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Summary

Cardiovascular diseases are the leading cause of death worldwide, making the
regular monitoring of critical biomarkers like blood pressure and pulse wave velocity
(PWV) essential for prevention. This thesis explores new methodologies and hard-
ware/firmware solutions to enhance the accuracy, convenience, and reliability of
non-invasive cardiovascular health monitoring systems. The thesis begins with an
overview of the motivation, problem statement, objectives, novelty, and research
contributions, emphasizing the critical need for precise and accessible cardiovas-
cular health monitoring. A comprehensive literature review follows, covering the
physiological background of the cardiovascular system, including the heart, blood
vessels, and blood pressure. It examines biosignals analyzed in this research, such
as arterial pulse and photoplethysmogram signals, and provides an overview of both
invasive and non-invasive methods for assessing PWV and blood pressure (BP). The
review highlights the limitations of existing technologies, establishing the context
for the advancements proposed.
This thesis addresses key issues in PWV study from hardware, firmware, and soft-
ware perspectives. It presents the analysis and application of commercial micro
force sensors for PWV assessment, detailing operational principles, calibration pro-
cesses, and experimental setups. Preliminary results form the foundation for de-
veloping the PWV acquisition system. A novel wireless system for real-time PWV
assessment is introduced, featuring pen-shaped probes using Bluetooth Low En-
ergy protocol for wireless communication. These custom-designed probes include
a printed circuit board, a rechargeable battery, and a piezoresistive load cell, en-
abling efficient data collection and real-time data transmission to a graphical user
interface.
Validation against the gold-standard SphygmoCor device demonstrated a strong
linear correlation and reliable PWV estimation. The system, designed for clini-
cal usability, includes user-friendly features and a synchronized acquisition process,
reducing complexity for clinical personnel and meeting medical safety standards.
The thesis also examines the variability and potential inaccuracies in traditional
PWV evaluation methods, specifically fiduciary points. A novel region-based cross-
correlation (RBCC) method is proposed, using signals with consistent shapes for
cross-correlation, ensuring constant portions of the signal for PWV calculation
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across different sites. The RBCC method showed high accuracy and robustness to
noise compared to the intersecting tangent method, validated with data from 75
healthy participants. Research on cuffless BP monitoring was conducted in collab-
oration with the Wireless Sensors Network Group at Tyndall National Institute,
University College Cork. This included developing a custom device for real-time
pulse transit time measurement, focusing on the elbow and thumb. A personalized
model for detecting blood pressure variations due to physical or cognitive work-
load was also developed, using data from the custom device to monitor changes
accurately. The study highlights the importance of personalized approaches in im-
proving machine learning model predictions for health monitoring.
Additionally, motion artifacts in PPG data were detected using the catch22 fea-
ture subset and anomaly detection algorithms. Personalized models significantly
enhanced motion artifact detection performance compared to generalized models,
aligning with broader healthcare trends. Key findings of this thesis include the
development of a cost-effective, user-friendly device for PWV measurement, robust
algorithms for PWV assessment, advancements in non-invasive BP monitoring,
and improved long-term monitoring reliability. These contributions represent sig-
nificant improvements in non-invasive cardiovascular health monitoring, making it
more accessible and practical for widespread clinical use.
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Chapter 1

Introduction

1.1 Motivation
Cardiovascular Diseases (CVDs) are the leading cause of death worldwide,

claiming an estimated 17.9 million lives annually [1]. These diseases encompass
a range of heart and blood vessel disorders, including coronary heart disease, cere-
brovascular disease, and rheumatic heart disease, among others. Over 80% of CVD-
related deaths are due to heart attacks and strokes, with one-third of these fatalities
occurring prematurely in individuals under 70 years of age.

The World Health Organization (WHO)/Europe report [2] highlights a signifi-
cant gender disparity in CVD mortality, with men in the region being almost 2.5
times more likely to die from CVDs than women [3]. Geographically, the risk of
premature death (ages 30-69) from CVD is nearly five times higher in Eastern Eu-
rope and Central Asia compared to Western Europe [4]. Hypertension, or elevated
blood pressure (BP), is a medical condition that significantly increases the risks of
coronary heart disease such as stroke and heart failure [5]. It is regarded as the
primary risk factor for death and disability in the European Region, accounting
for almost a quarter of deaths and 13% of disability. Often asymptomatic, uncon-
trolled high BP can lead to severe outcomes such as heart attacks and strokes [6].
Given the high prevalence of hypertension, implementing effective health system
interventions is essential for optimizing healthcare resource utilization. Targeting
limited financial and workforce resources toward individuals most vulnerable to
heart attacks, strokes, and heart failure is crucial [7]. This approach is vital for
resource-constrained settings and Low- and Middle-Income Countries (LMICs) [8].
A total cardiovascular risk approach, which considers a combination of risk factors,
can effectively address this need [9].

Therefore, regular monitoring of critical biomarkers, such as BP and Pulse Wave
Velocity (PWV), is essential in preventing the insurgence of CVDs. By incorpo-
rating these assessments into routine health check-ups, healthcare providers can
significantly improve the ability to detect and manage the onset and progression
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of CVDs. This proactive approach enhances patient outcomes and reduces overall
healthcare costs by preventing severe complications and promoting efficient use of
resources [10].

1.2 Problem Statement
This section provides a brief overview of the problem statements relevant to

this body of work, setting the context for the upcoming sections. These issues will
be elaborated upon in detail in Chapter 2. Specifically, the issues that formed the
basis for this research project are reported below:

• Cost and Accessibility: The integration of PWV measurements into routine
medical practice faces significant hurdles, primarily due to the complexity
and time required to perform these measurements. Despite the recognized
importance of PWV in assessing arterial stiffness and cardiovascular risk, its
adoption in clinical environments is limited. Advanced non-invasive devices,
although highly accurate, are often prohibitively expensive and not readily
available in all healthcare settings. These cost and accessibility issues hinder
the widespread use of PWV measurements.

• Variability and Inaccuracies in Traditional Methods: Traditional methods
for PWV measurement typically rely on point-to-point feature extraction.
This approach can introduce variability and inaccuracies due to the differing
morphologies of pulse waveforms at various arterial sites. The estimation
of carotid-femoral Pulse Wave Velocity (cfPWV) is particularly susceptible
to noise and artifacts, which can significantly compromise the reliability of
the measurements. Such inaccuracies limit the effectiveness of PWV as a
diagnostic tool in clinical practice.

• Limitations of Traditional Cuff-Based Devices: While effective for on-the-spot
BP measurements, traditional cuff-based devices are impractical for continu-
ous monitoring. These devices are cumbersome and intrusive, making them
unsuitable for long-term use. Continuous monitoring is crucial for managing
hypertension and assessing cardiovascular risk, yet the current devices do not
provide the necessary comfort and convenience for patients to use them over
extended periods.

• Capturing Individual-Specific Variations in BP Monitoring: Current BP mon-
itoring methods fall short in capturing individual-specific variations, which
are crucial for precise BP management and cardiovascular risk assessment.
Personalized approaches are necessary to account for these variations, yet ex-
isting methods do not effectively address this need. Improving the accuracy
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and reliability of BP monitoring requires models that can accommodate the
unique physiological characteristics of each individual.

• Challenges in Long-Term Monitoring: A major challenge in long-term moni-
toring systems, especially in real-world conditions, is the ability to distinguish
high-quality signal windows from those affected by motion artifacts. Wearable
health monitoring devices, such as those using photoplethysmography PPG
sensors, often suffer from signal degradation due to motion artifacts. These
artifacts can result from changes in blood flow velocity, relative movement be-
tween the sensor and the skin, and low tissue perfusion. Traditional filtering
techniques are often inadequate for effectively addressing these issues.

1.3 Objectives
The aim of this thesis is to investigate new methodologies and hardware/firmware

solutions aimed at improving the accuracy, convenience, and reliability of non-
invasive cardiovascular health monitoring systems.

Specifically, this research project examines two deeply interconnected macro-
themes: the estimation of Pulse Wave Velocity and BP monitoring.

The investigation of the first biomarker focuses on the main issues related to the
cost, accessibility, and reliability of the reference methodology for PWV assessment.
Therefore, the first objective is the development of an affordable and user-friendly
device capable of meeting the requirements for reliable estimation. The second
objective involves the implementation of an algorithm capable of ensuring accurate
PWV evaluation in the presence of noise and motion artifacts.

Concerning BP monitoring, one primary objective is to develop a non-intrusive,
long-term BP monitoring system. Traditional cuff-based devices, while effective
for single measurements, are cumbersome and intrusive for continuous monitoring,
making them unsuitable for long-term use. This research seeks to create a system
that allows for comfortable and continuous BP monitoring over extended periods.

Then, a further objective is to enhance the accuracy of BP management by im-
proving current monitoring methods to effectively capture individual-specific varia-
tions. Finally, The research aims to develop advanced techniques to reliably identify
and separate high-quality signals from noisy data, ensuring accurate and reliable
monitoring.

1.4 Novelty and Contribution
The novelty and contribution to the body of knowledge resulting from the

present thesis are introduced below in order of appearance:
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• Chapter 3 presents the carried-out analysis concerning the application of com-
mercial micro force sensors in assessing PWV. As the first step, this work
delves into the operational principles of FMA MicroForce sensors, elaborating
on their structure, functionality, and the hardware setup necessary for data
acquisition. It discusses the calibration processes and the specific conditions
under which these sensors were tested, ensuring the reliability and accuracy of
the data collected. The chapter proceeds to describe the experimental setup
used for sensor characterization, highlighting the detailed calibration methods
involving weights and load/unload cycles. It further explores the preliminary
results obtained from these sensor characterizations, providing insights into
their performance under various conditions. These results are crucial as they
form the foundation for subsequent improvements and the development of the
PWV acquisition system, which is elaborated on in the following chapter.

• Chapter 4 introduces a novel wireless system for real-time Pulse Wave Ve-
locity assessment, significantly improving upon existing devices. The system
features two pen-shaped probes that use BLE 5.2 for wireless communication,
enhancing portability and ease of use. The custom-designed probes include a
Printed Circuit Board (PCB), a rechargeable battery, and a piezoresistive load
cell, enabling efficient data collection. The wireless setup allows real-time data
transmission to a receiving station with a Graphical User Interface (GUI) that
provides immediate feedback, facilitating real-time PWV assessment. Vali-
dation against the gold-standard SphygmoCor device demonstrated a strong
linear correlation and reliable PWV estimation. The system is designed to
enhance clinical usability with a user-friendly GUI, real-time feedback, and a
synchronized acquisition process. The probes and charging station are engi-
neered for easy handling and efficient operation, reducing the learning curve
and operational complexity for clinical personnel. Additionally, the device
underwent rigorous electromagnetic compatibility tests and clinical usability
evaluations, ensuring compliance with medical device safety standards, mak-
ing it a significant advancement in non-invasive arterial stiffness assessment
for cardiovascular health.

• Chapter 5 introduces a Region-Based-Cross-Correlation (RBCC) approach
for assessing cfPWV, which departs from traditional point-to-point feature
extraction methods. This new algorithm processes a specific window of the
carotid and femoral signals and employs cross-correlation to compute the
Pulse Transit Time (PTT). This technique enhances robustness against noise
and artifacts, ensuring greater stability and reliability in the measured cfPWV
values compared to existing methods. This study emphasizes the use of a stan-
dardized and methodical approach to identify the optimal processing window
on the pulse waveform, which is less affected by reflected waves and motion
artifacts. Finally, the proposed method was validated using a dataset of 75
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healthy participants and demonstrated excellent accuracy a mean difference
of only 0.16 m/s when compared to the gold-standard SphygmoCor device.
The region-based approach showed significantly lower errors in the presence
of added noise, highlighting its robustness and suitability for clinical applica-
tions. This represents a significant advancement over traditional algorithms
that rely on single features of the pulse wave, which can lead to variability
and inaccuracies in cfPWV measurements.

• Chapter 6 addresses the challenge of accurately and comfortably monitoring
BP over long periods using conventional cuff-based devices. While effective
for on-the-spot measurements, these devices are cumbersome and unsuitable
for continuous monitoring due to their intrusive nature. To overcome this
limitation, a novel hardware and software system utilizing PPG sensors to
estimate PTT from brachial and digital arteries is introduced. This system
stands as a starting point to provide a more convenient, non-invasive method
for real-time BP monitoring, addressing the discomfort and impracticality as-
sociated with traditional cuff-based methods. The goodness of data captured
through the proposed is validated through a preclinical study, comparing its
performance with a reference device.
Then, a personalized multiclass classification model is introduced to detect
BP variations associated with physical or cognitive workload. The current
methods for BP monitoring face limitations in capturing individual-specific
variations, which are crucial for precise BP management and cardiovascu-
lar risk assessment. The key innovation lies in using a personalized machine
learning approach, employing random forest classifiers calibrated to individual
physiological characteristics, which significantly improves classification accu-
racy. The study explores various pre-training strategies that incorporate data
from multiple subjects, enhancing the model’s robustness and reducing the
data required for effective personalization. The personalized models demon-
strated high accuracy and reliability, achieving over 95% accuracy with only
a fraction of the data typically needed.
Finally, the problem of Motion Artifacts (MAs) detection over physiological
data is examined. This issue is known for significantly impacting the accu-
racy of wearable health monitoring systems. PPG sensors, commonly used
in wearable devices for tracking physiological parameters such as heart rate,
oxygen saturation, and BP, often suffer from signal degradation due to motion
artifacts. These artifacts arise from changes in blood flow velocity, relative
movement between the sensor and skin, and low tissue perfusion, making
traditional filtering techniques inadequate. For this purpose, a personalized
anomaly detection model using a high-performing subset of time-series fea-
tures called catch22 was developed to detect the presence of MAs motion
artifacts in PPG data. The study employs three unsupervised algorithms—
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One-Class Support Vector Machine (OC-SVM), Isolation Forest (IF), and
Local Outlier Factor (LOF) —to identify anomalies. By focusing on these
methods, this work aims to improve the reliability of PPG-based health mon-
itoring by effectively distinguishing high-quality signal windows from those
affected by motion artifacts. This approach is particularly valuable for long-
term health monitoring in real-world conditions, where traditional methods
fall short.

1.5 Research Contribution
The resulting research contributions from which this body of work is originated

are reported below:

• Live Demonstration: Wireless Device for Clinical Pulse Wave Velocity Eval-
uations. Valerio, A., Buraioli, I., Sanginario, A., Leone, D., Mingrone, G.,
Milan, A., Demarchi, D. (2022). 2022 IEEE Biomedical Circuits and Systems
Conference (BioCAS), 247–247.

• A New True Wireless System for Real-Time Pulse Wave Velocity Assessment.
Valerio, A., Buraioli, I., Sanginario, A., Mingrone, G., Leone, D., Milan, A.,
Demarchi, D. (2024) in IEEE Sensors Journal, vol. 24, no. 15, pp. 24365-
24376, 1 Aug.1, 2024.

• A region-based cross-correlation approach for tonometric carotid–femoral Pulse
Wave Velocity Assessment. Valerio, A., Buraioli, I., Sanginario, A., Mingrone,
G., Leone, D., Milan, A., Demarchi, D. (2024). Biomedical Signal Processing
and Control, 93, 106161.

• Development of a PPG-based hardware and software system deployable on
elbow and thumb for real-time estimation of pulse transit time. Valerio,
A., Hajzeraj, A., Talebi, O. V., Belcastro, M., Tedesco, S., Demarchi, D.,
O’Flynn, B. (2023). 2023 45th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC).

• Development of a Personalized Multiclass Classification Model to Detect
Blood Pressure Variations Associated with Physical or Cognitive Workload.
Valerio, A., Demarchi, D., O’Flynn, B., Motto Ros, P., Tedesco, S. (2024).
Sensors, 24(11), 3697.

• Development of a personalized anomaly detection model to detect motion
artifacts over PPG data using catch22 features. Valerio, A., Demarchi, D.,
O’Flynn, B., Tedesco, S. IEEE Sensors Conference 2024. Accepted in August
2024.

6



Chapter 2

Literature Review

2.1 Physiological Background
The Cardiovascular System (CVS) is responsible for supplying blood through-

out the body. The cardiovascular system comprises the heart, arteries, veins, and
capillaries. These components work together to ensure proper circulation across all
regions of the body. The regulation of this system is influenced by a wide range of
stimuli, including variations in blood volume, hormones, electrolytes, osmolarity,
medications, as well as activity from the adrenal glands and kidneys. In addition,
the parasympathetic and sympathetic nervous systems play a pivotal role in gov-
erning cardiovascular function [11]. The CVS can be subdivided into two main
loops: systemic and pulmonary circulation. Pulmonary circulation allows for the
oxygenation of the blood, while systemic circulation provides oxygenated blood and
nutrients to reach the rest of the body. The cardiovascular system’s main functions
can be summarized as follows:

• Transportation of Blood: blood is pushed throughout the body, ensuring that
oxygen, nutrients, and hormones are delivered to cells and tissues, while also
transporting carbon dioxide and metabolic waste products for removal.

• Regulation of body temperature: Body temperature is kept under control
through the regulation of blood flow to the skin and internal organs.

• Immune Response: White blood cells, antibodies, and other immune compo-
nents are transported to sites of infection or injury.

• Maintenance of Blood Pressure: Coordinated actions of the heart, arteries,
veins, and capillaries help regulate blood pressure (BP) and ensure stable
blood flow.

• Homeostasis: The cardiovascular system contributes to the balance of fluids,
electrolytes, and pH within the body, supporting overall homeostasis.
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This section provides an overview of the anatomical structure of the organs
comprising the cardiovascular system, along with the key regulatory principles gov-
erning its function.

2.1.1 The heart
Anatomy

The heart is the muscle that generates the force necessary to push blood into
the blood vessels to flow to the organs and peripheral regions. It is located within
the chest cavity, offset from the sternum, and positioned above the diaphragm.
As depicted in Figure 2.1, the heart consists of four chambers. The two upper
chambers, the atria, receive blood from systemic and pulmonary circulations, while
the lower chambers, the ventricles, receive blood from the atria and generate the
pressure needed to propel the blood into the major arteries [12]. Functionally, the
heart can be divided into a left and right half: the left atrium and ventricle form
the left heart; the right atrium and ventricle constitute the right heart.

Figure 2.1: Section of the heart showing the atria, ventricles, atrioventricular valves,
and connections to major blood vessels.

The atria and ventricles of the two halves are separated by a wall called septum,
which prevents the blood in the left and right heart from mixing. The portion
of the septum that separates the right atrium from the left atrium is known as
the interatrial septum; the portion that separates the two ventricles is called the
interventricular septum.

Atrioventricular valves separate the atria and ventricles on each side. These
valves ensure the unidirectional blood flow from the atria to the ventricles, pre-
venting backflow. The opening and closing of these valves occur in response to the

8



2.1 – Physiological Background

Figure 2.2: Blood circulation through the cardiovascular system. Pulmonary circu-
lation, systemic circulation, and major blood vessels are reported. Arrows indicate
the direction of blood flow.

cyclic pressure changes occurring within each heartbeat. The left atrioventricular
valve consists of two flaps of connective tissue. It is called the bicuspid (or mi-
tral) valve, while its counterpart on the right side is known as the tricuspid valve.
Similarly to the atrioventricular valves between the atria and ventricles, the semilu-
nar valves are positioned between the ventricles and the arteries. The aortic valve
is located between the left ventricle and the aorta, while the pulmonary valve is
situated between the right ventricle and the pulmonary trunk.

As blood flows through the cardiovascular system, it alternates between the
pulmonary and systemic circuits, returning to the heart at the end of each cycle,
Figure 2.2.

1. The left ventricle pumps oxygenated blood into the aorta, whose branches
transport blood to the capillary beds of all organs and tissues supplied by
systemic circulation.

2. The blood is deoxygenated in the peripheral tissues and then returns to the
heart through the venae cavae. The superior vena cava collects blood from
tissues above the diaphragm, while the inferior vena cava carries blood from
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regions below the diaphragm.

3. From the right atrium, blood passes through the tricuspid valve into the right
ventricle.

4. The right ventricle pumps the blood into the pulmonary trunk and pulmonary
arteries.

5. The blood is oxygenated in the lungs and sent to the left atrium via the
pulmonary veins.

6. From the left atrium, the blood passes through the bicuspid valve and enters
the left ventricle.

Electrical Activity

Heart contractions are coordinated by an elaborate conduction system that dic-
tates the sequence of excitation in cardiac muscle cells. The heart’s ability to
generate signals that periodically trigger contractions, establishing its own rhythm,
is known as autorhythmicity. This autorhythmicity is attributed to a small percent-
age of muscle cells called autorhythmic cells. These cells, which do not generate
contractile force, make up the heart’s conduction system and are responsible for
coordinating the heartbeat [13]. There are two types of autorhythmic cells: (1)
pacemaker cells, which initiate action potentials and set the heart’s rhythm, and (2)
conduction fibers, which are responsible for transmitting action potentials through
the cardiac tissue. Pacemaker cells are concentrated in two specific regions of the
myocardium: the sinoatrial node (SA node), located at the top of the right atrium,
and the atrioventricular node (AV node), situated near the tricuspid valve in the
interatrial septum. The sequence of electrical events that, under normal conditions,
are responsible for the heartbeat is shown in Figure 2.3.

The cardiac cycle

The cardiac cycle encompasses all events related to blood flow through the heart
during a single heartbeat [11]. In this subsection, the following aspects of the car-
diac cycle are analyzed: (1) the various phases of the heart’s pumping action; (2)
the opening and closing stages of the heart’s valves; (3) changes in atrial, ven-
tricular, and aortic pressures that reflect the contraction and relaxation of cardiac
muscle; (4) changes in ventricular volume, which indicate the amount of blood en-
tering and exiting the ventricles with each heartbeat. The relationships among the
various aspects of the cardiac cycle are illustrated in Figure 2.4. Since the car-
diac cycle includes the events of one heartbeat, a complete cycle encompasses both
ventricular contraction and relaxation. As a result, the cycle can be divided into
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Figure 2.3: Propagation of action potentials in the heart. (a) Onset of the action
potential in the SA node. (b) Conduction of the action potential up to the atrial
muscle. (c) Action potentials propagate through the atria to the AV node. (d)
Action potentials travel through the conduction system to the apex of the heart.
(e) Action potentials diffuse through the ventricular muscle. (f) Repolarization of
the heart muscle until a new action potential is generated.

two main phases: systole, representing ventricular contraction, and diastole, repre-
senting ventricular relaxation. (Although the atria also have periods of contraction
and relaxation—known as atrial systole and atrial diastole here, the terms systole
and diastole refer to the ventricular contraction and relaxation events.) The car-
diac cycle shown in Figure 2.4 starts in the middle of diastole when both the atria
and ventricles are fully relaxed. AV valves close when ventricular pressure exceeds
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atrial pressure. The aortic valve opens when ventricular pressure surpasses aortic
pressure and closes when the opposite occurs. The maximum pressure within the
aorta is known as the SBP, while the minimum pressure is the DBP. The MAP)
is the average pressure during the cardiac cycle. The volume of blood pumped
from the ventricle with each beat is the ventricular ejection volume (SV), which is
the difference between the end-diastolic volume (EDV) and the end-systolic volume
(ESV).

1. Ventricular Filling Phase: During the second half of diastole (Phase 1 in
Figure 2.4), blood returns to the heart through the systemic and pulmonary
veins, enters the relaxed atria, passes through the atrioventricular (AV) valves,
and fills the ventricles. The venous pressure is high enough to drive blood
into the heart (venous return). The pulmonary and aortic (semilunar) valves
are closed during this phase because ventricular pressure is lower than the
pressures in the aorta and pulmonary arteries. At the end of diastole (the
end of Phase 1), the atria contract, pushing more blood into the ventricles.
Soon after, the atria relax, and systole begins. This entire phase, where the
ventricles fill with blood, is known as ventricular filling.

2. Isovolumetric Contraction Phase: At the beginning of systole (Phase 2), the
ventricles start contracting, increasing the pressure within them. When ven-
tricular pressure surpasses atrial pressure, the AV valves close; however, the
semilunar valves remain closed because ventricular pressure isn’t yet high
enough to open them. At this point, blood cannot flow into or out of the
ventricles because all valves are closed. Thus, even though the ventricles
are contracting, the blood volume remains constant, giving this phase its
name—Isovolumetric Contraction. Phase 2 ends when ventricular pressure
rises enough to force the semilunar valves open, allowing blood to exit the
ventricles.

3. Ventricular Ejection Phase: During the remainder of systole (Phase 3), blood
is pumped into the aorta and pulmonary arteries through the open semilunar
valves, reducing the ventricular volume. As blood exits the ventricles, known
as ventricular ejection, ventricular pressure reaches its peak and then starts to
decrease. When ventricular pressure falls below aortic pressure, the semilunar
valves close, ending systole and starting diastole.

4. Isovolumetric Relaxation Phase: At the beginning of the subsequent diastole
(Phase 4), the ventricular myocardium relaxes. Some blood remains in the
ventricles and is still under pressure, as it takes time for the tension in the
ventricular muscle to dissipate. The ventricular pressure is too low to keep
the semilunar valves open but too high to allow the AV valves to open. Since
all valves are closed, and the ventricular blood volume stays constant, this
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Figure 2.4: The cardiac cycle. Diastole corresponds to phases 4 and 1, while systole
occupies phases 2 and 3. AV valves close when ventricular pressure exceeds atrial
pressure. The aortic valve opens when ventricular pressure exceeds aortic pressure
and closes under opposite conditions. The maximum pressure within the aorta is the
SBP, the minimum pressure is the DBP. The mean pressure during the cycle is the
MAP. The volume of blood pumped from the ventricle with each beat corresponds
to the ventricular ejection volume (SV). This corresponds to the difference between
the volume reached at the end of diastole, or telediastolic (EDV), and the volume
reached at the end of systole, or telesystolic (ESV).

13



Literature Review

phase is called Isovolumetric Relaxation. Once ventricular pressure drops low
enough to permit the AV valves to reopen, blood flows from the atria into the
ventricles. This marks the start of Phase 1, signaling the resumption of the
pumping cycle. The duration of systole and diastole is not the same. For a
heart with a normal resting heart rate of 72 beats per minute (one beat every
0.8 seconds), most of the cardiac cycle (about 65% or 0.5 seconds) is spent
in diastole; systole lasts only about 0.3 seconds. This longer diastolic period
allows the heart time to fill with blood, which is crucial for efficient pumping,
and also provides the cardiac muscle with more time to relax, helping prevent
fatigue.

The electrocardiogram signal

The ECG signal is a recording of the electrical current flow through the heart
during a cardiac cycle. The standard ECG recording procedure involves placing
electrodes on the skin in an imaginary equilateral triangle formation around the
heart. The triangle expands until its corners fall on the right arm, left arm, and
left leg, a pattern known as Einthoven’s triangle. The electrodes, positioned on the
skin at the triangle’s corners, are connected in pairs, which are referred to as leads.
Each specific lead measures the surface electrical potential difference between the
positive and negative electrodes. Lead I measures the potential difference between
the left arm and right arm; Lead II measures the potential difference between the
left leg and right arm; Lead III measures the potential difference between the left
leg and left arm.

The ECG typically shows three characteristic types of waves, Figure 2.5:

• The P wave, an upward deflection due to atrial depolarization;

• The QRS complex, a series of upward and downward deflections;

• the T wave, an upward deflection due to ventricular repolarization. Atrial
repolarization is usually not detected in the ECG tracing, as it occurs simul-
taneously with the QRS complex. In normal tracing, between waves, there is
a horizontal line indicating no changes in electrical activity, meaning there is
no potential difference (isoelectric line).

In addition to waves, some intervals and segments can provide important in-
formation about heart function. The P-Q or P-R interval corresponds to the time
between the beginning of the P wave and the beginning of the QRS complex and
is an estimate of the conduction time through the AV node. The Q-T interval
corresponds to the time between the beginning of the QRS complex and the end
of the T wave and is an estimate of ventricular contraction time, called ventricular
systole. The T-Q segment corresponds to the time from the end of the T wave
to the beginning of the QRS complex and is an estimate of ventricular relaxation
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Figure 2.5: Physiological ECG waveform showing the P, Q, R, S, T waves, segments
and intervals.

Figure 2.6: Detection of electrical activity of the heart at different locations in the
cardiac muscle.

time, called ventricular diastole. The R-R interval corresponds to the time between
the peaks of two successive QRS complexes and represents the time between one
heartbeat and the next.

In clinical electrocardiography, electrodes are placed on both the chest and limbs
to obtain 12 different leads. Each lead provides a different recording of the heart’s
electrical activity, Figure 2.6. In each lead, the same waves (P, QRS, and T) are
always present; however, their shape differs from lead to lead. The waveforms
recorded in a standard lead, such as lead II of the ECG, and the action potential
of a ventricular contractile cell are shown in Figure 2.5. It’s important to note that
while the phases of the ECG are due to action potentials propagating through the
cardiac muscle, the ECG is not simply a recording of an action potential. During the
heartbeat, the discharge of action potentials from cells occurs at different times,
and the ECG reflects how action potentials are generated in the entire cellular
population that makes up the cardiac muscle.

2.1.2 Blood Vessels
Blood is transported from the heart to various organs, then back to the heart

through a closed system of vessels (blood circulation). This system of blood vessels
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Figure 2.7: Coloured scanning electron micrograph (SEM) depicting a cross-section
of a small human artery, or arteriole. Within the central lumen, red blood cells and
some fibrin fibres are visible. The innermost wall, the tunica intima, appears thin
and folded, consisting of an endothelial lining and a slender, elastic layer. Encir-
cling this is the thicker tunica media layer, primarily composed of smooth muscle
cells, seen here in pink. The outermost tunica adventitia layer blends with the
adjacent connective tissue. These structural layers allow the arteriole to contract
and expand, thereby regulating arterial BP [14].

is generally known as the vascular system [15].
Blood vessels are classified based on their diameter and whether they carry

blood from the heart to the tissues or vice versa. Arteries and arterioles carry
oxygenated blood from the heart to the capillaries. Here, the deoxygenated blood
is collected by venules and subsequently by veins, which return it to the heart. The
collection of arterioles, venules, and capillaries is referred to as the microcirculation,
where nutrient and gas exchanges (oxygen and carbon dioxide) occur.

Structurally, all blood vessels have a central cavity called the lumen, through
which blood flows. The lumen is lined with a layer of epithelium known as en-
dothelium. In Figure 2.7, a cross-section through an arteriole shows all the different
tissues and elements contributing to the circulation of oxygenated blood.

The blood vessels’ structural differences are displayed in Figure 2.8, and their
main properties are summarized below.

• Arteries: Arteries carry blood away from the heart and distribute it to the
tissues; they have relatively large diameters and thick walls. The largest
artery, the aorta, has a diameter of 12.5 mm and a wall thickness of 2 mm.
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Figure 2.8: Overview of the anatomical differences between different blood vessels.

Smaller arteries branching from the aorta have diameters between 2 and 6 mm
and wall thicknesses of 1 mm. Larger arteries offer little resistance to blood
flow and primarily serve to conduct blood. Their walls contain large amounts
of fibrous and elastic tissue, allowing these vessels to withstand much higher
BP than other vessels. As arteries divide into smaller vessels, the amount
of elastic tissue in their walls decreases while the amount of smooth muscle
increases.

• Arterioles: Arteries branch into progressively smaller arterioles, which can
lead to a capillary bed. Their walls contain a relatively high proportion of
smooth muscle, enabling them to contract and dilate to regulate flow through
the capillary beds. Arterioles play a significant role in controlling mean arte-
rial pressure and distributing cardiac output to different tissues. Flow distri-
bution to various organs is regulated by intrinsic control of vascular resistance
in each organ, determined by local metabolic activity and blood flow require-
ments. As a result, the extrinsic control of arteriolar diameter (and thus total
peripheral resistance) is crucial in regulating mean arterial pressure. Extrinsic
factors involved in this control include the Autonomic nervous system (ANS)
and hormones associated with vasoconstriction and vasodilation.

• Capillaries: Capillaries have the thinnest walls and are highly permeable to
water and small solutes; their primary function is facilitating the exchange of
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Figure 2.9: Atrial, ventricular, and aortic pressure diagram within a single cardiac
cycle.

materials between blood and tissues. Fluid movement through capillary walls
depends on the net filtration pressure resulting from Starling’s forces. Most
of the fluid filtered at the arteriole end of the capillary is reabsorbed at the
venule end to return to the vascular system. At the same time, excess fluid
removed by the lymphatic system also re-enters the vascular system. Venules,
which also have thin walls, participate in the exchange of substances between
blood and interstitial fluid.

• Veins: Veins are relatively large vessels with thin walls. Most veins contain
valves that allow blood to flow toward the heart but prevent it from flowing
back toward the periphery. Veins have high compliance and act as volume
reservoirs. The pressure in the large thoracic veins is known as central venous
pressure, which influences arterial pressure by affecting end-diastolic volume,
stroke volume, and cardiac output. When central venous pressure increases or
decreases, mean arterial pressure tends to increase or decrease, respectively.
Central venous pressure is influenced by the respiratory pump, blood volume,
and venomotor tone (regulated by sympathetic nerve fibers that innervate
the veins).

2.1.3 Blood Pressure
When blood is pumped from the ventricle into the aorta during systole, aortic

pressure reaches the same level as ventricular pressure [16]. However, aortic pressure
doesn’t remain high because it drops to a minimum during diastole, just before the
next systole. Aortic pressure is referred to as arterial pressure.

