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Abstract

Future planetary exploration missions are increasingly targeting remote and chal-
lenging environments, exemplified by the icy terrains of Saturn’s moon Enceladus.
These environments pose significant challenges due to extensive light round-trip
times from Earth, high environmental uncertainty, harsh radiation environments, and
extreme terrains. Recognizing these challenges, this dissertation emphasizes the
necessity of system-level autonomy capabilities for successful mission execution
in such uncertain and extreme environments. The main application of this research
is the EELS project (Exobiology Extant Life Surveyor) - a JPL-sponsored research
effort to develop a next-generation planetary subglacial access robotic platform.
This work delves into the detailed software architecture and infrastructure that was
developed to support system-level autonomy for the EELS project, and it describes
the decision-making algorithms that were deployed in the field and laboratory condi-
tions. Although this research is applied primarily to the EELS project, it is broadly
applicable to other floating-base robotic systems that require system-level auton-
omy to operate in extreme or uncertain environments. The architecture description
detailed in this work encompasses a full robotics stack but focuses on mission
planning, plan execution, and behavior implementation. Risk-aware algorithms for
sequential decision-making under uncertainty are also outlined, with a review of
pertinent literature and the formulation, engineering, and testing of several plan-
ners. This use-case that this work targets is surface mobility, where the robotic
platform navigates to a user-defined goal, subject to exteroception failures. Under
these conditions, high-level planning helps balance information-gaining actions with
trying to reach the goal directly. This mission planning challenge is framed as a
Task And Motion Planning (TAMP) problem under uncertainty. It is formulated
through various planning paradigms, including a classical two-stage approach, a
Partially Observable Markov Decision Process (POMDP) formulation, and a novel
Chance-Constrained Mixed Integer Linear Program (MILP) formulation. Through
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computational experiments, the effectiveness of these planning methods is rigorously
evaluated. The MILP planner, in particular, demonstrates superior performance over
other approaches and is subsequently integrated into hardware. The feasibility of this
integration is showcased through laboratory testing. The algorithms and architectural
considerations presented in this work are not solely applicable to planetary explo-
ration, as the problem of creating risk-aware robotic platforms capable of operating
in highly uncertain environments is widely applicable to terrestrial, marine, aerial,
and planetary robotics alike.
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Chapter 1

Introduction

This work explores system-level autonomy architecture and algorithms, with a pri-
mary focus on enabling subglacial access missions and is applied to the Exobiology
Extant Life Surveyor (EELS) project, a JPL-funded research initiative aimed at
creating an autonomous snake-like robot for navigation through the sub-glacial
conduits of Saturn’s moon Enceladus. This endeavor holds significant promise
for astrobiological exploration and understanding of extraterrestrial environments.
Central to this work is the establishment of a software architecture designed for
achieving system-level autonomy in extreme environments, such as icy moons. This
architecture is conceptualized around a classical hierarchical robotics software stack,
tailored to meet the unique challenges of space exploration. The research also en-
compasses a detailed exploration of the requirements for system-level autonomy in
such demanding contexts. It highlights the importance of integrating task and motion
planning into higher layers of autonomy, reflecting the complexity and unpredictabil-
ity of extraterrestrial environments. A key innovation presented in this thesis is the
formulation of a novel, risk-aware task and motion planner. This planner, based on
Mixed Integer Linear Programming (MILP), offers a new and efficient approach
to balancing between information seeking and trajectory length minimization in
such challenging environments. Additionally, the thesis discusses the adaptation and
implementation of two other risk-aware task and motion planners used as comparison
and baseline for the MILP planner. These planners, one formulated as a Partially
Observable Markov Decision Process (POMDP) and the other employing a classical
decoupled approach, represent two conceptually distinct strategies that could be
adopted to solve EELS’ task and motion planning problem. A comprehensive com-



2 Introduction

putational comparison of these three planners is also conducted, providing insights
into their respective strengths and weaknesses. Additionally, this work describes the
process of integrating the MILP planner onto the EELS software stack and deploying
it to the EELS hardware platform in a laboratory environment.

The document is organized into six chapters, each delving into different aspects
of this research. The first chapter sets the stage by discussing the motivation for
sub-glacial access missions, their historical context, and the specific autonomy
challenges they present. The second chapter offers an in-depth look at the EELS
mission, including its hardware and software architecture, with a detailed look at the
custom system-level autonomy software components. The third chapter is intended
to provide the reader with a minimal theoretical framework, focused on sequential
decision-making under uncertainty, necessary for understanding the subsequent
chapters. The fourth chapter dives into the into the formulation of the task and
motion planners used for EELS’ surface locomotion. The fifth chapter presents
the computational framework used to evaluate the planners formulated in Chapter
4, alongside the results from running this framework. The fourth chapter also
describes a proof-of-concept hardware integration of the MILP planner onto the
EELS platform. The final chapter summarizes this work’s contributions, draws
conclusions, and recommends future work.

1.1 Motivation for planetary sub-glacial access mis-
sions

The Icy moons Europa, Enceladus, and Titan are primary points of interest in
astrobiology due to the strong evidence of liquid oceans hidden beneath the ice sheets
of these gas giants’ moons. [6]. Subsurface oceans, in combination with geologically
active, rocky cores in direct contact with the water, lead to ideal conditions for life to
emerge due to the availability of life’s building blocks and environmental stability
[7]. Hence, it is a primary interest in space exploration to learn more about these icy
moons, in the hope of shedding light on the origin of life on Earth and answering the
question: "Are we alone in the universe" [8].

Jupiter’s moon Europa is the first moon to have attracted astrobiological interest
due to the evidence collected by Voyager’s flyby, and later the Galileo Mission
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Fig. 1.1 Enceladus Illustration. Credit NASA/JPL-Caltech

[9, 10]. Multiple lines of evidence with multiple instruments all point toward the
existence of a sizeable subglacial ocean with ice-sheet thickness believed to be as
thin as 1 km at places [6]. The upcoming Europa Clipper flagship NASA mission is
focused on studying the moon and better characterizing its subsurface environment
with remote sensing techniques [11] . One aspect to note about Europa is that its
surface radiation environment and lack of direct access pathways to the subglacial
oceans make an in-situ ocean sampling mission a very tough technological challenge.

Saturn’s moon, Enceladus, was primarily studied by the Cassini spacecraft and
- like Europa - is also believed to have an extensive liquid water ocean beneath its
frozen icy surface [12–16]. Similarly to Europa, Enceladus is suspected of having a
direct interface between its rocky core and subsurface ocean, leading to a mineral-
rich ocean [17] and hydrothermal vents [18]. A recent study has shown the presence
of phosphorous in the liquid ocean. Phosphorous compounds mixed with water
are an important component of biological activity on Earth, thus making Enceladus
an even more compelling destination. [19] The uniqueness of Enceladus which
sets it apart from all other icy moons is the presence of plumes [12, 14] that eject
material from the sub-glacial ocean into Saturn’s orbit. The Cassini mission was
able to characterize these plumes, finding frozen salt water likely directly coming
from the subglacial ocean. These plumes origin on Enceladus’ South Pole from
fissures known as Tiger Stripes (as seen in figure 1.1). Recent analysis from NASA’s
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Fig. 1.2 Artist impression of the Cassini spacecraft flying through Enceladus’ plume.
Credit NASA/JPL-Caltech

James Webb Telescope suggests that Enceladus’ plumes are likely to be stable over
the time scale of decades as the ejected mass flux has not varied by much since
Cassini’s observations. [20]. Knowledge about the vents and the surrounding surface
environment is minimal, and the best orbital maps available have a resolution of 6̃
meters per pixel, leaving considerable uncertainty about the surface’s characteristics.
Hence, the origin and driving mechanism of these vents are debated, with many
competing hypotheses, each based on different models [1, 21–23].

Figure 1.3 shows two leading vent models. The model on the left shows an
Open Conduit model, where a crevasse-like structure directly reaches the ocean.
In this model, the liquid boils as pressure drops, and is ejected with low dynamic
pressure. In the second leading model, the conduit presents a converging-diverging
constriction which accelerates the liquid vapours to supersonic speeds creating a
high dynamic-pressure environment. Unfortunately, the existing data from Cassini is
insufficient to further constrain the vent’s characteristics such as depth, geometry,
flow velocity, and material properties.

With the information that is currently available, Enceladus is the most appealing
body in the solar system for Astrobiological research. This is primarily due to the
presence of a direct pathway from the moon’s surface to the underlying ocean. In fact,
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Fig. 1.3 The two leading Enceladus plume formation models. On the left is the open
conduit model [1], and on the right is the vent model. Credit NASA/JPL-Caltech

the 2023-2032 Planetary Science and Astrobiology Decadal Survey [24] has placed
an Enceladus Orbilander mission as the second highest flagship mission priority after
a probe to the gas giant Uranus.

There are several ways an Enceladus mission might perform astrobiological
research. Biosignatures might be detected by analyzing plume samples collected
during a spacecraft flyby. This sampling strategy can be problematic due to the high
relative velocity between particles and sampling instrument ( km/s) [25]. A lander
mission would be preferable as it would allow collecting and analyzing significantly
larger amounts of plume material with lower relative velocity if a landing site is
selected sufficiently close to the tiger stripes. This would allow the lander to be in the
direct path of plume ejecta falling back to Enceladus’ surface, attracted by the moon’s
weak gravitational pull. A lander would also enable analyzing the surroundings of
the vents and the planet’s geology in greater detail when compared to an orbiter.
However, key astrobiological questions can only be answered by sampling the water
from the ocean or the vent (as close to the ocean as possible) to minimize exposure to
the harsh environment of Saturn’s orbit [26, 27]. A mission to Enceladus intending to
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Fig. 1.4 Examples of Cryobot designs, including Prometheus [2], Tunnelbot [3],
SLUSH [4] and EnEx IceMole [5]

find life unequivocably would thus need to explore the vents and their surroundings
and ideally reach and sample the buried ocean. [28]

1.1.1 Subglacial access technology

The previous section has outlined why it is of great interest to reach a sub-glacial
ocean on our solar system’s icy moons. In this section, there will be a brief review of
How the planetary exploration community has thought about achieving this goal.

The most straightforward concept for penetrating ice sheets consists of melting
through the ice sheet over time with systems called "melt probes". Alternative names
can be "thermal" or "Philberth" probes. In the cryogenic ice of the solar system’s icy
moons, melt probes are generally known as Cryobots [29, 30].

Melting has been used for decades as a viable mobility technique to reach the
bottom of ice sheets on Earth [31]. Typically, Cryobot mission concepts for icy moon
exploration rely on Radioisotope Thermoelectric Generators (RTGs) to generate
the electrical and thermal power necessary to penetrate through the ice. A main
limitation of thermal ice drilling is the dependency of melting rate on power and
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Fig. 1.5 Enceladus Vent Explorer (EVE) concept. Credit: NASA-JPL/Caltech

gravity. [32] The low-gravity environment of Europa and Enceladus vastly reduces
the melting rate, and current RTG technology is relatively costly and has a power
output of 100-250 watts, leading to long mission times. Long mission times on the
surface of Europa are problematic due to the high radiation environment. Melting
rates are even worse on Enceladus due to the low gravity, but mission duration is less
of a problem because of the less extreme radiation environment.

A slow-moving system through an ice sheet that is dynamically deformed by
tidal forces leads to interesting communication architecture challenges [33]. Another
issue with thermal probes is the tendency of sediments to accumulate next to the
probe’s tip, decreasing the thermal conductivity between the probe and the ice bulk.
Several projects have looked into ways to enhance thermal ice drilling and overcome
their limitation through mechanical fracturing [4], water jetting [33], pulsed plasma
discharges [34, 35], surface power generation and beaming through a fiber optic
cable [36], mechanical screws [5], Closed Cycle hot water drilling [37]. Some
examples of these cryobots can be seen in Figure1.4.

After the discovery of a direct pathway through Enceladus’ vents to its subglacial
ocean, there has been a growing interest in mobility systems capable of leveraging
this direct path by moving over the ice and in the vent system rather than penetrating
the ice sheet at significant energy expense. The first study to introduce this concept
[38] assessed the feasibility of using a four-legged mobility system capable of surface
traversal and resisting the upward pressure caused by the vents (Figure 1.5). Ice
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screws are used to grip the ice wall. The main conclusion that this study reached is
that reaching the ocean with this mobility strategy is feasible so long as the vent’s
diameter is larger than 10 cm at its tightest spot. The Enceladus Vent Explorer (EVE)
architecture trade study [26] outlined the mission architecture for an Enceladus vent
exploration mission. The architecture consists of a Host Module (i.e., a lander),
capable of providing power and communication and a tethered vent Descent Module.
The Descent module is kept intentionally generic and could be the 4-legged robot
introduced in [38], or an EELS snake-like robot or more. The study concludes
that such a mission is technically feasible, but significant risks are associated with
environmental uncertainty. If precursor (reconnaissance) missions are not dispatched
to Enceladus to better constrain the vent environment, the significant uncertainty
surrounding the vent’s mechanism and surface environment characteristics would
require a mobility system capable of safe locomotion in a vast array of potential
terrains.

1.2 System-Level Autonomy challenges

Several works in the literature have broadly outlined autonomy needs and challenges
for future planetary exploration [39] [40], placing emphasis on an ever-increasing
need for autonomy capabilities in uncertain environments. This section takes inspira-
tion from these works and outlines the autonomy advancements that are needed to
enable safe sub-glacial access missions. Delegating decision-making functionality
to the flight system comes with risk and V&V challenges, as any decision-making
algorithm is based on imperfect system and environment models. Thus, ground-
in-the-loop operations are often preferred unless onboard autonomy enables some
mission-critical capability.

In the ground-in-the-loop paradigm, sequences of commands are created and
uplinked by ground controllers and executed by the spacecraft. Telemetry is sent
back from the spacecraft and used to inform ground-based decision-making. These
sequences of commands can not adapt to unexpected events, as they specify what
action needs to be taken at what time. If off-nominal conditions are detected, the
system is expected to enter a safe mode and await further instructions. When
thinking about moving decision-making from the ground to a flight system, the
most influential factor is a combination of the frequency of uplink-downlink cycles



1.2 System-Level Autonomy challenges 9

Fig. 1.6 Examples of two locomotion actions evaluated through the lens of risk. The
figure shows a top-down view of the robot close to a crevasse. On the left, it is
considering moving parallel to the crevasse, and on the right it is considering moving
away from the edge. Both actions have a constant consequence (fall down crevasse),
but the latter is much less likely to lead to failure and thus is a lower-risk action

and the time scales over which decisions must be made. The need for onboard
autonomy grows as the period between successive uplink opportunities grows or the
time scale over which decisions must be made decreases. Uplink opportunities are
influenced by communication latency, network architecture, ground processing time,
and light-speed round trip time. On the other hand, decision-making time scales are
influenced by dynamical considerations (e.g., slipping down a crevasse has a time
scale of X seconds, and the decision to resist that slip needs to occur in less than X)
but can also be grounded in operational considerations (e.g., to reach the goal before
the electronics fry, mobility decisions need to be taken with a minimum period of Y).
An example of autonomy capabilities that must necessarily be onboard is Terrain
Relative Navigation for Mars Landers [41], as communication latency is much larger
than the whole Mars atmospheric entry phase duration.

Successfully operating a probe on Enceladus requires reacting to events that
occur over time scales of minutes to seconds, with successive uplink opportunities in
the scale of at least several hours, as communication with Earth will be fundamentally
constrained by the two-hour-long light round trip time, and lack of robust commu-
nication relay nodes in the Saturn system. The system will also have to operate
against the clock, as the radiation and temperature environments, and potentially
the presence of consumable resources like batteries, could mean that the window
to achieve the mission goals would likely be limited. This leads to a strong need to
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delegate most of the system’s decision-making to onboard algorithms.

Future exploration missions will likely operate in extreme environments like
Enceladus’ vents, Lunar lava tubes, Titan’s surface, and more. These environments
have in common a scarcity of detailed information available to mission designers.
Systems operating in such environments would benefit from explicitly accounting
for Uncertainty in their decision-making algorithms. Another concept that closely
follows reasoning about uncertainty is reasoning about Risk. Risk is a concept used
in many disciplines and can be formalized as the likelihood of an undesirable event
multiplied by the severity of the consequence of this event happening. Therefore,
risk enables reasoning about likelihood and consequence jointly, thus weighing
catastrophic events that are not very probable similarly to very likely events with
undesirable outcomes. Decision-making is more efficiently focused when it explicitly
accounts for risk, as it minimizes the tendency of biased focus on improbable,
catastrophic events.

An example of risk-aware decision-making can be seen in Figure 1.6. In the
image, an agent evaluates an action through the lens of the risk of falling down a
crevasse. The outcome "falling down a crevasse" has a constant high consequence
outcome, but one action mitigates the risk by decreasing the event’s probability,
while another action subjects the agent to unreasonable risk. Another aspect to note
is that the consequences of failure are not always necessarily constant. For example,
a failure to turn on a floodlight might be severe when exploring a cave but completely
innocuous on the surface, A mission might model several risk factors in decision-
making, and a likely outcome of this risk awareness would be a less conservative
behavior without increasing the probability of mission failure (modulate constraints
based on the risk they pose to the mission). A less conservative system will, in
turn, lead to higher scientific returns as previously unreachable areas might become
reachable, and more sites might be visited given a fixed time. The current ground-in-
the-loop paradigm makes it so that risk-aware decision-making is performed on the
ground by operators that bake risk assessments into uplink sequences.

Other characteristics that are needed from an autonomy system on Enceladus
are Adaptability, Reactivity, and Resiliency. Adaptation is needed both as a way
to modulate behavior when more information about the environment is perceived
through observation and as a way to be prepared to operate over a vast array of
potential terrains (e.g., surface, vent, ocean). The dynamic nature of Enceladus’ vent
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systems also justifies baking in reactivity in the software stack. Resiliency is also
needed to operate in extreme, unknown environments. Resiliency is the capability of
operating when hardware or algorithms fail and can be built both in hardware and
in software. From an autonomy perspective, resiliency emerges from a system where
algorithms can work even when a subset of sensors have failed and Fault Detection
Isolation and Recovery (FDIR) is tightly coupled with the mission planning layer. An
additional need is to enhance high-level decision-making with information about a
lower-level motion planning problem. There are fundamental system-level tradeoffs
between information-gaining and risk-taking that can only be optimized with high-
level cognizance of the system’s motion. Decoupling motion planning from task
planning is indeed possible but can lead to significant plan suboptimality.

1.3 Related system-level autonomy work

The autonomy challenges described above are extensive and will require many
technological breakthroughs - especially consequence assessment for authentic risk-
aware planning. The following sections will outline some previous work investigating
system-level autonomy frameworks, reference architectures, and practical examples
in space and terrestrial applications.

1.3.1 Frameworks and reference architectures

Many frameworks and architectures have been developed for system-level autonomy
for planetary exploration. These frameworks are valuable tools that incorporate the
accumulated decades of wisdom and lessons learned in a non-specific format. JPL’s
Mission Data System (MDS) [42] was developed at the turn of the millennium to
unify flight and ground data systems and reconcile software and systems engineering
for flight missions. Central to MDS is the explicit use of state and environment
models, a goal-directed approach to spacecraft commanding, separation between
estimators and controllers, tight integration of fault protection, acknowledging state
uncertainty, and more. JPL Coupled Layered Architecture for Robotic Autonomy
(CLARAty) [43] is an autonomy architecture focused on robotic mobility systems
split into two layers. The two layers are a decision-making and a functional layer. The
functional layer comprises all the necessary components for the robot’s lower-level
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functions, while the decision layer performs mission planning. This is a departure
from the classical architectural separation in Planning-Execution-Functions which
leads to three layers. This separation can be advantageous as it promotes tighter
integration between planning and execution. FRESCO was recently published by JPL
[44] and contains a set of guiding architectural principles for autonomy architecture
development. The framework focuses on generality and agnosticism in software
implementation. Similarly to MDS, FRESCO includes state-based goal definitions
and centralized state knowledge management; in contrast, FRESCO takes a much
less top-down approach to function partitioning and is, therefore, better suited for a
project that wishes to integrate pre-existing software. Similarly to other autonomy
architectures, fresco outlines the roles of controllers, estimators, system executives,
and planners alongside their interactions.

The European Robotic Goal-Oriented Autonomous Controller (ERGO) frame-
work [45] that aims at blending deliberative with reactive autonomy. The agent
design consists of a functional layer and an executive tasked with coordinating a
set of control loops that interact with each other through goals and observations.
The framework is designed to facilitate integration with fault detection. The LAAS
architecture [46] is another European autonomy architecture that predates ERGO.
Similarly to ERGO, it is focused on robotic and spacecraft autonomy and contains
elements of Fault Management, a separation of planning, execution, functions, and
hardware interface.

The information-driven, risk-bounded enterprise architecture [47] is a planning
and execution framework that uses the Reactive Model-Based Programming Lan-
guage (RMPL) and decomposes operator intent into executable goals by orchestrating
a combination of science, path, and activity planners. The framework also manages
plan execution and activity/state monitoring.

1.3.2 Examples of spacecraft system-level autonomy

The first example of goal-directed system-level autonomy deployed to a flight system
is Remote Agent Experiment (RAX) [48], which flew on NASA’s Deep Space 1
(DS1) spacecraft [49] depicted in Figure 1.7 (left). The Remote Agent experiments
included an AI automated planner and scheduler, a model-based fault identification
engine, and an executive capable of dispatching plans and reacting to faults.
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Fig. 1.7 Examples of system-level autonomy in spacecraft. Image credits: NASA-
JPL/Caltech

Another example from JPL is Autonomous Sciencecraft Experiment (ASE) on
the Earth Observing One (EO-1) spacecraft shown in Figure 1.7 (center), which
demonstrated the capability of dynamically reacting to opportunistic science events,
including volcanic eruptions, flooding, ice breakup, and cloud cover change [50].
This is achieved by combining an image science analyzing tool that detects events
worth investigating with an automated planner and executive.

MEXEC [51] is an integrated planning and scheduling software developed by
JPL. It represents goals as hierarchical task networks and refines them up to the point
where they can be dispatched as individual actions accounting for resource timelines.
[52] The ASTERIA mission is a CubeSat telescope shown in Figure 1.7 (right),
used in its extended mission as a mission-autonomy testbed. The paper focuses
on assessing the feasibility of autonomous orbit determination by combining the
capabilities of MEXEC, an automatic navigation state estimation pipeline, and fault
identification software. When the mission planner determines the need to reduce
state uncertainty, a task net is issued for execution, containing all the constraints
required to select the appropriate action. Action maintenance condition checking is
also proven to be an effective way to adapt to failures.

While examples of end-to-end system-level autonomy deployments such as ASE,
RAX, and ASTERIA are still uncommon in flight, there are many development
efforts aimed at migrating system-level decision-making responsibilities from the
ground system to the flight system. Some examples might be the PROBA [53], APSI
[54], and EUROPA projects. Further examples can be found in [55, 56].

Historically, planetary mobility systems have not been characterized by a large
system-level autonomy component. A lot of development work has gone into de-
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Fig. 1.8 Examples of marine and aviation system-level autonomy applications. Image
credits: WHOI, NASA-JPL/Caltech, AFRL

veloping and flying sophisticated fault management systems [57], cutting edge
functional-level autonomy components such as M2020’s landing system terrain rela-
tive navigation [41], AutoNav [58], the Mars Exploration Rover’s navigation stack
[59], and more [60]. High-level autonomy does not have much flight heritage in
robotic surface explorers, where the system is in a much more dynamic environment
than orbiters. Large, costly and risk-averse surface exploration missions have until re-
cently included minimal high-level autonomy and they have often been designed in a
way to allow ground-in-the-loop operations. System-level autonomy has slowly been
making its way into flight missions as planning technology matures (risk decreases),
and the advantages of including on-board high-level reasoning start outweighing
the risks. For example, the Perseverance rover relies on ground-generated activity
schedules but is planned to switch to onboard scheduling later during its mission
[61].

1.3.3 System-level autonomy in other domains

System-level autonomy has also been developed for several other applications (Fig.
1.8).

The closest analog to planetary exploration systems are Autonomous Under-
water Vehicles (AUV) as they are subject to very similar operational constraints
[62]. Similarly to planetary environments, underwater agents operate in a dynamic,
unknown terrain and often have limited communication bandwidth and minimal
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onboard resources to achieve a mission goal. Similarly to deep space exploration,
key themes in underwater mission planning are reasoning about uncertainty, adapting
to the system’s health state and opportunistic goals, resource management, and
more [63]. Perhaps unsurprisingly, there is significant research overlap between
AUV and spacecraft mission planning, and often the same planning techniques (and
same researchers) work on both problems. For example, a risk-bounded approach
to mission and motion planning is outlined in [64]. Several other AUV autonomy
examples are reviewed in [65].

