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Abstract

Symmetric cryptography plays a key role in our daily lives, securing the vast array
of devices and applications we utilize, facilitating secure and fast communica-
tions, as well as safeguarding data at rest. Motivated by the pursuit of enhanced
efficiency and robustness, researchers recently have worked on novel designs for
symmetric ciphers. A notable example is NIST’s call in 2019, which introduced 56
candidates for the standardization of lightweight symmetric ciphers. The evolu-
tion of these designs inevitably leads to the emergence of new attack vectors, giv-
ing cryptanalysts two primary objectives: crafting specialized methods to break
novel designs, and developing automated frameworks for fast blackbox analysis
of symmetric ciphers to uncover possible weaknesses. This thesis focuses on the
latter aspect, drawing inspiration from Aron Gohr’s pioneering work presented at
CRYPTO 2019. Gohr demonstrated an attack on the SPECK cipher improving
the existing state of the art, employing neural networks with minimal prior knowl-
edge on the cipher structure.

Expanding Gohr’s contributions, we first analyze what we can expect from neu-
ral networks in symmetric cryptanalysis. Subsequently, we analyze why Gohr’s
approach excelled in the case of the SPECK cipher but encountered limitations
with other designs. This investigation results in the formulation of a compre-
hensive framework for analyzing symmetric ciphers in the context of differential
cryptanalysis by means of neural networks. The concluding segment of the thesis
explores algorithmic methods for the same purpose, presenting a novel approach
based on Monte Carlo tree search.
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Part 1

Symmetric Cryptography
and Neural Networks



Chapter 1
Introduction

Symmetric cryptography is the study of primitives that can encrypt and decrypt
data using the same key. It is the oldest type of cryptography but is more funda-
mental today than ever in guaranteeing security in our interconnected world. In
fact, the security of most complex modern protocols and applications is usually
strictly related to the security of the underlying symmetric encryption primitives.

Since the first standardization of modern block ciphers with the Data Encryp-
tion Standard (DES), the security needs have continuously changed, resulting in
a variety of new designs over the years: candidates for the Advanced Encryption
Standard (AES) [JV02], the eSTREAM portfolio [eSt], the CAESAR competition
[Cael, and, more recently, the call for lightweight symmetric ciphers organized by
the National Institute of Standards and Technology (NIST) in 2019.

With the introduction of new primitives and design techniques, more and more
different attack techniques are found, as differential and linear cryptanalysis [BS91]
or integral attacks [KWO02]. As the number of proposed cipher designs grow, there
is a strong need for automation in the field of symmetric cryptanalysis. Solving this
problem is not trivial at all, as symmetric cryptanalysis historically always relayed
on specialized and human-heavy techniques depending on the cipher structure.

For instance, differential cryptanalysis requires finding long high-probability
propagation patterns through the cipher. This highly combinatorial problem
was initially tackled by manually implementing Matsui’s branch-and-bound al-
gorithm [Mat94] for the cipher under study, a time-consuming and error-prone
process. In 2012, after almost two decades, Mouha et al. [MWGP12] proposed the
use of Mixed Integer Linear Programming for this problem, making it significantly
easier and faster to solve. Declarative approaches (MILP, SAT, SMT, CP...) have
since become the de facto standard for differential cryptanalysis. More recently,
open-source cryptographic libraries such as Tagada [LDLS21], Cascada [RR22], or
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Introduction

CLAASP [BGG™23] have made the process fully automated: from the description
of a cipher, these libraries build and solve the declarative models for the search
of optimal differential characteristics, without human intervention. A similar slow
automation process was followed for other techniques, such as linear or impossible
differential cryptanalysis, which are implemented within these libraries as well.
Incidentally, as cryptographers become able to run these search problems more
efficiently, the corresponding cryptanalysis techniques become more and more re-
fined, as the time investment shifts from finding a distinguisher to exploiting it.

Recently, a new cryptanalysis technique emerged based on deep learning: neural
cryptanalysis. The possibility of using neural networks to perform cryptographic
tasks has been studied since the 1990s [Riv91], but the first work to successfully use
the power of neural networks to improve the state-of-the-art results on a particular
cipher was proposed by Aron Gohr at CRYPTO 2019 [Goh19b]. Gohr’s work
exploits the ability of deep learning algorithms to recognize complex patterns to
identify relations between sets of ciphertext that distinguishes them from random
data. In his work work [Gohl9b], this relation is differential in nature; given
pairs of ciphertexts (Cy = Ex(M,),Cy = Ex(M;)) (with Ex(X) denoting the
encryption of X with the key K through a number of rounds of a block cipher),
the neural distinguisher is trained to determine whether My & M, ZA.

Gohr’s neural distinguishers on 5, 6, 7 and 8 rounds of SPECK32 enabled key
recovery attacks for 11 and 12 rounds with better complexity than the state of the
art.

The approach taken in the subsequent years by the cryptographic community
has often been to optimize a neural distinguisher for a given cipher, by carefully
tuning its parameters, to build the best key recovery attacks. Similarly, the manual
transformation of the ciphertext pairs has been used to obtain better accuracies.

As this field is very young, it is not clear what is the true potential of neural
cryptanalysis, and which limitations it will encounter in the future. Moreover,
there are unexplored paths related to machine learning but not directly to neural
networks to perform cryptanalysis of symmetric ciphers, that can possibly lead to
new research directions.

The objective of this dissertation is then twofold:

i) We aim at closing the gap between conventional cryptanalysis and neural
cryptanalysis, by analyzing the current state of the art from a theoretical
point of view, with the goal of understanding better what neural cryptanalysis
is actually doing, why it is better in some cases and why it fails in others.
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Introduction

Moreover, we try to propose a general approach to the problem of analyzing
a cipher by means of neural networks.

it) We try to explore paths related to machine learning but not directly to neural
networks to perform cryptanalysis of symmetric ciphers. This aims to create
a starting point for future works in this direction.

1.1 Structure of this work

This dissertation is divided into three main blocks.

The first part introduces neural cryptanalysis by covering the basics and providing
an initial understanding of which tasks can be solved with neural networks and
which can not.

In particular:

e In Chapter 2 we introduce the general concepts of symmetric cryptography,
attack models, and briefly review the basics of differential cryptanalysis, our
main tool used to cryptanalyze symmetric ciphers.

o In Chapter 3 we provide an overview of our main tool: neural networks. This
chapter is intended to be a brief overview of the tools that have been used and
are useful in neural cryptanalysis, and not a comprehensive guide to neural
networks.

e In Chapter 4 we do a first attempt in merging these concepts: we try to use
neural networks in the simplest cryptanalysis setting, the black box model.
We analyze theoretically when neural networks should work and when they
should not, performing different tasks. We also review the literature in the
field.

The second part focuses on the application of neural cryptanalysis in more complex
scenarios, i.e., in white box settings, where the information about the structure
and the properties of the cipher is available to the attacker:

e In Chapter 5 we briefly review the successful attempts that have been made
using neural networks in these settings. We then proceed to compare two basic
neural distinguishers with two conventional ones on the lightweight ciphers

TEA [WN94] and RAIDEN [PHCETRO8], using a very simple framework.

o In Chapter 6 we develop a framework to improve neural cryptanalysis, taking
a step forward in automating it for different cipher structures, block, and
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key sizes. We propose a fully automated neural training pipeline that is
independent of the analyzed cipher and, moreover, we provide an algorithm
to automatically find good input differences to be used with together with
such framework.

The last part of the thesis explores new paths not directly related to neural
networks. In Chapter 7, we propose a method based on Monte Carlo tree search
to perform differential cryptanalysis on the SPECK [BTCS*15b] cipher. Although
this method is not fully automatic, it outperforms the state-of-the-art techniques
in terms of timing in the task of finding differential characteristics.

Lastly, Chapter 8 concludes the dissertation.

11



Chapter 2

Symmetric Primitives and
Cryptanalysis

Part of this chapter has been readapted from different joint works with E. Bellini,
A. Hambitzer and M. Protopapa. The original publications can be found in [BGPR22]
and [BR20].

This chapter introduces cryptography and cryptanalysis, with a particular focus
on symmetric primitives and their differential cryptanalysis, which is the primary
tool used in our work.

2.1 Cryptography

Cryptography, in its broadest sense, is the science of securing situations that are
vulnerable to malicious actors [Won21|. In the modern, practical world, cryptog-
raphy involves protocols and their security.

A protocol is a series of simple steps where one or more participants attempt
to achieve a goal. Cryptography enhances protocols by adding an additional layer
designed to achieve specific objectives. Like protocols, cryptography consists of
small building blocks called primitives. Each primitive has its own specific charac-
teristics, designed to meet a particular objective. Combining these primitives can
meet all the requirements necessary for a protocol’s security.

The job of a modern cryptographer can be divided into two distinct tasks:

i) Building new primitives to address new problems or improve on old ones:
most cryptography used today is based on primitives designed decades ago.

12



Symmetric Primitives and Cryptanalysis

These are now well-understood and trusted by the scientific community, but
the evolution of technology always requires them to improve in terms of both
efficiency and the objectives they need to achieve.

it) Combining existing primitives to secure protocols: numerous cases in recent
literature show that even secure primitives can lead to disaster when com-
bined improperly. The cryptographer’s job is to ensure that all the primitives
involved in a protocol integrate correctly.

2.1.1 Principles

Modern cryptography can be divided into two main areas: symmetric cryptog-
raphy and asymmetric cryptography. To give an overview, we need to introduce
some entities: in cryptography, we usually refer to two entities that want to com-
municate as Alice and Bob, while a third entity attempting to eavesdrop on the
communication is called Eve.

Symmetric Cryptography. This is the oldest form of cryptography. In sym-
metric cryptography, Alice and Bob aim to send a message without Eve being
able to read it as it traverses an insecure channel. Primitives that modify mes-
sages to achieve this goal are called encryption primitives or ciphers. In symmetric
cryptography, we generally have encryption primitives that provide two functions:

i) Encryption, denoted by E, which takes a secret key K and a message M,
producing an encrypted message C'. The message M then cannot be retrieved
without knowing K. Formally, we write Ex(M) = C.

it) Decryption, denoted by D, which is the inverse of encryption: given an en-
crypted message C' and the key K, it retrieves the original message M. For-
mally, we write Dy (C) = M.

Messages in clear text are called plaintexts, while encrypted ones are called cipher-
texts. The crucial assumption for these primitives is that inverting the encryption
operation without knowing the key is impossible or at least computationally in-
feasible, while it is easy with the knowledge of K.

For these primitives to work, Alice and Bob must both know a secret key
unknown to Eve. In the ancient times this could have happened via an in-person
meeting, but this assumption is no more realistic nowadays, with billions of devices
needing secure communication over the internet. Hence, a way to exchange keys
remotely in a secure manner is necessary.

13



Symmetric Primitives and Cryptanalysis

Asymmetric Cryptography. Asymmetric cryptography, introduced in the 1970s,
addresses the key exchange problem. In asymmetric primitives, keys are not sin-
gle objects but pairs of objects, allowing different objects for different operations
(e.g., encryption and decryption). Asymmetric cryptography can be used for key
exchanges, data encryption, and many other tasks beyond this thesis’s scope.

If asymmetric cryptography can encrypt data, why do we keep studying sym-
metric cryptography? The answer is primarily about speed. Asymmetric cryptog-
raphy relies on complex mathematical constructions that are hard for computers to
handle and generally slow and limited. Symmetric cryptography, often heuristic-
based and operating at the bit level, is easier for modern computers to handle, as
we will see in the following chapters.

Kerchoft’s Principle. Designing a secure cryptographic primitive is challeng-
ing, and even defining what constitutes security is not trivial. Recent history
shows that no secret recipe tests an encryption algorithm’s quality. New attack
strategies are constantly discovered, leading the cryptographic community to un-
derstand that an algorithm must be analyzed by many experts to be trusted. This
idea of publicly disclosing cryptographic algorithms is known as Kerchoff’s Prin-
ciple: an adversary will eventually learn the specifics of our algorithm. Therefore,
a good cryptographic algorithm’s security must not depend on the secrecy of its
structure but only on the secrecy of the key.

What Does Secure Mean? While we said that a cipher’s security must lie in
the secrecy of its key, this isn’t entirely accurate. Consider the identity symmetric
cipher Ex (M) = M: it is clearly not secure as it doesn’t protect the message,
yet it doesn’t reveal any key information. Thus, a better notion of security, called
semantic security, is needed. For symmetric cryptography, this means that given
two messages M; and M; of the same length and their respective ciphertexts C
and Cs encrypted with the same key, an adversary should not be able to determine
which ciphertext corresponds to which plaintext with a probability better than %
In other words, ciphertexts should not reveal any information about plaintexts if
the key is kept secret, and no one should be able to distinguish them without the
knowledge of the key.

2.1.2 Symmetric Primitives

This section provides a brief introduction to the main symmetric cryptographic
primitives: block ciphers, stream ciphers, and hash functions (that, despite being
keyless, are usually based on structures similar to block ciphers with a fixed key).

14
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Block Ciphers. Block ciphers are the core of symmetric cryptography, used
both on their own and as building blocks for more complex primitives. A block
cipher is a pair of algorithms C = (F, D), where F is the encryption function, and
D is the decryption function. Formally, denoting with k& and b respectively the key
and block size of the cipher, we have

E :F5 x F5 — TS,

which is a permutation over the plaintext set M € T for a fixed key k € F5. D is
the inverse of E for a fixed key, satisfying Dg(Ex(M)) = M for any M € F5.

Block ciphers are typically iterated ciphers, meaning a simple function is re-
peated multiple times to perform the encryption routine. Block ciphers usually
require two main components:

i) The round function f, a bijective key-dependent function operating on T},
iterated for r rounds on the plaintext. We denote with f; the ¢-th iteration
of the function f.

it) The key schedule algorithm, which derives r subkeys from the initial cipher
key. These subkeys are used in the round functions.

Thus, a block cipher can be represented as:

Ex () = fr-a() o fra() 0 -0 fo(-).

In Subsection 2.1.3, we will discuss common designs for round functions.

Stream Ciphers. Stream ciphers extend block ciphers by handling data streams
of arbitrary length rather than fixed-size blocks. Formally, a stream cipher C =
(E, D) is defined as:

E:Fi xF; — F3,
with possible additional parameters like nonces or initialization vectors. Most
stream ciphers use a structure similar to block ciphers, where the underlying block

cipher generates a stream of pseudo-random data (e.g., by encrypting consecutive
numbers) that is added to the plaintext using XOR or modular addition.

Hash Functions. Hash functions are keyless symmetric algorithms mapping
arbitrary-length inputs to fixed-length outputs:
H:F;, — F3.

Hash functions ensure data integrity and, when combined with more sophisticated
constructions, data authenticity. Similar to stream ciphers, hash functions often
use block cipher structures as building blocks.

15



Symmetric Primitives and Cryptanalysis

2.1.3 Constructions

There are no general rules for building symmetric ciphers, but certain structures
have become trusted over the years.

Feistel Networks. Block ciphers based on Feistel networks split inputs and
outputs into halves, L and R. During a round, a round function is applied to the
R half, which is then XORed with L. The two halves are then swapped. Notice
that in this case the round function does not need to be invertible, as the overall
structure ensures that applying the same procedure swapping the two halves (and
eventually reversing the key schedule) decrypts the message. Formally, let F' be
the round function and K the round subkey. Each round can be written as:

Liyn = R,
Rii1 =L; ® Fg(R;).

Substitution-Permutation Networks (SPNs). Block ciphers based on SPNs
use several rounds of substitutions and permutations to encrypt data. Each round
applies a layer of substitution boxes (S-boxes) that replace parts of the data with
other parts, followed by a permutation of the data. The permutations are linear
transformations, while the substitutions are non-linear. Formally, let S be the
substitution layer and P the permutation layer. Each round can be written as:

fi(M;) = P(S(M,)) @ K;.

SPN ciphers rely on the invertibility of the round functions, as it is necessary to
compute its inverse to decrypt a ciphertext.

ARX Ciphers. In recent years, ciphers based on a few simple operations have
gained increasing popularity. These ciphers, known as ARX ciphers, utilize only
(modular) Addition, Rotations, and Xors as their fundamental building blocks.
ARX ciphers can adopt Feistel structures, SPN structures, or custom designs. As
their introduction is relatively recent, they have not been studied as extensively
as their predecessors, making standard analysis techniques more challenging to
apply. Nonetheless, most ciphers analyzed in this thesis adhere to this paradigm,
demonstrating that successful analysis is possible.

2.2 Cryptanalysis

A key role complementary to that of the cryptographer is the cryptanalyst. Crypt-
analysis is the scientific study of how to break cryptographic primitives and pro-
tocols, and it is essential for the advancement of cryptography. Without rigorous
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research on breaking ciphers, it would be impossible to create new, secure, ones or
trust the existing ones.

2.2.1 Attack Models and Objectives

The work of a cryptanalyst can be simplified or complicated based on the con-
ditions under which the cipher is analyzed (i.e., the information available to the
attacker) and the ultimate goal of the attack.

A primary distinction involves the level of detail about the cipher structure
known to the attacker. Black-box attacks do not utilize any specific property
of the cipher, relying solely on examples of plaintext and ciphertext pairs. This
scenario is less likely to exploit, but breaking a cipher in black-box settings usually
requires less manual effort than other settings. Conversely, in white-box settings,
the cryptanalyst has full access to the cipher, allowing the usage of its internal
structure into the attack. As will be demonstrated in subsequent chapters, white-
box attacks are typically the most effective.

Attack Models. Below is a brief description of the main attack models consid-
ered. Most significant results in this thesis are within the chosen-plaintext scenario
in white-box settings.

i) Ciphertext-only attacks. Here, the cryptanalyst has access only to a collection
of ciphertexts without the corresponding plaintexts. Primitives that can be
broken in this scenario are deemed extremely weak.

it) Known-plaintext attacks. These attacks are similar to the previous type but
differ in that the plaintext is known to the attacker.

it1) Chosen-plaintezt attacks. In these attacks, the attacker can choose the plain-
texts to be encrypted during the attack. If the choice is based on ciphertexts
rather than plaintexts, it is referred to as chosen-ciphertext attacks, though
the scenarios are usually equivalent.

iv) Adaptively chosen-plaintext attacks. Here, the attacker can select and change
the plaintexts to be encrypted as needed during the attack. This is the most
powerful attack model. Similarly, adaptively chosen-ciphertext attacks involve
choices made based on ciphertexts.

v) Related-key attacks. In this class of attacks, the attacker can encrypt or
decrypt messages with multiple unknown keys that are related in a known
way (e.g., differing by one bit).

17
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Attack Objectives. Modern literature identifies three main tasks when analyz-
ing a cipher.

i) Distinguishing. The attacker can differentiate the output of the cipher from
a random permutation.

i1) Cipher emulation. The attacker can replicate the encryption process without
knowing the key.

i11) Key recovery. The attacker can retrieve the key material from the cipher.

While cipher emulation is not very practical, distinguishers and key recovery at-
tacks are closely related. Typically, once a distinguisher is developed, cryptanalysts
attempt to build a key recovery attack on top of it using techniques that exploit
the cipher’s structure. Given the focus of this thesis on automatic cryptanalysis,
we will describe more in details the task of distinguishing.

Distinguishers. A cryptographic distinguisher (or simply a distinguisher) Aoyacle
is a probabilistic algorithm, that takes as input an oracle Oracle secretly running
either a random permutation II, or a specific instantiation C, indexed by the key
k, of a family C of ciphers. The output of Agyace is 1 if it believes that Oracle is
executing Cg, and 0 if it believes it is executing II. Internally, the distinguisher
might use specific information about C, as this is a public family of functions.
In this case we speak about a tailored distinguisher (see e.g. Section 5.2.2), or
no information at all (except for the block size), in which case we speak about a
generic distinguisher (see e.g. Section 5.2.2).

In cryptography, a distinguisher is often called an adversary. The prp-cpa-
advantage [BRO5|, or simply advantage, of the adversary A in distinguishing the
family C of permutations from the set of random permutations, using 2* resources,
is, informally, a measure of how successfully A can distinguish C from the set of
random permutation and, formally, is defined as

Advie “*(A) = P[EA] — P[E]|,

where F; is the event that A outputs 1 when Oracle contains Ci, and Ej is the
event that A outputs 1 when Oracle contains II.

If A is doing a good job at telling what function Oracle is running, it would
return 1 more often when Oracle contains an instance of C, than when it contains
a random permutation. Different adversaries have different advantages, depending
on if the adversary is more “clever” in querying the oracle, or simply asks more
questions and thus has more information. A block cipher algorithm is considered
secure if no adversary has a non-negligible advantage.
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The concept of adversary advantage in machine learning, is usually referred to
as accuracy of the distinguisher.

This can be seen as the ability of recognizing true positives and negatives, or, in
other words, the average of the probability of returning 1 while the oracle contains
Ck, and the probability of returning 0 while it contains II. When this accuracy is
close to 1 or to 0 we have a useful distinguisher, while when the accuracy is close
to 0.5, we say the distinguisher is not able to distinguish C. Two examples of bad
distinguishers include the case where A always returns 1, or it flips a coin and
returns 1 or 0 with equal probability. In this case its advantage/accuracy would
be 0.5.

Single key and known key distinguishers

We can consider two scenarios. In the first case, called single secret-key scenario,
the attacker sees some traffic, which he knows is coming either from a known
cipher or a random permutation, and wants to determine from which of the two is
coming. In the second case, called single known-key scenario, the attacker knows
the cipher and the key, and wants to verify that the cipher with that specific key
behaves as a random permutation or not. In other words, the adversary aims to
find a structural property for the cipher under the known key, i.e. a property which
an ideal cipher (a permutation drawn at random) would not have. The notion of
known-key distinguisher was introduced in 2007, by Knudsen and Rijmen [KRO7],
and subsequently vastly studied, e.g in [MPP09, Sas12], for AES-like ciphers, in
[ABM13, SEHK12, SY11] for Feistel-like ciphers, or in [DWWZ11, Nak11, NPSS10]
for other constructions.

2.2.2 Differential cryptanalysis

The main attack class we focus in this thesis is called differential cryptanalysis.
Differential cryptanalysis is a technique introduced by Biham and Shamir in [BS91]
and used to analyze the security of cryptographic primitives. The basic element
used in this field is a difference, which is a perturbation of the input or the output
of the studied function. Usually the differences are defined as XOR ones, so, given
two plaintexts My, M, and the corresponding ciphertexts Cy, C, we call an input
difference a value AM = My ® M; coming from the XOR of the two plaintexts,
and an output difference AC = Cy @ C the one coming from the two ciphertexts.
The pair of input and output differences (AM, AC) is called a differential. For
primitives divided in rounds, we call the sequence of differentials for each round a
differential characteristic.

Differentials and differential characteristics are (usually) not deterministic, i.e.,
they happen with probability strictly lower than 1, due to non-linear components
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in the structure of cryptographic primitives, so the main goal for the cryptanalyst
is to calculate their probability for randomly sampled plaintexts. More formally,
for a function f we have

Sormeem 1d(f(Mo) @ f(My © AM) = AC)
M| 7

where M is the space of possible plaintexts and Id is the identity function, assum-
ing value 1 if the condition is true and 0 otherwise.

For differential characteristics we can usually rely on the Markov assumption,
which is formalized in [LMM91], having

Pr(AM — Ay = Ay — - = A, = AC) =

This assumption does not hold in general since it relies on particular conditions.
In the case of key-alternating ciphers, where the key is injected as the last step
of a round function (for example in SPNs), having independent and uniformly
distributed round keys is sufficient. However, the assumption is usually made for
practical reasons.

The key point of differential cryptanalysis is usually to find differential char-
acteristics that propagate with a high probability through the largest possible
numbers of rounds.
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Chapter 3

Neural Networks for
Cryptanalysis

This chapter is a joint work with E. Bellini and A. Hambitzer, as part of a survey
of Machine Learning techniques applied to cryptanalysis developed jointly by the
Technology Innovation Institute and Politecnico di Torino. Part of it can be found
in [BHR22].

The field of machine learning is concerned with the study of computer algorithms
that improve automatically through experience [Mit97]. Experience is provided in
the form of training data and improvement is measured in terms of how well the
algorithm can generalize the experience. In other words, improvement corresponds
to a better algorithm performance, as the algorithm is presented a previously
unknown sample.

Depending on the nature of the experience by which the algorithm learns, ma-
chine learning is divided into different learning types:

i) supervised (learn a general rule by being presented example inputs and out-
puts),

it) unsupervised (find structure in an unlabeled input),

it1) reinforcement learning (achieve a goal by receiving rewards and learn from
mistakes).

Different statistical, probabilistic or optimization techniques have been used as
machine learning techniques. Among them linear and logistic regression, artificial
neural networks (ANNs), k-nearest neighbor (kNN), decision trees, random forests,
support vector machines (SVMs) and Naive Bayes.
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In the following, we give a short introduction of machine learning techniques
which either have already found application or of which we see potential for appli-
cation in cryptanalysis.

3.1 Artificial Neural Networks (ANNSs)

Artificial neural networks are used for image classification (e.g. Google Images),
speech recognition (e.g. Siri), recommender systems (e.g. YouTube) or to win Go
against the world champion (AlphaGo). A book which covers the mathematical
background in greater detail is [GBC17] while a practically oriented introduction
is given in [Aurl9)].

3.1.1 Basics

I3
Input layer  Hidden layer 1 ... Hidden layer k Output layer Inputs Neuron

Figure 3.1: Basic building blocks of an ANN. a) An exemplary fully connected
artificial neural network. b) Single neuron of the network. xy,...z3 are the inputs
received from neurons in the previous layer. The neuron calculates the weighted
sum z = Y_; w;x; + b and applies an activation function ¢(z) which determines the
output of the neuron.

All artificial neural networks feature artificial neurons organized in layers as
their elementary building blocks. In its minimum configuration an ANN contains
an input and an output layer. At the input layer the unlabeled data is presented to
the network, e.g. in the form of a 32 x 32 pixel image of a picture of a panda, where
each pixel value is fed to one of the 32 x 32 = 1024 input neurons. At the output
layer each neuron represents a possible outcome, e.g. one neuron could output “0”
if no panda is contained in the input image and “1” if there is. Additionally to the
input and output layers the ANN usually contains a stack of hidden layers (see
Figure 3.1). A deep neural network is a special kind of artificial neural network,
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in which the number of hidden layers is especially high'.

The computational model of an artificial neuron has been inspired by animal
brains and was proposed in 1943 by McCulloch and Pitts [MP43]. Each neuron
in the ANN’s hidden and output layers has trainable parameters: on one hand
the connection weights to other neurons and on the other hand a bias term b (see
Figure 3.1b)).

The basic working principle of the ANN is that it approximates an arbitrary
continuous function by utilizing its large parameter space. The parameter space of
the neural network is determined by hyperparameters which relate to the design of
the ANN (e.g. number of neurons, number of layers, ...) and network parameters
(weights and biases of the neurons) obtained from the learning process on the
training data. For continuous functions it has been shown in 1989 by Cybenko
[Cyb89] that any continuous function of n real variables can be approximated
to any desired precision by a neural network with as few as one hidden layer of
sufficient size and a sigmoidal nonlinearity. The result was extended by Hornik et
al. in 1989 to a more general form w.r.t. the used activation functions [HSW89,
Hor91], which is known today as The Universal Approximation Theorem of neural
networks.

Despite proofs-of-concept that ANNs may be powerful in machine learning
tasks, it was not until more processing power became available by the CMOS
technology in the 1980s and the invention of backpropagation for neural networks
in 1986 by Rumelhart [RHWS86] that neural networks could be efficiently trained.

In the following sections a short introduction to the methods for initialization
and training of network parameters and the choice of hyperparameters involved in
the design of an ANN is given.

Neural Network Training

Figure 3.2 gives an overview of the initialization and training process in a neural
network. First, the parameters of the neural network, i.e. the weights and biases
of the neurons, are initialized® to a starting value (see also Section 3.1.1). Then
the parameters are refined in learning epochs: in each epoch the neural network is
presented the complete training dataset. The training dataset consists of an input

IThe distinction of what makes a neural network deep and, accordingly, where deep learning
exactly begins is not clear. In the 1990s two hidden layers were considered deep, while now there
may be hundreds of hidden layers.

2There are various initialization methods, each offering different advantages. Common to
all of them is that the network weights in a single layer cannot all be initialized to the same
value. Otherwise, the backpropagation affects all neurons in the layer in the same way and all
connection weights to the layer will stay identical throughout the training.

23



Neural Networks for Cryptanalysis
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Figure 3.2: Initialization and training process in a neural network.

for the ANN (for example an image of animals) and the corresponding labels y
(for example ‘panda’). Usually, the training dataset is not presented all at once
but in batches. Each batch is forward-propagated through the network with the
current weights and biases. During the learning process in a supervised setting a
loss function L(z,y) is used to quantify the difference of the neural network output
z to the labeled training dataset y. During the previously mentioned backpropa-
gation [RHWS6] the contribution of each network parameter to the overall loss is
evaluated. Afterwards, the network parameters are updated to minimize the loss
by gradient descent® and the next batch is presented at the input. In short, back-
propagation optimizes the network parameters by gradient descent after a forward
and a backward pass through the neural network.

The hyperparameter with largest influence on the gradient descent is the learn-
ing rate. It determines the step size with which the network parameters are up-
dated during gradient descent. A too large learning rate will lead to convergence
problems while a too small learning rate makes the network prone to overfitting. A
popular policy to choose the learning rate follows the cyclic learning rate approach,
proposed by Smith in 2015 [Smil5]: here, the learning rate is varied between a
minimum and maximum bound during training. The idea is to escape local min-
ima and saddle points with a high learning rate and still be able to descend into
lower loss areas without divergence.

