study is the
major adverse clinical events (MACE) as defined by each included RCT in the data set. The
secondary clinical endpoints of concern are all cause deaths (All deaths), cardiovascular
deaths (CV deaths), myocardial infarction (MI) and unplanned revascularization (Revas).

The sections of this chapter are organized as follow. Section 3.2 provides a detailed
descriptions of the available data set. Section 3.3 is an overview of the models and methodolo-
gies involved in the Bayesian network meta-analysis. Section 3.4 summarizes the statistical
results of the comparison on the angina treatments that concerns the primary clinical endpoint,
MACE. Section 3.5 is a discussion about the recent developments on the methodologies
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Table 3.1 Labels of treatments and clinical endpoints

treatments labels clinical endpoints labels

OMT 1 MACE 1
PCI angio 2 All cause deaths 2

PCI ischemia 3 CV deaths 3
PCI FFR 4 MI 4
PCI IFR 5 Revas 5

in meta-analysis for mixed treatment comparison. Results that concerns the remaining
secondary clinical endpoints are provided in the Appendix B.

3.2 Randomized controlled trial data

The available data set consists a total of 18 RCTs. Each RCT has a control arm and a
treatment arm in order to perform pairwise comparison. The follow-up time of the trials
range from 0.5 years to 10 years. A total of 5 treatments and 5 clinical endpoints are recorded
in this data set. All clinical endpoints are hazardous events. Table 3.1 lists the discrete labels
of the treatments and clinical endpoints. A Bayesian NMA is conducted for each clinical
endpoint because the number of trials available for each endpoint is different. The number of
trials recorded for each of the 5 clinical endpoints is 18,15,10,15 and 14, respectively.

Table 3.2 provides the proper format of the trial data for clinical endpoint MACE, which
is labeled as endpoint 1. The first column of Table 3.2 lists the trials and their corresponding
follow-up time in years. Each trial has a control arm or placebo group (arm 1) and a treatment
arm (arm 2) for comparison between two treatments. The second column of the table records
the results of the control group, whilst the third column of the table records that of the
patients group which received the treatment of interest. The last column of the table is the
treatment-contrast label indicating which two treatments are being compared in each trial.
For example, the first row of Table 3.2 means that trial 1 recorded the comparison between
OMT (treatment 1) and PCI angio (treatment 2) with a follow-up period of 1.5 years. By the
end of the follow-up period, 25 out of the 164 patients who received OMT ended up with
MACE, whilst 36 out of the 177 patients who received PCI angio ended up with MACE.
The total number of observed data points available for clinical endpoint 1, MACE, alone is
36 because there is a total of 18 trials with 2 treatment arms each. Subsequently, the total
number of observed data points for each of the 5 clinical endpoints is 36,30,20,30 and 28,



40
Anatomic vs ischemia-driven strategies for percutaneous coronary revascularization in

chronic coronary syndrome: a network meta-analysis

Table 3.2 Trial data available for clinical endpoint 1 (MACE)

trial follow-up arm 1 occurrence sample arm occurrence sample contrast

1 1.5 1 25 164 2 36 177 1,2
2 1.6 1 5 22 3 3 19 1,3
3 6 1 93 162 3 84 166 1,3
4 3 1 131 389 3 133 388 1,3
5 5 1 471 2591 3 424 2588 1,3
6 2 1 86 441 4 36 447 1,4
7 4.1 1 52 148 2 62 153 1,2
8 4.6 1 213 1138 2 222 1149 1,2
9 10 1 67 105 3 27 96 1,3
10 2.7 1 17 514 2 32 504 1,2
11 10 1 120 203 2 87 205 1,2
12 1 1 6 51 3 21 50 1,3
13 2 1 146 366 2 44 192 1,2
14 1 1 15 101 2 13 104 1,2
15 1 4 83 1250 5 78 1242 4,5
16 0.5 1 4 107 2 5 105 1,2
17 5 2 154 496 4 143 509 2,4
18 1 4 35 1018 5 37 1019 4,5

respectively. Tables similar to Table 3.2 for the remaining secondary clinical endpoints can
be found in the Appendix B.

Figure 3.1 is the evidence network plot that shows the treatment-contrasts from the
pairwise treatment comparisons of all trials for all 5 clinical endpoints. Each node of the
network represents a treatment. The existence of an edge between two nodes indicates that
there exists direct pairwise comparison between the two connected treatments in the data
set. If there exists direct pairwise comparison between two treatments, then there is direct
evidence available for the treatment effects. The thickness of the edge represents the number
of existing direct comparisons in the data. The thicker the edge, the higher the number. If
direct pairwise comparison is not available between two treatments at all, then there exists
indirect evidence based on the direct evidence. The number in the bracket of each node is the
total number of the specified treatment in the full data set. For example, the total number
of OMT (treatment 1) available for each of the 5 clinical endpoints is 15,13,8,13 and 12,
respectively. Thus, the number in the bracket of OMT is the sum total of 61. This network
representation of the RCTs data will prove to be useful in the next section when the model
for this data set and the Bayesian NMA are explained.
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Figure 3.1 Evidence network plot of the treatment-contrasts from the full data set.

3.3 Methods

In the classical generalized linear model framework for meta-analysis, the number of oc-
currence of the clinical endpoint in each arm is usually assumed to be Binomial with the
unknown probability of occurrence as a latent parameter. Essentially, this is the logistic
regression with the probability of occurrence in the logit scale as the dependent variable.
However, this is not suitable for the RCTs data set here in this chapter as it is noticeable that
the follow-up periods are vastly different from each other. In fact, the shortest follow-up
period is 0.5 years while the longest is 10 years for in Table 3.2. This implies that the lengths
of the follow-up period have statistical impact on the survival outcomes of the patients and
thus the recorded number of occurrence of the clinical endpoint. A detailed descriptions of
the suitable statistical methodologies involved in the case study on the available RCTs data
set is provided in this section.

3.3.1 Cox proportional hazards model

The rate of occurrence of an event is almost always treated as a Poisson variable in the
regression setting. In this specific case, the number of occurrence can be treated as though
it is a Poisson variable by means of a link function that can account for the effects of the
follow-up period. This method was applied on the medical studies of death rates by Berry
(1983) and Frome (1983). The application of this method in the context of meta-analysis of
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clinical trial data with multiple follow-up times can be found in the work of Lu et al. (2007).
Following the work of Lu et al. (2007), a similar model is implemented in this work.

Let N be the total number of trials available for a clinical endpoint and let the trial number
be denoted by i ∈ {1,2, ...,N}. Let T be the total number of treatments such that {1, . . . ,T}
is the set of discrete labels for the treatments. Let k denote the label of a treatment such that
k ∈ {1, . . . ,T}. Let ni,k be the total number of patients that were assigned to treatment k in the
i−th trial and let yi,k be the number of patients that ended up with the clinical endpoint at the
end of the follow-up period. Let pi,k be the probability of the clinical endpoint’s occurrence
for the patients after receiving the treatment k in the i−th trial. The classical Binomial model
assumes that

yi,k|ni,k, pi,k ∼ Bin(ni,k, pi,k), (3.1)

which is not directly applicable in the regression setting of this case since the follow-up
periods of the RCTs need to be accounted for. Let fi be the follow-up period of the i−th
trial. It is assumed that the repeated occurrences of the clinical endpoint for each patient is a
Poisson process such that

yi,k|λi,k ∼ Poi(λi,k fi), (3.2)

where λi,k is the rate at which a clinical endpoint occurred. Let ti,k be the first arrival time in
the Poisson process specified above such that

ti,k ∼ Exp(λi,k) (3.3)

and that the probability pi,k can be written in terms of the rate and the follow-up period by

pi,k = P(ti,k < fi) = 1− exp(−λi,k fi). (3.4)

The treatment of interest that is under investigation in each trial is in contrast to a
baseline treatment which was received by patients in the control group. Note that the baseline
treatment differs across different trials as per Table 3.2. Let the baseline treatment of each
i−th trial be denoted by b(i) = b for simplification of notation. The probability pi,k of the
clinical endpoint’s occurrence after having received treatment k in the i−th trial is modeled
by

θi,k = g(pi,k)

= log( fi)+ log(λi,k)

= log( fi)+µi +δi,(b,x)1(x = k),

(3.5)
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where θi,k is the log cumulative hazard, µi is the trial-specific baseline effect, δi,(b,x) is the trial-
specific log hazard ratio of treatment y to baseline treatment b and g(p) = log(− log(1− p))
is the clog-log link function that can be given by the inverse of equation (3.4). This is also
known as the Cox proportional hazards model. In meta-analysis, the trial-specific log hazard
ratio δi,(b,x) is called the relative effect of a treatment and the expected log hazard ratio
is called the expected relative effect. In Bayesian NMA, the trial-specific relative effects,
denoted by {δi,(b,x)}i=1,...,N , are assumed to be exchangeable with the expected relative
effects, denoted by db,x. These expected relative effects are the parameters of interests.

3.3.2 Evidence consistency

As explained by Lu and Ades (2006), direct evidence and indirect evidence is combined for
mixed treatment comparison through the key assumption of evidence consistency. Let r be
the fixed label of the reference treatment such that r ∈ {1, . . . ,T}. Let the expected relative
effect of treatment k to the fixed reference r be denoted by dr,k where r ̸= k. Theses are called
the basic parameters and their representation in an evidence network is a spanning tree. Thus,
there is a total of T −1 basic parameters. The basic parameters are the main parameters of
interest. By convention, the label of the reference treatment is usually set as r = 1 such that
r < k for all k ∈ {2, . . . ,T}. The remaining expected relative effects are called the functional
parameters and can be represented as linear functions of the basic parameters by

dk,k′ = dr,k −dr,k′, (3.6)

where r < k < k′. This is known as the consistency equation. Models that follow the
consistency equation are said to be under the assumption that all available evidence about the
basic and functional parameters is consistent. The assumption of evidence consistency can
be illustrated by the contrasts of the pairwise treatment comparisons in the evidence network
in Figure 3.1. If the information given by the direct evidence from treatment 1 (OMT) versus
treatment 2 (PCI angio) is inconsistent with the information given by the indirect evidence
from treatment 1 (OMT) versus treatment 5 (PCI IFR), then d2,5 ̸= d1,5 −d1,2 and it is said
that the evidence is inconsistent.