Another thread of high-level autonomy research is directed toward enabling
multi-agent autonomy, with specific attention to swarms [66]. Swarm research has
also focused on flocking and formation keeping, but the mission planning problem
here can be stated as allocating resources or/and assigning tasks to the agents that
make up the swarm while respecting a set of constraints. Given the similarity with
spacecraft mission planning, it is no surprise that many of the same techniques have
been investigated (e.g., heuristic search). The primary difference between multi-
agent autonomy and single-agent planetary exploration is the focus on computation
distribution and information propagation. An example of maritime multi-agent
autonomy architecture, where planning, execution, and behaviors appear, is the
CARACaS autonomy framework [67], where all agents plan the entire mission for
all agents but execute only their portion of the plan.

Another application domain where deliberative planning and autonomous ex-
ecution are being actively developed is defense. Research efforts are centered on
increasing the autonomy of multiple airborne [68], ground [69], and underwater
systems. These systems all have to deal with the problem of breaking down a mission
goal into actions, executing these actions in an uncertain and shifting environment
with few communication opportunities, and reacting to faults and unexpected events
are central themes.

1.3.4 Thesis objective

System-level autonomy is a vast discipline that encompasses both theoretical and
experimental research. Clearly, this work can not focus on every aspect that would
enable system-level autonomy. Rather, the objective of this dissertation is twofold:
the development of a system-level autonomy architecture, and the creation of risk-
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aware task and motion planning algorithms. This work is centered around making
progress toward enabling subglacial access planetary exploration missions, particu-
larly applied to the Exobiology Extant Life Surveyor (EELS) project, whose details
will be outlined in the next chapter.

The primary focus of this work is the development of novel risk-aware task and
motion planning algorithms. These algorithms are essential for decision-making
under uncertainty, a critical aspect when operating in the unpredictable and harsh
environments of icy moons. The research introduces a Mixed Integer Linear Program-
ming (MILP) based planner, which offers a novel approach to balancing information-
seeking actions with trajectory optimization. Additionally, two other planning
paradigms are implemented and evaluated: a Partially Observable Markov Decision
Process (POMDP) solved through Monte Carlo Tree Search, and a classical approach
that decouples task planning from motion planning. Through computational compar-
isons, the effectiveness of these planners is tested, demonstrating their potential to
enhance the autonomy and operational capabilities of the EELS robot. This work
not only contributes to the specific goals of the EELS project but also provides
valuable insights and methodologies applicable to other robotic systems operating in
extreme and uncertain environments. To enable the deployment of these decision-
making algorithms, this work also delves into the development of a system-level
autonomy architecture. This architecture is based on a classical hierarchical robotics
software stack and is tailored to meet the unique challenges posed by extraterrestrial
exploration.



Chapter 2

Exobiology Extant Life Surveyor

This work focuses on making progress toward the system-level autonomy capabilities
outlined in Section 1.2. While system-level autonomy is broadly applicable to multi-
ple concepts, the framework in which this work was developed is a specific planetary
ocean access research project at JPL. The project is Exobiology Extant Life Sur-
veyor (EELS) that is a subglacial-access technology development and demonstration
effort funded through the JPL-NEXT program as a way to develop the capabilities
necessary to access subglacial planetary environments.

This chapter outlines the EELS’ mission concept, hardware architecture, and
software architecture. It is important to clarify that the author was responsible for
the design and implementation of the system-level autonomy software components,
beginning in section 2.4. The following sections provide essential context for
understanding the system-level autonomy challenges addressed in this work.

2.1 The EELS concept

The EELS concept aims at leveraging the existing open pathway from Enceladus’
surface to its subsurface ocean, assessing the environment’s habitability and searching
for signs of life. Using ice as a terrain over which to move sidesteps the issues
of thermal drilling in cryogenic ice that plague cryobots design. The concept’s
high-level architecture is described in [26] and consists of a lander and a tethered
serpent-like mobility system.
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Fig. 2.1 EELS Concept art. Credit: NASA/JPL-Caltech

The EELS robot is designed to be a versatile, instrumented mobility platform
capable of navigating the vast array of terrains that can be expected from surface and
subsurface locomotion on ocean worlds. Examples of these terrains can be surface
fluidized media close and much softer than fresh snow, hard ice, enclosed terrains,
cracks, and ultimately also liquids.

While Enceladus is the main driver for the EELS’ hardware and software ar-
chitecture design and autonomy capabilities, the project has focused on building
a system capable of scientific operations on Earth’s glaciers which are the closest
available analogs to Enceladus. Intra-Glacial and subglacial channels on glaciers are
both of great scientific interest [70], are hard to reach, and are hazardous to human
explorers. The inherent risks of operating in these subglacial environments makes
them well suited for robotic exploration. Furthermore, there is a direct mapping from
glacial environments on Earth to Enceladus exploration due to the mix of vertical and
surface mobility and the materials. It is also interesting to note that the maximum
dynamic pressure expected in Enceladus’ vent systems results in an overall force on
an EELS-like robot that is roughly equivalent to its gravitational pull on Earth.
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The EELS project focuses on furthering and proving the technology that goes
into developing the capabilities needed for an Enceladus vent exploration mission.
The software that controls this system is also under development, with numerous
parallel efforts on a wide range of topics such as proprioceptive control, gait-aware
path planning, robust perception, motion planning, global localization and mapping,
gait selection, scientific sensing, activity planning, and risk awareness. A reader
interested in further information about the EELS concept could refer to [71].

2.2 Hardware architecture

This section is intended to give a high-level overview of the capabilities of the EELS
system. An interested reader could refer to [72] for more details.

Snake-like robots have long been built and studied for Earth-based architecture,
with the first systems being built in the 1970s [73]. Their high reconfigurability
and capacity to traverse rough and granular terrains make them good candidates for
many applications in extreme environments such as Search and Rescue (SAR) or
oil and gas [74–76]. Most of the previous work in snake robot development has
focused on small-scale modular platforms capable of shape-based locomotion [77].
This biologically-inspired paradigm of locomotion [78] requires an an-isotropic skin
friction mechanism similar to a snake’s scales [79]. In this type of locomotion, the
skin is said to be passive as it contributes to locomotion only through its friction
characteristics. The use of continuous shape changes to achieve motion has tradi-
tionally limited the size of snake robots, as actuators operating outside a quasi-static
regime take an efficiency loss.

The EELS platform (Fig. 2.2) is similar to traditional snake robots in the sense
that it is made of self-repeating elements but differs from many systems as it is
capable both of shape change and active skin propulsion enabled through external
screws. Limited research has been performed on snake robots with active skin
propulsion, and even less research has focused on active-skin propulsion based
on screws, but previous works have found it as promising and effective [80–83].
Specifically, EELS uses Archimedes screws for propulsion [80] and is the latest
incarnation of centuries of screw-based propulsion experiments for off-road vehicles
[84]. The use of screws allows to decouple propulsion from shape change and
enables EELS to be much larger than typical ground-based snake robots. In fact, the
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Fig. 2.2 Illustration of EELS’ hardware, with a detailed view of a single module and
its degrees of freedom.

platform is more than 4 meters long and weighs 100 kg. Such a length allows it to
conform to the internal structure of vents with larger diameters, pushing outward to
resist the flow. On the other hand, the low diameter (15 cm) allows the system to
reconfigure its shape and fit into tight cracks if needed.

The robot is composed of 10 segments and a perception head. Each segment
weighs around 10 kg and contains three actuators. The two shape actuators modify
the position of the following module by rotating it along the twist and bend axes. The
shape actuators have a peak torque of 400 Nm. Each module can be configured with
two counter-rotating Archimedes screws actuated by a single motor. The system’s
modularity is also a catalyst for graceful degradation, as any single actuator or
gearbox failure does not entirely compromise mobility performance. Developing
algorithms and strategies for locomotion under degraded hardware conditions is
outside of the scope of this project but would undoubtedly be an interesting future
research direction. The screws can be quickly changed, as they are attached to the
rotating chassis via fasteners. In Figure 2.3, there are examples of screw prototypes
built and tested throughout the project. Screw parameters such as pitch, length, outer
diameter, and material have a strong influence on the system’s mobility performance,
similar to how wheel parameters affect vehicles on and off the road. Smaller, CNC-
machined metal screws enable good locomotion performance on ice or ice simulants.
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Fig. 2.3 Screw prototypes for the EELS robot active skin propulsion

On unconsolidated media such as sand or soft snow, longer screws with larger
diameters tend to perform better. For rapid iteration in unconsolidated, abrading
terrain, screws were 3D printed using SLA technology.

The system’s power and compute architecture is not representative of an Ence-
ladus mission architecture, as the project is optimized for surface operations on Earth.
This version of the EELS concept is intended to demonstrate the platform’s mobility
and autonomy capabilities - not the construction of a flight system. Electrical power
is generated in Electrical Ground Support Equipment (EGSE) and transmitted to the
robot’s tail section via the 80 V power lines of the robot’s tether. The tail section
contains a power conditioning module, which steps the voltage down and dampens
voltage oscillations caused by the tether’s inductance. It is worth noting that there
are parallel development efforts aimed at designing low-mass, high-voltage tethers,
and their power-handling electronics [85]. Tether management is also outside of the
scope for this phase of the project, and there are no spooling mechanisms either on
the GSE or the platform’s side. Opposite the tail, the robot mounts a perception head
module. The tail also includes an Inertial Measurement Unit. The head is different
from other modules as it does not have any actuators and mounts four stereo cameras
orthogonally to each other, a single, forward-facing Ouster 3D LiDAR, an Inertial
Measurement Unit (IMU), a barometer, and temperature sensors. The head also
includes a compute platform whose function is processing front-end sensor data for
the localization and mapping pipeline. Low-light operations are enabled both by the
LiDAR and by LED boards attached to each stereo camera. Proprioceptive sensors
are distributed throughout the robot’s architecture. Each motor has position encoders
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Fig. 2.4 EELS’ perception head and its sensing capabilities.

and current and temperature sensors. Most computations are offloaded to Computers
in Ground Support Equipment, while the only onboard computer is located in the
perception head. Further iterations of the EELS robot focus on improved actuator
torque density and sensing.

2.3 Software Architecture

EELS software is composed of Controllers, Planners, and Estimators.

Estimators receive sensor information and use it to estimate the system’s state.
Controllers and planners both receive estimated a goal (desired states), and gen-
erate subgoals for lower-level modules (control action). In fact, it could be argued
that controllers and planners operate fundamentally in the same way and that the
distinction in terminology is primarily due to historical reasons. Controllers and
planners differ in time scales and levels of abstraction and, consequently, in the type
of mathematical instruments that can be utilized to derive their outputs.

Robotics stacks are typically hierarchically organized as it facilitates develop-
ment and allows breaking down intractable problems (e.g., given the full robot state,
achieve the mission goal) into treatable sub-problems (actuator control, path plan-
ning, etc.). EELS’ software stack has been architected following this hierarchical
paradigm.

The software is divided into modules, named with a C, followed by a number.
Each C module encapsulates a specific capability, and as the number increases, the
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Fig. 2.5 Overview of EELS’ hierarchical software architecture. Estimators are
displayed on the left column, whereas Controllers are on the right.

level of abstraction of that capability also roughly increases. Capabilities range
from C0 to C9, but through the project only a subset of the capabilities have been
implemented. Even numbers are controllers, while odd numbers are estimators. C0
encapsulates Actuator Control. This module takes as input desired joint states and
figures out how to control the motors throughout the system to achieve that desired
joint state. C1 implements Proprioception. C1 is the lowest level estimator, and is
tasked with inferring state information from sensors that have access only to state
variables internal to the robot. The types of sensors that are used by C1 are encoders,
IMUs, Thermocouples, Force Torque Sensors, etc. The type of information that
is generated by C1 are contact states, IMU pose estimates, orientation estimates,
slip detection, and more. C2 contains most of the robot’s control logic, in the
classical sense of feedback control. Some examples are screw contact controllers
used for climbing, screw velocity allocator used to translate a desired velocity into
screw rotation velocities, backbone adaptation to govern the robot’s shape and more.
The internal architecture of C2 is complex and out of scope of this work, but it
includes and orchestrates a multitude of controllers. C3 represents the exteroceptive
state estimation layer. This layer receives information from the robot’s sensor suite
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(LiDAR, stereo cameras, pressure altimeter, etc), and transfroms it into pose and
map estimates, running a custom Simultaneous Localization and Mapping (SLAM)
algorithm [86]. C4 is the Path Planning layer and consumes map, pose and a
Waypoint and outputs a path (sequence of poses) to the goal. The modules C5,
C6, C7 were not implemented as of late 2023, because the development effort was
focused on mobility. The functions envisioned for these three modules are Science
Planning, Science Perception, and Gait-aware planning. Science planning and
perception refers to the function of estimating and prioritizing the potential scientific
value of taking measurements from any point in the environments, and coming up
with a set of points of interest to send to the mission planning layer. The gait-aware
planner is supposed to provide a path plan that accounts for the multiple mobility
strategies that can be adopted by the EELS platform. C8 is the mission planning and
execution layer, that sees the robot from the point of view of actions or behaviors,
receives operator intent and system-level state information and generates a schedule
of commands. C9 represents the risk / health monitoring capability. It is tasked with
estimating the system’s health and risk, by observing state from the whole system.
Its outputs are intended to guide the mission planning process and to serve as state
signal for onboard fault management. It is interesting to note that the time scale of
the processes observed or controlled by the modules tends to increase as level of
abstraction increases. This means that the internal architecture of C8 can be vastly
different from C0’s architecture, as their respective latency requirements differ by
orders of magnitude. Low level modules need to run in the range 102 - 103 Hz, while
higher level planners and estimators run in the 1 - 10 Hz interval.

Separate from the Cx, capability modules, there are cross-cutting packages that
deal with software infrastructure, software setup, user interface, software testing,
and more.

Due to the field-testing intensive nature of the project, interfaces have been archi-
tected in a way that enables teleoperation at all levels of abstraction. The operator
can ask for specific shapes or joint velocities, can trigger individual behaviors (e.g.,
go to waypoint), or load a plan and request a fully autonomous mission execution.

Networking and communication between software components is handled by the
Robot Operating System (ROS) middleware. The stack runs on ROS-1 Noetic. Once
viewed from a ROS centric respective, the distinction between modules become
less strict. A capability module can be made of several processes, using the ROS
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middle-ware both for intra and inter module communication. The line of demarcation
between modules is therefore not clearly drawn in memory, but is rather a conceptual
difference. Namespacing is used to help keep this conceptual distinction. For
example, the prefix /c8/node_1 and /c8/node_2 can be two node names in the C8
capability group. This convention helps reduce confusion, decrease the chances of
duplicate node names and preserve architectural integrity.

Another guiding principle of the stack’s development is middleware-agnosticism.
This means that capabilities should not be tightly coupled with ROS-specific code
wherever possible and serves the purpose of facilitating portability. Middleware
agnosticism is achieved by implementing capabilities as libraries using a minimal set
of third-party dependencies and then writing wrappers for the ROS system. With this
approach, middleware can be swapped by writing a new set of wrappers, rather than
re-engineering entire capabilities (i.e., re-writing algorithms and support functions).

Within this extensive software system, this work focuses on the capabilities at
the C8-C9 level.

2.4 System-level autonomy Software

When discussing High-Level autonomy (C8-C9 level) the system is seen from
the point of view of behaviors or operational modes. This is the highest level of
abstraction typically used to reason about the tasks that an agent needs to perform to
achieve a goal. This layer of autonomy can also be seen as answering the question
"What behavior should I be doing now?". Lower-level planners are invoked by
the task planner to break down tasks into actionable sequences. A simple example
showing the distinction between mission planners and lower-level planners is a
human baking a cake. Baking has a mission goal that can only be achieved by a
sequence of actions. For example, an initial plan might be to collect ingredients,
then cook. These tasks need to be further broken down into driving to a grocery
store, searching a sequence of areas within the store, paying, going home, laying
out cooking material, then following the recipe. The mission planner is responsible
of this goal breakdown into sequences of tasks. Lower-level planners in turn take
care of the details of routing, controlling the steering wheel and gas pedal, avoiding
obstacles, keeping balance, etc.
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The three main components of a system-level autonomy software system are (a)
a set of behaviors, (b) a plan execution component, and (c) a planner.

Broadly speaking, the behaviors implement an interface between the mission
planning system with the rest of the software system’s components. In the previous
scenario, the behavior would be "go to a store", and it would consist of sending a goal
to the navigation/path planning system, turning on the desired set of controllers, and
monitoring their performance throughout execution. The Execution layer manages
behavior dispatching and monitoring using the plan generated by the mission planner.
In other words, the executive makes sure that the sequence of behaviors specified by
the planner are activated in the correct order, at the correct time, and makes sure that
each action successfully concludes.

The classical and most common architectural pattern in mission planning systems
is a decoupled planner and executive architecture. Separating concerns leads to easier-
to-implement components, more maintainability, and increases the ease of making
changes to the planner or executive in isolation.

In the literature, there are examples of more tightly coupled approaches to
planning and scheduling, such as the MEXEC [87].

In the EELS project, the iterative and bottom-up approach to capability de-
velopment does not fit well with a tightly coupled planner and executive. New
requirements arise from field tests, and the planning problem formulation could
change significantly over time, driven by bottom-up discoveries. Thus, minimizing
the effort required to adapt to these changes is the primary driving architectural
need. For this reason, the mission planning layer is architected following a classical
separation between planner and executive.

As shown in Figure 2.6, the planning and execution components are two separate
components connected by an interface that can also directly be used by operators and
the integration testing framework. The mission planner consumes a mission goal,
set either by the operators or by the integration tests. The planner decomposes this
goal into a sequence of activities (not necessarily a complete plan from the initial
state to the goal state). The planner can dispatch full or partial plans and request
the executive to start dispatching. The executive can receive plans directly from
operators or integration tests, dispatches the requested behaviors sequentially, and
monitors their execution. The executive provides feedback to the mission planner
about the execution status.
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Fig. 2.6 Mission planning architecture. The main components are a Command
Executive, a Planner and a library of behaviors. The planner and executive can
receive goals from human operators or software integration tests. The behavior
library interacts with various components of the software stack.
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Behavior Library

Behaviors encapsulate the lowest level of abstraction at which the mission planner
reasons. Over the span of a project, the set of behaviors that a system is capable of
tends to increase as lower-level software modules are developed and matured, and
the capabilities of the robot emerge from testing. Designing behaviors thus requires
particular attention to modularity. It is convenient if behaviors have a common static
interface with the execution layer. Furthermore, the interface needs to be sufficiently
generic not to change over time. As an input, behaviors receive a set of parameters.
Figure 2.7 shows the architecture of the behavior library that was developed for the
project. Each behavior starts with a precondition check that has access to relevant
state information and the goal parameters. For example, the behavior to move the
robot in a moulin using vertical mobility checks that the robot is in a ready position
before dispatching. All behaviors have a main execution loop, where commands are
issued to the rest of the stack. When the conditions necessary to successfully exit the
execution loop are met, the behavior can asses a set of post-conditions. For example,
a command requesting a specific shape of the robot will assert that the encoder data
received at the execution end indicates that the shape was, in fact, reached. If the
post-condition check is successful, the activity succeeds, and reports that success
back to the executive. At any point during the activity, failure conditions might
be triggered. When this happens, the behavior reports the failure to the executive,
alongside the reason for the failure (e.g., "the robot failed to scan the environment
because one of the actuators faulted mid-execution"). Furthermore, the behavior
should in general be preempt-able at any point during execution as a condition might
arise that requires rapid change of plans. Preemption, is the act of stopping the
execution of an action, and is typically followed by a cleanup routine. For example,
the robot might be moving toward a goal and science perception might indicate that
a target of opportunity has popped up next to the robot. In this case, the agent should
be able to preempt the movement action and dispatch a new plan that includes a
sampling behavior.

EELS’ software stack uses ROS to manage communication. Thus, setting goals,
sending preemption requests, and receiving feedback can be greatly facilitated using
the client-server architecture provided by the ROS actionlib package. Using this
library, behaviors are servers, and within the executive, there are clients that manage
goal dispatching and feedback collection. This approach was used when designing
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Fig. 2.7 Internal structure of the behaviors in the behavior library. Each behavior
interacts with the command executive and includes a precondition check, a main
execution loop and a post-condition check.

the behavior library. Behaviors inherit from a generic template that implements
server management logic and provides empty shells in which to add execution logic
and condition checking.

Each behavior receives goals and provides feedback in the form of strings. This
is done for the sake of type consistency, maximize action representation flexibility
and avoiding continuous interface re-definition. In fact, dictionaries of generic data
types and more complicated objects can be embedded and effortlessly decoded as
json or yaml strings and then parsed on the server’s side with the aid of a parsing
library.

For the EELS robot, most behaviors relate to mobility modes. This is unsurprising
as the initial phases of the project focus on maturing the mobility system. Examples
can be seen in Figure 2.8. For surface mobility, commonly used behaviors are
move_to_goal and move_to_direction. With these behaviors, the robot can
plan and execute a path to a waypoint in a closed or open-loop manner. When no
exteroception is available, moving in a direction is allowed by sending velocity
commands to the lower-level controller. Subsurface mobility-specific behaviors such
as that contact_subsurface were also implemented. These behaviors make sure
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Fig. 2.8 Example of behaviors implemented for the EELS robot.

that the lower-level subsurface controllers are operating in the correct mode at all
times. The set_shape behavior can be invoked to achieve explicit changes in shape.
This was implemented as common shapes are set to begin runs or as preconditions
for other actions. The scan_environment action implements many ways to raise
the robot’s head above the ground and gain information about the surrounding.
This action is central to the following move-scan mission planner formulations and
thus will be described in more detail in the next chapter. For commands that act
on the robot’s operating system, there are os_commands that can execute generic,
user-defined scripts.

Executive layer

As mentioned earlier, the execution layer receives a plan and manages dispatching
and monitoring of the behaviors included in that plan. The first decision to make
when designing an execution (and planning) layer is the plan representation. The
plan representation represents how the behaviors that make up the plan are con-
nected, what the properties of these connections are, how many commands can be
concurrently dispatched, and whether the time of dispatching activities is essential.

Plan representation conditions have wide-ranging effects on the system’s capabil-
ities and the effort required to implement and maintain the executive.
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move_to_goal
params: wp1 scan_environment

move_to_goal
params: wp2

Fig. 2.9 Example of a plan as a sequence of actions

Plans, in general, can be seen as graphs of actions. Some representations can
be complex and allow parallel execution and conditional actions. An example of
such a "plan representation" is the Business Process Modeling Notation (BPMN)
implementation of TRACE, developed for the SubT DARPA grand challenge [88].
The execution layer might also opt to represent a Policy or conditional plan. Policies
are mappings between state and actions (π : Xk→ ak). Policies can be computed of-
fline and provide more execution flexibility as they adapt by definition to unexpected
consequences of actions. A widespread plan representation for spacecraft autonomy
is through timelines [89]. Timelines support the parallel execution of actions and
represent complex time-based relationships between events (e.g., instrument X will
turn on only after the temperature reading in sensor Y reaches value Z).