3Gradient descent is a mathematical method introduced by Cauchy to minimize an objective
function (here £) by updating parameters (here the weights and biases of the neural network)
on which the function depends. The parameters are updated in the opposite direction to the
gradient of the objective function with a certain step size, called the learning rate. In this way
the minimum is approached.
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The regular gradient descent optimizer can be substituted by more sophisti-
cated choices: momentum techniques like momentum optimization [Pol64] or Nes-
terov Accelerated Gradient (NAG) [Nes83] take previous gradients into account
and allow for faster propagation down gentle slopes when compared to regular
gradient descent. They use the accumulated gradient for acceleration and a fric-
tion parameter to allow for stopping in a found minimum. The NAG method is
used to speed up regular momentum optimization by adjusting the direction of
the momentum to the one of the optimum. Adaptive learning rate techniques
like AdaGrad [DHS10] (adaptive gradient descent) and RMSProp adapt not the
momentum, but the learning rate to allow for faster propagation towards the op-
timum. To do so, AdaGrad accumulates the past gradients in each direction. It,
however, often stops too early and does not converge to the global optimum. RM-
SProp solves this problem by introducing a decay parameter to accumulate only
the most recent gradients. Adam [KB15] stands for adaptive moment estimation
and combines the advantages of momentum optimization and RMSProp. Nadam
[Doz16] additionally combines the NAG method with Adam and therefore can al-
low for faster convergence than Adam. An overview over the optimizers and how
they relate to each other is given in Figure 3.3

Activation Functions and Initialization

Activation Function SELU LReLU ReLU tanh sigmoid  step
Provides gradient for z ~ 0 v v v v v X
Nonzero gradient for z > 0 v v v X X X
Nonzero gradient for z < 0 X v X X X X
Fast computation X v v X X v
Self-normalization v X X X X X
Typical initialization LeCun He He  Glorot Glorot Glorot

Table 3.1: Collection of activation functions and the main features provided by
their usage. For each feature v', respectively x indicates if the feature is provided
by the activation function or not.

The choice of the activation function is one of the most important hyper pa-
rameters in the design of ANNs. As shown in Figure 3.1 a neuron computes
the weighted sum of its inputs plus one bias term b for each input and obtains
7 = T + b. Afterwards an activation function ¢(z) is applied and the signal
propagates to the neurons in the subsequent layer.

In Figure 3.4 and Table 3.1 the most commonly used activation functions to-
gether with advantages provided by their usage are summarized.
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Gradient Descent

Algorithm 1 Gradient Descent
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Figure 3.3: Relation diagram of optimizers with their respective algorithms. The
algorithms are presented in [Dozl16]. ¢ is the gradient; f is the loss function; n
is the learning rate; 6 are the network parameters (weights and biases); m is the
momentum; for further details please refer to [Doz16].

Since the backpropagation is based on gradient descent, the activation function
has to provide a gradient. Historically, the perceptron has first used the step
function and one of the key changes for the success of the MLP was to instead use
the sigmoid (also known as logistic) activation function.

Especially when training deep neural networks the backpropagation of the error
from the output layer to the parameters in the first input layers may lead to
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Activation functions w/o ReLU Activation functions ReLU variants
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Figure 3.4: Shown are commonly used activation functions in neural networks.
On the left hand side non-ReLU activation functions like the sigmoid(z) = 1/(1 +
exp(—z)) and tanh(z) and on the right hand side ReLLU and its variants ReLU(z) =
max (0, z), LReLU.(z) = max(ez, z), softplus(z) = log(1 + exp(z)), ELU,(z) =
{a(exp(z) — 1) if 2 < 0; z if 2 > 0}, SELU o(2)) = s x ELU,(2).

vanishing or exploding gradients. Symptomatic for a vanishing gradient problem is
that the training does not converge to a good solution. In 2010 it has been found
that this problem relates to weight initialization as well as the use of the then
popular sigmoid activation function [GB10]. The sigmoid function saturates, i.e.
it has zero gradient for z > 0 for large absolute values of z and therefore doesn’t
provide a large enough gradient for backpropagation. Since [GB10] the ReL.U
activation function and other weight initialization schemes (like Glorot after the
author of [GB10]) are more commonly used.

Effectively, a neuron can become inactive and is no longer affected by gradient
descent when the weighted sum of its inputs is negative for all instances of the
training set. The dead neuron or dying ReL U stops outputting anything other than
0. To circumvent dead neurons, a LeakyReLU variant may be used [XWCL15a]
which provides a nonzero gradient for z < 0.

In 2015 a new operation called Batch Normalization (BN) was proposed [IS15]
which is now widely used. The BN may happen just before or after the activation
function of each hidden layer. The usage of BN speeds up the training process con-
siderably. A scaled variant of the ELU activation function, called SELU provides
self-normalization and might circumvent the need for batch normalization.
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Common Pitfalls

A common pitfall when working with many-layer neural networks is owverfitting.
When overfitting occurs the neural network performs well on training data, but
can not generalize well to a previously unknown sample. The countermeasure to
overfitting are regqularization techniques which will modify the learning algorithm
in a way that the model generalizes better, i.e. is less prone to overfitting.

One regularization technique is data augmentation. It comes with the benefit of
increasing the training dataset size; the idea is to randomly shift training images
by applying offsets, horizontal flips and different lighting conditions and thereby
creates more realisitic variants of the same training instance.

Another regularization technique is the dropout. Dropout was proposed in 2012
[HSK*12] and has proven very successful for regularization of neural networks.
In the dropout technique each neuron (except the output neurons) has a certain
probability to be dropped out, i.e. to be entirely ignored, for one training round®.

Regularization can also be achieved by choice of a high enough learning rate
(see Section 3.1.1).

Since the backpropagation algorithm uses gradient descent the input features
should be scaled to the same range since otherwise the descent will converge slower.

3.1.2 Neural networks and Boolean functions

Figure 3.5 shows the simplest artificial neuron, the McCulloch Pitts neuron, with
only one parameter: it will output 1 if the sum of its inputs exceeds or is equal to
a threshold (or bias) b (321, z; > b) and otherwise 0. The neuron splits the input
points into two halves, the ones which lie on or above the line > ; z; — b = 0 and
the ones below. In this way it provides a decision boundary for binary classification
to classes with output 0 or output 1. A single McCulloch Pitts neuron can be used
to represent linearly separable Boolean functions like AND, OR, NOT. However,
it cannot represent a solution for a nonlinear classification problem like the XOR.

The perceptron was invented in 1958 by Rosenblatt [Ros58] and compared to
the McCulloch Pitts neuron another adjustable parameter is added in the form
of a weight for each input. As highlighted 1969 by Minsky and Papert, however,
the perceptron also fails to solve the XOR classification problem [Nie69], it can
only represent linearly separable Boolean functions. They also showed that if the
perceptron is augmented by a hidden layer to a multilayer perceptron (MLP) the
network becomes able to solve the XOR problem®.

5In 2015 a theoretical framework has been published in which dropout training has been
connected to Bayesian inference [GG15].

6The background is that the three layer network can use the hidden layer as an internal

28



Neural Networks for Cryptanalysis
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Figure 3.5: Two Boolean functions (AND and XOR) and their representation with
a McCulloch Pitts neuron (for the AND function) and a multi-layer perceptron
(for the XOR function). The gray region inside the graphs indicates the decision
boundary where the output is expected to be 0 (inside the gray area) and where
the output is expected to be 1 (at the boundary to and inside the white area).

In fact, a multi-layer perceptron (MLP) with one single hidden layer of 2"
neurons is a universal Boolean function, i.e. every Boolean function of n inputs
can be represented by it. In this case each neuron will fire only for one of the 2"
possible input combinations and the result of the output neuron can be adjusted
by choosing the weights appropriately.

Practically, this result is only of limited usefulness, since the number of neurons
needed scales exponentially with the number of inputs’.

As pointed out by Steinbach in 2002 [SK02] alternative approaches to exponen-
tially increasing the number of used neurons include

representation of the XOR inputs (the reasoning is summarized in [RHW86]).

"For example consider a Boolean function with a 64-bit input which requires a hidden layer
with 264 ~ 10'° neurons. For comparison, the number of all MOSFET transistors fabricated
until 2014 was around 102
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Figure 3.6: Shown is the VCdim for a neural network with 100 neurons in hidden
layers. The 100 neurons are either added as a) a single hidden layer of increasing
width N or b) an increasing number of hidden layers d with 10 neurons in each
hidden layer. Assumed are 32 input and output neurons.

i) the usage of a more complex activation function, like the polynomial, or

it) the decrease of the number of input neurons to the neural network by encoding
of the Boolean function.

The idea of i) is to create e.g. an elliptical decision boundary for the XOR
problem illustrated in Figure 3.5 which can capture the classification correctly.

To generally quantify the expressive power of a classifier the Vapnik-Chervonenkis
(VC) dimension may be used. In [Ant05] the VC dimension of a feed-forward neu-
ral network N with n inputs, N neurons and W variable weights and thresholds is
given for i) linear threshold VCdim(N,R") < 6W log, W (theorem 4.5 in [Ant05])
and i) sigmoid neurons VCdim(N,R™) < (WN)?>+11W N log,(18W N?) (theorem
4.7 in [Ant05]).

In Figure 3.6 the expressions for the VC dimension are shown for the cases
of a single hidden layer of increasing width N and an increasing neural network
depth. In general the neural network with the sigmoid threshold neurons has an
expressive power which is orders of magnitude larger than the one with the linear
threshold neurons.

The final number of neurons in Figure 3.6 a) and b) is identical: In case a)
we consider a single hidden layer with N = 100 neurons. In case b) we consider
10 hidden layers of 10 neurons each. The difference in the VCdim is due to the
number of weights W, respectively trainable parameters of the neural network. W
corresponds to the number of biases (V) plus the number of connection weights
Weonn.- In case a) the number of weights in a fully connected network corresponds
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to the number of connections between the input layer to the hidden layer plus the
number of connections of the hidden layer to the output layer (in Figure 3.6 the
input and output layer are considered to be 32 neurons each) Wy, = 32 x 100 +
100 x 32 = 6400. In case b) there are 10 hidden layers with 10 neurons each, as
well as the input and output layer with 32 neurons, i.e. Wy, = 32 x10+9 x 10 X
104 10 x 32 = 1540. Accordingly, for the same number of neurons (N = 100) the
number of connection weights We,,,. is several times higher in the wider instead
of deeper neural network. At 10 hidden layers the VCdim of the deeper network
with sigmoid threshold neurons is around one magnitude smaller than the VCdim
of the wide neural network with the same number of neurons (see Figure 3.6). To
reach the same VCdim as the wide neural network the number of hidden layers
would have to be increased to around 25, i.e. N = 250 hidden neurons.

In conclusion, it is theoretically more advantageous to increase the width of
the neural than the depth to increase the expressive power of the neural network.
Computationally, wider networks might offer advantages for parallel processing
on GPUs [ZK16], while sequential operations in deeper networks cannot be paral-
lelized. Practically, studies have shown advantages of both tactics, e.g. for increas-
ing the width (e.g. [ZK16]), but also for increasing the depth (e.g. [HZRS15]).

3.1.3 Complexity of training neural networks
The complexity of training a neural network is determined by (see e.g. [LSSS14a]):

i) the expressiveness of the neural network, i.e. which prediction rules can be
theoretically learned by a given network architecture,

it) the sample or data complexity, i.e. how many examples of a certain class are
required,

iii) the training time or complexity, i.e. the computation time required to learn
a certain class.

As discussed in Subsection 3.1.2 the expressiveness of a neural network can
be quantified in the VCdim. However, the problem of successfully training a
network with sufficient expressive power can still be NP-hard [LSSS14al, resulting
in practically unmanageable training times. Attempts to alleviate the training
difficulty include to allow for improper training, where the found solution is not
the optimal one and to over-specify the network, i.e. making the network larger
than needed [LSSS14al.

The question of the needed data complexity is an active field of research. It is
not easy to exactly determine how many samples of a given class will be needed to
learn it with a certain accuracy. For example Wang et al. demonstrated the con-
cept of dataset distillation in 2020: instead of training a neural network on 60,000

31



Neural Networks for Cryptanalysis

MNIST images of handwritten digits, they “distilled” the whole dataset into just
10 distilled images, only one single image per class [WZTE18]. In another work
from 2020 [SS20] ‘Less Than One’-shot learning is proposed, a technique where N
classes are learned by the usage of M < N examples.

Assuming the expressive power of the neural network is large enough and train-
ing data of sufficient size and quality is available, the training complezity is closely
related to the number of trainable parameters of the neural network and the num-
ber of multiply-accumulate operations needed to pass an input through the net-
work, see e.g. [FPVP20]. The training time needed to perform these operations
will depend on the hardware configuration (e.g. GPU vs CPU) and if the network
architecture allows for parallelization.

3.1.4 Convolutional Neural Networks (CNNs)

The most important building block of a CNN is the convolutional layer. The
convolution layer is inspired by early works on the visual cortex, for which Huber
and Wiesel received the Nobel Prize in Medicine 1981. They found out that
neurons in the visual cortex have a small receptive field and some react only to
e.g. horizontal lines while others react only to vertical ones. The convolutional
layer uses the very same principle and each neuron in the convolutional layer is
only connected to neurons located within a small rectangle, or field of view, in
the previous layer. A 2D mask is applied to the field of view of the convolutional-
layer-neuron. The 2D mask acts as a filter which performs a 2D convolution. The
field of view is determined by the kernel size of the convolution kernel, respectively
filter. Depending on the applied filter the neuron becomes more sensitive to certain
patterns in the previous layer. Since many such patterns may exist there is a range
of predefined filters available and each of the filters will produce its own 2D layer
called a feature map. Hence, the convolutional layer is actually a 3D object with a
depth corresponding to the number of chosen filters. However, all neurons within
one feature map share the same weights and bias term, which leads to drastically
less parameters than in a fully connected network.

In some works, e.g. Baksi et al. [BBDY20], it is shown that CNNs are not suit-
able for the purpose of finding a cryptographic distinguishers. This because CNNs
are aimed at recognizing patterns in input data, which helps in image recognition
or natural language processing, but does not work for cipher input where the bits
are not related in any way. In remains an open problem to understand if this type
of networks have other applications in cryptanalysis.
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3.1.5 Recurrent Neural Networks (RINNs)

A recurrent neural network (RNN) is a neural network with an active data memory.
It is applied to a sequence (letters, words, chess patterns, time series, ...) to
guess the next step in the sequence. In contrast to a feedforward neural network,
where the activations flow only in one direction from input to the output layer,
the recurrent neural network also contains connections backwards. Therefore a
recurrent neuron receives inputs from the previous layer, but also its own output
from one or more previous timesteps. Since the neuron’s output depends on its
state in previous timesteps it retains a memory. The weight of the connection
of the recurrent input becomes another network parameter to be adjusted during
training.

RNNSs are trained similarly to feedforward ANNs, however, because of the addi-
tional time dynamic they first need to be “unrolled through time” and the training
strategy is called backpropagation through time (BPTT). The “unrolling” actually
creates a deep network which may have more error back-flow difficulties with van-
ishing and exploding gradients. ReLLU activations can lead to even larger instabil-
ity, which is why the standard activations in an RNN are saturating functions like
the tanh. A popular remedy is the usage of Long Short-Term Memory (LSTM)
cells in the network. LSTMs were proposed by Hochreiter and Schmidhuber in
1997 [HU97] and as the name suggests these cells keep track of the long term
memory in a way compatible with BPTT. A simplified version of the LSTM cells
are the Gated Recurrent Units (GRU) proposed by Cho et al. in 2014 [CVGT14].

As noted by Baksi et al. [BBDY20], LSTMs perform better than CNNs for
cryptographic distinguishers, but worse than fine-tuned MLP. The main drawback
of LSTMs seems the training speed. In fact, as they have recurrent layers, these
have high memory requirements and more computations are required.

3.1.6 Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) were proposed by Goodfellow et al. in
2014 [GPAM™20]. GANSs actually consist of two neural networks: a generator and
a discriminator network. The mode of training is called adversarial because the
neural networks are competing against each other.

An example application of a generative and adversarial network, called Cy-
cleGAN [ZPIE17] is shown in Figure 3.7. In CycleGAN unpaired inputs of an
initial and a target domain are provided. The generator translates between the
two domains while the discriminator network aims to distinguish the outputs of
the generator from actual examples of the target domain. An obvious difficulty is
the simultaneous training of two neural networks.

In [GHZ"18] CipherGAN (inspired by CycleGAN) is presented and used to
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Generator fake horses

(zebra = horse)

Y

Discriminator
(distinguish real / fake horse)

F 3

real horses

Figure 3.7: Example of Cycle GAN [ZPIE17]. The generative network receives
images of zebras and is trained to translate between the original domain ’zebra’
to the target domain of “horse’. The discriminative network receives the images of
the fake horses of the generative network, as well as real horse images as input and

is trained to distinguish real from fake inputs. (The images of horses and zebras
are taken from [ZPIE17].)

decrypt Vigenere and shift ciphers.

3.1.7 Overview of deep learning libraries

The two most popular deep learning libraries are PyTorch (published in 2017 by
Facebook AT [PGC*17]) and TensorFlow (published in 2015 by Google [AABT15]).
Both are programmed in Python. There used to be significant differences between
PyTorch and TensorFlow in the following points:

o programming API: TensorFlow used to be more difficult to learn than Py-
Torch. TensorFlow relied on a high-level API (Keras) as a more user-friendly
interface. Since TensorFlow 2.0, PyTorch and TensorFlow can be consider
similar from the user experience point of view.

e computation graph: the mode in which computations are executed can be
dynamic or static. PyTorch initially used dynamic computations, i.e. com-
putations are executed line-by-line of code which makes it easier to debug.
TensorFlow initially used static computations, i.e. the sequence of computa-
tions is defined before any computation takes place. This mode is better for

performance and deployment to different computational environments (CPU,
GPU, TPU).

o distributed computing on multiple GPUs: In TensorFlow it used to be difficult
to utilize the resources provided by a computing environment with multiple

GPUs.
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PyTorch and TensorFlow became more similar in these points over the last years.
Significant differences still exist in

o distributed computing on multiple TPUs: The tensor processing unit (TPU)
is a dedicated hardware accelerator developed by Google and can be fully
utilized by TensorFlow [JYPT17].

o case of deployment: When code is brought into production it often needs
to be deployed to different cloud, mobile or local devices. PyTorch is more
difficult to deploy than TensorFlow [Hel9].

o target user: it is usually believed (more in the past than nowadays) that
TensorFlow is mostly used in industrial projects, while PyTorch for academic
ones [Hel9)].

3.2 Other Machine Learning Techniques

In this last section we briefly sketch other machine-learning based techniques that
can not be properly classified as neural networks, but have been used in the past
for cryptanalysis.

3.2.1 Support Vector Machine (SVM)

The SVM algorithm originated from statistical learning theory and was developed
by Vapnic in 1963 [VAP63]. The objective of the SVM is to find the decision
boundary to distinguish different classes in the form of a hyperplane with maximum
distance or margin to datapoints of different classes in the feature space. The
normal vectors from the hyperplane to the datapoints with minimum distance to
the hyperplane are called the support vectors.

Since SVM constructs a hyperplane it is a linear binary classifier, but it can be
extended to nonlinear and multiclass problems. For nonlinear classification prob-
lems either the dataset can be transformed to a linearly separable dataset using
e.g. a polynomial transformation (this may lead to a combinatorical explosion of
the number of features) or a kernel can be used in the SVM. The kernel adds addi-
tional dimensions to the original data and creates a linear problem in the resulting
higher dimensional space. The kernel avoids an explicit mapping and instead ex-
presses the mapping as an inner product of the features, which is computationally
less expensive than the explicit mapping. This is why the transformation by a
kernel is also called a kernel trick [TKT08]. It is usually not clear which transfor-
mation or which kernel will lead to a successful transformation to a linear problem
and therefore usually standard kernels (e.g. polynomial, radial basis function or
sigmoid) are tested against each other using cross-validation.
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3.2.2 Decision Trees and Random Forests

In a decision tree the dataset is classified by splitting it multiple times according to
a decision rule. Each decision rule forms a node of the decision tree with branches
originating from the node, according to the different outcomes of the decision
rule. The decision rule at each node consists of an attribute and a threshold at
which the split of the dataset is made. To find the optimal attribute-threshold
pair the maximum information gain, respectively lowest impurity is used. In other
words the decision tree is constructed by finding the attribute-threshold pair which
minimizes the cost function, respectively impurity, at each node.

An advantage of the decision tree over neural networks is that they allow for
an easy model interpretation by inspection of the decision rules. The decision
trees are counted therefore among the white box models, while neural networks for
instance count among the black box models.

Scikit-Learn [PVGT11] uses the CART algorithm to train (or “grow”) decision
trees. CART produces binary trees, i.e. each node has only two children. Two
commonly used impurity measures are the Gini impurity and entropy. The Gini
impurity is the default value in Scikit-Learn, since it is slightly faster to compute
[Aurl9]. Other algorithms to generate decision trees include C4.5 [Quil4].

The final goal of the classification is to separate the classes with the lowest final
level of impurity, i.e. each final node of the decision tree contains only a single
class. However, the decision tree algorithm searches for the optimum split at the
top level which might not lead to the lowest possible impurity at the final level. It
has been shown that finding the optimal tree is an NP-complete problem [LR76].

A random forest [Ho95] is an ensemble of decision trees in which each one has
been trained using a different random subset of the training data. The classification
using a random forest is based on the ensemble’s prediction, e.g. based on a
majority vote. An advantage of the random forest is that even if each decision
tree only has a low level of accuracy, the ensemble can still make high accuracy
predictions.
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Chapter 4

Limitations of Neural
Networks in Black Box
Cryptanalysis

This chapter is a joint work with E. Bellini, A. Hambitzer and M. Protopapa. The
original publication can be found in [BHPR22).

The similarities between finding the cryptographic key of a symmetric cipher
and finding the unknown weights of a neural network have been known since long
time. This connection was firstly highlighted in Rivest’s comprehensive survey
presented at Asiacrypt 1991 [Riv91], but it has been an hot topic constantly until
the present days, with, for example, the recent work of Canales-Martinez et al.
presented at Eurocrypt 2024 [CMCSH*24].

The success of neural networks has tempted many cryptographers to exploit
them for cryptanalysis. While there are several ways of using neural networks
and, more in general, machine learning in conjunction with cryptography, in this
chapter we want to focus our attention on the use of neural networks in the context
of black box cryptanalysis.

The black box approach attempts to cryptanalyze a family of symmetric ciphers
by only interrogating an oracle which can compute plaintext /ciphertext pairs com-
ing from a specific instantiation of this family, with no other information allowed
to the attacker. If a family of ciphers can be attacked in the black box scenario this
implies that these ciphers are not suitable for practical applications, as this implies
that there are probably even stronger attacks using the cipher specification. The
most popular ciphers are believed to be secure under this scenario, and, moreover,
even secure in the standard weaker scenarios, where the knowledge of the internal
structure of the cipher is accessible by the attacker. Intuitively, being secure in a
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weaker scenario gives little hope of finding a complete break in a stronger scenario
such as the black box one. In spite of this maybe simplistic intuition, we can count
numerous attempts of using neural networks to either distinguish the output of a
cipher from that of a random function, or to discern the output of different cipher
families, or to emulate, or, the hardest case, to even recover the key of a partic-
ular cipher instance. However, to date none of these attempts has outperformed
existing conventional cryptographic attacks.

In this chapter, we provide insights on why using neural networks in black box
cryptanalysis gives little hope of success.

The following sections are structured as follows. We start by formalizing block
ciphers as collections of boolean functions (Section 4.1). We then speculate on
the hardness of emulating a random boolean function and, consequently, a block
cipher (Section 4.2). We analyze prior works on the subject under the light of this
abstraction (Section 4.3). We support with experimental evidence our claims on
the hardness of emulating boolean functions (Section 4.4). Finally, in the light of
the developed theory, we estimate the resources needed to fully emulate 2 rounds
of AES (Section 4.5), a task that has never been performed by neural networks.

4.1 Block ciphers as boolean functions

In this short section we introduce the basics of boolean functions that are necessary
to understand the subsequent work, and how to use them to model block ciphers.
Notice that the theory behind boolean functions is a huge topic, but covering most
of the details is out of the scope of this chapter. For a complete overview of the
topic, the interested reader can refer to [Carl0] or [MS77].

We denote by Fy the binary field with two elements. The set F3 is the set of
all binary vectors of length n, viewed as an Fy-vector space. A boolean function is
a function f : Fj — Ty, and the set of all boolean functions from FY to Fy will be
denoted by B,,.

We moreover assume implicitly to have ordered F%, so that Fy = {z1, ..., 20 }.
A boolean function f can be specified by a truth table (or evaluation vector), which
gives the evaluation of f at all z;’s. Once the order on F% is chosen, i.e. the x;’s
are fixed, the truth table of f uniquely identifies f.

A boolean function f € B, can be expressed in another way, namely as a unique

square free polynomial in Fy[X]| = Fa[xy, ..., x,], more precisely
f= Z Dlvr,. o)1

(01,000m) €F}
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This representation is called the Algebraic Normal Form (ANF) of a boolean func-
tion.

There exists a simple divide-and-conquer butterfly algorithm ([Carl10], p. 10)
to compute the ANF from the truth-table (or vice-versa) of a boolean function,
which requires O(n2") bit sums, while O(2") bits must be stored. This algorithm
is known as the fast Mébius transform.

4.1.1 Properties of boolean functions

We now define a set of properties of boolean functions that are useful in cryptog-
raphy. We refer again to [Car10] for more details.

The degree of the ANF of a boolean function f is called the algebraic degree of
f, denoted by deg f, and it is equal to the maximum of the degrees of the mono-
mials appearing in the ANF.

The correlation immunity of a boolean function is a measure of the degree to
which its outputs are uncorrelated with some subset of its inputs. More formally,
a boolean function is correlation-immune of order m if every subset of at most m
variables in {x1,...,x,} is statistically independent of the value of f(x1,...,z,).
The parameter of a boolean function quantifying its resistance to algebraic attacks
is called algebraic immunity. More precisely, this is the minimum degree of g # 0
such that ¢ is an annihilator of f.

The nonlinearity of a boolean function is the distance to the affine functions,
i.e. the minimum number of outputs that need to be flipped to obtain the output
of an affine function.

Finally, a boolean function is said to be resilient of order m if it is balanced (the
output is 1 or 0 the same number of times) and correlation immune of order m.
The resiliency order is the maximum value m such that the function is resilient of
order m.

4.1.2 Modeling block ciphers

Each ciphertext bit of a block cipher can be defined by a boolean function whose
variables represents the plaintext and key bits. More precisely, the i-th bit of the
ciphertext can be expressed as:
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filer, o xp, kg, k) = Z Clor,my) b1y oo k)t - ay” (4.1)
(Ul,...,vb)EFg
where gy, v (k1,3 ki) = X, on)ers aEZi’::’Zi’))kf& ---k¥. Note that once the
key k = (ki,..., k) is fixed, each f; is a boolean function of degree at most b with
at most 2° coefficients.

When uniformly sampling a boolean function f from the set of all boolean
functions over b variables, f will have on average 2°~! nonzero coefficients. A
secure cipher should be such that the boolean functions representing its output
bits appear uniformly sampled, i.e., without any a-priori bias in their coefficients.
For real ciphers, b is at least 64 bits (128, 192, or 256 are also very common),
which makes it impossible to even list all the coefficients of the boolean function
representing one output bit. On the other hand, the boolean function representing
the output of a single round (with respect to the input bits of the round) does
not look random in general. In particular, one output bit of the round function
usually depends on only some of the input bits.

As we will explain in the upcoming sections, we believe this property to be
crucial in explaining the success and failure of previous works.

4.2 On the hardness of emulating boolean func-
tions

In this section we first recall some of the main works that are related to the
hardness of learning boolean functions. We then provide further motivations on
why it is hard to model boolean functions, especially in cryptographic scenarios.

4.2.1 Related work

The problem of learning boolean circuits by means of neural networks has been
extensively studied by the machine learning community. On the other hand, we
are aware of only few direct applications of such results in cryptographic scenar-
ios. For example, already in the early nineties, Kearns [Kea90, Chapter 7] showed
that the boolean circuits representing some trapdoor functions used in asymmetric
cryptography (such as RSA function) are hard to learn in a polynomial time. A
similar hardness result was demonstrated in the work of Goldreich et al. [GGM19]
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for the class of random functions. Indeed, in spite of these negative results, the at-
tempts of modeling symmetric ciphers by means of neural networks are numerous,
as we show in Section 4.3.

Many works analyze what is the largest family of boolean functions that can
be modelled by a single neuron. For example, Steinbach and Kohutin [SK02] show
that, using a polynomial as transfer function, a single neuron is able to represent
a non-monotonous boolean function. They also show how to decrease the number
of inputs in the neural network by encoding the binary values of the boolean vari-
ables as integers. Finally, they also propose an algorithm to compute the minimal
number of neurons. In [Ant05], Antony studies which type of boolean functions
a given type of single or multi neuron network (using either threshold, sigmoid,
polynomial threshold, and spiking neurons) can compute, and how extensive or
expressive the set of such computable functions is. Among these results, he shows
that any boolean function with m variables can be modelled by a neural network
with a single hidden layer of 2" neurons with threshold activation function [Ant05,
Theorem 3.9]. Indeed, only £2(2™/m?) neurons are sufficient.

In general, even if any function that can be run efficiently on a computer can be
modelled by a deep neural network, the learning procedure can be computationally
hard [LSSS14b]. It is an important open problem to understand if there exists
properties of the data distributions that can facilitate the training phase. As an
example of works in this direction, Malach and Shalev-Shwartz [MSS19] show that
the correlation between input bits and the target label affects the learnability of a
boolean function.