Figure 2.9 reports that ventricular pressure falls to 0 mmHg at the end of
systole, while arterial pressure stays high. Arterial pressure during diastole is due
to the elastic recoil of the artery walls. The thickness of the arterial wall, along
with its abundant elastic tissue, gives arteries a certain rigidity and the capacity
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Figure 2.10: Role of arteries as pressure reservoirs. (a) During systole, the BP in
the left ventricle is greater than the aortic pressure. Blood, after entering the aorta,
increases its volume, causing its walls to expand. (b) During diastole, the elastic
return of the walls pushes the blood forward [11].

to expand and contract as BP changes with each ventricular contraction. This
combination of rigidity and elasticity allows arteries to act as pressure reservoirs,
ensuring a continuous flow of blood through the vessels even when the heart is
not contracting (during diastole). When the artery walls expand during systole as
blood is pumped through, elastin fibers act like stretched springs. This stored elastic
energy is released during diastole when the artery walls retract passively, pushing
blood forward. Thus, blood flow continues, first from the push of systole and then
from the arterial recoil during diastole. The entire process can be visualized in
Figure 2.10. Since arterial pressure varies during the cardiac cycle, the maximum
pressure reached during systole is called systolic SBP, while the minimum pressure
during diastole is called diastolic pressure DBP. The average pressure throughout
the cardiac cycle is the MAP. Two major factors influence blood flow to an organ:
MAP and the resistance of the organ. Since MAP affects blood flow to all organs
supplied by the systemic circulation, adapting flow to the organ’s needs requires
maintaining an adequate MAP.
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Table 2.1: Classification of office BP and definitions of hypertension grade in adults
[17].

Category Systolic (mmHg) Diastolic (mmHg)
Optimal <120 and <80
Normal 120-129 and/or 80-84
High Normal 130-139 and/or 85-89
Grade 1 hypertension 140-159 and/or 90-99
Grade 2 hypertension 160-179 and/or 100-109
Grade 3 hypertension >180 and/or >110
Isolated systolic hypertension >140 and <90
Isolated diastolic hypertension <140 and >90

Hypertension

Hypertension is the most prevalent cardiovascular disorder globally, affecting
1.28 billion adults aged 30-79 years [18], according to the WHO. In 2019, the global
age-standardized prevalence of hypertension among adults in this age group was
34% for men and 32% for women[2, 19]. Hypertension significantly impacts cardio-
vascular health by inducing hemodynamic changes and organ damage, primarily
driven by increased arterial stiffness and altered hemodynamics [20].
The development and progression of hypertension involve multiple mechanisms
and systems, including genetic predisposition, environmental influences, and alter-
ations in cardiovascular regulatory systems. Hypertension induces various hemo-
dynamic changes that affect multiple organs, leading to Hypertensive Organ dam-
age (HMOD). These changes are primarily driven by increased arterial stiffness and
altered hemodynamics, significantly contributing to cardiovascular risk [21]. As per
the 2018 European guidelines [17], hypertension is defined based on repeated of-
fice measurements showing SBP values of 140 mmHg or higher and/or DBP values
of 90 mmHg or higher. However, there is a continuous relationship between BP
and cardiovascular or renal morbidity and mortality, beginning from an office SBP
above 115 mmHg and a DBP above 75 mmHg. This definition aims to simplify
the diagnosis and management of hypertension. The threshold BP values indicate
the point at which the benefits of intervention, whether through lifestyle changes
or drug treatment, outweigh the benefits of inaction.
In addition to grades of hypertension, which are based on BP values, 2023 ESH
Guidelines [16] classify this pathology and also distinguish stages of hypertension
as follows:

• Stage 1: Uncomplicated hypertension (i.e.without HMOD or established CVDs,
but including Chronic Kidney Diseases (CKD) stages 1 and 2)

• Stage 2: Presence of HMOD or CKD stage 3 or diabetes.
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• Stage 3: Established CVDs or CKD stages 4 or 5.

Arterial stiffness is a critical factor in the pathophysiology of hypertension,
referring to the diminished capacity of the arteries to expand or contract in response
to pressure changes. This loss of elasticity is often a consequence of aging and
chronic hypertension. As arteries stiffen, SBP rises because the heart must exert
more force to pump blood through less compliant vessels. Moreover, stiff arteries
cause early wave reflection, which can augment central aortic pressure, further
increasing cardiac workload. As a result, the heart encounters increased resistance
during systole, leading to augmented afterload and placing significant strain on
the left ventricle. This phenomenon leads to left ventricular hypertrophy (LVH),
elevates the risk of coronary artery disease (CAD), and may ultimately result in
heart failure.

End-organ damage due to hypertension is not confined to the heart; it affects
multiple organs throughout the body. Hypertension promotes the development of
atherosclerosis, characterized by the formation of plaques in the arterial walls. This
can lead to narrowed or blocked arteries, increasing the risk of peripheral artery
disease (PAD), aortic aneurysms, and other vascular complications. Additionally,
hypertension is a leading cause of cerebrovascular disease [22].

Chronic high BP can damage small arteries in the brain, leading to microvas-
cular disease, which heightens the risk of stroke and cognitive impairment. Large
artery atherosclerosis also contributes to an increased risk of ischemic stroke [23]. In
the kidneys, hypertension promotes the progression of CKD and can ultimately lead
to end-stage organ failure. The cumulative effect of hypertension-induced damage
across these vital organs underscores the importance of adequate BP management
to prevent severe and potentially life-threatening complications [24].

2.2 Analyzed Biosignals

2.2.1 Arterial Pulse
A pulse wave originates from the contraction of the left ventricle, making the

arterial pulse an essential physiological indicator of the heart’s contraction rate.
Arteries, owing to their elasticity, expand during ventricular contraction and then
recoil, pushing blood towards the capillaries and veins. This rhythmic expansion
and contraction, termed the pulse, can be detected manually or recorded electron-
ically, offering crucial insights into a patient’s health.

The arterial pulse is measured in beats per minute (bpm). Clinically, both the
strength and rate of the pulse are significant indicators. Factors such as physical
exertion or acute events can temporarily increase the pulse rate, but sustained
variations can signal underlying cardiac issues. The intensity of the pulse reflects
the force of the heart’s contraction and cardiac output. A high pulse rate typically
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Figure 2.11: Analysis of central pulse pressure waveform [25].

indicates high systolic pressure, while a weak pulse may suggest decreased systolic
pressure, potentially necessitating medical intervention.

The central pulse pressure waveform is a critical indicator of cardiovascular
health and is characterized by distinct features arising from the dynamic interplay
between forward and reflected pressure waves. The waveform is composed of a
systolic and a diastolic component. The systolic portion primarily results from the
forward pressure wave generated by the contraction of the left ventricle, while the
diastolic portion is influenced by reflected pressure waves originating from various
peripheral sites within the arterial system. The summation of these forward and
reflected waves shapes the central pulse pressure waveform. Pulse morphology refers
to the structure of the pressure signal throughout a single cardiac cycle and can be
divided into the following components:

• Systolic Upstroke: This segment represents the rising edge of the waveform
produced by ventricular ejection, characterized by a peak in aortic blood flow
when the aortic valve opens. A more gradual slope of this rising edge may
suggest aortic stenosis. The systolic component corresponds with the R wave
of the ECG, though with a minor delay.

• Systolic Peak Pressure: This represents the maximum pressure during ven-
tricular systole. The peak pressure increases with the distance from the heart
due to increased pressure and decreased vessel resistance. The shape of the
peak is influenced by reflected waves in the vascular system, which can some-
times create an "anacrotic notch" on the systolic upstroke, more pronounced
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in the carotid artery than in peripheral arteries.

• Systolic Decline: This point signifies the end of systole, indicated by a swift
decline in pressure.

• Dicrotic Notch: This event is triggered by the closure of the aortic valve,
marking the onset of diastole and causing a sharp rise in pressure during the
falling edge of the waveform.

• Diastolic Runoff: After the aortic valve closes, the pressure within the aorta
gradually decreases in an exponential manner as the ventricle stops pumping
blood into it.

These waveform components provide detailed insights into cardiovascular func-
tion and health, enhancing clinical assessments beyond traditional BP measure-
ments.

2.2.2 Photoplethysmogram Signal
Photoplethysmography (PPG) is a non-invasive optical method used to monitor

blood volume changes in the skin’s microvascular bed by utilizing the optical char-
acteristics such as absorption, scattering, and transmission of tissues when exposed
to specific light wavelengths [26].

The PPG signal arises from three main sources:

• the alignment and deformation of red blood cells (RBCs)

• the distribution of absorbers and blood volume changes (BVVs)

• the mechanical actions of capillaries.

The alignment of RBCs changes with the cardiac cycle and significantly influences
the PPG waveform. In diastole, with lower blood flow, RBCs are randomly oriented
due to decreased shear stress. As blood flow increases, RBCs begin to align with
the flow direction, becoming parallel during systole. This alignment affects light
attenuation in the tissue, generating the PPG signal. Furthermore, light trans-
mission and reflection from blood vessels vary with blood volume changes and the
RBCs’ orientation and flexibility. This phenomenon supports the understanding
that arterial pulsations are the primary source of the PPG signal [27].

In PPG, a targeted wavelength of light is directed through a perfused tissue
region during each heartbeat cycle. The fluctuations in the volume of the pulsatile
tissue components from systole to diastole alter the light absorption in the tissue
over time, thereby generating a continuous PPG signal. [28].
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Figure 2.12: Schematic representation of Lambert-Beer law in a multilayer medium
[28].

The amount of light transmitted or reflected is influenced by changes in the
concentration of substances in the blood and the optical path length due to pul-
sation [29]. The Lambert-Beer law, as in Eq. 2.1, defines that the transmitted
light intensity (I ) through a medium will decrease exponentially in irradiated light
intensity (I0) in relation to the absorption coefficient (ϵ), optical path length (d),
and concentration of the medium (C ).

I = I0e
−ϵdC (2.1)

Where the exponential term, defined as in Eq. 2.1, identifies the "absorbance"
A for light traveling through a homogeneous medium. Figure 2.12 shows the in-
teraction of the irradiated light within the skin structure in a PPG measurement.
Light irradiated into the skin interacts with different tissues, veins, and arter-
ies; then, finally, it is detected by a photodetector. Since biological tissues are
intricate, heterogeneous environments comprising multiple absorbers (e.g., blood,
water, melanin) and scatterers (e.g., collagen, keratin), the Lambert-Beer law has
been modified to incorporate scattering effects [30].
The amount of light absorbed or scattered during this process may vary depending
on the composition of the skin structure.
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The total absorbance throughout skin layers is equal to the total sum of the ab-
sorbances of the k layers is defined as in Eq. 2.2:

AT ot,λ =
N∑︂

k=1
ϵλ,k · d · DPFλ · Ck + Gλ (2.2)

where ϵλ,k and Ck represent the extinction coefficient and concentration of the k
absorber. In a medium where both scattering and absorption occur, such as tissue,
the optical path length differs from the actual material thickness. This discrepancy
is accounted for by a multiplicative factor known as the "differential pathlength
factor" (DPF). The DPF varies with the optical wavelength and the anatomical
structure of the tissue [31]. Consequently, the d · DPFλ is the total optical path
length through the medium. G is a scattering-dependent parameter. Finally, the
Eq. 2.1 can be adjusted as reported in Eq. 2.3:

I = I0e
−AT ot,λ (2.3)

In most PPG applications, the sensor or probe is placed on the skin’s surface,
illuminating a volume of underlying tissue [32]. The optical characteristics of dif-
ferent tissue layers and sublayers, which vary with wavelength, influence the light
as it traverses this tissue volume. Consequently, light-tissue interactions in PPG
are governed by two primary factors:

• The anatomical and physiological properties of the tissue region being exam-
ined (ROI)

• The configuration of the sensor, encompassing the optical source-detector
separation in reflectance mode, the shape and dimensions of the sensor, and
the operating optical wavelength.

The geometrical arrangement of the optical source and detector allows the PPG
signal to be captured in two distinct modes: transmittance and reflectance [33].
Figure 2.13 provides a diagrammatic representation of these two modalities. A
conventional PPG sensor consists of a light emitter, typically light-emitting diodes
(LEDs), and a highly sensitive photodetector. Generally, as the wavelength of light
increases, the depth of penetration also increases. For example, wavelengths of 470
nm, 570 nm, and 660 nm can penetrate the epidermis with capillaries, the dermis
with arterioles, and the subcutaneous tissue with arteries, respectively [34]. Major
blood vessels and arteries with strong pulsation are primarily located in the skin
dermis or subcutaneous tissue. Consequently, light with red wavelengths of 640-660
nm and infrared wavelengths of 880-940 nm is primarily used for PPG measure-
ments. The photodetector, often a silicon photodiode, can also be a photocell or
phototransistor. The configuration of the LED and photodiode within the sensor
determines the probe’s structure and its suitable measurement site. For transmis-
sion probes, the LED and photodiode are placed on opposite sides of a clip, with the
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Figure 2.13: Transmission versus reflectance PPG modes: the intensity of light
received at the photodiode is modulated by the changes in pulsating blood volume
occurring in the illuminated tissue.

LED shining light through the tissue to the photodiode. In contrast, reflectance
probes position the LED and photodiode side-by-side, usually a few millimeters
apart, allowing the LED to illuminate the tissue while the photodiode detects the
reflected light [35]. The choice of measurement mode depends on the application
site. PPG signals are generally collected from peripheral tissue sites where pulses
are readily detectable. The transmittance mode configuration is ideal for small ex-
tremities like the toe, finger, or earlobe. On the other hand, the reflectance mode
can be utilized on almost any vascular region of the body.

The PPG waveform is produced by the unabsorbed light detected by an optical
sensor, such as a photodiode. As illustrated in Figure 2.14 and mentioned earlier
in this subsection, the recorded PPG intensity (I ) diminishes exponentially with
light absorbance (A) within the tissue volume under examination.

The PPG intensity can be separated into two components based on light ab-
sorbance in the pulsatile and non-pulsatile tissue compartments:

• The nonpulsatile, relatively stable direct current (DC) component results from
light absorption in nonpulsating tissue regions (e.g., bloodless tissue, muscle,
bone). The slow changes in the DC component are also influenced by respira-
tion, the sympathetic nervous system, BP regulation, and thermoregulation.

• The pulsatile alternating current (AC) component arises from light absorption
in pulsating arterial blood, fluctuating in accordance with the heartbeat. The
AC PPG signal consists of two phases: the anacrotic phase, corresponding to
the pulse’s rising edge and related to systole, and the catacrotic phase, repre-
senting the pulse’s falling edge and associated with diastole. The shape of the
PPG pulse wave is influenced by multiple factors, including cardiac charac-
teristics (e.g., heart rate, rhythm, and stroke volume), circulatory properties
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Figure 2.14: Principle of PPG generation and waveform features [36].

(e.g., arterial stiffness and BP), physiological processes (e.g., respiration and
the autonomic nervous system), and the presence of disease. The dicrotic
notch, shown in Figure 2.14, is a typical feature of the aortic pressure wave-
form, indicating the transition from systole to diastole.

The simultaneous acquisition of multiple PPG signals from different body sites
enables the measurement of PTT, which is the duration taken for the pulse wave
to travel along an arterial pathway. As will be discussed in the following chapters,
PTT will be extensively examined in the context of assessing biomarkers that are
clinically used to evaluate cardiovascular risk. Given this introduction concerning
the physiological background and the ensemble of biological signals analyzed in this
work, this thesis will now focus on the two target biomarkers that were the object
of this research investigation: pulse wave velocity and cuffless BP monitoring.
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2.3 Pulse Wave Velocity
CVDs are globally considered the leading cause of death [37, 38, 39]. Arterial

stiffness is a multifaceted phenomenon that results from alterations in both the
structure and function of the blood vessel wall [40, 41]. A reduction of the elas-
ticity of vessels leads to elevated SBP and reduced DBP. This condition causes a
significant workload on the left ventricle, alters coronary perfusion, and promotes
chronic arterial inflammation [42]. Arterial stiffness can be clinically assessed by
evaluating PWV [43, 44]. Particularly, arterial stiffness is associated with the elastic
characteristics of the arteries and PWV by the Moens-Korteweg equation, Eq. 2.4,
as follows:

PWV =
√︄

hE

2rρ
(2.4)

Where h represents the thickness of the vessel, r the radius of the vessel and ρ
is the density of the blood. Pulse wave velocity measures the speed at which
the pressure wave travels through the cardiovascular system due to the ejection
of blood at the end of the systolic phase within the cardiac cycle. It depends on
the vascular biomechanics and hemodynamics of the circulatory system [45, 46]. It
provides information about compliance [47], mean arterial pressure [48], vasomotor
tone [47] and therapeutic efficacy in vascular and hypertensive heart diseases [49,
50, 51, 52]. As cited by the European hypertension guidelines [53], PWV keeps its
predictive and prognostic value even where others prove unreliable and, therefore,
is considered the gold standard among stiffness indices and a significant predictor
of cardiovascular risk [54, 55]. Typical locations for evaluating pulse waves include
the femoral, tibial, radial, and carotid arteries, where arterial pulsations are easily
detectable [56, 57]. In healthy conditions, the pulse wave propagates into the aorta
at a speed of about 5 m/s and increases progressively in small arteries up to 10-15
m/s. In 2023, the European Society of Hypertension guidelines [16] recommended
brachial-ankle Pulse Wave Velocity (baPWV) [58, 59, 60] as a screening tool for
hypertension-mediated organ damage [61]. However, cfPWV is still considered the
gold-standard reference in the arterial stiffness assessment [62, 63, 64]. The PWV
can be assessed by measuring the pressure wave at two different locations along
the arterial system: a proximal site (such as the carotid or brachial arteries) and
a distal or peripheral site (such as the femoral or ankle arteries). The time delay
between the pressure wave’s arrival at the proximal site compared to the distal site
can either be measured directly on the patient or calculated using other variables.
Consequently, PWV is assessed using the following formula:

PWV = d

∆t
(2.5)

Where d represents the distance between two sites and ∆t is the time required

28



2.3 – Pulse Wave Velocity

by the blood pulse to circulate from one site to the other.

2.3.1 Invasive PWV Assessments Methods
Invasive pulse wave velocity assessment methods are renowned for their accuracy

in measuring arterial stiffness, directly evaluating the propagation of pressure waves
through the arterial system. These methods utilize intravascular devices to acquire
precise hemodynamic data.

High-fidelity pressure sensors, such as micromanometers or fluid-filled catheters,
are commonly employed as invasive sensing elements. Micromanometers are favored
for their high accuracy and frequency response, while fluid-filled catheters, though
more common, require meticulous calibration. These pressure sensors are mounted
on catheters that are inserted into the arterial system, typically through the femoral
artery, and advanced to specific measurement sites.

The transit time is calculated as the time difference between the foot of the
pressure wave at the proximal and distal sites. This is typically identified using the
intersecting tangent method [65], which will be better explained in Section 2.3.4
and detailed in reported in Table 2.2. The distance between the measurement sites
is determined using imaging techniques like angiography or by direct measurement
along the catheter path. Pulse wave velocity is then calculated using the distance
over time relationship.

The invasive nature of this method poses significant limitations. Invasive PWV
measurement is typically used in extreme cases where other evaluation methods are
either impractical or insufficient. It carries risks such as bleeding, infection, and
arterial damage, and requires specialized equipment and expertise, typically avail-
able only in catheterization laboratories. It is also opportunistically performed
during cardiac catheterization and other cardiovascular procedures, as these inher-
ently require access to the vascular system. Additionally, the invasive procedure
can cause patient discomfort and is associated with procedural risks, limiting its
use to cases where detailed assessment is critically necessary. The cost and re-
sources required for invasive PWV assessment are considerable, including special-
ized catheters, high-fidelity pressure transducers, and imaging equipment, making
it an expensive alternative compared to noninvasive methods.

2.3.2 Non-Invasive PWV Assessments Methods
The clinical significance of noninvasive PWV assessment lies in its ability to

predict cardiovascular events and monitor the progression of arterial stiffness over
time. Elevated PWV is associated with an increased risk of cardiovascular diseases,
including hypertension, atherosclerosis, and heart failure. By providing a noninva-
sive means to assess arterial health, these methods play a crucial role in preventive
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cardiology and the management of patients with cardiovascular risk factors. Nonin-
vasive PWV assessment methods are essential tools for evaluating arterial stiffness
without the need for invasive procedures. These methods are widely used in clinical
and research settings due to their safety, ease of use, and ability to provide valuable
hemodynamic information.

Noninvasive PWV measurements typically involve the use of different devices
and techniques to capture the pressure or flow waveforms at different arterial sites.
One common method is the cfPWV measurement, which is considered the gold
standard for assessing aortic stiffness. In cfPWV, sensors are placed on the skin
overlying the carotid and femoral arteries to record the pulse waves. The time delay
between the waveforms at these two sites is measured, and the distance between
the sites is estimated using external measurements. PWV is then calculated by
dividing the distance by the time delay, providing an indication of arterial stiffness.

Another widely used noninvasive method is baPWV. This technique measures
the pulse wave velocity between the brachial artery in the arm and the ankle. Cuffs
similar to those used for BP measurement are placed on these sites, and the transit
time of the pulse wave is recorded. baPWV assesses both central and peripheral
arterial stiffness, offering a broader view of arterial health compared to cfPWV.

Ultrasound-based methods also play a significant role in noninvasive PWV as-
sessment. High-resolution ultrasound can be used to visualize and measure the
pulse wave as it travels along specific arterial segments, such as the carotid or
femoral arteries. By capturing the pulse waveforms at different points along the
artery, the transit time and distance can be accurately determined, allowing for the
calculation of PWV.

Magnetic resonance imaging (MRI) provides another noninvasive approach to
PWV measurement. MRI techniques can capture detailed images of the arterial
system and measure the velocity of the pulse wave as it travels through the aorta
and other large arteries. This method is particularly useful for assessing aortic
stiffness and provides high precision and detailed anatomical information without
the need for radiation exposure. Each of these noninvasive methods has its own
advantages and limitations. cfPWV is highly regarded for its accuracy in assess-
ing aortic stiffness and its strong correlation with cardiovascular risk. However, it
requires precise placement of sensors and accurate distance measurements, which
can introduce variability. baPWV, on the other hand, is easier to perform and pro-
vides information on both central and peripheral arteries, but it may be influenced
by factors such as limb length and arterial branching. Ultrasound-based methods
offer high spatial resolution and can directly visualize the arteries, making them
useful for site-specific PWV measurements. However, they require skilled opera-
tors and may be limited by the acoustic window and patient anatomy. MRI-based
techniques provide comprehensive and detailed assessments of arterial stiffness, but
they are expensive and less accessible compared to other noninvasive methods.
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2.3.3 Methodology
As previously mentioned in this section, PWV can be assessed by detecting the

passage of the pressure wave in different sites. In clinical practice, the most common
regional PWV measurement is carried out where the pulsation can be easily felt: on
the right common carotid artery (proximal point) and on the right femoral artery
(distal or peripheral point). Due to the proximity of the two acquisition sites to
the central aorta, cfPWV is recognized as the most widely measured surrogate of
the aortic Pulse Wave Velocity (aoPWV) [66, 67, 68]. Fig. 2.15 summarizes the
two alternative methods used to measure the cfPWV throughout the arterial tree.
In this manuscript, we will refer to them as the indirect method and the direct
method. Both approaches need the carotid and femoral locations to acquire the
blood pulse wave. The main difference between the two methods is represented by
how the ∆t is calculated. The measurement techniques include either sequentially
acquiring separate recordings synchronized to a specific point in the cardiac cycle,
Fig. 2.15 (right), or simultaneously recording two pulse waveforms using identical
sensor probes, Fig. 2.15 (left). The R-peak of the ECG is commonly used as
the reference point for synchronizing sequentially measured pulse waveforms from
various arterial sites [69]. The sequential method involves using a single blood
pulse sensor along with an ECG to measure real-time data from surface arteries.
This technique calculates PWV by dividing the PAT, the delay between the ECG’s
R-wave and the initial rise of the blood pulse, by the arterial distance from the
heart to the measurement site [67, 70]. It is crucial to highlight that this method
only offers an indirect estimation of PWV and comes with inherent physiological
constraints. The PAT is comprised of:

1. the transit period of the pulse wave from the aorta to the measurement site

2. the ventricular electromechanical delay

3. the isovolumic contraction period

The combined duration of stages (2) and (3) is termed the ‘pre-ejection period
(PEP),’ a substantial portion of PAT that does not depend on pulse wave propaga-
tion [71, 72]. Thus, the velocity estimate derived from PAT deviates from the actual
cfPWV. In the sequential method illustrated in Fig. 2.15 (left), the time interval
∆t is assessed as the difference between the distal pulse arrival time (PATfem)
and the proximal pulse arrival time (PATcar) recorded respectively on the femoral
and carotid site. In the direct method shown in Fig. 2.15 (right), the PTT is di-
rectly evaluated using the recorded waveforms in the two sites without any other
references.
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Figure 2.15: PWV acquisition methodologies. (a) The simultaneus acquisition
is commonly performed by detecting a characteristic feature on each pulse wave,
Then, PTT is computed as the delay occurring between pulses. (b) The sequential
acquisition employs a single sensor and reference signal ECG. The transit time is
evaluated as the difference between the PAT per acquisition site. PAT is defined
as the time interval between the R-peak of the ECG and the sequentially detected
pulse waveforms on the carotid and femoral artery, respectively. PAT encompasses
the duration for the pulse wave to move from the aorta to the measurement location
(tR−pulse), as well as the pre-ejection period (PEP ).

2.3.4 Pulse Transit Time Assessment Techinques
Fiducial Points based approaches

The transit time-based approach is the simplest and most straightforward method
for PWV measurement. It utilizes the fundamental distance-time relationship,
henceforth referred to as the pulse transit time-based approach. With the intro-
duction of PWV as a standard biomarker of arterial stiffness, several methodologies
and algorithms have been developed to provide increasingly accurate estimates of
PTT. As a result of the analysis of the characteristic morphology of the pulse
wave [73], numerous studies over the years have proposed the identification of a
specific point or window on the signal that would allow reliable PWV estima-
tion [68]. Different algorithms relying on the extraction of a single feature located
on the signal were used for PTT assessment. The fiducial time points are chosen
based on the physiological and morphological features of the acquired blood pulse
waves. The most frequently utilized method involves using the foot of the blood
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Table 2.2: Fiduciary points of arterial pulse wave used for pulse transit time mea-
surement.

Fiducial Point Label Description Illustration
Waveform foot A Minimum amplitude of a pulse cycle

between the start of the systole and the
end-diastole of the previous cycle.

Intersecting
tangent point

B The onset of the upstroke of the pulse
during the systole

25% pulse
height

C A point in the systolic upstroke of the
pulse cycle positioned at a fixed per-
centage of the maximum pulse height.

Second deriva-
tive maximum

D Point corresponding to the onset of the
systolic phase.

First derivative
maximum

E Point on the original pulse at which the
slope reaches its maximum.

Second deriva-
tive minimum

F Proximal point to the systolic peak.

Pulse peak G Maximum amplitude of the pulse cor-
responding to the systolic peak.

Dicrotic notch H The point corresponding to the aortic
valve’s closure and preceding the dias-
tole’s beginning.

pulse upstroke as a reference point in the waveform [74]. Table 2.2 outlines numer-
ous techniques that have been suggested to establish different fiducial time points
within a pressure pulse cycle.

• A: Represents the minimum amplitude of a pulse cycle between the onset of
systole and the end-diastole of the previous cycle. The pulse wave foot is
characterized by a typically prolonged and flat region with minimal variation
between adjacent values. However, multiple wave reflections during the end-
diastolic phase and noise in the recorded pulse wave often distort this region,
making it difficult to identify accurately.

• B: The start of the pulse upstroke during systole is detected as the intersection
of the horizontal line passing through point A and the tangent to the pulse
upslope. The Intersecting Tangent Point (ITP) lies within the region of rapid
pressure level acceleration and is favored for its accuracy and reliability. The
beginning of the upstroke region, where this point is located, is considered
unaffected by multiple wave reflections, making it a preferred fiducial point
for both invasive and non-invasive methods.

• C: The point on the systolic upstroke of the pulse cycle located at a fixed
percentage of the maximum pulse height.
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• D: This point marks the onset of the systolic phase and corresponds to the
second derivative maxima on the upstroke of pressure pulse waves. It also
lies within the region of rapid pressure level acceleration. Like Point B, it is
widely accepted for its accuracy and is extensively used in both invasive and
non-invasive PWV measurement techniques.

• E: The point on the original pulse where the slope reaches its maximum, oc-
curring approximately halfway up the systolic upstroke of pulse waves. This
characteristic point is considered relatively unaffected by arterial wave re-
flections. Local PWV determined by the first derivative maxima is typically
higher than that obtained from the second derivative maxima point.

• F: The point proximal to the systolic peak. PWV values measured from
this vicinity tend to be higher than those measured from the first derivative
maxima point, reflecting a physiological phenomenon of variation in local
PWV within a cardiac cycle.

• G: The maximum amplitude of the pulse corresponding to the systolic peak.
This point is significantly influenced by the propagation of reflected arterial
pressure waves and is generally not considered a reliable fiducial point due to
this influence.

• H: Located in the diastolic phase of the pulse cycle, the dicrotic notch is
believed to result from the combined effects of the aortic valve closure and
a transient increase in arterial pressure caused by reflection waves. Despite
being a distinct feature, it is not sufficiently precise in the context of coronary
arteries but is recommended when multiple wave reflections contaminate the
foot of blood pulse waves.

Statistical based approaches

Nowadays, many clinical indicators, including heart rate and BP, may now be
monitored by wearable devices with findings that meet the standards for use in a
clinical setting. Many studies have been conducted to assess PWV using standalone
wearable devices, following this trend. The extraction of pulse waves from acqui-
sition locations that deviate from clinically defined places may alter the shape of
the signals, hence diminishing the estimated precision of the techniques described
above. A novel set of algorithms has been developed to address the limitations of
relying on a single localized feature for PWV evaluation. These algorithms analyze
specific sections of pulse waveforms, avoiding the PWV evaluation based on a single
feature extracted from the signal. Although additional validation studies must be
undertaken, region-based approaches such as ‘diastole patching’ [74] and ‘region-
matching’ [68],[75] provided excellent accuracy in the PWV assessment according
to the accuracy criteria reported in 2010 ARTERY Society guidelines [53].
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• Statistical Phase Offset: This technique compares a range of points from the
proximal and distal waveforms over equal time shifts, generating a difference
function and calculating the standard deviation for each shift. The time shift
that minimizes the standard deviation represents the transit time.

• Diastole Patching: In this method, a small region of interest encompassing
the foot of the proximal pulse wave is extracted using a defined window and is
matched to an equitized region in the foot of the distal waveform. The window
is set at an initial position on the distal waveform and moved across consec-
utively overlapping regions. The time point from the initial window position
where a similarity comparison metric yields a minimum value is attributed as
the pulse transit time.

• Region Matching: This technique determines the pulse transit time between
proximal and distal arterial pulse waveforms by comparing small regions of
interest (ROIs) around the foot of the pulse waves. It involves sliding a defined
window across the distal waveform and using a similarity metric, such as the
sum of squared differences, to find the best match with the proximal ROI.
The time shift that minimizes this metric represents the pulse transit time.

2.3.5 Reference PWV Values
Arterial stiffness, measured by PWV, is a well-established biomarker for cardio-

vascular risk and target-organ damage. cfPWV is considered the gold standard for
assessing aortic stiffness. While the relationship between aortic stiffness and cardio-
vascular events is continuous, the 2007 ESH/ESC Guidelines proposed a threshold
of 12 m/s as a conservative marker for significant aortic dysfunction, particularly in
middle-aged hypertensive patients [76]. A more recent expert consensus [77] revised
this threshold to 10 m/s, based on the direct carotid-to-femoral distance, which ac-
counts for the fact that the pressure wave travels over a 20% shorter anatomical
distance (i.e., 0.8 × 12 m/s = 10 m/s) [78].
In [79], the authors aimed to establish normal and reference values for PWV in
a large European cohort, categories and age groups. Table 2.3 presents typical
PWV values for a healthy population based on age. The study found that PWV
increases progressively with age and that this increase is more pronounced in indi-
viduals with elevated BP. Normal PWV values were derived from a subset of the
population with optimal BP (below 12080 mmHg) and no additional cardiovascular
risk factors (CVRFs). In this group, PWV values were relatively low but increased
gradually with age.

In the broader reference population, which included individuals with varying BP
levels and some cardiovascular risk factors, there was a strong correlation between
PWV, age, and BP. The increase in PWV was particularly significant in hyper-
tensive individuals. Specifically, participants aged 60–69 with grade I hypertension
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Table 2.3: Distribution of pulse wave velocity (m/s) according to the age category
in the normal values population (1455 subjects), [79].

Normotonic group (n=1455)
Age Categories µ (±2σ) Median (10-90 percentile)
<30 6.2 (4.7–7.6) 6.1(5.3-7.1)
30–39 6.5 (3.8–9.2) 6.4 (5.2-8.0)
40–49 7.2 (4.6–9.8) 6.9 (5.9-8.6)
50–59 8.3 (4.5–12.1) 8.1 (6.3-10.0)
60–69 10.3 (5.5–15.0) 9.7 (7.9-13.1)
70+ 10.9 (5.5–16.3) 10.6 (8.0-14.6)
Abbreviations: µ: mean value; σ: standard deviation.

(140–160/90–100 mmHg) had a PWV of 11.1 m/s, compared to 9.1 m/s in those
with optimal BP in the same age group, Table 2.4. This highlights that elevated
BP accelerates arterial stiffening, as reflected by higher PWV values.