The presence of evidence inconsistency in two-arms trial data can be detected by means of
the Bucher’s method for single-loop evidence that is defined in the work of Dias et al. (2011b).
Let d̂dir

k,k′ be the direct estimate of dk,k′ that is obtained from direct evidence that exists in the

trial data. Define d̂ind
k,k′ = d̂dir

r,k′ − d̂dir
r,k as the indirect estimate using the direct estimates as well

as the consistency equation (3.6). The Bucher’s method states that a hypothesis test for the
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non-existence of inconsistency can be conducted using the z-score test statistic given by

zk,k′ =
d̂dir

k,k′ − d̂ind
k,k′√

Var(d̂dir
k,k′)+Var(d̂ind

k,k′)
. (3.7)

The null hypothesis of the Bucher’s method states that there is no difference between the
estimates obtained from direct evidence, d̂dir

k,k′ , and the estimates obtained through indirect

evidence, d̂ind
k,k′ . The issue of evidence inconsistency will be discussed later in Section 3.5.

3.3.3 Fixed effects, homogeneous random effects & heterogenous ran-
dom effects

The model in this case study abides by the same assumption of evidence consistency as
per equation (3.6). However, in order to obtain the statistically best-fit results, the model
was implemented under three different assumptions on the variation: the fixed effect, the
homogeneous random effect and the heterogeneous random effect. As explained by Dias
et al. (2011a) and Hu et al. (2020), these three versions of the Cox proportional hazards
model differ in the assumed sources of variation within the Bayesian framework.

In the fixed effect (FE) model, the only source of variation of the trial-specific relative
effects is the random effects of the basic parameters. Thus, the trial-specific relative effects
are directly specified by the basic parameters and the consistency equation (3.6) in the FE
model, which is

θi,k = log( fi)+µi +δi,(b,x)1(x = k),

δi,(b,x) = db,x,

db,x = dr,x −dr,b,

(3.8)

for all i = 1, . . . ,N. This is equivalent to saying that there is no variation across the indepen-
dent trials and that the underlying true treatment effects can be directly obtained from all
trials regardless of their intrinsic differences in study design, sample sizes or other factors.
The trial-specific relative effects therefore equal their corresponding expected relative effects
and the only variation comes solely from the priors for the basic parameters.

The homogeneous random effect (RE-Hom) model admits that the trial-specific relative
effects should vary across the trials. The source of variation to the relative effects is no longer
just the Bayesian prior for the basic parameters in this case. Instead, it assumes that the
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random effects for all treatment-contrasts is homogeneous. The RE-Hom model is

θi,k = log( fi)+µi +δi,(b,x)1(x = k),

δi,(b,x) ∼ N(db,x,σ
2),

db,x = dr,x −dr,b,

(3.9)

for all i = 1, . . . ,N. The source of variation for the trial-specific relative effects δi,(b,x) here
in the RE-Hom model comes from across the independent trials rather than the different
treatment-contrasts of the pairwise comparison themselves.

The heterogeneous random effect (RE-Het) model assumes both random effects for the
trial-specific relative effects as well as statistical heterogeneity. This statistical heterogeneity
refers to the variation that arises from the different pairwise contrasts of treatment comparison
such that the trial-specific relative treatment effect δi,(k,k′) is specified by

δi,(k,k′) ∼ N(dk,k′,σ
2
k,k′),

for all k ̸= k′ and k,k′ ∈ {1, . . . ,T}. This formulation implies that there exists a covariance
structure associated with the vector of basic and functional parameters. Let ρ

(r)
k,k′ where

r < k < k′ be the correlation coefficient that indicates how the two basic parameters dr,k and
dr,k′ are related to each other with respect to the reference treatment. In a mixed treatment
comparison with only 2 arms present in all trials, the RE-Het model is

θi,k = log( fi)+µi +δi,(b,x)1(x = k),

δi,(b,x) ∼ N(db,x,σ
2
b,x),

σ
2
b,x = σ

2
r,x +σ

2
r,b −2ρ

(r)
b,xσr,bσr,x,

db,x = dr,x −dr,b,

(3.10)

for all i = 1, . . . ,N. This means that the source of variation for the trial-specific relative
effects δi,(b,x) here in the RE-Het model comes from across the independent trials as well as
the different treatment-contrasts of the pairwise comparison between the reference treatment
and other treatments of interests. (Lu and Ades, 2006)

In the Bayesian framework, the variation between the basic parameters and their associ-
ated parameters are assumed to be random effects. The priors for each basic parameter is set
as dr,k ∼ N(md,vd) in all three models. The prior for the standard deviation σ of the RE-Hom
model in equation (3.9) is set as Uni(aσ ,bσ ). As for the RE-Het model in equation (3.10),
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the prior for the standard deviations σr,x and the correlations ρ
(r)
x,x′ are set to be Uni(aσ ,bσ )

and Uni(aρ ,bρ), respectively.

3.3.4 Diagnostic deviance statistics

Since all the models specified in Section 3.3.3 will be implemented by Gibbs sampling
later in the case study on angina treatments in Section 3.4, model comparison needs to be
conducted. The best model for the data is chosen according to model fit and complexity,
which are measured by the diagnostic deviance statistics that are specified in the work of
Dias et al. (2011a).

The goodness-of-fit of a model is measured by the overall residual deviance. The overall
residual deviance is the summation of the residual deviance of all observed data points since
the observed data points are assumed to be independent and identically distributed. Let p̂i,k

be the estimate of pi,k at each iteration of Gibbs sampling. Let ŷi,k = p̂i,kni,k be the number
of occurrence of the clinical outcomes calculated at each iteration. Let devi,k be the residual
deviance of each observed data point. Let D be the overall residual deviance at each iteration,
then

D =
n

∑
i=1

m

∑
k=1

devi,k

=
n

∑
i=1

m

∑
k=1

2
[

yi,k log
(

yi,k

ŷi,k

)
+(ni,k − yi,k) log

(
ni,k − yi,k

ni,k − ŷi,k

)]
,

(3.11)

for the Binomial likelihood. This can be obtained by the estimates of the Cox proportional
model in equation (3.5) using pi,k = 1− exp(−exp(θi,k)). The overall residual deviance can
be interpreted as the distance between the model and the perfect fit with the data. The optimal
value of D is the total number of observed data points such that each devi,k should contribute
1 to D at each iteration. The posterior mean of the overall residual deviance, denoted by D,
summarizes the goodness-of-fit of the model.

Model complexity is measured by the effective number of parameters. Let devi,k be the
posterior mean of of the residual deviance of each observed data point. The effective number
of parameters is given by the summed distances between devi,k and the estimate of devi,k

based on the posterior means of the parameters. Let p̃i,k be the posterior mean of pi,k and
let ỹi,k = p̃i,kni,k be the estimated number of occurrence calculated by the posterior mean.
Let d̃evi,k be the estimate given by replacing ŷi,k with ỹi,k in equation (3.12). The effective
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number of parameters is defined to be

pD =
n

∑
i=1

∑
k=1

(devi,k − d̃evi,k). (3.12)

Another deviance statistic is the global Deviance Information Criteria (DIC), which is
used to measure the goodness-of-fit with penalized model complexity. It is thus useful for
comparing model of different parametrization with the same likelihood. The DIC is defined
to be

DIC = D+ pD

= D+
n

∑
i=1

∑
k=1

(devi,k − d̃evi,k).
(3.13)

The diagnostic statistics specified by equations (3.11) and (3.13) here give an adequate
picture on the overall fit of the model and its complexity. These will be used in the next
Section 3.4 in the case study on angina treatments in order to determine which models in
Section 3.2 is the best fit for the available data set.

3.4 Case study on angina treatments

There are a total of 5 clinical endpoints of interest in this case study on the comparison
of 5 angina treatments. Table 3.1 provides the labels of the clinical endpoints and angina
treatments. The primary clinical endpoint is clinical endpoint 1 (MACE). The clinical
endpoints labeled by 2,3,4 and 5 in Table 3.1 are the secondary clinical endpoints. The trial
data available for MACE is described by Table 3.2 and its network plot is Figure 3.1.

A Bayesian NMA is performed for each clinical endpoint using the methodologies
specified in the previous Section 3.3. All three models, fixed effect (FE), homogeneous
random effect (RE-Hom) and heterogeneous random effect (RE-Het), that are specified
in Section 3.3.3 are implemented in each Bayesian NMA. As explained in Section 3.3.1
and Section 3.3.2, the main parameters of interests are the expected log hazard ratios
of the treatment of interest k to the reference treatment r, which are defined to be the
basic parameters, dr,k where r ̸= k. The hyper-parameters of the priors for the model
implementation are set to be as uninformative as possible. The mean and standard deviation
of the Normal priors for the basic parameters are therefore set as md = 0.000 and vd = 100,
respectively, in all three models. For the RE-Hom and RE-Het model, the hyper-parameters
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of the Uniform priors for σ and σr,k are both set as aσ = 0 and bσ = 5, respectively. The
hyper-parameters of the Uniform prior for the correlations ρ

(r)
k,k′ are set as aρ = 0 and bρ = 1

for all r < k < k′.