4.2.2 Block ciphers and permutations

Let us consider the simplest block cipher, taking 1 bit input, 1 bit key and 1 bit
output: yg = Ej,(z0) . Once the key is fixed, the block cipher is a permutation over
the set of messages, in this case, the set {0,1}. The only possible permutations are
the identity and the bitflip, and these permutations can be indexed by the value of
the key kqg. Let us now consider the 2-bit block cipher, with a 2 bit input, 2 bit key
and 2 bit output: (Yo, y1) = Ekk1)(Z0, 1) . Once the key is fixed, the block cipher
is a permutation over the set of messages, in this case, the set {00,01,10,11}. The
number of possible permutations over a set of 4 elements is 4! = 24.

In this latter case, the permutations are represented by the concatenation of
two boolean functions.

Notice that with 2 bits we only have 4 possible values of the key, which means
we cannot represent all possible permutations over the set {00,01,10,11} with a 2
bit key, but just 1/6 of them.

When we consider a 3-bit cipher the permutations are 8! = 40320, and only
23 = 8 of them can be indexed by a 3 bit key. Moreover, for the three bit cipher,
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we finally have permutations that are represented by nonlinear boolean functions.
In principle, it is possible to compute the boolean functions representing the output
bits of a full real cipher. The problem is that, with this method, one has to know
the outputs of all possible inputs, which, for example for AES-128, are 2!?8. For
a reduced-round cipher, it is possible that a single output bit is not influenced by
all input bits, but only by a subset of them of size m. In this case, the boolean
function will have O(2™) coefficients.

4.2.3 Emulating the behaviour of a boolean function

Without knowing the entire truth table or, equivalently, the entire set of coefhi-
cients, it is impossible to reconstruct the remaining missing values of a randomly
selected boolean function.

However, by means of a tiny example, we give an intuition of how one can
measure the accuracy of an algorithm guessing the missing values of a randomly
selected boolean function.

A tiny example

We consider here two parallel boolean functions fi(z1,x2) and fo(x1,z2), and
suppose we know how two inputs are mapped, i.e. f1(00) = 00, f»(01) = 11. To
evaluate the accuracy of an algorithm guessing the output of 10 and 11, one might
consider to increase a counter every time

1. the output of the full 2-bits block is guessed correctly. To compute the accu-
racy, divide the counter by the total number of 2-bit output that have been
guessed.

2. the output of the full 2-bit block is guessed correctly for at least 1 bit. To
compute the accuracy, divide the counter by the total number of 2-bit output
that have been guessed.

3. a single bit is guessed correctly (over all guessed outputs). To compute the
accuracy, divide the counter by the product of bits per block (2) and the total
number of 2-bit output that have been guessed.

As an example, let us suppose that the correct missing values are mapped to
f1(10) = 01, fo(11) = 11. Let us also suppose that an algorithm .4 made the
following guess 10 — 00, 11 — 10. According to the first metric the accuracy of
A is 0. According to the second metric the accuracy of A is 1. According to the
third metric, the accuracy of A is 3/4.

Note that if we have to guess two 2-bit boolean functions mapping 00 — 00,
01 — 11, 10 — 01, then we can correctly guess where the value 11 will be mapped
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to with probability 1/4. On the other hand, if we know that the two boolean
functions have to form a permutation over the set {00,01,10,11}, then we only
have the option 11 — 10. In general, if there are r missing values for a set of m/
m-bit boolean functions, and we know they have to form a permutation (m’ = m),
we can guess correctly with probability 1/r!. If the m/ m-bit boolean functions does
not necessarily form a permutation, then we can guess correctly with probability
1/(2"™"), which is much lower than 1/r!. In the case of a block cipher, we also
know that not all permutations are possible, but only the ones indexed by the
n-bits keys, which are 2.

Types of accuracy

In general, we can define the following types of accuracy:

L. m/-ary (or block) accuracy: measuring how many output blocks are fully
guessed correctly in the validation phase. In other words, we consider a
sample guessed correctly if and only if all its bits match with the correct
output.

2. Relative binary (or bit per block) accuracy: measuring how many bits per
output block are guessed correctly in the validation phase.

3. Absolute binary (or bit) accuracy: measuring how many output bits are fully
guessed correctly in the validation phase.

Randomly guessing the output of a set of boolean functions

We now provide the probabilities of randomly guessing the output of a boolean
function in three different scenarios, which corresponds to three different ways of
measuring the accuracy of a neural network.

Proposition 4.2.1 Consider a set of m’ boolean functions with m variables. Sup-
pose the value of t m-bits inputs is known for each function. The probability of
randomly guessing correctly allm’ bits for each of t' new outputs is given by 1/2t™ .

Proposition 4.2.2 Consider a set of m’ boolean functions with m variables. Sup-
pose the value of t m/-bits outputs is known for each function. The probability
of randomly gquessing correctly at least s bits of a new m'-bit output is given by

S, (%)

k=2 k2 The probability of randomly guessing correctly at least s bits for each

om
m/-bit output for t' new output is given by Z’“$(")t’.

277L/
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Proposition 4.2.3 Consider a set of m' boolean functions with m variables. Sup-
pose the value of t m-bits inputs is known for each function. The probability of
randomly guessing correctly at least s bits among t' new m'-bit outputs is given by
S ()

ot'm/ :

Note that in all previous propositions, the value of ¢ and m do not appear in the
probability. This is because, for a random boolean function, the output bits of its
truth table are uniformly distributed, and knowing part of the truth table, does not
give any information about the missing part. On the other hand, if the guessing
algorithm had some extra information about the boolean functions, for example
it knew that the output has to form a permutation, this probabilities could be
improved. Unfortunately, we are not aware of how to incorporate the structure of
a permutation over F' into a neural network. Similarly, these probabilities might
be lower if the boolean function representing one output bit only depends on m
of the m input variables (as for a cipher that is not ideal, e.g. a reduced-round
cipher). In this case, 2™ samples might be enough to train the network so that it
can fully emulate the boolean function. We analyze this case in Experiment 1 of
Section 4.4.

Trained neural networks are no better than random guessing

One is interested in checking if a trained neural network can correctly predict
new inputs better than an algorithm guessing uniformly at random would do.
In our case, the block accuracy of the network should be higher than 1/2¢™ the

Z;H()

relative binary accuracy should be higher than ', and the absolute binary

t/m, t/ ’
accuracy should be higher than %
Conjecture 4.2.1 Let N be a multi-layer perceptron with m binary inputs and
m’ binary outputs. Suppose N has been trained with t < 2™ samples, taken from
m’ parallel boolean functions. Then we claim that the validation accuracy of the
neural network cannot be better than the accuracy of an algorithm that uniformly

guesses new outputs. More precisely,

1. the wvalidation block accuracy measured over t' new samples is 1/2"™

m
2. the validation relative binary accuracy measured overt' new samples is Z’“ - ( k )t
t'm’ (t/m’)
3. the validation absolute binary accuracy measured overt' new samples is Sttt

We give experimental evidence of the above conjecture in Section 4.4. Also,
in the remaining part of the chapter, we will only consider the absolute binary
accuracy, and we will refer to it as simply the binary accuracy.
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4.2.4 Noisy bits

Because of what we explained in the previous section, training a neural network
to fully model a block cipher is exponentially hard. In particular, for an n-bit
block cipher in which each output bit depends on all n input bits, the cost of the
training is O(2") (n = 128 for the case of AES-128). On the other hand, for a
reduced number of rounds, it is possible (especially in the early rounds), that each
output bit only depends on m < n input bits. If an adversary knew the position
of the m input bits, it could train a network with only m inputs in time O(2™).
We call noisy bits those n —m bits for which the output does not depend on. For
example, after 2 rounds of AES-128, each output bit depends on m = 32 input
bits, and has 96 noisy bits. Unfortunately, in a black box scenario, the attacker
has no knowledge about the position of the noisy input bits, so it is forced to use
a neural network with n inputs. Suppose we are interested in modeling a single
output bit. In this case, the neural network needs to understand which are the
n—m noisy bits that are not influencing the output bit. As we show in Experiment
2, it turns out that the complexity of the training increases exponentially with the
number of noisy bits.

4.3 Analysis of previous results

In this section we analyze previous attempts of modelling symmetric ciphers in
the black box scenario by means of neural networks.

By black-box neural cryptanalysis (or direct attacks with no prior information),
we mean attacks that can be performed on any cipher, regardless of the cipher
structure, except the input/output/key size. Recall the attack classes that we
introduced in Chapter 2:

1. Distinguishing (or cipher identification): distinguishing the output of the
cipher from the output of another cipher, or distinguishing the output of the
cipher from a random bit string;

2. Cipher emulation: emulating the behaviour of a cipher;
3. Key recovery: finding the key of the cipher.

Of course, an attacker able to perform key recovery can also perform cipher em-
ulation, and being able to perform cipher emulation implies being able to perform
cipher identification.

In the following sections we provide a discussion of the previous results attempt-
ing to achieve these three classes of attacks. In Table 4.1, we provide a summary
of these results that can be used as a quick reference.
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Figure 4.1: (a) Generic multilayer perceptron (MLP) architecture to perform a
distinguisher attack in known plaintext scenario. The MLP receives n-bit plain-
text p1,...,p, and ciphertext cq,...,c, as input. Each bit serves as input to one
neuron, therefore the input layer consists of 2n neurons. The output layer consists
of a single neuron with two possible outputs, depending on the outcome of the
distinguishing attack. (b) Generic multilayer perceptron architecture to perform
ciphertext emulation in a known plaintext scenario. (c¢) Generic multilayer percep-
tron architecture to map a key recovery attack in the known plaintext scenario.
Given plaintext py, ..., p,/ciphertext ¢y, ..., ¢, pairs as input, each neuron in the
output layer predicts one bit of the key kq, ..., k,,.

Cipher identification

Neural networks can be used to distinguish the output of a cipher from random
bit strings or from the output of another cipher, by training the network with
pairs of plaintext-ciphertext obtained from a single secret key (single secret-key
distinguisher) or from multiple keys (multiple secret-key distinguisher). Variations
of these attacks might exist in the related key scenario, but we are not aware of
any work in this direction related to neural networks. The general architecture of
neural networks used for distinguisher attacks is shown in Figure 4.1a.

A direct application of ML to distinguishing the output produced by modern
ciphers operating in a reasonably secure mode such as cipher block chaining (CBC)
was explored in [CLC12|. The ML distinguisher had no prior information on the
cipher structure, and the authors conclude that their technique was not successful
in the task of extracting useful information from the ciphertexts when CBC mode
was used and not even distinguish them from random data. Better results were
obtained in electronic codebook (ECB) mode, as one may easily expect, due to
the lack of semantic security (non-randomization) of the mode. The main tools
used in the experiment are Linear Classifiers and Support Vector Machine with
Gaussian Kernel. To solve the problem of cipher identification, the authors focused
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on the bag-of-words model for feature extraction and the common classification
framework previously used in [DS06, SDSK10], where the extracted features of
the input samples are mostly related to the variation in word length. In [CLC12],
the considered features are the entropy of the ciphertext, the number of symbols
appearing in the ciphertext, 16-bit histograms with 65536 dimensions, the varying
length words proposed in [DS06].

Similar experiments to the one of [CLC12] have also been presented, essentially,
with similar results. For example, in [dMX18], the authors consider 8 different
plaintext languages, 6 block ciphers (DES, Blowfish, ARC4, Rijndael, Serpent
and Twofish) in ECB and CBC mode and a “CBC”-like variation of RSA, and
perform the identification on a higher-performance machine (40 computational
nodes, each with a 16-core Opteron 6276 CPU, a NVIDIA Tesla K20 GPU and
32GB of central memory) compared to [CLC12], by means of different classical
machine learning classifiers: C4.5, PART, FT, Complement Naive Bayes, MLP
and WiSARD. The NIST test suite was applied to the ciphertexts to guarantee the
quality of the encryption. The authors conclude that the influence of the idiom in
which plaintexts were written is not relevant to identify different encryption. Also,
the proposed procedures obtained full identification for almost all of the selected
cryptographic algorithms in ECB mode. The most surprising result reported by
the author is the identification of algorithms in CBC mode, which showed lower
rates than the ECB case, but, according to the authors, the lower rate is “not
insignificant”, because the quality of identification in CBC mode is still “greater
than the probabilistic bid”. Moreover, the authors point out that rates increased
monotonically, and thus can be increased by intensive computation. The most
efficient classifier was Complement Naive Bayes, not only with regard to successful
identification, but also in time consumption.

Another recent work is the master thesis of Lagerhjelm [Lagl8|, in 2018. In
this work, long short-term memory networks are used to (unsuccessfully) decipher
encrypted text, and convolutional neural network are used to perform classification
tasks on encrypted MNIST images. Again, with success when distinguishing the
ECB mode, and with no success in the CBC case.

Cipher emulation

Neural networks can be used to emulate the behaviour of a cipher, by training the
network with pairs of plaintext and ciphertext generated from the same key. The
general architecture of such networks is shown in Figure 4.1b. Without knowing
the secret key, one could either aim at predicting the ciphertext given a plaintext
(encryption emulation), as done, for example, by Xiao et al. in [XHY19], or to
predict a plaintext given a ciphertext (decryption emulation), as done, for example,
by Alani in [Alal2a, Alal2b].
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In 2012, Alani [Alal2a, Alal2b] implements a known-plaintext attack based on
neural networks, by training a neural network to retrieve plaintext from cipher-
text without retrieving the key used in encryption, or, in other words, finding a
functionally equivalent decryption function. The author claims to be able to use
an average of 211 plaintext-ciphertext pairs to perform cryptanalysis of DES in an
average duration of 51 minutes, and an average of only 212 plaintext-ciphertext
pairs for Triple-DES in an average duration of 72 minutes. His results, though,
could not be reproduced by, for example, Xiao et al. [XHY19], and no source code
is provided to reproduce the attack. The adopted network layouts were 4 or 5 lay-
ers perceptrons, with different configurations: 128-256-256-128, 128-256-512-256,
128-512-256-256, 128-256-512-128, 128-512-512-128, 64-128-256-512-1024 (Triple-
DES), and similar. The average size of data sets used was about 2?° plaintext-
ciphertext pairs. The training algorithm was the scaled conjugate-gradient. The
experiment, implemented in MATLAB, was run on single computer with AMD
Athlon X2 processor with 1.9 Gigahertz clock frequency and 4 Gigabytes of mem-
ory.

In 2019, Xiao et al. [XHY19] try to predict the output of a cipher treating it
as a black box using an unknown key. The prediction is performed by training
a neural network with plaintext/ciphertext pairs. The error function chosen to
correct the weights during the training was mean-squared error. Weights were
initialized randomly. The maximum numbers of training cycles (epochs) was set to
10*. Then, the measure of the strength of a cipher is given by three metrics: cipher
match rate, training data, and time complexity. They perform their experiment on
reduced-round DES and Hitaj2 [OCO08], a 48-bit key and 48-bit state stream cipher,
developed and introduced in late 90’s by Philips Semiconductors (currently NXP),
primarily used in Radio Frequency Identification (RFID) applications, such as car
immobilizers. Note that Hitaj2 has been attacked several times with algebraic
attacks using SAT solvers (e.g. [PN09, COQ09]) or by exhaustive search (e.g.
[SN11, Imm12]).

Xiao et al. test three different networks: a deep and thin fully connected net-
work (MLP with 4 layers of 128 neurons each), a shallow and fat network (MLP
with 1 layer of 1000 neurons), and a cascade network (4 layers with 128, 256, 256,
128 neurons). All three networks end with a softmax binary classifier. Their ex-
periments show that the neural network able to perform the most powerful attack
varies from cipher to cipher. While a fat and shallow shaped fully connected net-
work is the best to attack the round-reduced DES (up to 2 rounds), a deep-and
thin shaped fully connected network works best on Hitag2. Three common activa-
tion functions, sigmoid, tanh and relu, are tested, however, only for the shallow-fat
network. The authors conclude that the sigmoid function allows a faster training,
though all functions eventually reach the same accuracy. Training and testing are
performed on a personal laptop (no details provided), so the network used cannot
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be too large. The training has been performed with up to 23° samples.

Key recovery attacks

Neural networks can be used to predict the key of a cipher, by training the network
with triples of plaintext, ciphertext and key (different from the one that needs to
be found). The general architecture of such networks is shown in Figure 4.1c.

In 2014, Danziger and Henriques [DH14] successfully mapped the input/output
behaviour of the Simplified Data Encryption Standard (S-DES) [Sch96]', with the
use of a single hidden layer perceptron neural network (see Figure 4.1¢). They also
showed that the effectiveness of the MLP network depends on the nonlinearity
of the internal s-boxes of S-DES. Indeed, the main goal of the authors was to
understand the relation between the differential cryptanalysis results and the ones
obtained with the neural network. In their experiment, given the plaintext P and
ciphertext C', the output layer of the neural network is used to predict the key K.
Thus, for the training of the weights and biases in the neural network, training data
of the form (P,C, K) is needed. After training has finished, the neural network
was expected to predict a new value of K (not appearing in the training phase)
given a new (P, (') pair as input.

Prior works on S-DES include [AEWAA10, AAAA12|, where Alallayah et al.
propose the use of Levenberg-Marquardt algorithm rather than the Gradient De-
scent to speed up the training. Besides key recovery, they also use a single layer
perceptron network to emulate the behaviour of S-DES, modelling the network
with the plaintext as input, and the ciphertext as output. Their results is positive
due to the small size of the cipher, and a thorough analysis of the techniques used
is lacking.

In 2020, So et al. [So20] proposed the use of 3 to 7 layer MLPs (see Figure 4.1c)
to perform a known plaintext key recovery attack on S-DES (8 bit block, 10 bit key,
2 rounds), Simon32/64 (32 bit block, 64 bit key, 32 rounds), and Speck32/64 (32
bit block, 64 bit key, 22 rounds). Besides considering random keys, So et al.
additionally restricts keys to be made of ASCII characters. In this second case,
the MLP is able to recover keys for all the non-reduced ciphers. It is important
to notice that the largest cipher analyzed by So et al. has a key space of 204
keys, which is reduced to 2% = 64® keys when only ASCII keys are considered.
The number of hidden layers adopted in this work ranges between 3,5,7, while the
number of neurons per layer ranges between 128, 256, 512. In the training phase, So
et al. use 5000 epochs and the Adam adaptive moment algorithm as optimization

!Notice that S-DES uses 10 bit keys, 8 bit messages, 4 to 2 sboxes, and 2 rounds. This
parameters are very far from the real DES.
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algorithm for the MLP. The training and testing are run on GPU-based server

with Nvidia GeForce RTX 2080 Ti and its CPU is Intel Core 19-9900K.

Topic Year Target cipher ML techniques Ref.

identification of encryption 2006, DES, 3DES, Blowfish, AES, SVM and regression [DS06,

methods 2010 RC5 in CBC SDSK10]

identification of encryption 2012 DES/AES in ECB/CBC Linear Classifier and SVM [CLC12]

methods

identification of encryption 2018 DES, Blowfish, ARC4, Rijn- C4.5, PART, FT, Comple- [dMX18]

methods dael, Serpent and Twofish in ment Naive Bayes, MLP and

ECB/CBC, RSA WiSARD

decryption and distinguish- 2018 DES in ECB/CBC LSTM and CNN [Lag18]

ing

ciphertext prediction 2019 DES,Triple-DES 4 or 5 layer MLP [Alal2a,

Alal2b)
ciphertext prediction 2019  3round-DES, Hitag2 1-6 Layer MLP/Cascade net- [XHY19]
works

key recovery 2010, Simplified DES Levenberg-Marquardt & [AEWAA10,
2012 single MLP AAAA12|

key recovery & understand 2014 Simplified DES MLP [DH14]

differential cryptanalysis re-

lation with MLP

key recovery (ASCII key) 2020 S-DES, SIMON32/64, 3 to 5 layer MLP [So20]

SPECK32/64
key schedule inversion 2020 PRESENT 3 layer MLP [PMK20]

Table 4.1: Summary of the main results regarding machine learning techniques
applied to black box cryptanalysis.

4.3.1 Cipher emulation: comparison with previous works

The closest work related to ours is [XHY19]. In this work the authors claim to be
able to mimic the 1-round DES with accuracy of 99.7% and 2-rounds DES with
accuracy of 60% with 217 plaintext /ciphertext pairs. In the same paper, they also
analyze the stream cipher Hitag2, being able to mimic the full cipher with 26
input/output pairs, obtaining about 60% accuracy. In this section we analyze this
work from the boolean functions point of view.

Analysis of reduced-round DES

In a reduced 1-round DES not all the bits depend on the same number of inputs.
In particular, since DES has a Feistel structure, the dependencies are different for
the bits in the two words, the left and the right one. For the 32 bits of the right
word, the dependency is exactly on 1 input bit each, so there should be no problem
in learning this word. For the other word, the only non-linearity is given by the
S-Box. DES’ S-Boxes take 6 input bits, so each bit should depend on a maximum
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of 7 input bits (the 6 S-Box inputs and the bit itself at the input). Therefore,
we think that it is possible to mimic the 1-round DES with neural networks, also
reducing the data from 2'7 to at most 32 - 27 = 2!2 chosen inputs. In the case of
2-rounds DES we can apply a similar reasoning from the previous paragraph. The
right word at the end of the second DES round will depend on the left word of the
output of the first round, so every bit will depend roughly on 7 input bits. For the
other word, things become harder: using a similar reasoning with the S-Boxes of
DES we can see that every bit of the left word will depend on at most 6-7+1 = 43
input bits. In this case, we think that it is possible to mimic the right word, while
a lot of data will be required for the left one. Notice that in this case it is possible
to reach 75% accuracy with only 2'? chosen inputs as follows:

1. Train a neural network to recognize only the right word. Since the depencency
is only on the output of the first round, this can be done as described before
for 1-round DES. This will get accuracy 100% for this part.

2. For the other word, roughly 2% chosen inputs are necessary, so we assume

that this is not feasible and leads to accuracy 50%.

3. The average accuracy of the network will then become 75%.

Analysis of Hitag2

Hitag 2 is a stream cipher based on an LFSR and several boolean functions. In this
case it is not very clear what the authors are doing. From what we understood,
they are training the neural network using the “serial” as input and predicting one
bit of output, in a fixed-key setting. This is in line with our analysis, since the
output bit depends only on 15 bits of the serial number, and so 26 training pairs
are more than enough to obtain 60% accuracy.

Other works

In [Alal2b, Alal2a] the author claim to be able to mimic the full DES and 3DES
with 2! and 2'? plaintext /ciphertext pairs respectively. We think that, following
our previous discussion, these results are unlikely to be reproducible. The same
thesis is supported by the authors of [XHY19].

4.4 Emulating boolean functions using neural net-
works

In this section we first describe some experimental results to confirm the theoretical
claims we made in Section 4.2 on the minimum number of samples or on the
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minimum number of neurons (in a single hidden layer MLP) that are needed to
obtain accuracy 1 when emulating a boolean function. Some of these experiments
determine the fundamental blocks we used to model 2 rounds of (a reduced version
of) AES in Section 4.5. As a side result, we briefly try to correlate the learning
rate of a training with some of the main cryptographic properties of a boolean
function.

4.4.1 Experimental results when varying number of sam-
ples and neurons

Experiment 1

Modeling boolean function depending on a subset of all variables. In
this test we investigate boolean functions which only depend on a subset of all
variables. This experiment is motivated by the fact that, in the first rounds,
before full diffusion is reached, the output bits of a block cipher usually depend
on only some of the input bits. We show that in this case, to reach high accuracy,
the needed number of samples grows exponentially in the variables on which the
boolean function actually depends on. Let us recall that we call noisy the bits
from which the boolean function does not depend on. In Experiment 2 we will
show that the needed number of samples grows exponentially also with the noisy
bits.

The experiment works as follows. Pick a random boolean function of m variables
Zo, ..., Tm—1 which only depends on at most m, of the possible inputs. For ex-
ample, consider m = 4, m, = 2 and the functions fy(xo, z1), fi(zo,x1), fa(z2,3),
f3(z2,x3). Train an MLP with an input layer of m neurons, a single hidden layer
of 2™ neurons and an output layer with a single neuron using ¢ samples.

The results on this experiment for m = 7 (m, = 1,...,7) are shown in Fig-
ure 4.2. Indeed, for m, = 7 the absolute validation accuracy never reaches 100%,
as predicted in Conjecture 4.2.1. However, when the number of dependent vari-
ables m,, is smaller, already a fraction of the training samples is sufficient to reach
100% prediction accuracy on an unknown sample.

In particular, for m, bits, we only need the 2™» possible values to be presented
at least once. So, in principle, 2™ samples would be enough to reach full accuracy
on an unknown sample. In order to estimate how many of the 2 samples we need
(on average) to have the 2™» values represented, we refer to a modified version
of the coupon collector problem. If m — m, is not too small, the expected value
for the number of needed samples can be approximated with the classic bound
2™ In (2"#) [FGT92]. Using again m, = 2 we have that on average 5.55 samples
are enough to have all 4 values for those bits represented. However, as shown in
figure Figure 4.2b more samples are needed.
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Figure 4.2: Results on Experiment 1 for Random boolean functions of m = 7 bits
and m, = 1,...,m dependent variables. Figure (a) shows the block accuracy on
the validation dataset for training samples t between 1,...,2™ — 1. Each black line

shows the mean of ten Random boolean functions (shown in grey) with m = 7 and
the indicated m,. Figure (b) shows the number of samples at which a validation
accuracy of 100% has been reached in (a). The number of samples shown are
(1I3+4, 21 £8, 35 £ 11, 56 + 11, 88 £ 16, 113 & 3) for the different values of
my, = 1,...,6. For comparison, 2™ is shown.

Experiment 2

Adding noisy bits to the training. The purpose of this experiment is to show
that if we try to model a boolean function depending on m bits with a neural
network taking m + s inputs of which s (the noisy bits) are either fixed to zero or
to a random value, it becomes more difficult to obtain a good accuracy, even though
for the fixed zero case, accuracy 1 is reached eventually. The experiment works as
follows. Pick 1 boolean function of m variables, add s bits of noise (either fixed
to 0 or randomly chosen) and train a neural network with 2 samples and 2”5
neurons. The results of Experiment 2 are shown in Figure 4.3. We conclude that
training becomes harder with increasing s, and that the random noise accentuates
this difference.

Experiment 3

Finding minimum number of samples. The purpose of this experiment is to
determine the minimum number of samples for which we reach a high accuracy
in the presence of noisy bits, with just one epoch and then with more than one
epoch. The experiment works as follows. Pick a random boolean function of m+ s
variables f(xq, ..., Zm1s—1) such that m variables bring information and s variables
bring noise. Then find the minimum number of samples (e.g. with a binary search)
for which the neural network reaches an accuracy above the chosen threshold. For
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Figure 4.3: Results on Experiment 2 for m = 8 and s = 0,...,13. Figure (a)
shows the final binary accuracy on the validation dataset when the noise bits are
either fixed to 0 (“0 noise”) or random (“random noise”). Figure (b) shows the
validation binary accuracy during training for the final values shown in figure (a).
A darker shade corresponds to more noisy bits s.

| m | n=#Samples | I =loga(n) | I/m | | m | n=#Samples | | = loga(n) | I/m |

4 25650 14.6 3.65 4 24883 14.6 3.65
6 52652 16.7 2.78 6 36153 15.1 2.52
8 194385 17.6 2.20 8 103932 16.7 2.09
10 2097056 21.0 2.10 10 952149 19.9 1.99

| m | n=#Samples | I = logs(n) | I/m | Epochs

4 195 7.6 1.90 336
6 1663 10.7 1.78 151
8 9927 13.3 1.66 103
10 424209 18.7 1.87 78

Table 4.2: Results for Experiment 3 for one epoch (on top left the results for
accuracy=1, on top right for accuracy>0.95) and multiple epochs (on the bottom,
with threshold accuracy 0.9; the last column includes 75 epochs of patience, where
the training binary accuracy does not improve).

the experiment, we fixed s = 3m, so that in total we have 4m bits of input to the
network (this proportion is the same as in 2 rounds of AES-128).

The results are shown in Table 4.2. From those results, one could estimate
that, with just one epoch, 2%1™ samples are enough to reach accuracy 1, while
22m samples are enough to reach at least accuracy 0.95. In the case of more than
one epoch, this bound seems to lower towards 21, As we explain in Section 4.5,
after 2 rounds of AES-128, each output bit is a boolean function of 32 of the 128
input bits of the cipher. This means that, if our assumption on the growth of the
difficulty of the training is correct, then, in order to emulate 2 rounds of AES-128,
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Figure 4.4: Training binary accuracy of the neural network from Experiment 4
with a batch size of 100, number of samples and of epochs from Table 4.2 for
different values of m = 4,6,8,10.
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we need samples to reach accuracy 1 and samples to overcome accuracy
0.95. Since this numbers are too prohibitive for our resources, we will prove our
claim to be true for a smaller version of AES (see Section 4.5).

Experiment 4

Finding the minimum number of neurons. The purpose of this experiment is
to determine the minimum number of neurons in the hidden layer which is sufficient
to obtain a binary accuracy close to 1. We start picking a random boolean function
of m+ s variables f(xo,. .., Zmis_1) such that m variables contain information and
s variables are noisy bits. As in Experiment 3, we fixed s = 3m and the number
of samples and epochs according to Table 4.2. MLPs with different number of
neurons in the hidden layer are trained. The relationship between the number of
neurons and the accuracy is shown in Figure 4.4.

Experiment 5

Finding the optimal shape of the network. We tried to train networks
with increasing number of layers while keeping the same numbers of neurons. We
observed no improvements: the reached accuracy is the same of (or even lower
than) the networks with a single hidden layer. This was expected, since a single
layer neural network with m inputs and 2™ neurons is a universal approximator.

4.4.2 Emulating boolean functions with different crypto-
graphic properties

In this section, we want to determine if there exist a correlation between the
learnability of a boolean function and some of its most relevant cryptographic
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properties, namely: algebraic degree, algebraic immunity, correlation immunity;,
nonlinearity and resiliency order.