During the first years of the EELS project, the mission planning problem did
not require complex time-based plans or parallel execution. Time-based scheduling
was deemed unnecessary as the types of decisions being taken relate to mobility
modes in uncertain terrain, thus creating complex behavior schedules would come
with a greater implementation cost with minimal effect on onboard decision making
effectiveness. Furthermore, the type of action space being considered for the first
years of the EELS project does not require concurrent execution as most actions
are mutually exclusive (e.g., the robot can not be scanning the environment while
moving toward a goal). For this reason, it was deemed sufficient to represent the
plan as a path or linear graph. Path graphs are acyclic graphs where all nodes have
at most two vertices connected to them. A path graph is a simple way to describe
a sequence of behaviors that do not have complex dependencies. An example of a
path graph could be moving to a waypoint (wp1), scanning the environment, and
then moving to another waypoint (wp2) (Fig. 2.9). This example can also be seen in
yaml format below:

plan:
- name: move_to_goal

pose: [x1,y1,z1]
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- name: scan_environment
- name: move_to_goal

pose: [x2,y2,z2]

A custom execution engine was built from the ground up as full control over its
development would enhance flexibility. In Figure 2.6 it is shown how the executive
was designed to support both mission planning, but also high-level teleoperation,
and as the backbone of system-level software integration tests. Figure 2.10 shows
the internal structure of this executive which corresponds to a finite state machine.
The entry point to the program is an idle state, where the executive is waiting for a
plan and for a request to start executing. When an execution start is commanded,
the executive will loop through the actions contained in the plan and will dispatch
them sequentially using actionlib clients connected to the behavior servers. The
executive periodically checks the execution status of the active server and waits for
it to either finish, fail, or timeout. At any time, asynchronous callback may request
a pause or a plan execution end. When a request is detected, the system preempts
active servers, cleans up the plan if necessary, and resets. If a behavior server
reports a failure, the executive transitions to a failed state, reporting information
about the failure (when it occurred, what task caused the failure, and any additional
failure meta-data provided by the behaviors) and waits for new directives. Some
mission executives (notably the MEXEC execution system) include elements of
decision-making. For example, MEXEC will allow for specific recovery behaviors
to be triggered by task failures. The EELS executive does not include any decision-
making. On the other hand, the low computational complexity of managing a
linear sequence, dispatching commands, and checking for execution status allows
the executive to run at frequencies well above 10 Hz, providing fast responses to
callbacks and plan execution requests. The executive is entirely agnostic to the
number and exact specification of actions, as each behavior action client shares the
same interface, and the action specs are treated as parameter strings that contain
no actionable information for the executive. This allows to modify the behaviors
without interfering with the executive’s code. Removing decision-making elements
from the execution loop also decreases the number of changes to the executive over
time, allowing the rest of the stack to rely on executive functions (e.g. preemption
management) as a central part of the robot’s operations.
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Fig. 2.10 Diagram of the execution engine’s internal architecture

To further increase modularity, a ROS node wraps around the execution engine,
and any signal to and from the executive is passed through the ROS network. An
library was developed to facilitate the integration of command execution with the
software capabilities interested in sending commands to the system. This library
abstracts away from its user the management of network communication to and
from the executive, providing a lexicon of commands and command-management
methods that can be utilized to set a plan, start execution, preempt, get information
about the execution and more. Facilitating network communication through a well-
documented API increases productivity and reduces the chances of errors. A simple
Python example of setting a single action plan should be sufficient to showcase
the helpfulness of providing an executive API. Without an API, any user of the
executive’s capabilities would have to manually set up communication and correctly
format the message according to the executive’s representation. The following code
would be necessary to send a command over the network without an external API:

import rospy
import json
plan_client = rospy.ServiceProxy(/plan, msgtype)
plan_client.wait_for_server()
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command = {"plan":[{"name":"move_to_goal", "pose":[x,y,z]]}}
plan_client(json.dumps(command))

Note that the developer needs to be aware of networking details (know that the
planner uses a service to accept plans, know what the service is called, the service
type, etc.). Additionally, the user and needs to know how that the plan is formatted as
a json string and the exact structure of this string. Here, any change in the command
setting structure would need to be propagated in any place that used that capability. It
is not unreasonable to assume that the topic, message type, or interface architecture
might change over time. But, if any interface change would entail propagating the
changes to numerous other software modules, there would be significant resistance
to changes that might prove helpful. An interface fully abstracts away the network
communication management from the user, hidden behind the API’s implementation.
The API implementation might change, but as long as the syntax remains unchanged
the effects will not be felt by the API users. For example, the command-setting code
outlined above could become a single line, much less prone to errors:

from execution import executive_interface
executive_interface.send_command(Command.move_to_goal(params))

Planning layer

Before describing the mission planner’s architecture, it is worth outlining some of the
requirements. The AGILE [90] approach to field robotics that the project followed led
to a strong emphasis on requirement discovery and bottom-up capability development.
This emphasis on rapid iteration can lead to changes in the planning paradigm
and algorithm specifics. Due to the changing environment of fast-paced research
project, it is essential to design an architecture that is general and easily modifiable.
Without a robust architecture, changes gradually decrease the code’s maintainability
and eventually lead to an unusable system - regardless of the underlying planning
algorithms and their quality. It can be thus stated that the primary driver for the
Mission Planning layer’s architecture is Flexibility to change.

In general, a mission planner should receive a goal, break the goal down into one
or more actions based on the system’s current state, dispatch these action/s to the
execution layer, and monitor execution. Note that this way of describing the mission
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Fig. 2.11 Mission planner internal architecture

planning layer encompasses both planners that evaluate a Policy π(ak|sk), or a Plan
Π = (a1, . . . ,an). The concept of a Plan is quite intuitive and represents a sequence
of actions. A policy on the other hand is a mapping from state to action and can be
seen as a conditional plan.

In EELS’ architecture, the central element of the mission planning layer is a
Mission Planner Manager node that takes care of goal management, plan dispatching,
and execution monitoring. Goals can be crafted either by operators or by integration
testing. Once a goal is received, the planner manager evaluates whether the goal
needs to be elaborated. If elaboration is necessary, the planner manager sends a
planning request to the Planner component through a ROS actionlib interface. The
Planner is a generic component that implements this planning interface. Each planner
needs to implement goal parsing, accessing relevant state information, a planning
algorithm, and response encoding. By keeping goal and state parsing responsibility
within the Planner nodes, the system becomes more flexible as the planner manager
is allowed to have minimal understanding of goal and plan representations. The
planner manager is thus robust to goal representation changes and will encapsulate
execution monitoring logic that would require effort to modify after each change. It
should also be clear how this architecture can be used both for classical planning
and Policy evaluation. The only change is the number of actions that make up the
Planner’s response. It is also worth noting that code duplication at the Planner nodes
can be minimized by writing a template class designed to wrap around a generic
planning algorithm and manage goal parsing and response crafting. The mission
planner architecture can be seen in figure 2.11
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Another design choice that affects flexibility is the data type of messages being
sent over the ROS network. Specifically, the actionlib interface requires defining a
message with a goal, result, and feedback. For example, the planning problem could
be stated as reaching a goal respecting a specific risk tolerance . The action space of
the robot might be moving to a goal, and performing information gaining actions.
The result of the planning actions needs to be capable of encoding both moving to
a point and non-geometric actions. The planner manager might also be interested
in receiving as feedback the percentage of planning completion. An inflexible (yet
computationally efficient) way to implement this interface would be to explicitly use
the data type of each element of goal, result and feedback:

# Goal
waypoint geometry_msgs/Pose
risk_tolerance Float
---
# Result
plan geometry_msgs/Pose[]
action_type uint_8
---
# Feedback
percentage_completion Float

If the user wants to add an input to the planner (for example maximum planning
time), the message definition would change. In ROS systems, message definition
changes entail a hash change that complicates replaying historic data by requiring
the correct message version locally compiled to interpret the data. Additionally,
if the objective is to support multiple "Plug and Play" planners that have slightly
different goal or plan representations and implement different algorithms, requiring
a separate message for each planner can lead to headaches. A better solution to this
problem can be seen below. Here, every element of the message is a generic string of
characters, and the planners themselves have the responsibility of parsing this string
into useful data structures.

# Goal
goal String
---
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# Result
result String
---
# Feedback
feedback String

This implementation comes with an overhead both in terms of performance and
requiring parsers on each end of the actionlib message but it is highly flexible to plan
representation changes.

2.4.1 Limitations of architecture

One major component missing from the architecture outlined in this section is the
fault management and risk estimation layer. A complete system-level autonomy
architecture should consider fault management as an integral part of the planning
problem. The planning and execution layers have been designed to be flexible,
allowing the inclusion of fault estimates as inputs to the planning layer and enabling
the execution of fast reactive plans. This flexibility is facilitated by the separation
between the planner manager and planners, which can operate at various speeds.

The specifics of risk estimation, fault management, and fault-aware deliberative
planning are left for future research. However, the architecture presented here is
deemed sufficient to achieve the primary goal of this work: to formulate and test
decision-making under uncertainty algorithms for the EELS mission profile. The
following chapters will delve into these algorithms, which run within the planner
module. From this point forward, the software architecture will serve as an invisible
but necessary enabler for the remaining chapters.



Chapter 3

Theoretical Background

This chapter provides a minimum theoretical framework necessary for understanding
the subsequent chapters. The core focus is on sequential decision-making under
uncertainty and the tools used to formulate and solve various problems within this
framework. This includes high-level onboard decision-making, managing resource
constraints, and handling incomplete state information through frameworks like
MDPs, POMDPs, and techniques such as Monte Carlo Tree Search (MCTS). These
concepts lay the foundation for understanding the detailed algorithms and implemen-
tations in the subsequent chapters. A reader already familiar with these techniques
can skip to Chapter 4.

3.1 Introduction

System-level autonomy’s core responsibility is Onboard Decision Making at a high
level of abstraction. As described in the previous chapter, the agent’s action space
is seen as a set of behaviors and the parameters that are passed to these behaviors.
For exploration mobility systems, this might mean deciding where to go, when
to communicate, when to gain information about the environment, or where to
take instrument samples. In the presence of resource constraints, system-level
autonomy should also coordinate resource management. For example, prioritizing
what activities to do, given limited battery life, deciding when to stop all actions and
recharge the batteries, and more. Given the environmental uncertainties that future
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planetary missions will likely face, the decision-making process should explicitly
incorporate uncertainty about the environment, system state, and world models.

Given the prominence of uncertainty, decision-making under uncertainty becomes
a focal point for system-level autonomy. Foundational to this is the understanding of
probability and decision theory. In the following sections, there will be a brief review
the core elements of these theories, reaching up to sequential decision-making under
uncertainty. These foundations are essential to formulate and solve the system-level
planning problems for future planetary subglacial access autonomy systems.

Out of probability theory comes a set of tools useful to perform inference and
deduction, which are necessary but not sufficient elements of decision-making under
uncertainty [91]. For example, consider a system tasked with identifying and respond-
ing to a fault F , given observations Z across numerous sensors. Probability theory
provides the inference tools necessary to compute the fault’s probability, given the
observations p(F |Z), but will not prescribe when and what corrective action should
be taken. Decision theory, on the other hand, is a conceptual framework capable of
prescribing actions from probability distributions and preferences. Decision theory
began as a comprehensive analysis of human decision-making [92], whose early
objective was to understand the mechanisms underlying human decision-making
processes and use them to develop effective decision-making strategies. Some of
the earliest work on decision theory was spearheaded by Bernoulli and Laplace,
who defined the problem within the realm of monetary returns. Their premise was
that rational behavior should invariably maximize the expected return of an action.
Expanding on this, they noted that a sum of money M possesses a "utility" U(M),
which is proportional to the logarithm of the amount:

U(M) ∝ log(M) (3.1)

This simple yet profound relation underpins several key concepts in decision
theory.

Firstly, utility theory sets the standard for rational decision-making, suggesting
how decisions should be made in an ideal world [92]. It places maximizing expected
utility, or the value associated with each possible outcome, at the heart of the decision-
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making process. This encapsulates the essence of decision theory, which is concerned
with making choices that optimize some form of utility.

However, additional investigations into human decision-making reveal that reality
often deviates from this theoretically optimal process, a phenomenon frequently
described as "irrationality" [93, 94]. This "irrationality" originates from heuristics
used to speed up decision-making at the expense of optimality [95, 96]. This trade-
off is a fundamental aspect of human decision-making, and understanding it is crucial
for any system that seeks to model or mimic human-like decision processes.

These principles, originally developed to understand and guide human decision-
making, find significant applications in the field of artificial intelligence. The lessons
learnt from studying human cognitive processes have lead to a class of algorithms
that enable Agents to make decisions under uncertainty. It is worth re-iterating that
the classical decision theory approach (not accounting for biases and irrationality) is
suitable for developing an optimal decision-making algorithm as it is a normative
framework that describes how decisions should be made. Prospect theory better
explains how humans actually make decisions and might be a good source of inspi-
ration for approximate algorithms, but it is not necessary to consider it to develop
agents. The remaining sections of this chapter are organized as follows: Firstly, the
concepts and formalisms necessary to formulate and solve single and multi-action
decision-making problems are briefly reviewed, and then there will be a deep dive
into the algorithms developed and implemented for the EELS robotic platform.

3.2 Single decisions

Having a Preference is defined as desiring outcome A more than outcome B A ≻
B. Additionally, lotteries are considered as a set of outcomes {O1, . . .On} each
associated with a probability [O1 : p1, . . . ,On : pn]. Note that ∑i pi = 1. Adding
some assumptions about preferences, enables building a normative model of rational
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decision-making. These assumptions are:

Completeness: A≻ B∨A≺ B∨A∼ B (3.2)

Transitivity: A⪰ B∧B⪰C =⇒ A⪰C (3.3)

Continuity: A⪰ B⪰C =⇒ ∃p | [A : p,B : 1− p]∼C (3.4)

Independence: A≻ B =⇒ [A : p,C : 1− p]≻ [B : p,C : 1− p] ∀C, p (3.5)

These constraints naturally lead to the existence of the concept of utility function U
which follows these properties:

U(A)>U(B) ⇐⇒ A≻ B (3.6)

U(A) =U(B) ⇐⇒ A∼ B (3.7)

Note that with this definition, utility is a relative measure. Utility is not absolute, as
for any m,b > 0 =⇒ mU(A)+b > mU(B)+b. That is, the preferences induced by
U ′ = mU +b are the same as for the original U . Since the scale is not absolute, it is
often convenient to work with normalized utility functions that return values between
0 (the least desirable outcome) and 1 (the most desirable outcome). Therefore, the
utility over a lottery L can be written as:

U(L) =
n

∑
i=1

piU(Oi) (3.8)

Let a ∈ A be an action. Acting optimally from a utility theory perspective means
selecting a in a way that maximizes the expectation of utility, given that action.

argmax
a

E[U(a)] (3.9)

Let there be a probability distribution p(O|a) of outcomes, given an action a. In this
case, the problem of acting optimally can be framed as:

argmax
a

∑
i

p(Oi|a)U(Oi) (3.10)
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3.3 Sequential decision making

Problems in robotics and aerospace can seldom be framed as single decisions. In
fact, most applications involve an interplay between a decision-making agent and
the environment, such that goals can only be achieved by sequences of actions.
This requires extending the single-decision decision-theoretic framework outlined
in the previous sections to sequential chains of decisions. This extension inevitably
brings complexity and an array of computational challenges, making the issue of
sequential decision-making an active area of study. Economics and AI / Controls
do not have a unified lexicon, but many concepts from Utility theory can be found
in other domains, albeit with slightly different names. In Utility theory, decisions
are made by maximizing a Utility function, while in sequential decision-making,
decisions are made by maximizing (or minimizing) a reward (or cost) over the full
decision sequence. The total Utility of a sequence of actions Us can be computed by
summing the reward of each action.

Us = R1 +R2 + · · ·+Rn (3.11)

It is often preferable to devalue future rewards in favor of immediate rewards; this
can be done via a discount factor γ ∈ (0,1).

Us = R1 + γR2 + · · ·+ γ
nRn (3.12)

Multi-action decision-making problems typically maximize the reward (or dis-
counted reward) of a sequence of actions. The outcome of this optimization problem
can be either a Plan or a Policy. A Plan P is a sequence of actions directly executed,
while a Policy π maps state/belief to an action. π : B→ A. Policies can also be
interpreted as conditional plans. Plans tend to be simpler and less flexible than
policies and require online replanning when operating in the presence of uncertainty,
but policies tend to have more significant computational overhead and are more
challenging to communicate/verify.
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3.4 The Markov Assumption

Before describing the prevalent frameworks for sequential decision-making, it is
worth spending a few paragraphs describing a key simplifying assumption that
underpins most sequential decision-making frameworks. The question that this
assumption answers is "What information is relevant to predict state transitions?". In
principle, an agent whose state sk evolved from s0,s1 . . .sk, after having taken actions
a0,a1 . . .ak might want to consider the entire state and action history to predict the
future. The Markov assumption on the other hand states that state evolution sk+1

depends only on the current state sk and the action ak taken in this state:

Pr(sk+1|sk,ak,sk−1,ak−1, ...,s1,a1) = Pr(sk+1|sk,ak) (3.13)

This expression indicates that the future state is only dependent on the present,
and thus past state evolution and decisions can be excluded from the decision-
making process. The Markov assumption suggests that the system’s entire history is
encapsulated in the current state and rejects the possibility of hysteresis. Assuming
this property vastly simplifies decision-making problems as it ensures that the current
state and the action taken in the current state when planning for future actions are
the only quantities that need to be considered. If decision-making problems had to
consider the entire state’s history, they would quickly become intractable.

3.5 Markov Decision Process

A prevalent framework for dealing with sequential decision-making problems under
uncertainty is the Markov Decision Process (MDP). Defined as a 5-tuple, an MDP
can be represented as:

MDP = ⟨S,A,T,R,γ⟩ (3.14)

In this representation, S denotes a set of states, while A represents a set of actions
that an agent can perform. The transition function, T : S×A→ S, determines the
probability of transitioning to a new state s′ given the current state s and action
a, expressed as T (s′,a,s) = Pr(s′|s,a). R : S×A→ R serves as a reward function,



44 Theoretical Background

giving the expected immediate reward R(s,a) for performing action a in state s. γ is
the discount factor, which is used to discount future rewards.

The concept of a decision-making horizon is pivotal in sequential decision-
making. In essence, the horizon refers to the number of steps in the future that the
agent considers while making a decision. It provides a temporal boundary on the
foresight of an agent, dictating the number of future states it uses for planning its
actions. When considering decision-making over a finite horizon of k steps, the
objective of the planning problem could be written as the maximization of expected
cumulative reward within the horizon:

U =
k−1

∑
t=0

rt (3.15)

However, for infinite horizon problems k = ∞, utility written in the form of Equation
3.15 could diverge to infinite values, making a meaningful comparison between two
policies all but impossible. Making decisions over infinite horizons thus requires
modifications to the expression of Utility/Reward. The most common approach is
the introduction of a discount factor γ . The discount factor enforces the assumption
that immediate rewards are preferred to delayed rewards by scaling down accrued
rewards as time increases. Utility can thus be written as:

U =
∞

∑
t=0

γ
trt (3.16)

Note that γ has the intended effect of discounting future decisions only if 0≤ γ < 1.
There are also other, less common approaches to formulations of infinite-horizon
decision-making such as average expected reward.

3.6 Partially Observable Markov Decision Process

Sequential decision-making problems in which the agent does not have perfect
state information are generally modeled as Partially Observable Markov Decision
Processes (POMDPs). A POMDP extends the MDP framework to account for
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incomplete state information and can be defined as a 7-tuple:

POMDP = ⟨S,A,T,O,R,γ,Z ⟩ (3.17)

Similarly to an MPD, POMDP describes state and action spaces (S,A). These are
respectively the set of all possible states and the set of all possible actions. POMDPs
are also comprised of a Transition Function T = T (s′|s,a) : S×A→ Pr(S) and
reward function R : S×A→ R and a discount factor γ ∈ [0,1), used to scale future
rewards.

The key difference between the POMDP and MDP frameworks are state obser-
vations. As can be seen in Figure 3.1, it is assumed that the agent in the POMDP
framework has a set of sensors that enable observations from the environment. After
each action, the agent receives observations. Given the noisy nature of sensor esti-
mates, the observation is sampled from a probability distribution. More formally,
there is an observation space O that encapsulates all possible observations an agent
might perceive. An observation function, Z , given by Z : S×A→ Pr(O), provides
a probability distribution over observations based on the executed action and the
resulting state. This is expressed as Z (o|s,a,s′). In the definition above, s′ stands
for the state after a transition. In scenarios where explicit models for T , Z , or R are
unavailable but a simulator can be used, the concept of a Generative Model comes
into play: s′,o,r← G(s,a). A simple example of observation space and function
can be used to understand better the underlying concepts: An agent equipped with a
GPS sensor might have an observation space encompassing its position in 3D space
O = R3 and might receive direct observations of its state with some added noise
Z = s+N (0,Σ)

A key component of the POMDP framework is the Belief State, b(s), which
represents a probability distribution over states and can be expressed as:

bt(s) = Pr(st = s|ht) =⇒ ∑
s∈S

bt(s) = 1 (3.18)

Where ht is a history of actions and observations. For continuous state spaces, belief
states are depicted as continuous probability density functions:∫

s
bt(s)ds = 1 (3.19)
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Belief States eliminate the need for tracking the exhaustive history of actions and
observations, making POMDPs solvable despite their complexity.

Agent Environment

Action

Observation

Fig. 3.1 Interaction between agent and environment in POMDP

Each time step allows the agent to receive new observations and update its belief
state using an appropriate filtering technique. Despite their utility, POMDPs are
generally considered intractable due to their computational complexity, making
offline solutions challenging to find. Moreover, POMDPs do not differentiate be-
tween actions intended for gathering information and those intended for altering the
state of the world. Instead, each decision at a time step depends on a probability
distribution over states (the belief state) rather than a single state, as in the case
of MDPs. This intricate interaction of the agent’s beliefs, actions, and observa-
tions highlights the sophistication and applicability of the POMDP framework in
sequential decision-making under uncertainty.

3.7 BeliefMDP

It is possible to frame POMDPs as MDPs over a continuous belief space. This way
of casting POMDPs is knowns as Belief-MDP or BMDP and reduces the 7-tuple
POMDP back to a 5-tuple. In other words, a Belif-MDP is a POMDP, seen as an
MDP over Belief space rather than State space [97]. This is a trick to make POMDPs
solvable without breaking the Markov assumption. The belief state is a probability
distribution over states.

BMDP = ⟨B,A,τ,r,γ⟩ (3.20)
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B the set of belief states, A is the action space, τ is the belief’s transition function,
r : B×A→ R is the reward function on belief states and γ is the discount factor. Let
b be the belief state at time t, the state estimator within the agent will have to update
the belief state to b′ after an action is taken and an observation is received. "I have
acted, what are the effects of my action?". This process will lead to a probability
distribution of probability distributions (a hyperbelief). Each belief state will have
|A| action node successors, for each action, there will be |O| possible observation.
For each (a,o) there is a posterior. Similarly to filtering, the process of updating
belief will se a prediction step ba = T (b), an observation Pr(o|a,b) and an update
step. This transition is computed as:

b′(s′) = Pr(s′|o,a,b) = Pr(o|s′,a,b)Pr(s′|a,b)
Pr(o|a,b)

=
Pr(o|s′,a)∑s Pr(s′|a,b,s)Pr(s|a,b)

Pr(o|a,b)
(3.21)

=
Z (o,s′,a)∑s T (s′,a,s)b(s)

Pr(o|a,b)
(3.22)

Pr(o|a,b) normalizes the expressions and enforces the condition ∑s b′(s) = 1. The
probability of a new state s′ will depend on the marginal probability of transitioning
to that state given a belief and the probability of observing o from s′. The BMDP
will have a transition function over belief space rather than state space. Hence, the
POMDP’s transition needs to be

τ(b,a,b′) = Pr(b′|a,b) = ∑
o∈O

Pr(b′|b,a,o)Pr(o|a,b) (3.23)

For continuous spaces:

τ(b,a,b′) = Pr(b′|b,a) =
∫

o
Pr(b′|b,a,o)Pr(o|a,b) (3.24)

The probability of observing a new belief state, given action, observation and previous
belief Pr(b′|b,a,o) can be written as:

Pr(b′|b,a,o) =

1 if Est(b,a,o) = b′

0 otherwise
(3.25)
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Another way of writing the updated belief can be using the delta of Kronecker:

Pr(b′|b,a,o) = δb′(Est(b,a,o) = b′) (3.26)

The term Pr(b′|b,a,o) represents the conditional transition density given some ob-
servation o. Additionally, the Pr(o|a,b) needs to be dealt with explicitly:

Pr(o|a,b) = ∑
s′

Pr(o|a,s′,b)Pr(s′|a,b) = ∑
s′

Z (s′,o)Pr(s′|a,b) = (3.27)

= ∑
s′

Z (s′,o)∑
s

Pr(s′|a,b,s)Pr(s|a,b) = ∑
s′

Z (o,s′)∑
s

T (s′,a,s)b(s) (3.28)

Additionally, P(o|b,a) can also be derived like this:

Pr(o|b,a) = ∑
s

Pr(o|s,a)b(s) (3.29)

Pr(o|s,a) = ∑
s′

T (s′|s,a)O(o|s′,a) (3.30)

Pr(o|b,a) = ∑
s

∑
s′

T (s′|s,a)O(o′|s′,a)b(s) (3.31)

Hence, the transition function can be written as:

τ(b,a,b′) = ∑
o∈Z

Pr(b′|b,a,o)∑
s′

Z (o,s′)∑
s

T (s′,a,s)b(s) (3.32)

(3.33)

For continuous state and action spaces:

τ(b′|a,b) =
∫

o
Pr(b′|b,a,o)

∫
s′
Z (o,s′)

∫
s
T (s′,a,s)b(s) (3.34)

The reward function is also expressed in terms of belief:

r(b,a) = ∑
s∈S

b(s)R(s,a) (3.35)

If the state estimator is constructed from a correct observation and transition model,
the belief state will respect the true state probability distribution, and r(b,a) com-
puted from belief will be correct.
BeliefMDP is on continuous space, so exact MDP solution techniques might be
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inefficient. Properties of the value function can be exploited for value iteration, but,
in general, all possible futures can not be enumerated.
Another way can be to solve the underlying MDP, assuming that the most likely point
in b is the real state. This assumption is valid for formulations where uncertainty is
not large.

3.8 Value Iteration

As the first MDP solution algorithm, it is worth introducing the classical value
iteration, as it helps better understand value and utility in sequential decision making
problems. The utility of a state U(s) can be computed as the immediate reward for
that state R(s) plus the expected discounted utility of the next state, assuming that
the agent chooses the optimal action:

U(s) = R(s)+ γ max
a∈A(s)

∑
s′

Pr(s′|s,a)U(s′) (3.36)

Equation 3.36 takes the name of Bellman Equation, and is the main component of
Value Iteration. In fact, value iteration consists of solving the Bellman equation over
all states of the system. If there are n states, there will be n equations to solve at the
same time. Each Bellman equation is nonlinear, as the max operator is nonlinear.
Therefore, the way to solve the large system of equations is an iterative process.
Initialize each state’s Utility with a random value, then compute the left-hand side of
the Bellman equation and update the Utility’s value. This process is called Bellman
update.