3.4.1 Results

In this case study, the non-invasive and drug-based treatment 1 (OMT) is designated as the
reference treatment r = 1, whilst the invasive and PCI-guided treatments are designated as
the treatments of interests k = 2,3,4,5. Table 3.3 gives the posterior means and the standard
deviations in brackets of the model parameters for the primary clinical endpoint 1 (MACE).
Similar tables for the secondary clinical endpoints can be found in Appendix B. The numeric
results of the model parameters are then used to compute the z−score test statistic in equation
(3.7) and their p−values. Hypothesis testings at the significance level of 0.05 are then
conducted using the numerical values in Table 3.4 and it was concluded that the available
data do not suffer from the problem of evidence inconsistency.

Model comparison is then performed using equations (3.11) and (3.12) in order to
determine which model is the best for describing the data. Table 3.5 summarizes the
diagnostic statistics of all models for each clinical endpoint and the lowest deviance statistics
are highlighted in bold. The residual deviance D reveal that the FE model fits very poorly
with the data, whilst the RE-Hom and RE-Het models both have very good fit. In comparison
to the RE-Hom model, the RE-Het model has a slightly better fit, but it comes at a higher cost
of model complexity as well as a much more difficult interpretation. The standard deviations
of the RE-Het model parameters in Table 3.3 also indicate that the RE-Het model might be
suffering from over-fitting. Since the RE-Hom model is very close to the RE-Het model in
terms of model fit, it is thus chosen to be the best model with the optimal trade-off between
model fit and model complexity.

Figure 3.2 is a forest plot that shows the results of the expected log hazard ratios of all
treatments that are given by the RE-Hom model. The posterior means and 95% credible
intervals of the expected log hazard ratios are plotted for all clinical endpoints. It should be
noted that the 95% credible intervals of the expected log hazard ratios for clinical endpoints 1
(MACE) and 4 (MI) are much narrower than that of the other clinical endpoints. This makes
the use of the expected log hazard ratios for decision-making more difficult. For example,
the 95% credible interval of d1,3 completely encompasses that of d1,2 for clinical endpoint
1 (MACE) whilst their posterior means are very close to each other. Meanwhile, the 95%
credible interval of d1,5 completely encompasses that of d1,2 for clinical endpoint 4 (MI)
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Table 3.3 Results of different models for clinical endpoint 1 (MACE).

model parameters FE RE-Hom RE-Het

d1,2 −0.160 (0.060) −0.0737 (0.223) −0.061 (0.217)
d1,3 −0.133 (0.053) −0.102 (0.268) −0.077 (0.510)
d1,4 −0.464 (0.108) −0.559 (0.447) −0.561 (1.250)
d1,5 −0.487 (0.170) −0.562 (0.627) −0.564 (2.009)
d2,3 0.027 (0.080) −0.028 (0.348) −0.016 (0.554)
d2,4 −0.304 (0.101) −0.485 (0.445) −0.500 (1.249)
d2,5 −0.327 (0.166) −0.489 (0.626) −0.503 (2.009)
d3,4 −0.331 (0.120) −0.457 (0.521) −0.484 (1.350)
d3,5 −0.354 (0.178) −0.460 (0.681) −0.487 (2.072)
d4,5 −0.023 (0.131) −0.003 (0.440) −0.003 (1.568)

σ 0.567 (0.159)

σ1,2 0.513 (0.221)
σ1,3 1.065 (0.560)
σ1,4 1.392 (1.166)
σ1,5 1.801 (1.373)
σ2,3 1.215 (1.732)
σ2,4 2.883 (4.468)
σ2,5 4.520 (5.755)
σ3,4 3.265 (4.278)
σ3,5 4.661 (5.387)
σ4,5 4.909 (5.995)

whilst their posterior means are both extremely close to zero. It should be noted that the
expected log hazard ratios d1,5 are consistently more varied with a much higher range of
95% credible intervals than the other treatments. This might be caused by the fact that there
is no direct evidence available for treatment 1 versus treatment 5 as per Figure 3.1. The
exponential transformation of the expected log hazard ratios gives the expected hazard ratios
and might be easier for numerical comparison.

Table 3.6 summarizes the expected hazard ratios of the treatments of interests k relative
to the reference treatment r = 1 and the statistical heterogeneity for each clinical endpoint. If
the expected hazard ratio is less than 1.0, then it can be said that the treatment of interest
is more effective than the reference treatment against the hazardous clinical endpoint and
vice versa, if the hazard ratio is larger than 1.0, then the treatment of interest can be said
as less effective. The lower the expected hazard ratio, the more effective the treatment of
interest. The statistical heterogeneity across the trials is quantified in the last row by the
standard deviation of the cumulative log-hazard ratio of the treatment arm to control arm of
each trial. The smaller the standard deviation, the less variation there is across the trials. The
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Table 3.4 Bucher’s method: p−values of the z−score in equation (3.7).

Clinical endpoints
p−value of

z1,2 z1,3 z1,4 z2,4 z4,5

MACE 0.545 0.567 0.827 0.500 0.687
All deaths 0.731 0.720 0.740 0.500 0.736
CV deaths 0.614 0.501 0.537 0.500 0.582

MI 0.930 0.529 0.755 0.500 0.591
Revas 0.979 0.708 0.966 0.500 0.754

Table 3.5 Diagnostic statistics of the models for all clinical endpoints.

Clinical endpoints
D DIC

FE RE-Hom RE-Het FE RE-Hom RE-Het

MACE 101.91 36.81 36.01 124.01 70.11 70.01
All deaths 44.73 31.51 31.44 63.71 57.28 58.46
CV deaths 48.32 19.79 19.10 62.31 38.52 37.30

MI 45.56 29.58 29.74 64.56 55.23 56.10
Revas 324.47 27.29 27.37 342.58 52.64 52.85

Figure 3.2 Log hazard ratios of treatments by RE-Hom for all clinical endpoints.

posterior means and the 50% credible intervals of the expected hazard ratios are reported
since they suffice for a practical evaluation on the effects of the treatments. The lowest
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Table 3.6 Hazard ratios of treatments for all clinical endpoints.

1 2 3 4 5
MACE All deaths CV deaths MI Revas

exp(d1,2)
0.929 0.761 0.996 1.028 0.404

(0.806,1.068) (0.668,0.875) (0.686,1.430) (0.903,1.164) (0.261,0.636)

exp(d1,3)
0.903 0.757 0.706 0.609 3.273

(0.761,1.068) (0.642,0.914) (0.484,1.064) (0.529,0.708) (1.713,6.142)

exp(d1,4)
0.572 0.684 0.806 0.823 0.237

(0.432,0.758) (0.523,0.900) (0.447,1.433) (0.660,1.024) (0.099,0.572)

exp(d1,5)
0.570 1.190 1.510 0.923 0.171

(0.385,0.846) (0.750,1.895) (0.557,4.021) (0.632,1.346) (0.039,0.763)

σ
0.567 0.448 1.076 0.394 1.884

(0.456,0.652) (0.292,0.571) (0.721,1.290) (0.280,0.483) (1.474,2.168)

posterior means of the expected hazard ratios are highlighted in bold. Using the posterior
samples of the expected hazard ratios, the effectiveness of the treatments can be ranked and
the probability of a treatment being the best or the worst against each clinical endpoint can
be obtained. Table 3.7 summarizes the probability of each treatment being the best against
each clinical endpoint. The highest probability of a treatment being the best are highlighted
in bold. Clearly, the highest probability of a treatment being the best coincides with the
lowest posterior mean of a treatment’s expected hazard ratio. Looking at Table 3.7 together
Table 3.6 helps to reliably determine which treatment is indeed the most effective against
each clinical endpoint.

It can be easily seen that all four invasive PCI-guided treatments of interests are more
effective than the non-invasive, drug-based reference treatment 1 against the primary clinical
endpoint 1 (MACE), with treatments 4 and 5 being significantly more effective than treat-
ments 2 and 3. At least three invasive PCI-guided treatments are more effective than OMT
against each of the secondary clinical endpoints. However, it appears that only treatment 4,
PCI FFR, is consistently more effective than OMT against all clinical endpoints although it is
not consistently the most effective. Treatment 4 is the most effective treatment that is closely
followed by treatment 3 being the second most effective treatment against clinical endpoint 2
(All cause deaths). Treatment 3 is certainly the most effective against both clinical endpoints
3 (CV deaths) and 4 (MI). Treatment 5 is the most effective against clinical endpoint 5
(Revas).
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Table 3.7 The probability of treatment k being the best against each clinical endpoint.

probability treatment k
1 2 3 4 5

MACE All deaths CV deaths MI Revas

P(best treatment = k)

1 0.013 0.005 0.062 0.003 0.014
2 0.044 0.188 0.117 0.011 0.190
3 0.100 0.269 0.363 0.651 0.010
4 0.386 0.424 0.265 0.131 0.276
5 0.457 0.114 0.193 0.205 0.509

3.5 Discussion

This chapter focused on the Bayesian network meta-analysis of randomized control trials
for mixed treatment comparison and addressed the issue of heterogeneity that arises from
the wide range of follow-up time of different trials as well as evidence consistency. The
methodologies employed in this chapter can be found in the literature by Dias et al. (2011b);
Hu et al. (2020); Lu and Ades (2006) and Lu et al. (2007). These methodologies are then
applied on the available trial data of the case study on angina treatments for coronary diseases.

The methodologies employed in this case study have several limitations that should be
acknowledged. The Bucher’s method for detecting evidence inconsistency is essentially a
very basic and simplistic hypothesis test on each pairwise treatment contrast, though it might
be sufficient for this case study due to the presence of only two treatment arms for each
trial in the data set. Many alternative methods for detecting evidence inconsistency have
been proposed and should be further studied using a larger data set with multiple arms trials.
The random inconsistency factor method by Lu and Ades (2006), node-splitting method
proposed by Dias et al. (2010) and the two-stage linear inference approach formulated by
Lu et al. (2011), for example, could potentially provide significant improvements on the
detection of evidence inconsistency as well as the quantification of the discrepancy between
direct and indirect evidence. Furthermore, extending the current Cox proportional hazards
model for network meta-regression might be of future research interests since it might help
to evaluate the bias of a specific study on the effects as well as to determine the specific study
characteristics that cause such bias.