Table 2.4: Distribution of PWV values(m/s) in the reference value population
(11092subjects) according to age and blood pressure categories, [79].

Age
Categories

Blood pressure category (n=11092)

Optimal Normal High Normal Grade I
Hypertension

Grade II/III
Hypertension

µ (±2σ) µ (±2σ) µ (±2σ) µ (±2σ) µ (±2σ)
<30 6.1 (4.6–7.5) 6.6 (4.9–8.2) 6.8 (5.1–8.5) 7.4 (4.6–10.1) 7.7(4.4–11.0)
30–39 6.6 (4.4–8.9) 6.8 (4.2–9.4) 7.1 (4.5–9.7) 7.3 (4.0–10.7) 8.2 (3.3–13.0)
40–49 7.0 (4.5–9.6) 7.5 (5.1–10.0) 7.9 (5.2–10.7) 8.6 (5.1–12.0) 9.8 (3.8–15.7)
50–59 7.6 (4.8–10.5) 8.4 (5.1–11.7) 8.8 (4.8–12.8) 9.6 (4.9–14.3) 10.5 (4.1–16.8)
60–69 9.1 (5.2–12.9) 9.7 (5.7–13.6) 10.3 (5.5–15.1) 11.1 (6.1–16.2) 12.2 (5.7–18.6)
70+ 10.4 (5.2–15.6) 11.7 (6.0–17.5) 11.8 (5.7–17.9) 12.9 (6.9–18.9) 14.0 (7.4–20.6)
Abbreviations: µ: mean value; σ: standard deviation.

The study outlined in [80] establishes age-dependent reference values for PWV
across two different parameters: carotid-femoral PWV, and brachial-ankle PWV
in a large European cohort. Sampling 8,509 individuals aged 19–80, the study es-
tablished that age and blood pressure are the primary determinants of PWV, sig-
nificantly affecting its variability. Additionally, sex was found to influence baPWV
and cfPWV, while other cardiovascular risk factors, such as cholesterol levels and
smoking, showed weaker correlations with PWV values. As reported in Table 2.5,
for healthy individuals, cfPWV, often regarded as the gold standard, ranged from
approximately 7.2 m/s in individuals aged 18–29 years to 10.5 m/s in those over
70 years. Similarly, baPWV values showed an increase from around 9.2 m/s in the
youngest group to 13 m/s in individuals over 70 years.
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Table 2.5: Normal and reference values of PWV parameters for cfPWV and baPWV
[80].

Normotonic
(n=3092)

Reference Group
(n=8460)

Normotonic
(n=3099)

Reference Group
(n=8483)

Age
Categories µ (±2σ) µ (±2σ) µ (±2σ) µ (±2σ)

<30 7.2 (4.2–12.4) 7.3 (4.3–12.5) 9.2 (7.9–10.8) 9.3 (7.9–11.0)
30–39 7.8 (5.0–12.2) 7.9 (5.0–12.4) 9.9 (8.2–11.8) 10.0 (8.2–12.2)
40–49 8.9 (5.4–14.5) 9.1 (5.6–14.8) 10.3 (8.5–12.5) 10.7 (8.5–13.4)
50–59 9.4 (5.9–15.1) 9.9 (6.0–16.4) 11.1 (8.8–13.8) 11.8 (8.9–15.5)
60–69 10.1 (6.1–16.7) 10.7 (6.5–17.6) 12.1 (9.4–15.5) 12.9 (9.8–16.9)
70+ 10.5 (6.3–17.7) 11.4 (6.8–19.3) 13.0 (10.1–16.9) 13.9 (10.6–18.4)
PWV-Site: cfPWV baPWV
Abbreviations: µ: mean value; σ: standard deviation.

In [81], reference values for PWV were also established using the Mobil-O-Graph
PWA monitor, which measured central blood pressure, augmentation index (AIx),
and PWV in a cohort of 6,499 individuals. Participants were divided into two
groups: those without cardiovascular risk factors (CVRF-No) and those with at
least one major risk factor (CVRF-Yes).
As reported in Table 2.6, in individuals without CVRFs, PWV ranged from 4.9 m/s
in women under 30 to 11.3 m/s in women over 70, and from 5.2 m/s to 11 m/s m/s
in men across the same age groups. In contrast, individuals with CVRFs exhibited
higher PWV values, ranging from 5.3 m/s to 11.8 m/s in women and from 5.5 m/s
to 11.2 m/s in men. This underscores the impact of cardiovascular risk factors on
arterial stiffness, with higher PWV values observed in individuals with established
risk factors.

2.3.6 Commercial Systems for PWV Assessment
Sphygmocor

The SphygmoCor CvMS (Cardiovascular Management System) (AtCor Medi-
cal, Sydney, Australia) uses applanation tonometry to record high-fidelity arterial
pulse waveforms at the carotid and femoral sites. This method involves flattening
the artery against an underlying bone to obtain accurate pressure readings. The
CvMS records pulse waveforms sequentially from different arterial sites, such as the
carotid and femoral arteries, with the R-waves of a simultaneously recorded ECG
used to synchronize the signals. The device calculates PWV by determining the
transit time between the foot of the waveforms recorded at the carotid and femoral
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Table 2.6: PWV values s for men and women, according to age categories, in
individuals with and without major CVRF [81]

CVRF-NO CVRF-YES
Age

Categories
Women
(n=531)

Men
(n=336)

Women
(n=3169)

Men
(n=2463)

<30 4.9 (4.4, 5.3) 5.2 (4.9, 5.7) 5.3 (4.7, 6.0) 5.5 (5.0, 6.3)
30–39 5.4 (5.0, 6.1) 5.7 (5.3, 6.1) 5.8 (5.3, 6.7) 6.1 (5.5, 6.7)
40–49 6.4 (5.7, 6.9) 6.5 (5.9, 7.0) 6.8 (6.0, 7.7) 6.8 (6.2, 7.5)
50–59 7.5 (6.7, 8.2) 7.4 (6.9, 8.0) 7.9 (7.1, 8.8) 7.9 (7.1, 8.7)
60–69 8.9 (8.1, 9.4) 8.9 (8.2, 9.6) 9.3 (8.4, 10.4) 9.2 (8.4, 10.2)
70+ 11.3 (10.2, 13.2) 11.0 (10.1, 12.3) 11.8 (10.2, 14.0) 11.2 (9.9, 13.2)
Notes: Results are expressed as as 50th (10th and 90th) percentiles.

Figure 2.16: (a) Sphygmocor CvMS device. (b) Sphygmocor XCEL device. [82]

sites, employing the foot-to-foot method and intersecting tangent algorithms. Addi-
tionally, it provides central BP measurements, offering a comprehensive assessment
of cardiovascular health.

However, the SphygmoCor CvMS has several drawbacks. The accuracy of PWV
measurements can be affected by heart rate variability, as the sequential nature of
the recordings introduces potential timing discrepancies. Sequential pulse acquisi-
tion can be time-consuming, requiring careful synchronization and quality controls
to ensure accurate measurements. The device may struggle to produce high-quality
recordings in patients with lower BP, peripheral arterial disease, or obesity, as pe-
ripheral pulses can be more difficult to capture. Moreover, the system requires a
high degree of operator expertise for peripheral signal acquisition, impacting the
consistency and reliability of the measurements.

The SphygmoCor XCEL (AtCor Medical, Sydney, Australia) is an advanced ver-
sion of the CvMS, designed to improve user-friendliness and reduce measurement
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time while maintaining accuracy. It incorporates a cuff-based acquisition protocol
in addition to applanation tonometry. The XCEL uses a brachial cuff to acquire
simultaneous pressure waveforms, simplifying the measurement process and reduc-
ing operator dependence. By using the cuff-based system, the device allows for
simultaneous recording of arterial waveforms, reducing the time required for mea-
surements by more than 50% compared to sequential methods. Like the CvMS,
the XCEL calculates PWV using the foot-to-foot method and intersecting tangent
algorithms, and it also offers central BP measurements. The XCEL is designed
to be more user-friendly, with automated features that guide the operator through
the measurement process, making it accessible to a broader range of users. Despite
its improvements, the SphygmoCor XCEL has certain limitations. The cuff-based
acquisition can inherently damp higher-frequency information due to volumetric
displacement, potentially affecting the accuracy of the waveform analysis. While
the device is more user-friendly, it still faces challenges in producing high-quality
recordings in patients with certain conditions, such as peripheral arterial disease
or obesity. Additionally, the advanced features and capabilities of the XCEL may
come at a higher cost, potentially limiting its accessibility in some clinical settings.

Complior

The Complior device (Alam Medical, Saint Quentin Fallavier, France), is con-
sidered one of the most reliable and accurate systems for noninvasive PWV assess-
ment. It simultaneously records arterial wave pulses using up to four piezoelectric
transducers applied directly to the skin at sites such as the carotid, femoral, ra-
dial, and distal arteries. The transit time between each simultaneously recorded
wave is estimated using the second derivative algorithm at the wave foot. The dis-
tance traveled by the pulse wave is measured between the two recording sites (e.g.,
carotid-femoral, carotid-brachial, or femoral-dorsalis pedis) by the direct method.

The Complior device is highly regarded for its accuracy, which is mainly due
to the precise measurement of the pulse transition time, which is comparable to
the accuracy provided by catheter methods. Studies have shown that the mean
difference in PWV estimation between Complior and reference invasive methods is
relatively small, −0.2 m/s, with a standard deviation of ± 0.45 m/s and a correlation
coefficient (r) of 0.99 [83].

However, the Complior system has several limitations. The accuracy of the
measurements is highly dependent on the operator’s skill in positioning the sensors
correctly. The difference between the actual path length of the pulse wave and the
distance measured between the transducers can also introduce errors. Additionally,
the piezoelectric sensors are highly sensitive to motion and positioning disturbances,
which can affect the reliability of the measurements. Some patients find the neck
clip used for the carotid sensor to be uncomfortable, which can further impact the
ease of use and patient compliance.
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Figure 2.17: Complior device. [84]

Pulse Pen

The PulsePen (DiaTecne, Milano, Italy), consists of two small portable tonome-
ters and a small ECG unit, which can be used to detect pressure waveforms at the
carotid and femoral arteries either simultaneously or sequentially. The device cal-
culates PWV by determining the transit time between the foot of the waveforms at
these sites using the intersecting tangent method and measures the travel distance
manually with a tape measure.

sThe PulsePen is highly portable and user-friendly, making it suitable for both
clinical and ambulatory settings. It is lightweight and can be operated by a single
user, providing high-precision measurements. Studies have shown a mean difference
and standard deviation of 0.20 ± 2.54 m/s compared to invasive methods, indicating
its reliability and accuracy [85, 86]. However, the device requires skilled operators
for accurate sensor placement and measurement, and its accuracy can be affected
by the choice between single-probe and dual-probe methods.

Figure 2.18: Pulse Pen device. [86]

Arteriograph

The Arteriograph (TensioMed, Budapest, Hungary) is a widely used noninva-
sive device for measuring PWV and other cardiovascular parameters. This device
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employs an oscillometric brachial cuff to record the supra-systolic waveform at the
brachial artery, making it simpler and more user-friendly compared to other PWV
measurement devices that require multiple sensor placements. The Arteriograph
estimates PWV by measuring the time interval between the first wave peak, which
corresponds to left ventricular ejection, and the second wave peak, which is assumed
to result from the reflected pressure wave from the aorto-iliac bifurcation. The cuff
pressure is set to at least 35 mmHg above the actual SBP to occlude the brachial
artery, ensuring that the waveforms recorded are pure pressure waves with minimal
motion artifact, as the brachial artery wall is almost still under the cuff.

Differently from the mentioned devices employed for PWV assessment, the dis-
tance used in the calculation of PWV is measured from the upper edge of the pubic
bone (symphysis) to the sternal notch (jugulum).

Figure 2.19: Arteriograph acquisition system. [87]

Mobil-O-Graph

The Mobil-O-Graph (IEM Healthcare, Aachen, Germany) is a noninvasive de-
vice that measures PWV and assesses arterial stiffness using an oscillometric brachial
cuff with a high-fidelity pressure sensor. It reconstructs the aortic pulse waveform
(AOW) from the brachial pulse waveform (BPW) by applying a generalized transfer
function. This process separates the incident and reflected pulse waves to estimate
PWV based on the time difference between these waves. The main advantage of
the Mobil-O-Graph is its ability to provide a comprehensive assessment of arte-
rial stiffness through a simple brachial cuff measurement, making it accessible for
routine clinical use. Studies have shown that it produces reliable measurements,
with a mean difference of -1.01 ± 2.54 m/s compared to invasive methods [85].
However, the device’s accuracy can be affected by the assumptions made during
the waveform reconstruction process and improper cuff placement or patient move-
ment. While it shows a weaker agreement with invasive methods compared to some
other noninvasive devices, the Mobil-O-Graph remains a valuable tool for providing
comprehensive cardiovascular health assessments in clinical practice.
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CAVI-VaSera

The CAVI-VaSera device (Fukuda Denshi, Tokyo, Japan) measures the cardio-
ankle vascular index (CAVI) to assess arterial stiffness. It operates by simultane-
ously recording BP, ECG, and phonocardiogram (PCG) signals to calculate PWV
from the heart to the ankle. This measurement provides a stable index of arterial
stiffness, less influenced by current BP, making it valuable for tracking changes over
time and evaluating therapeutic interventions. The device is user-friendly and suit-
able for routine clinical use, though accuracy can be affected by sensor placement
and patient conditions.

Ultrasound

Ultrasound devices are crucial for non-invasive measurement of PWV and as-
sessment of arterial stiffness. They use high-frequency sound waves to create de-
tailed images and data of the arteries. Two primary techniques are employed:
Doppler ultrasound, which measures blood flow speed and calculates PWV based
on time delays between arterial sites, and B-mode/M-mode ultrasound, which pro-
vides anatomical imaging and measures arterial wall motion and elasticity [88].
These methods offer direct visualization, real-time imaging, and high precision, es-
pecially with advanced echotracking systems. However, limitations include frame
rate constraints, potential manual measurement variability, and the need for skilled
operators. Despite these challenges, ultrasound remains an effective and widely
used tool for evaluating cardiovascular health.

Magnetic resonance Imaging

MRI (Magnetic Resonance Imaging) is a powerful non-invasive technique used to
assess PWV and evaluate arterial stiffness. Due to its detailed anatomical imaging
capabilities, it offers high accuracy in measuring the travel distance of pulse waves
within the arteries, particularly in the aorta [89]. In MRI-based PWV assessment,
phase-contrast MRI (PC-MRI) is commonly employed. This technique captures
blood flow velocities across different anatomical planes, providing a comprehensive
view of the pulse wave as it moves through the arterial system. The PWV is cal-
culated by determining the time it takes for the pulse wave to travel between two
points along the aorta. This is achieved by measuring the arrival time of the pulse
wave at various segments of the artery, typically identified by the intersection be-
tween the baseline of the waveform and the upstroke tangent. One of the primary
advantages of using MRI for PWV assessment is its ability to accurately measure
the distance between arterial segments without relying on geometric assumptions.
This is particularly important in cases where the vessel path is tortuous, as MRI
can account for these curves and provide precise distance measurements. Despite
its accuracy and detailed imaging capabilities, MRI has several limitations. It is an
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expensive and non-portable technique, making it less accessible for routine clinical
use. The procedure can also be uncomfortable for some patients, especially those
who suffer from claustrophobia, due to the enclosed nature of the MRI scanner.
Moreover, MRI typically has poorer time resolution compared to other techniques,
which can affect the precision of the PWV measurement. One significant challenge
associated with assessing PWV is the elevated cost of the equipment. Devices used
for accurate PWV measurements, such as applanation tonometers and specialized
oscillometric, and/or ultrasound devices, often come with a high price tag due to
their advanced sensing technologies, calibration requirements, and complex algo-
rithms. These elevated costs can limit widespread clinical adoption, particularly in
resource-constrained settings, and may restrict the use of PWV as a routine car-
diovascular assessment tool. Furthermore, the need for ongoing maintenance and
potential software updates adds to the long-term financial burden, making it less
accessible for smaller healthcare providers or research institutions. Table 2.7 pro-
vides a summary of the comprehensive information regarding non-invasive systems
used for PWV assessment, including an overview of the current market prices.
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2.4 – Blood Pressure Assessment

2.4 Blood Pressure Assessment
The increasing interest in cuffless BP measurement is driven by its potential to

transform hypertension management, a leading cause of morbidity and mortality
worldwide [2]. Advances in technology have paved the way for the development of
cuffless BP measuring devices, which promise accuracy, ease of use, comfort, and
continuous monitoring. Traditional BP measurement methods, such as tonome-
try or volume clamp/plethysmography, rely on pulse wave transit time/velocity.
In contrast, cuffless BP devices use optical sensors, akin to those found in fitness
trackers, to measure beat-to-beat variability and calculate systolic and diastolic
readings through mathematical modeling [90, 91, 92].
These optical sensors, typically worn on the wrist or finger, offer the advantage
of continuous BP monitoring without the discomfort and sleep disruption caused
by traditional cuff inflations. This feature is particularly beneficial for elderly in-
dividuals or those with limited mobility. Despite their potential, the accuracy of
cuffless BP devices remains a concern. Even after validation, discrepancies of up to
20 mmHg have been observed when compared to standard brachial cuff measure-
ments, especially in individuals with elevated BP. A significant challenge for these
technologies is the calibration of local pressure measurement sites [93].
Current pulse-based systems can accurately predict BP trends rather than exact
values. Significant fluctuations in these trends can serve as warning signals for
users to monitor their BP more closely. Continuous monitoring of BP variations
can be instrumental in the clinical management of certain conditions. As technology
advances, the development of cuffless BP monitoring devices will likely continue,
providing continuous BP data and comprehensive hemodynamic information. This
progression could enhance our ability to correlate BP trends with clinical outcomes
and improve cardiovascular and renal disease risk prediction. The exploration of
this innovative approach is highly valuable and warrants further investigation [69].

BP measurement is crucial for monitoring cardiovascular health. Both hyperten-
sion and hypotension represent significant health issues that frequently necessitate
medical intervention. Traditional methods for measuring BP include:

• Arterial Catheterization: Considered the invasive gold standard, arterial catheter-
ization involves inserting a manometer directly into an artery to measure BP
waveforms [94]. This method, often used in critically ill patients requiring
continuous BP monitoring, utilizes intra-arterial catheters (also known as
"arterial lines"). The technique uses a pressure transducer linked with an
invasive catheter that contacts a pulsating artery (such as the radial artery)
through fluid, allowing for continuous, direct BP measurement. While arterial
catheters offer high accuracy and continuous monitoring, they are invasive,
necessitate expert placement and monitoring, and require the patient to re-
main relatively stationary. Therefore, although it provides true arterial BP
values, its invasive nature limits its widespread clinical use.
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Figure 2.20: Conventional BP measurement methods. Standard or widely used
methods include catheterization (a), auscultation (b), and oscillometry (c). Vol-
ume clamping (d) and tonometry (e) are less common methods for noninvasive
measurement of the BP waveform. All the noninvasive methods require an inflat-
able cuff, which is not readily available and cumbersome to use. Abbreviations:
AD, oscillogram amplitude when cuff pressure is at DBP; AM, maximum oscil-
logram amplitude; AS, oscillogram amplitude when cuff pressure is at SBP; BP,
blood pressure; DBP, diastolic BP; F, force; LED, light-emitting diode; MP, mean
BP; PD, photodetector; Pi, internal BP; PPG, photoplethysmography; SBP, sys-
tolic BP; t, time; T, arterial wall tension [95].

46



2.4 – Blood Pressure Assessment

• Manual Auscultation: The standard noninvasive method of manual auscul-
tation employs a stethoscope and an upper arm cuff to detect Korotkoff
sounds, which indicate systolic and diastolic BP [95]. Traditionally, mer-
cury or mercury-free sphygmomanometers have been the gold standard for
validating the accuracy of new BP measurement technologies. However, due
to mercury’s environmental toxicity, these devices have been banned from
clinical use. Alternatives include hybrid manual auscultatory devices with
LED or LCD displays and high-quality aneroid devices, although these are
prone to observer-related errors such as terminal digit preference, observer
prejudice, and bias.

• Oscillometry: Oscillometry is the predominant automatic, noninvasive method
for measuring BP [96]. This technique uses an inflatable cuff to determine BP
by analyzing oscillation amplitudes within the cuff pressure. The procedure
involves placing the cuff around the upper arm, wrist, or ankle and slowly
deflating (or inflating) it between pressures above systolic and below diastolic
while monitoring the cuff pressure. Unlike auscultation, the manometer is
built into the monitor, reducing the importance of precise sensor position-
ing. The cuff pressure represents the applied pressure and includes small
oscillations that reflect the pulsatile arterial blood volume. The amplitude of
these oscillations changes with the applied pressure, adhering to the nonlinear
relationship between arterial blood volume and transmural pressure. BP is
derived from the oscillogram using algorithms specific to each brand, based
on population averages.

• Volume Clamping: This noninvasive method uses a finger cuff with a PPG
sensor to monitor blood volume oscillations. The PPG sensor detects varia-
tions in blood volume within the digital arteries, while a manometer records
the cuff pressure [21]. Initially, the cuff pressure is incrementally increased
to identify the blood volume at zero transmural pressure, indicating when
the artery is unloaded. Then, the cuff pressure is continuously adjusted to
keep the PPG-detected blood volume at this unloaded level throughout the
cardiac cycle, using a rapid servocontrol system. This technique allows the
cuff pressure to approximate the finger BP waveform. Continuous monitoring
necessitates regular updates of the unloaded blood volume to accommodate
changes in vasomotor tone.

• Tonometry: Tonometry is a noninvasive technique that measures BP wave-
forms from large, superficial arteries using a force sensor applied to the skin
over the artery [97]. The goal of applanation tonometry is to record intra-
arterial pressure waveforms accurately. This method typically involves a pen-
like tonometer probe with a piezoelectric pressure sensor at the tip, although
servo-controlled devices with piezoelectric arrays can also be used to minimize
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movement artifacts. The sensor is lightly applied perpendicular to the artery,
partially flattening the arterial wall (applanation), which eliminates tangen-
tial forces and exposes the sensor to the arterial pressure. This setup enables
high-quality recordings of the arterial pulse, closely resembling intra-arterial
measurements.

2.4.1 Advantages of Cuffless Blood Pressure Measurement
Cuffless BP measurement offers solutions to several limitations associated with

traditional methods, enhancing accessibility, convenience, and continuous monitor-
ing capabilities.

Indeed, traditional cuff devices are not always available, particularly in low-
resource settings, which limits regular BP monitoring opportunities [95]. In many
low-resource areas, individuals lack access to these devices or must go to consid-
erable lengths to use cumbersome equipment. Consequently, many people do not
monitor their BP regularly, making it difficult to manage hypertension effectively
or stay motivated to adhere to BP-lowering medications. Currently, only about
three in seven people with hypertension worldwide are aware of their condition,
and just one of these seven has their BP under control. This lack of awareness and
management makes hypertension the leading cause of disability-adjusted life years
lost globally.

In addition, the repeated inflations and deflations required by traditional cuffs
can be disruptive, reducing the effectiveness of ambulatory BP monitoring and hy-
potension surveillance. The inconvenience and discomfort of using cuffs contribute
significantly to the underutilization of ambulatory BP monitoring and can dimin-
ish the clinical value of nighttime BP readings. Additionally, the infrequency of
BP measurements in postsurgical patients who are at high risk for hypotension—a
condition associated with increased mortality—underscores the need for a more
convenient solution.

Furthermore, traditional oscillometric devices do not provide continuous BP
readings, which are crucial for the immediate detection of hypotension and real-time
therapy adjustments during perioperative and critical care. Continuous monitoring
is essential to understand the dynamic BP responses to daily physical and mental
activities, which are often unknown with intermittent measurements.

Removing the cuff from noninvasive BP measurement addresses several critical
issues:

1. Increasing Hypertension Awareness: Encourages regular BP monitoring in
daily life, enhancing hypertension awareness among the general population.

2. Improving Long-Term Hypertension Control: Facilitates continuous moni-
toring, which can reveal high BP readings to patients and motivate better
management of their condition.
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3. Enhancing Hypertension Evaluation and Diagnosis: Allows for unobtrusive
BP monitoring throughout the day and night, improving the accuracy of
hypertension assessments.

4. Advancing Hypotension Surveillance and Therapy: Provides seamless, contin-
uous BP monitoring, which is crucial for detecting and managing hypotension.

By offering comprehensive BP data across various daily circumstances, rather than
just periodic snapshots, the cuffless paradigm has the potential to revolutionize
hypertension evaluation and management, significantly improving BP assessment.

Cuffless BP measurement techniques can be divided into calibrated and uncali-
brated methods. Calibrated methods involve obtaining one or more variables that
correlate with BP and then mapping or calibrating these variables to mmHg units
using periodic cuff BP measurements or demographic inputs [98]. In contrast, un-
calibrated methods do not require such calibration, either from cuff measurements
or demographic data, but tend to be less convenient once the initial cuff BP mea-
surement for calibration has been acquired.

2.4.2 Uncalibrated models
Uncalibrated methods for cuffless BP measurement aim to simplify BP moni-

toring by eliminating the need for periodic calibration. Here are the three main
uncalibrated methods: cuffless oscillometry, ultrasound, and volume control.

1. Cuffless Oscillometry: Adjusts the transmural pressure of an artery without
an inflatable cuff, using force and PPG sensors to measure pressure variations
and compute BP from the oscillogram [99].

2. Ultrasound: Employs M-mode and Doppler principles to measure blood vol-
ume and velocity waveforms in an artery [100].

3. Volume Control: Uses a servo-control system to maintain blood volume at its
unloaded level throughout the cardiac cycle, enabling continuous BP moni-
toring.

2.4.3 Calibrated models
1. Pulse Transit Time: Measures the time delay for a pressure wave to travel

between two arterial sites, typically a proximal and a distal one [101]. PTT
is inversely related to arterial stiffness and BP [102]. The calibration process
for cuffless BP measurement is essential for establishing a direct mapping re-
lationship between actual BP readings and PTT measurements. This process
involves several aspects: the method of calibration, the frequency of calibra-
tion, and whether calibration can be generalized for a population or needs
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to be individualized. The goal is to create a calibration curve that maps
PTT measurements to absolute BP values. The steps involved in calibration
include defining a mathematical model to relate PTT to BP, either using
physical models or empirical regression models. Physical models typically
rely on the Moens–Korteweg and Bramwell–Hill equations with an assumed
function to relate the elastic modulus or compliance to BP. Next, multiple
pairs of PTT and BP values are measured from a subject during interventions
that cause significant BP changes. Common interventions include exercise
(e.g., climbing stairs, cycling on an ergometer), postural changes (i.e., seated,
supine, standing), sustained handgrip, and the Valsalva maneuver. More sub-
stantial BP changes can be induced using anesthesia induction, surgery, and
ICU therapies, though these are limited to hospitalized patients and are not
suitable for managing chronic hypertension. The parameters of the model are
then estimated by fitting it to the multiple PTT-BP measurements. The ac-
curacy of parameter estimation improves with the ratio of the number of data
pairs to the number of parameters, with least squares regression commonly
used for this purpose. Calibration can be performed once at the beginning
or periodically over time [103]. For studies requiring periodic calibration, the
interval between calibrations is often within two hours to account for physio-
logical changes such as vascular tone and smooth muscle contraction. Shorter
PTT is directly linked to increased arterial stiffness, driven by higher sym-
pathetic nerve activity or elevated BP, necessitating recalibration when such
changes occur. Besides individualized calibration, a generalized approach can
also be used. This involves using a population average value for one model
parameter while estimating the other parameter from cuff BP measurements.
This method avoids BP perturbation but may result in less accurate BP val-
ues. The process involves collecting training data comprising pairs of PTT
estimates and BP values during a set of BP-varying interventions from a di-
verse group of subjects, estimating the parameters of a calibration model for
each subject, and regressing these parameters on simple subject information.
Collecting the necessary training data is a significant undertaking but may be
the best way to popularize the PTT-based BP monitoring approach. Indepen-
dent determination of systolic and diastolic BP can be challenging, especially
if these values do not vary in the same direction (e.g., isolated systolic hy-
pertension). This issue can be addressed by including additional covariates,
such as heart rate, in the calibration model or by estimating multiple PTT
values per beat through arterial modeling. PTT estimates should correlate
better with BP values than these covariates to offer real value. This chapter
provides a general overview of key elements in PWV or PTT-related cuffless
continuous BP monitoring. For more detailed information on mathematical
models, calibration, and practical approaches, interested readers should refer
to relevant literature in this field.
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2. Pulse Wave Analysis (PWA): Pulse wave analysis consists of the morpholog-
ical analysis of the pressure pulse waveform. With the purpose of deducing
indicators of cardiovascular health, the technique can provide an indirect
means of assessing BP [104].
PWA has emerged as an essential method for non-invasive cardiovascular
health monitoring, particularly for cuffless BP measurement. The technique
involves examining the pulse waveform, which provides significant insights
into various cardiovascular parameters. The integration of Machine Learn-
ing (ML) into PWA has considerably enhanced its accuracy and utility, en-
abling continuous and precise BP monitoring. Pulse wave analysis revolves
around measuring and interpreting the pulse wave generated by the heart as
it pumps blood through the arteries. Key parameters derived from PWA in-
clude PWV, PTT, augmentation index (AIx), and central aortic blood pres-
sure (CABP). As mentioned in the previous sections, PWV measures the
speed at which BP waves move through the arteries, directly indicating arte-
rial stiffness. PTT is the time it takes for the pulse wave to travel between
two arterial sites and is inversely related to BP. Additionally, AIx reflects
the extent of wave reflection, providing information on arterial stiffness and
CABP. CABP estimates the pressure in the aorta, offering a more accurate
representation of the load on the heart compared to peripheral measurements.
Photoplethysmography is a cornerstone technology in PWA. It uses optical
sensors to detect blood volume changes in the microvascular bed of tissue,
making it non-invasive and suitable for continuous monitoring. ECG and
seismocardiography (SCG) are also integral to PWA, with ECG measuring
the electrical activity of the heart and SCG capturing mechanical vibrations.
Combining PPG with ECG improves PTT measurements and enhances the
accuracy of cardiovascular assessments.
By extracting features from an arterial waveform (i.e., PPG or tonometry),
and mapping them to BP units through a calibration model, PWA can be
performed on PPG waveforms and can enhance PTT accuracy. Moreover, the
inclusion of ML into PWA has greatly improved its accuracy and applicability,
allowing for more precise and personalized BP monitoring.

2.4.4 Machine Learning techniques for non-invasive cuffless
measurement of blood pressure

ML has revolutionized PWA by enabling the extraction of meaningful cardiovas-
cular parameters from complex pulse waveforms. Traditional PWA methods often
face challenges due to the intricate and non-linear nature of pulse waveforms, as well
as the influence of various physiological and environmental factors. ML approaches
address these challenges by learning from large datasets, identifying patterns, and
making accurate predictions based on the input data.
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Convolutional Neural Network (CNN) are widely used in PWA for their ability
to automatically extract features from raw waveform data. In [105] the PPG2BP-
Net model employs a comparative paired one-dimensional CNN structure to esti-
mate highly variable intrasubject BP. By comparing PPG signals from dual sen-
sors, the CNN derives the relationship between the waveform features and BP val-
ues, providing continuous BP estimates without the need for periodic calibration.
Recurrent Neural Network (RNN) [106] and Long Short-Term Memory (LSTM)
[107] networks are particularly effective in handling time-series data, such as pulse
waveforms. These networks capture temporal dependencies and patterns in the
data, enabling more accurate BP predictions. By processing sequences of PPG
signals, RNNs and LSTMs can account for the dynamic nature of cardiovascular
parameters, improving the robustness of BP estimation.

Support Vector Machine (SVM) are employed for classification tasks in PWA,
such as distinguishing between different physiological states based on pulse wave
characteristics [108, 109]. In combination with feature extraction techniques like
wavelet transforms, SVMs can classify pulse waveforms into categories that corre-
spond to specific BP ranges or health conditions, facilitating targeted interventions.
Dynamic Time Warping (DTW) and K-Nearest Neighbour (KNN) are used to align
pulse waveforms by minimizing the differences in their shapes, making them suit-
able for recognizing similar patterns in PWA. When combined with KNN, DTW
enhances the accuracy of cardiovascular parameter extraction by matching target
waveforms with reference waveforms in a pattern library. This approach is effec-
tive in handling variations in heart rate and pulse pressure, providing reliable BP
estimates [110].

Ensemble learning techniques, such as random forests and gradient boosting
machines, aggregate predictions from multiple models to improve overall accuracy
[111]. These methods are used in PWA to integrate information from various sensors
and features, resulting in more robust BP predictions. By leveraging the strengths
of different models, ensemble methods can mitigate the impact of outliers and noise
in the data.
Despite the progress, several challenges remain in PWA-based BP estimation. Mo-
tion artifacts, signal noise, and individual variability in vascular characteristics can
affect the accuracy of PPG-based BP measurements. Ensuring diverse and high-
quality datasets is crucial for robust BP estimation. Incorporating adaptive learn-
ing techniques and personalized calibration methods can enhance the long-term
accuracy of cuffless BP monitoring. For widespread adoption, ML-based PWA sys-
tems must be seamlessly integrated into clinical workflows. Ensuring compatibility
with existing medical devices, electronic health records, and regulatory standards
is essential for clinical implementation.
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Motion Artifacts Recognition in PPG Data

PPG signals are highly susceptible to motion artifacts, which can significantly
distort the signal and affect the accuracy of the derived physiological measurements.
Motion artifacts in PPG data can arise from various sources, including voluntary
and involuntary movements, sensor displacement, and environmental interferences.
Recognizing and mitigating these artifacts is crucial to ensure the reliability of
PPG-based measurements [112].