We randomly picked ten boolean functions, in m = 10 variables, for each alge-
braic degree from 1,...,9 (i.e. 90 boolean functions in total). A neural network
was trained to predict the output of these functions. In Figure 4.5a it is shown how
the neural network parameters affect the accuracy of the predictions (for the case
of algebraic degree property), while Figure 4.5b shows the network performance
during the training. In both graphs, we take, for each value of the algebraic degree,
the average of the accuracy and the loss over the ten boolean functions considered.

In particular, we notice two facts. The first one is that we need the full dataset
in order to be able to predict the outcome of the boolean functions. The second
one is the similarity of the training progress for all algebraic degrees (with a slight
irregularity in linear functions) in Figure 4.5b, which points out that the algebraic
degree is not causing major differences in the learnability of the boolean functions.

The panels in figure Figure 4.5¢ show the training progress for the algebraic
immunity, the correlation immunity, the nonlinearity and the resiliency order.
While for the algebraic immunity and nonlinearity no major differences in the
training progress are visible, we notice that for correlation immunity and resiliency
order there are some differences in the training progress. The results on correlation
immunity are in line with the work from Malach et al. [MSS19], but a detailed
investigation is beyond the scope of this work and is left for future research.

4.5 Emulating AES using neural networks

In this section we first introduce the internal structure of AES and of a scaled
variant. We then use this variant to demonstrate how one can fully model 2
rounds of AES with a limited number of samples.

4.5.1 AES specifications

In 1997 the National Institute of Standards and Technology (NIST) called for
proposals for a new block cipher standard, to be named the Advanced Encryption
Standard (AES). In October 2000, the Rijndael algorithm, a Belgian block cipher
designed by Joan Daemen and Vincent Rijmen [JV02], was selected as the winner.
Nowadays, AES is the most used block cipher.

The AES comes in three different versions that share the same encryption algo-
rithm. At a high level, it can be seen as an alternating key cipher, that is an iter-
ated cipher with the following structure: E(k,m) = kq® mq(kg—1 B ma—1(. .. m1 (koD
m)...)). The XOR operation & is usually referred to as the AddRoundKey opera-
tion, where each m; is defined as the composition of three operations: SubBytes,
ShiftRows and MixColumns. For design reasons, my; omits the MixColumn step.
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Figure 4.5: Binary accuracy (blue) and binary crossentropy loss (red) of an MLP
learning boolean functions of varying algebraic degree. The left hand side figure (a)
shows the final accuracy and loss values obtained on the validation dataset for
different configurations e = 1,...,10. In detail the number of neurons in the
hidden layer of the MLP was varied (2¢ = 2!,...,219), as well as the number of
samples (2¢) and number of training epochs (2¢). The right hand side figure (b)
shows the training progress of a neural network with 1024 neurons, 1024 samples
and 1024 epochs. Figure (c) in the lower panel shows the training progress of a
neural network with 1024 neurons, 1024 samples and 1024 epochs for various other
considered properties of boolean functions.

Reduced versions of the AES can be considered for experimental purposes, as it
was done for example in [CMRO05] or [Pha02]. Following a similar approach, in our
experiments, we consider a reduced version of the AES where we change the word
size and, accordingly to that, the block size. In particular, we consider 4 x 4 states
and 3 bit words. We chose the Sbox of the SubBytes operation as the inversion
over F¥, and an MDS matrix for the MixColumn operation [JV02].

All the operations are computed over Fy were w is the word size in bits. In
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particular, for 3 bit words, the modulus is the polynomial 2% + x 4+ 1. Like the
standard AES, the AES version that we propose reaches full diffusion within 4
rounds. We denote it by AESw3s4.

4.5.2 AES emulation

Experiment 2 in Section 4.4 is equivalent to predicting a word of a reduced version
of AES that performs at most 2 rounds (from the third round, each output bit
depends on all the input ones). As noted in the previous section, each output bit
of 2 rounds of AES-128 depends on m = 32 bits only (1/4 of the total input bits).
In the toy AESw3s4, after 2 rounds, each output bit depends on m = 12 bits only
(again 1/4 of the total input bits). According to Table 4.2, one needs 2™ samples
to be able to emulate the boolean function defining each output bit with accuracy
of 95%. For AES-128, this means 2%, which is out of reach for our resources. For
AESw3s4, only 224 samples are needed. So, we tried to emulate a single output
bit of 2 rounds of AESw3s4, using an MLP of 22* neurons fed by 224 samples in
the training phase. The experiment was run on a GPU server with 8 Quadro RTX
8000 GPUs, 256 GB RAM and 2 CPUs Intel(R) Xeon(R) Gold 5122 at 3.80 GHz.
The test reached a peak of approximately 80 GB of RAM and was terminated after
40 minutes of data generation, 30 minutes of training and 15 minutes of validation.
We reached a validation loss of 0.018 and a validation accuracy of 99.6% after 10
epochs.

4.6 Wrap up

In this chapter we have shown that to model with high accuracy a random boolean
function one needs to train a neural network with the entire set of all possible inputs
of the function. Since the output of any modern block cipher can be represented
as a vector of random boolean functions of n inputs, this means that 2" samples
needs to be used for the training phase, which makes this approach impractical.
Nonetheless, there are examples in the literature where this approach was suc-
cessful, either on full or reduced round ciphers. We explain that when this was
possible, it was due to the fact that the output bits of the cipher depend only on
a small number of input bits. We exploit this observation to model 2 rounds of (a
scaled version of) AES.



Part 11

Neuro-aided Cryptanalysis
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Chapter 5
Distinguishers

Part of this chapter is a joint work with E. Bellini and A. Hambitzer. The original
publications can be found in [BHR22] and [BR20).

By neuro-aided cryptanalysis we refer to methods that improve conventional
cryptanalysis techniques by means of neural networks. In the recent and existing
literature covering this case, neural networks are used only to provide more effective
and efficient distinguishers, that can be used later to perform key recovery attacks
using conventional techniques.

Works in this direction mostly focus on extending the commonly used model
of differential distinguisher by using ML techniques. In the case of differential
distinguisher, the attacker Eve XORs a chosen input difference 6 to the input
of the state of the (reduced round) cipher and watches for a particular output
difference A, with randomly chosen inputs. If the (4, A) pair occurs with a prob-
ability significantly higher for the (reduced round) cipher than what it should be
for a random case, the (reduced round) cipher can be distinguished from the ran-
dom case. In conventional cryptanalysis, this probability distribution of § — A
is modeled by the differential branch number [DR13] or by automated tools like
Mixed Integer Linear Programming (MILP) [MWGP11]. The modeling for differ-
ential distinguisher can be extended by incorporating machine learning algorithms.

5.1 The state of the art

Successfull attacks to modern cipher have been developed only in the last few
years. In 2019, the work by Gohr [Goh19c]| is the first that compares cryptanalysis
performed by a deep neural network to solving the same problems with strong,
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well-understood conventional cryptanalytic tools. It is also the first paper to com-
bine neural networks with strong conventional cryptanalysis techniques and the
first paper to demonstrate a neural network based attack on a symmetric crypto-
graphic primitive that improves upon the published state of the art. All this is
applied to SPECK32/64, a lightweight cipher designed by the NSA, with a 32 bit
block input and a 64 bit key. More details about Gohr’s work are given in the
next chapter.

Other similar works appeared following Gohr’s approach. For transforming the
differential distinguisher to a classification problem, Baksi et al. [BBDY20| pro-
pose two models. In the first model, the attacker chooses ¢t input differences. In
the training (offline) phase, the attacker tries to learn whether there is any pattern
in the cipher outputs that the machine learning tool is capable of finding. To test
that, Eve creates t differentials with those input differences and feeds all the data
to the machine learning. If the accuracy of ML training is higher than what it
should be for random data (i.e., 1/t), the attacker is able to extract pattern from
the cipher outputs and proceeds to the online phase. Otherwise (if the training
accuracy is 1/t), she aborts. While the first model can work with an arbitrary
number, ¢t > 2, of input differences, in the second model the authors propose a
different model that can work with only one input difference. Baksi et al. apply
the first model to round-reduced Gimli-Hash and Gimli-Cipher (8 round distin-
guisher), Ascon 320-bit permutation (3 round distinguisher), and Knot-256 (10
round distinguisher) and Knot-512 (12 round distinguisher). They also show the
effectiveness of the second model over the lightweight MAC Chaskey. In general,
they are able to reduce the online data complexity of the conventional distin-
guisher, up to the cube root in the case of Gimli (from 2752 to 271%3)  at the cost
of processing offline data for the training phase (2717¢). The authors also discuss
effects of choosing different neural network architectures with respect to 8-round
GIMLI-PERMUTATION as the target cipher, conclusing that MLP networks are
the most performing, followed by LSTM, while CNN seems not suited for the task
of building a cryptographic distinguisher. The tested networks, use from 3 to 6
layers, and up to 1024 neurons per layer, for a total number of paramenters that
ranges from 90,818 to 2,249,858. They use ReLU and LeakyRELU for MLP and
CNN, and tanh and sigmoid for LSTM.

Jain et al. [JKM20] adopt the same approach of Baksi et al. to analyze 3-6
round reduced PRESENT lightweight block cipher. They use 2 MLP networks
with 3 hidden layers of 128, 1024, and 1024 neuros (the most successful configu-
ration in Baksi), and two 2-hidden layer MLP networks, which seem to seems to
produce the same results in less time and better chances of avoiding data over-
fitting. They use batch size of 200, 25 epochs, samples of 10000, Adam optimizer,
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MSE loss function, and learning rate of 0.001. The authors also show, as one might
expect, that randomly generated input differences generate a worse distinguisher
then using differences found by means of conventional cryptanalysis.

Again, following Gohr and Baksi et al., Yadav and Kumar [YK21] derive a
multi-layer perceptron distinguisher for 12 rounds SIMON, 9 rounds SPECK, and
8 rounds GIFT. In their work they also propose to extend a classical distinguisher
with a neural one. They use 2 hidden layers having 1024 neurons each.

Attacks to historical ciphers

Better success has been recently obtained with historical ciphers or to simplified
version of modern ciphers. For example, in 2018, code-book recovery for short-
period Vigenere cipher was obtained with the use of unsupervised learning using
neural networks [GHZ"18] or, in 2017, restricted version of Enigma cipher were
simulated using restricted neural networks [Grel7].

Machine learning to speed up tree search

In 2007 [LMSVO07], the problem of finding some missing bits of the key that is used
in a 4 and 6 rounds DES instance is tackled, with the optimization techniques of
Particle Swarm Optimization (PSO) and Differential Evolution (DE). Experimen-
tal results for 4-round DES showed that the optimization methods considered
located the solution efficiently, as they required a smaller number of function eval-
uations compared to the brute force approach. For 6 rounds DES the effectiveness
of the proposed algorithms depends on the construction of the objective function.
In the same work, also the factorization and discrete logarithm problem have been
modeled as an optimization problem or by means of Artificial Neural Networks,
but the experiments where run on 3 decimal digit numbers only.

Attacks to neural network based schemes

A somehow singular case, in 2002, is that of a public-key scheme based on neural
networks, who was broken by use of genetic algorithms (and also by other classical
algorithms) [KMS02].

Data driven attacks

In [PPS14], the authors perform an extensive data analysis of the RC4 keystreams
which allow them to extract the single-byte and double-byte distributions in the
early portions of the keystream itself. This is used to then recover plaintext data.
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In [HIO4], the authors use a genetic-algorithm to search for subsets of the input
space that produces a high statistically significant deviation of the distribution of
a given subset of the output produced by the Tiny Encryption Algorithm (TEA)
encryption. They find 4 rounds trails using 2'! random inputs.

5.2 ML-based vs classical differential distinguish-
ers

Still on the line of Gohr’s idea, in this section we setup a very simple framework to
compare the performance of blackbox and differential conventional distinguishers,
and neuro-aided distinguisher exploiting the knowledge of differential trails found
by means of conventional cryptanalysis. We use the TEA and RAIDEN ciphers as
a case study, and show how the neural distinguishers can outperform the classical
ones.

It is worth to notice that all previous deep learning works focus on xor-differential
cryptanalysis, while we analyze two ciphers based on additive-differential crypt-
analysis to show that, also in this case, it is possible to obtain meaningful results.

We propose two possible network architectures: one is based on the multi-
layer perceptron structure, while the other on a convolutional structure. Contrary
to what Baksi et al. [BBDY20] stated, we show that sometimes Convolutional
Neural Networks are suitable for the purpose of finding a distinguisher. Another
important difference between our work and the one from Baksi et al. is that, as
in Gohr, we train the network with a single input difference, while in Baksi et
al., they use multiple input differences. We test the performances of all our deep
learning based distinguishers, in terms of accuracy, against the conventional ones,
then we propose a distinguishing task where a conventional distinguisher cannot
be applied.

5.2.1 TEA and RAIDEN

We consider two block ciphers with a similar structure: RAIDEN and TEA. Pre-
cisely, they are Feistel networks of r rounds, in which the output of the nonlinear
function F is injected into the network through a modular addition. See Fig-
ure 5.1 for the Feistel diagram. Both ciphers input and output are b = 64 bit
strings, and are represented as two words of w = 32 bits, to which we refer to
as, respectively, (Lo, Ry) and (L,, R,). The key is k = 128 bits long, and split
in four w-bit words, i.e. K = (Ky, K1, K3, K3). To perform the encryption and
decryption, they only use the following types of operation: modular addition, bit-
wise exclusive or, and right or left rotations. The cipher output is obtained by
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Figure 5.1: Two rounds of the Feistel structure of TEA and RAIDEN.

repeating r rounds as follows

Li+1 = .F(Rz) H Li, Ri+1 = Rz for i even
Li+1 = Li, Ri+1 = f(LZ) H Rz for 7 odd

TEA nonlinear function FEA is defined as
FIEA (@) =((z < ) Bko) @ (2B 6) @ ((z>5) Bhy),

where §y = 0x9e3779b9, &; = dp - [(r +1)/2] mod 2% (so that the same constant
is used for two consecutive rounds), (k;,, ki,) = (Ko, K1) for the even rounds, and
(iy, ki) = (K2, K3) for the odd rounds. RAIDEN nonlinear function FRAIPEN jg
defined as

FRAPEN (1) = ((k; B2) < 9) @ (k;Bz) @ (ki Bz) > 14),
where k; is updated according to the following key schedule k; = K; noas4 =
(KoBK,)B (KB K;3)® (Ky < Kb))), so that it is the same every other round.

5.2.2 Classical distinguishers

In this section, we introduce two classical differential distinguishers that we believe
to be representative for the two scenarios in which

i) an attacker has no information about the analyzed cipher,

i1) it has some knowledge of its differential properties.

The first distinguisher, to which we refer to as the bitflip distinguisher, is ex-
trapolated from one of the most common diffusion tests. In this test, a cipher
designer flips a bit in the input and checks how many bits in the output change. If
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about half of them changes for all input flipped bits, the designer is fairly confident
that diffusion is close to be reached. Of course, there could still be corner cases
and biased bits, but this test is usually done to provide a upper bound on the se-
curity of the cipher. Notice that the bitflip distinguisher can be applied to all sort
of cryptographic functions with fixed input and output size, and it is particularly
useful for iterated functions.

The other distinguisher we present will be referred to as the trail distinguisher.
This is also a very generic distinguisher that can be applied to any iterated function
with fixed input and output size, given the knowledge of a single differential trail
and of its expected probability. In Gohr [Goh19c|, a generalization of such distin-
guisher is considered, where instead of one differential trail, the attacker has at
his disposal many (all possible ones in the case of SPECK32/64) differential trails
starting from the same input difference. Unfortunately, it is not always possible
to obtain such a knowledge on the cipher. On the contrary, for most of the ciphers
we do not have such information, due to the larger state that ciphers usually have
compared to SPECK32/64, which is of only 32 bits. The number of samples needed
for a trail distinguisher to be effective is inversely proportional to its probability.
We will show that, before diffusion is achieved, the bitflip distinguisher turns to be
extremely effective with few samples compared to the trail distinguishers based on
trails with small probability (see the case of TEA in Figure 5.4). In spite of this, we
will also show that neural network based distinguishers (with knowledge of some
differential property of the cipher) perform better than the bitflip distinguisher
even for a small number of rounds and with few samples.

A classical generic distinguisher

The distinguisher A', which we call the bitflip distinguisher, performs a simple
statistical test on a set of outputs provided by the oracle when given a certain
set of inputs. More precisely, the bitflip distinguisher A! works as follows. It
takes as additional input the parameter 7, defining the threshold for the accuracy
of the test. A message m is randomly selected and encrypted to c¢. Then a bit
of m is flipped in a random bit position, and a new encryption ¢ is computed.
The distinguisher counts how many bits changed from ¢ to ¢’. If the number of
bits that changed from ¢ to ¢’ is about half the bit size b of ¢, the distinguisher
concludes that the oracle is using a random permutation, otherwise a block cipher.
The pseudo-code of the distinguisher is provided in Figure 5.2.

A classical tailored distinguisher

The distinguisher A%, which we call the trail distinguisher, uses information about
the family C of block ciphers. More precisely, the trail distinguisher A2 works
as follows. As an additional input, beside a threshold 7 defining the accuracy
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Bitflip distinguisher: A}, .(7) Trail distinguisher: A3 . .(Az, Ay, p, )

1: j<s{0,...,b} 1: h=0

2. m<s{0,1}* 2: fori=0,---,[1/p] -1
3: ¢4 Oracle(m) 3: m <—s{0,1}°

/| encrypt m with j-th bit flipped 4 ¢ < Oracle(m)

4: ¢ + Oracle(m @ 27) 5 ¢’ + Oracle(m H Ax)
5: h = HammingWeight(c & ) if cHe=Ay

6: if |h/b] <b/2+ T return 0 h+h+1

7:

if h>7 returnl

else return 0

else return 1

© oo N O

Figure 5.2: Bitflip (left) and Differential (right) distinguisher.

of the distinguisher, it receives an additive differential triple, including an input
difference Ax € {0,1}®, an output difference Ay € {0,1}P and the probability
p that the input/output difference is preserved after applying the cipher to be
distinguished. The probability p determines the number of sample messages the
distinguisher needs to process. For each sample m the encryption ¢ and ¢ of m
and m B Az is computed, and if the difference between ¢ and ¢ is Ay, then a
counter is increased. If, at the end of the process, at least 7 output differences
matched Ay, then the distinguisher concludes that the Oracle is using an instance
from the family C of ciphers, otherwise that it is using a random permutation. The
pseudo-code of the distinguisher is provided in Figure 5.2.

5.2.3 Neural network based distinguishers

In this section we present a distinguisher A3, that we will call neural distinguisher.
We instantiate the distinguisher using two types of neural networks: a multilayer
perceptron network and a convolutional network. The motivation behind the first
one is to give a model that require as little computational power to be trained
as possible, while in the second one we want to test if convolutional layers, that
are usually adopted in pattern recognition tasks, can give better results despite
the higher computational power required to train them. Here we give a general
structure of the distinguisher, then we will go into the details in the following
sections. Recall that we defined a Neural Network as a function F' that takes an
input and tries to classify it in one of the given classes. Here the classes will be only
2: § = {random, cipher}, where the random class is the class in which random
inputs will be classified, and the cipher one is the one for the inputs coming from
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the cipher. Our network is simply a function F' : R? — S that takes in input a
pair of integer numbers and classify it in one of the two classes. In the case of the
random class, the input will simply be made up by two uniformly random chosen
integers with bit size equal to the block size of the cipher, while for the cipher class
the input will be a pair of ciphertext coming from a fixed plaintext difference Ax
unknown to the network.

To build the distinguisher we first train the network using n input-output pairs
coming half from the cipher and half from the random distribution (this is done
one time, then the network is saved and reused for all the distinguisher calls) for e
epochs, then we predict the classes for chunks of n input pairs coming all from the
same source (random or cipher) and we go for a majority vote: we fix a threshold T,
and we check if at least 7,, out of n samples are classified as coming from the cipher.
If this is true, the chunk is classified as a cipher chunk, otherwise, it is classified
as random. The general pseudo-code for the training phase and the one for the
distinguisher can be seen, respectively, on the left and on the right of Figure 5.3.
Note that, in the case of a known key distinguisher, as for TEA, the key used in
the training and in the distinguishing phase is always the same.

Time Distributed distinguisher

In this section, we describe the first of our network architectures for the neural
distinguisher. We will refer to this as the Time Distributed distinguisher (TD
distinguisher).

Input and Output Layers As we mentioned before, our network takes in input
a pair of bit size b integers, ideally representing two ciphertext coming from the
same key and a known input difference. However we noticed that the network
learns better if the inputs are given as bit vectors, so our input layer is made up
by 2b neurons with binary values. For the output, we simply one-hot encode the
two classes, so we have 2 output neurons that, during training, take the value
(1,0) for random inputs and (0,1) for cipher inputs. In the classification phase
we classify an observation for which the network output is a vector v to the class
represented by arg maxv.

Hidden Layers The network is structured as a multilayer perceptron. The
hidden layers can be ideally split in two parts: the first part is what we call a
time distributed network, while the second one is a multilayer perceptron in its
classic definition. In the first part we split our input in four chunks of 32 bits, each
representing one of the four words that make up the two ciphertexts, and we pass
each chunk separately in 2 dense layers of 32 neurons (in our case, perceptrons)
each. The name “time distributed” comes from the fact that this approach is
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Neural Network Training: Train(n, e, Az) Neural distinguisher: A3 . .(Az,n, 7,1, €)

1: Traininglnput = @ 1: h=0

2:  TrainingOutput = @ 2:  Net < Train(n, e, Ax)
3: fori=0,---,n 3: fori=0,---,n

4 if Uniform(0,1) > 0.5 4: m <—s{0,1}°

5 - m <—s {0’1}b 5: ¢ < Oracle(m)

6 ks {0,1° 6: ¢ + Oracle(m B Ax)
7: ¢ < Encrypt(k,m) 7 if Net(c,c') =1

8: ¢ < Encrypt(k,m H Azx) 8: h<h+1

9: Add (¢, ') to TrainingInput 9: if h>m,
10 : Add (1) to TrainingOutput 10 return 1
11 else 11: else
12 : c«s{0,1}° 12 return 0
13 ¢ +s{0,1}°
14: Add (¢, ') to TrainingInput
15 : Add (0) to TrainingOutput

16: Net « TrainNetwork(Traininglnput,
TraningOutput,e)

17 :  return Net

Figure 5.3: Neural Network training (left) and Neural Distinguisher (right).

common when dealing with temporal data, however in our case this can be simply
seen as treating the chunk separately, without letting their values influence each
other. The outputs are four vectors in R?? that are now flattened, in the sense that
they are joined to form a unique vector in R'?® that will be the input of the second
part. The second part is made up by three fully connected layers of 64, 64 and
32 neurons, ending up in the output layers that is, as we said before, made up by
two neurons. The idea of splitting the network in two parts comes from the fact
that in both our ciphers the output is calculated separately as two different words
(although not independently), so we want the network to see these words alone.
The expected effects for the network is to emphasize the key features of each word
independently from the others. We also tried to use only the fully connected part
of the network (without the time distributed one) getting worse results on the
accuracy metric.
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Activations and Loss Function For the hidden layers we chose the Leaky
ReL U activation function [XWCL15b], that can be defined as

a(x):{x >0

yr x <0

with the value v = 0.3. The choice of the Leaky ReLU is based on the fact that we
expect our problem to have a strong vanishing gradient issue [Hoc98], while the
value of 7 was chosen in {0.1,0.2,...,0.9} using the accuracy metric to evaluate the
model. For the output layer, since we are using one-hot encoding, it comes natural
to use the softmax activation function, defined as a(z) = (ai(x), ..., an(z)) where

a;(x) = ﬁ For the loss function we opted for the standard mean squared
j=1
error, because trying to minimize the cross-entropy gave no improvements in the

accuracy of the models. No regularization methods have been tried to optimize
the learning process.

Optimizer and Learning Rate We chose the standard Adam algorithm as
optimizer. We directly opted for this choice since it was used in both Gohr’s
and Baksi’s et al. works, and in general it is a common choice also for side-
channel analysis using machine learning [Tim19, ZBHV19]. We also tried the
Stochastic Gradient Descent algorithm as an optimizer, but this choice led us
to distinguishers with accuracy close to 0.5 for our models. As a first choice,
we fixed the constants to the values suggested by the authors of [KB14], that
are 1 = 0.9,3, = 0.999,¢ = 1077. No effort was made in optimizing these
parameters, since they seemed to produce already satisfying results, and also in
both Gohr and Baksi et al. they were left to their default values. For the learning
rate we followed a similar approach to the one used by Gohr: we defined two
values apay and ap, and we fixed a small number of epochs (we used 3). We
defined ay,.y as the maximum value of the learning rate such that we still see some
improvements for all the 3 epochs, and ay,;, as the minimum value that gives a
significant improvement in the loss at the end of the 3 epochs (ideally, this can be
seen as an elbow in the graph of learning rate versus loss). We then set a cyclic
learning rate as

& = i & (Qtmax — Omin)(c =@ (mod c))7
C

where 7 refers to the current epoch in the training and c is the length of the cycle.
Experimentally we found that for our problem ay,., = 0.015, api, = 0.0003 and
¢ = 5 works well.
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Training and Testing We ran our network on 10° training pairs and 10* val-
idation pairs for e = 50 epochs. Based on the validation accuracy we selected
the minimum number n of samples needed in each experiment to have a distin-
guisher with accuracy significantly far from 0.5 (where with significantly we mean
that it deviates at least by 0.02 from 0.5) and the threshold 7, (see previous sec-
tion). We then evaluated 10® sets of dimension k to estimate the accuracy of the
distinguisher.

Convolutional distinguisher

Here we briefly outline a second neural distinguisher that we will include in the
accuracy comparison in Subsection 5.2.4. Since it is very similar to the TD dis-
tinguisher, we only talk about the main difference: hidden layers. We will refer to
this distinguisher as the Convolutional distinguisher.

Hidden Layers As before, we can identify two splits of layers: in the first split,
instead of perceptrons, we use two one-dimensional convolutional layers of size
32. The approach is very similar to the previous one: the input is split in four
parts and passed through the filters. However, the main difference is that these
filters can have dimensions greater than 1, allowing the network to learn different
features. Then the output of these layers is flattened and passed to the prediction
head, that is modeled as before as a multilayer perceptron with 3 layers of 32, 32
and 16 neurons.

5.2.4 Experimental results and comparisons

In this section, we present (a) the methodology we adopted to compare the perfor-
mance of different distinguishers and (b) the results of this comparison, focusing in
particular on the performance of the Neural Network (NN) based distinguishers.

Description of the experiment

In order to compare the distinguishers, we run the following experiments. We
consider different reduced version of TEA and RAIDEN (with rounds ranging
from 4 to 8). For each cipher family C, each distinguisher A} ..., and a fixed
number of samples n, we compute the accuracy of the distinguisher. Precisely, we
ran 1000 experiments. For half of the experiments we call the distinguisher A, .
with Oracle equal to an instance Cy of the cipher family C, with a fixed key for
TEA (because the Markov assumption does not hold for it), and with a randomly
chosen key for RAIDEN. For the other half we fix Oracle to a random generator
(using NumPy [Oli06] random number generator). Then we measure the accuracy
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of the distinguisher by counting how many times it distinguishes correctly (i.e. it
returns 1 in the first case, and 0 in the second), averaging the two cases.

The number n ranges from 2° to 2% in the case of TEA, and from 2° to 2'2
in the case of RAIDEN. These numbers have been chosen in order to have high
success probability with the trail distinguisher up to a number of rounds where the
bitflip distinguisher was failing (i.e. having accuracy 0.5). Precisely, the bitflip
distinguisher becomes useless at round 7 for both TEA and RAIDEN. At round 7
and 8, TEA has a fixed key output difference of probability, respectively, 272%7" and
272943 while RAIDEN has a “true” output difference of probability, respectively,
278 and 2710, Thus, for example, as far as it concern the trail distinguisher A% .,
we expect to have a success probability (accuracy) close to 1 with 2% samples at 7
rounds for RAIDEN, and with 22! samples at 7 rounds for TEA. Another reason to
stop at 8 rounds with 1000 experiments, is that we reached the memory at disposal
in our machine, a server with 64 GB of RAM, for a computation that ran for a
few hours. For both the bitflip distinguisher A! and the trail distinguisher A? we
set the threshold value 7 = 1. Notice that a higher threshold would increase the
probability of doing the right choice when selecting the cipher, but also decrease
the probability of doing the right choice when not selecting it. The choice of the
threshold for the neural distinguishers was a bit more complicated: in general for
n samples we set 7, = 7, though this is not always the optimal choice. We found
out that sometimes, during the training phase, the network overfits one of the two
classes, so it develops the tendency to predict better one class instead of the other.
This happens especially with an high number of rounds, and we found out that
it can be solved by slightly increasing the threshold. So, we set all the thresholds
for the 8-rounds simulations to 7, = dn with 0.5 < § < 0.7, depending on how
it performed in the validation set. We stress that this is not a limitation of the
distinguisher, since the value of § is fixed during the training phase and remains
fixed for all the calls to the distinguisher.

Detailed results

The experiment with classic distinguishers was run in few days of computation
with a fairly powerful personal laptop (2.9 GHz Quad-Core Intel Core i7 with
16 GB of RAM) and no excessive parallelization and optimization effort. The
neural networks were trained using a small server (2.6 GHz AMD EPYC 7301 16-
Core Processor with 64 GB of RAM) and tested on the above mentioned laptop.
Though, memory usage was significant during the training of the neural networks
when targeting 7 and 8 rounds, and it seems that we need more computational
power to increase the number of rounds (see Section 5.2.5).

Both the bitflip and the trail distinguisher behaved as expected. In particular,
the bitflip distinguisher started failing on both ciphers at round 7, and, in the case
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of RAIDEN, it was already showing some weaknesses at round 6, confirming the
better diffusion properties compared to TEA.

In the case of TEA 4 rounds, we expect about 2! samples to reach accuracy 1
for the trail distinguisher. In practice, with 2!4 samples, we reached an accuracy
of 0.92, and accuracy very close to 1 was reached with 2'¢ samples. Similar results
can be observed for all other rounds, and also for RAIDEN.