Ui+1(s)← R(s)+ γ max
a∈A(s)

∑
s′

Pr(s′|s,a)Ui(s′) (3.37)

∥Ui+1−Ui∥<
ε(1+ γ)

γ
← termination condition (3.38)

It is clear that this definition of value iteration requires an enumeration of all possible
states that the system can occupy and is, therefore, not applicable to continuous
domains without discretization. Furthermore, Value Iteration is a full-width algorithm
and scales poorly as the number of states increases.
Value iteration can be adapted to POMDPs. Let the utility of a fixed conditional plan
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starting from state s be: αp(s). The expected utility of executing this plan will be:

E(αp(s)) = ∑
s

b(s)αp(s) = b ·αp(s) (3.39)

U(b) =Uπ∗(b) = max
p

(b ·αp(s)) (3.40)

Utility varies linearly with belief given a fixed conditional plan. Therefore, the max
operator will choose piece-wise segments of these hyper-planes, leading to a convex
function over belief that corresponds to the union of all the dominating segments of
the belief-plan expected utility curves. Let p be a conditional plan of depth d with
initial action a with a sub-plan of depth d−1 for observation o be p.o.

αp(s) = R(s)+ γ

(
∑
s′

Pr(s′|s,a)∑
o

Pr(o|s′)αp.o(s′)

)
(3.41)

It is essential to prune dominated plans to mitigate the problem’s growth. Quoting
Russel and Norvig directly [92], Value Iteration is "hopelessly inefficient for larger
problems." For n conditional plans at depth d, VI produces |A|n|O| conditional plans
at depth d +1. Where |A| is the size of the action space, and |O| is the size of the
observation space. Despite efforts to make Value Iteration work for continuous
spaces [98, 99], more efficient sampling-based algorithms have been developed
specifically to improve scalability.

3.9 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an anytime, sampling-based tree search algo-
rithm. MCTS used for planning has a long and rich history of practical applications,
especially for building game-playing AI. It has been applied to solving MDPs by
[100] because of its efficiency in dealing with large problem spaces that can not
be easily enumerated. The algorithm is composed of a sequence of two alternating
phases - a Tree Search phase, followed by a Rollout phase. The algorithm alternates
Tree Searches and Rollouts until the allocated computational resources are exhausted.
The tree search phases use sparse sampling to generate a tree of alternating state-
action nodes. It starts from a root node s0; the first layer consists of action samples
∼ A(s1); the second layer expands the action nodes of the first layer, sampling a state
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from the state distribution that arises from taking action a1 from state s1. Subsequent
layers will repeat this pattern of alternating state-action nodes. The search phase
moves along the existing tree by starting at the root note and then deciding what node
to visit by finding the child node with the maximum UCT value. The meaning and
formulation of UCT will be expanded later, but for now, it is sufficient to imagine
choosing what child node to visit as a value maximization problem that balances
exploiting promising states and exploring less-beaten paths. A Rollout is performed
after a leaf node sl is reached (a node that does not have any children) [101]. Rollouts
are the application of a rollout or Default policy from state sl [102]. A Rollout policy
aims to estimate the value of a leaf node without exploring the tree further. This is
achieved by using a pre-defined policy to select a number of actions after the leaf
node. The value accrued during the rollout is treated as an estimate for the leaf
node’s values. There is no pre-defined way to design a rollout policy. Many options
are available; rollout policies can either be deterministic or stochastic, and rollouts
could even directly map leaf state to value if a heuristic is available. A well-designed
rollout policy will bias the agent’s decision-making toward the goal. The algorithm
is recapped in Algorithm 1. In its simplest form, the time complexity of MCTS is
O(Id), where I is the number of iterations and d is the depth of the rollout search.
Figure 3.2 shows how MCTS balances exploration and exploitation.

Algorithm 1: MCTS high level algorithm
1 MonteCarloPlanning(s0 ∈ S)
2 Create root node v0;
3 while !Timeout do
4 vl = TreePolicy (v0);
5 ∆ = Rollout (s(vl));
6 Backup (vl,∆);
7 end
8 return bestAction(v0);

3.10 Exploration / Exploitation in MCTS

Upper confidence in Trees (UCT) and Upper Confidence Bound (UCB) are algo-
rithms developed to solve exploration-exploitation decision-making problems. From
a historical perspective, UCB emerged first from research on multi-armed bandits.
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(a) Bredth First Search (b) Monte Carlo Tree Search

Fig. 3.2 Visual difference between states visited using Breadth First Search and
MCTS

A multi-armed bandit is an imaginary machine with N arms. Each arm is
associated with an unknown reward probability distribution, and arm pulls yield a
sample r ∈ [0,1] from that distribution. At each time step, the user can pull any arm,
and the objective is to maximize reward, given a limited number of pulls. A lever
pull at time t is written as at ∈ [1, . . . ,N], and it represents the index of the arm being
pulled. The UCB algorithm can be used to estimate the expected value Qi,t of the
i− th arm using both time t and the total number of times the arm has been chosen
prior to time t (ni,t). c is a constant that modulates exploration vs exploitation.

Qi,t =
∑

t
s=1,a=i rs

ni,t
(3.42)

UCBi,t = Qi,t + c

√
ln t
ni,t

(3.43)

UCT extends UCB by applying it to tree exploration problems. Each node in the
tree is treated like a multi-armed bandit. In MCTS, the UCB score for a node is
computed for each child s′ of node s, and used to select what child to move to.

UBCs′ = Q(s′)+ c

√
lnn(s)
n(s′)

(3.44)



3.10 Exploration / Exploitation in MCTS 53

The reward of new nodes is estimated using random rollouts. Reward is then
propagated backward using an averaging backup procedure to update the estimated
reward for each node in the path.

n(s) = n(s)+1 (3.45)

Q(s)← Q(s)+
R−Q(s)

n(s)
(3.46)



Chapter 4

System-level autonomy algorithms

This chapter details the core technical contribution of this dissertation, and outlines
EELS’ system-level planning problem and the methodologies used to address it. It is
broadly divided into five sections. The first section introduces the mission planning
problem. The second section frames it solely as a task planning problem cast as a
Partially Observable Markov Decision Process (POMDP). The third section extends
this task planning problem to encompass both task and motion planning. The fourth
section presents a POMDP approach to solving this combined Task and Motion
Planning (TAMP) problem. The final section formulates the TAMP problem as a
novel Mixed-Integer Linear Programming (MILP) based approach.

4.1 EELS activity planning

The initial step when formulating a planner is to define the problem that needs to be
solved clearly. The lack of a precise response will potentially result in a system that
fails to meet the correct requirements.

In the context of the EELS system, an initial use case for system-level autonomy
was the need for resilience to perception failures during surface mobility operations.
The focus is explicitly set on exteroception failures caused by environment unob-
servability or other non-hardware-related issues. This is because this work’s focus is
on failures that can be recovered by changing the robot’s behavior, and not just by
hardware redundancy, or by proceeding with degraded localization strategies. In the
event of perception failure, the robot must rely solely on proprioceptive feedback
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Fig. 4.1 Advantages of generating a plan that accounts for motion and scanning
behaviors when compared to a plan without scans. State uncertainty is represented
as a shaded blue area, and the mean trajectory as a dashed red line. The image shows
how introducing a scan into the plan allows the agent to take an overall shorter path
from start to goal thanks to improved state knowledge and lower collision risk with
the obstacle.

(such as integrating data from an IMU and using encoders to estimate shape), leading
to rapid growth of state uncertainty. Proprioceptive navigation in an environment
riddled with hazards is undoubtedly perilous. However, the robot can utilize certain
behaviors, like zero velocity updates [103] for the proprioception stack and scanning
for exteroception, to decrease state uncertainty. The EELS system can perform scan
behaviors, allowing the robot’s perception sensors to move out of the degeneracy that
caused the failure and relocalize against the map it has constructed. The challenge is
determining the ideal moment to trigger these behaviors, as the robot’s tolerance for
state uncertainty should decrease as environmental hazards become more substantial.
Neither the perception nor control modules possess the comprehensive knowledge to
make these decisions independently. Thus, a system-level planner becomes necessary
to harmonize perception and control/planning.
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Having narrowed down the problem to a specific use case, the next step is to
decide how to model it. The starting point is the definition of a state space. Adding
too much detail to the state space will make the problem much harder to solve, so it
is essential to add the least amount of information necessary to describe the problem
fully and nothing more. For example, the robot’s full joint state could be part of
the problem’s state space, alongside bus voltage and drive temperatures, but this
information would not be relevant to answering the high-level question of when to
perform relocalizing actions. For the level of abstraction needed, it would be feasible
to consider the robot as a point mass defined by its spatial coordinates. A further
decision that affects the tradeoff between model fidelity and traceability is whether
these spatial coordinates are continuous or discretized:

• X ∈ R A continuous state space

• X = {0≤ x≤ N, x ∈ N} A discrete state space

The focus is on continuous state space for formulations to increase model fidelity.
After defining the state space, the problem becomes defining an action space. The
surface mobility mission planning problem has been sufficiently constrained to
narrow down the action space to "moving" and "scanning." The main question is
whether the movement is a binary move or scan action along a predetermined path
or whether the mission planner should have greater control over its action space.

• A ∈ {Move,Scan}

• A ∈ {Rn,Scan}

In the following sections, state space will always be continuous, but the action
space will be incrementally made more complex, starting from a binary move-scan
scheduling along a predetermined path to a full integrated task and motion planning
formulation.
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Recapping, for a 2D move scan scenario, the problem can be defined as:

S = R2 (4.1)

A = {U ∈ R2, Scan} (4.2)

X ∈ S (4.3)

Xk+1 = AXk +BUk +N (0,Σ) (4.4)

Xk+1 = Xk (4.5)

Ω = R2 (4.6)

Z = /0 (4.7)

Z = X (4.8)

4.2 EELS Move Scan scheduling

Let the state be a continuous random variable X ∈ RNx , where Nx is the number
of dimensions of the state vector. This leads to a continuous state space S ∈ RNx .
Let there be a discrete action space with Na distinct actions A = {a1, . . . ,aNa}. A
minimal assumption that needs to be made is that the world is Markovian. That is
to say, the state at time k+1 is only affected by the state and the decision made at
time k. Under this assumption, the action ak will determine what transition function
is applied: Xk+1 = f (Xk,ak). Let m(x) be the stability margin for a state x ∈ S. The
concept of stability margin is equivalent to stating the probability of a state being
considered unsafe. Let tm be the time passed since the last information gain action.
The move-scan problem can be modeled as a POMDP tuple as follows:
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POMDP = ⟨S,A ,T,O,R,γ,Z ⟩ (4.9)

S = {X , Ẋ , tm,m(X)} ∈ RNx×RNx× [0,∞)× [0,1] (4.10)

A = {move,stop} (4.11)

T = p(sk+1|sk,ak) =



sk+1 =


Xk

0

tm

m(Xk)

 , ak = stop

sk+1 =


Xk + Ẋk∆t

πC2(Xk)

tm +∆t

m(Xk + Ẋk∆t)

 , ak = move

(4.12)

Rk = 1Sgoal(sk) (4.13)

O = {Ẋ ,m} ∈ RNx× [0,1] (4.14)

Z (oẊ |st+1,at) =

0 at = stop

Ẋk+1 +N (0,Σz
√

t) at = move
(4.15)

Z (om|st+1,at) = m(Xk+1) (4.16)

γ = 0.95 (4.17)

Pr(m(X)≥ ε)≥ 1−∆ (4.18)

Note that there is no uncertainty in the observation function for the stability
margin. This does not mean that mk+1 is deterministic though, as its uncertainty
will come from the uncertainty over X , not in the observation itself. Additionally,
πC2 is a controller policy that maps the agent’s belief over state to a velocity input
πC2 : B(s)→ Ẋ . In practice, this policy maps the belief’s mean to a control action
directed toward the goal with constant speed u.

Note that there is no uncertainty in the observation function for the stability
margin. This does not mean that mk+1 is deterministic though, as its uncertainty
will come from the uncertainty over X , not in the observation itself. Additionally,
πC2 is a controller policy that maps the agent’s belief over state to a velocity input
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πC2 : B(s)→ Ẋ . In practice, this policy maps the belief’s mean to a control action
directed toward the goal with constant speed u.

π
C2 =

sgoal−E(B(s))
∥sgoal−E(B(s))∥

u (4.19)

The observation model for velocity Ẋ follows the growth trend that would be
expected by integrating a white noise signal deriving from thermo-mechanical IMU
fluctuations. The specifics of the growth function and uncertainty model can be
easily exchanged, as they impact only the belief update step. Additionally, there
are two ways of writing the chance constraint over m. The first one (which is the
one included in the formulation) states that the probability of the stability margin
begin in a safe range has must not be lower than a risk tolerance. The second way of
stating this is a deterministic formulation. Given that m is a probability distribution,
it is reasonable to use it’s maximum value, or some other measure such as CVar.

Pr(m(X)≥ ε)> 1−∆ (4.20)

m≥ ε (4.21)

Lastly, the formulation could be enhanced with chance constraints over the
probability of reaching the goal. This constraint is left out of the initial formulation,
as it adds needless computational complexity.

E(1Sgoal(s))≥ 1−∆ (4.22)

In practice, the agent has not enough information to infer Sk, but needs to reason
about its Belief over the state B(Sk). Reasoning over belief space, rather than state
space allows us to cast this POMDP as a BMDP and solve it as a MDP. Uncertainty
over position is assumed to be normally distributed B(X),∼N (µX ,ΣX). Velocity
follows a similar pattern: B(Ẋ) ∼N (µ Ẋ ,ΣẊ). Additionally, it can be noted that
there is no uncertainty over move time t, and note that uncertainty over stability
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margin in general is both non-gaussian and multi-modal. The belief-MDP can be
written as:

BMDP = ⟨B,A ,τ,R,γ⟩ (4.23)

B(s) =


N (µX ,ΣX)

N (µ Ẋ ,ΣẊ)

t
B(m)

 (4.24)

A = {move,stop} (4.25)

τ = p(bk+1|bk,ak) =


µX ,ΣX

µ Ẋ ,ΣẊ

t
p(m(X))


k+1

=




µX ,ΣX

0,0

0

Est(p(m(X)))

 ak = stop


Est(µX ,ΣX)

Est(µ Ẋ ,ΣẊ)

t +∆t

Est(p(m(X)))

 ak = move

(4.26)

R = E(1Sgoal(s)) (4.27)

γ = 0.95 (4.28)

Now, the focus can be moved on to how to perform belief updates. The transition
function is trying to identify what the next belief state is, given the previous belief
state and an action. For dynamics as simple as those described for the EELS use
case, it is sufficient to use recursive Bayesian estimation techniques to perform the
belief update step for X and Ẋ .

4.2.1 Belief updates

Belief updates are needed to keep track of the agent’s belief state as actions are
progressively performed, and observations are received following each action. Note
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that both state and observations are random variables. Transition dynamics are
assumed linear. In general, the POMDP’s state transition dynamics can be written
as:

Xt+1 = FXt +GUt +Wt (4.29)

Where X is the state vector, F is the state transition matrix, G is the control matrix,
U is the control vector, W is the process noise, t is the time step. The system can
receive noisy observations from a subset of the state variables.

Zt = HXt +Vt (4.30)

Where Z is the observation vector, H is the observation matrix, and V is the process
noise. Both process and observation noise are modeled as Gaussian distributions
N (µ,Σ). The probabilities of transition and observations are conditioned on the
previous state: p(Xt+1|Xt) and p(Zt |Xt).

p(Xt+1|Xt) = F p(Xt)+W = FN (Xt ,Pt)+N (0,Σm) (4.31)

p(Zt |Xt) = H p(Xt)+V = HN (Xt ,Pt)+N (0,Σo) (4.32)

These probabilities can be written as a Bayesian inference problem that consists of
finding the posterior distribution of state, given a prior, likelihood, and observation.

p(Xt |Zt ,Xt−1) =
p(Zt |Xt ,Xt−1)p(Xt |Xt−1)

p(Xt)
(4.33)

Following these considerations, the belief update can be written as a Kalman Filter,
which is a simple recursive Bayesian filter. Conceptually, the Kalman filter can be
divided into two operations. Firstly, a posterior prediction uses the prior belief and a
system model to estimate the system’s evolution. The second part of the filter is an
update that incorporates the measurement into the prediction. More formally, the
prediction step at time t predicts the system state at time t +1, denoted as X̂t+1. The
system’s covariance growth is also propagated by adding process noise.

X̂t+1 = FXt +Gut (4.34)

P̂t+1 = FPtFT +Q (4.35)
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The update step can be written as:

Kt = P̂t+1HT (HPt−1HT +Rt)
−1 (4.36)

Xt+1 = X̂t+1 +Kt(zt−HX̂t+1) (4.37)

Pt+1 = (I−KtH)P̂t+1(I−KtH)T +KtRtKT (4.38)

(4.39)

Where I is the innovation matrix, and K is known as the Kalman gain. Kalman
filters can be used for systems with linear dynamics whose uncertainty distribution
can be approximated by a Gaussian distribution. Non-linear dynamics can be dealt
with using linearization techniques (e.g., Extended Kalman Filter). In general,
problems that are characterized by multi-modal uncertainty distributions require
more sophisticated belief update techniques.

4.2.2 Tracking on 2D plane with noisy velocity observations

The move-scan BMDP formulation outlined in Section 4.2 presents a belief update
problem that can be in part interpreted as tracking an agent on a 2-D plane, given a
deterministic state transition function and measurement noise. During exteroception
failures, the agent can only observe its velocity. Noise in the uncertain velocity
observations can be modeled as a Gaussian distribution around a mean µx, with
variance σẋ and σẏ. The system starts from a state of low uncertainty X0, P0. Let
(x,y) be a Cartesian reference frame, the state transitions can thus be written as:

X =


x
y
ẋ
ẏ

 Xt+1 =


xt + ẋtdt
yt + ẏtdt

ẏt

ẋt

 (4.40)

The other matrices that make up the Kalman Filter can be written as:

P =


σx σxy σxẋ σxẏ

σyx σy σyẋ σyẏ

σẋx σẋy σẋ σẋẏ

σẏx σẏy σẏẋ σẏ

 F =


1 0 dt 0
0 1 0 dt
0 0 1 0
0 0 0 1

 H =

(
0 0 1 0
0 0 0 1

)
R =

(
σ2

ẋ 0
0 σ2

ẏ

)

(4.41)
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(a) Straight-line path (b) Curved path

Fig. 4.2 Kalman filter for deterministic linear 2D motion with noisy velocity measur-
ments

This filter is easy to implement and accurately estimates position depending on
the measurements’ noise. Results can be seen in Figure 4.2, where it is clear that the
filter can estimate a variety of motion profiles.

4.2.3 Estimating stability margin

In contrast with the ease of estimating state uncertainty due to motion, updating the
stability margin requires more elaboration. The robot can observe the world around
it and evaluate the probability that each pose exceeds the stability margin Pr(m(X)≥
m). In general, it can not be known what shape this probability distribution will
follow X ∈R2. For simplicity, though, a Bernoulli distribution is assumed Pr(m(X)≥
m)∼ Ber(m(s)). When trying to find the probability distribution of m, the theorem
of total probability can be used:

p(m) =
∫

s∈S
p(m|b(s))b(s)ds (4.42)

As can be seen from Figure 4.3, even though state uncertainty can be modeled
as a Gaussian, the probability distribution of m, given position uncertainty, does
not have a shape that can be known a priori. Furthermore, it can be noted that this
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distribution is multimodal in the general case. In the image, the stability margin’s
distribution is estimated with a sampling-based approach and shows three peaks,
being zero elsewhere. The first peak in the distribution refers to empty space (m = 0),
while the second and third peaks refer to the two likely obstacles close to the agent’s
belief mean. One obstacle has a uniform probability of being an obstacle of 0.45, and
the second obstacle has a higher likelihood of 0.75. These two are the corresponding
peaks in the stability margin distribution. Since there is no closed form solution to
Equation 4.42, the path to follow is to find an approximation to that solution with
Monte Carlo Integration.

(a) Position belief and map of stability mar-
gin probability estimates

(b) Stability margin distribution at a
given position belief

Fig. 4.3 Showcase of the stability margin’s non-Gaussian, multi-modal probability
distribution, given a position belief

It is also worth spending a few paragraphs explaining the termination condition.
The objective of this formulation is to ensure the agent agent will make a sequence of
decisions aimed at reaching a goal position with a high probability. A way to frame
this question is to ask when the probability that the agent is within a circular region
of radius ρ centered in the goal region (xg,yg) exceeds a threshold ∆, given that
the agent’s state probability distributions is a 2D Gaussian distribution N (µx,Σ).
Essentially, this problem revolves around integrating the distribution within a circular
region. A good starting point is to simplify the problem to a 1D case. Cutting a circle
with a non-tangential plane yields an interval, therefore the integral of the belief
distribution N (0,σ2) over the interval [x0−ρ,x0 +ρ] needs to be computed.
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p(x ∈ xgoal) =
1√

2πσ

∫ x0+ρ

x0−ρ

exp
(
− x2

2σ2

)
dx (4.43)

This integral is easily solvable by recalling the concepts of cumulative density
function φ(x) and error function for normal distributions:

φ(x) =
1

2π

∫ 0

−∞

exp
(
− t

2

)
dt, erf(x) =

2√
π

∫ x

0
exp
(
− t

2

)
dt (4.44)

(4.45)

Even though the error function is approximated numerically, there are many, well
documented, efficient algorithms that do so:

1√
2πσ

∫ x0+ρ

x0−ρ

exp
(
− x2

2σ2

)
dx =

1
2

[
erf
(

x0 +ρ√
2σ

)
− erf

(
x0−ρ√

2σ

)]
(4.46)

When moving to the 2D case, solving the integral over a circular region becomes
impossible. Firstly, an assumption of isotropic covariance matrix is made: σxy =

σyx = 0, σx = σy = σ . A further assumption is that the distribution’s mean µ is
located in the Cartesian coordinates (0,0). Hence, the probability density function
can be expressed as:

f (x,y) =
1√

2πσxσy
exp

[
−

(
(x− x0)

2

2σ2
x

+
(y− y0)

2

2σ2
y

)]
(4.47)

Our objective is to integrate this expression over the ball of radius ρ , centered in
(xgoal,ygoal)

∫∫
Bρ (x0,y0)

f (x,y)dxdy =
1√

2πσ2

∫∫
Bρ (x0,y0)

exp
(
− 1

2σ2 (x
2 + y2)

)
(4.48)
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There is no closed-form solution to this integral. Once again, intractable integrals
as this can be approximated using Monte Carlo Integration. The approach consists
of extracting N samples from the belief distribution and comparing how many of
these samples fall in the goal region (Ni) against the number of samples outside the
goal region (No).

∫∫
Bρ (x0,y0)

f (x,y)dxdy≈ Ni

No +Ni
(4.49)

Note that as the number of samples approaches infinity, this expression becomes
exact.

lim
N0+Ni→∞

Ni

No +Ni
=
∫∫

Bρ (x0,y0)
f (x,y)dxdy (4.50)

Sampling is expensive, and since termination condition checking needs to occur
any time a state is evaluated, reducing the computational burden of this operation is
critical to improve solver performance. Thus, this faster yet inexact method is used to
determine whether termination conditions are met. In practice, there is an additional
check if the position’s mean is within the goal region and enforce a constraint over
the state’s covariance matrix using an empirically determined threshold εΣ.

∥E(B(x))−xgoal∥ ≤ ρ (4.51)

Tr(Σ)≤ εΣ (4.52)

4.2.4 Solving the POMDP formulation

This model was implemented using the Julia POMDP library [104] due to its ease of
use and the wide number of solvers available for benchmarking. Since the problem’s
state space is continuous, one-shot solving algorithms such as value iteration were
avoided in favor of anytime algorithms. A variation of MCTS called MCTS-DPW
[105] was selected for this work. This search algorithm distinguishes itself from
vanilla MCTS by introducing the concept of Double Progressive Widening (DPW).
In fact, MCTS is not well suited for continuous state spaces as each action node
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will potentially have infinite successor state nodes. Thus, the algorithm will keep
expanding state nodes that are very similar to each other and will never reach
significant search depth. MCTS-DPW is designed to improve the lack of search
depth that regular MCTS has for continuous state spaces by providing fine control
over the search’s branching factor. Two user-defined controls α,k ∈ R determine
whether a leaf node is expanded or not. Specifically, a node will be expanded only if:

n < knα (4.53)

Where n is the node’s visit count. All of these aspects are illustrated in Figure 4.4,
which shows how samples over the agent’s position belief propagate over time under
two different chance constraints. The color progression indicates time progression,
where magenta represents the simulation’s last step, while turquoise represents the
start. The red dot is the goal, and the grey rectangle is an area with a high probability
of being an obstacle. It can be observed how a low-risk tolerance will schedule an
information gain action in the obstacle’s proximity to ensure a low probability of
intersecting that obstacle. On the other hand, a high-risk tolerance will allow state
uncertainty to grow without scheduling scans.