The case study in this work is motivated by the unclear benefits of the invasive surgery
known as PCI, which depends on different guidance strategies. The results of the case study
demonstrated overwhelming evidence for the effectiveness of the invasive PCI-guided treat-
ments against the conventional drug-based OMT. However, there exists variations between
different PCI-guided strategies in regards to their effectiveness against different hazardous
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clinical outcomes. In this work, the effectiveness of the treatments is measured against
each specific hazardous clinical outcome. Further analysis needs to be performed in order
to determine the reasons for such variations across different types of hazardous clinical
outcomes and to produce a more accurate picture of PCI-guided strategies. Nevertheless, the
statistical findings of this study have offered insights into the effectiveness of the PCI-guided
strategies in spite of the limitations of the methodologies.



Chapter 4

Degree evolution in a general growing
network

Background

This chapter presents the published paper by De Ambroggio and Yip (2024):

De Ambroggio U. and Yip H.C. Degree evolution in a general growing network. Statistics
& Probability Letters, 211:110151, 2024. ISSN 0167-7152. doi:https://doi.org/10.1016/j.spl.
2024.110151.

The mathematical proof by Dr. Umberto De Ambroggio and the simulation study
contributed by PhD candidate H.C. Yip constitute this work. The PhD candidate is forever
indebted to Dr. Umberto De Ambroggio.

4.1 Introduction

The study of complex networks has attracted considerable research interests in recent years
due to the emergence of real-world network data and the broad applicability of random graph
models. The book by Hofstad (2016) provides a comprehensive introduction to random graph
models for complex networks. Many studies on random graph models were also conducted in
order to investigate the theoretical and empirical properties of complex networks. It has been
observed empirically that many real world networks exhibit power-law degree sequences
such that the nodes of degree k decays as k−τ for some τ > 0. Cooper and Frieze (2003) and

https://doi.org/10.1016/j.spl.2024.110151
https://doi.org/10.1016/j.spl.2024.110151
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Frieze et al. (2006) studied the degree structure of such networks in a more applied setting of
the World Wide Web graph process, for example.

One of the most studied models for networks with power-law degree distribution is
the preferential attachment model that was introduced by Barabási and Albert (1999) and
rigorously studied by Bollobás et al. (2001). In the basic version of preferential attachment,
it is always more likely for the newly added nodes to connect to high-degree nodes instead
of low-degree ones. However, this is not always a reasonable assumption from a modeling
perspective and many alternative models have been proposed to generalize preferential
attachment for the purpose of incorporating a wider range of behaviors that are empirically
observed in real-world networks. One of these alternatives is preferential attachment with
node or edge deletion, which was studied by Cai et al. (2011) and Cooper et al. (2003).
In these models, a random graph is generated by node addition and deletion such that the
power-law degree distribution is preserved, even though the overall growth of the degree
is slowed down when a high-degree node is selected to be deleted. Another variant of
preferential attachment was studied by Rudas et al. (2007) and further investigated by Betken
et al. (2019); Dereich and Mörters (2009). In this variant, newly added nodes connect to
old nodes with a probability that is proportional to a sub-linear function of their degree. It
was established that the limiting degree distribution does not have a power-law decay, but
instead exhibits a stretched exponential tail. It was also established that the limiting behavior
of the vertex degree is dictated by the asymptotic of the sub-linear function characterizing
the connection probabilities. Other versions of preferential attachment were discussed and
analyzed in the work by Janssen and Prałat (2010); Oliveira and Spencer (2005); Prałat
and Wormald (2007). Readers can refer to the work by Durrett (2006); Hofstad (2016);
Mitzenmacher (2003) for a more comprehensive survey on random graphs and complex
networks.

This chapter focuses on a particular preferential attachment model that was introduced by
Deijfen and Lindholm (2009) and was further investigated by Lindholm and Vallier (2011).
At every discrete time step, either a new node is added and connected to another existing
node in the random graph, or a new edge is added between two nodes, or an edge is deleted.
The work of Deijfen and Lindholm (2009) showed that the degree sequence of the network
undergoes a phase transition such that the degree distribution loses the power-law behavior
and decays exponentially if the probability of edge deletion is strictly larger than the critical
case of 1/3. In the work of Lindholm and Vallier (2011), it was stated that if the probability
of edge deletion equals 1/3, then the expected degree of any given node is of constant order.
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This work, however, shows that the statement by Lindholm and Vallier (2011) is wrong.
Instead, it is demonstrated that the expected degree of a node grows logarithmically under
the critical case of 1/3. Furthermore, it is also demonstrated that when the probability of
edge deletion is strictly less than 1/3, the degree process of a given node converges almost
surely as the number of nodes goes to infinity.

This chapter presents a correction on the statement made by Lindholm and Vallier (2011)
with regard to the expected degree of nodes of a particular preferential attachment model
that was introduced by Deijfen and Lindholm (2009). Section 4.2 summarizes the precise
formulation of the preferential attachment model of interest and presents the main results.
Section 4.3 demonstrates a simulation study that numerically validates the main results.
Section 4.4 is the complete proof of the main results. Section 4.5 is a discussion about the
future developments and potential applications of preferential attachment.

4.2 Model & main results

The notations for the rest of this chapter are defined here. Given a random variable X and
a distribution function F , let X ∼ F if X has law F . Let (xn)n,(yn)n be two sequences of
non-negative real numbers. If xn/yn → 0 as n → ∞, then xn = o(yn) or xn ≪ yn. If there exist
constants C1,C2 such that C1xn ≤ yn ≤C2xn, then xn ≍ yn. If xn/yn → 1 for all large enough
n, then xn ∼ yn. Let a,b be real numbers, then a∨b := max{a,b} and a∧b := min{a,b}.

Let the graph process produced by the model be denoted by (Gt)t∈N. Let the number of
nodes and the number of edges at time t ∈ N be denoted by Vt := |V (Gt)| and Et := |E(Gt)|,
respectively. Note that both Vt and Et are random. Given a node u ∈ V (Gt) that was born
at time s ∈ {1, . . . , t}, the degree of the node u at time t is denoted by ds(u, t). The graph
process G1 is initiated at time t = 1 with an isolated node with a self-loop. At t ∈ N, the
graph process Gt+1 is constructed iteratively from Gt by:

1. A new node u is added with probability p1 > 0 and connected to an existing node
v ∈ Gt selected with probability ds(v, t)/2Et .

2. An edge is added with probability p2 between two existing nodes, u,v ∈ Gt selected
with probabilities ds(u, t)/2Et and 1/Vt , respectively.

3. An edge is selected with probability 1/Et and deleted with probability p3 := 1− p1 −
p2.



4.2 Model & main results 57

If Et = 0, then either a new node with a self-loop is introduced with probability p1, or an
edge is added between two distinct nodes selected uniformly at random with probability
1− p1. Note that if Et = 0, then an edge is always added at time t +1 such that Et+1 = 1
with probability 1. As shown by Lindholm and Vallier (2011), this value of the edge deletion
probability p3 is critical for the behavior of the limiting expected degree of a given node. Set

Gs(t) := (t/s)
1−3p3

2(1−2p3) (4.1)

for t ≥ s ≥ 1. It was shown that if p3 < 1/3, then E[ds(u, t)] ≍ Gs(t) independently of p2

as t → ∞. On the other hand, if p3 > 1/3, then limt→∞E[ds(u, t)] = γ where γ is a finite
positive constant that depends on p1, p2 and p3 such that γ = 0 if p2 = 0. The following are
the main results of this chapter.

Proposition 4.2.1. Let p3 = 1/3, p2 > 0. Then, as t → ∞,

E[ds(u, t)]∼
t−1

∑
k=s

p2

kp1

t−1

∏
r=k+1

(
1− p2

2
3r2 p1

)
≍ log(t/s), (4.2)

where the constants in the ≍ notation depend on p1 and p2.

Proposition 4.2.2. Let p3 ∈ [0,1/3). Then, ds(u, t)/Gs(t) converges almost surely as t → ∞

to a non-negative random variable with finite mean independently of the value of p2.

The main result in Proposition 4.2.1 corrects a statement that was made in the work of
Lindholm and Vallier (2011), which stated that the expected degree of a given node is of
constant order if p3 = 1/3. Note that ∑

t−1
k=s 1/k∼ log(t/s) and ∏

t−1
r=k+1

[
1− p2(

2
3r2 p1)

−1]≍ 1
with constants depending on p1, p2. The asymptotic ≍ then follows. The second main result
in Proposition 4.2.2 shows the almost sure convergence of the degree process of a given node
if p3 < 1/3.

The asymptotics stated in Propositions 4.2.1 and 4.2.2 are valid whenever s ≪ t, which
is arguably the more relevant range for s. Furthermore, Proposition 4.2.2 does not exclude
the case of a degenerate limit. Proving that the limiting random variable is strictly positive
with probability one is not a trivial task. However, a simulation study in Section 4.3 below
shows that the functions displayed in equations (4.1) and (4.2) indeed describe the asymptotic
behavior of a node degree in the corresponding regimes, p3 = 1/3 and p3 < 1/3.
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(a) s = 1 (b) s ≈ 15

(c) s ≈ 70 (d) s ≈ 105

Figure 4.1 Node degree against time t = 104.

4.3 Simulation study

Here the main results in Propositions 4.2.1 and 4.2.2 are illustrated by simulation. Three
independent graph processes (Gt)t∈N were simulated under three different edge deletion
probabilities p3. More precisely, p3 is the probability of an edge being deleted and each
graph process was generated under a different p3. One of the three graph processes was
generated using the critical value of p3 = 1/3. The other two graph processes were generated
under p3 = 1/5 and p3 = 1/10, respectively. The probabilities of node addition and edge
addition at each time step were set as p1 = 1/2 and p2 = 1− p1 − p3, respectively, for all
three graph processes. The number of time steps for each graph process is set as t = 104.