Several methods have been developed to recognize and mitigate motion artifacts
in PPG signals, ranging from traditional signal processing techniques to advanced
machine learning algorithms. Time-domain analysis methods involve directly ex-
amining the amplitude and time characteristics of the signal. In [113] the Pan and
Tompkins algorithm, initially developed for ECG signals and later adapted for PPG
signals. This algorithm involves several preprocessing steps, including filtering, dif-
ferentiation, squaring, and integration, which enhance the PPG signal and help in
detecting peaks corresponding to heartbeats.

Frequency-domain analysis methods employ spectral analysis to identify charac-
teristic frequencies of motion artifacts. Techniques like Continuous Wavelet Trans-
form (CWT) decompose the PPG signal into various frequency components [114].
This decomposition helps distinguish between physiological signals and artifacts by
analyzing the frequency content of the PPG signals.

Machine learning approaches have shown significant promise in recognizing and
mitigating motion artifacts in PPG signals. These methods involve training mod-
els on labeled datasets to learn patterns associated with artifacts and physiological
signals. Random Forest classifiers, for example, construct multiple decision trees
during training, with each tree voting on the classification outcome. The majority
vote determines the final classification. RF classifiers have been effective in distin-
guishing between acceptable and anomalous PPG segments by training on features
such as Kaiser-Teager energy, spectral entropy, and signal skewness. Studies have
demonstrated high accuracy in detecting artifacts using RF classifiers [114].

Support Vector Machines (SVMs) are another type of supervised learning model
used for classification and regression analysis. SVMs classify data points by finding
the optimal hyperplane that separates different classes in the feature space. This
method has been applied to PPG data to effectively identify segments affected by
motion artifacts by training on extracted features [115].

In general, the procedure that discerns instances deviating from the recurrent
patterns or trends within the data is known as anomaly detection [116]. Depending
on the field of application, several anomaly detection algorithms have been imple-
mented to detect outliers within an ensemble of data [114, 117, 118]. The design of
these techniques is generally tailored to the nature of the data, the characteristics of
anomalies, and the availability of labels. Supervised anomaly detection techniques
create a predictive hypothesis function to discern abnormal behavior, relying on
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annotated instances to establish expected patterns and outlier classes. However,
these methods depend on labeling, which poses a challenge for many applications,
especially in long-term health monitoring, where expert data labeling is expensive
and time-consuming [119]. On the contrary, unsupervised anomaly detection tech-
niques address the detection of outliers in unlabeled data. These methods operate
based on the assumption that regular instances are more prevalent than outliers,
and normal instances tend to form dense clusters, while outliers are sparser. This
approach proves advantageous when acquiring labeled data poses challenges or is
impractical, offering a more adaptable and cost-effective solution [119, 120].

The Isolation Forest (IF) algorithm isolates observations by randomly selecting
features and splitting values to create a forest of random trees. Anomalies are
identified as points with shorter average path lengths. This method is efficient for
high-dimensional data and has been successfully applied in healthcare to detect
PPG signal anomalies. The Local Outlier Factor (LOF) algorithm measures the
local density deviation of a data point with respect to its neighbors. Points with
significantly lower density than their neighbors are considered outliers. LOF is
effective in identifying local anomalies, making it suitable for detecting motion
artifacts in PPG data where density variations are common. The Elliptic Envelope
algorithm assumes that data follows a Gaussian distribution and fits an ellipse to
the central data points. Points outside the ellipse are identified as outliers. This
method is useful for data that approximately follows a Gaussian distribution but
may be less effective for complex or non-Gaussian data distributions.

Combining multiple algorithms can enhance the robustness of anomaly detec-
tion. By integrating Isolation Forest with LOF can leverage the strengths of both
methods, providing a more comprehensive detection mechanism.

Therefore, recognizing and mitigating motion artifacts in PPG signals is essen-
tial for obtaining accurate physiological measurements. A variety of methods, from
traditional signal processing techniques to advanced machine learning algorithms,
are employed to address this challenge.

Personalized Machine Learning Approaches for Cuffless Blood Pressure
Assessment

The combination of PWA and ML offers a promising avenue for developing accu-
rate, non-invasive, and continuous BP monitoring systems. The ongoing advance-
ments in ML algorithms and wearable sensor technology are expected to further
refine these models, making cuffless BP monitoring a viable option for widespread
clinical and personal health applications. A promising solution in the field of car-
diovascular health monitoring could be represented by personalized healthcare. An
innovative approach involves the successful integration of advanced, unobtrusive
hardware solutions with subject-specific BP models. As described in the following
section, this combination holds significant potential for improving patient outcomes
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by providing more accurate, continuous, and personalized monitoring. By tailoring
BP management to the unique physiological characteristics of each individual, this
approach offers a transformative leap forward in the prevention and management
of cardiovascular diseases.

Although DL and ML have found extensive application in BP assessment, the
considerable inter-subject variability has posed challenges in formulating a suffi-
ciently generalized model whose performance could also be maintained outside of
the initial dataset. Therefore, drawing inspiration from established practices in the
field of human activity recognition [121, 122], numerous studies have suggested the
formulation of person-specific models for the examination of this clinical parameter
[118, 123, 124, 125]. This task can be approached using Person Specific Mod-
els (PSM) or Person Independent Models (PIM). The distinction between these
models lies in their training data: PSMs are trained on data from individual users,
while PIMs are trained on data from multiple users.

Person-specific models leverage the unique characteristics of an individual’s
movements, leading to higher accuracy for known users. These models adapt to
the nuances of a user’s gestures, providing a tailored recognition system. However,
the primary limitation of PSMs is their reduced generalizability; a model trained
on one user’s data may not perform well on data from another user.

On the other hand, person-independent models aim to generalize across different
users by incorporating diverse training data. This approach ensures that the model
can handle variations in gestures from different individuals. However, PIMs may
not achieve the same level of accuracy for individual users as PSMs because they
might miss specific user patterns.

An ensemble approach, combining PSMs and PIMs, can create a robust system
that benefits from the generalizability of PIMs and the accuracy of PSMs. This
ensemble approach can dynamically select or weight models based on the user’s
identity or context, enhancing overall performance. The implementation of per-
sonalized ML models in this domain holds promise for enhancing the accuracy and
reliability of cuffless BP monitoring.

A notable approach involves using a hybrid neural network architecture that
combines convolutional, recurrent, and fully connected layers to operate directly
on raw PPG time series data, estimating BP every five seconds. This method
leverages a transfer learning technique to address the issue of limited personal
PPG and BP data. By personalizing specific layers of a network pre-trained with
extensive data from other patients, the model achieves high accuracy with minimal
personal data—requiring as few as 50 samples per person [126].

Within the context of data-driven approaches, Gaussian Mixture Models (GMM)
and an Online Recurrent Extreme Learning Machine (OR-ELM) have been used for
continuous learning and prediction [127]. This method adapts to individual physio-
logical characteristics over time, enhancing personalization. A practical application
of this approach involved developing a mobile application to provide real-time BP
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predictions, demonstrating the practicality and effectiveness of this personalized
method.

Research has also evaluated cuffless BP monitoring in specific populations, such
as individuals with Parkinson’s Disease [128]. One study used a wearable device
that utilized ECG and PPG signals to estimate BP, achieving mean absolute errors
(MAE) of 7.84 ± 8.12 mmHg for systolic and 7.51 ± 6.16 mmHg for diastolic mea-
surements. This application highlights the importance of real-time, non-invasive
monitoring in managing non-motor symptoms of Parkinson’s Disease.

Findings in the literature show that, as for human gesture recognition, also cuf-
fless BP monitoring could benefit significantly from personalized machine-learning
approaches. In both fields, personalization has proven to be a highly effective
method for enhancing the model’s accuracy. In gesture recognition, models must
adapt to individual users’ unique movement patterns, while in BP monitoring, they
must adjust for individual physiological characteristics.

Successful personalization in both domains relies on diverse training data. For
gesture recognition, models trained on data from various users can generalize bet-
ter. Similarly, BP monitoring models trained on data from diverse populations
can handle a wide range of physiological variations. Combining person-specific
and person-independent models in an ensemble approach is effective in both fields,
enhancing the model’s ability to generalize while maintaining high accuracy for
individual users.

Moreover, continuous learning and real-time adaptation could help BP moni-
toring systems update their predictions based on ongoing physiological data, thus
improving the management of chronic conditions such as hypertension, and pro-
viding timely health insights. These systems can provide tailored, accurate, and
reliable solutions by leveraging data diversity, continuous learning, and ensemble
models.

In conclusion, the integration of machine learning approaches in pulse wave
analysis for cuffless BP monitoring has significantly advanced the field of cardio-
vascular health monitoring. By leveraging advanced algorithms and large datasets,
ML models can extract meaningful cardiovascular parameters from complex pulse
waveforms, offering personalized and non-intrusive health monitoring solutions. As
research continues to address existing challenges and refine these technologies, the
future of cuffless BP monitoring looks promising, with the potential to revolutionize
the way we monitor and manage cardiovascular health.
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2.5 Addressing the Challenges in PWV and BP
Monitoring: From Literature to Methodol-
ogy

The analysis of current literature reveals several critical limitations in the ex-
isting non-invasive methodologies for assessing PWV and cuffless BP monitoring.
While PWV is widely recognized as a valuable biomarker for arterial stiffness and
cardiovascular risk assessment, its integration into routine clinical practice remains
limited due to the cost, complexity, and operational constraints of available devices.
Most of the advanced non-invasive devices that provide accurate PWV measure-
ments are either prohibitively expensive or require specialized training, which re-
duces their accessibility in general healthcare settings. Additionally, many of these
devices involve cumbersome procedures, such as ECG connections, that may limit
their usability in continuous monitoring scenarios or in resource-limited settings.
Similarly, while cuffless BP monitoring has the potential to transform cardiovas-
cular healthcare by offering continuous and non-invasive measurements, existing
technologies still face challenges in terms of accuracy, especially when applied to
diverse populations or when used in everyday conditions. Many devices are prone
to inaccuracies due to sensor noise, variations in positioning, or inconsistencies
in signal acquisition. These challenges pose significant barriers to the widespread
adoption of such technologies, particularly for long-term, continuous health moni-
toring, which is crucial for effective hypertension management and cardiovascular
risk reduction.
In response to these identified gaps, this thesis presents a comprehensive explo-
ration of novel methodologies aimed at addressing these challenges and improving
the overall reliability, accessibility, and accuracy of cardiovascular health monitor-
ing systems. Chapter 3 introduces a newly designed, low-cost, and user-friendly
device for PWV measurement. By focusing on the integration of commercially
available micro-force sensors, the device reduces both cost and complexity while
maintaining clinical accuracy. A key innovation in this design is the elimination of
ECG connections and wired components, enabling real-time data transmission to
a graphical user interface that provides immediate feedback to the clinician. This
not only improves the usability of the device but also ensures that the clinician
can monitor the signal quality and adjust the procedure as needed, enhancing the
overall reliability of the measurement.
In Chapter 4, the thesis delves into the technical challenges associated with PWV
measurement, specifically addressing the sources of variability and inaccuracy in
traditional methods. Traditional PWV measurement techniques often rely on sin-
gle fiduciary points, such as the foot of the pulse wave, which can introduce errors
due to noise, signal artifacts, or inconsistent pulse wave morphology. To overcome
these limitations, a new algorithm based on region-based cross-correlation (RBCC)
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is proposed. This method improves the accuracy of PWV assessment by analyzing
specific regions of the pulse waveform, rather than relying on a single feature. The
RBCC algorithm is particularly valuable in mitigating errors caused by sensor po-
sitioning, operator expertise, or variations in pulse morphology between subjects.
Furthermore, the robustness of the RBCC method under noisy conditions is demon-
strated, showing that it outperforms traditional intersecting tangent methods in
both high-quality and noisy data environments. This is particularly important for
real-world clinical applications, where signal noise is a common challenge.
Chapter 5 shifts the focus to cuffless BP monitoring technologies, which are in-
creasingly important given the limitations of traditional cuff-based methods. The
research conducted in this chapter addresses the potential for continuous BP mon-
itoring through the use of PPG sensors and machine learning algorithms. This
approach provides a non-invasive and continuous alternative to conventional BP
measurements, capturing beat-to-beat variability and BP fluctuations through-
out the day. By developing and testing a personalized multiclass classification
model, the thesis explores how these technologies can be adapted to account for
individual-specific variations in BP, such as those caused by physical or cognitive
workload. This personalized approach overcomes the shortcomings of generalized
models, which often struggle to account for the high inter-subject variability seen
in BP responses. The result is a more robust, accurate, and practical solution for
continuous BP monitoring in real-life conditions, offering significant potential for
early detection and improved management of hypertension and cardiovascular dis-
ease.
Collectively, the methods and innovations presented in the following chapters aim
to improve the accuracy, reliability, and accessibility of non-invasive cardiovascular
health monitoring systems. By addressing the cost and usability issues associated
with PWV measurement, the limitations of cuffless BP monitoring technologies,
and the inherent variability in traditional signal processing methods, this thesis
contributes to advancing the field of cardiovascular health assessment. These in-
novations have the potential to not only enhance patient outcomes through more
accurate and accessible diagnostic tools but also to reduce healthcare costs by
preventing the development of severe cardiovascular complications through early
detection and proactive management of risk factors. In this way, the work pre-
sented in this thesis represents a significant step forward in addressing the pressing
challenges identified in the literature, offering practical solutions that align with
the evolving needs of healthcare systems.
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Chapter 3

MicroForce Sensors for Pulse
Wave Velocity Assessment

This chapter presents an in-depth examination of micro force sensors and their
application in the assessment of PWV.

The initial sections provide a detailed discussion on FMA MicroForce sensors,
elaborating on their operational principles and the hardware setup required for data
acquisition. This is followed by a thorough exploration of the experimental setup
used for sensor characterization, with a particular focus on the calibration processes
and the specific conditions under which the sensors were tested.

The latter part of the chapter is dedicated to presenting the preliminary results
obtained from sensor characterization. These results highlight the performance of
the sensors under various testing conditions and provide insights into their relia-
bility and accuracy. The outcomes of these preliminary tests lay the groundwork
for subsequent development and refinement of the acquisition system, which will
be discussed in Chapter 4.

3.1 MicroForce sensors
The Honeywell FMAMSDXX005WCSC3 microforce sensor is part of the FMA

Series, which are piezoresistive-based force sensors designed to provide precise dig-
ital outputs for force measurements across specified full-scale force spans and tem-
perature ranges. These sensors are calibrated and temperature compensated for
sensor offset, sensitivity, temperature effects, and nonlinearity using an onboard
application-specific integrated circuit (ASIC). They provide a stable output di-
rectly proportional to the force exerted on the mechanically connected stainless
steel sphere. This sphere is mounted directly over a silicone sense die located on
top of the sensor, as depicted in Figure 3.1. Optimal performance is achieved when
the force is applied along the vertical axis to the top center point of the coupling
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sphere. Direct mechanical coupling ensures reproducible performance and a reli-
able mechanical link to the application, facilitating easy interfacing with the sensor
[129].

Figure 3.1: FMAMSDXX005WCSC3 load cell. (a) Isometric view. (b) Cross-
section view highlighting the main components of the sensors.

The sensor’s small form factor, Figure 3.2 (5 mm x 5 mm base, 2.15 mm height),
low power consumption (approximately 14 mW), and low cost make it an ideal
solution for the objectives of this thesis. The sensing area consists of a sphere
with a diameter of 1.6 mm and a height varying between 0.293 mm and 0.483 mm,
depending on the sensor’s force range.

Figure 3.2: FMAMSDXX005WCSC3 load cell size comparison.

The selected sensor model, FMAMSDXX005WCSC3, is a compensated and am-
plified sensor featuring mechanical coupling and a sphere as the contact element.
It includes a diagnostic function that allows users to verify its operational status.
Available in force ranges of 5, 15, and 25 Newtons (N), this sensor enables users
to choose the optimal range for their application to maximize sensitivity and res-
olution. The best results are obtained when measurements are taken as close as
possible to the full scale. For the forces involved in this application, sensors with
force ranges of 5 N and 15 N have been selected for testing.
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3.1.1 Sensor Data Readout
The Honeywell FMAMSDXX005WCSC3 microforce sensor uses the Serial Pe-

ripheral Interface (SPI) for digital communication.SPI is a synchronous serial com-
munication protocol that facilitates data exchange between a master device and
one or more slave devices. In this protocol, the master initiates communication
and provides the clock signal, while the slaves respond with the required data. The
FMAMSDXX005WCSC3 operates in half-duplex mode, meaning data is transmit-
ted in only one direction at a time—from the sensor (slave) to the master.

Figure 3.3: SPI sensor data readout [130].

Honeywell digital output force sensors are designed so that data on the MISO
bus line changes during the falling edge of clock pulses, requiring the Master device
to sample this data on the rising edge of the clock pulse. The sensor provides two
options for data readout:

1. Two-Byte Data Readout: This mode retrieves the first two bytes, which in-
clude the 14-bit compensated force output and 2 bits of sensor status.

2. Four-Byte Data Readout: This mode includes the compensated force output
as well as an additional two bytes for the optional compensated temperature
output.

For this application, only the two-byte data readout is used since temperature
measurements are not needed for the case study. To read data from the sensor,
the Chip Select (CS) pin is brought to a low logic level. During the following 16
clock cycles, the sensor’s output register is read, sending 16-bit data through the
MISO line into a temporary buffer. Once data acquisition is complete, the CS pin
is returned to a high logic level until the next data acquisition cycle.

The timing for toggling the CS level is managed by an internal timer set to the
desired sampling frequency, which will be discussed in subsequent sections. When
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Table 3.1: Diagnostic states in data readout [131].

S1 S0 Definition
0 0 Normal operation, correct data.
0 1 The device is in command mode, which is used for programming the

sensors and is not utilized during regular operation.
1 0 Stale data condition occurs when the sensor is unable to update the

output buffer as quickly as the master device polls for data.
1 1 Diagnostic condition refers to a loss of connection to the sense element

or a short circuit within the sensing element.

Figure 3.4: Two-Byte force data payload [131].

the set time elapses, the timer generates an interrupt, triggering a callback function
that performs the data acquisition. Using interrupt mode for data acquisition en-
sures that the microcontroller is not blocked during the process, allowing continuous
data acquisition without disrupting the microcontroller’s normal operations.

The two most significant bits of Data Byte 1 (S1 and S0) indicate the sensor’s
status. These diagnostic states are crucial for determining whether the system
is functioning correctly or if there are issues such as short circuits or stale data.
Table3.1 below shows these status bits’ possible combinations and meanings.

A control condition checks these status bits in the firmware immediately after
data readout. Only if the status bits are "00" is the data sent to the laptop using
the UART protocol for further analysis.

The digital output can be expressed with its transfer function [132], where the
digital output is defined as:

ouutput = outputmax − outputmin

ForceRange

∗ Forceapplied + outputmin (3.1)

where outputmax and outputmin are, respectively, the value of the 90% and 10%
of the dynamic range. The ForceRange,expressed in N, is the maximum detectable
force by the sensor. In this application, two load cells with different ranges, 5N and
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Figure 3.5: Optimal range of use of the sensor [132].

15N, were tested.
Overturning the Eq.3.1, the force applied on the sensing sphere can be calculated

as reported in Eq.3.2:

Force = output − outputmin

outputmax − outputmin

∗ Forcerange (3.2)

These equations have been implemented in post-processing to retrieve the cor-
responding voltage value when a defined load is applied on the sensor. The present
relationship was ultimately employed to better visualize the behavior of both sen-
sors.

3.1.2 Definition of the Sampling Frequency
The load cell datasheet does not specify the data readout sampling frequency.

Therefore, an investigation was conducted to determine an appropriate sampling
frequency. A thirty-second period was established for data acquisition from the sen-
sor, during which the status bits of each measurement were checked. If incorrect
measurements ("stale data") were detected at the end of this period, it indicated
that the sampling rate was too high. Consequently, the sampling rate was in-
crementally reduced by adjusting the microcontroller’s clock frequency and timer
settings to optimize the data acquisition timing.

Table 3.2 summarizes the frequency adjustment steps. Starting with a sampling
frequency of 2 kHz, the objective was to minimize the number of "stale" measure-
ments relative to the total number of measurements taken during the thirty-second
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Table 3.2: Tested sampling frequencies, displaying the percentages of stale measure-
ments relative to the total measurements acquired over a 30-second period. The
number of incorrect measurements for each frequency is indicated in parentheses.

System Clock (MHz) Sampling rate (Hz) "Stale data" (%)
80 2000 18,05% (10830)
80 1000 5.09% (1527)
80 800 0.7% (181)
60 600 0.2% (37)
60 500 0.16% (25)
45 450 0.1% (12)
44 440 0.04% (5)
80 400 0.04% (0)
80 200 0% (0)

acquisition period. It was observed that decreasing the frequency reduced the num-
ber of incorrect readouts, as faster data requests from the microcontroller outpaced
the refresh time of the sensor output register.

Following this investigation, a sampling rate of 200 Hz was selected as it was
the highest rate at which 100% no loss of data were observed.

3.2 Sensor Characterization
In this section, the characterization of the sensor is discussed. To begin with, the

experimental setup employed to ensure a reliable evaluation of each tested sensor
is described. Then, the design of the support structure and proceeding through
the measurement cycles are presented. Finally, the results of the characterization
process are presented and discussed.

The process starts with the design and fabrication of a suitable support for the
sensor, ensuring that it is securely mounted and optimally positioned for accurate
measurements. The measurement cycles involve systematic testing under various
conditions to assess the sensor’s performance, accuracy, and reliability.

3.2.1 Experimental setup
For evaluation purposes, two sensors with force ranges of 5 N and 15 N were

selected. These are the lowest force ranges available for this sensor type and are
well-suited for the thesis application, as the displacement of the carotid or femoral
artery generates a force of only a few Newtons.

The sensor was soldered onto a rectangular PCB with headers for each pad,
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facilitating testing on a breadboard. This PCB was designed to match the sen-
sor’s layout. This solution was designed in order to connect the assembly to the
P-NUCLEO-WB55 Nucleo board (STMicroelectronics, Shanghai, China)[133] em-
ployed for data acquisition. A weight kit ranging from 1 to 500 grams was utilized
to assess a wide range of sensor output responses, specifically using weights of 10
g, 20 g, 50 g, 100 g, 200 g, and 500 g.

A 3D-printed support structure was designed to ensure precise alignment be-
tween the calibration weights and the sensing sphere of the load cell. This config-
uration enabled consistent measurements under various conditions, facilitating an
unbiased comparison between the 5N and 15N load cells. The support system was
designed with the following features:

• The top support must direct the weight solely onto the contact sphere, avoid-
ing other points in the system.

• It should include a base that accommodates the PCB while keeping the sen-
sor’s sensing area elevated.

• The top support must attach to the base without transferring weight to it.

The support base was constructed as a cylinder with a diameter of 45 mm and a
height of 30 mm. The bottom section includes two L-shaped openings to facilitate
the routing of wires from the headers beneath the PCB to the breadboard. The top
area includes a rectangular hole (16.25 mm x 9 mm) for placing the PCB, which
connects to the L-shaped holes. Additionally, four symmetric round holes (6 mm
diameter) were created on the top surface for stability, allowing the top support
cylinder to fit securely.

The top support consists of a circular base with a diameter of 45 mm and a
thickness of 4 mm. From this base, four symmetric cylinders with a diameter of
5 mm and a height of 10.5 mm were extruded to align with the holes in the base.
Their diameter is slightly smaller than the holes to avoid contact with the PCB.
To interact with the sensor’s sensing element, a smaller cylinder with a height of 6
mm and a diameter of 2.7 mm was extruded, shifted 0.89 mm from the center to
match the sensor’s offset sphere.

The design of these support pieces was created within the SolidWorks environ-
ment (Dassault Systèmes SE, Vélizy-Villacoublay France) and 3D printed using a
Formlab 3 printer (Formlabs, Somerville, USA).

Several characterization measurement cycles were performed to analyze the sen-
sor’s behavior under different loads. The acquisition time was set to 45 seconds for
various types of measurements:

• A cycle without any weights to detect the baseline signal and offset.
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Figure 3.6: Assembly of the support system. (a) Section of assembly of the support
system. Circled in red there is the sensor, with below the PCB on which it is
soldered in yellow. (b) Isometric view.

• Cycles with constant weights gradually increased from 10 g to 20 g, 50 g, 100
g, 200 g, and 500 g.

• Alternating loading and unloading cycles with different weights to evaluate
the sensor’s responsiveness to rapid force variations and its ability to quickly
restore the baseline.

Figure 3.7: Experimental set-up for sensor’s characterization.
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Figure 3.8: Constant load application for sensor’s characterization.

3.3 Characterization Results

3.3.1 Baseline
The initial measurements focused on establishing the baseline. These measure-

ments are crucial to determine the sensor’s stability in idle condition, when no
weights were applied. Then, the mean baseline output voltage for both sensors and
their standard deviation were computed. As indicated in Table 3.3 and reported
in Figure 3.9, both sensors exhibit baseline values of 872 ± 2.510−4 mV and 679
± 4.8610−3 mV respectively for 5N and 15N load cell. Furthermore, the minimal
standard deviation demonstrates that the sensors consistently maintain their out-
put over time. Significantly, the sensor with a 5N force range shows exceptional
stability, with an output variation of less than 0.1% of its mean value.

Table 3.3: Mean value and standard deviation of the baseline without weights for
the 5N and 15N force range sensors.

Force Range (N) Mean Value (V) Standard Deviation (V)
0-5 0.872 ± 2.5E-04
0-15 0.679 ± 4.86E-03
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Figure 3.9: Voltage output without weights for the 5N (blue) and 15N (red) force
range sensors.

3.3.2 Constant Weight
Once the baseline output value was assessed, the characterization moved forward

with different constant weights applied. Specifically, the tests involved applying
gradually increasing loads on both load cells to address the sensor’s response in
different conditions. The output values, averaged over a 60-second observation
window, are listed in Table 3.4 and Table 3.5.

Table 3.4: Mean value and standard deviation of the baseline for the 5N sensor at
each weight in a constant load application.

Weight Mass (g) Mean Value (V) Standard Deviation (V)
10 0,928 ± 4,387E-04
20 0,968 ± 3,886E-04
50 1,088 ± 3,883E-04
100 1,226 ± 1,839E-03
200 1,573 ± 4,836E-03
500 2,654 ± 1,963E-03

The sensor with a 5N force range shows a larger output dynamic compared to
the 15N sensor, although it also has a slightly higher standard deviation, which
remains low. Interpolating these data points results in a highly linear curve for
both sensors, particularly in the low-weight regions. This linearity is crucial for the
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thesis application, as arterial displacement produces forces in the range of 1-2 N.

Table 3.5: Mean value and standard deviation of the baseline for the 15N sensor at
each weight in a constant load application.

Weight Mass (g) Mean Value (V) Standard Deviation (V)
10 0,698 ± 2,47E-04
20 0,710 ± 1,85E-04
50 0,741 ± 2,42E-04
100 0,799 ± 3,43E-04
200 0,909 ± 5,97E-04
500 1,241 ± 1,26E-03

Figure 3.10: Characterization curve of the load cell with constant weights (10g,
20g, 50g, 100g, 200g, 500g) for the 5N (blue) and 15N (red) force range.

3.3.3 Load/Unload Cycle
During load and unload cycles, some instability issues were observed. Increasing

the weight on the top support and repeatedly applying and removing it caused
system instability. This instability is likely due to the small contact area between
the sensor’s sensing sphere and the central cylinder of the top support. Additionally,
the off-center positioning of the sensing element on the sensor further contributed
to the loss of symmetry in the system.
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Figure 3.11: Load/Unload cycles with a weight of 20 grams (5 N sensor).

These factors influenced the measurements, particularly with higher weights
(100, 200, and 500 grams). As shown in Figure 3.11, positioning the weight on the
support caused a drift in the output. For lower weights, the sensor stabilized after
about a second and maintained a stable output for the rest of the loading cycle.
However, with higher weights, the sensors exhibited sustained drift throughout the
loading period, resulting in unstable measurements, as illustrated in Figure 3.12.

Figure 3.12: Load/Unload cycles with a weight of 50 grams (5N sensor).
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The 5N sensor displayed greater output amplitude and load sensitivity during
these cycles. Its rising edge under load was sharper compared to the 15N sensor.
Overall, the 5N force range sensor provided better resolution and higher sensitivity
to small force variations, making it more suitable for detecting pulse waves. Addi-
tionally, its stability was slightly higher than that of the 15N sensor in all tested
conditions.

slope0−20 = 0.968 − 0.872
0.020 = 4.8V/kg (3.3)

slope0−20 = 0.709 − 0.679
0.020 = 1.5V/kg (3.4)

The decision to use the 5N force range sensor was based on its greater slope
in the 0 to 20 g range, which corresponds to the force range of interest for this
application. This greater slope results in higher sensitivity and amplitude in the
output as testified by the computed slope in Eq.3.3 and Eq.3.4. Based on these
considerations, the 5N force range sensor was chosen for its superior resolution,
higher sensitivity to small force variations, and greater stability, making it more
suitable for detecting pulse waves in the desired force range.
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Chapter 4

Wireless Device for Pulse Wave
Velocity Assessment

This chapter contains parts that have been taken, or partially rephrased, from
a previously published work [134].

The following chapter presents a comprehensive approach to improving the mea-
surement of PWV by introducing a true wireless system that is both affordable
and reliable. The system’s design emphasizes portability, ease of use, and real-time
data feedback, which are critical for integrating PWV measurement into routine
clinical practice. Validation against the gold-standard device and rigorous testing
confirm the system’s accuracy and usability, potentially making it a valuable tool
in the early detection and management of cardiovascular diseases.

Thanks to the close collaboration with the internal medicine team at the "Città
della Salute e della Scienza" hospital in Turin, this instrument was developed to
meet the specific demand for a reliable, easy-to-use, and low-cost device. Continu-
ous medical feedback helped address all practical and usability aspects, safety and
reliability of the estimation. The adaptation of the graphical interface, presented
in subsection 4.2.3, for the real-time estimation of PWV was carried out by one of
the co-authors involved in this project.

4.1 Introduction
The propagation of the arterial pulse can be evaluated between any pair of

locations within the cardiovascular system. To date, several devices for the assess-
ment of clinical PWV differ in both the procedure and methodology employed [85].
Concerning the latter, the most widely used and reliable approach is applanation
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Figure 4.1: Overview of the first generation the Athos device [139].

tonometry [54], followed by oscillometry [135], and optical sensors [136]. Typical
locations for evaluating pulse waves include the femoral, tibial, radial, and carotid
arteries, where arterial pulsations are easily detectable [56] [57]. In 2023, the Euro-
pean Society of Hypertension guidelines [16] recommended baPWV [58, 59, 60] as
a screening tool for hypertension-mediated organ damage [61]. However, cfPWV is
still considered the gold-standard reference in the arterial stiffness assessment [62,
63, 64]. Although cfPWV is a robust measure of vascular aging [137] [138], it is not
available in many research studies for a variety of reasons, including financial con-
straints [39] [43], lack of access to the specialized equipment needed to measure it,
and the absence of trained personnel. In 2021, the Athos (Arterial stiffness faithful
tool assessment) device, Figure 4.1, was created to overcome the barrier of high
equipment costs and usability that have restricted the adoption of this technique
within clinical settings [72, 139].

Thanks to its two prototypal high-resolution MEMS force sensors and a ded-
icated graphical user interface (GUI), this system provides real-time feedback to
the user and fully reliable offline cfPWV assessment. Following the Artery Society
guidelines, a clinical validation study involving ninety healthy volunteer subjects
was carried out to assess the accuracy of the device [140] in comparison to the
established gold standard device for noninvasive cfPWV assessment, SphygmoCor
(AtCorMedical in Sydney, Australia) [141] [142]. The Athos device demonstrated
a high degree of concordance with SphygmoCor, even under conditions of elevated
PWV values, and exhibited satisfactory reproducibility. However, the restricted
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accessibility of the sensor used in creating the first prototype limited its use in clin-
ical practice. To overcome this limitation, the entire system was redesigned using
commercial components [143]. That said, the proposed device stands as an entirely
novel instrument. Its development results as the culmination of multidisciplinary
cooperation with a team of physicians actively engaged in clinical validation. Com-
pared to the first generation, the hardware and software novelties introduced within
the proposed device aim to completely transform its portability, streamline usabil-
ity, and ensure the accuracy of PWV estimation. The primary innovation in terms
of hardware is removing the wired connection between the MEMS sensors and the
central apparatus that formerly handled data management and transmission to the
workstation. Furthermore, to transform the system into an independent device, the
ECG connection was also eliminated, significantly enhancing the device’s portabil-
ity. Therefore, a new custom PCB powered by a small rechargeable battery was
designed to collect the force data and wirelessly transfer them to the workstation
hosting the GUI responsible for displaying and processing the pulse waveforms. A
new piezoresistive load cell has been selected as the sensing element to capture
the arterial pulse. The two pen-shaped acquisition enclosures were revised entirely
to hold the mentioned components, ensuring clinicians’ easy handling during the
PWV assessment. With the decision to incorporate rechargeable batteries into the
design, a recharging station was also integrated into the system. The base station,
connected to a laptop via USB, acts both as a collector for data streaming and a
charging station for the two probes. A USB dongle has been included in the de-
sign to handle Bluetooth Low Energy (BLE) communication with the acquisition
probes and transmit the gathered data to the workstation. The firmware under-
went a comprehensive revision. The Bluetooth stack was updated from 4.2 to 5.2
[144], and different routines to manage the data connection, transfer, and reception
were implemented to handle the asynchronous transmission from the two probes to
the receiving station. The previously designed GUI has been updated, integrating
the real-time data display alongside the PWV assessment. The Matlab algorithm
detailed in [139], initially designed for offline extraction of the intersecting tan-
gent points (ITP) on carotid and femoral waves, was modified to operate in the
background, delivering real-time feedback to the clinician.