Both neural distinguishers performed a little worse than expected in some cases:
for example for the 8-round experiment on TEA we obtained a validation accuracy
of 0.545 when using the TD network; this would imply that, in theory, 2% samples
should be enough to reach an accuracy of 1, while in practice we reached 0.982.
This phenomenon is worse in the Convolutional case, where, with a very similar
validation accuracy, we reached a test accuracy of 0.916 with 28 samples. However,
these results might be biased by the generation of the samples, since the validation
set is relatively small and the NumPy random number generator does not yield a
perfect uniform distribution, so the accuracy on the validation set can be slightly
over or underestimated. In any case, the results (especially in the TD experiment)
do not deviate significantly from what we expected.

RAIDEN
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Bitflip distinguisher Bitflip distinguisher

—— Trail distinguisher —— Trail distinguisher
— TD distinguisher —— TD distinguisher
—— Convolutional distinguisher —— Convolutional distinguisher

Figure 5.4: Distinguisher comparison for TEA (left) and RAIDEN (right), 1000
experiments.

5.2.5 Lowering the training

Although our models being quite small (compared to the common neural network
models, especially in image classification), we asked ourselves if the training phase
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can be lowered without losing too much accuracy. In Figure 5.5 we report the
results of our two neural distinguishers on TEA with 6, 7 and 8 rounds, ranging
the number of training samples from 10? to 10°. The results are pretty surprising:
with 6 rounds 10% samples are enough to have a very good distinguisher, so with
a negligible time in training (a few seconds) we can easily build this distinguisher.
The most interesting case is the 8-rounds one: we can notice that in both network
architectures the number of training samples can be lowered, but we can also see
for the first time a significant difference between the two networks. In fact, we can
see that with 10* samples a decent distinguisher can be build with the TD network,
but not with the Convolutional one. Vice versa with 10° samples the Convolutional
distinguisher seems a lot better than the TD one, that shows a lower accuracy. In
general, Figure 5.5 shows that in the majority of the cases computations can be
reduced significantly (from near 30 minutes for each model with 10° samples on
our laptop to less than a minute with 10* and a couple of minutes with 10°) with
only a small performance loss.
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Figure 5.5: Time Distributed (top) and Convolutional (bottom) distinguishers
applied to TEA 6 (left), 7 (center) and 8 (right) rounds, with different size for the
training set, 1000 experiments.
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Further experiments

In this section we propose two more experiments, one on TEA and one on RAIDEN,
using the TD distinguisher. All the trainings are done as before with 105 samples.

TEA: random key experiment Until now, we focused on distinguishing TEA
with a fixed key and a given fixed input difference. We also wanted to test what
happens if we only fix the input difference and select random keys, as we do on
RAIDEN. Since the differential trail we used before for TEA was generated for a
specific key, one can not use the same input difference of the trail for any other
key. So, we decided to fix an input difference of low hamming weight and low
integer value, i.e. 0x1. We ran the experiment on 6, 7, 8 rounds (see the left panel
of Figure 5.6), observing that for 6 and 7 rounds the distinguisher seems identical
to the previous ones, while for 8 rounds the distinguisher shows an accuracy of
around 0.6. The results on 6 and 8 are somehow expected, since it is intuitive that
this task is in general harder than the previous one (and this explains the lack
of performance on 8 rounds), but also with 6 rounds the cipher has not reached
the full diffusion yet, so it seems reasonable that the network is exploiting this
property. The results on 7-rounds are a bit more unexpected: we think that the
network is learning something that is neither only a diffusion property nor only
a differential one, but probably a combination of them (with possibly some other
properties). We leave a deep analysis of this result for future research.

RAIDEN: ciphertext difference experiment In this experiment we modified
the network to take only a word of size b as input. The idea is to feed the
network with ciphertext differences (rather than the ciphertext pairs generating the
differences) generated from RAIDEN with random key and fixed input difference.
The main point of this experiment is to verify if the network is actually learning
only the differential properties of the cipher or something else. The results are
shown in the right panel of Figure 5.6. We can notice that the performances are
pretty similar to the ones with the two ciphertexts as inputs, so there is no clear
evidence of what is happening. However, since there is no significant improvement,
we suspect that in the previous case the network was learning also some other
properties of the data. As before, we leave further analysis of this experiment for
future works.

Limitations of NN based distinguishers

Even if, at run-time, the NN based distinguishers outperform the two conventional
distinguishers considered in this work, one has to keep in mind that the accuracy
of such distinguishers depends on the intensity of the training. Our experiments

74



Distinguishers

1F / g . e
X s |
. r / ><
& L - > A i
g £ § g v
o / = /
L x e X
05 1« 1 I R | I — o5+ ¢ v
0123456 789101112 0123456 789101112
log, (#samples) log, (#samples)
——TD Distinguisher TEA with random key 6 rounds ——TD distinguisher RAIDEN with difference 6 rounds
——TD Distinguisher TEA with random key 7 rounds ——TD distinguisher RAIDEN with difference 7 rounds
——TD Distinguisher TEA with random key 8 rounds ——TD distinguisher RAIDEN with difference 8 rounds

Figure 5.6: Results on TEA with 6, 7, 8 rounds and random key (left), results
on RAIDEN 6, 7, 8 rounds letting the network learn only the output difference
(right).

used at most 10° samples, with a memory cost of nearly 2.5GB during the training
phase, so we expect the limit for a high level laptop to be somewhere near 107

samples, and this may not be enough to increase the number of rounds, especially
in TEA case.
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Chapter 6

A Cipher-Agnostic Neural
Training Pipeline

This chapter is a joint work with E. Bellini, D. Gerault and A. Hambitzer. The
original publication can be found in [BGHR23].

At AICrypt’23 [GLN23] Gohr et al. address the question of the potential of
neural distinguishers as a generic tool for cryptanalysis, i.e., “..how generic this
approach is and to which extent it can complement the work of a cryptanalyst. In
other words, can we see machine learning as a tool assisting cryptanalysis, similar
to how SAT and MILP solvers, among others, are seen by now?”.

In this chapter, we propose a step forward towards the fully automated route,
through a generic pipeline: suitable input difference ¢ candidates are obtained
through an evolutionary algorithm, and are used to train DBitNet, a fully generic
neural network that requires no tuning nor human input. The neural distinguishers
obtained through our pipeline are competitive with, and sometimes better than,
specialized approaches on the ciphers for which they were designed. With this
work, we hope to provide a basis on which other researchers can improve neural
cryptanalysis, and apply it to more ciphers, without the burden of optimizing the
neural distinguisher itself.

Contributions

1. We propose a fully automated framework to perform neural cryptanalysis of
ciphers; our tool is composed of

(a) a scalable input-difference finding algorithm
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(b) DBitNet, a neural distinguisher architecture agnostic to the structure of
the cipher

(c) an automatic and simple training pipeline, which generically replaces
informed techniques of staged training

2. Using our tool we propose competitive neural distinguishers with the following
advantages: we can replace the elaborate training pipelines for SPECK32
[Goh19b] and SIMON32 [BGL*22], provide distinguishers for several new
primitives (XTEA, LEA, HIGHT, SIMON128, SPECK128) and improve over
the state-of-the-art for PRESENT, KATAN, TEA and GIMLI.

In Table 6.1, we present a comparison summary of the neural distinguishers we
obtained with our proposed strategy with the state of the art. The parameters
n-m-T-E of the settings column respectively denote the number of ciphertexts
per sample n, of input differences m, the feature engineering type (7: CT for
ciphertexts, § for the difference, A for advanced techniques), and the type of
experiment (E: R when the labels correspond to random or real, D when the label
depends on the index of the input difference), as detailed in Section 6.2.

Organization. The remainder of this chapter is organized as follows. We firstly
give a brief introduction to the ciphers used in our experiments Section 6.1. We
discuss extensions of Gohr’s work in Section 6.2, and obstacles to the automatic
application of neural distinguishers to new ciphers in Section 6.3. We present our
solutions to I) the automated finding of a good input difference (Section 6.4), as
well as II) a cipher-agnostic neural training pipeline (Section 6.5). We present
our best distinguishers in Table 6.6, discuss them in Section 6.8 and conclude in
Section 6.9.

6.1 Analyzed ciphers

The following ciphers have been considered, for their variety of structures, block
and key sizes. Several have been studied in the differential-neural setting, providing
a baseline for comparison.

SPECK and SIMON [BTCS"15a] are lightweight block ciphers with block
sizes ranging from 32 to 128 bits and key sizes from 64 to 256. SPECK has a
classical ARX (Addition, Rotation, XOR) design, while SIMON is a Feistel struc-
ture, with the bitwise-and function as the non-linear operation. LEA [HLK™14]
is an ARX-based lightweight block cipher that encrypts 128-bit blocks, with 128
or 256-bit keys. TEA [WN95] is a Feistel-based ARX cipher with a block size of
64-bit and a key size of 128-bit. In TEA round keys are injected through modular
addition, rather than XOR. XTEA [WN97] is TEA’s successor, fixing some of
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its weaknesses, and reverting to key injection by the XOR operation. GIMLI
[BKL*17] is a permutation with a state size of 384 bits arranged in a 3 x 4 matrix
of 32-bit words. From this permutation, the authors proposed a hashing algo-
rithm and an authenticated encryption algorithm, respectively GIMLI-HASH and
GIMLI-CIPHER. Its round function combines an SP-box with a linear layer, and
it is iterated 24 times. GIMLI-HASH is built from it with a sponge construction,
while GIMLI-CIPHER uses the monkeyDuplex one. HIGHT [HSH*06] is a gen-
eralized Feistel-based ARX block cipher, with a 64-bit block size and 128-bit key
size. KATAN [DCDKO09] is a family of hardware-oriented block cipher, working
with 80-bit keys and 32, 48, or 64-bit block sizes. PRESENT [BKL*07] is a
lightweight block cipher with an SPN structure, a block size of 64 bits and two
possible key sizes: 80 and 128 bits.

6.2 Neural Networks: Past, Present and Future

We first introduce Gohr’s neural distinguishers and Gohr’s neural difference search.
We then discuss current areas of research on neural distinguishers, such as explain-
ability (Subsection 6.2.2) and general improvements.

In his seminal paper, published at CRYPTO 2019, Aron Gohr [Goh19b] pro-
poses to use a neural network to distinguish whether pairs of SPECK32/64 ci-
phertexts correspond to the encryption of pairs of messages with a fixed difference
(020040, 020000), labeled as “non-random” (1), or random input differences, la-
beled as “random” (0). The resulting neural distinguisher, a residual neural net-
work preceded by a size 1 1D-convolution, results in respectively 92.9,78.8,61.6
and 51.4% accuracy for 5, 6, 7, and 8 rounds of SPECK32/64, and is used to mount
practical key recovery attacks on 11 rounds. Gohr also proposes a neural difference
search algorithm, based on transfer learning, to search for input differences that
function well with neural distinguishers.

Gohr’s neural distinguisher is a ResNet with four main parts, the first three
of which are visualized in Figure 6.1. At the input, a 64-bit ciphertext pair of
SPECK32/64 is reshaped and permuted into a 16-bit wide tensor with 4 channels.
From a cryptographic perspective, the input reshaping reflects the knowledge of
the particular 16-bit word structure of SPECK32/64. In the second part, a 1-
dimensional convolution (ConvlD(k = 1, f = 32)) is used to slice through the 4
channel bits. The “slicing” is reflected by the kernel size of £ = 1. The output
channel for each filter is produced by scanning the corresponding filter over the
input in one dimension, hence Conv1lD. The learnable parameters are four filter
weights, as well as one bias parameter for each of the f = 32 filters, resulting in
a total of 32 x 4 + 32 = 160 learnable parameters for this ConvlD-layer. The
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Input reshaping Bit slicing convolution Residual blocks
Conv1D with kernel size 1 and 32 filters Two Conv1D with kernel size 3 and 32 filters
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Residual Connection
64 input bits 16 bits 16 bits 16 bits 16 bits 16 bits 16 bits
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Figure 6.1: Visualization of three main parts of Gohr’s neural distinguisher.

output tensor of the bit-slicing convolution is 16 bits wide and 32 channels deep.
Throughout the network, each convolutional layer is followed by conventionally
used BatchNormalization and ReLU nonlinearity. The third part is the residual
blocks. Each residual block consists of two convolutional layers ConvlD(k =
3, f = 32). In Gohr’s publication, the number of residual blocks denotes a depth-
1 neural distinguisher, respectively a depth-10 neural distinguisher!. The fourth
part of the network is a densely connected prediction head with ReLLU activations
and an output layer with a single neuron with sigmoid activation. Throughout
Gohr’s network, each convolutional, and each dense layer is regularized by an
L2 = 10~° parameter. The full Python TensorFlow implementation is available on
GitHub [Goh19a).

Gohr additionally proposes an algorithm to derive good input differences for
neural distinguishers without prior human knowledge. This algorithm is based on
few-shot learning, where the features learned by a network are used as input to
a simpler machine learning algorithm, trained on fewer samples. In practice, a
one-block residual network is trained with a random (but fixed) input difference ¢
on 3 rounds of Speck with 107 ciphertext pairs; the output of the penultimate layer
of this network is then used as input to train a ridge regression classifier on small
numbers of samples for new differences §’. A greedy algorithm with exploration
bias is used to suggest new candidates ¢’. The algorithm is provided in Algorithm
1.

Following the introduction of Gohr’s neural distinguisher, subsequent work has
mostly followed two trends: the exploration of new settings for the neural distin-
guisher experiments (Section 6.5.2) and the explainability of neural distinguishers
(Subsection 6.2.2). On the one hand, some researchers apply neural distinguishers

Tt is not conventional to refer to the number of residual blocks as depth. For example in
the original publication of the first residual network ResNet [HZRS15], ResNet34 consists of 34
weighted layers, including a fully connected dense layer, while it has only 16 residual blocks.
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Algorithm 1 Gohr’s optimizer: given a function F : {0,1}* — R, greedily opti-
mizes it to find an input x that maximizes F. Requires in input the number of
iterations ¢t and an exploration factor a.

x + Random(0,2° — 1)

Upest < F' ()

Tpest <~ T
UV < Ubest
H < hashtable with default 0
140
while i < ¢t do
H(x) <« H(z)+1
r <— Random(0,b — 1)
Tpew ¢ D (1 K1)
Unew < F(Tnew)
if Vpew — @logy(H (Thew)) > v — alogy(H(x)) then
V 4 Upew
T 4 Tnew
if Vpew > Upest then
Ubest < U
Tpest < T
14 1+1
return Ty

to different ciphers, often under new settings (Section 6.5.2). On the other hand,
other research work focused on explaining what made neural distinguishers so ef-
fective: we review these in Subsection 6.2.2. Finally, a line of research focuses on
automatically building good neural distinguishers for new primitives, i.e., the fully
automated route described in the introduction. We discuss these in more detail in
the next section (Section 6.3).

6.2.1 Extensions of Gohr’s Basic Scheme

Neural distinguisher research, following the seminal paper [Gohl19b], has often
focused on modifications of either the neural network architecture or the setting in
which the experiments take place. These modifications to the experimental setting
have been along 4 dimensions: the number of plaintexts per sample n, the number
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of input differences m, the feature engineering type 7', and the experiment setting
E. The neural distinguishers on the primitives we studied are classified in terms
of their setting (n,m, T, E), along with their architecture, in Table 6.1, and we
discuss each setting parameter in the following.

Number of plaintexts per sample: n A natural way to amplify the accuracy
of a neural distinguisher is to group multiple pairs sharing the same label and com-
bine their scores. In this approach, the distinguisher may be trained on single pairs,
and evaluated on multiple pairs sharing the same label, as in [Goh19b] (key recov-
ery part), [BGPT21]. Gohr et al. [GLN23] give a formula to compute multiple-pair
accuracy from a single-pair distinguisher. Sometimes, the samples used by the neu-
ral network themselves are the concatenation of multiple ciphertexts; this is the
case in [BGPT21] (n = 20,100), [CSYY22] (n = 8), [HRCF21] (n = 64,128)
and [LLST23] (n = 16).

Number of input differences: m Baksi et al. [BBCD21] explore a setting
where a set of m input differences are considered. This setting was applied to
various permutations: KNOT, ASCON, CHASKEY and GIMLI, with m = 2 for
GIMLI. Su et al. [SZM20] introduced a model called polytope differential neural
network distinguisher. In this model multiple differences are used, keeping one
plaintext fixed among the differences and changing the other.

Feature engineering type: 7T Feature engineering is often used in machine
learning, to derive advanced features from the raw dataset,e.g., [GBC17]. A nat-
ural feature to use for differential neural cryptanalysis is to replace the ciphertext
pairs (7' = CT) by their XOR difference (7" = ¢). This approach, used by Baksi
et al. [BBCD21], Hou et al. [HRCF21], and Yadav et al. [YK21], simplifies the
training process, at the cost of losing some information.

Advanced types of feature engineering (7' = A) include, e.g., partial decryption
of the ciphertexts. For instance, in the case of SPECK32, the right half of the
previous round state can be computed without the key, by XORing the two halves
and rotating. This type of feature engineering was used in [BGPT21]. A similar
technique permits to retrieve the difference in the previous round for SIMON-like
ciphers; [BGL22] showed that this transformation could significantly improve the
accuracies of neural distinguishers, and [LLS*23] exhibited even better distinguish-
ers on SIMON by exploiting inferred information from two rounds ahead.

Type of distinguishing experiment: £ In the initial setting [Goh19b] (E =

R), the samples are Ex(P))||Ex(P,®x), and the label is # = §. Gohr additionally
defines the real ciphertext experiment (E = Ryy), where the samples are Er(Py) @
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z||Ex(Py®0) @z, and the label is =0, i.e., the distinguisher determines whether
the ciphertext pair has been XORed with a random mask. The success of neural
distinguishers in this experiment shows that information beyond a simple XOR
difference is learned.

In [BBCD21]’s model 1, the samples are formed as (Ex(P) ® Ex(P @ 0;)),i €
[0;m — 1], and the label is i (E = D).

In [BR21], the samples are built using modular addition difference, rather than
XOR, to analyze the ciphers TEA and RAIDEN (E = R™).

6.2.2 Explainability of Neural Distinguishers

Neural distinguishers enabling new attacks, potentially better than manual crypt-
analysis, motivated researchers to try to understand what made these attacks so
powerful, and to learn new properties from these.

In [BGPT21], Benamira et al. studied the properties of pairs that were correctly
classified, and proposed that Gohr’s neural distinguishers learn differential-linear
features. In particular, they observe that the pairs for which the score of the
neural distinguisher follow similar truncated differential up to a certain number of
rounds,are better distinguished a few rounds later. The authors further modified
the neural network to use a Heaviside activation function, which forces its output
to be 0 or 1, to study the Boolean functions learned on SPECK. From these, they
derived advanced features that could be used to replace the initial 1D convolutions
of Gohr’s network.

In [BBP22], Bacuieti et al. further investigate the structure of the neural net-
work itself. In particular, they use the lottery ticket hypothesis to prune Gohr’s
neural network to a minimal working version, on which they use feature visualiza-
tion techniques to obtain a visual representation of the neural network’s behavior.
They additionally show that, for the case of SPECK32, there is no significant
accuracy difference between the depth 1 neural network, and the depth 10 version.

6.3 Obstacles for Applying Neural Distinguish-
ers Automatically

At AICrypt’23 [GLN23|, Gohr, Leander, and Neumann presented an assessment
of differential-neural distinguishers. In this work, the authors state that, to suc-
cessfully complement the work of a cryptanalyst, the approach needs to be generic,
i.e., it must not add significant workload for the cryptographer and reliably yield
useful results.

Here, we identify the obstacles that prevent such automatic application of neural
distinguishers to new primitives. Namely, there are obstacles in the architecture
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and hyperparameter choices of the neural distinguisher itself (Subsection 6.3.1),
as well as obstacles in the identification of good input differences for new ciphers
(Subsection 6.3.2). In Section 6.4 and Section 6.5 we present our solutions to these
obstacles.

6.3.1 Obstacle I: The Hyperparameters of Neural Distin-
guishers

As the field of neural distinguishers is still in its infancy, it is unclear which machine
learning architecture works best. Many peer-reviewed works [BBCD21, LLS"23,
BGL122, GLN23] have used (variations of) Gohr’s network [Goh19b], from MLPs
and CNNs [BBCD21] to significantly larger networks such as SENet [BGL"22], or
combinations of hand-built features with non-neural classifiers in [BGPT21]. In
the following, we first discuss to what extent automated hyperparameter tuning,
as presented at AICrypt’23 [GLN23] can be used to obtain distinguishers for new
primitives (Automated Hyperparameter Tuning). Then we discuss two particu-
larly difficult to automatize steps (The Reshaping of the Input and The Training
Pipelines) in more detail. We finalize our identified obstacles by discussing The
Application to Large-state Ciphers.

Automated Hyperparameter Tuning. In their assessment of neural distin-
guishers the authors of [GLN23] conclude that, while the general idea of differential-
neural cryptanalysis can be applied to a wide variety of ciphers, it is not clear if
Gohr’s network [Goh19b] is suitable for all ciphers. For the automated application
of Gohr’s network to other ciphers [GLN23] suggest automated hyperparameter
tuning as one possibility. Out of twenty-two considered hyperparameters, they
find that eight significantly impact the accuracy of the neural distinguisher for
SPECK32/64 and SIMON32/64. These eight hyperparameters are automatically
tuned to specialize Gohr’s network [Goh19b] for other ciphers such as PRESENT.
The obtained distinguishers using only automated hyperparameter tuning are pre-
sented in [GLN23, Table 5.

In addition to the automated hyperparameter tuning, [GLN23] points out two
potential manual optimizations to improve the distinguisher: On one hand the
cryptographers may find better input differences. On the other hand, they can
choose a more elaborate training procedure such as staged training, see The Train-
ing Pipelines. The obtained distinguishers using additional manual optimization
are presented in [GLN23, Table 1].

Table 6.2 compares the results of our work with the automated hyperparame-
ter tuning and the additional manual optimizations of [GLN23|. Note, that our
distinguishers (right) are most comparable to the automated hyperparameter tun-
ing (left), in the sense that they do not require any manual intervention from the
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cryptographer. However, our distinguishers achieve with a simple, fully automated
training procedure comparable accuracies to the ones obtained by [GLN23, Table
1] with additional manual optimization (center).

Our interpretation is that while optimizing Gohr’s network for a new primitive
using automated hyperparameter tuning is possible, our work achieves a higher
degree of generalization and applicability to new primitives.

The Reshaping of the Input. Gohr’s neural distinguisher’s structure follows
the division of SPECK into 2 words. However, when applying such a reshaping to
different ciphers, the question arises of what data shape to adapt. For instance,
for the AES cipher, a decomposition into 2 - 16 8-bit words may be beaten by
a 2 -4 32-bit columns, due to the column-oriented MixColumns operation of the
cipher. Furthermore, the chosen shape has a direct influence on the complexity,
and therefore learning power, of the network. This becomes clear when looking
at Table 6.5, where ciphers with similar sizes, such as HIGHT, PRESENT, and
SPECKG64, result in neural classifiers with widely different complexities depending
on their number of words (2 for SPECK64, 8 for HIGHT, 16 for PRESENT). For
a higher number of words the Conv1D operation slices through a higher number
of bits, compare Figure 6.1 (center). This in turn means less necessary kernel
shifts, and accordingly less multiply-accumulate operations, i.e., FLOPs. While it
is possible to try out many different input reshapings (manually or automated), we
remove this potential obstacle by using a different rationale for the neural network
design as presented in Subsection 6.5.2.

The Training Pipelines. When training a neural distinguisher, the highest
achievable round may fail to be trained using straightforward techniques. For in-
stance, to obtain an 8-round distinguisher for SPECK32, Gohr [Goh19b] uses a
staged training scheme, where the best 5-round distinguisher is retrained on the
input difference (028000,02840a), (the most likely to appear after 3 rounds). This
distinguisher is then retrained for 8 rounds, with 100 times more data than the
other distinguishers, to finally reach 0.514 validation accuracy. Bao et al. [ BGL122],
and [GLN23| use similar staged training procedures for their 10-round SIMON32
distinguisher. These elaborated training schemes are not easily automated, as they
require looking at the differential characteristics of the studied cipher. We tackle
this obstacle using our simple training pipeline presented in Subsection 6.5.1.

The Application to Large-state Ciphers. Gohr’s neural network uses 32 fil-
ters per convolution layer, and 64 neurons for the first dense layer. These param-
eters match the size of the difference and of the input, respectively, for SPECK32.
In order to generalize neural distinguishers to larger primitives, a logical first step
is to upscale these parameters. Interestingly, [GLN23| does either not attempt to,
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or was not successful in the application of Gohr’s original network to a larger state
version of SPECK or SIMON. We manually —and unsuccessfully - attempted
the adaption of Gohr’s network to SPECK128 and instead chose a more generic
approach, resulting in the DBitNet network, presented in Subsection 6.5.2.

6.3.2 Obstacle 1II: Finding a Good Input Difference for a
New Cipher

It has been shown in previous work [BGPT21] that the input difference to the
best differential characteristic is, at least for SPECK, not a good choice for neural
distinguishers.

In [Goh19b], a neural difference search algorithm is proposed, which success-
fully finds the input difference used in the SPECK32 distinguishers. However,
adapting it to different ciphers is non-trivial®>. We experimentally observe that
Gohr’s optimizer fails to find the optimal input difference for SPECK128, even
after modifying it to encourage low Hamming weight differences. Furthermore,
the evaluation speed for each difference prevents scaling for an efficient evaluation
of a large number of differences. These observations motivate us to propose a
more cryptographically inspired optimizer, rather than attempting to improve on
Gohr’s; this optimizer is presented in Subsection 6.4.2.

6.4 Solution Part I: Automated Finding of Good
Input Differences

In the previous section, we identified generalization issues with the neural differ-
ence search algorithm. In this section, we propose a different, non-neural approach.

2We focused on SPECK128, with input difference (0x80,0x0), which propagates to
(06100 ---0,06100---0) with probability 1 after 1 round. We varied the number of filters (32,
64 and 128) and neurons (64, 128, 256) of Gohr’s RESNet, and obtained around 65% accuracy
for 9 rounds with all the settings we tried. We conclude that scaling the parameters seems to
have only had a limited impact on the final accuracy. At this point, we could either attempt to
fine-tune the structure of the network further, or go with a more generic approach;

3The starting round (3), number of iterations (2000), alpha parameter, the preprocessor’s
input reshaping, and learning rate schedule may need to be tuned. In order to minimize such
tuning parameters, we focus on SPECK128, simply adapting the word size in Gohr’s code. We
studied 3 cases: base, low Hamming weight preprocessor, and low Hamming weight preproces-
sor and optimizer starting-difference, each for 10 runs per starting round (from 1 to 7). The
first two cases yielded random input differences, but the third case returned 3 input differences
((022200000, 02:2000), (02800000000, 0280000000), (021000000000, 022100000000)) that resulted in
10-rounds distinguishers when retrained from scratch.
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Our solution consists of a bias score for fast ranking of input differences (Subsec-
tion 6.4.1), as well as an evolutionary optimizer (Subsection 6.4.2) which uses this
new ranking scheme. The obtained results are presented in Subsection 6.4.3.

6.4.1 Bias Score for Ranking Input Differences

The input difference to the best n-round trail is not the one that gives the best
results for neural distinguishers. For instance, for 5 rounds of SPECK, the input
difference leading to the best trail is (0x2400, 0x0020), which leads to a trail with
probability 27%; Gohr’s network, trained with this input difference, reaches 61%
accuracy. On the other hand, the input difference (0x0040, 0x0000) used in Gohr’s
paper does not have better 5 rounds trails than 2713, and yet, the neural network
obtains 92% accuracy when trained with it. This disparity between the probability
of the best trail and neural network accuracy becomes higher as the number of
rounds increase: for 6 rounds, the neural network’s accuracy does not go above
51% for the optimal input difference ((0x0211, 0xa040), 27'3 trail), but Gohr’s
input difference (272 for the best trail) reaches 78% accuracy.

We adopt the hypothesis proposed by [BGPT21] that this disparity is related to
truncated differentials at rounds 3 and 4. In addition, we observe that the input
difference (0x0040, 0x0000) fixes the 2 bits of the left part to 0 after 3 rounds.
Furthermore, high biases persist in higher rounds; for instance, bit 14 at round 5,
is set to 1 with probability 88%. We conjecture that Benamira et al’s conclusions
generalize to other ciphers, and that high biases in individual bits are a good
approximation for the presence of high probability truncated differentials, which
are otherwise difficult to find in a generic way. If this conjecture is correct, then
highly biased difference bits at round r should lead to good neural distinguishers
at round 7 + 0 through differential-linear properties. Therefore, we assume a good
input difference for neural distinguisher is one for which high biases exist in the
difference bits of the higher rounds. This assumption is verified in our experiments,
as the neural distinguishers we find usually cover several rounds past the highest
round where a bias was detected.

We focus on the problem of finding the optimal input difference (for neural
distinguishers) cryptographically, under the assumption that this input difference
maximizes the bias of intermediate difference bits. More formally, we assume that

a good input difference for neural distinguishers is one that maximizes a bias score,
defined as:

Definition 6.4.1 (Exact bias score) Let E: Fy x Fs — F% be a block cipher,
and 0 € FY be an input difference. The exact bias score for §, b(d) is the sum of
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the biases of each bit position j in the output difference, i.e.,
Y (Ex(X)® Ex(X ®9));

XeFy, KeFk—1

' ‘ 0.5 — on+k

The exact bias score cannot be computed for practical ciphers, as it requires
enumerating all keys and plaintexts. On the other hand, we can use an approxi-
mation, obtained from a limited number of samples t:

Definition 6.4.2 (Bias score) Let E: Fy x F§ — F4 be a block cipher, and § €
F2 be an input difference. The bias score for &, b'(9) is the sum of the biases of
each bit position j in the output difference, computed for t samples i.e.,

t—1

n-1 > (Br,(Xi) © B, (X; ©90));
> 05— = ;
§=0

b(8) =

S|

Conjecture 6.4.1 Input differences o that reach the most rounds with a neural
distinguisher have a high bias score b(d). We further assume that b'(d) is a good
estimation of b(9).