(a) Low risk tolerance (b) High risk tolerance

Fig. 4.4 Position belief over time in the presence of obstacle. The red dot represents
the goal, the other dots are samples from position belief over time, and the white box
is an obstacle

Note that the action space for this planner is only activities. This means that a
lower-level planner must provide the path. Since the belief propagation model is a
straight-line control input toward the next goal, the inclusion of curved paths in this
POMDP formulation can be achieved by breaking them up into dense sequences of



68 System-level autonomy algorithms

Fig. 4.5 Multi waypoint path move-scan POMDP agent simulation

waypoints W = w1, . . . ,wn, and enforcing the termination condition on covariance
only for the last waypoint. The idea of an active waypoint i is introduced so that the
controller policy πC2 becomes a straight-line movement from the current belief state
to the current waypoint:

π
C2 =

xWi−E(B(s))
∥xWi−E(B(s))∥

u (4.54)

. The active waypoint can be incremented by checking whether the belief state’s
mean is within a circle of radius ρ of that waypoint. For i < |W |, the conditions for
incrementing i can therefore be written as:

∥xWi−E(B(s))∥< ρ i < |W | (4.55)

The last point in the path has different termination conditions to ensure that the final
goal is reached.

∥xWi−E(B(s))∥< ρ

Tr(Σ)< εΣ

i = |W | (4.56)

Figure 4.5 shows an example simulation of this agent’s decisions over a sequence
of waypoints in a map with three obstacles. The agent tends to stop more often when
approaching obstacles or when getting close to the end goal.
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4.3 Task And Motion Planning

The previous move-scan problem formulation assumes that there is a low-level
planner that generates a path. A better performance can be achieved if the planner
jointly reasons about path selections and scan scheduling. Depending on how
expensive scanning is, the agent could keep farther or closer from obstacles. A
joint optimization of tasks and motion falls under the realm of Task And Motion
Planning (TAMP). Task and motion planning aims to solve a problem that includes
elements of continuous space motion planning, discrete space task planning, and
discrete-continuous programming [106]. Each field in isolation is not suited to tackle
the combined problem, yet a unified formulation allows building agents to operate
in unstructured environments. The classic example of a TAMP problem requiring
a unified solution is a kitchen robot that needs to cook a dish. The elements of
task planning are figuring out the sequence of actions to take (open drawer, take
ingredients, process ingredients, cook, etc.) and the trajectories that need to be
taken to perform these actions. A critical insight that motivates TAMP as a hybrid
discrete-continuous approach is that the world’s configuration space is highly modal.
So, this structure can be exploited by planning both tasks (what mode to plan in) and
performing detailed planning for each mode. The following sections will examine
various task and motion planning approaches applied to the EELS move-scan use
case.

4.4 POMDP TAMP

The core difference between this formulation and the move-scan activity scheduling
formulation presented in section 4.2 lies in the action space choice. The agent’s
action space is imagined as a mix of discrete activities a ∈ A and discretized control
inputs u ∈U . Although continuous control inputs could be used in principle, doing
so would further decrease the problem’s computational tractability.

A = {U,A}= {u1, . . . ,unu,a1, . . . ,ana} (4.57)

In the EELS surface mobility case, A = {scan} and U is the versor that determines
the control input’s direction on a 2D space, discretized in 8 actions.
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U =

{
[0,1], [1,0], [0,−1], [−1,0],

[
1,1
∥1,1∥

]
,

[
−1,−1
∥−1,−1∥

]
,

[
1,−1
∥1,−1∥

]
,

[
−1,1
∥−1,1∥

]}
(4.58)

Additionally, the assumption is made that the robot’s transition function can be
expressed as a linear system with action-dependent transition dynamics.

Xk+1 =
akAXk +

akBUk +
akQw (4.59)

A consequence of including a velocity control input in the action space is that
the velocity vector Ẋ can be excluded from the state space. A further assumption is
that the system can move at a constant velocity v. Unlike the previous formulation,
the assumption that the controller can execute the control policy without error is not
made. A constant process noise of N (0,Σ) is applied every time a move action is
performed. Assuming perfect execution would eliminate the uncertainty source.
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POMDP = ⟨S,A ,T,O,R,γ,Z ⟩ (4.60)

S = {X ,m(X)} ∈ R2× [0,1] (4.61)

A = {U,scan} |A|= 9 (4.62)

T = p(sk+1|sk,ak) =


sk+1 =

 Xk

m(Xk)

 ak = scan

sk+1 =

 Xk +ukv∆t +N (0,Σ)

m(Xk +Xk +ukv∆t +N (0,Σ))

 ak = u ∈U

(4.63)

R = 1Sgoal(sk) (4.64)

O = X ,m ∈ R2× [0,1] (4.65)

Z (oX |sk+1,ak) =

Xk ak = scan

∅ ak = u ∈U
(4.66)

Z (om|sk+1,ak) =

m(Xk+1) ak = scan

∅ ak = u ∈U
(4.67)

γ = 0.95 (4.68)

Pr(m(Xk)≥ ε)≥ 1−∆ (4.69)

Similarly to the previous case, the agent does not have enough information about
its state to plan accurately. Therefore, planning will have to occur in belief. Firstly,
position uncertainty is assumed to be distributed as a Gaussian Xk ∼N (µX ,ΣX).
The equivalent MDP over belief space can thus be formulated as:
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BMDP = ⟨B,A ,τ,R,γ⟩ (4.70)

B(s) =

[
N (µX ,ΣX)

B(m)

]
(4.71)

A = {U,scan} (4.72)

τ = p(bk+1|bk,ak) =

[
µX ,ΣX

p(m(X))

]
k+1

=



 µX ,0

Est(p(m(X)))


k

ak = scan Est(µX ,ΣX |oX)

Est(p(m(X))|om)


k

ak = u ∈U

(4.73)

R = E(1Sgoal(sk)) (4.74)

γ = 0.95 (4.75)

Pr(mk(X)≥ ε)≥ 1−∆ (4.76)

While stability margin can be estimated in the same way as for the non-TAMP
POMDP formulation, there are fundamentally different considerations to be made
about the belief update. What previously was a Kalman Filter akin to tracking an
object on a 2D plane with noisy observations now just consists of tracking open
loop motion based solely on a dynamics model and perfect knowledge of the control
inputs. Consider a system that follows these dynamics:

Xk+1 = Xk +Ukdt +N (0,Σ) (4.77)

The case of open-loop motion with no observations is now considered. Process noise
and control input are assumed to be known and can be used to track belief over the
system’s position. The Kalman filter’s update step can be used to propagate belief
over time.

X̂k+1 = FXk +GUk +wk (4.78)

P̂k+1 = FPkFT +Q (4.79)
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Note that since the system dynamics have zero mean noise, w = 0.

X =

(
x
y

)
U =

(
u
v

)
Q =

(
σ2

n 0
0 σ2

n

)
F =

(
1 0
0 1

)
G =

(
dt 0
0 dt

)
(4.80)

Therefore, a continuously growing covariance characterizes this filter.

4.4.1 Reward shaping

Central to decision-making algorithms is formulating and shaping a reward func-
tion. It has been argued that intelligence itself arises from the process of reward
maximization [107]. Furthermore, all decision-making algorithms can be framed as
cost-minimization or reward-maximization exercises. In Monte Carlo Tree Search,
the immediate action with the highest expected reward is chosen after the search
phase has exhausted all its computational resources. Hence, shaping reward involves
defining the function that maps the state to a reward signal. The first type of reward
structure that comes to mind is assigning a positive reward for states that are in the
goal set and no reward otherwise. In other words, this structure can be explained as
rewarding only the ultimate goal’s achievement. Formally, this can be written as an
indicator function:

R = 1Sgoal(s) (4.81)

Another way of writing this reward structure is:

Rk =

1 if: Sk ∈ Xgoal

0 if: Sk /∈ Xgoal
(4.82)

When the reward is so sparsely distributed, the agent cannot distinguish between
good and bad actions, as each option seems equally unappealing. This is because the
search and rollout phase of MCTS never visits goal states and thus never receives
any reward. All action nodes will have an expected reward of 0, and an action will be
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selected randomly - as the agent must always choose until the goal has been achieved.
Random choice leads to Brownian motion interleaved with environment scans.

There are multiple ways to address the issue of sparse rewards. The most trivial
is to increase search depth until search and rollouts visit the goal state. This approach
bears the obvious drawback of being computationally infeasible for anything but the
most trivial problems and is especially ill-suited for continuous state spaces. As seen
in Figure 4.6a, a sparse reward function will lead to states visited through a process
of diffusion. Search depth would have to be increased up to the point where it would
take days to make a single decision - even for maps that can be solved optimally by
50 actions. A better way of dealing with sparsity is to engineer a reward function
that provides continuous feedback to the agent in the form of non-sparse rewards that
gradually guide the agent toward the goal. Such a function could be either an explicit
reward model or a custom rollout function that maps leaf node belief state directly to
a reward without simulating any decision steps. In other words, search depth can be
reduced if a continuous reward gradient guides the agent toward its goal.

(a) Sparse reward (b) Potential field reward

Fig. 4.6 Visualization of the tree search phase using MCTS and different reward
functions.

Given that the goal of this task and motion planning agent is to reach a position
in space, a simple reward structure could be a global, convex potential field with a
maximum centered on the goal. This is similar to the cost-to-go heuristic applied
in A*. The implementation details of this function are not so important, as it is
sufficient that the reward of state s1 is greater than the reward of state s2 if and only if
the Euclidean distance between s1 and the goal is smaller than the distance between
s2 and the goal:
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R(s1)> R(s2) ⇐⇒ ∥µx1− xgoal∥< ∥µx2− xgoal∥ (4.83)

A few examples used throughout this work are 2D Gaussian distributions centered
around the goal and evaluated at state sk, and the inverse of the distance between sk

and the goal.

1R(sk) =
1√
2π

exp

[
−

(
(µxk− xgoal)

2

2
+

(µyk− xgoal)
2

2

)]
(4.84)

2R(sk) =
1

∥µx−xgoal∥
(4.85)

In Figure 4.6, the custom reward structure’s guidance of the search toward the
goal is clearly visible. This figure visualizes a single tree search phase by plotting the
states visited during this phase. On the left side, sparse rewards lead to the expansion
of states without any preferential direction, as MCTS perceives no reward. On the
right side, a continuous reward field pushes the agent to consider states gradually
closer to the goal.

With this reward structure, the agent will choose actions that move toward the
goal, and the chance constraints will make the agent avoid obstacles. Additionally,
the chance constraints bias the agent to select information-seeking actions when state
uncertainty is high and obstacles are nearby.

Excessively greedy strategies emerge when following Euclidean-distance-based
reward structures. The agent will get stuck in locations where the optimal choice
is to incur a cost for a number of steps greater than the search horizon. This type
of cost-incurring is necessary when getting out of local reward maxima caused by a
concave obstacle interposed between the agent and the goal. In these circumstances,
the agent expects more reward by staying in place rather than trying to move around
the obstacle. The agent is not aware of the full reward field and is not aware that
incurring costs for n steps will lead to more rewards overall. Thus, the behavior
that maximizes expected reward over the search tree horizon will be to orbit the
local maximum. Figure 4.7 shows an example of such a local reward maximum. It
is worth noting that increasing search depth will yield better behavior as the agent
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Fig. 4.7 Failure case of reward function shaped as a potential energy field.

might be able to perceive that it is in a local maximum by visiting high reward states
outside of the peak. Unfortunately, it is impossible to guarantee that the agent will
never get stuck without infinite computational resources.

Local reward maxima can be eliminated by approximating the cost to reach the
goal from each point in the state space. To do so, a reward map needs to be computed
and then fed to a reward function in MCTS that will query this map.

An easy way of computing a reward map is by leveraging an A* path from start
to goal positions. The reward function can thus be expressed as the sum of the
distance between the agent and A* path and the distance from the closest point on
the path to the goal following the path. Let P be the ordered set of points that make
up the A* path from x0 to xgoal. The distance from the agent’s state sk to the path can
be written as xsP = min{∥µx− x∥ | x ∈ P}. Additionally, the index of the minimum
distance point along the path can be written as isP = {i | i ∈ {1, . . . , |P|}, P[i] = xsP}.
Thus, the reward function can be seen as the sum of two functions:

R(sk) = f (xsP)+ f (|P|− isP) (4.86)

As in the previous case, the exact details of these two functions are not crucial so
long as there are perceivable reward gradients. If ∇( f (xsP))≫ ∇( f (|P|− isP)), the
agent will favour moving toward the path. This becomes relevant in cases where the
path passes between two obstacles that can not be passed without violating safety
constraints. In these circumstances, if the reward of reaching the path is much higher
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Fig. 4.8 Failure case of using a path generated with A* as part of the reward function.

than the reward of progressing along the path, the agent risks getting stuck behind
obstacles. On the other hand, if the path runs parallel to a thin wall structure and the
attraction toward the path is not strong enough, then the agent could get stuck on
the "wrong side" of the wall, progressing until it gets trapped behind the obstacle. A
visual example of this reward strategy failing to find yield desirable behavior can be
seen in Figure 4.8. In the image, the agent gets stuck behind a wall and would need
to incur costs by backtracking along the path to get back on the correct side of the
obstacle. Some of these issues can be mitigated by planning the optimal path over
an inflated obstacle set. Additionally, this reward structure’s failure modes can be
entirely mitigated by recomputing the optimal path every few actions at the cost of
additional computational overhead.

Another way to further improve the reward structure and achieve a mixture of
long-term path planning mixed with short-term obstacle avoidance and opportunistic
reward maximization is to leverage a Probabilistic Roadmap (PRM) [108]. The core
idea is that a PRM allows approximating the underlying cost of each state without
precomputing a full cost map. First, a set of points is randomly sampled through
the state space. Samples falling within obstacles are rejected, and the remaining are
connected in a graph structure. Each point is connected only to other points that
can be reached through a straight line without intersecting any obstacle. The goal is
appended to the graph to ensure accurate cost estimates. For every ith node in the
graph, a "cost to go" is computed as the minimum distance path along the graph to
reach the goal node. The PRM structure can be seen in Figure 4.9.
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Fig. 4.9 Probabilistic Road Map (PRM) graph for an environment with a L-shaped
obstacle

After having defined a "cost to go" metric, the reward function can be written
as a function of the distance between the agent and the closest node in the PRM
and this cost to go. This reward structure is similar to what has been written for the
A* guided reward but is significantly less susceptible to failure modes such as that
outlined in Figure 4.8. Let dg be Euclidean distance from the agent and the closest
node in the PRM, dPRM, c,k ∈ R two parameters. The reward for state at time k (sk)
can be written as:

R(sk) = ce[k(dg+dPRM)] (4.87)

A further advantage of this reward structure is the ability to embed additional
domain knowledge into the PRM edge weights by modifying the edge connection
function. Specifically, an approximation of the probability of collision for each
connection was included. Each connection is assumed to represent a straight line the
agent can follow, with growing state uncertainty. Let Xobs be the set of obstacles in
the map, x0, . . . ,xn be a discretization of the straight line connection between the two
nodes in intermediate states. The agent’s state uncertainty is normally distributed,
with a time-dependent growth. Assuming that each state’s probability of collision
does not depend on the other states, the total probability of collision for the full edge
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r can be written as

r = 1−
n

∏
i=0

(
1−

∫
Xobs

p(x|xi,σi)dx
)

(4.88)

This risk metric can be used to adjust the Euclidean distance of each edge in a way
that favors remaining at a distance from obstacles. Note that the integral of the
agent’s state uncertainty distribution over the obstacle set is not analytically solvable
and is thus computed through numerical approximation.

Figure 4.10 shows a comparison between several reward structures plotted over a
map. It can be easily seen in this image how the sparse reward function of dispensing
a fixed reward only when the agent reaches the goal region and nothing otherwise
leads to a complete lack of reward gradient, leading to ineffective decision-making.
On the other hand, an euclidean-distance-based reward function creates a gradient
but is not aware of obstacles, thus creating a risk of entrapment into local distance
minima. The PRM-based reward function (without uncertainty-aware edge weights)
shows an awareness of the presence of obstacles. The darker area close to the inner
corner of the L-shaped obstacle represents a low reward region and thus indicates
that an agent tasked with maximizing expected reward in this reward landscape will
avoid the trap.

4.4.2 Negative rewards

Up to now, only positive rewards have been considered, without discussing obstacle
avoidance and information-gaining penalization. Negative reward values can be
assigned to actions or states to discourage the agent from certain behaviors. In the
move-scan problem, three aspects need to be discouraged:

• Colliding with obstacles

• Scanning too frequently

• Taking excessively long paths

Collisions with obstacles have been modeled collisions as terminal states. When an
agent hits a terminal state, the branch of decisions that led to that terminal state is
wholly discarded. This same behavior can be modeled by penalizing collisions with
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(a) Sparse reward (b) Euclidean distance reward

(c) A* reward (d) PRM Reward

Fig. 4.10 Visualization of Reward maps

high negative rewards, but the terminal condition approach leads to a more robust
avoidance of obstacles. For the move-scan problem, collision states are sufficiently
sparse that it is worth modeling them as terminal states. To some degree, movement
will be favored over scanning even without negative rewards, as - all being equal -
movement will reap higher expected rewards by leading the agent closer to the goal.
Regardless, if scanning is not penalized, the agent will not have a strong enough
incentive against scanning too frequently. A tunable cost of scanning parameter
cs ∈ R− can be introduced, and the reward function for each action can be written.

Ra
k =

0 if ak = move

−cs if ak = scan
(4.89)
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This simple structure is sufficient to discourage the agent from unnecessary scans.
Path length does not need to be explicitly minimized, as an agent following a reward
gradient toward a goal will favor directions where the reward gradient is maximized.
Nevertheless, a simple and effective way to explicitly encourage shorter path lengths
is to assign a small negative cost to each movement action cm ∈ R+. The reward
function for each action can be written as:

Ra
k =

−cm if ak = move

−cs if ak = scan
(4.90)

Note that the relative magnitude between the cost of moving and the cost of scanning
must be tuned to keep discouraging information gaining over movement (cm << cs).

4.5 Optimization-based approach to TAMP

The previous sections focused on formulating the move scan problem as a Partially
Observable Markov Decision Process and converged on using a sampling-based
solver to approximate an optimal policy for this problem. Task and Motion Planning
under uncertainty can also be formulated as a convex optimization problem and
solved using efficient tools developed for the Operations Research and Optimization
Community. Before outlining the EELS task and motion planning formulation, it is
worth approaching the problem in a step-by-step manner by first introducing how to
formulate a motion planning problem as a Linear Program and gradually increasing
complexity until the complete move-scan scenario can be formulated as a Mixed
Integer Linear Program.

4.5.1 Motion planning as a Linear Program

Motion planning can be formulated as a Linear program. In the interest of clarity, this
section will not seek to optimize any metric but will only satisfy obstacle avoidance
and state propagation constraints. Let Xk ∈ RNx be a state vector of Cartesian
coordinates at time k, and Uk the vector of control inputs. For a 2-dimensional
planning problem, these are:
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Xk =

[
x
y

]
Uk =

[
u
u

]
(4.91)

For this type of optimization problem, variables should be bounded by the
following constraints:

xmin ≤ x≤ xmax ∀x ∈ X (4.92)

umin ≤ u≤ umax ∀u ∈U (4.93)

The state transition constraints can be written in the linear form as:

Xk+1 = AXk +BUk +C (4.94)

In the 2-D motion planning case, with a fixed time step ∆t, these constraints can
be written as:

[
x
y

]
k+1

=

[
1 0
0 1

][
x
y

]
k

+

[
∆t 0
0 ∆t

][
u
v

]
k

(4.95)

Initial and goal conditions need to be enforced as state constraints at time 0 and
N:

[
x
y

]
k=0

=

[
xstart

ystart

]
(4.96)[

x
y

]
k=N

=

[
xgoal

ygoal

]
(4.97)

These constrains will ensure that the solver will find a path between two specific
positions. Obstacles constraints are trickier to write down as linear constraints.
The easiest type of obstacle is a half-plane aligned with one of the state vector’s
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coordinates. For example, avoiding an obstacle that starts at x = b and goes all the
way to x = ∞ and extends from y =−∞ to y = ∞ can be written as:

xk < b (4.98)

An inclined half-plane constraint can be written as:

ax+by < c (4.99)

For higher-dimensional problems, half-plane constraints can be written as:

Nx−1

∑
i=0

aixi < c (4.100)

The sign of the inequality will determine which side of the half-plane is consid-
ered as free space. Writing constraints for a convex obstacle can be more complex.
The source of complication is that polygonal obstacles are a set of half-plane obsta-
cles connected via an "OR" statement. While "AND" statements are easy to model
as linear constraints, implementing an "OR" requires further algebraic tricks. An
example is a rectangular obstacle with the bottom left corner in (a1,a3) and the top
right corner in (a2,a4):

a1 < x∨ x > a2 (4.101)

a3 < y∨ y > a4 (4.102)

Typically, similar constraints can be rewritten using some form of trick that
increases the total number of constraints. In the rectangular obstacle case, let M be
a number much greater than the bounds of the state vector M≫ ∥X∥max. Let b be
binary integer variables b ∈ {0,1} [109].
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xk ≤ a1 +Mb1
k (4.103)

−xk ≤−a2 +Mb2
k (4.104)

yk ≤ a3 +Mb3
k (4.105)

−yk ≤ a4 +Mb4
k (4.106)

4

∑
i=1

bi
k ≤ 3 (4.107)

Adding a large value to the inequality constraints is a way to relax them, and
requiring the binary selector variables to sum up to three is a way to ensure that at
least one of the original constraints is always valid. A 1-D example of why constraint
relaxation works is:

x < a1∨ x > a2 (4.108)

When x > a2, x < a1 is not satisfied.

x≤ a1 +Mb1 (4.109)

x≥ a2−Mb2 (4.110)

b1 +b2 ≤ 1 (4.111)

If x > a2 (agent to the right of the obstacle), then the system of constraints above
would have b2 = 0,b1 = 1.

x≤ a1 +M (4.112)

x≥ a2 (4.113)

(4.114)
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Both constraints are satisfied as M≫ |xmax|. On the other hand, no valid as-
signment of x,b1,b2 could be found for a1 < x < a2, thus enforcing the obstacle
constraint. Figure 4.11 shows a solution to a path planning problem formulated as a
constraint satisfaction linear program. It is interesting to note that the solver looked
for a solution starting from the obstacle constraint and found a valid assignment that
is very close to the shortest path. Additionally, the path cuts through the obstacle’s
top-left corner. This is a consequence of the formulation, as there are no collision
checking constraints between Xk and Xk+1. The solver is not checking if the connec-
tion between the two states is valid, rather it is checking if the two states are valid.
Therefore, if the two states are outside of the obstacle and the distance between them
is smaller than umax∆t, then the assignment is valid. A sufficiently large ∆t or large
values for |u|max will lead to the solver believing that the agent can move through
the entire obstacle.

Fig. 4.11 Path planning Constraint Satisfaction linear program with rectangular
obstacle
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4.5.2 Optimizing for minimum path length

There are several ways to add an optimization objective to the path planning formu-
lation. If interested in path-length minimization, the assumption could be that the
agent incurs a cost proportional to the distance traveled. This can be written as a
minimization of some constant c times the norm of the control vector for each time
step:

min
U1,...UN ,X1...XN

N

∑
k=1

Nu

∑
i=1

c|ui
k| (4.115)

From a notation perspective, ui
k means the i− th component of the control vector

at step k (ui
k ∈Uk). The absolute value is not a linear function and requires more

algebraic tricks to be expressed as a linear constraint. The general idea is that |ui|
needs to be substituted with a linear variable z, and add a few constraints that force
zk to behave like the absolute value of u need to be added:

uk ≤ zk

−uk ≤ zk

(4.116)

The problem can thus be reformulated as:

min
U1,...UN ,X1...XN

N

∑
k=1

Nu

∑
i=1

czi
k (4.117)

ui
k ≤ zi

k (4.118)

−ui
k ≤ zi

k (4.119)

In summary, a simple form of a motion planning linear program with a path
length minimization objective can be expressed as:
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min
U1,...UN ,X1...XN

N

∑
k=1

Nu

∑
i=1

czi
k (4.120)

ui
k ≤ zi

k (4.121)

−ui
k ≤ zi

k (4.122)

Xk+1 = AXk +BUk +C (4.123)

X0 = Xstart (4.124)

XN = Xgoal (4.125)
Nx

∑
i=0

oa j
i

ox j
i <

oc j +M ob j
k j ∈ {1, . . . ,Nobs} o ∈ {1, . . . ,N j

faces} (4.126)

N j
faces

∑
i=1

obi, j
k ≤ N j

faces−1 (4.127)

4.5.3 Single-action deterministic TAMP

The motion planning formulation can be used as a starting point to move toward
integrated task and motion planning (TAMP). For simplicity, optimization objectives
will be dropped in this section. Furthermore, a trivial version of TAMP will be
introduced first, where the agent has a single action to choose from. Let Xk and
Uk be the state and control vectors at time step k ∈ {1, . . . ,N}. The time elapsed
since the first step t can be tracked by augmenting the state vector. This state-vector
augmentation has no influence on single-action deterministic TAMP, but tracking
time and the squared of time t2 is necessary for multi-action risk-aware TAMP.