4.2 Proposed System
This section guides the reader to a detailed description of the proposed sys-

tem’s design, application, and validation phases. The first subsection details the
hardware conceptualization and realization of the custom PCB of the two probes
and the recharging station constituting the device. Moreover, the description of
the 3D-printed enclosures of the probes and recharging station is also provided.
Then, subsection 4.2.2 reports the firmware routines implemented for managing the
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Figure 4.2: Wireless Device for Pulse Wave Velocity Assessment [134].

connection, the data transfer, and the data management between the acquisition
probes, the BLE charging station, and the workstation responsible for providing a
real-time PWV assessment to the clinical operator.

Subsection 4.2.3 details the GUI and the software algorithm used to manage the
commands provided by the user and the real-time estimation of PWV. Subsection
4.2.4 describes the tests performed to assess the power consumption of the probes
and the synchronization procedure. Finally, subsections 4.2.4 and 4.2.5 present
the procedure used to perform the PWV assessment and the tests conducted to
verify the device’s compliance according to the clinical safety rules and guidelines
described in the IEC-60601 standard for medical devices.

4.2.1 The Hardware
Acquisition Probes

The proposed device consists of three primary units: two probes utilized for
data collection and a charging station. The probes, one for the carotid site and one
for the femoral site, are intended to be two autonomous devices communicating
with the central station through the BLE communication protocol. Since the two
probes are identical from a hardware standpoint, the following explanation will
pertain to both. As depicted in Figure 4.3, each probe consists of three major
components: a pen-shaped enclosure containing the sensor used to capture data
Figure 4.3.(a), a custom PCB created for this application Figure 4.3.(b) and the
rechargeable battery used to power the board Figure 4.3.(c). The power source used
for this device is the LP401235 (Cellevia Batteries), a 3.7V rechargeable polymer
Lithium-Ion battery [145]. This model was selected for this application because the
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Figure 4.3: Acquisition probe overview. (a) Encapsulated load cell used for pulse
wave detection. (b) Custom PCB designed to collect and transfer data. (c)
Rechargeable polymer Lithium-Ion battery.

battery’s recharging ability allowed us to minimize its nominal capacity 120 mAh
and, as a result, its size and weight, providing the correct voltage to power the
board and the sensor

The FMAMSDXX005WCSC3 (Honeywell, United States) load-cell has been
selected for pulse wave detection [146]. The small form factor (5 mm x 5 mm for
the base, 2.15 mm for the height), low power consumption (about 14 mW), the
reduced force range, and low costs made it an ideal solution for this application. As
depicted in Figure 4.3.(a), this micro force sensor is actuated by direct mechanical
coupling through a stainless steel sphere mounted directly over a silicone sense
die. This off-the-shelf, piezoresistive-based force sensor provides a digital output
(12-bit data output) for reading force values over the specified full-scale span. A
5 N sensitivity range was chosen from those commercially available to have the
sensor dynamics closest to the force values exerted by the arterial pulse passage.
Achieving consistent and precise results hinges on the correct sphere alignment and
accurate sensor mounting. The sphere transfers the load through a specific point
of contact. When this contact point is inconsistent or not perpendicular, it can
cause the sphere to exert pressure or friction against the sensor housing, leading
to a potential shift in the sensor’s output. For this purpose, the load cell has been
soldered onto a 1 cm diameter circular PCB. This setup guarantees the sensing
sphere’s proper alignment along the pen-shaped enclosure’s longitudinal axis when
the sensor is inserted. Moreover, it serves the dual purpose of powering the sensor
and establishing a connection with the main PCB through the SPI communication
protocol.

Two LEDs, red and green, respectively, have been included in the board’s design
to provide the user with feedback on the proper reading of the sensor and the BLE
connection status. A single on/off switch has been placed on the board to power
on (or off) the device. The STLQ020 [147] (STMicroelectronics, Shanghai, China)
linear voltage regulator has been included to produce 3.3V from the initial 3.7V
given by the chosen battery when the board is turned on. The PCB includes the
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Figure 4.4: Top and bottom views of the PCB layout for the Athos system acqui-
sition probe. (a) Top view. (b) Bottom view.

STM32WB15CC (STMicroelectronics, Shanghai, China), a 32-bit multiprotocol
wireless and ultra-low-power device that embeds an RF subsystem that communi-
cates with a MCU including an Arm® Cortex®-M4 CPU (CPU1) where the host
application runs [148].

Two external oscillators, Figure 4.5, were employed according to the specifica-
tions reported in [148, 149] concerning hardware development for RF applications.
The NX2012SA low-speed external (LSE) oscillator [150], with 32.768 kHz fre-
quency, was used for the RTC subsystem. The 32MHz crystal oscillator NX2016SA-
32M-EXS00A-CS06465 was chosen as the high-speed external (HSE) clock source
[151]. This latter is required by the MCU to trim the RF subsystem responsible for
managing BLE activities. The mentioned crystal was selected based on the criteria
outlined in the microcontroller datasheet [148]. Moreover, it is characterized by
a frequency tolerance of 10 ppm (at 25°), which ensures a low drift during data
acquisition sessions.

The RF subsystem, Figure 4.5.(a), comprises an RF analog front end and a
specialized Arm® Cortex®-M0+ microcontroller (CPU2) compliant with the Blue-
tooth® Low Energy SIG specification 5.2. CPU2 implements the entire BLE stack,
restricting the CPU1’s interface to high-level exchanges. To enhance the RF perfor-
mance, careful attention was given to the impedance matching between the antenna
and the chip’s input, as well as between the chip’s output and the antenna. Maxi-
mum power transfer is achieved when the source’s internal resistance matches the
load resistance. A matching network and RF low-pass filter were employed for
optimal RF performance—specifically maximum transmission power, optimum re-
ception sensitivity, and sufficient spurious and harmonic rejection, Figure 4.5.(c).
Components C20 and L3 were used to match the MCU’s RF pin impedance to
50 Ohm, which is the required impedance for the antenna. Meanwhile, C19 and
the integrated low-pass filter AE1 were utilized to reject harmonic frequencies. To
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Figure 4.5: RF subsystem. (a) Physical layout of the RF section of the PCB,
showing the placement of RF components along with the meander antenna. (b)
PCB layout highlighting the RF trace and ground vias placements. (c) Schematic
diagram of the RF circuitry, including the antenna matching network and low-pass
filter, designed to ensure optimal impedance matching and harmonic rejection for
the MCU’s RF pin.

Figure 4.6: Close-up view of the PCB layout detailing the RF trace and component
placement. The image highlights critical dimensions such as trace widths, spacing
between traces, and via placements to ensure proper impedance matching and min-
imize parasitic effects.

prevent parasitic ground inductance and cross-coupling from RF and other signal
lines, ground vias were placed throughout the PCB’s RF section, Figure 4.5.(b).
These vias were spaced approximately 1/10th of the wavelength apart, as recom-
mended in [149]. The layout of the power supply and ground layers was carefully
considered to manage the return current for the components, avoiding any signal
routing between these layers. Finally, because the impedance of a PCB trace at RF
frequencies is influenced by factors such as the trace’s thickness, its height above
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the ground plane, and the dielectric properties of the PCB material (including the
dielectric constant and loss tangent), the physical characteristics of the RF line
were determined according to the guidelines provided in [152] and illustrated in
Figure 4.6. The schematics detailing the design of the acquisition probe PCB are
reported in Figure A.1, Figure A.2 and Figure A.3 in Appendix A

Multiple factors were taken into account during the design of the probe enclo-
sure. Specifically, its shape and dimensions depended on the size of the battery
and the custom PCB. For this reason, the PCB and battery dimensions have been
reduced as much as possible. The enclosure section close to the sensor was shaped
differently to simplify the operator’s handling. In particular, the carotid probe was
intended to be handled like a pen, whereas the femoral probe was designed to be
held between two fingers. Thus, stable simultaneous deployment of sensors becomes
feasible, resulting in enhanced and more steady signal acquisition. A series of in-
dentations on the enclosure’s side aids the operator in correctly positioning the unit
within the charging base. The interface connections are situated on the lower por-
tion of each probe. Specifically, two of the four available pins connect the probe’s
battery and the circuit within the charging station. The two remaining pins enable
a physical linkage between the two probes as a sensing solution to distinguish if
they are connected. This solution will be explained later in the acquisition start-up
routine.

Charging Station

The charging base realized for this application represents the central fulcrum of
the device. It can be divided into three main sections: the enclosure, the MB1293
USB dongle (STMicroelectronics, Shanghai, China) used to manage the BLE com-
munication and the dedicated PCB built to perform the battery charging inside the
probes and the circuit used to perform the acquisition start-up, Figure 4.7. The
schematics detailing the design of the acquisition probe PCB are reported in Figure
A.4 and Figure A.5 in Appendix A. The structure of the charging base presents
two slots, one for each probe, and a set of LEDs that give the user an indication of
the battery recharge. The inner surface of the housings has been shaped to com-
plement the geometry created on each probe to ensure their proper position within
the charging base. The connection between the PCB and the bottom part of each
probe has been realized using a 4-pin spring-loaded header. This solution allowed
us to build a more reliable contact with the charging and synchronization circuit.

The charging circuit consists of the MCP73831 integrated circuit (Microchip,
Shanghai, China) [153]. Through a specific resistor linked to the mentioned inte-
grated circuit, the charging current has been set according to the datasheet require-
ments of the connected battery. According to [145], a 68 kOhm resistor has been
selected for this purpose, setting a recharge current of 16 mA.

The circuit employed for the synchronous start of acquisition is based on the
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Figure 4.7: Recharging station designed for the tested device. (a) Designed PCB
connected to USB-Dongle MB1293. (b) PCB top view. (c) PCB bottom view.

Figure 4.8: Recharging station designed for the tested device. The hardware solu-
tion relies on bidirectional sensing between the two MCUs embedded in the acqui-
sition probes, enabling a synchronous initiation of the acquisition process. When
one of the components is disconnected from the base, it prompts the initiation of
the acquisition process. The USB-Dongle, integrated into the main PCB within
the base station, enables BLE communications among all system components.

bidirectional sensing of the two probes. When connected, each probe can detect
whether the other gets detached from the base. Connecting two pins between each
slot made it possible to couple the microcontroller on each probe with the other.
Two GPIOs have been involved in this process: One was configured in input mode
and the other in output mode, depicted respectively in blue and red in Figure 4.8.
Both GPIOs in output mode have been set to provide a low logical state. The
GPIOs set as input have been programmed to trigger an interrupt when the tran-
sition from the low to the high logical state occurs (Figure 4.8). The interrupt is
enabled when the user presses the play button on the graphical interface. A pull-up
resistor, placed on each line connecting the two MCUs, makes the transition from
the low to the high logical state possible when one of the two probes gets discon-
nected from the base. As introduced earlier in this section, the BLE communication
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and data transmission are managed by the USB dongle manufactured by STMicro-
electronics (Shanghai, China). The dongle hosts an STM32WB55CG MCU [154],
a low-power 32-bit device with a dual-core Arm® Cortex®-M4/M0+ architecture
with similar characteristics to those previously described microcontroller used for
the probes. The dongle has been coupled to the PCB via a USB connector mounted
on this latter. The ensemble has been further connected by cable to one of the 5 V-
powered USB ports on the workstation running the graphic interface for real-time
PWV assessment. The following section will describe the communication protocol
used to handle data transmission.

4.2.2 The Firmware
The first step in developing the BLE protocol is the implementation of the

routine responsible for connecting all the components constituting the proposed
device. The reference roles within the BLE protocol are central and peripheral.
In this project, the dongle is the central device; it acts as the master during the
connection process and establishes the physical layer connection. On the other
hand, the two probes perform as peripheral units; they serve as slaves during the
connection process and are responsible for accepting the physical layer connection.

Connection Routine

Based on the information presented in the preceding section, a connection rou-
tine was built to identify and connect the two peripheral units with the core unit.
This operation begins with the central unit (dongle) scanning the two peripheral
units engaged in the advertising phase and enabling the connection. The scan
phase (with a white-list to filter undesired devices) continues until the connection
units are located. Once discovered, the connection procedure proceeds progres-
sively, firstly establishing contact with the carotid probe and then with the femoral
probe. The main criticality identified during the development of this algorithm
is the identification of the connection parameters. The selection of the latter, in
accordance with the timing constraints provided by STMicroelectronics [155] [156],
enabled the establishment of the two connections and ensured the correct transfer
of the acquired data in real-time [157] [142].

Data Transfer

The data transfer protocol represents a fundamental part of developing a device
for the real-time acquisition system. The user initiates data transfer using com-
mands accessible via the GUI. The command to start (or stop) data acquisition is
forwarded by the central unit (dongle) to the two peripheral units. After receiving
the command, each board begins reading the sensor. A four-wire bidirectional SPI
communication protocol connects the load cell to the mentioned MCU. The sensor
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Figure 4.9: Schematization of force data management. BLE payloads sent by the
acquisition probes are received and allocated into a circular buffer by the USB-
Dongle. The samples are reorganized and sent to GUI via USB connection for
real-time processing.

is programmed to work with a sampling frequency of 200 Hz enabling the acquisi-
tion of 12-bit force data output each 5 ms. A circular buffer structure was chosen
to allocate the data and subsequently send them into a BLE packet structured as
follows:

1. Bytes 1-14: contain the samples acquired by the sensor;

2. Byte 15: it is a progressive value representing the current BLE packet filled
with force data;

3. Byte 16: it can be either 1 or 2 according to which probe is transmitting the
data.

Data Management

The next step in the development process of the device is the implementation,
on the central unit, of a procedure for managing and processing received data
before its transmission to the laptop. When dealing with the reception problem,
it’s important to note that, besides the transmission phase of the acquisition’s start
command, there’s a misalignment between the central unit and peripheral devices.
This misalignment happens because the central unit can’t receive data from the
peripherals simultaneously. The routine is divided into three major phases:

1. Read phase: it involves the reception of the BLE data packets sent by each
peripheral. Based on the last two bytes, the packet sequence number is sorted,
and data is assigned to the proper sensor (carotid or femoral buffer).

2. Allocation phase: involves the copying of data within a circular buffer divided
into 28 bytes as follows:
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Figure 4.10: Report generated at the end PWV study.

(a) Bytes 1-14: contain the data from the carotid probe;
(b) Bytes 15-28: contain data from the femoral probe.

Once the buffer is full, the samples within are alternately reordered according
to the diagram in Figure 4.9.

3. Transmitting phase: The data set is sent to the workstation for real-time
display via a USB connection.

4.2.3 Graphic User Interface for PWV assessment
Once the system’s physical structure and communication protocols were defined,

the GUI was implemented for controlling the device from a computer using Visual
StudioCode. The software is designed to execute three distinct functions. The first
task involves recognizing the USB-Dongle responsible for establishing the connec-
tion and managing data communication with the acquisition probes. Secondly, the
software interprets and transmits user commands to the peripheral units. Lastly,
the BLE packets containing gathered data are reorganized for real-time plotting
and are processed for PWV calculation. The patented algorithm [158], originally
developed and detailed in [139], has been adjusted to operate in the background,
providing updated values of PTT, PWV, and corresponding standard deviation
every 1,5 seconds. Figure 4.10 shows the comprehensive report generated when the
acquisition is terminated. This report represents a summary of the PWV test just
run and considers the last ten seconds of the waves, as foreseen in the standard
procedure. The report includes the subject’s personal information, the PTT and
PWV values, and, finally, the acquired carotid and femoral pulses with the related
ITPs.
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Figure 4.11: Current absorption of the acquisition probe during the different func-
tion modalities: Advertising, connection, and streaming.

4.2.4 Testing Phase
The forthcoming section introduces the setup employed to conduct a compre-

hensive series of tests to evaluate the device’s performance.

Setup for Synchronization Assessment

A crucial aspect for ensuring a trustworthy measurement is the achievement of
precise synchronization in the reception of the initial data acquisition start com-
mand from peripheral units. Even a minor deviation of a few milliseconds could
introduce uncertainty and reduce the measurement’s reliability. Synchronization
was assessed using an oscilloscope. One accessible General Purpose Input/Output
(GPIO) pin was configured to be toggle to a high logical state as soon as the start
command is received. By establishing a connection between the oscilloscope probes
and the specified and the mentioned GPIO, it became feasible to visually see and
quantitatively determine the time delay associated with the reception of the start
command by the two probes.

Setup for Power Consumption Evaluation

Given the integration of a rechargeable battery within the acquisition probes,
the absorbed current during each device’s operation phase was anlyzed. For this
purpose, the DMM7510 digital graphical multimeter was used. The sampling fre-
quency of 10 kHz was employed to detect the BLE module activity.
To perform the measurement, the multimeter probes were placed on power lines
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connecting the battery to the PCB. An ensemble of three acquisitions lasting be-
tween 3 and 5 minutes was collected, and data was further analyzed offline using
Matlab. The duration of each acquisition was chosen to replicate the average time
used to conduct the PWV study in a clinical setting. Figure 4.11 displays a snap-
shot of the four main working modalities of the probe:

1. Initialization of the probe: when the probe is switched on, the microcontroller
is initialized along with the load cell. If this latter is successfully read, the
LEDs are switched on and off to give feedback to the user.

2. Advertising: after the initialization, the probe starts the advertising phase to
inform the charging station about its presence.

3. Connection establishment: once the dongle initializes the BLE link with the
two probes, all the units enter into a stable connection status. Both the
central and peripheral units regularly assess the status of the other to confirm
ongoing activity.

4. Data stream: every 35 ms, a new circular buffer is filled on the probe and sends
a notification command to the BLE stack that prompts the transmission of
the packet during the subsequent available connection interval.

The averaged absorbed current values were evaluated for the mentioned working
conditions. The highest current value was employed to derive the discharge curve
and estimate the actual battery life of each probe. Parallelly, the minimum voltage
so that all components could work properly in the worst-case scenario was assessed.
The discharge curve was obtained through an equivalent circuit consisting of the
battery, the voltage regulator on the PCB, and a resistor equal to 560 Ohm. The
latter was dimensioned to represent the total consumption of the probe in the
streaming mode with an absorbed current of 5.9 mA when supplied with a regulated
voltage of 3.3 V. This setup was made according to datasheet specifications, under
constant load conditions and with a discharge current at most 24 mA. The battery
voltage was monitored using the NI USB-6259 board (National Instruments) [159]
for the entire experiment. Data was acquired via serial interface using Matlab with
a sampling rate of 1 Hz.

Setup for BLE Data Transfer Analysis

This subsection presents the setup used to evaluate the transmission efficiency
of BLE packets. Both probes are programmed to transmit a signal with a sawtooth
shape to evaluate better the result of the data management protocol developed on
the dongle. The data are saved through the previously described dedicated GUI,
in .bin format, and analyzed offline in the Matlab environment. A single 20-minute
acquisition was performed, and then the order of packet arrival, correct reordering
of simulated samples, and any packets lost during transmission were evaluated.
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Figure 4.12: Experienced physician performing PWV assessment using the Athos
system.

PWV Assessment

To assess the efficacy of the presented system, a clinical trial was conducted at
the "Città della Salute e della Scienza" Hospital in Turin, Italy. Following the ex-
perimental protocol approved by the" University of Turin Bioethical Committee",
described by [139], ten healthy volunteers were recruited to compare the results
gathered using the proposed device w.r.t those of the SphygmoCor, available in the
hospital. Before commencing each data capture session, informed consent was ob-
tained from every participant. Then, two experienced clinical operators conducted
the data collection process to ensure the acquisition of high-quality and stable sig-
nals, Figure 4.12. Following the standard practice for clinical PWV evaluation
detailed in [53], each participant involved in the study underwent three acquisi-
tions using both systems, with the clinical operators alternating the usage of both
devices from subject to subject. Finally, a representative PWV value is derived for
each individual by calculating the average data acquired from the three acquisitions
collected using both systems.

4.2.5 Precompliance CE Tests
Electromagnetic Compatibility

The set of tests was carried out inside an anechoic chamber in the facility
equipped for performing immunity tests up to a frequency of 6 GHz. In accordance
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Figure 4.13: Anechoic chamber used to assess the electromagnetic compatibility of
the system.

with the requirements of IEC 60601-1-2, the device was placed on a rotating table
inside the chamber at a distance of 3 m from the antenna used to generate the
electromagnetic field used in the test. Given the electromagnetic field strength
of 3 V/m, immunity was evaluated over 3 frequency ranges: 80 MHz-800 MHz,
800 MHz-2.7 GHz, 2.7 GHz-6 GHz. Each range was tested by varying the orien-
tation of the device w.r.t. the antenna on each of the four sides for a total of twelve
tests. In each test, observations were made to determine if the application of the
disturbing field resulted in any changes in the force values recorded at no-load by
the load-cell sensor on the probes. Additionally, any loss of data was monitored
during transmission between the two probes and the dongle, which was also placed
inside the chamber, as shown in Figure 4.13.

Clinical Usability

The clinical evaluation of the device was carried out at the A.O.U. Città della
Salute e della Scienza di Torino to verify the effectiveness, efficiency, and ease
of use of the Athos system. This assessment was overseen by an external certi-
fied consultant to ensure accuracy and compliance with the guidelines outlined in
IEC 62366-1:2015 and IEC TR 62366-2:2016 concerning the application of usability
engineering to medical devices. These standards focus on the importance of un-
derstanding user needs, translating them into design specifications, and conducting
usability testing to ensure that devices are safe, effective, and user-friendly. More-
over, they emphasize the identification, assessment, and mitigation of use-related
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Figure 4.14: Observed delay between carotid (yellow) and femoral (blue) probes at
the acquisition start-up using the proposed hardware solution.

hazards to minimize risks to users. In the investigation process, five specialized
clinical operators and the project’s technical referees were involved in supervising
operations and collecting user feedback on the device.
Each operator, aged between 28 and 47 years with varying degrees of experience
in pulse wave velocity measurement, performed an ensemble of three acquisitions
with the proposed acquisition system. The physicians who took part in this test
filled out an interview report guided by questions posed by the team. To avoid
interaction bias, the moderators briefly described the report to the participants,
and therefore, it was autonomously compiled using a PC or tablet interface. The
users provided feedback on a graded scale ranging from 0 to 4, in which a lower
rating corresponds to a favorable opinion of the device.

4.3 System Assessment
In this section, the results of the introduced tests are reported and discussed,

starting with the synchronization of the peripheral units, the current absorbed by
each probe, the validation of the data exchange routine, and, finally, the results of
the pre-compliance tests carried out on the device.

Synchronization

using the setup described in II-D.1, the synchronous start of the acquisition was
evaluated. As a first step, an evaluation of the time lag related to the settings of
the BLE stack was performed. Given a connection interval ranging between 15 ms
to 40 ms, the observed lag was 20.94 ms. This delay can be attributable to the
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Figure 4.15: Discharge curve of the CELLEVIA BATTERY LP401235 under a pure
resistive and constant load.

BLE stack transmitting the start command within the same connection interval.
Therefore, the initial step taken to solve this issue was to find a compromise between
parameters. However, this strategy was ineffective, as the average delay value
obtained from 5 tests was 11.56 ms, considered unsatisfactory for this application.
Since a software approach did not solve the issue, a hardware solution was chosen.
This latter is based on the detachment from the charging station of one of the two
peripheral units described in section 4.2.1. The synchronization was again evaluated
through the oscilloscope, and the result can be seen in Figure 4.14. The second
approach reduced the acquisition start-up delay to a value of 16 ns, considered
acceptable for this application. As reported in section 4.2.1, a 32MHz crystal
oscillator was selected as a high-speed external clock source to trim both the MCU
and the RF subsystem. The 10 ppm frequency tolerance ensures a low drift during
data acquisition sessions. It is important to note that the proposed system is not
mentioned for long-term monitoring, and the time required for a single acquisition
ranges between 5 and 20 minutes. Therefore, the eventual drift was assumed to
be negligible in the defined operative window. In addition, before starting each
session, both probes must be attached to the base station to ensure a synchronous
start-up; consequently, the clock drift is reset when a new acquisition is started.

Power Consumption

The battery’s autonomy introduced in Section 4.2.1 was evaluated in the lab-
oratory using the setup detailed in Section 4.2.4. Table 4.1 shows the expected
autonomy computed by dividing the nominal capacity by the averaged absorbed
current values for the defined working conditions. The minimum value is registered
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Figure 4.16: Events occurring during the streaming mode: BLE connection interval,
SPI activity, force data buffer ready to be transferred.

Table 4.1: Averaged current absorption in different working modalities.

Advertising Connection Streaming
Absorbed Current (mA) 5.49 5.48 5.90
Expected Battery Life (h) 21.81 21.79 20.30

during the connection phase (i.e., 5.48 mA), attributed to the activation of the sta-
tus LED, RF activity, and ultimately the enabling of sensor readout. The highest
value occurs during the streaming mode (i.e., 5.9 mA), in which the BLE packets
containing the force data are sent. Following the trend of the mean value, the
standard deviation computed in each working modality assumes the lowest value in
the connection phase and the highest when the streaming occurs. Based on these
results, the discharge curve of the battery, Figure 4.15, was derived to estimate the
actual battery life of each probe and the minimum voltage so that all components
could work properly. In these conditions, designed to mimic the maximum con-
sumption modality, it took 20.2 hours for the battery to get fully discharged, thus
matching the expected battery life computed on nominal characteristics (i.e. 20.3
hours). However, when evaluating the minimum voltage value to ensure proper
operation of the components, the reference voltage values of the integrated compo-
nents mounted on each probe were considered: the microcontroller [148], the load
cell [146], and the linear voltage regulator [147] (equal to 1.7 V, 3 V, and 2.75 V,
respectively). By selecting the reference value of the LDO to establish a supply
voltage within the regulated range of 3.3 V, the autonomy decreases to 18.9 hours.
However, under these circumstances, each probe has approximately a further hour
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Figure 4.17: Result of data management routine in the 20-minute acquisition used
to validate the data transfer process. No reported cases of lost BLE packets or
probe misalignment were observed during this procedure

before reaching the minimum supply voltage required for the load cell to work reli-
ably. Subsequently, the consistency of the BLE activity w.r.t. the settings chosen
for this application was verified.

In Figure 4.16, a representative window of 70 ms, captured during the streaming
mode, is reported. As it is possible to observe, the variations of the current absorbed
by the probe are coherent with the specifications of the BLE protocol and the
firmware implemented to read the load-cell sensor. Few regular events alter the
baseline:

1. The highest peaks, reaching up to 15 mA, correspond to the transmission
of BLE notifications. This operation necessitates the activation of the RF
module, albeit for a very brief period. These peaks consistently occur every
28 ms due to the chosen connection interval.

2. The peaks below 10 mA, highlighted in red, indicate when the circular buffer
is filled with force data and ready to be sent in the following connection
interval. The load cell is programmed to read a new sample every 5 ms. The
periodic trapezoidal pattern represents the SPI activity.

BLE Data Transfer Analysis

the last step in evaluating the proposed system is to validate the implemented
routines for data management and transfer. In the power consumption subsection,
Figure 4.15 allowed to visualize the consistency of the BLE and SPI activity w.r.t.
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Table 4.2: Results of the validation process

Subject Proposed Device Sphygmocor
PWV (ms−1) σ% PWV (ms−1) σ%

1 6.48 ± 0.83 12.81 6.52 ± 0.81 12.46
2 8.02 ± 0.54 6.73 8.80 ± 0.51 5.80
3 6.18 ± 0.22 3.56 6.83 ± 0.19 2.78
4 7.66 ± 0.48 6.27 8.80 ± 0.51 5.80
5 6.10 ± 0.17 2.79 6.77 ± 0.24 3.25
6 5.12 ± 0.03 0.59 5.93 ± 0.09 1.52
7 7.05 ± 0.41 5.82 7.44 ± 0.44 5.91
8 4.12 ± 0.33 8.01 5.33 ± 0.28 5.25
9 5.38 ± 0.76 14.13 5.43 ± 0.26 4.79
10 4.77 ± 0.61 12.79 5.83 ± 0.61 10.46

Notes: PWV, averaged values of the three acquisitions executed during the data
collection, σ%, percentage of the standard deviation.

the proposed configuration of each acquisition probe. In this section, the empha-
sis is directed toward the activities of the dongle related to receiving data and its
subsequent handling for processing and display in the GUI. To do so, each probe
is programmed to transmit a signal with a known growing shape. A representative
window showing the results of the data management routine is reported in Fig-
ure 4.17. The samples are color-coded according to the probe ID identifying the
unit responsible for transmitting the data packet: yellow for the carotid and green
for the femoral probe.

A black circle has been added to highlight the beginning of each data buffer sent
to the GUI. By utilizing signals with a predetermined periodic pattern, it became
feasible to confirm the reordering of samples as detailed in Section 4.2.2 and to
detect any potential data loss, which would manifest as anomalies in the plot. The
potential risk of data loss was assessed through a 20-minute data acquisition session.
During this procedure, the quantity and synchronization of BLE packets between
probes have been monitored at consistent 20-minute intervals. No reported cases
of lost BLE packets or probe misalignment were observed during this procedure.

PWV Assessment

Table 4.2 reports the averaged PWV values acquired across all examined sub-
jects and the associated standard deviations. The accuracy of the proposed system
was assessed by examining the correlation of PWV values between the two instru-
ments and by analyzing the measurement agreement across the study population.
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Figure 4.18: Scatter plot confronting the averaged PWV values obtained for each
recruited subject. A linear regressive model fitted on the available data points
shows a strong linear correlation between the two devices.

Figure 4.19: Bland-Altman plot of the difference between the performances given
by the SphygmoCor and the proposed device.

The scatter plot shown in Figure 4.18 exhibits the mean PWV values for each
participant. A linear regression model was employed to quantify the relationship
between measurements, and its quality was assessed using the determination co-
efficient (R2). The robust linear correlation between the two devices is evident
from the dispersion of the actual data points around the model’s best-fit line, as
indicated by the coefficient R2, which yielded a value of 0.89. The Bland-Altman
plot reported in Figure 4.19 represents the agreement distribution between the two
instruments. As shown, the PWV mean difference is about −0.67 ± 0.67 m/s. The
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Figure 4.20: Results of focus group interview to assess the clinical usability of
the device. Scores were retrieved for each physician through the guided response
questionnaire. A lower score on a scale ranging from 0 to 4 corresponds to a
favorable opinion of the device.

comparison between the two devices reveals that the proposed system yields PWV
values that closely match those of the gold standard. The reliability of the measure-
ments was validated by the regression model, which highlighted their strong linear
correlation, and by the Bland-Altman plot, which indicated a bias well below the
1 m/s limit stipulated by the guidelines for an excellent cfPWV estimation [160].

4.3.1 Pre-compliance CE Test
This section outlines the results of the pre-compliance CE test conducted on

the Athos system.

Clinical Usability

As stated in section 4.2.5, the clinical usability was assessed according to IEC
62366-1:2015 and IEC TR 62366-2:2016 concerning the application of usability en-
gineering to medical devices. The evaluation considered key aspects such as patient
preparation, system setup, and application during PWV assessment. In addition,
safety measures, cleaning, and storage procedures were examined to mitigate user-
related risks and preserve the device’s integrity.

In general, during the simulated use of the device by participants, no usage or
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Table 4.3: Results from the focus group interview were used to evaluate the clinical
usability of the device. Scores for each physician were obtained using a guided
response questionnaire. A lower score on the 0 to 4 scale indicates a more favorable
opinion of the device.

Question Physician-1 Physician-2 Physician-3 Physician-4 Physician-5
Q-1.1 0 0 2 0 2
Q-2.1 0 0 0 0 0
Q-3.1 0 0 0 1 0
Q-4.1 0 0 0 0 0
Q-5.1 0 0 0 0 0
Q-5.2 0 0 0 0 0
Q-5.3 0 0 0 0 1
Q-5.4 0 0 0 0 0
Q-5.5 0 0 0 0 0
Q-6.1 0 0 0 0 0
Q-6.2 0 1 1 0 0
Q-6.3 0 0 1 0 0
Q-6.4 0 1 0 0 0
Q-6.5 0 0 0 0 0
Q-7.1 0 0 1 0 1
Q-8.1 2 0 1 0 0
Q-8.2 0 0 0 0 0
Q-A 0 0 0 0 0
Q-B.A 0 0 0 0 0
Q-B.B 0 0 0 0 0
Q-B.C 0 0 0 0 0
Q-B.D 0 0 0 0 0
Q-C 0 0 0 0 0
Q-D 0 0 0 0 0
Q-E 0 0 0 0 0
Q-F 0 0 0 0 0
Q-G 0 0 0 0 0
Q-H 1 0 0 0 0
Q-I 0 0 1 1 0

technical errors occurred. All users measured according to the proposed workflow
without encountering significant difficulties, even when the operator had no prior
experience with the device. The results of their experience were evaluated through
a guided response questionnaire (see Appendix C) using a scale from 0 to 4, where
a lower score corresponds to a favorable opinion of the device. The overall scores,
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depicted in Figure 4.20 and reported in Table 4.3, can be considered very positive,
as most of them fall within the non-risk zone (scores equal to or lower than one),
indicating a generally favorable opinion of the device.