Figure 4.1 illustrates the results of the simulation. Nodes that were approximately born at
the same time s are plotted in the same figure. The solid lines represent the asymptotic node
degree given by Propositions 4.2.1 and 4.2.2, whilst the dotted lines represent the simulated
degree of the nodes. The nodes of each graph process are represented by a color.

Due to the relatively small range of the asymptotic degree in the critical case of p3 = 1/3,
the convergence for the critical case p3 = 1/3 is not as apparent in comparison to the cases
p3 < 1/3. For example, the asymptotic degrees at time t = 104 in Figure 4.1 (a) with s = 1
under the cases of p3 = 1/3, p3 = 1/5 and p3 = 1/10 are ≈ 3,≈ 22 and ≈ 56, respectively.
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In contrast, the asymptotic degrees at time t = 104 in Figure 4.1 (c) with s ≈ 70 under the
cases of p3 = 1/3, p3 = 1/5 and p3 = 1/10 are ≈ 2,≈ 5 and ≈ 8, respectively. This uneven
scale of the y−axis results in the lack of visible growth of the red curves.

4.4 Proofs

A few preliminary results are used to prove the main results, Propositions 4.2.1 and 4.2.2,
in the subsections below. For the convenience of readers, the preliminary results are stated
here as Lemma 4.4.1, Theorem 4.4.1 and Lemma 4.4.2. Lemma 4.4.1 provides some
classical concentration inequalities for the binomial distribution. Theorem 4.4.1 is the
Robbins-Siegmund Theorem, which guarantees the almost sure convergence for sequences
of non-negative random variables that behave almost like supermartingales. Lemma 4.4.2
provides a concentration inequality for Et , the number of edges in the graph process Gt .

Lemma 4.4.1. Let X be distributed by Bin(n, p). Then,P(X ≥ E(X)+ t) ≤ exp
(
− t2

2(E(X)+t/3)

)
,

P(X ≤ E(X)− t) ≤ exp
(
− t2

2E(X)

)
,

for all t ≥ 0. It follows that

P(|X −E(X)| ≥ t)≤ 2exp
(
− t2

2(E(X)+ t/3)

)
.

Theorem 4.4.1 (Robbins-Siegmund Theorem). Let (Vn)n≥1,(βn)n≥1,(γn)n≥1 and (δn)n≥1 be
sequences of random variables that take values in [0,∞) and are adapted to some filtration
(Fn)n≥1. If

E(Vn+1|Fn)≤Vn(1+βn)+ γn −δn

for all n ≥ 1, then (Vn)n≥1 converges almost surely to a finite random variable and ∑n≥1 δn <

∞ almost surely on the event that both ∑n≥1 βn and ∑n≥1 γn are finite.

Lemma 4.4.2. Let p3 ∈ (0,1/2). Let λ = λt such that C ≤ λ = o(t) as t → ∞ for some finite
constant C > 1. Then, there exists t0 ∈ N such that for all t ≥ t0,

P(|Et − t(1−2p3)|> λ )≤ 3exp
(
−λ 2(1−1/C)2

8t

)
. (4.3)
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Note that the edge deletion probability p3 in Lemma 4.4.2 is at most 1/2. This is sufficient
for the proofs of the main results in Section 4.4.2 and Section 4.4.3 because only the regimes,
p3 = 1/3 and p3 < 1/3, are considered.

The proof of Lemma 4.4.2 is provided in Section 4.4.1 below. For the proof of Lemma 4.4.1
and Theorem 4.4.1, readers are referred to the works of Hofstad (2016) and Brémaud (2020),
respectively.

4.4.1 Proof of Lemma 4.4.2

A result of this type was in fact derived in Section 2.2 of (Lindholm and Vallier, 2011).
However, the argument provided here is self-contained as no classical results about one-
dimensional random walks was used. The proof makes use of Lemma 4.4.3, the Hoeffding’s
inequality, which is provided here for the convenience of the readers.

Lemma 4.4.3 (Hoeffding’s inequality). Let X1, . . . ,Xn be independent random variables.
Let there exists constants ai,bi with ai < bi such that ai ≤ Xi ≤ bi almost surely for all
i ∈ {1, . . . ,n}. Define Sn := ∑

n
i=1 (Xi −E(Xi)) and Dn := ∑

n
i=1(bi −ai)

2. Then,P(Sn ≥ x) ≤ exp
(
−2x2/Dn

)
P(Sn ≤−x) ≤ exp

(
−2x2/Dn

)
for all x > 0.

Let (Ut)t≥1 be a sequence of independent and identically distributed random variables
taking values in {−1,1} with p3 = P(U1 = 1) = 1−P(U1 =−1). Define Ê0 := 1 and let

Êt = Êt−1 +1−21{Ut=1}1{Êt−1≥1} (4.4)

for all t ≥ 1. Then, Êt
d
= Et for all t ≥ 0 by induction. Define Xi := 1{Ui=1}1{Êi−1≥1} for

all i ≥ 1, then Êt = 1+∑
t
i=1(1− 2Xi) by equation (4.4). Since Xi ≤ 1{Ui=1}, therefore

Êt ≥ ∑
t
i=1(1−21{Ui=1}) for all t. Then, it follows that

P(Et ≤ t(1−2p3)−λ )≤ P

(
t

∑
i=1

(1−21{Ui=1})≤ t(1−2p3)−λ

)

= P

(
t

∑
i=1

(1{Ui=1}− p3)≥ λ/2

)
≤ exp

(
−λ 2

2t

)
.

(4.5)
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by Lemma 4.4.3. Let H = Ht ∈ N with H ≪ t to be specified later. Define the event
EH = {Êk ≥ 1 ∀ H ≤ k ≤ t −1}. Since Et

d
= Êt ,

P(Et ≥ t(1−2p3)+λ )≤ P
(
{Êt ≥ t(1−2p3)+λ}∩EH

)
+P(Ec

H) .

Note that ÊH = 1+∑
H
i=1(1−2Xi) ≤ H +1 since Xi ≥ 0. Since 1−2Xi = 1−21{Ui=1} for

H +1 ≤ i ≤ t on the event EH , therefore

P
(
{Êt ≥ t(1−2p3)+λ}∩EH

)
= P

({
ÊH +

t

∑
i=H+1

(1−2Xi)≥ t(1−2p3)+λ

}
∩EH

)

≤ P

(
t

∑
i=H+1

(1−21{Ui=1})≥ t(1−2p3)+λ −H −1

)

= P

(
t

∑
i=H+1

(1{Ui=1}− p3)≤ H p3 −
λ

2

(
1− 1

λ

))
.

(4.6)

Taking H := ⌊ λ

4p3
(1−1/λ )⌋, the probability in equation (4.6) is at most

P

(
t

∑
i=H+1

(1{Ui=1}− p3)≤−λ

4
(1−1/λ )

)
≤ exp

(
−2

λ 2(1−1/λ )2

16(t −H)

)
≤ exp

(
−λ 2(1−1/C)2

8t

)
,

where the first inequality follows again by Lemma 4.4.3. Now, to bound P(Ec
H), note that

P(Ec
H) = P

(
∃ k ∈ [H, t −1] : Êk = 0

)
≤

t−1

∑
k=H

P

(
1+

k

∑
i=1

(1−2Xi) = 0

)

by a union bound. Since 1 − 2Xi ≥ 1 − 21{Ui=1} such that ∑
k
i=1(1 − 2Xi) ≥ ∑

k
i=1(1 −

21{Ui=1}), thus

t−1

∑
k=H

P

(
k

∑
i=1

(
1−21{Ui=1}

)
≤ 0

)
≤

t−1

∑
k=H

P

(
k

∑
i=1

(1{Ui=1}− p3)≥
k
2
(1−2p3)

)

≤
t−1

∑
k=H

exp
(
−k(1−2p3)

2

2

)
,

(4.7)
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where the last inequality follows once more by Lemma 4.4.3. Using the formula for the
geometric sum,

t−1

∑
k=H

exp
(
−k(1−2p3)

2

2

)
=

1− exp
(
−t(1−2p3)

2/2
)

1− exp(−(1−2p3)2/2)
−

1− exp
(
−H(1−2p3)

2/2
)

1− exp(−(1−2p3)2/2)

≤
exp
(
−H(1−2p3)

2/2
)

1− exp(−(1−2p3)2/2)
.

Now, recall that H = ⌊ λ

4p3
(1−1/λ )⌋ such that

H(1−2p3)
2

2
≥ λ

8

(
1− 1

C

)2 (1−2p3)
2

p3
.

Thus, setting c1 :=
(

1− e−
(1−2p3)

2

2

)−1

and c2 :=
(
1− 1

C

)2 (1−2p3)
2

8p3
, the bound P(Ec

H) ≤

c1 exp(−c2λ ) is obtained. Summarizing,

P(Et ≥ t(1−2p3)+λ )≤ exp
(
−λ 2(1−1/C)2

8t

)
+ c1 exp(−c2λ ) , (4.8)

and since λ ≪ t, the desired result follows.

4.4.2 Proof of Proposition 4.2.1

Let p3 = 1/3 and p2 > 0. Define Ft := σ({Gs : 1 ≤ s ≤ t}) where t ∈N. It is not difficult to
see that

E [ds(u, t +1)|Ft ] = ds(u, t)
[

1+
1−3p3 − p2/(Vt −1)

2Et

]
+

p2

Vt −1

= ds(u, t)
[

1− p2

2Et(Vt −1)

]
+

p2

Vt −1
.