To test our conjecture, we compute l;t(é) for all 232 possible SPECK32 input
differences, for a small t; § = (020040, 020000) does indeed maximize b*(8) for 5
rounds.

As a further test, we compute a bias score b2°9°(5) for low Hamming weight (1
and 2) input differences on SPECK128, and obtain (0280, 028000000000000000)
as the optimal on 7, 8, 9 rounds. This input difference obtains vastly superior
scores through the neural distinguisher, compared to the ones found by the neural
difference search: 0.9861, 0.8252, and 0.5898 for 8, 9 and 10 rounds respectively.

These results convinced us to perform a search based not on the results of a
linear classifier, but on the significantly faster to compute bias score, which allows
us to explore more candidate input differences. To exploit the speed gain of our
approach, we propose a new evolutionary-based search algorithm.

6.4.2 Evolutionary Optimizer

Algorithm Our algorithm starts from an initial population of random input
differences, and improves the population iteratively by deriving new candidates
from known ones (using a mutation probability M), ranking them through their
bias score l;t(-), and allowing the best ones to move to the next generation. The
algorithm stops if no input difference scores higher than a threshold 7j. In practice,
the initial population contains 1024 differences, the 32 best ones are kept at each
generation, and we set M = 1, t = 10*, and T} = 0.01.
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Algorithm 2 Evolutionary optimizer
starting_population < [RandomInt(0,2" — 1) for 1024 times]

Sort starting_population by b'(-) (descending order)
current__population < first 32 elements of starting_population
for iterations <— 0 to 50 do
candidates < [ |
for i + 0 to 32 do
for j<— 141 to 32 do
if RandomFloat(0,1) < M then
m <+ 1
else
m <0

Add current_population; @ current_population,; & (m < RandomInt(0,n —
1)) to candidates

Sort candidates by b'(-) (descending order)

current__population < first 32 elements of candidates

return candidates

Accounting for the Starting Round The round at which a difference is eval-
uated is an important parameter. As the most relevant round is not known in
advance, we run our optimizer iteratively from round 1 to round R + 1, where
no bias score above the threshold T; is returned, obtaining R lists of 32 differ-
ences A, for r € [1, R]. Since the optimizer is heuristic, some good differences
may have been identified in a subset of the rounds only; we therefore rerun the
scoring procedure for the union of these lists, to obtain, for each difference ¢;, R
bias scores b;,. The final score to return is subject to two main concerns: (1) the
score in the highest round not to be a good indicator of the quality of the neural
distinguisher, and (2) a simple sum of the scores at each round may favor less
interesting differences; for instance, in the related-key case for SPECK with 4 key
words, many differentials with probability 1 exist for the first 3 rounds, not all
of which are interesting for further rounds. To address these concerns, we use a
weighted score S5, = f: (I;i,r), providing higher weight to later rounds while con-

r=1

sidering lower round scores. While certainly not optimal, this choice yields good
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results in practice.

6.4.3 Optimizer Results

Our optimizer returned a large number of solutions (Table 6.3). While most of
these solutions are good, identifying the best one is difficult, as fully training a neu-
ral distinguisher for each would be prohibitively time-consuming. In some cases,
such as SPECK128, one input difference is clearly dominating the others, and
proves to result in the best neural distinguisher. On the other hand, in the case
of SIMONS32, 64, and 128, we respectively have 16, 32, and 64 input differences
that obtain virtually identical scores (within 1% of each other), which is consistent
with the observation of [KLT15] on the rotational equivalence of differentials. We
therefore chose to use distance to the highest score as a metric to choose which
differences to investigate: we define an input difference as e-close to another if
their score is within € of each other. With € = 0.1, i.e., looking only at input dif-
ferences that obtained scores within 10% of the optimal, 185 differences need to be
considered in total; an average of 15 differences per cipher need to be investigated
using the neural distinguisher, with at least 4 rounds of training per difference.

6.4.4 Optimizer Discussion

The purpose of our tool is to rapidly evaluate a large number of relevant input
differences. We do not claim its optimality, as other options could be chosen, both
for the optimizer itself and the scoring function. In particular, the bound at which
an input difference is considered non-random is not tight, so input differences
resulting in small biases could be missed; this is not an issue here, as we want to
capture large biases only.

We experimentally verified that, for random data, the bias score’s average (over
10* samples per experiment, and 1000 experiments) is approximately 0.004. In-
creasing (respectively, decreasing) the number of samples moves the average closer
to (respectively, further from) zero. The number of bits per sample only changes
the standard deviation, from 0.00052 (32 bits) to 0.00015 (384 bits). The choice
of 0.01 as a threshold value is far enough from the tail of this distribution that
it was never observed for non-relevant input differences. This choice is empirical,
and gives good results in practice. Users wanting to investigate smaller biases may
do so by setting a tighter threshold. Another interesting possibility is implement-
ing a rigorous hypothesis testing procedure, replacing the bias score with a test
statistic (or even multiple ones) of known distribution. This could be done, for
example, with the “Frequency Test within a Block” of the NIST Statistical Test
Suite [BRST10].

While we did not experiment much around different values for the parameters,
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we find that reduced parameters, for instance ¢t = 103, T, = 0.05, and 10 gen-
erations, provide faster results despite being slightly less robust. Conversely, one
might want to increase the minimum detectable bias by increasing t to 10° or more;
however, we find that the performance of the optimizer degrades when ¢ becomes
too large, with no significant improvement in return.

6.5 Solution Part II: A Cipher-Agnostic Neural
Training Pipeline

Based on the identified obstacles discussed in Section 6.3, we aim to overcome
them by employing a streamlined training pipeline (Subsection 6.5.1) and creating
a versatile neural network referred to as DBitNet (Subsection 6.5.2). We evaluate
DBitNet’s computational and memory requirements and compare them to the
original ResNet proposed by Gohr and SENet.

6.5.1 Our Simple Training Pipeline

We propose a simplified pipeline to train a neural distinguisher for rounds R, to
Ry. The same network of R, is retrained for round R; + 1 until round Ry is
reached. In SPECK32’s case, one would train network N5 for 5 rounds, retrain Nj
on the 6-round dataset to obtain Ng, retrain Ng on 7 rounds to obtain N7, and
finally retrain N7 on 8 rounds to obtain Ng. This technique is referred to as our
simple training pipeline in this paper.

The Learning Rate Schedule. For the training of Gohr’s neural distinguisher
in [Goh19b] the ADAM optimizer is used with a cyclic learning rate that varies
over 10 epochs between limits of 0.002 and 0.0001. In [GLN23] these limits of
the learning rate are optimized for each cipher in the automated hyperparameter
tuning. In our simple pipeline for DBitNet, we will avoid a learning rate schedule,
as well as any manual variation of the standard optimizer settings as follows:
ADAM is known as one of the most advanced optimizers, however, it has been
observed to fail to converge to an optimal solution [RKK19]. Such convergence
failure may make it necessary to find an optimal learning rate schedule manually.
For our purposes of a generic application to a range of new target ciphers, such a
manual choice should be avoided. As an alternative to either the manual mitigation
of the convergence issue or an automated hyperparameter tuning of the learning
rate, Reddi et al. introduce the AMSGRAD algorithm in “On the Convergence of
Adam and Beyond” [RKK19] at ICLR 2018.

As a proof of concept, we ran this training pipeline with AMSGrad on SPECK32,
using Gohr’s neural network and input difference. With as little as 10 epochs per

90



A Cipher-Agnostic Neural Training Pipeline

round, statistically significant (over 50.5% validation accuracy on 10° samples)
8 rounds distinguishers were obtained 10 times out of 10, whereas Gohr’s initial
experiments showed that no 8 rounds distinguisher could be learned without a
complex training scheme. Removing either the pipeline or AMSGrad resulted in
8 rounds not being reached. In the remainder of our manuscript, we have used
Gohr’s original learning rate schedule to avoid sub-optimal results by changes on
our side. We provide a more detailed discussion of the fairness of our comparison
DBitNet vs Gohr’s ResNet in Section 6.7.

A Simple Polishing Step. We can generally improve the accuracy of our distin-
guishers using our simple polishing pipeline, inspired by [Goh19b], where the final
network is retrained 3 times, for 1 epoch, on 10° new training samples. At a batch
size of 10,000, we use the ADAM optimizer, decreasing the (constant) learning rate
at each iteration, from 10™* to 107° to 1075. The three learning rates, smaller
than the ADAM optimizer’s default value of 1073, ensure the final convergence
to an optimal solution for features that are not present in many batches. This
straightforward polishing step has only been applied in two of the reported accu-
racies in this manuscript (for SIMON32 and SPECK32) due to the time-consuming
nature of the process when dealing with large sample numbers. The basic pipeline
above is sufficient to obtain competitive distinguishers that reach the same round
as the state-of-the-art. The polishing step was only added to show that also some
of the most elaborate and successful training pipelines can be replaced with our
automated training pipeline. Five fresh datasets (with 10° samples in each) are
generated for the final accuracy evaluation. The expected and observed standard
deviation is 0.0005 as explained in the following.

The Random Guess Limit. The predictions of neural distinguishers can be
modeled as binomial experiments with n trials, and two equiprobable outcomes,
random or not random; in our case, n = 107 for training, and 10° for validation.
The expected mean and standard deviation of a distinguisher making random
prediction are p = 0.5 - n,0 = \/m, or, as a percentage, oy = 1/(2y/n). We
consider the validation successful if the validation accuracy (percentage of correct
guesses) exceeds ten standard deviations, i.e., Auot random > 50.5%.

6.5.2 Description of our Neural Network (DBitNet)

Gohr’s neural distinguisher is immensely successful as a distinguisher for SPECK32.
However, we identified a range of hyperparameters that need tuning for applica-
tion to new ciphers in Section 6.3, the most important among them again being
the input reshaping.
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The input reshaping serves to investigate dependencies of far-apart as well as
neighboring bits in the 64-bit input: For example, the bit-slicing filter may learn
functions between bits (1, 17, 33, 49) while the following & = 3 filter may learn
functions between neighboring bits (1,2,3) (compare Figure 6.1 (center)). In this
way, near and long-range dependencies among the bits can be learned. Therefore,
the input reshaping can potentially be avoided, given another, more generic way
to investigate near, as well as long-range dependencies.

Rationale for DBitNet. One way to tackle the problem of investigating near
as well as long-range dependencies is so-called dilated convolutions, as presented in
“Multi-Scale Context Aggregation by Dilated Convolutions” by Yu and Koltun [YK15].
The “Multi-Scale Context” refers to two-dimensional image data, however, a promi-
nent example that uses dilated convolutions and deals with long-, as well as short-

range dependencies on one-dimensional temporal data is WaveNet of Google Deep-
Mind [ODZ"16].

a  Dilated convolutions b Idea for DBitNet C DBitNet

ilati dati long-range =2 k=2 ,
Dilation rate 1  Dilation rate 3 g-rang d=8 d=4 long-range

T I

k=2
d

short-range :

=

k=2
d=1

Figure 6.2: a) The concept of dilated convolutions, b) The idea for DBitNet c)
The actual design of DBitNet.

A dilated convolution uses a dilation rate above one, Figure 6.2a). Therefore,
instead of learning a filter function between bits 1 and 2, a convolutional layer
with dilation rate 3 can learn a filter function between bits 1 and 4. If we apply
such a dilated convolutional layer with dilation d = 8 and kernel size k£ = 2 to a
16-bit input, we could find a representation with 8 neurons width which contains
the information on the long-range dependencies between the bits of the first and
the second half of the input, Figure 6.2b). The next layer is a d = 1 layer to
investigate the dependencies between neighboring bits. To investigate again the
long-range dependencies, we next choose d = 4 and so on.

As shown in Figure 6.2b) the neuronal width is shrinking with each dilated
convolution by a factor of two. This shrinking of the neuronal width dimensionality
is also encountered in popular image detection networks like ResNet [HZRS15]. As
“compensation” the number of channels is increased: In ResNet34 for example the
image size is halved from 224 pixels to 112, to 56, to 28 pixels, and so on while
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the number of channels increases from the 3 red-green-blue channels to 64, and
128. We follow a similar tactic and increase the number of channels with each
dilational convolution. We start with 32 filters, identical to Gohr, in the first
convolutional layer. Whenever the neuronal width is halved, we add 16 filters,
resulting in 32 + ¢ x 16 filters in the ith dilated convolution.

Neural Network Settings for Different Ciphers. When working on a differ-
ent cipher many model and training parameters and hyperparameters might need
to be adapted. At the minimum, and common to Gohr’s neural distinguisher and
DBitNet, the neural network input size has to be adapted when changing to a ci-
pher of different sizes. Based on this input size, for DBitNet, the dilation rates are
automatically determined by dividing the input size by two and subtracting one,
until a minimum value of 3 is reached. Gohr’s network requires manual input for
the number of words (Section 6.3.1). Gohr uses a prediction head with two dense
layers (64, 64 neurons in each layer). For DBitNet we have considered scaling the
prediction head with the input size. Finally, however, we have instead chosen a
slightly more powerful prediction head with three dense layers (256, 256, 64 neu-
rons in each layer), which is the same, regardless of the input size. For Gohr’s
neural distinguisher also the number of filters, as well as the cyclic learning rate,
might have to be adapted. However, in our experiments, we will use the same num-
ber of filters and cyclic learning rate as in Gohr’s original experiments [Goh19b].
For DBitNet we restrict ourselves to using the ADAM optimizer in its standard
settings, together with the before-mentioned AMSGRAD algorithm. The settings
for both neural networks are summarized in Table 6.4. We provide a more de-
tailed discussion of the fairness of our comparison DBitNet vs Gohr’s ResNet in
Section 6.7.

A Comparison of FLOPs and Parameter Counts. The number of multiply-
add operations, or FLOPs, is often used as a proxy for the latency and memory
usage of neural network models [BOFG20]. We use the TensorFlow Keras mod-
ule keras-flops to evaluate the number of FLOPs for each model. TensorFlow
provides a native routine model.count_params() for the parameter count. The
results are shown in Table 6.5. For the 32-bit ciphers, the execution time of DBit-
Net is in between the one for Gohr-depthl (10s) and Gohr-depth10 (50s, not shown
in the table). The same holds for the number of FLOPs. The FLOPs and time
per epoch for DBitNet scale linearly with the input size of the cipher. Since the
FLOPs represent the operations needed to investigate a cipher, an increase of the
FLOPs with the size of the cipher is reasonable. To achieve such an increase in
the FLOPs, the number of filters of Gohr’s network would have to be manually
adapted, depending on the input size, as well as the chosen number of blocks and
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word size. We have also analyzed the neural distinguisher SENet A/ D?,I%y[ ONsr 1yro-

vided on the GitHub repository of [BGL*22] for SIMON32 and find that it has
13.5M FLOPs, and 449.46k parameters.

6.6 Results: Our Best Distinguishers

For each target cipher in Table 6.6 we start with the set of differences found by
the evolutionary optimizer presented in Subsection 6.4.3. We train a Gohr depth-1
neural network and DBitNet to distinguish between ciphertext pairs of the chosen
plaintext difference, and those of random plaintext pairs using the training pipeline
as presented in Subsection 6.5.1. Table 6.6 summarizes the highest round achieved
(best round), as well as the accuracy (best acc.) of the best distinguisher (best NN)
in this round, once for our simple training pipeline with only 10 epochs in each
round, and once for our simple training pipeline with 40 epochs in each round.
The green highlight indicates an improvement of the 40 epochs over the 10 epochs
training pipeline.

SIMON and SPECK For SPECK32, we retrieve the optimal input difference
used in Gohr’s paper. DBitNet, trained using our simple training pipeline, reaches
8 rounds with over 51% accuracy, which was deemed to only be possible with an
advanced staged approach [GLN23|. The accuracy is improved to match [Goh19b]
with our simple polishing pipeline. For SPECKG64, we reach 8 rounds with accuracy
0.5366, only 10% less than [HRCF21], which uses 128 pairs. For SPECK128, we
obtain the first 10-round neural distinguisher, with accuracy 0.5916. Interestingly,
the best differential characteristic for SPECK128 given in [SHY16a] contains one
of the differences returned by our optimizer at round 15: (0280,0). When training
DBitNet for this input difference, we get respective accuracies of 0.9057, 0.6507,
and 0.5258 for 8, 9 and 10 rounds, therefore obtaining candidate theoretical distin-
guishers for 23, 24 and 25 rounds respectively. However, the signal-to-noise ratio
of these distinguishers does not permit direct application: the probability for the
front 15 rounds is 271°% and the evaluation of C - 2719 produces too many false
positives for C' true positives to be distinguishable.

For a key recovery attack similar to [BGL*22|, one can prepend the input
difference (02820200, 0x1202), which propagates to our best neural distinguisher
given by (0280, 028000000000000000) after 2 rounds with probability 275. An
additional round can be added at the start, yielding a 13 rounds distinguisher.

For SIMON32, we obtain similar results to [BGL"22], albeit with a significantly
simpler training pipeline, and less computations (Section 6.5.2). For SIMONG64, we
reach one more round than [HRCF21], even though [HRCF21] uses 64 pairs. On
the other hand, Lu [LLS23] reaches one more round for SIMON32 and SIMONG64.
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It is important to note that their training pipeline is fully dedicated to SIMON,
with advanced feature engineering and 8 pairs per sample, therefore showing that a
specialized method for a given cipher does outperform the generic approach in some
cases. Lu proposes a few input differences for 12 rounds in table 3 of [LLS™23]:
these differences appear in our results, but were not investigated. For instance,
(0210004) ranks 21st in the returned solutions. For SIMON128, we find a new 20
rounds distinguisher, with an accuracy of 0.5057.

GIMLI For the GIMLI permutation, our 11-round accuracy has an accuracy of
0.527, to be compared to the 8 rounds neural distinguisher of [BBCD21]. This
result highlights the need for an automatic tool to find good input differences, as
we obtained similar results to [BBCD21] when using the same input differences
as them. In comparison, the design document of GIMLI [BKL*17], mentions at
best a differential characteristic with probability 271% on 12 rounds, and a 12-
round linear distinguisher with complexity 271 and 15-round differential-linear
distinguisher with complexity 27874 are presented in [FGLNP*20]. The full-round
symmetry distinguishers [FGLNP*20] remain stronger.

HIGHT We obtain the first published neural distinguisher for HIGHT, covering
10 rounds with accuracy 0.751. In addition, we ran our pipeline in the related-key
setting as a proof of concept, and obtained a 14 rounds related-key distinguisher
with accuracy 0.562. In comparison, the paper presenting HIGHT [HSH*06] men-
tions a probability 1 10 rounds property: if the input difference has a given form,
then the leftmost byte of the output difference is non-zero. This property would
require C' - 256 (with C' a small constant) to distinguish. On the other hand, our
neural distinguisher requires a single pair.

PRESENT For PRESENT, we find a 9-round distinguisher with an accuracy
of 0.5092, which favorably compares to the 7-round distinguishers of [GLN23]
and [CSYY22], despite [CSYY22] using 8 pairs. In comparison, the best differential
characteristic for PRESENT reduced to 9 rounds has probability 273¢ [Wan07].

KATAN For KATAN, our distinguisher reaches statistically significant accura-
cies up to 69 rounds, compared with [GLN23|’s 66 rounds, even though [GLN23]’s
distinguishers use advanced feature engineering (inversion of the last 4 rounds). In
contrast, [LCLH22] reaches 51 rounds in the standard setting, and 59 when using
64 pairs. The same paper proposes distinguishers up to 85 rounds in the single key
model, using additional conditions on the plaintexts, which is out of the scope of
our study. We note that we obtain a 71-round distinguisher with 0.5034 £ 0.0002
accuracy using our simple polishing pipeline.
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TEA and XTEA For both TEA and XTEA, we find distinguishers for 5 cycles
(10 rounds), respectively with accuracies 0.5634 and 0.5984; interestingly, they
share the same input difference. For TEA, we reach 2 more rounds than [BR21].

LEA For LEA, we propose the first neural distinguisher, reaching 11 rounds with
accuracy 0.5109. In comparison, [HLK™14] presents a differential characteristic
with probability 278 for 11 rounds, and 27128 for 12 rounds.

A Sanity Check: The Case of Related-Key TEA The block cipher TEA
is known to have equivalent keys. From an initial key kg, k1, k2, k3, the core of the
round function, updating the two halves of the state vy and vy, is:

vo = vo B ((v; << 4)B ko) ® (vy B sum) @ ((vy >>5)Bky) (6.1)
vy = v B ((vg << 4) B ka) & (vo B sum) & ((vg >> 5) B k3)

Differences in the most significant bits of ky and k1, and of ks and k3, cancel
out, resulting in 3 equivalent keys for each possible key. In the related key mode,
our optimizer finds the property that differences in the most significant bits of 2
words of the key result in a maximal bias score (as the ciphertexts are equal). The
corresponding input differences are found by the genetic optimizer within the first
few generations.

The ability of our framework to detect such properties reassures us in its ability
to support the block cipher design process, by identifying trivial weaknesses easily.

6.7 Discussion of the Comparison of DBitNet
and Gohr’s Neural Distinguisher

It is not obvious how to fairly compare DBitNet and Gohr’s ResNet. Should we
compare our DBitNet to the depth-1 version or to the depth-10 version? Should
we use the original cyclic learning rate schedule, which was optimized for Gohr’s
ResNet, but which might be particular to SPECK32, or should we instead use the
AMSGrad learning rate as for DBitNet? Should we use a larger prediction head,
such as in DBitNet (see Neural Network Settings for Different Ciphers), or leave
the prediction head in its original state? Here, note that adding more parameters
can actually decrease the learning performance of a neural network, since it takes
more training epochs to fit all of them. Should we adapt the number of filters
for Gohr’s Neural Distinguisher? Again, we should consider that an increase in
parameters can lead to a decreased learning performance. How many settings for
the number of blocks, and the word size should we try out?
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Many of these questions tie into the discussion provided in Obstacle I: The
Hyperparameters of Neural Distinguishers which motivated us to create DBitNet
in the first place.

Overall, we think that our presented comparison of Gohr’s ResNet with DBitNet
is fair for two reasons:

1. On the one hand, our main table Table 6.1 compares our generic DBitNet
with the highly optimized versions of Gohr’s ResNet for each cipher.

2. On the other hand, the following preliminary experiments motivate the ver-
sion of Gohr’s network we used for our comparisons presented in Table 6.6.

In Table 6.10 we present preliminary experiments on SIMON32 with various
versions of Gohr’s ResNet and our DBitNet. AMSGrad seems an overall better
choice than the cyclic learning rate schedule. The effect is, however, not large
enough to increase the accuracies to similar values as obtained by DBitNet. There
is no benefit to using a more powerful prediction head for Gohr’s ResNet, actually,
it decreases the obtained accuracy. In conclusion, we do not find an improvement
large enough to justify the manipulation of Gohr’s ResNet (by using AMSGrad or
a different prediction head).

6.8 Discussion

Scope of Our Work In this chapter, we focus on automatically finding basic
neural distinguishers. If we consider an analogy with differential cryptanalysis,
cryptographers traditionally begin with an automatic tool to obtain good differen-
tial characteristics for as many rounds as possible. From these characteristics, the
cryptographer may then attempt to derive the probability of the best differentials,
or combine them into more advanced attacks such as boomerang attacks. We
identify this second step to specializing through feature engineering, prepended
rounds, neutral bits, etc. Our focus is on the equivalent of the first step: building
blocks that can further be refined into an attack.

In this respect, the neural distinguishers we propose are competitive with related
work using a comparable setting (2 — 1 — x—R). We even sometimes improve
on specialized approaches with features engineering, e.g., [BGLT22|, or multiple
pairs [CSY'Y22], using a fully automatic and generic pipeline.

Extending the Scope For the sake of completeness, we give the intuition on
how to extend our pipeline to include key recovery considerations.

In order to include prepended rounds, the optimizer can be modified to addi-
tionally decrypt each pair (P, P;) used to compute the bias score of a difference
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0, for ¢ rounds; the number of occurrences of the most frequent decryption differ-
ences gives an approximation of the probability of the best prepended differential.
This estimation, along with ¢ and the bias score, can be combined into a compos-
ite score to obtain a longer differential-ML distinguisher. Preliminary experiments
show that this approach retrieves (022110a04), used to prepend 2 rounds in Gohr’s
key recovery [Goh19b]. Alternatively, one may use the fact that our optimizer re-
turns a parametrizable number of input differences, and, for each of these, compute
how many rounds can be prepended (e.g., through MILP) and how many rounds a
neural distinguisher can cover (by training it). Further improvements, e.g., the use
of neutral bits, can be included, for instance by running the generalized neutral
bit search algorithm presented in [BGL"22] to each returned difference. Advanced
feature engineering can also readily be applied, as DBitNet is generic in its input
size and format.

Extending Basic Neural Distinguishers: Comparability Specializing a
neural distinguisher, through prepending probabilistic rounds, using feature en-
gineering, multiple pairs, or neutral bit-based analysis improves the key recovery
abilities, at the cost of comparability. It may occur that a different neural distin-
guisher could be plugged into the attack, and yield better results, but it is chal-
lenging to say without the authors giving the baseline results in the 2 -1 —% — R
setting, to promote comparability.

For instance, [YK21] exhibits a 22 — 1 — § — R 9-round distinguisher for
SPECK32, using a 3-rounds neural distinguisher and 6 probabilistic prepended
rounds, and claims to improve over [Gohl9b]. In contrast, [Gohl19b] uses a 9-
rounds distinguisher, built from a 7-rounds neural distinguisher and 2 probabilistic
rounds, to recover the full key of 11-rounds SPECK with 2! ciphertexts, which
is significantly better.

Intended Use of Our Tool The uses of our tools are twofold. On the one hand,
cipher designers can use it to obtain bounds for a given set of parameters rapidly.
On the other hand, neural cryptanalysis researchers can use our tool to obtain a
baseline to compare to any new cipher they wish to study, without having to fine-
tune any parameters, due to its plug-an-play approach. Furthermore, our tool can
be used out-of-the-box to perform neural analysis on any cipher, even though we
limited ourselves to a few, and did not include related-key results besides HIGHT
and TEA (as proofs-of-concept), due to the mere amount of GPU-extensive ex-
periments to run, and we believe it can match or improve upon other published
results without further tuning.

Estimated Runtime The pipeline for a new cipher is composed of the optimizer
(fast) and the neural network training (slow). The total runtime, between a few
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hours and a few days, depends on the number of differences (Table 6.3), the number
of rounds to study, and the size of the cipher. The most time-consuming part is
the neural network training, the time for which can be estimated from Table 6.5.
We note that the reduced parameters set used in the supplementary material code
yields decent result significantly faster; further speedup can be achieved through
pre-filtering, by training all the differences for a small number of epochs (e.g., 5)
to select which ones to investigate further.

Comparison with Brute Force Search Here, we compare our optimizer with
a brute-force search over low Hamming Weight (HW) differences, ranked by their
bias score. For a cipher with block size n, and b—bit input differences, this brute-
force search would explore 22:1 (Z) differences, which is 43744 for PRESENT, and
almost 10M for GIMLI, with having HW 3 optimals. Furthermore, enumerating
all input differences up to HW 3 says nothing about higher HW differences; for
instance, in the case of LEA, we find a HW 5 optimal difference. In comparison,
our optimizer explores at most 24800 differences (Y7L, = 496 per generation,
over 50 generations). We expect this scalability advantage to become even more
important as the search space grows, e.g., for related-key.

6.9 Wrap up

We tackled the problem of generalizing neural distinguishers with a framework
that can be applied out of the box to any cipher. This framework relies on a
generic neural network structure powered by dilated convolutional layers, as well
as generic choices of parameters such as the learning rate. In addition, we resolved
the challenge of automatically choosing a good input difference for a variety of
ciphers through an evolutionary optimizer.

We experimentally showed that our framework often matches or beats state-of-
the-art neural distinguishers and finds good ones for not yet studied primitives.

Preliminary experiments show that our framework finds good input differences
also in the related-key setting, but their exploitation requires significant effort and
is left for future work. This study produced a large number of input differences
with good properties for neural distinguishers. It seems promising to explore how
these can be combined into more powerful multiple-input differences distinguishers
to improve existing results. It remains challenging to investigate the whole list of
returned differences.
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Table 6.1: Summary of the state-of-the-art of published neural distinguishers for
selected primitives. We show the architecture (Arch.), the number of training,
validation samples (7rn., Val.), and the Setting in which the neural distinguisher
was characterized. means that the work is not directly comparable to our
setting. We also highlight the highest achieved round in these settings. AutoND
indicates if the neural distinguisher was automatically generated, while / means
unknown.