Electromagnetic Compatibility

The outcome of the tests for RF electromagnetic emission, according to CISPR
11, classifies the Athos acquisition system in Group 1, Class A, defining its RF
emissions in a way that does not cause any interference for electronic systems in the
vicinity. From an electromagnetic compatibility perspective, the device is deemed
suitable for the application of interest.

4.3.2 Benchmark Comparison
After examining the performance of the proposed device in the preceding sec-

tions, the retrieved findings were contextualized within the existing literature.
Given the extensive field of non-invasive PWV assessment, the clinical devices con-
sidered the most pertinent for a comprehensive comparative analysis were selected.
Specifically, the Arteriograph, Complior, Sphygmocor, and Pulse Pen, were in-
cluded as they are clinically graded, commercially available, and utilize diverse sens-
ing mechanisms. Table 4.4 reports the main advantages and disadvantages of the
commercially available systems routinely used in the diagnostic clinic environment
according to the available literature. Our evaluation encompasses factors such as
sensitivity to motion, level of operator independence, portability, preparation time
required for patients, and comfort levels. Utilizing a single oscillometric brachial
cuff, the Arteriograph (TensioMed, Hungary) stands out for its portability and op-
erator independence, making it versatile for various settings [59, 135]. However, its
sensitivity to motion and cuff placement may affect accuracy. [161, 162]. In con-
trast, the Complior (ALAM Medical, France) system records arterial wave pulses
concurrently using up to 4 piezoelectric transducers placed directly on the skin
(carotid, femoral, and radial distal arteries) [160]. Despite being acknowledged as
a gold-standard device for non-invasive PWV assessment, it is operator-dependent
and may lack comfort during use [84, 163]. Similarly to the Complior, the Sphyg-
mocor offers unparalleled accuracy but requires an ECG, is less portable, and has
higher costs. Moreover, it requires a high level of operator expertise in periph-
eral signal acquisition [64, 139, 160]. PulsePen (DiaTecne, Italy) detects pressure
waveforms at the carotid and femoral arteries either simultaneously or sequentially
using applanation tonometry. It comprises two small portable tonometers and a
compact ECG unit [64, 85, 163]. Starting from the device’s main drawbacks re-
ported in the literature, a low-cost, non-invasive, yet reliable system was created.
Numerous efforts were made to improve portability and ease of use by removing the
acquisition system for ECG and introducing two wireless and lightweight sensing
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probes. Nonetheless, it’s essential to address the limitations that emerged in this
study. First of all, the small sample size is attributed to the restricted number
of participants. It is essential to note that the pre-clinical trial enabled the eval-
uation of the hardware and firmware updates implemented in the device, as well
as the feasibility of the new sensor used for PWV assessment. Additionally, the
disparity between the sensor dynamics, ranging from 0-5 N, and the forces involved
in the arterial pulse passage might reduce sensor resolution. Nevertheless, upon
analyzing the accuracy of PWV estimation, the comparison with the gold standard
device did not unveil any significant concerns regarding the measurement’s relia-
bility while simultaneously achieving all goals regarding portability and enhanced
usability. Thus, considering all the aforementioned factors, the proposed system
aligns with the current state-of-the-art literature. Moreover, it completely fulfills
its intended purpose in non-invasive Pulse Wave Velocity assessment.

4.4 Conclusion
This chapter presents a wireless device to provide a real-time cfPWV assessment.

The entire hardware of the device was re-engineered to improve the portability and
ease of use w.r.t the former system. The prototypal sensor originally employed in
the Athos device [164] was removed in favor of a commercial piezoresistive load cell
that proved to be well-suited for detecting arterial pulses. The firmware received
an update, and a novel communication protocol was devised to facilitate the inter-
connection of the units, accompanied by procedures to manage and transfer data.
The graphical user interface was improved by integrating real-time PWV assess-
ment. The electromagnetic compatibility test was conducted to verify the system’s
adherence to medical device design guidelines. Clinical usability was validated by
five clinical operators with varying experience in assessing PWV, indicating a gen-
erally favorable opinion of the device. The evaluation of PWV estimation accuracy
against the gold standard device did not reveal any significant concerns regarding
the reliability of the measurement. In conclusion, it was demonstrated that the
proposed system effectively enhanced the key aspects that inspired the design of
the former device. Improved portability and ease of use were achieved through a
redesign of the device on all levels to provide a system capable of broadening the
accessibility of this measurement in the clinical environment.
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Chapter 5

Algorithms for assessing Pulse
Wave Velocity

This chapter contains parts that have been taken, or partially rephrased, from
a previously published work [165].

This chapter introduces a novel region-based algorithm to determine cfPWV, de-
coupling the assessment of this biomarker from point-to-point feature extraction.
A dataset of 75 healthy participants, previously recruited to compare the perfor-
mances of a new instrument, Athos, with the gold standard for non-invasive PWV
(SphygmoCor), was used to set up a new algorithm for determining the clinical
cfPWV. The proposed approach locates and processes a specific window on the
carotid and femoral signals. Cross-correlation is employed to compute the pulse
transit time within the pulses. Finally, the cfPWV is assessed. A set of indicators
has been defined to quantify the stability and reliability of the window used by the
algorithm. The results obtained through the proposed algorithm, the Intersecting
Tangent method, and the direct application of the cross-correlation technique on
signal epochs have been systematically compared with outcomes derived from the
SphygmoCor device. The proposed algorithm showed a high correlation with the
gold-standard SphygmoCor device, thus resulting in excellent accuracy for the eval-
uation of this clinical biomarker. In addition, it also proved more robust to noise
than the Intersecting Tangent Point (ITP) method, making it a reliable alternative
for non-invasive cfPWV assessment in clinical settings.
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5.1 Introduction
Vascular aging has been demonstrated to be linked with an increment in the

chance of developing chronic illnesses such as CVDs, type 2 diabetes and renal disor-
der [166, 167, 168]. Among the non-invasively possibilities, the PWV measurement
is the most reliable.

PWV can be measured between any two sites in the circulatory system. How-
ever, the two acquisition points determine whether the parameter obtained is local
or global [169]. Due to the proximity of the two acquisition sites to the central aorta,
cfPWV is recognized as the most widely measured surrogate of the aoPWV [66,
67, 68].
With the introduction of PWV as a standard biomarker of arterial stiffness, several
methodologies and algorithms have been developed to provide increasingly accurate
estimates of PTT. As a result of the analysis of the characteristic morphology of
the pulse wave [73], numerous studies over the years have proposed the identifi-
cation of a specific point or window on the signal that would allow reliable PWV
estimation [68].
Different algorithms relying on the extraction of a single feature located on the sig-
nal were used for PTT assessment. Among these, the most employed technique is
the foot of the upstroke of the blood pulse as a reference point in the waveform [74].
However, as reported in [170, 171, 172], these approaches, when applied to identical
waveforms, might result in differing PWV values.
Nowadays, many clinical indicators, including heart rate and blood pressure, may
now be monitored by wearable devices with findings that meet the standards for
use in a clinical setting. Many studies have been conducted to assess PWV using
standalone wearable devices, following this trend. The extraction of pulse waves
from acquisition locations that deviate from clinically defined places may alter the
shape of the signals, hence diminishing the estimated precision of the techniques
described above.
A novel set of algorithms has been developed to address the limitations of relying
on a single localized feature for PWV evaluation. These algorithms analyze spe-
cific sections of pulse waveforms, avoiding the PWV evaluation based on a single
feature extracted from the signal. Although additional validation studies must be
undertaken, region-based approaches such as ‘diastole patching’ [74] and ‘region-
matching’ [68],[75] provided excellent accuracy in the PWV assessment according
to the accuracy criteria reported in 2010 ARTERY Society guidelines [53].
In this chapter, a novel region-based algorithm for the estimation of cfPWV is pre-
sented. Specifically, the proposed method applies several processing steps to the
waveform recorded on both sites, then, it uses the cross-correlation technique to
assess the PTT.
Given two generic time series Xc(t) and Xf (t), both defined in the time interval
T, the cross-correlation is a statistical technique used to quantify their delay along
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Figure 5.1: Pulse waveforms alignment performed using cross-correlation. Given
the carotid pulse (Blue) and the femoral pulse (Green), the cross-correlation func-
tion is computed for each value of τ . The timeshift’s equivalent which leads to the
maximum of the cross-correlation function is taken as pulse transit time, then the
alignment is performed.

the abscissa according to the continuous time shift τ . It is defined as expressed in
Eq. 5.1.

RXc,Xf
(τ) = 1

T

∫︂ T
2

− T
2

Xc(t)Xf (t + τ)dt (5.1)

In this case, the two time series to be compared are the pulse waveforms detected
on the carotid and femoral sites, respectively defined as Xc and Xf . T represents a
fraction of the full cardiac cycle and τ constitutes the time shift along the abscissa
by which the cross-correlation coefficient is computed. The cross-correlation func-
tion, RXc,Xf

(τ), is estimated for each value of τ . When the maximum of RXc,Xf
(τ)

occurs, the best achievable similarity condition is reached and τ is considered as the
PTT. Figure 5.1 shows an example of the realignment of two pulse waveforms using
cross-correlation. As mentioned in [169, 173, 174], cross-correlation was previously
used to calculate the PTT. However, its application was employed only in a local as-
sessment of the PWV. This limitation was mainly due to morphological differences
presented by the pulse waves at the two distant acquisition sites. The proposed
approach aims to overcome this issue by giving as input for the cross-correlation a
set of signals characterized by a known shape in which the portion of signal used
for the PTT calculation remains unchanged along the sites. Results equivalent to
those obtained from the reference device were achieved, representing a significant
improvement over the direct application of cross-correlation to the original signals.
This article is structured as follows. Section 5.2 introduces the available data, the
proposed algorithm, the methodology employed to identify the processing window
and the carried out statistical analysis. Section 5.3 summarizes the results obtained
by the Region-Based Cross-Correlation (RBCC) approach compared to the Direct
Cross Corrlation (DCC) application technique and the output of the two presented
devices. The reported results are discussed in section 5.4. Finally, in section 5.5,
conclusions are presented.
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5.2 Material and Methods

5.2.1 Experimental Data
Two devices for PWV analysis were used to collect the pulse waveforms obtained

in this study: the Athos system, whose hardware and firmware conceptualization
and development are detailed in [139], and the SphygmoCor. The former was used
to retrieve the blood pulse raw data, while the latter was used as the reference
method to compare the achieved outcomes. The SphygmoCor is widely regarded
as the clinical gold-standard device used for the noninvasive cfPWV assessment
[17, 53]. Both devices determine the PWV value by locating the intersecting tan-
gent point (ITP) method recognized as the most reliable among the single-feature
algorithms introduced in the previous section. The data used for developing the al-
gorithm were acquired at the "Città Della Salute e Della Scienza" hospital in Turin
(Italy) according to the experimental protocol approved by the "University of Turin
Bioethical Committee." A cohort of 75 healthy subjects was recruited to validate
the precision and accuracy of the Athos device [140]. In this particular context, the
device was analyzed from a clinical perspective, emphasizing its application, intra-
operator variability, and estimation accuracy. As a result of the mentioned study,
the Athos device was employed for three main reasons: an excellent level of agree-
ment with the Sphygmocor, high quality of pulse waveforms, and finally, differently
from the reference device, it provides access to the raw data. The pulse waveforms
collected in the mentioned study were recorded with a sampling frequency of 680 Hz
and subsequently stored for offline processing in the Matlab environment.

5.2.2 Proposed Algorithm
The main steps of the herein-reported RBCC algorithm are summarized in

Figure 5.2. In particular, this can be divided into three main phases: pre-processing,
processing and evaluation of the outcome. The pre-processing phase is characterized
by a series of filter steps used to remove the DC-bias and high-frequency noise and
to retrieve the cardiac activity of the subject under investigation. The delay and
the phase distortion introduced by the application of each filter were removed by
applying this latter forward and backward onto the signal. Figure 5.3 reports the
steps used for extrapolating the cfPWV of the acquired signals.

i) To get a high time resolution for the assessed PTT, the tonometer signal is
resampled to 2040 Hz through a cubic spline. As a result of this resampling,
the signal temporal resolution is increased to 0.49 ms. Interpolation is accom-
plished using a third-degree polynomial with forced continuity in the second
derivate.
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Figure 5.2: Illustration of the presented Region-Based Cross-Correlation (RBCC)
algorithm divided into its macro stages: pre-processing, processing and evaluation
of the outcome.

ii) As reported in [139, 174], high pass filter with a cut-off frequency equal to
0.5 Hz is applied to remove the DC offset.

iii) Subsequently, a low pass filter with a cut-off frequency equal to 10 Hz is used
to remove the high-frequency noise [174].

iv) Once done with the filter steps, pulse waveforms are standardized [174] ac-
cording to Eq. 5.2:

x = x − µs

σs

(5.2)

Where µs and σs are respectively the mean value and the standard deviation
of the signal. The result of the filtering steps is shown in Figure 5.3(a).

v) This step uses the carotid signal to evaluate the subject cardiac periodicity
(T), which in turn is employed to split the signals into single epochs. To
do so, a low pass filter with a cut-off frequency of 1.5 Hz is applied. The
beginning of each cardiac period is detected as the minimum points of the
filtered carotid signal, as represented by green asterisks in Figure 5.3(b).

vi) The projection of the points, found in the previous step, on the abscissa, is
used as the common reference to divide both carotid and femoral signals,
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Figure 5.3: Region Based Cross-Correlation (RBCC) algorithm processing steps.
(a) Result of the bandpass filtering procedure: original signal (blue), filtered signal
(red). (b) Individuation of the cardiac activity (green points) on the low pass filtered
carotid signal (red). (c) Carotid signal (blue) and femoral signal (green) are split
into single epochs. (d) Detection of the processed windows on both signals in the
current epoch. (e) Processed carotid window. (f) Processed femoral window. (g)
Evaluation of the delay through the application of the cross-correlation technique
on the mentioned windows. (h) Alignment of the processed signals in the current
epoch.

Figure 5.3(c). In this way, it is possible to process each couple of blood
pulses preserving the information concerning the time delay related to the
propagation of the pulse wave between the two sites.

vii) The initial step in the processing phase is to find the closest minimum point
preceding the upslope of the pulse. This position corresponds to the diastolic
minimum, point A in Figure 5.3(d). Point O identifies the beginning of each
pulse wave.

viii) Point B, depicted in Figure 5.3(d), represents the second point used to define
the window on the original signal. This characteristic point is located at the
maximum point of the first derivative of the signal. Finally, point C identifies
the end of the pulse wave.

ix) Once the window is recognized on both pulses, these are normalized [174].
This is to ensure that both waves are on the same baseline and to avoid the
different amplitudes of the rising fronts that could affect the cross-correlation
result, Figure 5.3(e, f).

x) To preserve the time delay between the two waves, the portion of the pulse
between points O and A is replaced by a number of samples equal to the
number of samples on the original signal. Concerning the portion of the
signal between points B and C, this section is linearly interpolated on the
same number of samples which separates B and C on the abscissa.

xi) The time delay at which the maximum of cross-correlation coefficient occurs
indicates the time shift that gives the best alignment, Figure 5.3(g,h).

xii) Once the PTT value for the current epoch is found, the process starts again
from step (vii). The procedure continues until the PTT values for all N
epochs, segmented at (vii), are obtained.
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xiii) The standard deviation (σ) is calculated for the retrieved data. To enhance
comparison with the Sphygmocor device, the same outlier rejection criteria
was adopted. Hence, PWV values outside the range of ± 0.9σ are rejected.

xiv) Finally, the remaining PWV values, E, are computed and averaged as reported
in Eq. 5.3.

PWV¯ = 1
E

E∑︂
j=1

d

PTTcar−fem(j) (5.3)

Where d represents the distance measured between the femoral and the
carotid acquisition sites multiplied by a correction factor equal to 0.8 [70]
[169]. This correction factor accounts for the overestimation of the aortic
length calculated on the subject’s skin.

5.2.3 Robustness of the Algorithm
The term algorithm robustness refers to the algorithm’s capacity to perform the

cfPWV assessment despite interference conditions caused by the presence of noise
or artifacts superimposed on the signal. Within the context of this application, a
white Gaussian noise was introduced onto the pulse wave signals in order to obtain
SNR of 10, 15, 20, and 25 (dB) across the bandwidth of the signal (i.e., 0.5-10
Hz) [173]. Each measured pulse wave signal was denoised through the application
of filtering stages reported in the processing steps (ii) and (iii) of the proposed
algorithm. Subsequently, the resultant signal served as the starting point for the
addition of noise needed to achieve the specified SNRs. Then, both algorithms,
RBCC and ITP, were applied to the noisy pulse wave signals. Finally, the resulting
differences between noisy-cfPWV values and those derived from the application of
each method to noise-free signals were compared.

5.2.4 Identification of Processing Window
Since the proposed algorithm relies on the application of the cross-correlation

on a specific portion of the signal, it is necessary to point out how the processing
window was defined. As stated in [175], pulse waveforms acquired from different
places on the human body have distinct morphologies. Particularly, the shape
of blood pulses may be altered by several factors, including the positioning of
sensors on the skin, the experience of the operator collecting the data and the
subject’s anatomy. The decision to define a specific section of the signal derives
from the necessity of minimizing the morphological disparities between individual
pulse waves while preserving the temporal information. As reported in [74, 176, 177,
178], the early systolic and end-diastolic portions of the blood pulse are identified
as the least likely to be impacted by reflected waves and motion artifacts compared
to the diastolic component. Therefore, the search for processing window was made
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Figure 5.4: Degradation of the original carotid pulse waveforms (blue window) by
introducing noise to achieve SNRs of 10 (red window), 15 (yellow window), 20, and
25 (green window) dB.

by analyzing the amplitude and the slope of the rising front of all the waveforms
available in the dataset. The inclination of the curve was derived by computing
the point-by-point slope γ of the tangent line with respect to the horizontal. The
tangent to the curve was determined using the known equation of the line passing

109



Algorithms for assessing Pulse Wave Velocity

Figure 5.5: Selected points used for the definition of the processing window. End
of the diastole (A), the maximum of the first derivative (B1) and the 95% of the
systolic peak amplitude (B2). The slope coefficient γ has been computed as the
angle between the horizontal line and the tangent line passing through successive
samples on the signal. The value assumed by γ in B1 and B2 was defined as γB1
and γB2.

between two points for each pair of successive samples. The slope γ has been
computed according to Eq. 5.4.

γ = arctan
(︄

df(t)
dt

)︄
(5.4)

Where f(t) represents the pulse waveform as a function of time t. Figure 5.5 il-
lustrates the points considered for defining the processing window. The minimum
preceding the ascending portion of the systolic phase, indicated as A, represents
the window’s lower boundary.

Concerning the definition of the upper limit, two specific points have been con-
sidered. The first one corresponds with the maximum of γ(t), (B1), and the one
located at 95% of the systolic peak’s amplitude (B2). This latter option was pre-
ferred to the systolic peak since the calculated slope at the signal’s maximum would
always be zero, as the tangent line becomes horizontal whenever a local, or global,
minimum, or maxima occurs.

5.2.5 Statistical Analysis
The following subsection describes the statistical analysis used to determine the

upper bound of the window as well as the parameters employed to evaluate the
algorithm’s performance for estimating from the PWV. Three different indicators
have been defined to quantify the stability of the mentioned upper boundary across
the entire dataset: the intra-subject variability (intraSV), the inter-subject vari-
ability (interSV) and the coefficient of variation (CV). The (intraSV) evaluates
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the overall point-to-point difference of the considered features in B1 and B2 on
the carotid and femoral sites. This information enabled us to determine which of
the two points leads to the section of the signal presenting the highest similarity,
hence improving the algorithm’s precision. As reported in Eq. 5.5, the first step in
the calculation of this parameter is to determine the absolute difference, Di, of the
considered feature for each couple of carotid and femoral waves.

Di = |featCAR,i − featF EM,i| feat = A, γ. (5.5)
Where A, refers to the amplitude value and γ to the slope coefficient assumed in
B1 or B2. Subsequently, the average difference Dk was computed for each subject
k, Eq. 5.6.

Dk = 1
nk

nk∑︂
i=1

Di (5.6)

Where nk is the number of pulses available for the k-th subject. Once obtained a
representative value for each subject, they have been further averaged according to
Eq. 5.7

µD = 1
M

M∑︂
i=1

Dk (5.7)

M represents the number of subjects in the dataset.
Then the standard deviation σD has been computed according to Eq. 5.8

σD =

⌜⃓⃓⎷ 1
M

M∑︂
i=1

(Di − µD)2 (5.8)

Combining Eq. 5.7 and Eq. 5.8 the intra subject variability (intraSV) is finally
retrieved, Eq. 5.9

intraSV = µD ± σD (5.9)
The second parameter defined for this purpose is inter-subject variability (in-

terSV). This indicator assesses the variability of the values assumed by the ampli-
tude and the slope in B1 and B2. It provides information on the variation of the
features, in the mentioned points, on the carotid and femoral signals. The first
executed step in the calculation of this parameter is the mean value featk defined
in Eq. 5.10

featk = 1
nk

nk∑︂
i=1

feati feat = A, γ. (5.10)

Where nk is the number of pulses available for the k-th subject. The standard
deviation σk for the k-th subject is computed according to Eq. 5.11
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σk =

⌜⃓⃓⎷ 1
nk

nk∑︂
i=1

(feati − featk)2 (5.11)

Similar to what was conducted with intraSV, the results obtained for each sub-
ject using Eq. 5.10 and Eq. 5.11 were combined to calculate representative values
for the entire dataset using Eq. 5.12 and Eq. 5.13.

µ = 1
M

M∑︂
i=1

αk (5.12)

σ =

⌜⃓⃓⎷∑︁M
k=1(nk − 1)σ2

k∑︁M
k=1(nk) − M

(5.13)

Where M is the number of participants. Inter-subject variability (interSV), defined
as Eq. 5.14, is reported below

interSV = µ ± σ (5.14)
The coefficient of variation (CV) defined in Eq. (5.15), as the ratio between the

average standard deviation σ and the mean value µ, has been used to compare the
variability of the measurement respect to its mean value, in the mentioned points,
using the extracted angles and the amplitude.

CV (%) = σ

µ
.100 (5.15)

Concerning the PWV estimation, each participant was evaluated through 3 ac-
quisitions using the two available devices. The results obtained have been expressed
in terms of mean value and standard deviation. The performance of the proposed
algorithm has been evaluated by comparing the average PWV values with those
obtained with the Athos system, the SphygmoCor, and the simple cross-correlation
technique (i.e. applied without carrying out the steps to select the processing
window previously described). The Pearson correlation coefficient and the paired
t-test analysis have been used to assess the relationship between the available PWV
values. Furthermore, a linear regressive model has been used to quantify the concor-
dance of the measurements and its goodness evaluated through the determination
coefficient R2. Measurement accuracy was assessed by calculating the mean value,
standard deviation, and root mean square error (RMSE) of the difference between
the reference method and the method to be tested. The concordance of the mea-
surements with the reference device was examined employing the Bland-Altmann
plot, and the significance of the data was evaluated by setting P<0.05. Regarding
the application of the proposed algorithm w.r.t the IT, both approaches were ap-
plied to the noisy pulse wave signals; the resulting PWV values were compared to
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Table 5.1: Indicators employed in the processing window’s upper boundary assess-
ment

Feature Indicator B1 B2
CAR FEM CAR FEM

Slope
CV (%) 4.3 5.4 22.9 18.8

interSV (DEG) 73.10 ± 3.14 71.80 ± 3.88 43.04 ± 9.84 40.21 ± 7.52
intraSV (DEG) 6.22 ± 3.14 14.87 ± 7.15

Amplitude
CV (%) 19.9 19.8 20.5 24.8

interSV (µV) 51.53 ± 10.22 51.81 ± 10.24 110.11 ± 22.51 110.60 ± 27.73
intraSV (µV) 19.59 ± 12.01 41.89 ± 25.53

Abbreviations: CV; coefficient of variation, interSV; inter-subject variability,
intraSV; intra subject variability.

those obtained with those derived from the application of IT and RBCC on noise-
free signals. Specifically, the absolute error for the i-th subject, w.r.t the noise-free
cfPWV, was computed as follows:

error [i] α, β =
⃓⃓⃓
cfPWV [i] α, β − cfPWV [i] α, noise free

⃓⃓⃓
(5.16)

Where cfPWV [i] α, β refers to the cfPWV value for the i-th subject according
to tested method (α ∈ {RBCC, IT}) and β to the related SNR value (β ∈
{10 dB, 15 dB, 20 dB, 25 dB}). Then, the mean absolute error was computed for
each SNR for the two algorithms. The multi-sample non-parametric Friedman test
[173, 179] was employed to assess the statistical significance of the observed errors
for IT and RBCC, paired according to the tested SNRs (e.g. error IT, 10 dB with
error RBCC, 10 dB etc.) for a total of four tests (i.e. one for each SNR value). The
significance of the identified variations was determined by establishing a threshold
at P<0.05.

5.3 Results

5.3.1 Processing Window Assessment
In the prior section, three different indicators have been employed to define the

correct feature to identify the best location on signals. The CV indicator was used
to determine whether to select the slope or the amplitude as the parameter to define
the processing window’s upper boundary. The intraSV was used to quantify the
consistency of the tested points within each subject. Finally, interSV was employed
to assess the stability of those across the entire dataset. Table 5.1 reports the CV
indicator computed in B1 and B2 for each feature on each acquisition site. For
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Table 5.2: Clinical characteristics of the study population

Characteristics µ ± σ Range
Number of subjects 75 -
Number of acquisitions 3 -
Number of pulses per acquisition - 5-14
Total number of pulses 2128 -
Male 43 (57.3%) -
Age (years) 46 ± 17 19-82
Height (cm) 170.5 ± 10.57 153-195
Weight (Kg) 68.84 ± 14.07 45-106
BMI (Kg m−2) 23.56 ± 3.72 17.8-37.11
SBP (mmHg) 117.88 ± 11.53 93-147
DBP (mmHg) 72.89 ± 8 59-94
HR (bpm) 64.44 ± 10.24 41-90
Abbreviations:µ, mean value; σ, standard deviation; BMI, body mass index;
SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate;
bpm, beats per minute.

the slope γ, CV is equal to 4.3 % and 5.4 % in B1 and 22.9 % and 18.8 % in B2.
Concerning the amplitude value, CV results are equivalent to 19.9 % and 19.8 %
in B1 and 20.5 % and 24.8 % in B2. Table 5.1 also shows the outcomes of the
intraSV and intraSV used to define the extreme point of the window. For the
carotid site, interSV results to be equal to 73.10 ± 3.14◦ in the first point and
43.04 ± 9.84◦ for the second. For the femoral site, however, interSV takes a value
of 71.80±3.88◦ in B1 and 40.2±7.5◦ in B2. The analysis of the intraSV reports an
average difference value of 6.22 ± 3.10◦ for the first case and 14.87 ± 7.15◦ for the
second. Both indicators were utilized to evaluate the stability of the tested points.
IntraSV specifically examined the variability within data from the same subject,
while inerSV was computed to observe variations across different subjects.

5.3.2 Pulse Wave Velocity Assessment
Table 5.2 displays the clinical features of the participants who were enrolled in

the study. Of the 75 healthy subjects recruited, 43 (57.3%) were men. The average
age of the population was 46 ± 17 years, distributed heterogeneously between 19
and 82 years old. The comparison results between the IT method used by the
Athos device, the proposed algorithm RBCC, and the direct application of the
cross-correlation technique to the signal epochs (DCC) are presented in Table 5.3.
The comparison is performed in relation to the SphygmoCor device. The results
obtained show a high correlation between the PWV values obtained in two out
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Table 5.3: Accuracy of cfPWV estimated values compared to those extracted by
the reference method (SphygmoCor).

Method µ∗ ± σ (m s−1) RMSE (m s−1) r R2

Intersecting Tangent -0.07 ± 0.52 0.52 0.97 0.93
Region Based Cross-Correlation 0.16 ± 0.54 0.57 0.96 0.92
Direct Cross-Correlation -1.04 ± 2.21 2.44 0.82 0.64
Abbreviations: RMSE; root mean square error, r ; Pearson’s correlation coefficient,
R2; determination coefficient
*Difference of cfPWV estimated values compared to those extracted by the reference
device, SphygmoCor.

of three cases. The Pearson’s coefficient retrieved in the three cases is equal to
0.97, 0.96 and 0.82, respectively for IT, RBCC and DCC. The determination
coefficient R2, used to assess how well the regression predictions approximate the
real data points, is 0.93, 0.2 and 0.64, revealing the poorer performance of the cross
correlation approach when compared to the other methods. The average difference
± 2σ calculated concerning the PWV values estimated by the SphygmoCor and
shown in the Bland-Altman plot is −0.07 ± 0.52 m/s for IT, 0.16 ± 0.54 m/s for the
RBCC and −1.04 ± 2.21 m/s for the cross-correlation (DCC). The Athos device
shows the lowest bias (absolute mean difference) and standard deviation values of
the tested methods while the cross-correlation technique represents the worst case
for all indicators seen so far. A similar condition occurs for the RMSE it is 0.52 for
the first method, 0.57 for the second and 2.44 for the third. Figure 5.6 shows the
performance of RBCC and IT algorithms when applied on carotid and femoral pulse
waveforms corrupted by different levels of noise. The mean absolute error computed
w.r.t the PWV values derived from noise-free signals reveals the poor noise tolerance
of the IT method despite the tested SNR. Across all four tested cases, the RBCC
algorithm exhibited greater robustness to the introduced noise, demonstrating a
lower mean difference along with the associated standard deviation. The statistical
analysis, conducted through the Friedman test, consistently yielded P<0.05 in
all tested cases when comparing cfPWV absolute differences for each noise level.
Three out of four cases (15 dB, 20 dB, and 25 dB) values largely below 0.01.
The only exception lies for the test with an SNR of 10 dB, where the resulting P
value was still below 0.05. Nevertheless, despite the increased error and associated
standard deviation observed in this instance, all these findings testify the existence
of significant differences between cfPWV values derived from the application of IT
and RBCC across different noise levels.
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Figure 5.6: Mean absolute error and related standard deviation associated to
cfPWV values computed at different SNRs with respect to those obtained using
Intersecting Tangent (IT) and Region Based Cross Correlation (RBCC) on noise-
free signals

5.4 Discussion

5.4.1 Processing Window Assessment
Within this study, a particular focus is given to the methodology used to identify

a signal window that enhances the algorithm’s performance. The literature suggests
that the ascending part of the systolic peak is least affected by motion artifacts
and reflection phenomena near vessel branches [74, 176, 177, 178]. As a result, the
minimum point before the systolic peak was chosen as the lower boundary of the
processing window. Furthermore, it limited the study of the upper boundary to the
aforementioned points B1 and B2. The amplitude and the slope are the features
used to characterize points B1 and B2 on every pulse for each of the 75 subjects.

Figure 5.7 shows the CV indicator computed in B1 and B2 for each feature
on the carotid site (blue) and femoral site (red). Figure 5.7.(a) shows that the
CV takes on values that are equivalent to 4.3% and 5.4% in B1 and 22.9% and
18.8% in B2 when applied to γ. In the second case, Figure 5.7.(b), CV is equal
to 19.9% and 19.8% in B1 and 20.5% and 24.8% in B2 for amplitude values. B1
displays lower CV values than B2, indicating it as the location with less variability.
A small value of CV is indicative of greater stability of the identified pulse section
over the entire dataset. This is important because although there are intra and
inter-subject differences, the chosen portion of the signal maximizes the efficiency
of the realignment performed through the proposed approach while preserving the
information of interest. In addition, the values of point B1 and point B2 differ
more in the bar plot, considering the slope with respect to the one considering the
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amplitude, where the values are comparable. This mismatch may be due to the
pressure produced by the operators during acquisitions, resulting in differing signal
amplitude values. Consequently, it can be concluded that γ allows a more precise
distinction between B1 and B2 when determining the processing window’s upper
limit. Figures 5.8.(a) and 5.8.(b) depict the computed intraSV and interSV for
the slope γ. Both indicators confirm B1 as the most stable point. In particular,
the intraSV shows an average difference between the carotid and femoral angles of
6.22±3.10◦ in B1 compared with 14.87±7.15◦ in B2, indicating a smaller difference
between the two waves at the two sites in the former case. Respectively for B1 and
B2, Figure 5.8.(b) indicates for the carotid site (blue) a interSV of 73.10 ± 3.14◦

and 43.04 ± 9.84◦. At the femoral site (red), it is equal to 71.80 ± 3.88◦ in the first
point and 40.21±7.52◦ in the second. The average value is higher in B1 because, by
definition, it represents the point of the maximal signal slope. In comparison, the
standard deviation for the same location at the carotid and femoral sites is lower,
indicating less variability in terms of slope among the 75 patients in the dataset.
In view of the carried-out analysis, B1 proved to be the most stable point to be
used for the application of the algorithm.

Figure 5.7: Percentage coefficient of variation CV computed respectively in B1 and
B2, on carotid (blue) and femoral (red) pulses. (a) CV extracted for the slope γ.
(b) CV extracted for amplitude values.