(4.9)

Let at > 0 be such that at = o(t). Let C > 1 and let λt ≥ C such that λt = o(t). Define
the events Dt := {|Vt − t p1| ≤ at} and Ht := {Et ≤ t/3+λt} where t/3 = t(1−2p3) since
p3 = 1/3. Then, using the fact that ds(u, t +1)≤ t,

E [ds(u, t +1)|Ft ]≤ E [ds(u, t +1)|Ft ]1Dt∩Ht + t1(Dt∩Ht)c . (4.10)
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Observe that p2
Vt−1 ≤ p2

t p1−at−1 on the event Dt ∩Ht and for sufficiently large t,

1− p2

2Et(Vt −1)
≤ 1− p2

2[(t/3+λt)(t p1 +at)]
≤ 1− p2

2
3t2 p1 +ht

,

where ht := 4t(at/3∨2λt p1). Therefore,

E [ds(u, t +1)|Ft ]1Dt∩Ht ≤ ds(u, t)

(
1− p2

2
3t2 p1 +ht

)
+

p2

t p1 −at −1
. (4.11)

Using the inequality, 1/(1+ y)≥ 1− y which is valid for all y >−1, it is clear that

p2
2
3t2 p1 +ht

≥ p2
2
3t2 p1

(
1− ht

2
3t2 p1

)
=

p2
2
3t2 p1

− p2ht
4
9t4 p2

1
.

Thus, using again the inequality ds(u, t)≤ t, equation (4.11) is at most

ds(u, t)

(
1− p2

2
3t2 p1

)
+

p2

t p1 −at −1
+

p2ht
4
9t3 p2

1
.

Summarizing,

E [ds(u, t +1)|Ft ]≤ ds(u, t)

(
1− p2

2
3t2 p1

)
+

p2

t p1 −at −1
+

p2ht
4
9t3 p2

1
+ t1(Dt∩Ht)c.

Taking expectations on both sides of the above inequality,

E [ds(u, t +1)]≤ E [ds(u, t)]

(
1− p2

2
3t2 p1

)
+

p2

t p1 −1−at
+

p2ht
4
9t3 p2

1
+ tP((Dt ∩Ht)

c) .

Thus, the expected value of ds(u, t) is at most

t−1

∏
k=s

(
1− p2

2
3k2 p1

)
+

t−1

∑
k=s

p2

kp1 −1−ak

t−1

∏
r=k+1

(
1− p2

2
3r2 p1

)
+

t−1

∑
k=s

p2hk
4
9k3 p2

1
+

t−1

∑
k=s

kP((Dk ∩Hk)
c) .

Using Lemma 4.4.1, it can be shown that P(Dc
k)≤ 2exp(−c1a2

k/k) for some finite constant
c1 > 0. Using Lemma 4.4.2, it can be shown that P(Hc

k )≤ 3exp(−c2λ 2
k /k) for some finite
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constant c2 > 0 if k ≥ t0. Therefore,

t−1

∑
k=s

kP((Dk ∩Hk)
c)≤C

t−1

∑
k=t0

ke−(c1
a2
k
k ∧c2

λ2
k
k )

for all t > t0 ∨ s and some finite positive constant C. Take ak :=
√

k log(kα) and λk :=√
k log(kβ ), where α,β > 0 are constants such that c1α ∧c2β > 2. Note that both ak,λk ≪ k.

Recall that hk := 4k(ak/3∨2λk p1) as defined prior to equation (4.11). Then,

t−1

∑
k=s

p2hk
4
9k3 p2

1
=

t−1

∑
k=s

O
(

ak ∨λk

k2

)
=

t−1

∑
k=s

O

(
log1/2(k)

k3/2

)
,

t−1

∑
k=t0

ke−(c1
a2
k
k ∧c2

λ2
k
k ) =

t−1

∑
k=t0

1
kC ,

where C := (c1α ∧ c2β )−1 > 1. Note that since

p2

kp1 −1−ak
=

p2

kp1

(
1− ak +1

kp1

)−1

=
p2

kp1
(1+O(ak/k)) ,

thus leading to

t−1

∑
k=s

p2

kp1 −1−ak

t−1

∏
r=k+1

(
1− p2

2
3r2 p1

)
=O(1)+

t−1

∑
k=s

p2

kp1

t−1

∏
r=k+1

(
1− p2

2
3r2 p1

)
+

t−1

∑
k=s

O
(

log(k)
k3/2

)
.

Since limt→∞ ∏
t−1
r=s

(
1− p2

2
3 r2 p1

)
∈ (0,∞), it can be concluded that

limsup
t→∞

E[ds(u, t)]

∑
t−1
k=s

p2
kp1

∏
t−1
r=k+1

(
1− p2

2
3 r2 p1

) ≤ 1.

Similar calculations yield

liminf
t→∞

E[ds(u, t)]

∑
t−1
k=s

p2
kp1

∏
t−1
r=k+1

(
1− p2

2
3 r2 p1

) ≥ 1

and the proof is concluded.
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4.4.3 Proof of Proposition 4.2.2

Let p3 < 1/3. Let at > 0 and let λt be defined as the same as the previous section. Recall
that Dt := {|Vt − t p1| ≤ at}. Define Ht := {Et ≥ t(1−2p3)−λt}. Proceeding in the exact
same way as the previous section, it can be shown that E [ds(u, t +1)|Ft ] is bounded from
above by

1Dt∩HtE [ds(u, t +1)|Ft ]+ t1Dc
t
+ t1Hc

t
. (4.12)

The first term from the left in equation (4.12) is at most

1Ht

{
ds(u, t)

[
1+

1−3p3 − p2/(t p1 −1+a)
2Et

]
+

p2

t p1 −1−a

}
. (4.13)

Let t0 = min{t ≥ 1|p3 + p2/3(t p1 − 1 + a) ≤ 1/3} where p3 < 1/3. Then, 1 − 3p3 −
p2/(t p1 −1+a)≥ 0 for t ≥ t0 and hence, by the definition of Ht , the expression in equation
(4.13) here is bounded from above by

ds(u, t)
[

1+
1−3p3 − p2/(t p1 −1+a)

2t(1−2p3)−2λ

]
+

p2

t p1 −1−a
.

Thus, setting Lt := ∏
t
h=s

(
1+ 1−3p3−p2/(hp1−1+a)

2h(1−2p3)−2λ

)
leads to

E
[

ds(u, t +1)
Lt

∣∣∣∣Ft

]
≤ ds(u, t)

Lt−1
+ γt where γt :=

2p2

t p1Lt
+

t
Lt
1Dc

t
+

t
Lt
1Hc

t

for t ≥ t0 where t0 is so large such that the condition 1− (a+1)/t p1 ≥ 1/2 is satisfied. The
upper and lower bounds on Lt can be given using the following:

Lemma 4.4.4. There exists f : N×N 7→ R+ with f (s, t) → 0 as s, t → ∞ such that (1−
f (s, t))Gs(t)≤ Lt ≤ (1+ f (s, t))Gs(t).

Lemma 4.4.4 can be easily proved using the Taylor series expansion. Now, in order to
apply Theorem 4.4.1 to the sequence (ds(u, t)/Lt−1)t≥t0 , it must first be shown that

∑
t≥t0

2p2

t p1Lt
+ ∑

t≥t0

t
Lt
1Dc

t
+ ∑

t≥t0

t
Lt
1Hc

t
< ∞ (4.14)
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almost surely, which can be easily done. Indeed, it follows from Lemmas 4.4.1 and 4.4.2 that

E

(
∑
t≥t0

t
Lt
1Dc

t
+ ∑

t≥t0

t
Lt
1Hc

t

)

≤ ∑
t≥t0

t
Lt

2exp

(
− a2

2t p1 +
2
3a

)
+3 ∑

t≥t0

t
Lt

exp
(
−λ 2

t (1−1/C)2

8t

)
.

(4.15)

Finally, since at = o(t), the right hand side of equation (4.15) for all large enough t is at most

C∗s
1−p3

2(1−2p3)

(
∑
t≥t0

t
1−p3

2(1−2p3) exp
(
− a2

t
3t p1

)
+ ∑

t≥t0

t
1−p3

2(1−2p3) exp
(
−λ 2

t (1−1/C)2

8t

))
(4.16)

where C∗ =C∗
s is a constant which depends on s. Let a =

√
t log(tα) and λ =

√
t log(tβ )

where α,β > 0 are appropriately chosen, then the two series in equation (4.16) converge.
Therefore,

∑
t≥t0

t
Lt
1Dc

t
+ ∑

t≥t0

t
Lt
1Hc

t
< ∞

almost surely.

By Lemma 4.4.4, the series ∑t≥t0
2p2

t p1Lt
converges since Lt ≍ (t/s)η for some η > 0 and

so tLt ≍ t1+ηs−η . It can be concluded that equation (4.14) holds true. By Theorem 4.4.1,
ds(u, t)/Lt−1 converges almost surely to a non-negative random variable with finite mean as
t → ∞. Using Lemma 4.4.4 once again, the proof is concluded.

4.5 Discussion

The asymptotic behavior of the expected vertex degree of the preferential attachment model
proposed by Deijfen and Lindholm (2009) is rigorously studied in this work, thereby provid-
ing a correction on a statement made by Lindholm and Vallier (2011). The focus of this work
is put on the regime where the edge deletion probability is p3 ≤ 1/3.

The type of computation that was used in this work might be followed by other studies
on preferential attachment models with similar attachment rules. In particular, the result of
this work might motivate further research on the edge deletion properties of other variants of
preferential attachment. For example, it might be of interest to make studies on the relation
between edge deletion probability and degree dynamics, such as the work of Brot et al.
(2013), more robust.
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In addition, the results of this work may be of interest to future studies on real complex
networks in various application settings. Indeed, there are many real-life scenarios where
preferential attachment models with edge deletion is applicable. The work by Shaw et al.
(2011), for example, studies the effects of gossips on social network structure by weakening
the weight of an edge through a quadratic rule, which clearly could have been studied
by preferential attachment with edge deletion. In particular, preferential attachment with
edge deletion would be extremely applicable in mathematical epidemiology due to its
suitability in network-based epidemic models. (Durrett, 2006). The study on Covid-19 by
Maheshwari and Albert (2020), for example, made predictions on the second wave under
social distancing using social networks with edge deletion. This is remarkably useful for
biomedical researchers that aim to understand the propagation and patterns of infectious
diseases in real-life. An alternative topic of interest is to measure the relation between edge
deletion probability and topological properties of real complex networks, which is similar
to the work by Vázquez (2003) in which the relations between the connection probabilities
of vertices, the vertex degree and the topological properties of several scale-free networks
are studied. A discussion on different applications of preferential attachment models can be
found in Chapter 1 of the textbook by Hofstad (2016).