Xk =


x
y
t2

t

 Uk =


u
v
0
0

 (4.128)

The linear state transition constraints can be written as:

Xk+1 = AXk +BUk +C k ∈ {0, . . . ,N−1} (4.129)
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In our case, these transition constraints are:
x
y
t2

t


k+1

=


1 0 0 0
0 1 0 0
0 0 1 2∆t
0 0 0 1




x
y
t2

t


k

+


∆t 0 0 0
0 ∆t 0 0
0 0 0 0
0 0 0 0




u
v
0
0


k

+


0
0

(∆t)2

∆t

 (4.130)

It is interesting to expand on the transition constraints for time and time squared have
been derived. The time step ∆t is assumed to be constant, therefore making tk+1 a
trivial constraint to derive. t2

k+1 on the other hand is derived by substituting tk+1.

tk+1 = tk +∆t (4.131)

t2
k+1 = (tk +∆t)2 = t2

k +2(∆t) tk +∆t2 (4.132)

Initial and terminal conditions can be written as:

X0 =


0
0
0
0

 xN = xgoal yN = ygoal (4.133)

This formulation can be extended to a trivial 1-action TAMP by including a binary
selector variable sk ∈ {0,1}.

Xk+1 = sk(AXk +BUk +C) (4.134)

This expression will contain nonlinear product terms of sk. Specifically, these prod-
ucts are (sx,sy,st2,st,su,sv). These nonlinear terms can be linearized by introducing
the slack variables rx

k = xkyk.
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x
y
t2

t


k+1

=


1 0 0 0
0 1 0 0
0 0 1 2∆t
0 0 0 1




rx

ry

rt2

rt


k

+


∆t 0 0 0
0 ∆t 0 0
0 0 0 0
0 0 0 0




ru

rv

0
0


k

+


0
0

(∆t)2

∆t

sk

(4.135)

Na

∑
i=0

si
k = 1 X0 =


0
0
0
0

 xN = xgoal yN = ygoal (4.136)

(4.137)

Each slack variable is valid only if accompanied by additional constraints:

∀rx
k :


rx

k ≥ xminsk

rx
k ≤ xmaxsk

rx
k ≤ xk− xmin(1− sk)

rx
k ≥ xk− xmax(1− sk)

(4.138)

Since this is a trivial case of TAMP, where Na = 1, the constraint over the sum of
selector variables at each time step becomes sk = 1. Therefore, for all time steps the
slack variable constraints become:

∀rx
k :

xmin ≤ rx
k ≤ xmax

rx
k = xk

(4.139)

4.5.4 Multi action deterministic TAMP

The deterministic TAMP formulation can be extended to include a second action,
"Scan". Scanning is assumed to have two effects: (1) the agent’s pose does not
change, and (2) the time elapsed since the first movement step is reset. Some

clarifications on notation: ai
A means matrix A for action ai. ai

r
t2

k means slack
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variable r for optimization variable t2, at time k, for action ai. In general, the
transition constraints are:

Xk+1 =
ak

AXk +
ak

BUk +
ak

C k ∈ {0, . . . ,N−1} (4.140)

Let M be shorthand for "Move" and S shorthand for "Scan". The agent’s action space
A can be expressed as:

ai ∈A = {M,S} (4.141)

The two transition systems for move and scan are thus:
x
y
t2

t


k+1

=


1 0 0 0
0 1 0 0
0 0 1 2∆t
0 0 0 1


︸ ︷︷ ︸

MA


x
y
t2

t


k

+


∆t 0 0 0
0 ∆t 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

MB


u
v
0
0


k

+


0
0

(∆t)2

∆t


︸ ︷︷ ︸

MC

(4.142)


x
y
t2

t


k+1

=


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

SA


x
y
t2

t


k

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

SB


u
v
0
0


k

+


0
0
0
0


︸︷︷︸

SC

(4.143)

Note that t and t2 do not represent absolute time, but the time passed since the Scan
action. The selector variable ai

sk ∈ {0,1} can be introduced as before.

Xk+1 =
Msk

(MAXk +
MBUk +

MC
)
+ Ssk

(
SAXk +

SBUk +
SC
)

k ∈ {0, . . . ,N−1}

(4.144)

In more general terms, if there are Na different actions (|A | = Na), the transition
constraints can be written as:

Xk+1 =
Na

∑
ai=1

ai
sk

(
ai

AXk +
ai

BUk +
ai

C
)

k ∈ {0, . . . ,N−1} (4.145)
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For the move-scan case, the transition constraints can be explicitly written as:


x
y
t2

t


k+1

=Msk




1 0 0 0
0 1 0 0
0 0 1 2∆t
0 0 0 1




x
y
t2

t


k

+


∆t 0 0 0
0 ∆t 0 0
0 0 0 0
0 0 0 0




u
v
0
0


k

+


0
0

(∆t)2

∆t


+

Ssk




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




x
y
t2

t


k

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




u
v
0
0


k

+


0
0
0
0


 (4.146)

As was the case for a one-action TAMP, nonlinear terms ai
ykxk have appeared in the

system:


x
y
t2

t


k+1

=


1 0 0 0
0 1 0 0
0 0 1 2∆t
0 0 0 1




Msx
Msy
Mst2

Mst


k

+


∆t 0 0 0
0 ∆t 0 0
0 0 0 0
0 0 0 0




Msu
Msv

0
0


k

+Msk


0
0

(∆t)2

∆t

+


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




Ssx
Ssy
Sst2

Sst


k

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




Ssu
Ssv
0
0


k

+ Ssk


0
0
0
0

 (4.147)

These nonlinearities can be removed by introducing slack variables ai
rx

k =
ai

ykxk.


x
y
t2

t


k+1

=


1 0 0 0
0 1 0 0
0 0 1 2∆t
0 0 0 1




Mrx

Mry

Mrt2

Mrt


k

+


∆t 0 0 0
0 ∆t 0 0
0 0 0 0
0 0 0 0




Mru

Mrv

0
0


k

+Msk


0
0

(∆t)2

∆t

+


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0




Srx

Sry

Srt2

Srt


k

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




Sru

Srv

0
0


k

+ Ssk


0
0
0
0

 (4.148)
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The system can be written compactly as:

Xk+1 =
MA MRX

k +MB MRU
k +MskC+ SA SRX

k + SB SRU
k + SskC (4.149)

Or, in the general case:

Xk+1 =
Na

∑
ai=0

(
ai

A ai
RX

k + ai
B ai

RU
k + ai

skC
)

(4.150)

Each slack variable is valid only if accompanied by four constraints already seen
in Equation 4.138. A problem with N steps, Na actions, Nx state variables, and Nu

control variables will have slack variable constraints in number:

NCslack = 4NNa(Nx +Nu) (4.151)

Constraints on initial state, terminal state, and on the sum of ai
sk need to be added

as in Equation 4.136. These are going to be N + 2Nx additional constraints. The
state transition model has NxN constraints. This approach can be used to model an
arbitrary number of actions, each applying a different linear transition dynamics
model to an agent. It is also clear that the number of constraints grows linearly with
the number of actions, and consequently, solution time will drastically increase as
more actions are introduced.

4.5.5 Adding state uncertainty and chance constraints

Action-dependant noise akωk can be added to the state transition function as:

Xk+1 =
akAXk +

akBuk +
akωk +

akC (4.152)

Assuming that the agent’s state uncertainty is Gaussian BX ∼N (µX ,Σx), that the
noise akωk has zero mean µω = 0 and constant covariance akΣωk , state transition
constraints can be re-written as:

µXk+1 =
ak µXk +

akBUk +
akC (4.153)

ΣXk+1 =
akAΣXk

akAT + akΣωk (4.154)
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The expression for state mean propagation is already written in the same form as
Equation 4.140. This form can be transformed into a mixed integer linear program
by following the same steps outlined in the previous section. Selector variables
aisk ∈ {0,1} need to be added, and slack variables ai

rx
k can be added. Following this

process will yield a mean propagation expression in the form of Equation 4.150:

µXk+1 =
Na

∑
ai=0

(
ai

A ai
RµX

k + ai
B ai

RµU
k + ai

skC
)

(4.155)

Covariance propagation is trickier to express with linear constraints as it is action-
dependent. Hence, it is unknown a priori. It is important to note that covariance
growth is action-dependant but does not depend on control input. This means that
the robot accrues state uncertainty based on time only when moving. This case is
analogous to what is described in [110], where covariance at each time step can be
pre-computed at each time step before the optimization is run. In our case, covariance
can not be precomputed, but the dependence on movement time can be exploited.
The exact covariance growth model is non-linear and cannot be expressed as a linear
constraint, but a conservative quadratic covariance growth bound can be assumed.
Since t2 is an optimization variable, the covariance growth model can be bounded by
a linear expression as:

ΣXk = Σ0t2
k (4.156)

The covariance propagation augments the problem with N− 1 constraints. In
addition, an initial condition needs to be provided.

ΣX0 = Σ0 (4.157)

As an initial chance constraint test, half-plane obstacles can once again be used.
A half-plane chance constraint in its simplest form states that the probability of the
system state being beyond coordinate b should be less than a risk tolerance ∆

Pr(Xk ≥ b)< ∆ (4.158)
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This univariate constraint can be expanded by assuming that Xk is a normal distribu-
tion X ∼N (µX ,ΣX). Furthermore, since the constraint is univariate, only one of
the components of X can be considered. x can be re-written in terms of the standard
normal distribution N (0,1)

x = µx +Σxz (4.159)

It can be noted that φ(x) = Pr(x≤ b). Thus, the constraint can be re-written as:

1−Pr(x≤ b)< ∆ (4.160)

1−Pr(µx +Σxz≤ b)< ∆ (4.161)

1−Pr
(

z≤ b−µx

Σx

)
< ∆ (4.162)

1−φ

(
b−µx

Σx

)
< ∆ (4.163)

A half-plane obstacle chance constraint can therefore be written as linear in µx and
Σx as:

µx +Σxφ
−1 (1−∆)≤ b (4.164)

(a) Low tolerance (b) High tolerance

Fig. 4.12 Constraint satisfaction for risk-aware task and motion planning MILP
formulation with a single half-planar obstacle. The two images show the effect of
varying the risk-tolerance parameter in the generated plan.
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Figure 4.12 shows how different risk postures affect the number of scan tasks.
The image shows samples taken from the agent’s state distribution over time. Hence,
a wider sample distribution represents higher state uncertainty, while tighter group-
ings represent lower uncertainty. Colors indicate time progression. Note that risk
tolerance corresponds to the value of ∆ in Equation 4.164. For example, lower ∆

means that the probability of Xk ∈ Xunsa f e
k for every time step k is allowed to be

higher. Each half-plane chance constraint adds N constraints to the optimization
problem.

4.5.6 Polygonal chance constraints

The half-plane chance constraint formulation can be extended to hyperplanes.

Pr(a1x1 +a2x2 + · · ·+aNxxNx ≤ b)≤ ∆ (4.165)

In a 2D case, this formulation allows describing an inclined plane obstacle. A union
of Ne > 3 of these constraints represents a polygonal obstacle with Ne sides.

Ne⋃
i=1

Pr(ai
1xi

1 +ai
2xi

2 + · · ·+ai
Nx

xi
Nx
≤ bi)≤ ∆ (4.166)

The focus can now be shifted to rewriting Pr(a1x1, . . . ,aNxxNx), which in matrix form
can be expressed as:

Pr(HX ≤ b) (4.167)

State uncertainty is assumed to be normally distributed X ∼ N (X ,ΣX), where
X = [x1, . . . ,xNx ] is the mean, and ΣX is the covariance matrix. Substitution yields:

y = a1x1, . . . ,aNxxNx (4.168)
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Note that also y follows a gaussian distribution

y = HX = a1x+ · · ·+aNx + xN−x (4.169)

Σy = HT
ΣX H =

[
a1 . . . aNx

] σ11 . . . σ1Nx
... . . . ...

σNx1 . . . σNxNx


 a1

...
aNx

 (4.170)

The probability of being in an unsafe region can now be written in terms of y, and use
the same trick used for the half-plane constraint of writing y in terms of a standard
normal distribution z: 

Pr(y≤ b)

y = y+Σyz

z∼N (0,1)

(4.171)

Pr
(

z≤ b− y
Σy

)
= φ

(
b− y

Σy

)
(4.172)

The chance constraint can thus be rewritten as:

Pr(HX ≤ b)≤ ∆ (4.173)

y+φ
−1(∆)Σy ≥ b (4.174)

(4.175)

The definition of y and Σy can be substituted, yielding a linear expression:

HX +φ
−1(∆)HT

ΣxH ≥ b (4.176)

Obstacle constraints can be written a disjunctive linear program. Note that at least
one of the Ne constraints needs to be satisfied:

Ne⋃
i=1

[
HiX +φ

−1(∆)HT
i ΣxHi ≥ bi

]
(4.177)

A trick from the mathematical programming literature can be used to rewrite this
disjunctive program as a set of linear constraints [111]. Specifically, the Big-M trick
can be used previously to write rectangle obstacles. Let M ∈ R be a number much
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larger than the obstacle’s bounds, and yi ∈ {0,1} be a binary integer variable:

Ne⋂
i=1

[
HiX +φ

−1(∆)HT
i ΣxHi ≥ bi−M(1− yi)

]
(4.178)

Ne

∑
i=1

yi = Ne−1 (4.179)

A simple example of a 2D triangular obstacle can seen in Figure 4.13. This case
study can be used to better understand the math behind chance constraints. The
obstacle is defined as the area between by three lines, where the i− th line can be
written in the form ia1x1 +

ia2x2 =
ib:

−1.5x1 +1.0x2 =−5 (4.180)

10x1 +1.0x2 = 30 (4.181)

1.0x1 +1.0x2 = 10 (4.182)

The three chance constraints can be written in form:

Fig. 4.13 Example of two-dimensional polygonal obstacle defined by three lines

Pr(a1x1 +a2x2 ≤ b)≤ ∆ (4.183)
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In our case, the mean and covariance of the state vector X , and obstacle coefficients
H will be:

X =

[
µx1

µx2

]
ΣX =

[
Σ11 Σ12

Σ21 Σ22

]
H =

[
a1

a2

]
(4.184)

A single chance constraint can be therefore written as:

a1µx1 +a2µx2 +φ
−1(∆)

[
a2

1Σ11 +a1a2Σ12 +a1a2Σ21 +a2
2Σ22

]
≥ b (4.185)

Binary selection variables are added, and the the obstacle constraints are re-written
as:

1a1µx1 +
1a2µx2 +φ

−1(∆)
[

1
a2

1Σ11 +
1a1a2Σ12 +

1a1
1a2Σ21 +

1
a2

2Σ22

]
≥ 1b−M(1− y1)

(4.186)
2a1µx1 +

2a2µx2 +φ
−1(∆)

[
2
a2

1Σ11 +
2a1a2Σ12 +

2a1
2a2Σ21 +

2
a2

2Σ22

]
≥ 2b−M(1− y2)

(4.187)
3a1µx1 +

3a2µx2 +φ
−1(∆)

[
3
a2

1Σ11 +
3a1a2Σ12 +

3a1
3a2Σ21 +

3
a2

2Σ22

]
≥ 3b−M(1− y3)

(4.188)

y1 + y2 + y3 ≥ 2
(4.189)

The half plane chance constraint can be written in a way that is readable by a solver
as:

a1µx1 +a2µx2 +φ
−1(∆)a2

1Σ11 +φ
−1(∆)a1a2Σ12 +φ

−1(∆)a2
1Σ21 +φ

−1(∆)a2
2Σ22−My≥ b−M
(4.190)

Under the assumption that Σ12 = Σ22 = 0 and Σ11 = Σ22 = Σx, the chance constraints
for the obstacle in Figure 4.13 become:

1.5µx1−µx2 +6.5φ
−1(∆)Σx−My1 ≥−5−M (4.191)

−10µx1 +µx2−−202φ
−1(∆)Σx−My2 ≥−30−M (4.192)

µx1 +µx2 +4φ
−1(∆)Σx−My3 ≥ 10−M (4.193)

y1 + y2 + y3 ≥ 1 (4.194)
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The constraints can be verified by checking that states outside of the obstacle have
a valid assignment. Assuming that the agent’s state is µx = µy = 0, Σx = 0.1, the
goal is to find a valid assignment of yi such that the constraint is respected for
∆ = 0.1 (probability of collision less than 10%)? Note that the inverse CDF function
φ−1(0.1)≈−1.3

−0.8−My1 ≥ 5−M (4.195)

−25.8−My2 ≥−30−M (4.196)

−0.5−My3 ≥ 10−M (4.197)

y1 + y2 + y3 ≥ 1 (4.198)

It is east to verify that when y1 = 0,y2 = 1,y3 = 0, the constraints are satisfied. On
the other hand, the constraints can be verified to show that a state within the obstacle
cannot satisfy them µx1 = µx2 = 4, Σx = 0.1.

1.2−My1 ≥ 5−M (4.199)

−69.8−My2 ≥−30−M (4.200)

7.5−My3 ≥ 10−M (4.201)

y1 + y2 + y3 ≥ 1 (4.202)

Note that all of the constraints are valid only if relaxed (yi = 0). Since there is no
valid non-relaxed constraint, there is no valid assignment of yi such that the obstacle
constraints are respected. It can also be verified that a tight covariance bound, for a
state with high covariance close to the obstacle, will not have any valid assignment.
For this case, µx1 = µx2 = 2, Σx = 3, ∆ = 0.01 are used.

−44.4−My1 ≥ 5−M (4.203)

−1431.8−My2 ≥−30−M (4.204)

−23.9−My3 ≥ 10−M (4.205)

y1 + y2 + y3 ≥ 1 (4.206)

As expected, even though the state’s mean is outside the obstacle polygon, the
covariance term makes the constraints unsatisfiable. Figure 4.14 shows how valid
assignments to the move-scan task and motion planning MILP exist in the presence
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(a) Low tolerance (b) High tolerance

Fig. 4.14 Effect of risk tolerance variation for the Constraint Satisfaction of the
move-scan MILP with polygonal obstacle chance constraints

of this polygonal obstacle chance constraint. Furthermore, it is shown how a different
value of ∆ can lead to drastically different behavior. An artifact of the way the chance
constraints were formulated is that the obstacle constraints can be satisfied by an
agent with µx,µy inside the obstacle region, but large Σx and ∆ > 0.5, as that is the
threshold for which φ−1(∆)> 0. This can be shown effectively by testing if there is
a valid assignment for µx = µy = 4, Σx = 100, and ∆ = 0.51. The result is:

18.3−My1 ≥ 5−M (4.207)

462.4−My2 ≥−30−M (4.208)

18.0−My3 ≥ 10−M (4.209)

y1 + y2 + y3 ≥ 1 (4.210)

These constraints are valid for multiple assignments of y1,y2,y3. If there is an
intention to stop the agent’s mean from passing inside obstacle regions, the chance
constraint needs to have ∆ < 0.5.

4.5.7 Choosing not to act

The formulation forces the solver to look for a solution with exactly N steps. What
can be seen in Figures 4.14 and 4.15 is that there are time steps when the solution



4.5 Optimization-based approach to TAMP 101

has reached the goal, but some action needs to be chosen. If move is chosen - which
tends to be the case if Mc < Sc - the moving time t will increment even if the control
input is null ∥U∥= 0. When the moving time t increases, covariance will increase
as well. Interestingly, covariance growth without movement is equivalent to IMU
integration after stopping. A more efficient way of dealing with pose estimates
is to stop integrating IMU signals when the system knows it is not moving. This
can be modeled as an action that does not modify the state vector. This type of
action is often called a NoOP action and is defined with the /0 symbol. This action
will maintain the previous state unchanged, without propagating the move time as
illustrated in Equation 4.211.

x
y
t2

t


k+1

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

/0A


x
y
t2

t


k

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

/0B


u
v
0
0


k

+


0
0
0
0


︸︷︷︸

/0C

(4.211)

As shown in Figure 4.16, adding the NoOP action improves the solution’s quality.
Note that NoOP actions add decision variables to the problem, thus greatly impacting
the solver’s performance.

Another way to inhibit covariance growth is by substituting the NoOP action
with a constraint system that stops covariance from growing when the agent is close
to the goal. This constraint can be expressed as:

Σk+1 =

Σ0t2
k i f |x− xgoal|+ |y− ygoal| ≥ ε

Σk i f |x− xgoal|+ |y− ygoal|< ε

(4.212)

Where ε is a distance threshold. There are obvious nonlinearities in this expression
and it cannot be directly implemented in the MILP without manipulation first. Let
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M≫max(Σk):

Σk+1 ≤ Σ0t2
k +M(1− zk) (4.213)

Σk+1 ≥ Σ0t2
k −M(1− zk) (4.214)

Σk+1 ≤ Σk + zkM (4.215)

Σk+1 ≥ Σk− zkM (4.216)

zk ∈ {0,1} (4.217)

zk ≥−|x− xgoal|− |y− ygoal|+ ε (4.218)

The absolute values can be rewritten as linear constraints:

Σk+1 ≤ Σ0t2
k +M(1− zk) (4.219)

Σk+1 ≥ Σ0t2
k −M(1− zk) (4.220)

Σk+1 ≤ Σk + zkM (4.221)

Σk+1 ≥ Σk− zkM (4.222)

zk ∈ {0,1} (4.223)

zk ≥−ax
k−ay

k + ε (4.224)

xk− xgoal ≤ ax
k (4.225)

−xk + xgoal ≥ ax
k (4.226)

yk− ygoal ≤ ay
k (4.227)

−yk + ygoal ≥ ay
k (4.228)

These covariance constraints reduce the solver’s sensitivity to the number of steps N,
allowing solutions with more steps than necessary that do not exhibit unnecessary
covariance growth. Furthermore, this modeling choice improves performance over
the introduction of a NoOP action. It is worth emphasizing that cases in which
the optimal solution would require waiting for an event to occur mid-plan are not
captured by this covariance freezing trick and require switching back to the NoOP
action. An example of a use-case where NoOP action might be useful is waiting for
an orbiter flyover before communicating back to the ground.



4.5 Optimization-based approach to TAMP 103

4.5.8 TAMP optimization objective

This section will examine the optimization objective for the general task and motion
planning case. It is reasonable to think of minimizing the total distance traveled by
minimizing the c∥Uk∥ as in Section 4.5.2, but this would lead the solution passing
as close as possible to the obstacles, without paying attention to the number of
information gain activities that are scheduled. In practice, information gaining is
expensive as the scan environment activity takes up a time in the order of 1 minute
to be completed. This cost must be factored into the optimization process to fully
capture the tradeoff between distance from obstacles and stop frequency. The first,
simple way to incorporate the different action costs is to write the optimization
objective as:

min
U0:N−1,y0:N−1

N−1

∑
k=0

Na

∑
i=0

ick
iyk (4.229)

Where yk = {1yk,
2yk, . . . ,

Nayk}, be the vector of selector variables Recall also
that Na is the number of actions. This way of writing the objective translates to setting
a fixed cost coefficient for each action ic and weighing the action chosen at time step
k with this fixed cost. It is important to note that cost coefficients are assumed to be
constant over time. If all costs are equal 1c = 2c = · · ·= Nac = c, the optimization
process will not have much information that will aid decision making, as both all
actions will look equally appealing. On the other hand, if the costs are different,
the planner will try to maximize the number of least costly actions. This is also not
desirable for the move scan scenario, and two examples are sufficient to illustrate
the problem. Firstly, imagine that Sc > Mc. In this case, the planner would try to
maximize move actions, searching for paths as far from the obstacles as possible.
This approach would be similar to a completely risk-averse behavior. On the other
hand, if Sc < Mc, the planner would try to assign the maximum possible number of
scan actions without paying attention to whether these actions are necessary or not.
In a world without obstacles, this cost structure would lead to several stop behaviors
being scheduled, even though they would be completely unnecessary. This behavior
can be observed in Figure 4.15. On the left side, the cost of scanning is higher than
the cost of moving, leading to a trajectory with few stops.
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(a) Sc > Mc (b) Mc > Sc

Fig. 4.15 Effect of varying cost weights in the objective function (Equation 4.229).
Decreaseing the cost of scanning will lead to a plan with a shorter path, but more of
scans.