5.4.2 Pulse Wave Velocity Assessment
Given the results reported in Table 5.3, it is possible to assume that the pro-

posed algorithm is a viable option to provide a reliable assessment of cfPWV. The
objective of the comparison was to assess the proposed approach in relation to
the technique utilized by the clinical gold standard used for non-invasive PWV
assessment. The statistic indicators reported in the previous section determine
the algorithm adopted by the Athos device (i.e., IT) as the best of the tested ap-
proaches. This result is attributable to the method adopted by the two devices.
Both Athos and SphygmoCor use the intersecting tangent point as the algorithm
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Figure 5.8: (a) Intra-Subject Variability computed for γ respectively in B1 and B2.
(b) Inter-Subject Variability computed for γ, respectively in B1 and B2, on carotid
(blue) and femoral (red) pulses.

for the estimation of PWV. In particular, Figure 5.9.(a) illustrates the outcomes
of the linear regression model applied to the PWV values obtained from the Athos
device in comparison to the Sphygmocor, exhibiting an R2 value of 0.93. On the
other hand, Figure 5.9.(b) depicts the concordance between the two methods in
terms of mean value and average difference across the measurements. In this case,
the Bland-Altman plot demonstrates an average difference, or bias, of −0.07 m/s
for cfPWV values, along with narrow limits of agreement (LOA) values of 0.96 and
−1.1. In contrast, the comparison between the DCC technique and SphygmoCor
gave the worst results. The application of this approach, without the previously
mentioned processing phases, was utilized to establish a starting point for evaluat-
ing the performance of the suggested method. In this case, the mean difference, the
standard deviation, and the RMSE reached their highest values, −1.04 ± 2.21 m/s
and 2.43 m/s respectively, while the Pearson correlation coefficient and the coeffi-
cient of determination R2 were equal to 0.82 and 0.64, Figure 5.10.(a). The reason
for these results is the different morphology of the pulse wave when the proximal
and distal sites are far apart confirming why this technique was applied just for a
local evaluation of PWV. The lack of agreement of these two methods is also re-
flected in Figure 5.10.(b). Specifically, the systematic bias equal to −1.04 m/s along
with a wider distribution of points and limits of agreement values respectively equal
to 3.15 and −5.24 due to the presence of outliers in the PWV values. However,
part of them was not included in Figure 5.10.(b) to keep the consistent scale on the
y-axis along the three cases. The restriction of the comparison section combined
with the normalization of the latter has made it possible to obtain a signal with
a known shape while keeping the temporal information intact. In line with the
previous cases, Figure 5.11 represents the linear regression model and the corre-
sponding (Bland-Altman) plot. In this latter case, there is an improvement in all
the presented statistical indicators. In particular, the bias is 0.16 while the R2 and
the r are respectively equal to 0.92 and 0.96. These values demonstrate a strong re-
lationship between the predicted and observed values, indicating an excellent level
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Figure 5.9: Relationship between cfPWV estimated by the Intersecting Tangent
algorithm used by the Athos device and the reference method. (a) Best fitted
line (in red) retrieved from the linear regressive model fitted on the experimental
data. (b) Bland-Altman plots show the distribution of the averaged measurements
differences.
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Figure 5.10: Relationship between cfPWV estimated by the Direct application
of Cross-Correlation (DCC) approach and the reference method. (a) Best fitted
line (in red) retrieved from the linear regressive model fitted on the experimental
data. (b) Bland-Altman plots show the distribution of the averaged measurements
differences.

of accuracy and agreement in the model’s performance according to the perfor-
mance criteria stated in the 2010 ARTERY Society guidelines [53] (mean difference
< 0.5 m/s and SD < 0.8m/s). From the comparison between the IT method and
RBCC, it is possible to notice that the only substantial difference concerning the
best case occurs for the average difference of the PWV values equal to −0.07 m/s
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Figure 5.11: Relationship between cfPWV estimated by the Region Based Cross-
Correlation (RBCC) algorithm and the reference method. (a)Best fitted line (in
red) retrieved from the linear regressive model fitted on the experimental data.
(b) Bland-Altman plots show the distribution of the averaged measurements differ-
ences.

and 0.16 m/s respectively. The RMSE in the two cases presents a difference of less
than 10%, while the standard deviation of the measurements mean difference, the
Pearson correlation coefficient and the coefficient of determination R2 present an
average difference of less than 1%. The analysis conducted to determine the algo-
rithm’s robustness in the presence of different noise levels highlighted the greater
tolerance of the latter compared to the IT method. Statistical significance was es-
tablished using the Friedman test, which assessed the differences in cfPWV values
between IT and RBCC across the four noise levels. In all tested cases, the P value
consistently remained below 0.05, with three values well below 0.001 (10−5, 10−8,
and 10−8, respectively, for 15, 20, and 25 dB). The exception occurred with an
SNR of 10 dB where P resulted equal to 0.04. This outcome aligns with compa-
rable values of mean absolute error and standard deviation reported in Figure 5.6.
In addition, it is necessary to consider that 10 dB represents a limiting case, which
might not be suitable for a clinical application. Findings in [180] reveal an inverse
relationship between RMSE and SNR at a constant sampling frequency, underscor-
ing the substantial impact of SNR on estimation error. Furthermore, in [181], 15
dB was identified as the SNR value below which all the compared algorithms for
peak detection showed a performance decline exceeding 20%. Finally, it is crucial
to acknowledge that the acquisition process relies on a skilled operator who would
reject a signal displaying distorted morphology. However, in all the remaining com-
parisons, the proposed method exhibited significantly reduced mean absolute error
in the evaluation of the individual’s PWV compared to the reference values derived
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from noise-free signals. This result highlights the impact of relying on a single fea-
ture in the signal for PTT assessment, indicating that errors in estimating PWV
can be significant when detection is potentially affected by the presence of noise or
artifacts. Furthermore, the assessment of PTT based on the realignment of pulse’s
upslope, and therefore for a higher number of data points, allows for mitigating a
potential misdetection of points A or B in favor of a more robust and still accurate
PWV assessment. Thus, although the RBCC method performs slightly differently
from the intersecting tangent method, it turned out to be an excellent and more
robust method to be used to estimate PWV. Furthermore, compared to the stan-
dard application of the cross-correlation approach, it was proved that through the
reported processing steps it is possible to overcome the limitations responsible for
the application of this technique to perform a local estimation of PWV. Our pro-
posed approach’s primary limitation stems from excluding non-healthy subjects
during the validation process. This omission is noteworthy because non-healthy
subjects are more likely to exhibit alterations in cfPWV associated with irregular
vascular compliance and the potential impact of vasoactive medications. Regret-
tably, the ethical approval granted for this study imposes restrictions on testing the
proposed algorithm exclusively on healthy subjects, as the use of the Athos device
is authorized solely within the context of healthy individuals. In future endeavors,
the developed device’s validation will be extended to include non-healthy subjects
to verify the applicability and robustness of RBCC across a broader spectrum of
health conditions.
A second limitation of the proposed approach could be represented by the computa-
tional cost incurred by the cross-correlation process when comparing two windows
on pulse waveforms to estimate cfPWV using a single feature. Nevertheless, it is
crucial to note that the primary objective of this study is to explore the feasibility
of the proposed algorithm for an offline assessment of cfPWV. The current focus is
on the algorithm’s performance in a non-real-time setting. Therefore, the optimiza-
tion of the RBCC method for a real-time application will be further investigated
in future works.

5.5 Conclusions
In this chapter, a novel method for calculating cfPWV was presented. The PTT

is determined by computing the correlation between a specific portion of the signals,
eliminating the requirement to identify characteristic points often utilized for this
purpose. Particular attention was paid to finding an indicator that could be used
to define the window on the signal. Thanks to the slope analysis, it was possible
to locate the target section between the early systolic and end-diastolic portions
of the blood pulses. Hence, by reducing the pulse wave section utilized for PWV
assessment, we have developed an algorithm that yields results comparable to the
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gold standard employed in clinical practice. The proposed approach demonstrated
that it is feasible to overcome the inherent limitation of the direct application
of cross-correlation, which restricted its use in this sector to a local estimation.
Moreover, for various SNRs, the RBCC algorithm was more robust than the IT
method when applied to carotid and femoral pulse waveforms. Thus confirming the
capability of the proposed approach to provide a non-invasive assessment of cfPWV
in different conditions accurately and robustly. In conclusion, it was possible to
prove that the RBCC algorithm is a suitable solution for assessing the cfPWV,
and it has the potential to be used in clinical practice as an alternative method to
foot-to-foot algorithms.
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Chapter 6

Innovations in Personalized
Machine Learning for Cuffless
Blood Pressure Monitoring and
Motion Artifact Detection

This chapter contains parts that have been taken, or partially rephrased, from
a previously published work [65, 71].

The research activities described in this thesis were conducted in collaboration with
the Wireless Sensors Network (WSN) Group at the Tyndall National Institute (Uni-
versity College of Cork).

This chapter delves into the intricate process of developing and deploying a
custom device designed for real-time pulse transit time measurement, specifically
tailored for application on the elbow and thumb. The initial section introduces the
design and realization of this innovative device, highlighting its functionality and
potential for continuous health monitoring.

Following the device introduction, the chapter progresses to discuss the imple-
mentation of a personalized model aimed at detecting BP variations. This model
leverages data collected using the custom device to accurately monitor changes
associated with physical or cognitive workloads, thereby offering insights into the
body’s response to various stressors.

Finally, the chapter addresses a personalized approach for detecting motion
artifacts (MAs) within PPG time series data. By refining the accuracy of PPG
signal analysis, this approach enhances the reliability of health monitoring systems,
particularly in dynamic and real-world settings where MAs are prevalent.
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6.1 Development of a custom PPG acquisition
system for real-time estimation of PTT

The following section provides a comprehensive overview of the proposed sys-
tem, detailing both its hardware and software components. Initially, a detailed
description of the system’s architecture is presented, encompassing the sensors,
signal processing units, and software algorithms utilized for data analysis. Subse-
quently, the data capture procedure is explained, highlighting the steps taken to
ensure accuracy and reliability. Additionally, the reference device employed to val-
idate the system is outlined, ensuring that the comparative analysis is grounded in
established standards. Finally, the results of the system assessment are presented,
along with an analysis of the agreement with the reference device. This structured
approach aims to offer a clear understanding of the system’s performance and its
potential applications in the field of continuous, non-invasive pulse transit time
assessment finalized to BPmonitoring.

6.1.1 The Hardware
In this work, PPG sensors were used to assess variations in blood volume be-

tween the brachial artery and the thumb. To retrieve a good quality PPG signal
from the brachial artery, brighter LEDs and more sensitive photodiodes have been
employed compared to the conventional wrist-based PPG sensors. A PPG sensor
includes DAC LED drivers (AFE), ADC Photodiode (PD) signal acquisition, LEDs,
Photodiodes (PDs), and an optional ambient light cancellation (ALC). Because of
their size, power consumption, and adaptability, integrated PPG sensors are more
suited for wearable applications. Among the types of integrated PPG sensors avail-
able in the market, an integrated sensor which allows for connection with external
LEDs and photodiodes (PDs) has been selected for our purpose. The MAX86141
(Maxim Integrated, San Jose, USA) from Maxim Integrated was chosen as the PPG
sensor after analyzing all constraints as size, power consumption, adaptability, and
availability.

The MAX86141 is an ultra-low power, fully integrated optical data acquisition
system [182]. On the transmitter side, it has three programmable high-current LED
drivers, and on the receiver side, it has two optical readout channels that can operate
simultaneously. The device includes a low noise signal conditioning analog front-
end (AFE) with a 19-bit ADC and an ambient light cancellation (ALC) circuit.
The MAX86141 can carry out sampling at frequencies of up to 4096 samples per
second. For our application, the sampling rate was set at 500 Hz to allow real-time
data processing while ensuring an adequate time resolution (2 ms). Due to the
limited number of studies on the penetration of light within the body when used
for obtaining PPG from the brachial artery, the initial prototype employs LEDs
of varying wavelengths to define the optimum wavelength to be used. The SFH
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Figure 6.1: System employed to collect PPG raw data from the selected sites, elbow
(brachial artery) and thumb (digital artery).

7015 [183] (Osram Licht AG, Munich, Germany) contains a hyper red LED and a
940nm infrared LED along with a Green LED CT DBLP31.12 [184] (Osram Licht
AG, Munich, Germany) were also used. Up to two external photodiodes can be
connected to MAX86141. According to the selected LEDs, at least one of them
should be capable of receiving infrared light under a variety of conditions. In this
regard, VEMD5080X01 [185](Vishay Intertechnology Inc., Malvern, USA) from
Vishay has been chosen to receive IR and red light. Vishay’s VEMD5510CF [186]
and Osram’s SFH 2713 [187] contain IR cut filters and can pass light up to 670nm,
hence they can only be used with green LEDs. The system employs an ultra-low
power consumption microcontroller capable of simultaneously handling real-time
sensor reading along with data transfer to the dedicated graphical user interface.
STM32WB55CGU6 [188](STMicroelectronics, Geneva, Switzerland) is a dual-core,
multi-protocol, and ultra-low-power 2.4 GHz MCU system-on-chip developed by
ST Microelectronics. This device is meant to be exceptionally low-power, with a
high-performance Arm® Cortex®-M4 32-bit core working at up to 64 MHz. The
entire system is powered by one of the available 5V COM-Ports on the laptop that
is used to run the software responsible for the PTT assessment. A USB-C cable
is used to power and control the device, allowing reliable data transmission. Two
LDO regulators from the NCP170 [189] (ON Semiconductor, Phoenix, USA) family
of ON Semiconductor have been employed to provide the correct working supply
voltage required by all the components belonging to the system. This LDO family
drop-out voltage is 170mV, and the quiescent current for the NCP170 series is very
low. The reduced dimensions of the selected packaging XDFN4 (1mm x 1mm),
make this family ideal for wearable applications. NCP170AMX190TCG generates
1.9V, which keeps enough margin from the maximum and minimum supply voltages
of all components. Another regulator is NCP170AMX310TCG, which generates
3.1V, and the main reason for having this is to provide the supply voltage for LEDs
and LED drivers of PPG sensors.
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6.1.2 Mechanical Design to Control the Contact Pressure

Figure 6.2: Thumb sensor employed to detect pulse waveform from the digital
artery. (a) Sensor’s enclosure positioned on the hand of the subject under investi-
gation. (b) Finger clip enclosure for the thumb sensor.

Figure 6.3: Elbow sensor employed to detect pulse waveform from the brachial
artery. (a) Sensor’s enclosure positioned on the elbow of the subject under investi-
gation. (b) Elbow sensor enclosure for the thumb sensor. (c) Adjustable screw and
rotating head to adjust the sensor’s orientation.

During the creation of the proposed device, Figure 6.2 and Figure 6.3, the de-
sign of the enclosures housing the hardware described in the preceding section was
given careful consideration. The enclosures were designed to guarantee that the
sensor adheres to the sample site, applying steady pressure and avoiding the pres-
ence of the operator to keep it in its position. This feature enables the user to
reproduce the acquisition setup for a particular subject, hence improving measure-
ment reproducibility. Figure 6.2.(a) and Figure 6.3.(a) depict both the fabricated
supports and their placement on the subject’s body during data collection. The
thumb-mounted holder, Figure 6.2.(b), resembles the design of a standard pulse
oximeter. The presence of an elastic spring allows the sensor to adhere to the finger
during its usage. Figure 6.3.(b) shows the sensor holder positioned on the elbow.
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Figure 6.4: Graphic User Interface used by the device in the BP assessment. The
upper plots show the thumb signal (red) and elbow signal (blue). Bottom plots
depict the intersecting tangent being extracted from gathered signals for PTT es-
timation.

The side structure allows the operator to adjust the pressure exerted on the arm
making it steady during the data acquisition process as recommended in [95, 190],
Figure 6.3.(c). Through a graduated scale, it is possible to note the opening set
for each subject. The sensor has been placed in the upper section of the holder.
As shown in Figure 6.3.(c), the location of the latter can be modified vertically
using a rotating wheel while the sensor’s orientation relative to the vessel can be
adjusted using a spherical head that permits sensor rotation. All the enclosures
presented have been designed using the SolidWorks environment (Dassault Sys-
tèmes SE, Vélizy-Villacoublay France) and 3D printed using a Formlab 3 printer
(Formlabs, Somerville, USA).

6.1.3 The Algorithm
The datasets gathered by the system, stored in synchronized buffers, are sent

through a USB cable connection to the laptop running the algorithm used for real-
time processing. Using one of the COM ports available on the workstation, the GUI
can receive, visualise and manage the data transferred by the device. Real-time
acquisition, display of samples and PTT computation are made possible thanks to
a multi-thread process involving two buffers, named respectively acquisition buffer
and processing buffer.
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The GUI is divided into four different plots and a separate box showing the real-
time update of the computed features Figure 6.4. The first two plots are used to
display the acquired signals, while the last two depict the result of the application
of the algorithm used to compute the PTT on each pulse. This feature is later
used to compute the systolic blood pressure (SBP), the diastolic blood pressure
(DBP), and heart rate (HR) in a 6 seconds window. The user interface allows the
user to store the collected raw data and extracted features in a separate file for
later study. The aim of the algorithm employed by the developed system is the
extraction of a characteristic that detects the passage of the pulse throughout each
cardiac cycle. Specifically, among the several foot-to-foot algorithms reported in the
literature, the intersecting tangent method has been chosen for our purpose since
it has been shown to be the most reliable method for PTT estimation [139]. This
technique consists of the detection of the intersection between the horizontal line
passing through the minimum that precedes the systolic peak and the tangent line
to the ascending part of the signal. The application of several filter steps to remove
the DC-bias and the high-frequency noise affecting the signal. To accomplish this,
a 4th-order Chebyshev II band-pass filter with cut-off frequencies ranging from
0.5 to 10 Hz was used to process the data. The phase distortion introduced by
the usage of the filter was removed by applying the filter twice through forward-
backward filtering. The steps constituting the algorithm used to extract the PTT,
Figure 6.5, from the collected signals are reported in detail below.

i) Firstly, the collected signal is separated into epochs of similar length, with a
duration of 6 seconds (e.g., 3000 samples @500Hz). According to the subject’s
heart rate, a range of 4-10 pulses at a frequency between 40 and 100 bpm is
expected.

ii) The signal is filtered with a Chebyshev II band-pass filter of the 4th order with
cut-off frequencies of 0.3 and 10 Hz to remove DC offset and high-frequency
noise from the signal [32].

iii) Following the pre-processing steps, the analysis of the current window’s pulses
begins. Firstly, the first derivative of the signal is calculated and then, using
two dynamic thresholds, the peaks associated with each pulse are recognized.

iv) The first threshold (trh-1) is computed by averaging the positive points within
the first derivative of the signal across the entire window.

v) Later, the second threshold (trh-2) is determined by averaging the points
detected above trh-1 in the preceding stage. A peak is localized inside the
window when a minimum number of samples above thr-2 are observed. The
sample with the largest amplitude is chosen as the local maximum of the first
derivative for each pulse. It is then employed to construct the tangent line to
each pulse used in defining the intersecting tangent point.
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Figure 6.5: Flowchart of the algorithm implemented to detect the intersecting
tangent point (ITP).

vi) For every pulse, the end of the diastolic phase was determined on the original
signal by detecting the zero-derivative point before the maximum on the first
derivative. The horizontal line passing through the minimum preceding the
ascending part of the systolic phase is used to compute the intersection of the
two lines.

vii) Finally, the intersection of the two tangents marks the arrival of the pulse.

viii) The preceding stages are applied to signals collected from both the elbow
and the thumb. Every crossing tangent point calculated is paired with its
counterpart in the opposite window, and the PTT is computed as the delay
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between these two locations. The average of each window’s retrieved PTT
data is then used to calculate the BP readings according to the relationship
reported in [191].

6.1.4 System for Validation: Biosignal Plux
The Biosignal Plux acquisition system was employed as the reference device in

the validation process of the proposed system.

Figure 6.6: Biosignal Plux Acquisition system. (a) 8-channel Hub. (b) Blood
Volume Pressure (BVP) sensor. (c) fNIRS sensor.

Table 6.1: Features of the Biosignal Plux 8-Channels hub [192].

Specifications Description
Analog ports 8
Auxiliary ports 1 common groung; 1 digital I/O for accessories
Sampling rate up to 3kHz per channel
Sampling resolution 8-bit or 16-bit per channel
Communication Bluetooth class II (up to 10m in line of sight); USB
Battery 700 mAh3.7V LiPo rechargeable
Hub size 54x85x10 mm
Weight 45 g

The biosignal Plux acquisition system consists of an 8-channel acquisition hub, a
BVP sensor, and an fNIRS sensor, providing a comprehensive solution for simulta-
neously acquiring and analyzing multiple physiological signals. Here’s an overview
of each component:

• 8-Channel Acquisition Hub: The 8-channel acquisition hub serves as the cen-
tral data acquisition device in the system [192]. It collects and digitizes all
signals from the sensors and accessories and transmits them via Bluetooth
to the computer, where they are recorded and visualized in real-time. The
channels support up to 16-bit resolution and 3000Hz sampling frequency per
channel (i.e. up to 8 channels with 3000 16-bit samples per channel per
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Table 6.2: Features of the Biosignal Plux BVP sensor [193].

Specifications Description
Operating wavelength 670 nm (red band)
Operating principle Transmittance
Communication SPI
Consumption 4.8 mA
Bandwidth 0.02-2.1 Hz
Size 10x18x4 mm

Table 6.3: Features of the Biosignal Plux fNIRS sensor [194].

Specifications Description
Peak emission IR: 860 nm; RED: 660 nm
Spectral bandwidth IR: 30 nm; RED: 25 nm
Half intensity beam angle IR: + 13 deg; RED: +18 deg
Wavelength of max sensitivity* 850 nm
Range of sensitivity* 400-1100 nm
Radiant sensitive area* 7 mm2

Dimension of radiant sensitive area* 2.65x2.65 mm2

Resolution 16-bit
Sampling frequency 500 Hz
Communication SPI

second, or 4000Hz sampling frequency per channel when using only up to 3
channels simultaneously.)

• BVP Sensor: The BVP (Blood Volume Pulse) sensor is designed to mea-
sure changes in blood volume in peripheral blood vessels, typically using a
transmittance PPG sensor [193]. It detects variations in the amount of light
absorbed by blood vessels, providing insights into cardiovascular activity, in-
cluding heart rate, BP, and vascular reactivity. The BVP sensor is commonly
used for monitoring physiological responses to stress, exercise, and emotional
arousal. This BVP is an optical, non-invasive sensor that measures cardio-
vascular dynamics by detecting changes in the arterial translucency. When
the heart pumps blood, the arteries become more opaque, allowing less light
to pass from the emitter on the sensor to the receiver. The light emitter (red
band - 670 nm) and receptor are encapsulated inside a plastic finger clip, de-
signed to improve the signal-to-noise ratio by preventing other light sources
from interacting with the photodiode surface.
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• fNIRS Sensor: The fNIRS (functional Near-Infrared Spectroscopy) sensor uti-
lizes near-infrared light to measure changes in blood oxygenation levels on the
brachial artery [194]. By detecting alterations in hemoglobin concentration,
fNIRS sensor allowed the detection of the arterial pulse propagating deeper
in tissue.

6.1.5 System Assessment

Figure 6.7: Averaged PTT values retrieved for the 5 subjects involved in the trial.
Each point represents the mean value of the three acquisitions executed with both
systems. The error bars report the standard deviation.

Figure 6.8: Bland-Altman plot of the differences between the outcomes retrieved
by the reference device and the proposed device.
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Table 6.4: Overview of the characteristics of the study population

Characteristics µ ± σ. Range
Number of subjects 5 -
Number of acquisitions 3 -
Male 2 (40%) -
Age (years) 28 ± 3.27 23-32
Height (cm) 172.22 ± 6.8 164-180
Weight (kg) 66.61 ± 12.32 55-82
BMI (kg m−2) 23.56 ± 3.72 17.81-37.11
SBP (mmHg) 108.71 ± 12.03 92-125
DBP (mmHg) 67.22 ± 8.24 56-84
HR (bpm) - 52-74
Abbreviations: BMI, body mass index, SBP, systolic blood pressure,
DBP, diastolic blood pressure, HR, heart rate, bpm, beats per minute,
µ. mean value, σ, standard deviation

Table 6.5: System Assessment’s Results

Subjects Proposed Device Reference Device
µ ± σ µ ± σ

SUB-1 40.15 ± 1.27 47.85 ± 0.79
SUB-2 55.50 ± 3.90 50.36 ± 1.18
SUB-3 42.45 ± 3.09 51.70 ± 0.52
SUB-4 55.40 ± 2.95 63.57 ± 4.13
SUB-5 60.33 ± 3.01 59.08 ± 1.72
Abbreviations: µ, mean value, σ, standard deviation.

A study was undertaken at the Tyndall National Institute in University College
Cork (UCC), Ireland, for the evaluation of the developed device. In this experiment,
which was approved by the UCC Clinical Research Ethics Committee of the Cork
Teaching Hospitals, a comparison between the performance of the developed device
with that of the Biosignal Plux acquisition system was carried out. As described,
the developed device allows for the extraction of the raw data gathered by two PPG
sensors applied on the previously mentioned sites, namely, the thumb and elbow.
This trial included five volunteer individuals ranging from 23 to 30 years. Table 6.4
details the physiological parameters of the people involved. Each data collection
was performed in a climate-controlled environment with a temperature set to 20◦C.

Every individual was asked to refrain from smoking or consuming coffee 30 min-
utes before the session. After collecting the participant information, the subject
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was requested to stay supine for 10 minutes to have hemodynamic conditions and
vasomotor tone close to baseline level. The next step in gathering PTT data was
to locate the two measurement sites so that they do not vary from the reference
system to the proposed device. Finally, PTT measurements for each subject at rest
were carried out for three consecutive one-minute data captures. Each acquisition
was carried out when the patient was seated, with both feet on the floor and hands
on the table at the same level as the heart of the subject. PTT values retrieved
from the algorithm’s real-time application were used for the system assessment. On
the other side, the acquisitions gathered using the reference device were processed
offline using the procedure described in the previous section. The final PTT values
averaged across the three tests are shown in Figure 6.7 for all the participants; the
error bars indicate the measurement dispersion. In Figure 6.8, the Bland-Altman
plot is reported. The PTT mean difference is about -3.75±3.64 ms [-16.51 9.01].
Table 6.5 provides a summary of the average PTT values acquired by the two
devices for each participant, as well as their respective standard deviations (σ).
From these results, it is clear that the PTT measurements obtained by the pro-
posed device are significantly equivalent to those obtained by the reference system.
Moreover, assessing the standard deviation reveals that both systems involved have
comparable repeatability.

6.2 Development of a personalized model to de-
tect blood pressure variations associated with
physical or cognitive workload

In this section, the previously introduced custom PPG acquisition system was
employed to collect data from 31 healthy volunteer subjects. The aim is to inves-
tigate the factors influencing BP regulation under various conditions. The section
begins with an overview of the data capture protocol and data processing pipeline,
including a detailed description of the training strategies and evaluation metrics
used to assess the performance of the machine learning model. Following this,
the results from the data processing stage are presented, along with individual re-
sults for each subject in the dataset. A comprehensive discussion of the findings,
including the limitations of the proposed analysis, is then provided.

6.2.1 Cognitive Tests
As will be discussed later in this section, a specific data collection protocol

is implemented to accurately assess BP variations induced by both physical and
cognitive tasks. To this end, it is essential to introduce the two cognitive tests
selected to progressively stress each participant from a cognitive perspective. The
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Stroop test [195] and the N-back [196] test were chosen to challenge the tested
subjects using diverse visual and auditory stimuli, thereby inducing variations in
blood pressure due to the action of the autonomous nervous system (ANS) [197].

Stroop Test

The Stroop Test is a psychological test used to measure a person’s cognitive
processing speed, attention, and ability to manage interference from conflicting
information. It was named after John Ridley Stroop, who first published the test’s
findings in 1935. The test is widely used in cognitive psychology and neuroscience
research to assess executive functions and selective attention.

In its classic form, the Stroop Test involves a set of color words (like "red,"
"blue," "green," etc.) displayed in different ink colors. The participant is asked to
name the color of the ink rather than read the word itself (e.g., the word "red"
might be printed in blue ink, and the task is to say "blue" rather than "red."). This
creates a conflict between the word’s meaning and the ink’s color, requiring the
participant to suppress the automatic tendency to read the word and instead focus
on the ink’s color. As shown in Figure 6.9.(a), the test typically has two main
components:

• Congruent Condition: The word’s color matches the word itself (e.g., "red"
written in red ink). This condition provides a baseline for performance since
there is no conflict.

• Incongruent Condition: The word’s color differs from the word itself (e.g.,
"red" written in blue ink). This condition introduces interference and requires
cognitive control to override the automatic reading response. The difference
in response time and accuracy between these two conditions is often used as a
measure of cognitive flexibility and executive function. The greater the delay
or error rate in the incongruent condition, the more difficulty the individual
has in managing conflicting information.

The Stroop Test has been used in various research contexts, including studies
on attention, cognitive control, brain injuries, and neurological or psychiatric disor-
ders. It is also commonly employed in neuropsychological assessments to evaluate
attention-related impairments and executive function deficits.

N-Back Test

The N-Back Test is a cognitive task used to assess working memory, which
is the ability to hold and manipulate information in the mind over short periods
of time. It’s a commonly used test in cognitive psychology and neuroscience to
study memory, attention, and executive function. The N-back task involves the
serial presentation of a stimulus (e.g., a shape) spaced several seconds apart. The
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Figure 6.9: Cognitive test employed to induce a blood pressure variation. (a) Stroop
test. (b) N-Back test.

participant must decide whether the current stimulus matches the one displayed
n trials ago, where N is a variable number that can be adjusted up or down to
respectively increase or decrease the cognitive load. In a 1-back test, participants
compare the current stimulus to the one immediately preceding it. In a 2-back test,
Figure 6.9.(b), they compare the current stimulus to the one that was presented
two steps back, and so on. Higher values of "N" increase the cognitive load and
complexity of the task. The N-Back Test is widely used to investigate working
memory capacity, executive function, and cognitive flexibility. It is often applied in
research on aging, cognitive development, neurological disorders, and the impact of
various interventions or training programs on working memory. It is also used in
neuroimaging studies to examine brain activity patterns related to working memory
and cognitive control.

6.2.2 Data Collection Protocol
A second pre-clinical trial has been carried out at the Tyndall National Insti-

tute in University College Cork (UCC), Ireland, to study the BP variations related
to the execution of cognitive and physical tasks. In this experiment, approved by
the UCC Clinical Research Ethics Committee of the Cork Teaching Hospitals (pro-
tocol code ECM 4 (ff) 10/11/2020 and ECM 3 (b) 13/12/2022), a cohort of 31
healthy volunteers ranging from 21 to 34 years was recruited. Table 6.6 details the
physiological parameters of the people involved. In accordance with the guidelines
established for accurate BP measurement [17], every participant included in this
study did not have a pre-existing cardiovascular condition and was not undergoing
treatment with medications that could influence BP readings. Moreover, every in-
dividual was asked to refrain from smoking or consuming coffee in the 60 minutes
before the session. The first step in the data capture consisted of the individual
reclining in a supine position for 10 minutes to ensure that their hemodynamic
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Figure 6.10: Recommendations for BP measurements [16].

conditions and vasomotor tone returned to a baseline level. Subsequently, the sub-
ject received instructions regarding the prescribed posture for data capture, which
included sitting with back support, both feet flat on the floor, and hands resting on
the table at a height equivalent to that of the heart, as shown in Figure 6.10 [16].

Table 6.6: Overview of the characteristics of the study populations.

Characteristics µ ± σ Range
Number of Subjects 31 -
Male 20 (64%) -
Smokers 4 (13%) -
Age (years) 27.77 ± 3.70 21 - 34
Height (cm) 172.74 ± 9.27 158 - 192
Weight (kg) 69.52 ± 12.72 53 - 99
BMI (kg m−2) 23.22 ± 3.30 18.16 - 31.24

Abbreviations: BMI, body mass index, µ, mean value, σ, standard deviation.

In accordance with the study protocol reported in Figure 6.11, after obtaining
the anamnesis information, the operator identified the best location for the brachial
artery through tactile arterial palpation. Once located, the spot was marked with
ink to be sure that the acquisition site did not change over the duration of the data
capture. Each data collection session was divided into three principal sections,
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Figure 6.11: Data collection protocol followed in this study along with the evolution
of the averaged pulse waveforms morphology according to each section of the data
capture.

denoted as follows: the REST phase (REST), the phase dedicated to Cognitive
Testing phase (CT), and the After Exercise phase (AE). During each phase, a
series of three data acquisitions, each one lasting one minute, was performed using
the presented device. Then, the commercial cuff-based device, BPM Connect [198]
(Withings, Issy-les-Moulineaux, France), was used as a gold standard to measure
the reference BP values for each specific section. In total, a set of three refer-
ence measurements was collected throughout the entire data collection. To prevent
any potential recovery effects between measurements using both devices, the refer-
ence assessment immediately after completing the three acquisitions was conducted.
Each phase was designed to induce changes in both BP and PPG data collected
from each participant. The resulting alterations in the PPG pulse waveforms are
illustrated in the bottom section of Figure 6.11. In the CT section, the subject
is cognitively stimulated through two cognitive tests: the Stroop test [199] and
the N-Back test [200, 201]. Both tests were executed through a custom-designed
graphical user interface (GUI) structured to make a gradual augmentation in the
level of complexity. Prior to commencing the actual measurement, the operator
provided the participant with detailed instructions regarding the tests to be under-
taken. Additionally, the participants had the opportunity to familiarize themselves
with the GUI through the execution of a short demonstration. Then, the device
was positioned on the subject. The last three minutes of this section were recorded
during the execution of the N-Back test and later subdivided into the three acqui-
sitions related to the CT part. Hence, the reference BP measurement was taken
again with the Withings device. Finally, the AE section of the data capture was
performed. During this stage, each subject was engaged in a 10-minute walking
session on a calibrated treadmill. The treadmill’s configuration was kept uniform
across all data collection sessions. The speed was configured at 8 km/h, and the in-
clination was adjusted to its maximum level to induce BP variation even in trained
subjects. Then, the last three acquisitions with the proposed device were carried
out along with the last reference BP measurement.
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Figure 6.12: Data processing pipeline followed to analyze the collected PPG data.