Chapter 5

Conclusion & discussion

Several statistical learning methods for understanding complex biomedical data sets have
been proposed, thoroughly examined and discussed in this thesis. Each chapter presents a
detailed description and analysis of the involved statistical methodologies. The ultimate goal
is to provide useful statistical tools for biomedical researchers to conduct statistical analysis
by learning from biomedical data sets that possess specific characteristics. This thesis focuses
on the statistical aspect of three research topics: a spatio-temporal model to learn the latent
spectral shape from bio-acoustic data for the purpose of cross-species comparison, a thorough
Bayesian network meta-analysis on a set of randomized control trials data and the behavior
of a particular preferential attachment model with edge deletion that is suitable for epidemic
modeling.

It has been shown that the proposed spatio-temporal model for bio-acoustic data is able
to obtain the latent spectral shape of the acoustic structure of a species. The proposed model
is able to perform time synchronization and thereby quantifying temporal non-stationarity
in the bio-acoustic signals. This is achieved by the construction of a synchronization
function. More importantly, it has also been shown that the results obtained by the proposed
model are useful for cross-species bio-acoustic analysis, which has not been possible using
conventional statistical tools. The proposed model has the potential to be widely applied in
the bio-acoustic analysis of other animals and facilitate the understanding on the relation
between communication systems and evolutionary paths of different species. Statistically, the
construction of the synchronization function also provides a novel methodology for modeling
data that is non-stationary in time.

For the Bayesian network meta-analysis of randomized clinical trials, it is clear that
the application of the methodologies has obtained valuable insights in the case study of
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angina treatments comparison for chronic coronary syndromes. It is shown that the specific
proportional hazard model used in the case study is able to account for the effects of varying
follow up times. The comparison of the model under different assumptions has revealed
future research directions for further development on the matter of evidence consistency in
the context of network meta-analysis.

The study on the asymptotic behavior of the expected degree of a particular preferential
attachment model has encouraged the further development of preferential attachment with
edge deletion. The proof of the established results does not make use of classical results
about one-dimensional random walks and similar computations of this type can be applied on
other preferential attachment models with similar attachment rules. Furthermore, this study
also motivated the wider application of preferential attachment with edge deletion in more
real-life settings, especially for understanding the spread of disease under social distancing.

In conclusion, the statistical methods presented and studied in this thesis are shown to
possess great potentials for the application in biomedical sciences for learning from complex
and large data sets. The performances of these methods were demonstrated by simulation
studies or application on real data sets. Finally, the results obtained by the application of
these methods and the in-depth examination of these methods have shown many directions
for future research.
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Appendix A

Supplementary material for
A hierarchical spatio-temporal model for
time-frequency data: An application in
bio-acoustic analysis

The model is estimated using a set of synthetic data in this section in order to see if the model
is able to retrieve the correct parameters that were used to simualte the data. A total of N = 15
synthetic sounds are generated over predefined time-frequency grids that are designed to
closely resemble the real data. The number of log-frequency bins for all synthetic sounds
is set as H = 26 which is identical to the available real data, whilst the number of time
coordinates for each synthetic sound Ti is simulated uniformly from an interval of integers in
the range [10,25]. The temporal distance between two consecutive time coordinates is set as
0.01 seconds, which precisely matches that of the real data.

The general parameters, θ = (φh,φd,φc,γ,ρ,σ ,λ ), are deliberately set to make the
estimation challenging for the purpose of providing a level of assurance regarding the
model’s performance in real data applications. Specifically, the decays are set as φh = 0.69,
φd = 206, and φc = 766, which result in the practical ranges being 4.3, 0.092, and 0.024,
respectively. The periodicity is set to be γ = 0.06. Notably, the practical range for the circular
decay implies that the circular correlation between any two time coordinates separated
by three time steps is nearly zero, thereby increasing the difficulty of its estimation. The
non-separable parameter, variance, and weight between the two latent processes are set as
ρ = 0.85, σ2 = 10, and λ = 0.5, respectively.
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Table A.1 The true simulated values, posterior means and 95% credible intervals (from top to bottom)
of the general parameters.

σ2 λ γ ρ φd φh φc

10 0.5 0.06 0.85 206 0.69 766
9.702 0.476 0.06 0.805 167.821 0.038 1021.255
(8.637 10.763) (0.434 0.519) (0.06 0.06) (0.394 0.992) (123.967 228.794) (0.034 0.044) (730.176 1246.129)

The values of the data-specific parameters, χ i = (αi,βi,ξ i), used for the simulation can
be found in Table A.2. With the exception of α̃1 and β̃1, which are respectively set to 0 and
1, the parameters αi and β̃i are simulated from αi ∼ Uni(0.05,0.2) and β̃i ∼ Uni(0.75,0.95),
respectively. The warping parameters ξ i = (ζi,δi) are simulated from their random effect
distributions under the assumption that aζ = aδ =−1.5, bζ = bδ = 1.5, µζ = µδ = 0.7, and
vζ = vδ = 0.3. A selected few of the synthetic sounds are depicted in Figure A.1. Each row
of Figure A.1 contains two different plots of the same synthetic sound. The 4 plots on the
left column are the spectrogram representation with the x-axis being the real-time axis given
by the simulated Ti and the constant 0.01 time-step. The 4 plots on the right column are the
same spectrogram representations with the x-axis being given by ψi(t) under the simulated
parametrizations.

The model is implemented using the same number of iterations, thinning, burn-in, and
priors as the real data. Table A.2 and Table A.1 present the estimation summary for the
data-specific parameters and the general parameters, respectively. The estimation of the
frequency decay φh, and the warping parameters δ2 and ζ9 yields posterior means with
relatively small 95% CIs that do not include the true values. However, the inference has
largely demonstrated good recovery of the other 94 of the 97 simulated parameters.
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Table A.2 The true simulated values, posterior means and 95% credible intervals (from top to bottom)
of the data-specific parameters.

αi β̃i ζi δi µi τ2
i

1
0.00 1.00 0.75 0.88 -1.12 1.16
0.083 0.932 0.507 0.696 -0.217 0.764
(0.00 0.218) (0.759 1.00) (0.112 0.858) (0.232 1.062) (-1.689 1.207) (0.516 1.066)

2
0.07 0.78 0.34 0.42 -0.08 1.27
0.113 0.695 0.596 0.911 1.024 1.41
(0.00 0.228) (0.561 0.808) (0.109 1.034) (0.56 1.198) (-0.482 2.503) (1.025 1.826)

3
0.18 0.84 0.19 -0.26 3.86 1.39
0.174 0.873 -0.001 -0.214 3.843 1.529
(0.104 0.226) (0.767 0.964) (-0.427 0.372) (-0.568 0.126) (2.144 5.737) (1.233 1.846)

4
0.08 0.92 0.94 0.42 7.13 1.53
0.082 0.761 0.879 0.482 7.777 1.935
(0.033 0.156) (0.57 1) (0.531 1.163) (-0.016 0.831) (6.165 9.284) (1.471 2.509)

5
0.16 0.82 -0.14 0.12 2.00 0.96
0.151 0.96 -0.014 0.368 2.643 0.866
(0.098 0.234) (0.878 1) (-0.278 0.25) (0.015 0.707) (1.125 4.196) (0.572 1.201)

6
0.12 0.88 0.85 0.60 -1.95 0.87
0.069 0.913 0.753 0.64 -0.735 1.127
(0.01 0.143) (0.815 1) (0.419 0.942) (0.287 0.884) (-2.157 0.623) (0.871 1.415)

7
0.09 0.91 0.13 0.78 -6.12 0.85
0.089 0.964 0.202 0.886 -5.289 0.952
(0.04 0.171) (0.905 1) (0.018 0.383) (0.621 1.117) (-6.716 -3.862) (0.731 1.215)

8
0.10 0.77 0.60 0.50 -3.76 0.64
0.034 0.853 0.401 0.436 -2.861 0.641
(0 0.108) (0.781 0.908) (0.068 0.625) (0.198 0.646) (-4.206 -1.569) (0.467 0.855)

9
0.17 0.88 0.44 -0.19 -0.38 0.70
0.185 0.962 0.721 0.242 0.131 0.578
(0.14 0.26) (0.895 1) (0.508 0.979) (-0.02 0.547) (-1.492 1.761) (0.326 0.894)

10
0.07 0.90 0.83 0.68 5.34 0.60
0.03 0.959 0.777 0.69 6.014 0.657
(0 0.122) (0.907 0.995) (0.489 1.022) (0.418 0.935) (4.467 7.618) (0.446 0.917)

11
0.07 0.76 0.66 0.90 -1.46 1.31
0.072 0.893 0.327 0.568 -1.379 1.06
(0 0.21) (0.657 1) (-0.104 0.87) (0.093 1.07) (-2.896 0.098) (0.695 1.498)

12
0.08 0.79 0.61 -0.06 -6.44 0.82
0.067 0.855 0.798 0.258 -6.604 1.074
(0 0.172) (0.735 0.958) (0.504 1.13) (-0.053 0.658) (-8.022 -4.992) (0.807 1.344)

13
0.19 0.85 0.15 0.11 -2.81 1.20
0.196 0.946 0.197 0.293 -2.575 1.329
(0.15 0.262) (0.816 1) (-0.038 0.501) (0.009 0.696) (-4.026 -0.83) (1.055 1.629)