Primitive Arch. Setting Trn. Val. AutoND Rounds Acc. Ref.
SPECK32 MLP 2-1-5-R 22764 92664 - 3" 0.79  [YK21]
BGPT21
BGPT21
[CSYY22]
ResNet 2-1-CT-R 23149 21993 - 8 0.514  [Goh19b]
DDBitNet 2-1-CT-R 23449 21998 v 8 0.514  This work
[HRCF21]
SPECK64  DBitNet 2-1-CT-R 2232 91993 v 8 0.537  This work
HRCF21
SPECK128 DBitNet 2-1-CT-R 22325 91993 Ve 10 0.592  This work
SIMON32 MLP 2-1-6-R 2% 22764 - 5 0.570 [YK21]
SZM20]
ResNet 2-1-CT-R 2232 21993 v 9 0.661 |[GLN23]
HRCF21
SENet 2-1-A-R 23117 929.17 - 11 0.517 [BGL*22]
DDBitNet 2-1-CT-R 23149 919.93 7 11 0.518 This work
ResNet 2-1-CT-R 2?2758 22325 - 11 0.520 [GLN23]
LLS*23]
SIMONG4 HRCF21

DBitNet 2-1-CT-R 22325 919.93 0.518 This work

LLS*23

20 0.506  This work
8 0.510 [BBCD21]

RN
~

SIMON128 DBitNet 2-1-CT-R_ 2?% 21993
GIMLI MLP 2-9.6-D 9176 9143

DBitNet  2-1-CT-R__ 22325 91993 v 11 0.527 This work
HIGHT DBitNet 2-1-CT-R 2232 91993 v 10 0.751  This work
HIGHTRK  DBitNet 2-1-CT-R 22325 21998 v 1 0.563  This work
KATAN ResNet 2-1-0-R 223:25 91993 - 51 0.533  [LCLH22]
[LCLH22|

ResNet 2-1-CT-R 2233 21998 v 66 0.505 [GLN23]
DBitNet  2-1-CT-R 2?32 91993 Vi 69 0.505  This work

PRESENT ResNet 2-1-CT-R  223% 91993 v 7 0.563 [GLN23]
[CSYY?22]
DBitNet  2-1-CT-R 2?2 91993 Vi 9 0.509  This work

TEA™™  MLP 2-1-CT-Rt 21993 21328 - 4 0.545 [BR21]

. DBitNet — 2-1-CT-R 22325 21993 ' 5 0.563  This work
XTEA™ DBitNet 2-1-CT-R 2?32 91993 v 3 0.598 This work
LEA DBitNet 2-1-CT-R 22325 921993 v 11 0.511 This work

RK Related key setting.

" [YK21] prepends probabilistic rounds to reach 9 (12) round distinguishers for SPECK32
(SIMON32), using 220 (222) pairs.

"2 For TEA and XTEA, we report the number of full 2-round cycles.

"3 2-1-CT-R* denotes modular addition rather than XOR to inject the difference (as defined

in Section 6.2). 100
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Table 6.2: Comparison of the best distinguishers for SIMON32/64, SPECK32/64,
PRESENT, KATAN32, and CHACHA presented at AICrypt’23 [GLN23] using
only automated hyperparameter tuning (left), additional manual optimization
(center) and our work (right). The distinguishers are characterized by the highest
round (Maz. Rounds) in which their Accuracy is significantly above a random
guess. The highest achieved number of rounds is highlighted.

Automated Elaborate Our work
hyperparameter tuning training procedure (w/o manual
[GLN23, Table 5] [GLN23, Table 1] optimizations)

Cipher Max. Rounds Accuracy Max. Rounds Accuracy | Max. Rounds Accuracy
SIMON32/64 9 0.661 11 0.5207 11 0.516 (0.518%)
SPECK32/64 7 0.617 8 0.514% 8 0.511 (0.514%)
PRESENT 7 0.563 N/A N/A 9 0.509
KATAN32 66 0.505 N/A N/A 69 0.505

f [GLN23, Table 1] points out that “these results need a more elaborate training procedure;
there is no known way to obtain them by simple variations of direct training.”
& We can improve our results using a simple polishing pipeline as discussed in Subsection 6.5.1.

Primitive Total 0.01-close 0.1-close 0.25-close
SIMON32 135 16 16 16
SIMONG64 145 32 32 32
SIMON128 266 64 64 64
SPECK32 81 1 2 2
SPECK64 69 1 2 2
SPECK128 156 1 1 1
LEA 156 1 2 2
HIGHT 140 3 27 27
TEA 73 1 3 3
XTEA 48 1 3 3
PRESENT 102 4 31 31
KATAN 334 1 2 10

Table 6.3: The total number of differences returned by our optimizer for each
cipher, and the number of e-close solutions for € € {0.01,0.1,0.25}, where e-close
denotes differences for which the score differ at most by a factor € to the optimal

score.
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Gohr settings DBitNet settings
cipher input size num. blocks word size dilation rates
SIMON32 64 2 16 (31, 15, 7, 3]
SPECK32 64 2 16 [31, 15, 7, 3]
KATAN 64 2 32 [31, 15, 7, 3]
HIGHT 128 8 8 (63, 31, 15, 7, 3]
PRESENT 128 16 4 (63, 31, 15, 7, 3]
SIMONG64 128 2 32 (63, 31, 15, 7, 3]
SPECK64 128 2 32 (63, 31, 15, 7, 3]
TEA 128 2 32 (63, 31, 15, 7, 3]
XTEA 128 2 32 (63, 31, 15, 7, 3]
LEA 256 4 32 (127, 63, 31, 15, 7, 3]
SIMON128 256 2 64 [127, 63, 31, 15, 7, 3]
SPECK128 256 2 64 [127, 63, 31, 15, 7, 3]
GIMLI 768 12 32 [383, 191, 95, 47, 23, 11, 5

Table 6.4: Settings for Gohr’s neural network and DBitNet.

FLOPs Parameter counts Time per epoch
cipher Gohr-D1  DBitNet Gohr-D10 Gohr-D1 DBitNet Gohr-D10 Gohr-D1  DBitNet
SIMON32  0.28M 1.76M 2.09M 44.32k  298.11k  102.50k 10s 36s
HIGHT 0.15M 3.52M 1.06M 28.32k  390.21k  86.50k 9s 68s
0.09M 0.54M 20.64k 78.82k 9s
0.55M 4.16M 77.09k 135.26k 14s
LEA 0.56 M 7.17TM 4.17M 77.22k  503.46k  135.39k 15s 129s
1.10M 8.31M 142.62k 200.80k 22s
GIMLI 0.59M 20.37TM  4.20M 77.73k  705.44k  135.91k 16s 312s

Table 6.5: FLOPs, parameters, and runtime per epoch (on our NVidia Ampere
A100 GPU) for Gohr’s neural distinguisher of depth 1 (D1), depth 10 (D10), and
DBitNet.
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Table 6.6: Summary of the best distinguishers for each target cipher for our simple
training pipeline with 10 epochs per round, respectively 40 epochs per round.
Shown is the mean accuracy of five evaluations on freshly generated test datasets,
each containing 10° samples. The detailed round-by-round results (including the
TPR and TNR) for 40 epochs are shown in Table 6.7 and Table 6.8.

10 epochs 40 epochs
cipher difference best round best acc.  best NN best round best acc. best NN
SIMON32  0x400 11 0.5147  DBitNet 11 0.5160 [0.51797]  DBitNet
SPECK32  0x400000 8 0.5096  DBitNet 8 0.5109 [0.5144P]  DBitNet
HIGHT 0x800000000000 10 0.7511  DBitNet 10 0.7511 DBitNet
HIGHT®X  0x800000000. . .® 13 0.9648  DBitNet 14 0.5627 DBitNet
KATAN 0x4000 67 0.5064  DBitNet 69 0.5046 DBitNet
PRESENT  0xd000000 8 0.5546 DBitNet 9 0.5092 DBitNet
SIMONG64  0x8000 13 0.5180  DBitNet 13 0.5179 DBitNet
SPECK64  0x8080000000 8 0.5335  Gohr-D1 8 0.5366 DBitNet
TEA 0x40000000000000r 5 0.5573  Gohr-D1 5 0.5634 DBitNet
XTEA 0x40000000000000 5 0.5307 DBitNet ) 0.5984 DBitNet
LEA 0x800000008. . . ) 11 0.5104  DBitNet 11 0.5109 DBitNet
SIMON128 0x8000000 20 0.5057  DBitNet 20 0.5055 DBitNet
SPECK128 0x80800000000000t 10 0.5928 DBitNet 10 0.5916 DBitNet
GIMLI 0x800000000. . . © 11 0.5261  DBitNet 11 0.5270 DBitNet

P Automated pipeline result after our simple polishing pipeline from section Subsection 6.5.1

P We note that for KATAN a 71-round distinguisher with 0.5034 + 0.0002 accuracy on five
freshly generated validation datasets can be obtained by using our simple polishing pipeline
on the 71-round distinguisher from Table 6.9.

RK Related key setting

(@) 0x80000000000000000000000000000000000000800000

(b) 0x80000000800000008004000080

(©) 0x8000000000000000000000000000400000000000000000000000000000800000000000000000000000

103



A Cipher-Agnostic Neural Training Pipeline

Table 6.7: First part of the detailed round-by-round validation accuracy results,
as well as the TPR, and TNR for all target ciphers in Table 6.6 except KATAN.
See Table 6.8 for the second part and the details, and Table 6.9 for KATAN.

cipher round Gohr depth-1 DBitNet Gohr TPR|TNR DBitNet TPR|TNR
(1) (2) (1) 2 | @ (2) (1) (2)
SIMON32 8 0.7400 0.7823  0.8335 0.8312 | 0.70/0.78 0.77|0.79 0.85]0.82 0.84/0.82
9 0.6073  0.6249  0.6560 0.6559 | 0.48|0.73 0.49/0.76 0.57|0.74  0.57]0.74
10 0.5414  0.5547 0.5599  0.5616 | 0.49]0.59 0.46|0.65 0.47]0.65 0.47]0.65
11 0.5164  0.5166 | 1.00/0.00 1.00/0.00 0.43|0.60  0.59|0.44
SIMONG64 9 0.9467 0.9447  0.9619 0.9582 | 0.97|0.92 0.96/0.92 0.98/|0.95 0.97/0.95
10 0.7710 0.7788 0.8096  0.8104 | 0.73|0.81 0.76/0.80 0.78|0.84  0.78]0.84
11 0.6411 0.6348 0.6578  0.6591 | 0.57|0.71 0.57]0.70 0.58/|0.73 0.580.74
12 0.5479  0.5471 0.5623  0.5632 | 0.45|0.65 0.46]0.63 0.47]|0.65 0.480.65
13 0.5154 ~ 0.5182 | 0.00/1.00 0.31]0.70 0.39|0.64  0.46|0.58
14 1.00/0.00  1.00]0.00 0.01]0.99 0.00(1.00
SIMON128 14 0.9010 0.9199 0.9267  0.9312 | 0.87|0.94 0.90/0.94 0.91]|0.95 0.91/0.96
15 0.7975 0.7966  0.8384 0.8383 | 0.71|0.88 0.71]/0.88 0.78/0.90  0.77]0.90
16 0.6867 0.6857  0.7249 0.7248 | 0.57|0.81 0.56/0.81 0.61|0.84  0.61]0.84
17 0.5957 0.5950  0.6259 0.6259 | 0.45|0.74 0.45/0.74 0.46]|0.79 0.46|0.79
18 0.5390 0.5379  0.5582  0.5580 | 0.40/0.68 0.39]0.68 0.38/|0.73 0.37(0.74
19 0.5077 0.5072  0.5222 0.5218 | 0.30]0.72 0.36/0.66 0.34/0.71 0.31/0.73
20 0.5060  0.5069 | 0.00/1.00 0.00/1.00 0.26]|0.75 0.29(0.73
SPECK32 5 0.9269 0.9255  0.9280 0.9260 | 0.90/0.95 0.90/0.95 0.91]|0.95 0.90(0.95
6 0.7860 0.7849  0.7873  0.7867 | 0.72|0.85 0.72]0.85 0.72|0.86 0.71/0.86
7 0.6111 0.6123  0.6152 0.6098 | 0.54/0.68 0.53]0.69 0.53|0.70  0.55|0.67
8 0.5107 ~ 0.5114 | 1.00/0.00 0.42]0.58 0.58|0.44  0.55|0.47
SPECK64 4 0.9999 0.9999 0.9998  0.9998 | 1.00/1.00 1.00/1.00 1.00|1.00 1.00/1.00
5 0.9884 0.9870  0.9939 0.9914 | 0.98/0.99 0.98/0.99 0.99|1.00  0.99]0.99
6 0.8580 0.8494 0.9229  0.9230 | 0.82|0.90 0.81]0.89 0.91]|0.93 0.91/0.94
7 0.6679 0.6198 0.7182  0.7198 | 0.64/0.70 0.55/0.69 0.67|0.77  0.67|0.77
8 0.5256  0.5158 0.5357  0.5369 | 0.51|0.54 0.56]0.47 0.58|0.50  0.51]0.57
9 0.55/0.45 0.80/0.20 0.68|0.32 0.97(0.03
SPECK128 7 0.9995 0.9995 0.9994  0.9994 | 1.00/1.00 1.00[1.00 1.00|1.00 1.00/1.00
8 0.9722 0.9716 0.9860  0.9860 | 0.96/0.98 0.96/0.98 0.98|0.99 0.98(0.99
9 0.7787 0.7800  0.8296 0.8293 | 0.75/0.81 0.75/0.81 0.84]0.82 0.83]0.83
10 0.5814 0.5831  0.5913 0.5909 | 0.58|0.58 0.58/0.58 0.58|0.60  0.58]0.60
11 0.65/0.35 1.00/0.00 0.11|0.89 1.00/0.00
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Table 6.8: Second part of the detailed round-by-round validation accuracy results,
as well as the TPR, and TNR for all target ciphers in Table 6.6 except KATAN.
See Table 6.7 for the first part, and Table 6.9 for KATAN.

cipher round Gohr depth-1 DBitNet Gohr TPR|TNR DBitNet TPR|TNR
1) (2) 1) @ | 2) (1) (2)
HIGHT 8 0.9990  0.9990  0.9990  0.9990 | 1.00[1.00 1.00/1.00 1.00/1.00  1.00]|1.00
9 0.7500  0.8525  0.8598  0.8600 | 1.00/0.50 0.94|0.76 0.95/0.77  0.95|0.77
10 0.5617 0.7509  0.7509 | 0.25/0.88 0.00/1.00 1.00/0.50  1.00/0.50
11 1.00/0.00  1.00/0.00 0.96]/0.04  0.13|0.87
HIGHT 12 0.9990  0.9990  0.9990 0.9990 | 1.00/1.00 1.00/1.00 1.00/1.00  1.00]|1.00
13 0.9647 0.7499  0.9647 0.9647 | 1.00/0.93 1.00/0.50 1.00/0.93  1.00]0.93
14 0.5633 | 1.00]0.00 1.00]0.00 0.94]0.06  0.58|0.55
15 0.00/1.00 1.00[0.00 0.01]0.99  0.98]0.02
PRESENT 5 0.8808  0.8785  0.8828  0.8829 | 0.84/0.92 0.83]0.92 0.84]0.92  0.84|0.93
6 0.7077  0.7053  0.7093  0.7096 | 0.59]0.82 0.59]0.82 0.59/0.82  0.59|0.83
7 0.5597  0.5593 ~ 0.5613 0.5612 | 0.43]0.69 0.43]0.69 0.45/0.67  0.43|0.69
8 0.5104  0.5106  0.5106  0.5120 | 0.40/0.62 0.41]0.61 0.39/0.64  0.37|0.65
9 0.00[1.00  0.00[1.00 0.32]/0.68  0.46]0.54
10 0.00/1.00  0.00[1.00 0.00/1.00  0.00/1.00
TEA 3 1.0000  1.0000  1.0000  1.0000 | 1.00/1.00 1.00]1.00 1.00/1.00  1.00|1.00
4 0.8864  0.8747  0.9079  0.9079 | 1.00/0.77 1.00/0.75 1.00/0.82 1.00[0.82
5 0.5562  0.5491  0.5629 0.5619 | 0.61]0.50 0.60[0.50 0.61/0.52  0.60[0.52
6 0.98/0.02 0.00/1.00 0.12]/0.88  1.00/0.00
XTEA 3 1.0000  1.0000  1.0000  1.0000 | 1.00{1.00 1.00/1.00 1.00/1.00  1.00]|1.00
4 0.8867  0.8748  0.9700 0.9697 | 1.00/0.77 1.00[0.75 1.00/0.94  1.00]0.94
5 0.5093  0.5978 0.13/0.87 0.75/0.27 0.69/0.51  0.69]0.31
6 0.00/1.00 0.94]0.06 0.87]0.13  0.00/1.00
LEA 8 0.8475  0.8482 0.8473  0.8477 | 0.78]0.91 0.79]0.91 0.78/0.91  0.78]0.92
9 0.7209  0.7200 ~ 0.7233 0.7231 | 0.60/0.84 0.59]0.85 0.60/0.85  0.59|0.85
10 0.5952  0.6010 0.5963  0.5957 | 0.46|0.73 0.47|0.73 0.46/0.74  0.46|0.73
11 0.5111  0.5112  0.5113 0.5113 | 0.45]0.58 0.47]0.56 0.47|0.55  0.56]|0.46
GIMLI 8 0.9995  0.9995 0.9987  0.9988 | 1.00/1.00 1.00/1.00 1.00/1.00  1.00/1.00
9 0.8735 0.8707 0.8639  0.8735 | 0.85/0.89 0.85/0.90 0.83]0.90  0.83]|0.89
10 0.6129  0.6041  0.6052  0.6037 | 0.52[0.70 0.52/0.69 0.51]0.70  0.51]|0.70
11 0.5238 0.5236 | 0.90/0.10 1.00/0.00 0.54/0.51  0.54]|0.50
12 1.00/0.00  0.00/1.00 0.00[1.00  0.21]0.79

Details: The best validation accuracies obtained within 40 epochs for each round are shown on
the left-hand side. We performed two runs for each network, Gohr-Depth 1 and DBitNet, since
neural network training contains probabilistic elements, such as the initial weight initialization.
The best distinguisher (highlighted in green) is then re-evaluated on freshly generated datasets
to obtain the final accuracy results of Table 6.6. Accuracies compatible with a random guess are
shown as . The right-hand side shows the true positive rate (TPR) and true
negative rate (TNR) for each accuracy from the left-hand side.
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cipher round Gohr depth-1 DBitNet
(1) (2) (1) (2)

KATAN 40 0.9832 0.9891 0.9953  0.9963
41 0.98  0.9673  0.9925 0.9908
42 0.9623 0.9551  0.9869 0.9856
43 0.9186 0.9081  0.9806 0.9733
44 0.8686 0.8732  0.9691 0.9586
45 0.7523 0.7447  0.9447 0.9217
46 0.7112 0.7058  0.9088  0.8766
47 0.6738 0.6518  0.8545 0.8267
48 0.6697  0.6685 0.834  0.7897
49 0.6029 0.6002  0.7873 0.7526
50 0.6022 0.5943  0.7437 0.7058
51 0.5809 0.5742  0.6991  0.665
52 0.5771 0.5697  0.6657 0.6419
53 0.5659 0.5621  0.6319 0.6231
54 0.5562 0.5516  0.6026  0.5935
55 0.5367  0.5859  0.5823
56 0.521 0.5697  0.5647
57 0.5242  0.5617 0.5595
58 0.5151  0.5503 0.5497
59 0.5467  0.5479
60 0.5427  0.5426
61 0.5287  0.5266
62 0.5252  0.5248
63 0.5178  0.517
64 0.5153 0.5141
65 0.5091  0.5076
66 0.5069  0.5078
67 0.5066 ~ 0.5071
68 0.5056
69 0.5052
70
71

Table 6.9: Detailed results for KATAN.
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Table 6.10: Preliminary experiments with different versions of Gohr’s ResNet and
DBitNet. The highest round with a validation accuracy above 0.505 is highlighted.
These experiments were performed on SIMON32, single-key, 0x400, starting round
8. We have used our Our Simple Training Pipeline with 40 epochs in each round for
various versions of Gohr’s ResNet and our DBitNet. Shown are two runs for each

network to account for potential unfortunate weight initializations at the beginning
of the training.

DBitNet Gohr Cyc. D1 Gohr Cyc. D10 Gohr AMS D1 Gohr AMS D10  Gohr Big-Prd.

round
8 0.8335]0.8312 0.7585]0.7561 0.7478]0.723 0.748]0.7458 0.7559|0.7505 0.8305|0.8299
9 0.656]0.6559 0.6269]0.6241 0.6085]0.6081 0.6227|0.6211 0.6189|0.6186 0.6466|0.6448
10 0.5599]0.5616 0.5351]0.5009 0.5411|0.5006 0.5547|0.5545 0.5536]0.5413 0.5008]0.5007
11 0.5164/0.5166 0.5004 0.5005 0.5027|0.5014 0.5033]0.5011

The different versions of Gohr’s ResNet and DBitNet have details as follows:

DBitNet: As described in Subsection 6.5.2.

Gohr Cyc. D1: Gohr’s depth 1 network with the cyclic learning rate schedule of [Goh19b].
Gohr Cyc. D10: Gohr’s depth 10 network with the cyclic learning rate schedule of [Goh19b].
Gohr AMS D1: Gohr’s depth 1 network with AMSGrad.

Gohr AMS D10: Gohr’s depth 10 network with AMSGrad.

Gohr Big-Prd.: Gohr’s network with the larger prediction head of DBitNet and depth 1.
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Chapter 7

Monte Carlo Tree Search
for Automatic Differential
Cryptanalysis

This chapter is a joint work with E. Bellini, D. Gerault and M. Protopapa. The
original publication can be found in [BGPR22].

In general, the difficulty in finding good differential characteristics on block
ciphers stems from the mere size of the search space, and the resulting combinato-
rial explosion. However, board games such as Go have comparably massive search
spaces (in this case, over 10'7 possible games), but are being dominated through
Al-originated methods. In particular, Monte-Carlo Tree Search (MCTS) [CBSS08]
has proven to be a good exploration strategy for multiplayer games. An exten-
sion to single-player games, called Single-Player MCTS [SWvdH"08] (SP-MCTS),
enables similar performances for non-adversarial scenarios.

In this last chapter, we move the focus from neural networks to graph-based
searches, and explore new algorithms for the search of differential characteristics.
Among the three main families of block ciphers, Substitution Permutation Net-
works (SPN), Feistel ciphers and Addition Rotation Xor (ARX), we focus on the
latter. In ARX ciphers, modular addition is used to provide non-linearity; its
differential properties were extensively studied by Lipmaa and Moriai in [LMO1].
Building on their work on efficient algorithms for the differential analysis of mod-
ular addition, we propose new variations, as well as a minor correction. We then
propose a single-player MCTS based approach for finding differential characteris-
tics, exploiting new heuristics, and obtain promising results on the block cipher

SPECK.
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Our contributions are the following:

1. We show an inaccuracy in Lipmaa-Moriai Alg. 3, for enumerating optimal
transitions through modular addition, and propose a fix.

2. We propose an extension to Lipmaa-Moriai Alg. 3, to enumerate not only the
transitions with optimal probability 27¢, but also d-optimal transitions, with
probability better than 2777 for a fixed offset §. Besides being of theoretical
interest, this is useful in our techniques.

3. We propose an adaptation of single-player MCTS to the differential charac-
teristic search problem.

4. We propose a specialization of this algorithm for the block cipher SPECK,
using new dedicated heuristics. These heuristics allow our tool to be faster
than other graph-based techniques on all instances of SPECK, and sometimes
even solver-based ones.

Related Works Initially proposed for Feistel ciphers, Matsui’s algorithm was
then extended to ARX ciphers in [BV14], using the concept of threshold search.
Threshold search relies on a partial Difference Distribution Table (pDDT), con-
taining all differential transitions up to a probability threshold. The same authors
later noted that sub-optimal results were returned by threshold search, and pro-
posed a new variant of Matsui’s algorithm, that maintains bit-level optimality
through the search. In [LLJW21], a different variant of Matsui’s algorithm is pro-
posed, where the differential propagation through modular addition is modeled
as a chain of connected S-Boxes, using carry-bit-dependent difference distribution
tables (CDDT). A similar method is further improved, both in the construction of
the CDDT and in the search process, in [HW19].

Finally, in 2018, Dwivedi et al. used for the first time a MCT'S-related method to
find differential characteristics on the block cipher LEA [DS18] and, subsequently,
on SPECK [DMS19]. Their work have some similarities with ours, especially the
fact that we are both using single-player variants of MCTS (in their case, the
Nested MCTS). The main differences are:

o in [DMS19] the expansion step is missing. Moreover, when a difference is
not in the initial table, the XOR between the two words of SPECK is taken
deterministically as the output difference of the modular addition.

o A scoring function is missing, so the paths are completely randomized and
the results of the previous searches are not used for the new ones.
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The results were sub-optimal, due to the fact that this interpretation of the
MCTS is equivalent to a search that optimizes the best differential transition only
locally rather than globally.

In addition to these Matsui-based approaches, the state-of-the-art solver-based
results are presented in Table 7.1 for completeness, although we do not directly
compare to them, as solver-based approaches, to this day, scale better than Matsui-
based techniques for the case of SPECK. In particular, the listed results are an
SMT model based on the combination of short trails by Song et al [SHY16b], an
MILP model by Fu et al. [FWGT16], and an SMT model by Liu et al., integrating
Matsui-like heuristics [LLJW21].

Structure of This Chapter This chapter is structured as follows. In Sec-
tion 7.1, we give reminders on relevant background knowledge that has not been
introduced in the previous chapters. In Section 7.2, we give an overview of Lipmaa
and Moriai’s algorithm, which we adapted to our needs; moreover, we address an
inaccuracy in the original version of the algorithm. In Section 7.3, we propose a
general algorithm to address the problem of searching differential characteristics
with the Monte Carlo Tree Search technique. In Section 7.4, we explain the weak-
nesses of the aforementioned algorithm when it is applied specifically to SPECK
and we describe the solutions we adopted.

7.1 Preliminaries

7.1.1 Notation

In this chapter, we use the following notation. We consider bit strings of size n,
indexed from 0 to n — 1, where x; denotes the 7" bit of z, with 0 being the least

n—1 .
significant bit, i.e. x = > ;- 2"

=0
We respectively use H, <, >> and @ to denote addition modulo 2", left and
right bitwise rotations and bitwise XOR.

7.1.2 Monte Carlo Tree Search

Monte Carlo inspired methods are a very popular approach for intelligent playing
in board games. They usually extend classical tree-search methods in order to
solve the problem of not being able to search the full tree for the best move (as
in a BFS or a DFS, both described in [Ko0z92]) because the game is too complex,
or not being able to construct an heuristic evaluation function to apply classical
algorithms like A* or IDA*, introduced respectively in [HNR68] and in [Kor85].
Monte Carlo Tree Search was first described as such in 2006 by Coulom [Cou06] on
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two-player games. Similar algorithms were however already known in the 1990s,
for example in Abramson’s PhD thesis of 1987 [Abr87]. SP-MCTS, was introduced
in 2008 by Schadd et al. [SWvdH"08], on the SameGame puzzle game.

The classical algorithm of MCTS has four main steps:

o Selection. In the selection phase, the tree representing the game at the current
state is traversed until a leaf node is reached. The root of the tree here is the
current state of the game (for example, the positions of the pieces in a chess
board), while a leaf is a point ahead in the game (not necessarily the end).
The tree is explored using the results of previous simulations.

e Simulation. In the simulation phase, the game is played from a leaf node
(reached by selection) until the end. Simulation usually uses completely ran-
dom choices or heuristics not depending on previous simulations or on the
game so far. A payout is given when the end is reached, that in two-player
games usually is win, draw or lose (represented as {1,0,—1}). Usually for the
first runs, when there is no information on the goodness of the moves in the
selection phase, only the simulation is done.

o Expansion. In the expansion phase, the algorithm decides, based on the
payout, if one or more of the states explored in the simulation phase are
worth to be added to the tree. For each simulation a small number of nodes
(possibly zero) are added to the initial tree.

« Backpropagation. In the backpropagation phase, the results of the simulation
are propagated back to the root. In particular, for every node in the path
followed in the selection step, some information about the final payout of the
simulation is added, in order to make the following simulation phases more
accurate.

Single Player Monte Carlo Tree Search. Single Player MCTS [SWvdH 08|
(SP-MCTS), is an application of these techniques to single-player games. The
structure of the algorithm is the same as the two-player version, with two major
differences:

o In the selection phase, there is no uncertainty linked to the opponent’s next
moves, so that the scores can be set in a more accurate way for each node.

e In the simulation phase, the space of the payout may be way bigger than
3 elements, leading to difficulties in the backpropagation of the final score.
In games where there is a theoretical minimum and maximum payout, it is
usually rescaled in the interval [0,1].
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The UCT formula. For the selection phase, Schadd et al. [SWvdH"08] used a
modified version of the UCT (Upper Confidence bounds applied to Trees) formula
initially proposed by Kocsis and Szepesvari [KS06]. It computes the score of an
edge of the search tree as:

=2
— In t(N) Yai—t(N;)- X +D
UCT(N,i)=X+C - 2

N0 =X+C N\ T J 1)
where N is the current node, N; is the i-th child node of N (i € {1,2,...n} if the
node N has n children nodes), the z; are the scores of the runs started from node
N;, X is the average of them, ¢(NN) is the number of visits of the node N, and C,
D are constants to be chosen.

7.1.3 Differential characteristics and key recovery in SPECK

In 2014, Dinur [Dinl4] proposed an attack on round-reduced versions of all the
variants of SPECK. Starting from an r round differential characteristic, the attack
recovers the last two subkeys of the r + 2 rounds cipher working with a guess-and-
determine strategy on the last two modular additions of the cipher. The attack
can be extended to r + 4 rounds by bruteforcing two more subkeys, adding a
complexity of 22"

7.2 Lipmaa’s Algorithms: Known Facts and New
Results

In [LMO1], Lipmaa and Moriai present a set of algorithms for the study of the dif-
ferential behaviour of modular addition. The most widely used of these algorithms
is Algorithm 2, which, given «, 3,7, returns xdp*(a, 3 — «); it is a cornerstone in
the differential cryptanalysis of ARX ciphers. A less known, yet very useful result,
is Algorithm 3 (Lipmaa-Moriai Alg. 3), which, given «, 3, enumerates all output
differences v such that xdp™(«, 3 — ) is maximal.

In this section, we present a generalization of Lipmaa-Moriai Alg. 3 to find good
but not optimal transitions, and a fix for an inaccuracy in the original algorithm,
leading to wrong results for some inputs. The final algorithm is reported at the
end of the section.