Thus, achieving the desired behavior is once again a matter of shaping the cost
structure, just as reward function shaping was central for the POMDP case (recall
that cost and reward are tightly coupled concepts). This can be done by writing:

min
U0:N−1,y0:N−1

N−1

∑
k=0

Na

∑
i=0

ick
i f k(X ,U) iyk (4.230)

This expression, in general, is non-linear, and the function f (X ,U) must be designed
in a way that can be linearized using tricks from the optimization community. For the
move-stop scenario, S f (X ,U)= Sc will remain a constant function, while S f (X ,U)=
Mc|u|k will be a path length minimization objective. Thus, the optimization objective
can be rewritten as:

min
U0:N−1,y0:N−1

N−1

∑
k=0

(
Sck

Syk +
Nu−1

∑
j=0

Mck|u| jk
Myk

)
(4.231)

Now, it is necessary to linearize |u|k Myk. This can be done by first substituting
|u| jk with a variable z j

k that behaves like an absolute value with the addition of two
constraints.
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min
U0:N−1,y0:N−1

N−1

∑
k=0

(
Sck

Syk +
Nu−1

∑
j=0

Mckz j
k

Myk

)
(4.232)

u j
k ≤ zi

k (4.233)

−u j
k ≤ z j

k (4.234)

Finally, the slack variable rz j

k = z j
k

Myk can be introduced:

min
U0:N−1,y0:N−1

N−1

∑
k=0

(
Sck

Syk +
Nu−1

∑
j=0

Mckrz j

k

)
(4.235)

The following constraints need to be added for each k and j:

u j
k ≤ z j

k (4.236)

−u j
k ≤ z j

k (4.237)

rz j

k ≥ z j
min

Myk (4.238)

rz j

k ≤ z j
min

Myk (4.239)

rz j

k ≤ z j
k− z j

min(1−
Myk) (4.240)

rz j

k ≥ z j
k− z j

max(1−Myk) (4.241)

Choosing the formulation in Equation 4.235 will result in the solution taking N
steps to reach the goal. This means that modifying N will lead to changes in the
speed at which the robot moves. The fixed cost strategy can be used to achieve
both the minimization of path length and number of scans, by introducing a NO-
OP action. Using the simpler fixed cost coefficient approach is more desirable,
as each additional constraint adds computational complexity to the problem, and
near-real-time performance is the goal.

It is generally desirable to reduce the number of slack constraints to improve
the formulation’s scalability. This can be done by using different functions that
approximate the path minimization objective. Note that minimizing scan will always
consist of minimizing the scan selection variable Sck

Syk. One way to formulate
this is by aiming to minimize the sum of the Manhattan distance from the goal at
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(a) Constraint Satisfaction (b) Cost minimization

Fig. 4.16 Effect of adding a no-op action to the robot’s action space

each time step. This will incentivize the agent to move quickly toward the goal but
requires computing two absolute values.

min
U0:N−1,y0:N−1

N

∑
i=0

(
Sck

Syk +
Mck|Xk−Xgoal|

)
(4.242)

This can be rewritten by separating X into its spatial components x,y and creating
two variables that behave like the absolute values of the distance from the goal ax

k,a
y
k.

min
U0:N−1,y0:N−1

N

∑
i=0

(
Sck

Syk +
Mck(ax

k +ay
k)
)

(4.243)

xk− xgoal ≤ ax
k (4.244)

−xk + xgoal ≥ ax
k (4.245)

yk− ygoal ≤ ay
k (4.246)

−yk + ygoal ≥ ay
k (4.247)

This optimziation objective can lead to unwanted behavior, as the agent will try to
spend as much time as possible close to the goal, even if that entails a longer path
overall. This is because the minimization objective is the integral of distance, so a
path that is long but stays close to the objective for most of the time steps will cost
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less than a path that is shorter but spends more time farther away. Another better
way of getting a true path length minimization is to create an indicator function that
takes the value 1 when the agent is outside of the goal set, and 0 if inside the goal set.
This is the inverse concept of what was implemented for the covariance dynamics
freezing trick.

min
U0:N−1,y0:N−1

N

∑
i=0

(
Sck

Syk +
Mck1

g
k

)
(4.248)

Indicator functions are by definition binary decision variables. This binary variable
1

g
k = zg

k ∈ 0,1 can be created and constrained to behave as the indicator function by
using the big-M trick. The optimization objective, with supporting constraints can
thus be written as:

min
U0:N−1,y0:N−1

N

∑
i=0

(
Sck

Syk +
Mckzg

k

)
(4.249)

zg
k ∈ {0,1} (4.250)

ax
k +ay

k− ε ≤Mzg
k (4.251)

ε−ax
k−ay

k ≤M(1− zg
k) (4.252)

xk− xgoal ≤ ax
k (4.253)

−xk + xgoal ≥ ax
k (4.254)

yk− ygoal ≤ ay
k (4.255)

−yk + ygoal ≥ ay
k (4.256)

It can be noted that zg
k can be set to zero only when ax

k +ay
k ≤ ε , and it can only be

set to 1 when ax
k +ay

k ≥ ε .

4.5.9 Notes on chance constraints

With one obstacle, it has been shown how the chance constraint can ensure that the
probability of the agent entering an unsafe area is never above a threshold ∆. Adding
multiple obstacles requires an extension with respect to the single obstacle case.
Recall that the purpose of a chance constraint is to ensure that the probability of the



108 System-level autonomy algorithms

system’s state being in an obstacle set Xobs is less than ∆. This can be written as:

Pr(x ∈ Xobs)< ∆ (4.257)

For multiple obstacles, Xobs = {X1,X2, . . . ,Xn}, the correct way of writing this
constraint is:

n−1

∑
i=0

Pr(x ∈ Xi)< ∆ (4.258)

Implementing multiple polygonal obstacle constraints separately, is incorrect as the
structure would be:

n−1∧
i=0

[Pr(x ∈ Xi)< ∆] (4.259)

A 1D case can explain more clearly how Equation 4.259 could lead to underestimat-
ing the current risk level. Let x∼N (0,1) be the state distribution, and let there be
two half plane obstacles - the first for x < −b1 and the second for x > b2 (where
b1,b2 ∈R+). In this case, the obstacle set can be written as Xobs = {x<−b1,x> b2}
. If the two chance constraints are implemented separately as in Equation 4.259, it
can be written as:

Pr(x <−b1)< ∆∧Pr(x > b2)< ∆ (4.260)

An expression that satisfies these conditions is:

Pr(x <−b1) = ∆−δε Pr(x > b2) = ∆−δε (4.261)

Where δε is an infinitesimal. Thus, the total risk level in this example would be
higher than the single constraint risk level ∆:

2(∆−δε)> ∆ (4.262)

Note that the likelihood of x being in the obstacle set is by definition:

∫ −b1

−∞

p(x)dx+
∫

∞

b2

p(x)dx = Pr(x <−b)+Pr(x > b) = φ(−b1)+1−φ(b2)

(4.263)
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Constraints have been posed on the probability of violating safety requirements at
each time step. This is different from enforcing a constraint over the probability
of mission success. In fact, obstacle chance constraints can prevent the agent from
colliding with obstacles with a likelihood of 1−∆ at each time step, and still have
an overall mission success probability close to zero if the mission is long enough.
The reason for this is that the probability of mission failure is the integral over all
time steps of the probability of intersecting obstacles.

N

∑
k=0

Pr(xk ∈ Xobs)< ∆ (4.264)

Considering multiple obstacles leads to:

N

∑
k=0

n−1

∑
i=0

Pr(xk ∈ Xobs
i )< ∆ (4.265)

These aspects are typically solved with the concept of risk allocation [112]. The idea
is to assign a risk budget that can be spent at each time step.

4.5.10 Removing corner cutting

In the MILP formulation, the system is seen through the lens of discrete time
steps. When deploying a discrete-time system to a continuous-time environment,
constraints that are satisfied in the discrete case might be violated in continuous
space. This happens because constraint checking in the MILP solver occurs only at
a finite number of time steps, so behaviors like corner cutting can emerge due to a
lack of explicit constraints. To avoid these circumstances, the constraints need to
be tweaked. For the corner-cutting case, there are two sub-problems. Firstly, the
mean of the trajectory should not pass through the obstacle. Secondly, the chance
constraints should not be violated at any of the intermediate points between time
samples. The mean constraint has been investigated in [113] and can be solved by
forcing the agent at time k to share the same active obstacle constraint at time k+1
for each obstacle. Let i be the obstacle’s index, j an index for the obstacle’s lines,
and pk,i, j ∈ R+ a continuous variable. Assume that for each polygonal obstacle i,
there will be Ni corners j ∈ {1, . . . ,Ni}. In addition, let the ith obstacle activation
variable of the obstacle’s jth side be yk,i, j. A no-corner-cutting constraint can be
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enforced for the agent’s mean for each time k ∈ {1, . . . ,N} and for each obstacle
i ∈ {1, . . .No} as:

Ni

∑
j=1

pk,i, j ≥ 1 (4.266)

pk,i, j ≥ yk,i, j + yk−1,i, j−1 (4.267)

pk,i, j ≤ yk,i, j (4.268)

pk,i, j ≤ yk−1,i, j (4.269)

pk,i, j ≥ 0 (4.270)

Note that if the problem has N time steps, No polygonal obstacles, each with Ni

sides, this system will have NNoNi additional constraints. In Figure 4.17, it is clear
how adding no-corner-cutting constraints has forced the agent to move farther away
from the obstacle’s corners.

(a) Solution without no-corner-cutting
constraints

(b) Solution with no-corner-cutting con-
straints

Fig. 4.17 Effects of adding no-corner-cutting constraints

4.5.11 Recapping the MILP formulation

The CC-TAMP, MILP formulation was incrementally built in the previous sections,
starting from a simple motion planning problem. Here, all the elements that go
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into the Task and Motion Planning under uncertainty formulated as a Mixed Integer
Linear Program are collected.

min
U0:N−1,y0:N−1

N

∑
i=0

(
Sck

Syk +
Mckzog

k

)
(4.271)

zog
k ∈ {0,1} (4.272)

ax
k +ay

k− ε ≤Mgzog
k (4.273)

ε−ax
k−ay

k ≤Mg(1− zog
k ) (4.274)

xk− xgoal ≤ ax
k (4.275)

−xk + xgoal ≥ ax
k (4.276)

yk− ygoal ≤ ay
k (4.277)

−yk + ygoal ≥ ay
k (4.278)

Mean Transition Dynamics:

µXk+1 =
Na

∑
i=1

(
ai

A ai
rµX

k + ai
B ai

ru
k +

ai
C
)

(4.279)

Slack variables mean:

rµX
k ≥ µX min

ai
yk

rmuX
k ≤ µX max

ai
yk

rµX
k ≤ hk−µX min(1− ai

yk)

rµX
k ≥ µX k−µX max(1− ai

yk) (4.280)

slack variables for control input:

ru
k ≥ umin

ai
yk

ru
k ≤ umax

ai
yk

ru
k ≤ hk−umin(1− ai

yk)

ru
k ≥ uk−umax(1− ai

yk) (4.281)
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State transition matrix definitions:

NX = 4, Nu = 4, Na = 2 (4.282)

A = {Move = M,Scan = S} (4.283)

X =
[
x y t2 t

]T
(4.284)

MA =


1 0 0 0
0 1 0 0
0 0 1 2∆t
0 0 0 1

MB =


∆t 0 0 0
0 ∆t 0 0
0 0 0 0
0 0 0 0

 (4.285)

SA =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

SB = 04x4

M
ω = N (0,Σω), S

ω = 0 (4.286)

MC =


0
0

(∆t)2

∆t

 , SC =


0
0
1
1

 (4.287)

Covariance propagation with growth freeze in a neighbourhood of the goal:

Σk+1 ≤ Σ0t2
k +Mc(1− zig

k ) (4.288)

Σk+1 ≥ Σ0t2
k −Mc(1− zig

k ) (4.289)

Σk+1 ≤ Σk + zig
k Mc (4.290)

Σk+1 ≥ Σk− zig
k Mc (4.291)

zig
k ∈ {0,1} (4.292)

zog
k + zig

k = 1 (4.293)
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Polygonal chance constraints:

No
e⋂

i=1

[
Ho

i µXk +φ
−1(∆)Ho

i
T

ΣXkHo
i ≥ obi−Mo(1− yo,i

k )
]

(4.294)

No
e

∑
i=1

yo,i
k = oNe−1 (4.295)

4.5.12 Observations about the planning problem’s structure

In general, an agent that acts in an environment and receives observations when an
information-gaining action is selected has been considered so far. The critical insight
is that due to noise in sensors and imperfect models, both state and observations are
random variables. As seen in Figure 4.18, the act of observing will yield a sample
from a probability distribution - specifically, a sample from the pre-scan belief state.
When propagating beyond the first scan, the belief state becomes more complex
to visualize; it becomes a probability distribution over probability distributions.
Planning over a distribution of distributions is known as planning over Hyperbeliefs.
The visualization in Figure 4.18 also highlights the key problem that is hidden in
hyperbelief planning. When projecting into the future, the belief state’s distribution
grows exponetially. This type of problem can be formulated as a Partially Observable
Markov Decision Process (POMDP):

POMDP = ⟨S,A,T,Ω,R,γ,Z ⟩ (4.296)

Where S is the state space, A the action space, T = p(sk+1|sk,ak) the transition
function, Ω the observation space, Z = p(ok+1|sk+1,ak) the observation function,
R the reward function and γ the discount factor [97]. Since the agent does not have
perfect state knowledge, planning in POMDPs occurs in Belief Space - probability
distribution over states. When projecting belief state in the presence of observations,
the problem becomes a hyperbelief planning problem. In hyperbelif planning, the
state’s probability distribution is a function of random observations. Thus, state
belief becomes a probability distribution over probability distributions (Figure 4.18).

POMDP solvers get around this complexity in continuous state spaces by ap-
proximating this hyperbelief structure through samples - similarly to a particle filter.
The MILP formulation includes an assumption about the observation’s structure
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Fig. 4.18 Visualization of the hyperbelief-planning structure of the move-scan prob-
lem

that sidesteps hyperbelief planning at the cost of optimality guarantees. In fact, the
Scan transition dynamics have assumed that the agent receives an observation that
coincides with the most likely estimate of its pre-scan uncertainty distribution. If an
entire plan generated by the MILP planner were to be executed, neither optimality
nor adherence to safety constraints would be guaranteed, as the MILP does not
model the possibility of being outside the distribution’s MLE after scanning. A way
around this suboptimality is to re-plan after each scan when a new state observation
is received. This guarantees that the safety constraints are respected but does not
guarantee overall plan optimality. This approach is similar to a Model Predictive
Control (MPC) approach (Figure 4.19). Even though optimality guarantees are not
provided, the MILP planner could still perform well against other state-of-the-art
planners tasked with solving the same problem. The following sections will outline
the comparison effort that was undertaken in this direction.
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Start Plan Execute Partial Plan Receive Observation Adjust Plan

Fig. 4.19 Model Predictive Control approach

4.5.13 Notes on sensor noise when scanning

Sensor noise in an important factor in determining the robustness of any decision
making under uncertainty algorithm, where an agent interacts with an environment
while receiving observations from imperfect sensors. However, for the sake of
simplifying the model and focusing on the core aspects of the task and motion
planning algorithm, throughout this work there is an assumption that the "scan
environment" action leads to no observation noise. In a real world scenario, sensor
noise would make it so that the agent can not trust the observations it receives, which
would have to be expressed as:

Zk = H(Xk)+Vk (4.297)

Where Zk is the observation, H is the observation function, and Vk is noise. In this
dissertation, the source of uncertainty is the lack of reliable observations during
the move action, not the sensor noise. The agent’s inability to observe its state
when moving, combined with the noisy transition dynamics leads to uncertainty
over time. Modeling noisy sensors would add a further layer of complexity to an
already complex formulation, and was therefore left for future work. Neglecting
sensor noise can be a justifiable assumption if the sensor noise is small compared to
the robot’s and environment’s scale. Future work should address the integration of
realistic sensor models, including observation noise, into the planning framework,
and should evaluate the resulting impact on planning performance and robustness.



Chapter 5

Experiments and Results

This chapter details the computational experiments used to evaluate the algorithms
presented in Chapter 4, and includes a hardware implementation of the most promis-
ing algorithm. The chapter begins with the introduction of a baseline planner inspired
by the classical approach of decoupled task and motion planning, serving as an an-
chor for comparative evaluation. The second part introduces the computational
framework used to evaluate the planners against each other, presenting the results
and insights derived from this framework. The final section outlines the hardware
implementation of the MILP algorithm, marking an initial qualitative step toward a
more detailed analysis of the planner’s performance on hardware, which is left for
future work.

5.1 Baseline Planners

As a baseline for comparison, the classical approach of decoupling task from mo-
tion planning is taken. Two-stage approaches are advantageous as they allow the
decoupling of the path planning problem from the uncertainty-aware task scheduling
problem, thus greatly simplifying the formulation effort. Firstly, a path is planned
using the A* heuristic graph search algorithm [114] over an inflated obstacle set. The
path planner module starts by inflating each obstacle using a filter that increases the
obstacle’s size by εg at each pass. This inflation procedure is done nI times, and in
the end, each obstacle will have grown by h = nIεg. The planning stage searches for
a minimal length path over this inflated set. The second stage consists of move-scan
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scheduling, performed as the mission progresses. State uncertainty can grow in
difficult-to-predict ways if relying on exteroception. For the sake of simplicity, it is
assumed that covariance follows a known growth law f that is a function of moving
time Mt, as would be the case for IMU integration. This growth function should be
positive and monotonic. This implies that the inverse f−1 should be computable.

Σ
2 = f (Mt) (5.1)

If covariance grows following a predictable law, then the threshold planner
becomes a fixed scanning frequency planner, and this scanning frequency will be
a function of the worst-case mobility scenario. Figure 5.1 shows this worst-case
scenario, where the planner is always moving along the boundary of an inflated
obstacle; this scenario is used to determine the frequency at which the planner should
stop to ensure that the safety constraints are never exceeded. Heuristic planners such
as A* find paths at the obstacle set’s boundary. Thus, if the obstacle inflation has
increased the obstacle’s size by h, a trajectory passing by states xk and xk+1 along
the inflated obstacle set’s boundary can be imagined. The covariance at time k+1 is
only a function of the moving time Mt. Thus, a chance constraint can be written that
will give the maximum moving time that the planner can safely schedule, without
performing any state projection. The same trick is used where p(x) is re-written as a
function of µx,Σx,z, where z∼N (0,1), as a way to express the chance constraint
as a function of the standard normal distribution’s cumulative density function. Note
that in this case, the origin can be centered in xk+1, therefore setting the obstacle at
−h and µx = 0. Additionally, the symmetry of this case is leveraged by looking only
along the axis that joins xk+1 with the obstacle.
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h
xk xk+1

Fig. 5.1 Covariance growth of the agent moving along the inflated obstacle set’s
boundary

Pr(x≤−h)≤ ∆ (5.2)

x = µx +Σxz z∼N (0,1) (5.3)

Pr(µx +Σxz≤−h)≤ ∆ µx = 0 (5.4)

Pr(z≤− h
Σx

)≤ ∆ (5.5)

φ

(
−h
Σx

)
≤ ∆ (5.6)

Σx ≥
−h

φ−1(∆)
(5.7)

Here, the property that Σx is a function of time is exploited. Furthermore, the ≥
becomes an equality, to express the constraint’s boundary.

f
(
max(Mt)

)
=

h
φ−1(∆)

(5.8)

max(Mt) = f−1
(

h
φ−1(∆)

)
(5.9)

The rationale for this planner is that it is simple and reliable. By knowing how state
uncertainty will evolve, it can be guaranteed that the safety constraints are never
violated with a simple formulation. Additionally, the planning time can easily be
neglected when compared to the execution time, as solving A* over a grid map is a
trivial task, and scan scheduling can be done a priori based on a simple expression.
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Thus, the mission execution time can be assumed to be approximately equal to the
action execution time (the planning time can be neglected):

tE ≫ tP =⇒ tM ≈ tE (5.10)

The obvious downside to this approach is that the planner is unaware of the robot’s
state and can not adapt the move-stop cadence to the robot’s environment. In fact, it
might not be much of a problem for the agent if state uncertainty grows above the
threshold when no obstacles are in sight. This task and motion planner will always
schedule scans, assuming it acts under the worst possible movement condition along
an obstacle boundary. It is easy to see how, for a majority of the time, this assumption
is too conservative and will lead to wasted execution time.

(a) Stage 1: Path planning (b) Stage 2: Task scheduling

Fig. 5.2 The two stages of the baseline planner. On the left, 5.2a shows the path
planning stage, whereas on the right 5.2b depicts scan scheduling

5.2 Baseline planner improvements

Our previous approach to managing risk along a path worked on the principle of
maintaining a maximum risk threshold at all times. While effective in maintaining
safety, this method was inherently conservative. It continuously presumed worst-case
conditions and instigated stops more frequently than necessary. This behavior can
result in prohibitive costs, mainly when the actions designed to gain information are
expensive.

A more nuanced strategy would be to schedule scans only when the risk surpasses
a predetermined threshold. The advantage of looking at the current risk level is that
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it is aware of the risks the environment poses to the agent, thus reducing unnecessary
information-gaining actions and lowering the overall plan execution cost.

Mathematically,the time step to schedule a stop, denoted by tstop, can be defined
as the shortest time t such that the probability of our system state X being in the
obstacle set Xobs exceeds a predefined risk threshold ∆. This can be expressed as:

tstop = min{t : Pr(Xt ∈ Xobs)< ∆} (5.11)

This formulation implies that a stop is scheduled at the earliest time step when
the risk of encountering an obstacle exceeds the threshold ∆. The probability of
being in the unsafe set is computed by Monte Carlo integration by sampling a 2D
Gaussian distribution fitted onto the planned path. It is assumed that covariance can
be computed as a function of the movement time.

Σk = Σ0 f (t) (5.12)

For this application, a linear covariance growth with time is used. In Figure 5.3,
there is a representation of this planner’s behavior. The image shows several runs
of the same agent tasked with reaching a goal behind a triangular obstacle. Initial
and terminal conditions are constant, and each run shares the same noise model. It is
apparent from the figure that path planning and task scheduling are solved in stages,
as the path passes closer to the obstacles than it needs to, and scans are scheduled
close to the obstacle to avoid violating chance constraints.

5.3 Monte Carlo Simulation Framework

The performance of the different planners was compared through a Monte Carlo
Simulation (MC) framework. This framework consists of two key components:
the planning component and the execution component. The execution component
encapsulates the problem’s noisy linear dynamics and consists of a simulator that
transforms a sequence of control actions into a sequence of states, all the while
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Fig. 5.3 Trajectories of Monte Carlo runs of baseline planner in a single polygonal
obstacle environment.

checking for safety constraint violations. Equation 5.13 shows how the dynamics are
implemented in the Execution component.

Xk+1 =
akAXk +

akBUk +
akωk (5.13)

Where ωk ∼ N (0,Σω). In general, this execution node can support action-
dependant transitions, but in this implementation, only move-action dynamics are
considered. The reason for this is that the only other action in our action space -
scanning - has the effect of starting a new simulation with initial conditions centered
around the agent’s true position. The planning components wraps around each
of the three planners described in the previous sections. The POMDP planner is
implemented in the Julia programming language, leveraging the JuliaPOMDP library
[104]. The Basline planner is also implemented in Julia. The MILP planner on
the other hand is implemented is C++ and uses Google’s or-tools [115] for model
definition and solver wrapping. The commercial Gurobi [116] solver is used due to
its first-of-class Mixed Integer Program solver.. MILP and Two-Stage are one-shot
planners. This means that they either have a solution, or they have nothing. The
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Execution

Xk+1 = Xk +BUk +C+N (0,Σ) Planner Wrapper
Scan State

Partial Plan

Fig. 5.4 Architecture diagram of Monte Carlo simulation environment

POMDP planner with MCTS is an any-time planner, and a solution can be achieved
for any computational cost (at the expense of solution quality). While in principle
there is no reason not to use the same thread to run both simulation and planning,
this multi-language, multi-planner configuration made it convenient to separate the
two functions into separate processes. The Robot Operating Sysem (ROS), was used
to manage communication between planning and execution, through a server client
architecture (shown from a high-level in Figure 5.4).

The execution node also acts as an exernal observer, by having knowledge about
the agent’s goal and judging whether the goal has been attained or not. If there
is an error between state X and the goal set Xg, the execution node sends a plan
request to the wrapper, describing the current state. The planner wrapper receives this
request and dispatches it as initial condition to a planner (e.g., POMDP, MILP, Two-
Stage) based on a configuration file setting. The wrapper then parses the planner’s
output and extracts the sequence of commands up to the first scan. This sequence is
packaged and sent back to the Execution node as a response. The execution node,
in turn, receives that partial plan and executes it, returning back to the start. This
process closely follows what is described in Figure 4.19.

The simulation is launched and coordinated through a series of bash script and
roslaunch files. For this performance assessment, handcrafted maps were chosen
rather than randomly generated terrain, as a way to test specific features of the
planners. As seen in Figure 5.5, three 2.5D maps were chosen, the first (Map-1) with
a single rectangular obstacle, the second (Map-2) with two obstacles, and the last
(Map-3) with three rectangular obstacles. Map-1 represents a worst-case scenario for
the two-stage planner, with the start, end, and minimum length path all being very
close to an obstacle. Map-2 is similar to Map-1, with an added risk for the agent
consisting of a local optimum at the two block’s intersection. Map-3 has a narrow
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pathway that is technically the shortest path, but requires many stops to be safely
navigated.

(a) Map-1 (b) Map-2 (c) Map-3

Fig. 5.5 Environments used to compare the three planner’s performance.