14
0.06 0.78 0.82 0.81 -0.32 0.67
0.027 0.835 0.574 0.69 0.548 0.637
(0 0.109) (0.75 0.984) (0.126 0.89) (0.201 1.005) (-0.897 2.041) (0.372 0.956)

15
0.07 0.85 0.13 0.82 -2.14 1.06
0.07 0.875 0.06 0.918 -2.476 1.276
(0 0.173) (0.78 0.966) (-0.172 0.298) (0.58 1.187) (-4.388 -0.411) (1.009 1.603)
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Figure A.1 Plots of 4 synthetic sounds.
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Table B.1 Trial data available for clinical endpoint 2 (All cause deaths).

trial follow-up arm 1 occurrence sample arm occurrence sample contrast

1 1.5 1 1 164 2 1 177 1,2
2 1.6 1 1 22 3 1 19 1,3
3 6 1 15 162 3 9 166 1,3
4 3 1 98 389 3 94 388 1,3
5 5 1 215 2591 3 233 2588 1,3
6 2 1 8 441 4 6 447 1,4
7 4.1 1 40 148 2 45 153 1,2
8 7 1 25 69 2 13 69 1,2
9 4.6 1 95 1138 2 85 1149 1,2
10 10 1 22 105 3 6 96 1,3
11 2.7 1 7 514 2 11 504 1,2
12 10 1 63 203 2 49 205 1,2
13 2 1 20 366 2 2 192 1,2
14 1 4 13 1250 5 22 1242 4,5
15 5 2 49 496 4 44 509 2,4
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Table B.2 Results of different models for clinical endpoint 2 (All cause deaths).

model parameters FE RE-Hom RE-Het

d1,2 −0.201 (0.093) −0.273 (0.231) −0.274 (0.282)
d1,3 −0.022 (0.076) −0.278 (0.290) −0.327 (0.519)
d1,4 −0.337 (0.211) −0.379 (0.460) −0.375 (1.432)
d1,5 0.217 (0.414) 0.174 (0.769) 0.168 (3.291)
d2,3 0.179 (0.120) −0.006 (0.364) −0.053 (0.590)
d2,4 −0.136 (0.195) −0.107 (0.443) −0.101 (1.429)
d2,5 0.418 (0.407) 0.447 (0.760) 0.442 (3.290)
d3,4 −0.315 (0.223) −0.101 (0.544) 0.048 (1.522)
d3,5 0.239 (0.421) 0.452 (0.821) 0.495 (3.332)
d4,5 0.554 (0.357) 0.553 (0.619) 0.543 (2.962)

σ 0.448 (0.229)

σ1,2 0.522 (0.389)
σ1,3 0.829 (0.634)
σ1,4 1.563 (1.337)
σ1,5 2.499 (1.441)
σ2,3 1.080 (1.912)
σ2,4 3.767 5.390)
σ2,5 7.445 (6.836)
σ3,4 4.024 (5.307
σ3,5 7.343 (6.641)
σ4,5 8.672 (7.225)

Table B.3 Trial data available for clinical endpoint 3 (CV deaths).

trial follow-up arm 1 occurrence sample arm occurrence sample contrast

1 1.5 1 1 164 2 1 177 1,2
2 3.0 1 82 389 3 76 388 1,3
3 5.0 1 52 2591 3 101 2588 1,3
4 2.0 1 3 441 4 3 447 1,4
5 4.1 1 32 148 2 32 153 1,2
6 10.0 1 22 105 3 3 96 1,3
7 2.7 1 3 514 2 5 504 1,2
8 10.0 1 42 203 2 29 205 1,2
9 1.0 4 4 1250 5 7 1242 4,5
10 5.0 2 28 496 4 21 509 2,4
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Table B.4 Results of different models for clinical endpoint 3 (CV deaths).

model parameters FE RE-Hom RE-Het

d1,2 −0.176 (0.164) −0.004 (0.643) −0.088 (0.509)
d1,3 0.1458 (0.110) −0.349 (0.720) −0.453 (1.481)
d1,4 −0.450 (0.311) −0.216 (1.014) −0.262 (1.597)
d1,5 0.174 (0.730) 0.412 (1.696) 0.354 (3.447)
d2,3 0.322 (0.197) −0.345 (0.972) −0.366 (1.567)
d2,4 −0.274 (0.275) −0.212 (0.977) −0.174 (1.593)
d2,5 0.350 (0.715) 0.416 (1.674) 0.442 3.445)
d3,4 −0.596 (0.330) 0.133 (1.247) 0.191 (2.180)
d3,5 0.028 (0.738) 0.761 (1.839) 0.807 (3.752)
d4,5 0.624 (0.660) 0.628 (1.365) 0.616 (3.061)

σ 1.076 (0.529)

σ1,2 0.644 (0.671)
σ1,3 2.256 (1.124)
σ1,4 1.748 (1.363)
σ1,5 2.506 (1.448)
σ2,3 5.773 (5.598)
σ2,4 4.538 (5.772)
σ2,5 7.629 (6.905)
σ3,4 7.313 (6.409)
σ3,5 9.085 (7.127)
σ4,5 8.900 (7.281)

Table B.5 Trial data available for clinical endpoint 4 (MI).

trial follow-up arm 1 occurrence sample arm occurrence sample contrast

1 1.5 1 4 164 2 5 177 1,2
2 1.6 1 2 22 3 2 19 1,3
3 6.0 1 42 162 3 24 166 1,3
4 3.0 1 56 389 3 46 388 1,3
5 5.0 1 308 2591 3 266 2588 1,3
6 2.0 1 30 441 4 26 447 1,4
7 4.1 1 18 148 2 18 153 1,2
8 4.6 1 128 1138 2 134 1149 1,2
9 10.0 1 40 105 3 11 96 1,3
10 2.7 1 10 514 2 21 504 1,2
11 10.0 1 42 203 2 27 205 1,2
12 2.0 1 18 366 2 7 192 1,2
13 1.0 4 28 1250 5 31 1242 4,5
14 0.5 1 3 107 2 5 105 1,2
15 5.0 2 60 496 4 49 509 2,4
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Table B.6 Results of different models for clinical endpoint 4 (MI).

model parameters FE RE-Hom RE-Het

d1,2 −0.000 (0.092) 0.027 (0.205) 0.021 (0.219)
d1,3 −0.271 (0.071) −0.497 (0.236) −0.532 (0.450)
d1,4 −0.216 (0.168) −0.195 (0.362) −0.198 (1.320)
d1,5 −0.1048 (0.312) −0.081 (0.622) −0.092 (3.201)
d2,3 −0.271 (0.116) −0.524 (0.315) −0.554 (0.501)
d2,4 −0.216 (0.160) −0.222 (0.358) −0.219 (1.320)
d2,5 −0.105 (0.308) −0.108 (0.620) −0.114 (3.201)
d3,4 0.055 (0.183) 0.302 (0.434) 0.334 (1.395)
d3,5 0.166 (0.320) 0.416 (0.665) 0.440 (3.231)
d4,5 0.111 (0.264) 0.114 (0.503) 0.106 (2.923)

σ 0.394 (0.169)

σ1,2 0.381 (0.280)
σ1,3 0.762 (0.544)
σ1,4 1.383 (1.305)
σ1,5 2.500 (1.442)
σ2,3 0.809 (1.575)
σ2,4 3.268 (5.210)
σ2,5 7.603 (6.983)
σ3,4 3.442 (5.007)
σ3,5 7.297 (6.659)
σ4,5 8.486 (7.202)

Table B.7 Trial data available for clinical endpoint 5 (Revas).

trial follow-up arm 1 occurrence sample arm occurrence sample contrast

1 1.5 1 20 164 2 29 177 1,2
2 6.0 1 2 162 3 38 166 1,3
3 5.0 1 287 2591 3 396 2588 1,3
4 2.0 1 179 441 4 36 447 1,4
5 4.1 1 148 148 2 18 153 1,2
6 4.6 1 348 1138 2 228 1149 1,2
7 10.0 1 46 105 3 26 96 1,3
8 2.7 1 101 514 2 62 504 1,2
9 10.0 1 80 203 2 85 205 1,2
10 1.0 1 1 51 3 7 50 1,3
11 2.0 1 105 366 2 21 192 1,2
12 1.0 4 63 1250 5 46 1242 4,5
13 0.5 1 11 107 2 16 105 1,2
14 5.0 2 101 496 4 92 509 2,4
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Table B.8 Results of different models for clinical endpoint 5 (Revas).

model parameters FE RE-Hom RE-Het

d1,2 −0.759 (0.059) −0.905 (0.738) −0.952 (0.854)
d1,3 0.355 (0.072) 1.186 (1.038) 1.225 (1.351)
d1,4 −1.294 (0.112) −1.439 1.449) −1.5189 (1.670)
d1,5 −1.612 (0.225) −1.764 (2.457) −1.825 (3.482)
d2,3 1.115 (0.0932) 2.0912 (1.276) 2.176 (1.599)
d2,4 −0.535 (0.111) −0.534 (1.443) −0.567 (1.715)
d2,5 −0.853 (0.225) −0.859 (2.453) −0.873 (3.504)
d3,4 −1.649 (0.133) −2.625 (1.781) −2.744 (2.150)
d3,5 −1.967 (0.236) −2.950 (2.669) −3.050 (3.734)
d4,5 −0.318 (0.195) −0.325 (1.984) −0.306 (3.049)

σ 1.884 (0.580)

σ1,2 2.156 (0.817)
σ1,3 2.413 (1.022)
σ1,4 2.015 (1.371)
σ1,5 2.495 (1.444)
σ2,3 6.997 (5.590)
σ2,4 6.545 (5.786)
σ2,5 8.243 (6.486)
σ3,4 7.956 (6.459)
σ3,5 9.171 (7.017)
σ4,5 9.216 (7.339)

Figure B.1 The probability of treatment k being the best against each clinical endpoint.
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