7.2.1 Overview of Algorithm 2

As a reminder, the output difference v to a modular addition is equal to a® & 4.,
where J. denotes a difference in the carry.
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Algorithm 2 first determines whether a transition from («, ) to ~ is valid,
before computing its probability. A transition is said to be valid iff

eqla<, <KLy <A (@ fByD(B<K1)) =0 (7.1)

where ©x << 1 is the left shift, which append a 0 at the rightmost side of z’s
bit representation, and eq(x,y, z) is 1 in all positions where x; = y; = z;, and 0
elsewhere.

This condition stems from the observation that three carry patterns are deter-
ministic, whereas the other cases all have probability %:

L. o= a0 D P
2. If o; = BZ =Y = O, then Yi+1 = Kip1 @BH—I (because it 1mphes that 661‘-0—1 = 0)

3. If a; = 61 = % = 1, then Yi+1 = 441 D 51'4_1 @D 1 (because it 1mphes that
5C¢+1 =1)

Any transition violating these conditions is invalid; all other transitions are
possible. It is easy to verify that Equation 7.1 eliminates the invalid transitions.

The probability of a valid transition is determined by the number of occurrences
w of above mentioned deterministic carry propagation cases 2 and 3, excluding the
most significant bit, as 271+,

7.2.2 High Level Overview of Lipmaa-Moriai Alg. 3

Following the notations of [LMO1], let /; be the length of the longest common
alternating bit chain: o; = f; # @41 = Biy1 # ... # iy, = Pi,, and let the
common alternation parity C(«, ) be a binary string with length n defined as:

e C(a,p); =1if l; is even and non-zero,
o Cla,B); =0if l; is odd,

« unspecified when [; = 0 (can be both 0 and 1, not affecting subsequent algo-
rithms since there is no chain).

The interested reader can find an algorithm to retrieve C'(x,y) in O(logn) in the
original work [LMO1]. This tool is the main ingredient used by the authors to
construct Algorithm 3, an algorithm that, given in input two n-bit values «, 3,
retrieves all the possible values v such that the probability of modular addition
with respect to xor: xdp*(a, 8 — ) is maximum.

Alternating chains are relevant to Lipmaa-Moriai Alg. 3, because in the case
of a chain of length 2, the carry propagation rules force at least one probabilistic
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transition: if v; = a; = (;, then we have v;11 = a; 1 ® B;11 D B;, and by definition
Yi+1 F Qit1, SO that ;4o is free. Conversely, if v; # «;, then ;4 is free; in both
cases, a probability is paid. Intuitively, the number if times a probability is paid
for an even length chain is %, whereas for an odd length chain, it depends on which
value is chosen first.

In Lipmaa-Moriai Alg. 3, the list of optimal v values is built bit-by-bit, starting
from position 1; position 0 is always set to ag @ Fy, following rule 1.

For the remaining bits, 3 cases are to be distinguished:

(a) if a1 = B;_1 = 7;_1, then the choice v; = ;1 ® o; ® ; is the only valid
option, by transition rule 1.

(b) else if a; # 3;, then both choices of 7; incur a probability of 1 (as none of the
deterministic transitions are available); this is equivalent to a chain of length
0. Similarly, if ¢ = n — 1, then both choices are equivalent, as position i — 1
is not part of the total probability. Finally, if o; = §; but C'(a, 8); = 1, then
both choices are equivalent again; in reality, this last case is not completely
true, but we will come back to it at the end of the section.

(¢) Finally, when a; = f; and C(«, 8); = 0, choosing ~; = «; results in a proba-
Y - .
bility cost equal to 2712 for the next I; positions, whereas the other choice
23 . . .
has cost 2713+ so that the optimal choice is v; = o.

For the remainder of this section, we refer to these as case or branch (a), (b),
(c) respectively.
7.2.3 A fix for the original algorithm

Lipmaa-Moriai Alg. 3 presents an inconsistency. Consider for example the input
difference (a, 8) = (10115, 10015); we have C(«, 5) = 01002. Applying Algorithm
3, we find:

* 70 = 0 (initialisation case)
o 71 ={0,1} (case (b), since ay # [31)
72 = {0,1} (case (b), since C(a, f)a = 1)

o 13 =0if 5 =0, {0,1} otherwise.

Therefore, v = 1110, is listed as optimal. However, we have xdp™ (10115, 1001, —
1110,) = 273, while the optimal probability is 272 (reached, for instance, with v =
00102). The discrepancy occurs when C(«, 3),_2 is equal to 1, and «,,_3 # ,_3.
The proof given in [LMO01] considers both choices of 7; equivalent in the (b) branch
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when C(q, §); = 1, because the length of the chain is é, and choosing 0 or 1 only
shifts the probability vector. This is however incorrect when the chain ends at
position n — 1, as this position does not count in the probability, and can therefore
not be counted as bad.

However, at position n — 2, picking v, 2 = «a,,_o implies that no probability is
paid (because eq(a,—2, Bn—2,Tn—2) = 1), and position n — 1 is free by definition.
On the other hand, picking v,_» # «a,_o costs a probability, so that both choices
are not equivalent in this case.

To fix this issue, the bit string returned by the common alternation parity
algorithm can be modified so that all positions that are part of a chain ending at
position n — 1 are set to 0. The new algorithm to compute C(«, [3) is reported in

Algorithm 3.

Algorithm 3 Fix for the computation of C'(«a, ). Requires a bit-size n > 1, two
n-bits input differences a, 5. Returns the corrected version of C(«, 3) to make
Lipmaa-Moriai Alg. 3 work.

p = Cru(a, B) > original version from Lipmaa and Moriai

fori=0ton—1do

j=n—1—i
if a; = f; and a;_; = ;1 and «; # j_; then
pj =0
else
break
return p

In addition, Lipmaa-Moriai Alg. 3 describes a solution by the values allowed for
v only (rather than building an explicit list). Consider o = 000010, 5 = 0b1011:
for this example, C'(«, 5); = 1, so that the elif branch is chosen for bit 1, allowing
both 0 and 1 for 7;: the possible values for 5 depends on the choice made for
v1. Removing information on this dependency leads to invalid or sub-optimal
solutions being enumerated (such as 0b1101). This can be addressed either via
building an explicit list, or with a graph representation described further. The
final fixed algorithm is Algorithm 4 with § = 0.

7.2.4 Finding /-optimal Transitions

We propose a generalization of Lipmaa-Moriai Alg. 3 (see Algorithm 4), which
takes as input «, 3,9, where ¢ is an offset, such that that the algorithm returns
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all v having xdp™(a, 3 — ) > maz,(xdp™ (o, 3 — 7)) - 27°; i.e., solutions with
probability within a distance 27° of the optimal. We call such solutions §-optimal.

Intuitively, the goal is to modify a branch to eliminate at most 0 visits of case
(a) compared to an optimal difference, paying every time a cost of %

Violating case (a) immediately leads to a transition with probability 0, per rules
2 and 3. On the other hand, the values chosen in case (b) have no influence on
the final probability. Therefore, we focus on case (c).

Our algorithm works as follows: for at most § times, when in branch (c), chose
v = —ay. Therefore, at position i + 1, branch (a) cannot be chosen anymore.
Intuitively, this is equivalent to paying a probability cost at a position that should

s
be free. In order to list all solutions, we go through all (Z) possible positions,
i=0

where ¢ is the number of visits to case (c) in Lipmaa-Moriai Alg. 3.

We now give arguments for the soundness and completeness of our algorithm;
i.e., show that our algorithm returns only d-optimal solutions, and that it returns
all d-optimal solutions.

Soundness. By Lemma 2 of [LMO01], xdp™(a, 3,v) = 2=V where w is
the number of visits to branch (a). In our algorithm, we change the outcome
of branch (c), effectively forbidding one access to branch (a), at most ¢ times,
therefore adding a factor at most 279 to the final probability.

Completeness. Assume 7’ to be a d-optimal output difference for a given (a, f3),
such that it is not found by our algorithm. Let 4" be a §-optimal returned by our
algorithm for the same (a, ). Compare these differences bit-by-bit: if they differ
at an index that (in our difference ") originated from case (b), we have it in our
list. If the difference originates from case (c), then we also have it since we flipped
all the possible combinations of indices originating from case (c¢). As discussed
before, the difference can not be originated from case (a). Notice that we can
always choose 7" since our algorithm (as well as Lipmaa’s) always outputs at least
one valid solution.

Complexity Lipmaa-Moriai Alg. 3 is described in the original paper as a linear-
time algorithm. This is, however, not direct from the description given by the
authors: in particular, if we consider the case a @ f = 2™ — 1, then branch (b) is
the only possible choice for all bit positions except 0. This means that, all 271
choices for the remaining bits of v are valid, and the enumeration is exponential.

This enumeration issue can be addressed by using a compact representation of
all possible ~ in linear time, by representing the solution space as a directed graph
G = (V, E), with 2 - n vertices, and at most 4 - n edges. In this representation,
vertices V; o and V;; represent the statement bit i of v takes value 0 (resp. 1), and
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vertex V; ; is connected to vertex Viiq if (vi, vit1) = (J, k) is a pair that belongs to
the set of all optimal « values. A v value is O—optimal iff Vo, Vi, ..o Vaciq, s
is a connected path in the graph. Through the loop of Lipmaa-Moriai Alg. 3, each
vertex is visited at most once, yielding a time complexity in O(n). Sampling an
optimal solution from the graph can then be done in O(n), by following a connected
path.

This representation is possible because the choice of a bit value at position i
is independent from the choices made before position ¢ — 1. On the other hand,
when further dependencies exist, as in our variant, the situation is more complex.

Our variant introduces additional computations:

1. We add a pass to zero some values of C(«, ), according to the fix mentioned
previously. The computation becomes worse-case n, rather than logarithmic;

5
2. In order to enumerate all the solutions, we need to go through 3 (j) (with ¢
i=0

the maximum number of visits to the (c¢) branch) possible positions of flip in
the (c) case.

Point 1 is not an issue, as the computation of C'(a, 3) is only done once at the
start of the algorithm. On the other hand, point 2 prevents application of the
aforementioned graph approach, as the possible choices for bit ¢ now depend on
a state defined by the number of times branch (c) was flipped. On the contrary,
our graph representation requires bit ¢ to only depend on bit 7 — 1, and not on the
previous choices.

We therefore propose to have one graph for each combination of flipped bits,

5
effectively multiplying the computation time by > (Z), resulting in a complexity
i=0

in ©(n’), with § a constant. Crucially, the number of visits to branch (c) t is
loosely upper bounded by 4 (as it requires a chain of odd length), and we restrict
ourselves to 0 values lower than 3, so that the computation overhead factor is

2
upper bounded by > (32.2) = 528 for 64 bit words, as in SPECK-128.
i=0

Sampling a d-optimal solution from the graph can be done in linear time, by
choosing one of the graphs at random, and following a connected path, while the
enumeration can be done, for example, with a DFS. This approach can however
lead to duplicate solutions, so that using an explicit list of solutions remains the
best way for full enumeration.

7.3 Differential characteristic search with MCTS

In this section, we outline a general strategy to find differential characteristics with
MCTS, using Lipmaa’s algorithm, for ciphers with a single modular addition per
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Algorithm 4 Generalized Lipmaa-Moriai Alg. 3

Require: a bit-size n > 1, two n-bits input differences a, 8 and the offset 0 <
0 <n-—1.

Ensure: all possible output differences v such that xdp* («, 3 — ) differs by at
most a 27 factor from the optimal one in the form of graphs. In order to sample
from them, we can use a simple randomized traversal.

Class Node:
Isb = -1
successors = [[False, False|, [False, False]]
graphs = |
p=C(a,p) > our fixed version, as stated in Algorithm 3

procedure GENGRAPH(a, [3)
possibleCPositions = [i for i =1 to n — 1 if o; = 3]
positionsLists = [combinations(possibleCPositions, i) for i = 0 to ¢]
for positions in positionsLists do
graph = [new Node() for i =0 to n — 1]
graph.lsb = ay ® Sy
forv=1ton—1do
for j € {0,1} do
if (1 = 1 and graph.Isb = j) or ( > 2 and graph[i —
2].successors|0][j] or graph[i — 2].successors[1][;])) then
if a;_1 = ;-1 = 7 then
graph[i — 1].successors[j|[a; & §; @ B;_1] = True
else if a; # B or p; =1o0ri=n—1 then
graph[i — 1].successors[j| = [True, True]
else
if 7 is in positions then
graph[i — 1].successors[j][1 — «;] = True
else
graph[i — 1].successors[j][a;] = True
Append graph to graphs
return graphs
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round. This generic algorithm is not sufficient in practice, so that cipher specific
optimizations are required, which we address in the next section for SPECK.

7.3.1 A general algorithm

The general idea behind our algorithm is to start with a tree that is as small as
possible and expand it with the algorithm presented in Algorithm 4.

Building the initial tree. The initial plaintext difference is chosen from a
pDDT with threshold probability ¢ = 277, built following Biryukov et al’s [BV14]
algorithm. A virtual root node is set to have all entries of the pDDT as its children
at the start of the search.

Exploring paths. We begin our simulation of differential characteristics as runs
of a single-player game. We start from the virtual root (that can be seen as the
fixed starting position of a game), and select one of the differences in the pDDT
as our initial plaintext difference. We use a second threshold k to determine how
we choose this difference. Suppose for the moment that every node has children:

« if the node has already been visited at least k times, we select the best child
according to its score, using the UCT formula from Schadd et al. [SWvdH 08|
; at the end of the run, we update the score of each node of the path using
the same formula.

o If the node has not been visited k£ times yet, we choose a child uniformly at
random from allowed choices, using again the UCT formula to update the
scores at the end of the game. This allows us to have enough information on
the node before making choices based on the previous games.

These two cases can be seen respectively as the selection and simulation steps of
the classic MCTS algorithm.

Choosing the plaintext difference. We add a tweak to the selection of the
plaintext difference: we select it uniformly at random from the pDD'T for the first
k iterations, then we store the input differences in a sorted list in descending order
based on their score, and select them using a geometrical distribution with prob-
ability p. This favors exploration over exploitation, by permitting each difference
to have some probability to be chosen at every run. Experimentally, we found
that this techniques dramatically improve the performance of the initial difference
selection.
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Tree expansion. If the node has no children, i.e. no corresponding entry in
the pDDT, then we need to generate some. For this purpose, we use our modified
version of Lipmaa-Moriai Alg. 3 presented in the previous section. This comes
from the idea that choosing always the best possible next difference is a very local
strategy, that does not allow us to look for long characteristics. In practice, we fix
a penalty threshold ¢ and list all the possible choices differing at most 27 from
the optimal one, i.e., the d-optimal transitions. We then add them to the tree and
proceed with our exploration strategy. This approach, in the case of SPECK, is
explained in more details in the following section.

Scoring the nodes. To score the nodes, we use the UCT formula, with a cus-
tom formula for the payouts. Our choice here is to mix the global weight of the
characteristic with a measure of the local one, weighted appropriately. This results
in a scoring that is similar to the one used in the a-AMAF heuristic presented in
[HPW09]. In formulas, we have that each payout used to compute the UCT score
has this form:

r=p0G+ (1-p5)L,
where:

e ( is the global score of the characteristic, calculated as i, with w being the
weight of the differential characteristic.

e L is the local score, calculated as aﬁ, where w’ is the weight of the differential
characteristic from this point to the end, and « is a normalization constant.

e 0 < B < 1isa constant to weight the two parts of our score.

The purpose of this kind of scoring is to measure the choice of a difference
relatively to the current round, because some choices can be good at some point
of the characteristic (i.e. near the end, if they have a very good probability) but
very bad in others (i.e. near the beginning, if they do not generate good successive
choices). This score is then used to backpropagate the results to each node of the
path up to the root, meaning that the value of z is added to the list of scores (used
inside the UCT formula) of each encountered node.

7.3.2 Limitations of this approach

We outline here the two main issues that can arise from the application of this
method to a real cipher.

121



Monte Carlo Tree Search for Automatic Differential Cryptanalysis

The branch number. Even with a small value of §, expanding the tree can lead
to nodes with a very high number of children. Intuitively, this is bad for MCTS,
because for its score to be precise, a node must be visited at least a few times,
and this becomes harder as the tree gets wider. Because of this issue we need to
find a way to give a limitation on the expansion without affecting the result of the
search.

The choice of the plaintext difference. In our outline, we proposed to choose
the initial plaintext difference inside a pDDT. Experimentally, this works very well
when looking for short differential characteristics, but not too well for longer ones.
The motivation here is similar to the one of the tree expansion: with the exception
of pathological ciphers or cyclic characteristics, in general, differential character-
istics start with differences that allow a long propagation without increasing the
cost too much. This is not guaranteed to happen with a small pDDT, and creating
a very big one can make the branching number too high for the search to work.

How to solve these issues and their impact on the actual search is very cipher-
dependent. In the following section, we try to address both of them in our appli-
cation to the SPECK cipher.

7.4 Application to SPECK

In this section, we apply the previously described method to the search for differ-
ential characteristics on the SPECK cipher. The initial discussion is done on the
SPECK32 version, but applications and results for all the versions of SPECK are
discussed in the last subsections. We stress again that our objective is to show
that our algorithm can be competitive against the state-of-the-art Matsui-like ap-
proaches. For this reason, we put ourselves in the same settings as them instead
of pushing for a very large number of rounds, showing that our implementation
finds good characteristics way faster. We leave optimizations, generalizations and
the understanding of the limits of this algorithm for future works.

7.4.1 The start-in-the-middle approach

We start by tackling what, in our opinion, is the biggest limitation of our previ-
ous approach: the choice of the initial difference. In order to better explain the
problem, and our solution, we used a SAT solver to list all the optimal differential
characteristics for 9 rounds on SPECK32. We start by noticing that there are only
two characteristics that start with a transition with probability 273, while most
of them start with 27°. As reported by Biryukov et al., a pDDT containing all
the possible differential transitions with probability up to 275 contains about 23°
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elements in the case of SPECK32, that is impossible to handle with MCTS.

Another observation from the reported characteristics is that each of them
contains a transition with probability 1 or 1/2. Our aim is to start from that
point. We start by creating a pDDT with all the transitions with probability at
most 1/2. For SPECK32 this table contains 183 transitions, that is a lot more
tractable than 23°. Suppose for the moment that we are looking for a differential
characteristic on 7 rounds, and that we know the position s of this “low weight”
difference inside the characteristic. We build a cache by applying our strategy on
r — s rounds for a fixed number of iterations of MCTS. At the end of this procedure
we have a table that maps every low weight difference to a characteristic starting
with it. Then we simply run MCTS again in the backward direction for s rounds.
Notice that we can use the exact same algorithm that we described in Section 7.2
because for every «, (3,7 it holds

xdp™ (e, 8,7) = xdp~ («, 3,7).

To conclude, we can simply drop the assumption of knowledge of s by bruteforcing
it: we start r parallel processes to do the search with all possible values of s and we
find one or more values that generate optimal characteristics. We call this approach
the start-in-the-middle, as an analogy with the classic meet-in-the-middle one.

7.4.2 Branching number and the choice of

We then address the other issue pointed out in the previous section: the branch-
ing number. From now on we will call the offset of a differential characteristic
the maximum possible deviation of a transition inside the characteristic from an
optimal one. For example: if all the transitions in the characteristic are optimal,
then its offset is 0. Otherwise, if there is at least a transition that deviates from
the optimal by a factor 2% and no bigger deviations, we say that the offset of that
characteristic is §. We start again by analyzing our characteristics on SPECK32.
We can see that none of them has offset equal to 0, while only three, which are
very similar to each other, have offset equal to 1. On the contrary, almost all the
other characteristics, which are different from the aforementioned three, have at
least one transition that makes their offset equal to 2. For completeness, it has
to be said that only one characteristic among those 15 has offset equal to 3, and
there are no bigger offsets. Motivated by this we decided to run our expansion step
keeping 0 between 1 and 3. This is a very crucial part of our algorithm: in fact, we
stress again that the MCTS algorithm needs to explore each branch several times
in order to assign an accurate score and make better choices. This is also the main
reason behind the fact that chess (and other games) are dominated by computers,
while Go is a lot harder. If we compare the branching factor of the two games,
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chess’s one is 35, while Go’s is very large, with a value of about 200 [BW95]. This
implies a huge difference when comparing the sizes of the two corresponding trees.
When dealing with differential characteristic search, if not limited, the branching
factor could be even bigger than Go’s one, having a maximum value of 2"~ when
a®pis 2" — 1.

7.4.3 Adding further heuristics to improve the search

With the previous approach we produce, on average, 83 children to each node on
SPECK32 when § = 1. This number is in line with what we mentioned for the
game of chess, and in fact it is enough to find an optimal differential characteristic
for this version of SPECK; however, the branch number becomes too large for
bigger versions of SPECK. This is not feasible anymore, so we need to add further
heuristics to reduce these numbers.

Low Hamming weight differences. As it can be observed in all characteristics
found for SPECK and for several other ARX ciphers, good differentials have, in
general, a low Hamming weight. Intuitively, this makes sense because we want
the smallest possible number of carry propagations to have higher probabilities.
This heuristic has already been used in literature to improve the performances of
algorithms that find differential characteristics on SPECK, e.g. Biryukov et al. in
[BRV14].

Specifically, in our work, we use two kinds of filters based on the Hamming
weight of a, f and «: the first one is based on the Hamming weight of each word,
while the second one limits the sum of the Hamming weights of the three words.

Based on the known list of characteristics for SPECK32, we have that the
maximum value for the Hamming weight of each 16-bit words is 8, while the
average is 4.7. The sum of the three Hamming weight has a maximum value of
20 and an average of 13.1. We use these to derive the parameters given in the
experimental results section.

The expansion threshold. Another optimization that we considered is to
choose to not expand some nodes. In addition to the bounding done through ¢-
optimal transitions, we choose to further bound the probability of each transition
by a fixed threshold. In practice, we do not allow for transitions with probability
lower than 2712 This is because nodes with good optimal transition probability
generate on average a small number of d-optimal transitions, while bad optimal
transitions usually explode into very big numbers of §-optimal transitions. Intu-
itively, a low optimal probability implies numerous visits to branches (b) and (c)
in Lipmaa-Moriai Alg. 3; each visit in branch (b) adds valid solution (as both bit
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5
values are allowed), and each visit to branch (c) affects the Y (Z) factor in the
i=0
enumeration, and thus the number of solutions.
Using these heuristics significantly reduces the size of the search space, and

enable better scaling for larger versions of SPECK.

7.4.4 Experimental Results and Discussion
All experiments are performed on a laptop equipped with an Intel® Core™ i7-
11800H 3.6GHz. The code is implemented in Python and executed with PyPy3.6.

The results are presented in Table 7.1. The parameters used in the search were:
« U= % and D = 100 for the UCT, for all the versions.

« = % to balance the scoring function, for all the versions.

p= i for the geometric distribution, for all versions.

0 = 2 for all the versions except SPECK32, for which ¢ = 1 was enough.

10° forward iterations for each version to build the cache.

(t1,t2) = (8,20) for the two Hamming weight thresholds on SPECK32, while
(12,24) was used for all the other versions.

A probability threshold of 2712 was used for SPECK32, while 2716 was used
on all the other versions.

e k =5 for the number of visits of a node before starting to use the UCT, for
all the versions.

A key difference between MCTS and others is that the approach is not complete;
therefore, it is not able to determine when a solution is optimal, and can keep
searching until it exhausts all its allowed iterations. Because we let the search in
the backwards direction run without an iteration limit, we do not have a stopping
time to report; however, we report the time after which a solution is found by our
program.

For SPECK32 and SPECKA48, the optimal differential characteristics are found
significantly faster than for state-of-the-art graph-based search methods, as well
as solvers. This is encouraging, even though it is worth noting that solvers may
require additional time to prove optimality; in that sense, the methods are not
directly comparable.

SPECKG64 appears to be more difficult for our algorithm, as we can only find
good differential characteristics up to 13 rounds. We assume that the depth of
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the tree makes the search more difficult for MCTS, as we generally struggle with
characteristics longer than 12 rounds.

For SPECK96, we find the optimal solution for 10 rounds in less than one and
a half minute, significantly outperforming the 48 hours of the closest graph-based
approach. We also report a non-optimal result for 13 rounds, found in 12 minutes,
as a comparison with the previous Monte-Carlo based approach. However, solver-
based methods remain significantly ahead for this version of SPECK.

A similar analysis holds for SPECK128, where our approach dominates for small
number of rounds (up to 9), but, similarly to the other graph-based approaches,
does not scale to as many rounds as solver-based methods.

7.5 Wrap up

In this chapter, we studied variations of custom search algorithms for the search
of differential characteristics for SPECK, using SP-MCTS. In the process, we re-
visited Lipmaa-Moriai Alg. 3 to provide an efficient algorithm for the enumeration
of J-optimal differentials. A naive implementation of SP-MCTS proved to be inef-
ficient, so that we derived additional heuristics from the structure of known good
characteristics, allowing us to outperform all other graph-based methods for most
instances, and sometimes even solver-based ones.

Our approach, on the other hand, seems to struggle with longer characteris-
tics, equivalent to deeper trees. Further performance gains could be achieved by
additional heuristics, possibly derived through reinforcement learning, or through
parallelization, as well as further parameters tuning, in particular in the scoring
function.

This research is very specific to the SPECK cipher, and it would be interesting
to evaluate how it can be extended to other ARX constructions, in particular those
with more than one modular addition per round, or even to SPN constructions.
Our results constitute a new step along the graph-based search route, which, while
more challenging than solver-based approaches, has the potential to outperform
solvers through specialization.
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SPECK | Reference of Technique Number of Weight Time
version the attack rounds reached
[DMS19] NMCTS 9 31 -
[FWG*16] MILP 9 30 -
[SHY16b] SMT 9 30 -
[BRV14] Matsui-like 9 30 240m
32 [BVLC16] Matsui-like 9 30 12m
[LLIJW21] Matsui-like (CarryDDT) 9 30 0.15h
[SWW21] Matsui + SAT 9 30 Tm
[HW19] Matsui-like (CombinationalDDT) 9 30 3m
This work SP-MCTS 9 30 55s
[BVLC16] Matsui-like 9 33 7d
[DMS19] NMCTS 10 43 -
[BRV14] Matsui-like 11 47 260m
[SHY16h] SMT 11 46 12.5d
48 [FWGH16] MILP 11 45 -
[SWW21] Matsui + SAT 11 45 11h
[LLJW21] Matsui-like (CarryDDT) 11 45 4.66h
[HW19] Matsui-like (CombinationalDDT) 11 45 2h
This work SP-MCTS 11 45 7m18s
[BVLC16] Matsui-like 8 27 22h
[DMS19] NMCTS 12 63 -
This work SP-MCTS 13 55 48m50s
[BRV14] Matsui-like 14 60 207m
64 [FWGT16] MILP 15 62 -
[SWW21] Matsui + SAT 15 62 5.3h
[HW19] Matsui-like (CombinationalDDT) 15 62 1h
[SHY16b] SMT 15 62 0.9h
[LLJW21] Matsui-like (CarryDDT) 15 62 0.24h
[BVLC16) Matsui-like 7 21 5d
[HW19] Matsui-like (CombinationalDDT) 8 30 162h
[LLIW21] Matsui-like (CarryDDT) 8 30 48.3h
o6 [SWW21] Matsui + SAT 10 49 515.5h
This work SP-MCTS 10 49 1m23s
[DMS19] NMCTS 13 89 -
This work SP-MCTS 13 84 14m21s
[FWG*16] MILP 16 87 -
[SHY16h] SMT 16 <87 | <11.3h
[BVLC16) Matsui-like 7 21 3h
[HW19] Matsui-like (CombinationalDDT) 7 21 2h
[LLIJW21] Matsui-like (CarryDDT) 8 30 76.86h
198 [SWW21] Matsui + SAT 9 39 40.1h
This work SP-MCTS 9 39 1m29s
[DMS19] NMCTS 15 127 -
This work SP-MCTS 15 115 8m34s
[FWG*16] MILP 19 119 -
[SHY16b] SMT 19 <119 | <52h

Table 7.1: Comparison between the different techniques found in literature, with
timings when reported. Solver-based works are indicated in italic.
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Chapter 8
Conclusions

In this work, we have made strides towards achieving fully automatic cryptanalysis
of symmetric ciphers by exploring and advancing techniques in neural cryptanaly-
S18S.

Our first contribution, detailed in Chapter 4, gives a theoretical analysis of the
capabilities of neural networks in black-box settings. This foundational examina-
tion, previously unaddressed in the literature, uncovers the theoretical limitations
and potential of neural networks, clarifying that some prior results in this domain
were, in fact, theoretically incorrect.

In Chapter 5, we present our second contribution: a comprehensive review of
the current state of neural-aided cryptanalysis. We demonstrate that even simple
neural network architectures can surpass traditional distinguishers when integrated
with outcomes from standard differential cryptanalysis. Our experiments on the
TEA and RAIDEN ciphers reveal that significant results can be achieved without
extensive computational power.

The core of this thesis, presented in Chapter 6, introduces our third contribu-
tion: a unified, cipher-agnostic framework for analyzing symmetric ciphers using
neural networks. We also propose an algorithm to identify optimal input differ-
ences, eliminating the dependency on prior differential cryptanalysis results. This
framework advances the state of the art across various ciphers, outperforming spe-
cialized algorithms and network structures through a general approach.

Our final contribution, explored in Chapter 7, explores new methodologies by
applying Monte Carlo Tree Search (MCTS) to discover differential characteristics
for the block cipher SPECK. By modeling the cipher as a single-player game, we
show that MCTS, combined with heuristics, significantly improves the efficiency
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of finding differential characteristics for a relatively low number of rounds of the
cipher.

Undoubtedly there is a long way to go for machine learning techniques to be-
come the de-facto standard in cryptanalysis, but we hope that this set of con-
tribution will give an extra step in the correct direction, both understanding the
strenghts and the weaknesses of these approaches.
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