5.4 Metrics of interest

Besides qualitative comparisons, when comparing planners, it is important to focus
on solution cost and computational cost. Solution cost is a concept closely related
to solution quality - in fact, they are inversely proportional. Given a fixed risk
tolerance, the solution’s cost can be quantified by measuring the Execution Time,
which represents the time required to achieve the planning goals under the obtained
plan, excluding the time spent computing a plan. Excution time can be computed by
quantity by multiplying the number of steps in the plan each by the duration of the
action selected at that time step.

tE =
N

∑
k=1

Na

∑
i=1

ai
yk

ai
∆t (5.14)

The relative weight of scanning-vs-moving cost parameters vastly influences the
planner’s behavior. As the scanning cost decreases, the optimal task and motion
plan will gradually approach the minimum length path. Conversely, as scanning cost
increases the solution will approach a robust risk-aware path without scans.

As seen in Table 5.1, scanning is assumed to be much more expensive than
moving, with respective time costs of 100 seconds and 0.5 seconds. This number
closely matches the hardware system’s characteristics, and sufficiently penalizes
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Table 5.1 Actions cost

Action Cost

Move 0.5
Scan 100

information gaining so that optimal policies follow very different paths from the
minimum length paths.

Computational cost is the time spent planning for each mission. Assuming that
the number of planning and execution iterations needed to reach the goal for a given
mission is N and the system clock time that passes during the ith planning step is
t pi, the computational cost can be expressed as:

tP =
N

∑
i=1

t p
i (5.15)

5.5 Monte Carlo experiment results discussion

It is important to highlight that there is a fundamental difference between MILP /
POMDP and Two-Stage planners that makes the comparison nuanced. The MILP
and Two Stage planners output what they believe is the optimal Plan, from the initial
state to the goal state. The computational cost of determining this plan is fixed in the
sense that it is not possible to trade plan optimality for a computational speed-up.
The plan is either found, or no solution is available. On the other hand, the POMDP
planner uses an anytime solver that will be capable of outputting sub-optimal plans
with an arbitrarily small computational cost. For the POMDP planner, increasing the
computational budget allocated to searching the solution space will improve solution
quality at the expense of a slower planning process. Hence, the only accurate way
to compare the planner’s performance against each other is to look at performance
trends with varying computational resources.

All computational experiments were run on an Intel i7 NUC with a 2.65 GHz
processor, and 32-gigabyte memory.

The focus is first on determining the effects of varying Risk Tolerance on the
planner’s results, then on performance metrics.
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(a) Success rate vs risk tolerance (b) Plan time vs risk tolerance

Fig. 5.6 Planner performance comparisons with varying risk tolerances.

These planner’s characteristics with varying risk tolerance are visible in Figure
5.6. In these comparisons, the map has been kept constant and corresponds to the
One-Obstacle map (Map-1).

In Figure 5.6b, it is visible how risk tolerance has a large effect on the MILP’s
planner performance, as it modifies the space of feasible solutions. With lower risk
tolerances, the MILP planner struggles to search through the solution space, and
the time needed to find the optimal plan increases dramatically to several minutes,
also with a low number of obstacles. Conversely, risk tolerance can be tuned to
find solution times of a few seconds. As expected, POMDP and Two-Stage planner
computational costs remain roughly constant with varying risk tolerance, as their
underlying solvers are not affected by varying the relative size of feasible vs infeasible
solution spaces.

In Figure 5.6a it can be seen how the POMPD planner acts as expected with
its plan execution success rate decreasing with increasing risk-tolerance. The Two-
Stage planner also shows decreasing success rates, but the trend reaches a lower limit
due to the fact that the path planning stage is not coupled with the task scheduling.
In fact, given a fixed path, there is an upper bound to the path’s risk, given by
scheduling only move actions (∑N

k=1
Syk = 0). In the MILP planner’s success rates,

the conservative nature of the covariance growth model is clearly visible. Note
that the true uncertainty growth for a process where zero-mean Gaussian noise is a
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Fig. 5.7 Representation of different Monte Carlo runs of the MILP planner on a
triangular obstacle map. Each set of runs has a unique risk tolerance, and it can be
seen how high risk tolerance leads to trajectories closer to the obstacle and fewer
scans, whereas low risk tolerance leads to an increase in number of scans and more
conservative trajectories.
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linear Variance growth, thus a square root Covariance growth. Covariance growth
is modeled a Quadratic, therefore leading to conservative plans. The success rates
of these plans is 100% for risk tolerances up to almost 50%. As covariance growth
approaches 50%, the state belief’s mean is gradually steered closer and closer to
obstacles, and once the tolerance goes beyond 50%, the planner finds solutions
where the mean passes through the obstacle (Clearly visible in Figure 5.7). For these
risk tolerances above 50%, the planner’s overestimation of state uncertainty clearly
backfires, as the likelihood of colliding with obstacles jumps to 100%. This is not
necessarily an issue, as any real-world application would never consider such risk
tolerances.

Risk tolerance is a major decision for every mission, and is one of the primary
drivers of development, manufacturing and testing costs. Flagship mission, such as
that envisioned for EELS, would warrant risk tolerances less than 0.01 (probability
of mission success greater than 99%), and a lot of the mission’s hardware would
have to be designed to be redundant and capable of gracefully degrading. The system
level autonomy’s risk tolerance should be aligned with the mission’s risk posture,
but should not be unnecessarily more conservative. The reason for this is that the
planner’s risk posture has an effect on the plan’s cost. Excessively conservative risk
tolerances could potentially lead to planning failures when the system is traversing
inherently dangerous terrain (no suitable solution satisfies risk constraints), or would
lead to unnecessary depletion of mission resources.

In Figure 5.8,the performance comparison for the three planners with a risk
tolerance of 30%, over the three test maps can be seen. As mentioned earlier, MILP
and Two-Stage are represented by single points, while the POMDP is a line. To
interpret these performance maps, it is worth reminding that a high-quality solution
will have low execution time, and vice versa. For all maps, the POMDP planner
shows an increase in solution quality as planning time is allowed to increase. The
POMDP’s stochasticity is visible by the large error bars. A key aspect to note is
that, on average the MILP planner finds a higher-quality solution than the POMDP
for a fixed computational budget. Another way of seeing this is that by fixing the
solution cost, the POMDP planner will take orders of magnitude longer to find plans
of comparable quality to the MILP planner reliably. The comparison between MILP
and Two-Stage planners is less straightforward as it is highly map-dependent. The
Two-Stage planner will find low-quality solutions when the map has a minimal-
length path that runs close to obstacle boundaries for a significant fraction of its
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(a) One-Obstacle Map (b) Three-Obstacles Map

(c) Two-Obstacles Map

Fig. 5.8 Planner performance comparison in three different environments. The x-
axis represents planning time (computational cost), whereas the y axis represents
execution time (plan cost).

duration. Conversely, terrains with few obstacles will favor the Two-Stage planner,
as scans will be scheduled only when in close proximity to obstacles. Note that
this relationship is rooted in the MILP planner’s modeling of uncertainty growth as
quadratic, which yields plan sub-optimality.

The different nature of the three planners can be observed in Figure 5.9, where
plans are visualized in belief space. Figure 5.9a shows the MILP planner’s output,
and it is clear that the planner is finding an optimal solution, but uncertainty growth
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(a) MILP (b) POMDP

(c) Two-Stage

Fig. 5.9 Comparison of the belief-space plan generated by the three planners on
the one-obstacle map. State uncertainty is represented as shaded circles along the
planned path, wherars scan behaviors are black triangles with a red outline. A
colormap from light blue to magenta displays time-progression along the plan.

(the growth rate of the shaded area) is overestiamted. Conversely, Figure 5.9 shows
how the decoupled approach schedules scans by placing a threshold on the area of
intersection between state uncertainty and obstacles. In Figure 5.9b, the POMDP’s
stochastic execution is once again visible.
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(a) MILP (b) POMDP

(c) Two-Stage

Fig. 5.10 Comparison of trajectories generated by Monte Carlo simulations of the
three planners running on the three-obstacle map. Scan behaviors along the trajectory
are displayed as red outlined triangles. The progression of time along the trajectory
is shown as a colormap going from dark blue (start) to dark yellow (end).

Figure 5.10 shows the trajectories of multiple Monte Carlo runs on Map-3. The
Two-Stage planner is tricked into heading into a narrow passage and having to
schedule multiple unnecessary scans (Figure 5.10c). The MILP planner avoids the
narrow passageway and consistently finds a high-quality path to the goal (Figure
5.10a). The POMPD planner exhibits highly stochastic execution characteristics,



5.5 Monte Carlo experiment results discussion 131

with two runs rarely similar. In general, it follows a path similar to the MILP planner,
but a number of stops and specifics of the path are stochastic.

MILP and POMDP planners suffer from scalability issues regarding the number
of planning horizon and number of actions. Mixed Integer Programs are NP-hard
problems. Thus, the solution time scales exponentially with the problem’s input
size. Similar scalability concerns are present for exact POMDP solutions. Yet, the
existence of anytime, approximate solution algorithms enables finding solutions
at any computational cost - albeit by sacrificing (at times significantly) optimality
guarantees.

Tests were performed with planning horizons up to 50 time steps and a number
of obstacles less than three obstacles Nobs ≤ 3. Depending on the specifics of risk
tolerance and map difficulty, the MILP planner always reached unacceptable solution
times before 100.

It is interesting to note the dependence on map difficulty. A primary source of
intractability in the MILP planner is decisions of the form "should I go left or right of
the obstacle", where either way could be equally appealing. These binary decisions
increase the size of the relaxation bounds used by MILP solvers and force the solver
to search through a more significant portion of the solution space, thus decreasing
the effectiveness of branch-and-bound search techniques.

By formulating the problem as a search through a graph of convex, free-space sets,
it has been demonstrated that relaxation bounds can be tightened and the scalability
of MILP path planning can be improved [117]. Although their formulations are not
directly applicable to our problem, as they are not considering belief-space planning.

The scalability issues of the Mixed Integer Linear Programming (MILP) planner
can also be examined through the lens of binary decision variables. As binary
variables increase, the problem becomes progressively harder to solve. It is then fully
expected that increasing the number of actions leads very quickly to computational
intractability. Scalability concerns emerged even with a short horizon of less than
50 time steps and a number of actions Na ≤ 2. The POMDP formulation is also
sensitive to the number of actions, as additional actions further increase the problem’s
branching factor.
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5.6 Hardware integration of MILP planner

The previous sections have outlined how the MILP planner is a better choice than
the POMDP planner because of the POMDP’s computational cost that turned out to
be orders of magnitude larger than the MILP’s cost at a given solution quality. Fur-
thermore, the MILP planner proved to be more capable of navigating environments
with multiple obstacles than the Two stage planner, because of the MILP’s capacity
to jointly reason about path and actions. Because of these considerations, the MILP
planner was integrated into the robot and tested to understand the limitations of
a real-world deployment. This planner can be called when the robot has detected
localization failure due to bad measurements without sensor damage. As can be seen
in Figure 5.11, several scanning behaviors were implemented, varying by the number
of modules involved in the behavior. Due to the robot’s high reconfigurability, what
information-gaining action to take is part of its action space. By increasing the
number of modules involved in the scanning behavior, the robot will achieve a better
view, and relocalize better. But, increasing the number of modules will also increase
the behavior’s time and power costs. For simplicity, the planning problem was solved
considering only a single scanning behavior, leaving a multi-scan action space for
future work. Specifically, the behavior involving two robot modules on the top right
corner of Figure 5.11 is used as a reference.

Figure 5.12, was produced to visualize the impact of scanning on the perception
system. The LiDAR’s point cloud is shown before and during a scanning behavior
and it is immediately clear how scans improve perception capability - especially
in cluttered environments with obstacles close by. It is important to acknowledge
that the visualization presented in Figure 5.12 is taken in an indoor laboratory
environment, so the wide-angle LiDAR mounted on the robot picks up features
from the room’s walls and ceiling in both scanning and non-scanning configurations.
The situation is very different during surface locomotion on the surface of a glacier,
where the lack of nearby features leads to degraded navigation performance.

The MILP planner consumes a goal, an initial state, and a set of obstacles de-
scribed through linear inequality constraints and generates an intermediate waypoint
where the robot should scan next.

The goal is expressed as a constraint over state in terms of pose, and a maximum
risk level tolerance.
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Fig. 5.11 Images of scanning behaviors running on the EELS hardware platform.
Several behaviors can be selected depending on the available support polygon,
resource and observation needs.

MILP_goal:
pose: [x,y,z]
risk_bound: 0.1

A key assumption for this planner is that the robot is not subjected to non-
holonomic constraints. If the system on which the planner is deployed is non-
holonomic, this risk-aware planner can still be used, so long as it is planning over
a spatial scale much larger than that where the non-holonomic constraint matter.
Therefore, the MILP planner is better suited for medium/long-range planning, while
planners capable of capturing non-holonomic constraints such as EELS’ lower-level
motion planner are ideally suited for shorter-range operations.

Another assumption that was made in the planner’s development is that perception
is not capable of localizing the robot while moving and is capable of localizing the
robot when stopping for an information-gaining action. This assumption could not
directly be tested on hardware, as the perception was reliably working in the lab
environment due to large features being visible from any pose (walls and ceiling).
Hence, the perception failure and relocalization assumption was mocked. With the
robot being asked to execute movements in an open-loop manner, disregarding pose
estimates from perception. Pose information is fed to the robot only when planning
after a scanning behavior.
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Fig. 5.12 Comparison between ground-level locomotion and Scanning behavior in
an indoor laboratory environment. The ground level view is highly constrained and
observes only the immediate surroundings, wheras the scanning behavior observes
features at a much greater distance from the robot.

5.6.1 From perception to polygonal obstacles

The MILP planner requires convex obstacle representations as a set of line equation
coefficients. A large number of perception pipelines (including EELS) generate pose
estimates and traversability maps. For surface mobility, the type of map used is a
2.5-dimensional grid-map, that can be interpreted as very similar to an image.

A Grid-map to line-coefficients interface was implemented, by customizing a
third party library. It is interesting to trace the process of building this capability
step-by-step to illustrate its core concepts. The starting point is a single obstacle,
followed by a focus on how the single obstacle case can be extended to an arbitrary
number of obstacles.

The first step is to take the Gridmap and transform it into a set of obstacle points.
This can be easily done by applying a threshold ∆ to the map’s traversability estimate
layer, and treating any value above the threshold as impassible obstacle:

Xobs = {(x,y) : m(x,y)> ∆} (5.16)

Once the set of obstacle coordinates is computed, there is a large number of
efficient algorithms that compute the set’s convex hull. An example could be Gra-
ham’s scan [118] or Quickhull [119]. Implementation details are out of scope, but,
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as shown in Figure 5.13a, convex hull algorithms efficiently find the corner points of
the smallest convex shape that can be fitted around the obstacle.

(a) Convex Hull (b) Granular representation

Fig. 5.13 Examples of the Quickhull algorithm converting concave obstacles into
convex polygonal obstacles.

Convex hull algorithms return an ordered set of points that represent the hull,
starting from the corner with xmin,ymin and proceeding either clockwise or counter-
clockwise. To make the hull readable by the MILP planner, these points need to
be used to derive line coefficients. The first step take all adjacent pairs of points
and compute the equation of the line that connects these two points in the form
a1x1 +a2a2 = b. This is easily done by using the equation of a line passing by two
known points:

x2− kx2
qx2− kx2

=
x1− kx1

qx1− kx1
(5.17)(

x2− kx2

)(
1x1− kx1

)
=
(

x1− kx1

)(
qx2− kx2

)
(5.18)
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(5.19)

In the general case, multiple obstacles might be present, and thus there needs to
be a preliminary clustering step that identifies groups of adjacent obstacles points that
represent an obstacle. A number of clustering effective clustering algorithms have
been developed over the years, such as k-means [120] or dbscan [121]. Once clusters
of data are generated, the convex algorithm is run over each obstacle individually,
and a set of sets of obstacle line coefficients can be fed to the MILP planner.



136 Experiments and Results

For clustering and convex hull point computation, the open-source library
costmap_converter was used due to its ease of integration with the robot’s ROS-1
software system.

An example of the full obstacle processing pipeline, applied to a perception
software mock can be seen in Figure 5.14. Here, the Gridmap to convex-hull step
is displayed on the left side (5.14a) as a top-down rviz view. The robot’s head
is displayed at the center of the image. The map is made from blue (safe) or red
(unsafe) cells, and the green segments connect the markers that make up the set of
convex obstacles. The cost map conversion library conveniently allows modifying in
real-time both clustering and convex hull parameters, allowing tuning the obstacle’s
number, size, and the "resolution" of each obstacle (minimum distance between two
convex hull points).

(a) Gridmap to convex hull (b) convex hull to lines

Fig. 5.14 Conversion between grid-map to set of convex obstacles described by line
inequalities. Figure 5.14a shows the output of a mock perception pipeline. The EELS
robot is displayed to the center-left and the mock output is the shaded triangular
area on the right side of the image. Blue cells is obstacle-free, whereas red cells are
obstacles. The green lines are the output of the output of the convex hull algorithm.
Figure 5.14b visualizes the line inequalities that make up the obstacle set.

In Figure, 5.14b the obstacle hull markers are converted into line inequalities,
and the obstacles - as seen by the MILP planner - are displayed.

There is a tradeoff between obstacle resolution and planner performance, as
each additional line/obstacle will increase planning time as it adds inequalities.

https://github.com/rst-tu-dortmund/costmap_converter
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Fig. 5.15 Comparison between open loop behavior and MILP planner running on
hardware. Different runs are represented as dashed lines. Runs that have successfully
reached the goal are shaded green, whereas runs that resulted in collision with an
obstacle are shaded red. The background and obstacles are simplified to improve
image readability. Figure (a) shows open loop behavior and shows 3 unsuccessful
runs and a 2 succesfull runs, whearas (b) shows 3 succesful runs.

Moreover, the optimal value of the parameter set is environment dependent as open
environments with fewer obstacles can afford a polygon with many sides for each
obstacle, while more complex environments will require a decrease in obstacle
resolution or a grouping of adjacent obstacles.

The MILP planner was tested over multiple runs and compared against open-loop
movement execution. The different runs have been overlaid in Figure 5.15, where
it is clearly visible how approaching localization failures with open-loop behavior
leads to multiple collisions. On the other hand, planning risk-aware trajectories and
scheduling information-gaining stops, combined with re-planning leads to a much
safer outcome. This is particularly true in obstacle rich environments, where pose
uncertainty growth quickly leads to collisions.

It is worth acknowledging that these experiments were conducted in a workspace
that is not large enough to ignore the robot’s non-holonomic constraints. Thus, the
path taken to reach scan waypoints can differ from the expected path over which
belief was projected. This is a source of errors, but was deemed acceptable as these
results are intended more as a qualitative display of risk-aware planning rather than
a quantitative analysis of its performance.
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(a) Belief-space plan

(b) RVIZ view.

Fig. 5.16 Software views of the MILP planner running on hardware in a lab envi-
ronment. 5.16a shows the belief-space representation of the generated plan. 5.16b
is an RVIZ view the part of the plan that is dispatched for execution to the mission
executive
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When the MILP planner is run in the constrained lab environment, multiple scans
are scheduled through the robot’s mission. As can be seen in Figure 5.16a, these scan
points are scheduled far from the obstacles’ boundaries, as trajectories that minimize
the number of scans tend to be less costly than trajectories with more scans.

It can also be said that Figure 5.16a shows the internal representation of the
MILP planner. Moving one step closer to hardware, Figure 5.16b shows the MILP
planner’s output viewer from the rest of the software stack. This rviz view shows how
the goal of reaching a point in space was broken down into intermediate scanning
waypoints that were reached thanks to the lower level planners and controllers.

5.6.2 Limitations of the hardware experiments

These hardware experiments are only intended to be a proof of concept of the inte-
gration between the MILP planner, the system level autonomy framework outlined
in section 2.4, and the EELS hardware platform. Detailed data logging was not set
up, and quantitative experiments were explicitly left for future work. The primary
reason for this is the author’s involvement in EELS’ field campaign [122], and the
consequent requirement to focus on lower level control to achieve subsurface mobil-
ity. The EELS platform required a considerable research and development effort in
the locomotion layer because of its novel surface and subsurface mobility strategies.
A detailed experimental analysis of the mission planning layer, and a unification
between surface and subsurface planners was left for after the first field campaign,
where the primary test was for the system’s locomotion capabilities. The author left
the EELS project soon after the field campaign.

As a consequence, no detailed analysis and design went into accommodating the
MILP planner in the system’s computational architecture. As a way to minimize
the MILP solver’s impact on the rest of the software stack, the planner process was
fully contained on the machine that was used to host the computational experiments
outlined in the previous sections. This machine was connected to the EELS network,
and planning requests and responses were implemented as network calls. Therefore,
the solver’s computational performance between hardware and non-hardware ex-
periments remained unchanged. This is in line with the initial testing philosophy
applied to EELS, where the purpose of tests was to demonstrate the feasibility and
functionality of the algorithms, without focusing on algorithm optimization. Future
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work will be centered around refining the portability of these algorithms, paying
attention to compute resource usage.



Chapter 6

Conclusions and future work

In conclusion, it is worth reviewing the primary results and lessons learned through
this work and outlining future promising research directions.

This research began by outlining the capabilities needed to operate autonomously
in extreme, uncertain environments and argues in favor of including elements of
motion planning and risk awareness in system-level autonomy. Subsequently, the
EELS system was described alongside a robotic software architecture capable of
supporting high-level autonomy functionality. The architecture presented focuses on
modularity and proved well-suited for fast-paced research projects where planning
requirements often change. However, the main purpose of this architecture was to
provide a minimal scaffolding needed to run and test the main contributions of this
work, which are the decision making under uncertainty algorithms developed for
the EELS surface locomotion problem. Therefore, the architecture description does
not outline in detail the inclusion of risk and fault management components, and
is not evaluated quantitatively in the experimental section. In the development of
decision-making algorithm, emphasis was placed on task and motion planning under
uncertainty and approached through three families of planners.

• A classical two-stage approach that decouples motion from task planning and
solves them separately in stages.

• A planner based on a Partially Observable Markov Decision Process (POMDP)
formulation coupled with an MCTS solver and several different reward-shaping
strategies.
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• An entirely novel planner based on a Mixed Integer Linear Program (MILP)
formulation capable of jointly optimizing task and motion planning and pro-
viding guarantees on solution existence and quality.

These planners were quantitatively compared against each other in a computational
framework, and the MILP planner was implemented on hardware and tested in a
laboratory setting because of its promising characteristics. The main limitation
of these planners is scalability. Both the POMDP and MILP planners exhibited
the capacity to find good solutions, but with increases in planning horizon, action
space size, and number of obstacles, these belief-space planners fail scale due to the
fundamentally NP-hard nature of the problem they are trying to solve. An inclusion
of true risk-awareness - defined as the capacity to reason jointly about probability
of failures, and the consequences of these failures - is left for future work, as the
planners treated in this work reason with a fixed consequence level.

An immediate direction of research for future work is seeking ways to improve
these algorithm’s scalability in terms of the number of obstacles and actions they
can handle. Belief-space planning is very challenging and generally scales poorly,
but quality solutions can be found by sacrificing optimality guarantees. Perhaps,
there is a broader challenge of cultural nature at play here. The aerospace industry
often requires algorithms with provable mathematical guarantees of safety and
performance, which disqualifies a large set of algorithms that could nevertheless be
good enough, and have much improved scalability. The question of how build trust
and verify algorithms that do not come with mathematical guarantees is likely going
to be central to the future of system-level autonomy research.

A particularly promising technical research direction, that does not require
significant modifications to the MILP algorithm, is seeding the planner with a
feasible solution generated with a faster algorithm, and terminating the search early.
This strategy would forsake optimality guarantees, but could lead to both high-quality
solutions and low computational cost. Additional ways of dealing with the scalability
issues introduces by belief-space planning could be (a) remove belief space planning
in favor of integrating Task and Motion Planning into system-level autonomy and
deal with uncertainty implicitly through the planner’s constraints, or (b) explore
data-driven approaches. Achieving safe behavior when neglecting beliefs could be
achieved similarly to the two-stage approach, which could be vastly improved with
iterative planning techniques. Another interesting research direction is to further
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improve the proposed robotics software architecture to include fault management
and mesh reactive system-level behaviors with deliberative planning. Ensuring that
the deliberative planning is aware of localize reactive behaviors is another interesting
architectural challenge. Additionally, system-level reactive behaviors might be
necessary to recover from certain failures, and there is an opportunity to design a
unified architecture for high-level autonomy capable of both reactive behaviors and
deliberative planning. It is also necessary to work on finding ways to formulate
risk-aware planners capable of assessing consequences and finding scalable ways
of solving these formulations. A work focused more on architectural changes
would benefit from quantitative experiments analyzing the effect on mission-level
performance metrics of architectural changes.

True system-level autonomy will likely only be achieved through artificial general
intelligence (AGI), whose future prospects are fundamentally unknowable. However,
even in the absence of AGI, there is still a lot of value that can be found in furthering
the state of the art of system-level autonomy. Many decision-making technologies
have proven their value in Operations Research, Field Robotics, and Space Explo-
ration, and their usefulness is only bound to grow as autonomous systems become
more widespread.

With an appropriate set of simplifying assumptions, and incremental technolog-
ical improvements, planetary subglacial access could soon be within humanity’s
reach - if a political choice is made to prioritize it.
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