6.2.3 Data Processing
Since the PPG measurements from both the thumb and elbow were processed

using the same procedure, the following explanation applies to both. The data
processing pipeline designed for this application can be divided into three major
sections, as depicted in Figure 6.12. The pre-processing phase begins with standard-
izing the length of all 12 acquisitions collected for each subject to ensure consistency.
Next, low-pass and high-pass filtering stages are applied to the pulse waveforms
to remove the DC offset and the high-frequency noise. The pre-processing phase
begins with the standardization of the length of all 12 acquisitions collected for
each subject. Low-pass and high-pass filtering stages are then applied to the pulse
waveforms to remove noise and retain relevant signal components. Addressing the
challenges of time series segmentation and labeling, [202, 203], the study initially
segments the collected data into 3-second, consecutive, non-overlapping windows.
This initial segmentation helps identify and remove portions of the signal poten-
tially corrupted by MAs [204]. Subsequently, a customized segmentation routine
identifies every single pulse wave within the acquisition by localizing the pulse on-
set, which marks the beginning of the systolic phase within the cardiac cycle. In
the quality assessment section, the template matching technique is utilized to iden-
tify pulses that exhibit abnormal morphology or are corrupted by MAs. This step
ensures that only high-quality, reliable data proceeds to the next stage, improving
the accuracy of subsequent analyses. Finally, specific points on the PPG wave-
form and its derivatives, known in the literature as fiducial points, are identified.
These fiducial points are crucial for extracting features that will be used in the data
analysis section. Following this summary, a more comprehensive description of the
processing pipeline is presented.

1. High-Pass Filtering: Initially, a high-pass filter with a cut-off frequency of 0.5
Hz is applied to remove the DC offset from the signal [101].

2. Low-Pass Filtering: Subsequently, a low-pass filter with a cut-off frequency
of 15 Hz is employed to eliminate high-frequency noise [101].

3. Standardization of Acquisition Duration: To ensure consistency across diverse
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Figure 6.13: Data segmentation routine pipeline. (a) The raw PPG signal from
the thumb (blue) and its low-pass filtered version (green) over a 3-second time
window. (b) The low-pass filtered PPG signal (green) and its first derivative (red
dashed) within a specific epoch (i-th epoch). (c) Detailed identification of the
diastolic minimum within the region of interest, using the low-pass filtered PPG
signal (green) and its first derivative (red dashed). (d) Result of the detection of
the diastolic minima employed for the final segmentation.
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subjects, the duration of each acquisition is standardized to 60 seconds.

4. Amplitude Standardization: The amplitude of the acquisition is standardized
using the following equation:

x = x − µs

σs

(6.1)

Where µs and σs are, respectively, the mean value and the standard deviation
of the signal.

5. A custom data segmentation routine is employed to detect the pulse onset
and divide the 60-second signal into single pulses. The main steps of the
segmentation routine are represented in Figure 6.14 and reported below:

(a) Smoothing the Signal: A low-pass filter with a cut-off frequency of 2 Hz
is applied to smooth the signal morphology and highlight its periodicity,
Figure 6.13.(a).

(b) Computing the First Derivative: The first derivative of the low-pass
filtered signal is computed, Figure 6.13.(b).

(c) Epoch Segmentation: The entire acquisition is segmented into 3-second,
non-overlapping windows.

(d) Detection of Minima and Maxima: Within each window, minima and
maxima are detected on the low-pass filtered signal and its derivative,
respectively, as depicted in Figure 6.13.(b).

(e) Validation of Minima and Maxima: The relative positions of minima and
maxima are checked to ensure that for each minimum, there is exactly
one corresponding maximum.

(f) Pulse Onset Detection: Finally, each pair of points (minima and max-
ima) is projected onto the original signal to define the region of interest
for detecting the pulse onset, Figure 6.13.(c, d).

6. The template matching approach [205] was chosen to conduct the pulse wave
quality assessment (SQA) [205]. Initially, a reference template was gener-
ated from all the available epochs. Pearson’s correlation coefficient was then
employed as the signal quality index (SQI) to compare each individual pulse
with the template, Figure 6.14. Pulses with an SQI below the specified accep-
tance thresholds (0.95 for REST, 0.95 for CT, and 0.9 for AE) were deemed
unacceptable and subsequently discarded.

7. These points, usually known as fiducial points, are distinct points that can
be identified on either the pulse wave or its derivatives. Figure 6.15 illus-
trates commonly used fiducial points. The key fiducial points on the original
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Figure 6.14: Extraction of the template from PPG waveforms collected from
brachial (left) and digital (right) arteries.
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Figure 6.15: (a) Feature extracted from a PPG waveform (b) Maximum of the
first derivative (ms) detected on the velocity plethysmography (VPG) (c) Fiducial
points detected on the acceleration plethysmography (APG).

PPG pulse wave, referring to Figure 6.15.(a), are the pulse onset, the sys-
tolic and diastolic peaks, and the dicrotic notch. The maximum point on the
first derivative is shown in Figure 6.155 (b), indicating the point of maximum
slope in the original signal. On the second derivative, four distinct points
occurring in systole can be identified, known as the a-, b-, c-, and d-waves
(Figure 6.15.(c)). The e-wave can be used to determine the location of the
dicrotic notch. The detected fiducial points and the criteria employed to de-
tect them are listed in Table 6.7 [206, 207, 208, 209].
On the original pulse wave, the systolic peak is usually identified as the max-
imum point, and the pulse onset as the minimum. When the dicrotic notch
is present, it can be identified from the timing of the e-wave on the second
derivative. The diastolic peak can then be determined as the maximum point
after the location of the dicrotic notch. When the diastolic peak is not present
(such as in older subjects), the corresponding location of this point can be
estimated as the first local maxima in the second derivative after the e-wave
or from the first derivative. On the first derivative (VPG), the point of maxi-
mum upslope can be easily obtained as the location of the maximum value of
the first derivative. To detect the key fiducial points on the second derivative
(APG) several criteria and methods are reported in literature[32].
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Table 6.7: Criteria for identifying fiducial points on PPG pulse waves.

Signal Fiducial Point Description

PPG, s
Sys Maximum of the pulse waveform
Dic First local minimum after the systolic peak or co-

incident with e
Dia First local maximum after dic and before o.8T

(where T is the duration of the cardiac cycle)
VPG, s’ ms Maximum of the first derivative, s’

APG, s”

a The maximum of s” preceding the maximum of the
first derivative ms

b First local minimum following a
c The greatest maximum of s” between b and e (or

if no maxima then the first maximum on x’ after e
d The lowest minimum on s” after c and before e (or

if no minima then coincident with c).
e The second maximum of s” after ms and before

0.6 T (unless the c wave is an inflection point, in
which case take the first maximum).

f The first local minimum of s” after e and before
0.8 T.

Abbreviations: PPG, photoplethysmogram, VPG velocity plethysmogram, APG, acceleration
plethysmogram, s, original pulse, s’, first derivative of the original pulse, s”, second derivative of
the original pulse.

Figure 6.16: Validation of the positions of fiducial points on high-quality PPG
waveforms collected from the elbow (left) and thumb (right) sites.

8. Upon detection, the position of each fiducial point is verified on each pulse
to ensure accurate feature extraction. Figure 6.16 illustrates the positions of
fiducial points on high-quality PPG waveforms collected from the elbow (left)
and thumb (right) sites.

9. Finally, features listed in Table 6.8 and Table 6.9 are extracted from each pulse.
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Table 6.8: Definition of the extracted features from PPG pulse wave.

Signal Feature Definition Formula

PPG, s

∆T Time delay between systolic and diastolic
peaks

tdia − tsys

SI Stiffness Index, h is the subject’s height h
tdia−tsys

CT Crest Time: time occurring between pulse
onset e systolic peak

tsys − t0

w Pulse width at 50% of systolic peak am-
plitude, Asys

-

IPR Instantaneous pulse rate 60/T

T Period of the cardiac cycle -
tdia Duration of the diastole T − tdic

tdic Time to dicrotic notch tdic − t0

A0 Amplitude of pulse onset s(t0)
Asys Amplitude of the systolic peak s(tsys)
Adic Amplitude of the dicrotic notch s(tdic)
Adia Amplitude of the diastolic peak s(tdia)
RI Reflection index s(tdia)−s(t0)

s(tsys)−s(t0)

K Pulse waveform characteristic value sµ−A0
(Asys−A0

K1 Systolic characteristic value sµ,sys−A0
(Asys−A0

K2 Diastolic characteristic value sµ,dia−A0
Asys−A0

sµ,sys Mean value of the systolic phase of the
pulse waveform

-

sµ,dia Mean value of the diastolic phase of the
pulse waveform

-

sµ Mean value of pulse waveform -
sσ Standard deviation of pulse waveform -
sskewness Skewness of pulse waveform -
skurtosis Kurtosis of pulse waveform -
A1 Area under the curve between the pulse

onset (t0) and the dicrotic notch (tdia)
-

A2 Area under the curve between the dicrotic
notch (tdia) and the end of the pulse (tend)

-

IPA Inflection point area A2
A1
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Table 6.9: Definition of the extracted features from first and second derivatives of
PPG pulse waveform.

Signal Feature Definition Formula

VPG, s’ tms Time to the maximum slope computed
on the first derivative of the pulse

tms − t0

Ams Amplitude of the maximum slope s′(tms)

APG, s”

tbd Time elapsing between b and d td − tb

tbc Time elapsing between b and c td − tc

b/a Amplitude ratio early systolic negative
wave over early systolic positive wave

s′′(tb)
s′′(ta)

c/a Amplitude ratio late systolic re-
increasing wave over early systolic
positive wave

s′′(tc)
s′′(ta)

d/a Amplitude ratio late systolic decreasing
wave over early systolic positive wave

s′′(td)
s′′(ta)

e/a Amplitude ratio early diastolic positive
wave over early systolic positive wave

s′′(te)
s′′(ta)

AGI Aging index s′′(tb)−s′′(tc)−s′′(td)−s′′(te)
s′′(ta)

Combined IPAD Inflection point area combined with d-
peak

A2
A1

+ s′′(td)
s′′(ta)

k Elasticity constant s′′(tsys)(s(tsys)−s(t0))
s(tsys)−s(tms)

Abbreviations: VPG velocity plethysmography, APG, acceleration plethysmogram, s’, first
derivative of the original pulse, s”, second derivative of the original pulse.

6.2.4 Model Training
This study examines the efficacy of personalized against generalized training

strategies to identify significant alterations in blood pressure levels. As delineated
in section II-B, the data collection protocol was meticulously structured to induce
BP variations through the execution of both physical and cognitive tasks. This
setup enabled a thorough investigation of BP fluctuations in individuals subjected
to diverse stimuli. In this context, a macroscopic variation of BP is defined as the
difference between the reference values measured throughout the data collection
procedure, regardless of the magnitude. Consequently, the phases of the data cap-
ture process (e.g., REST, CT, AE) were used as target labels for the analysis, as
they inherently reflect BP changes.

Our investigation compares the outcomes derived from applying ten differ-
ent person-specific models (PIM) against those obtained by a person-independent
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Figure 6.17: Overview of the tested training strategies. (Left) Workflow employed
for the generalized approach (PIM). (Center) Tested combinations for Person-
Specific Strategies (PSM). (Right) Workflow adopted by every PSMi,j.

model (PIM) when applied to the identical dataset, utilizing an RF classifier.
Although features were extracted from signals at both sites, only those from the
thumb were utilized. Pulse waves collected from the elbow were used to calcu-
late the PTT, which was then used as a feature. Figure 6.17 (left branch) shows
the workflow for our generalized approach. A Leave-One-Subject-Out strategy was
adopted to optimize the model’s performance across all users in the dataset. The
optimization process involved the following parameters: the number of trees in each
forest, which ranged from 50 to 100; the maximum depth of each tree in the forest,
which ranged from 10 to 50; and the number of features used in the training process,
which ranged from 3 to 25. The feature selection process was applied only at the
training stages by ranking the first n features according to the mutual information
between each feature and the target label. The right branch, highlighted in red,
summarizes the ten personalized strategies. The tested PSMs differ in the amount
of data used during the training phase and the fraction of the target subject data
employed to personalize the model. Starting from PSMSD, in which 50% of data
from the kth subject for training was employed, data from randomly selected indi-
viduals were gradually added to the training set. Specifically, the number of source
subjects varied across 5, 10, and 15 individuals. Different fractions of the target
subject data were also tested to customize the model. This feature was progres-
sively expanded, beginning from an initial value of 15%, and subsequently increased
to 30% and 50%. Each combination of these parameters, when applied to the RF,
was labeled as PSMi,j where i identifies the number of source individuals, i ∈ 5,
10, 15, and j refers to the percentage of data belonging to the kth target subject
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Figure 6.18: Definition of true positives (TP), false positives (FP), false negatives
(FN), and and true negatives (TN) instances in a multiclass problem. (a) REST
class. (b) Cognitive task (CT) class. (c) After exercise (AE) class.

j ∈ 15%, 30%, 50%. The right side of Figure 6.17 details the workflow followed
by each PSMi,j before applying the RF model. The initial step involves randomly
selecting a portion of data samples from each class. To avoid class imbalance, each
class was equally represented by selecting 15%, 30%, or 50% of pulse waveforms
from each class. Following this, pulse waveforms from different source subjects (5,
10, or 15) were included. Then, unlike the generalized approach, the PIM method
incorporates 10-fold cross-validation to fine-tune the model’s hyperparameters and
identify the most informative subset of features. Finally, all the mentioned solutions
apply the RF model to predict the actual class of the input pulses. The output
from each subgroup was merged for visualization purposes, although each PIM was
tested individually.

6.2.5 Evaluation Metrics
As described in the previous subsection, the four presented models were trained

and tested per each subject in the dataset. Therefore, metrics such as accuracy,
precision, recall, and F1-score were computed to evaluate the fluctuations of clas-
sification performance from subject to subject. Finally, an average of all indexes
was computed along with its standard deviation to summarize the performance of
each model. In a multiclass classification problem with three classes (REST, CT,
and AE), the definitions are as follows:

• True Positives (TP): Correctly predicted instances of a class.

• False Positives (FP): Instances incorrectly predicted as a certain class.

• False Negatives (FN): Instances of a class that are incorrectly predicted as
another class.
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• True Negatives (TN): all instances that are correctly not classified as the class
under evaluation.

The accuracy score, computed as the ratio of correctly predicted instances over
of the total number of instances, was used to quantify the correctness of the pre-
dicted labels compared to the actual labels Eq.6.2.

Accuracy =
∑︁True Positives for All Classes

Total Instances (6.2)

Given these definitions, the evaluation metrics such as precision, and recall
scores are computed, individually, for each of the three classes referring to different
sections of the data capture (α ∈ REST, CT, AE) as specified in Eq.6.3 and Eq.6.4.

Precisionα = TPα

TPα + FPα

(6.3)

Recallα = TPα

TPα + FNα

(6.4)

Where FPα and FNα are the overall number of false positives and false negatives
referred to the target class α ∈ REST, CT, AE under evaluation. Then, for every
tested subject subi, the macro averaged value of precision and recall, Eq.6.5 and
Eq.6.6., was calculated according to the following:

Precisionsubi
= 1

N

N∑︂
α=1

Precisionα (6.5)

Recallsubi
= 1

N

N∑︂
α=1

Recallα (6.6)

where N is the number of classes occurring in this study.
Finally, the the macro averaged F1-score was computed as reported in Eq.6.7:

F1subi
= 1

N

N∑︂
α=1

2 ∗ Precisionα ∗ Recallα
Precisionα + Recallα

(6.7)

6.2.6 Data Processing Results
Table 6.10 shows the results of the three processing stages described divided per

section of the data capture (REST, CT, AE), for a single site.
After eliminating epochs corrupted by MAs, the total number of segmented

waveforms amounts to 19,274, distributed as follows: 6,348 for the resting phase
(REST), 6,213 during cognitive testing CT, and 6,713 after the physical exercise
phase (AE). Data collected from subject #26 was discarded due to corruption of
the recording on both sites during the CT section. The variance in the number
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Table 6.10: Data processing results.

Data Capture Segmented Pulses PWQA Fiducial Points
Validation

REST 6348 6074 5935
CT 6213 5849 5630
AE 6713 6620 6321

Total Pulses 19724 18543 (96.8%) 17886 (92.8%)
Abbreviations: REST, measurements at rest; CT. cognitive task section; AE, measurements after
physical tasks; PWQA, pulse wave quality assessment

Table 6.11: Averaged Reference Blood Pressure Values.

Data Capture SBP (mmHg) DBP (mmHg) HR (bpm)
REST 109.03 ± 11.61 67.81 ± 6.71 71.69 ± 8.29

CT 114.53 ± 3.03 71.24 ± 8.24 70.04 ± 8.71
AE 115.42 ± 12.24 72.87 ± 7.31 77.31 ± 11.90

REST, measurements at rest, CT, cognitive task section, AE, measurements after physical tasks,
SBP, systolic blood pressure, DBP, diastolic blood pressure, HR, heart rate

of detected waves aligns with the execution of the scheduled tasks during the data
capture. Specifically, the approximately 400-wave difference between the REST
section and the measurement following treadmill walking can be attributed to the
observed increases in heart rate (HR) and BP in the measurements conducted with
the reference device. Regarding the CT section, although there was an increase
in SBP and DBP values (Table 6.11), the heart rate remained essentially constant
compared with the resting value. This phenomenon is reflected in the number of
waves detected (6,213, CT vs 6,348, REST).

As a result of the Pulse Wave Quality Assessment (PWQA), approximately
3.2% of the total pulses were excluded due to their insufficient similarity to the
reference template. Due to the low data quality found in the CT section, data
from subjects #17 and #29 were discarded from the dataset used for data analysis.
Finally, following the validation of the fiducial points, an additional 4% of data
points were discarded for a total of 17,886 pulse waves used in the analysis phase
collected from 28 out of 31 subjects.

6.2.7 Model Evaluation Results
Table 6.12 compares the aggregated BP classification performance between ten

different PSMs with the results achieved using a generalized approach. The results
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were expressed in terms of mean value and related standard deviation using the scor-
ing criteria (accuracy, precision, recall, and F1-score) mentioned in Section 6.2.5.
The evaluation metrics computed per each subject according to training strategy
are reported in Tables B.1 - B.8 in Appendix B. The person-independent model,
denoted as PIM, was trained across the complete dataset employing Leave-One-
Subject-Out cross-validation. Subsequently, performance evaluation was conducted
by aggregating the outcomes obtained for each individual. No personalization was
applied in this case. The low scores retrieved for each metric (0.36, 0.36, 0.31,
0.37) suggest the requirement for personalization to model the PPG-BP relation-
ship effectively. Figure 6.19 displays the results gathered using the RF trained
using 50% of the data of the target subject under investigation (PSMSD). In this
case, subjects #2, #14, #21, #25, and #28 display a marked decrease in classifi-
cation performance, showcasing accuracy values of 0.63, 0.67, 0.75, 0.78, and 0.67,
alongside precision values of 0.43, 0.5, 0.8, 0.8, and 0.5. Through systematic assess-
ment using the proposed training approaches, the impact of altering the number of
subjects and the percentage of data used for model customization on classification
performance was examined. The evaluation metrics computed per each personal-
ized model (PSMi,j) are reported in Table 6.12, and the average accuracy score is
represented in Figure 6.20. In this latter, two discernible trends can be identified.
Specifically, the average accuracy is directly correlated with the increase in the per-
centage of data utilized during the pre-training phase and inversely correlated with
an augmentation in the number of subjects.

Figure 6.19: Values of evaluation metrics (Accuracy, Precision, Recall, and F1-
score) according to the training strategy denoted as PSMSD.
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Figure 6.20: Averaged values of accuracy score according to different combinations
of number of source subjects and diverse fractions of data employed to personalize
the RF model.

The observed accuracy values of 96.4% , 95.7%, and 94.5% in the first set (e.g.,
PSM5,50% PSM10,50% PSM15,50%) decline to 95.1%, 92.6%, and 91.6% in the second
set (e.g., PSM5,30%, PSM10,30%, PSM15,30%), and further decrease to 91.4%, 87.4%,
and 86% in the third set (e.g., PSM5,15%, PSM10,15%, PSM15,15%). Combinations
that demonstrated overfitting across multiple subjects were excluded by discarding
those with accuracy and F1 values below 0.95, Figure6.21. Therefore, PSM5,30%
PSM5,50% PSM10,50% were selected. Given the comparable overall performances
across subjects for these combinations, our choice for the best combination was
guided by a balance between performance metrics and the minimized data require-
ment for model customization. This led us to favor PSM5,30%.

6.2.8 Discussion
This study compares the performances of person-dependent and generalized

models adopted to track BP macro-variations associated with physical or cogni-
tive workload using a Random Forest classifier. This model was chosen due to its
ability to handle the nonlinear relationships that exist between the extracted fea-
tures and the variation in BP [207]. In other studies, RF has outperformed other
nonlinear models such as SVM, adopting a non-linear kernel, and neural networks
[210]. Moreover, RF is less prone to overfitting compared to the other two men-
tioned MLA [108]. Generalized solutions often struggle with the high inter-subject
variability within the dataset, making it challenging to develop a universally ap-
plicable model. The choice between personalized and universal models depends on
the specific context and objectives of the problem being addressed.
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Figure 6.21: Comparison of performance metrics (Accuracy, Precision, Recall,
and F1-Score) between the Person-Independent Model (PIM) and various Person-
Specific Models (PSM). The dashed blue line at 0.95 indicates the threshold em-
ployed to discard PSM configurations with unsatisfactory performance.

Personalized models, finely tuned to individual users’ characteristics, take into ac-
count factors like age, gender, medical history, and lifestyle to provide more accurate
and relevant predictions of BP. This tailored precision proves particularly crucial
for individuals affected by complex health conditions or unique risk factors. Despite
these advantages, the construction and maintenance of personalized models for each
user pose challenges. This process can be resource-intensive, especially in the field
of large-scale applications involving a significant number of subjects. Moreover,
privacy and data protection concerns come to the forefront, as the development of
personalized models often necessitates access to sensitive user data
Generalized models, in contrast, are crafted to exhibit proficiency across a diverse
spectrum of users without the need for individual customization. This inherent
versatility makes them more scalable and simpler to implement, eliminating the
necessity for tailoring to each user’s unique attributes. The cost-effectiveness and
ease of maintenance associated with generalized models make them particularly
advantageous for applications boasting a large user base. However, this broad ap-
proach comes with a trade-off since generalized models may fail to capture the
distinctive characteristics and preferences of individual users. Consequently, the
predictions generated by these models may result in a lack of accuracy compared
to their personalized counterparts.
This phenomenon, highlighted in [211], is also reflected in the presented findings
where the averaged metrics of the generalized approach (0.36, 0.36, 0.31, 0.37) un-
derline the difficulties in defining a univocal representative model for subjects with
different physiological characteristics. A hybrid approach combining personalized
and universal models, as investigated in this study, may be beneficial for blood
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pressure monitoring. A universal model could be used as a baseline to provide ini-
tial predictions for all users, and personalized models could be applied to increase
the model’s performance where personalization is deemed critical, such as users
with complex health conditions or unique risk factors accommodating the inherent
diversity in BP patterns among different subjects.

In [126], the authors used a transfer learning technique that personalizes spe-
cific layers of a pre-trained network to improve the performance of PPG-based BP
estimation, highlighting the influence of the number of data samples and source
subjects used for training. As illustrated in Figure 6.21, the analysis of the results
indicates that all PSMs enhanced the performance of the generalized model, with
improvements reaching up to 60% for PSM5,50%. This enhancement occurred re-
gardless of the number of source subjects used for training, compared to a single
generalized model trained on the same dataset. Moreover, by observing the met-
rics displayed in Table 6.12, strategies including data obtained from different in-
dividuals demonstrate better performance in comparison to the model constructed
exclusively using data from the tested subject (PSMSD) where, as reported in Fig-
ure 6.19, the classification performance of eight subjects witnessed a substantial
decline. Subject #2 emerged as the most adversely affected, exhibiting a notable
drop of all metrics up to 0.63, 0.43, 0.67, and 0.52 for accuracy, precision, recall, and
F1-score, respectively. These fluctuations in classification performance are a direct
consequence of the phenomenon of overfitting whereby the model cannot correctly
predict data that differ from the small training set available. To mitigate this issue,
data from 5, 10, or 15 randomly selected subjects from the dataset were included
in addition to diverse fractions of the target subject’s data (15%, 30%, 50%). In
this way, the behavior of the model was assessed according to different sizes of the
training set, degrees of personalization, and combinations of hyperparameters. Ta-
ble 6.12 reveals a distinct inverse correlation between the classification metrics and
the increase of the number of individuals. This diminishing pattern suggests the
potential implications linked to higher variability introduced by additional source
subjects w.r.t to the initial amount of data used to pre-train the model. Hence,
this phenomenon may reduce random forest customization and consecutively lead
to poorer classification performance for the target subject under evaluation. In fact,
as depicted in Figure 6.20, PSM5,15%, PSM10,15% and PSM15,15% show a more pro-
nounced decrease in accuracy value as the number of subjects increases compared
to the cases with 30% and 50%.

This phenomenon is further visible in Figure 6.22 and Figure 6.23. Notably,
when utilizing only 30% of the data for the pre-training stage, this adverse trend
is further accentuated by a more pronounced variability (Figure 6.22b, and 6.22c)
compared to the scenario with 50% (Figure 6.23b, and 6.23c), where the standard
deviation is progressively reduced. In the definition of the best solution within the
context of our application, any tested combinations exhibiting aggregated accuracy
and F1 values below 0.95 were discarded. This approach ensured that combinations
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Figure 6.22: Evaluation metrics computed per each individual employing a fraction
of the target-subject data set equal to 30% and a diverse number of source subjects
(N). (a) N=5. (b) N=10. (c) N=15.
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Figure 6.23: Evaluation metrics computed per each individual employing a fraction
the target-subject data set equal to 50% and diverse number of source subjects (N).
(a) N=5. (b) N=10. (c) N=15.
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displaying overfitting across multiple subjects were not considered. As result, our
selected PSMs are confined to PSM5,30% , PSM5,50%, PSM10,50%. Upon analyz-
ing the performance of various combinations across subjects within the dataset, it
is evident that their overall performances are generally comparable. However, an
exception arises with subject #21, Figure 6.22a, Figure 6.23a, and Figure 6.23b,
which exhibit a drop in performance exceeding 10% compared to the training phase
in all three combinations although slightly less evident in PSM10,50%. This trend
is attributed to subject #21 having the lowest number of pulses in the dataset,
resulting in a diminished dataset for personalization compared to other subjects.
Notably, the combination PSM15,50% demonstrates a substantial improvement, uti-
lizing more data for personalization along with an increased number of individuals.
Hence, due to the similarity observed among the performance metrics, the selection
of the best combination was guided by the consideration of the data required for
model customization, leading us to favor PSM5,30%. Employing 30% of the total
available data, equivalent to approximately 162 sec for the personalization phase,
represents a noteworthy outcome as it allowed to keep the evaluation metrics above
95%. This achievement is particularly significant as it reflects a substantial reduc-
tion in the time required for this task compared to the approach outlined in [126]
where 250 sec of data recording per subject were used for the pre-training stage.
Therefore, combining a subset of source subjects, in conjunction with an adequate
fraction of data for pre-training, leads to increased robustness and generalizability
of personalized models across a broader spectrum of cases in BP assessment when
compared to standard generalized models. Despite the mentioned improvements,
some limitations of the proposed study need to be discussed. In this study, the
performance of the proposed approach was evaluated on a limited sample of 28
subjects, falling short of the 85 subjects required by the AAMI [16, 108]. To en-
hance model validation and generalization for accurate BP monitoring, it is crucial
to include a diverse range of values that truly represent the population, including
both males and females across different age ranges. Future endeavors will aim to
extend the validation process to encompass a larger and more diverse cohort of
individuals, aligning with the standards set by AAMI. Typically, to assess blood
pressure variations, multiple sets of data collection over several days are conducted
to ensure the algorithm’s consistent performance over time for the same individual.
However, it is crucial to note that our data collection protocol was designed to
induce short-term variations in BP linked to diverse stimuli rather than long-term
monitoring. Moreover, increased proficiency in the cognitive tests section would
likely result in reduced BP variation due to heightened familiarity with the tasks.
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6.3 Development of a personalized anomaly de-
tection model to detect motion artifacts over
PPG data using catch22 features

Wearable health monitoring devices incorporating PPG sensors have demon-
strated significant potential in advancing cardiovascular disease monitoring [113].
PPG sensors are widely utilized in wearable healthcare due to their low cost and
convenience. In addition, these sensors have proven effective in tracking physiolog-
ical signals such as heart rate (HR), oxygen saturation (SpO2), and blood pressure
[212, 213]. However, their accuracy is still considered unsatisfactory especially dur-
ing user motion, primarily due to MAs [214]. Signal quality degradation arises
from changes in blood flow velocity induced by motion, relative movement between
PPG sensors and human skin, and low tissue perfusion [28]. The wide frequency
range and time-varying nature of MAs pose challenges for conventional filtering
techniques in their removal [215]. Consequently, various signal quality index (SQI)
methods have been implemented to differentiate between high and low quality seg-
ments within the measured PPG signals [216].

In artifact detection, many studies traditionally utilize features derived from
waveforms, including heart rate, amplitude, waveform morphology, and spectral
features. Feature-based techniques for detecting anomalies in PPG data have sev-
eral limitations. Firstly, the sliding-window approach commonly used in these
methods limits the resolution at which artifacts can be detected. This is because
each window must be evaluated individually, which can be computationally ex-
pensive and often fails to capture the global context of the signal. Additionally,
handcrafted features, which are often used in these techniques, rely on predefined
criteria that may not be consistent across different subjects or activities. This
variability means that features effective for one individual might not work for an-
other, necessitating constant adjustments. Furthermore, these methods frequently
depend on accurate peak detection, which is challenging in PPG signals due to
their nature, leading to potential inaccuracies in Anomaly Detection (AD) [217].
In this section, the feasibility of detecting low-quality signal sections is explored by
employing a feature subset named catch22 [218]. This subset is used to feed three
different AD algorithms, tailored specifically to individual subjects, and compared
to the traditional training process conducted over the entire dataset.

The catch22 feature subset is known for its high performance in capturing a
diverse and interpretable time series signature. It incorporates properties such as
linear and non-linear autocorrelation, successive differences, value distributions,
outliers, and fluctuation scaling properties. These characteristics enhance the clas-
sification and clustering performance in time-series analysis. This approach ensures
a more robust and generalizable method for detecting low-quality sections in PPG
signals. The primary focus of this work is the identification of motion artifacts
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within the acquired signals, emphasizing the accurate detection and classification
of these disturbances. The goal is to ensure the integrity of the signals used for
clinical assessment by identifying segments affected by artifacts, rather than di-
rectly correcting or replacing those portions of the signals. However, the correction
or replacement of artifact-contaminated signal segments represents a valuable and
promising future direction for this research. By addressing these next steps, the
overall robustness and accuracy of the signal processing pipeline could be further
improved, ultimately enhancing the reliability of the system for clinical and real-
world applications. The following section is structured as follows. Firstly, the data
processing pipeline and the feature extraction process involving the catch22 library
are presented. Then, the tested AD algorithms are introduced. Subsequently, the
gathered results are presented and discussed.

6.3.1 catch22 Features Set
The catch22 (CAnonical Time-series CHaracteristics) subset of features is a

carefully selected set of 22 time-series features derived from a comprehensive time-
series feature library. The selection process aimed to capture the dynamical proper-
ties of time series efficiently and interpretably. The catch22 subset was designed to
provide strong classification and clustering performance across diverse time-series
datasets while minimizing redundancy among features. These features capture a
diverse range of time-series properties, including distribution characteristics, tem-
poral statistics, linear and non-linear autocorrelation, successive differences, and
fluctuation analysis. This subset was designed to be computationally efficient and
to provide meaningful, interpretable insights into the dynamical behavior of time
series across various applications. Additionally, it eliminates the need for user-
specific parameter adjustments and avoids dependence on hand-crafted features,
such as peak-to-peak amplitude, heart rate, and pulse width that may not univer-
sally apply to subjects [206, 217]. In this application, the use of catch22 features
eliminates the need for user-specific parameter adjustments and avoids dependence
on hand-crafted features like peak-to-peak amplitude, heart rate, and pulse width,
which may not be universally applicable to all subjects.

6.3.2 Methodology
All the collected pulse waveforms underwent processing using the same stan-

dardized approach. The data processing pipeline devised for this application com-
prises three main segments: pre-processing, data segmentation, and labeling. Fi-
nally, the feature extraction section was performed using the catch22 library. As
the first step, the duration of all records was standardized to retrieve the same
amount of data samples. In particular, the length was set at 60 seconds. Then,
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to remove the presence of the DC offset and high-frequency noise, each acquisi-
tion underwent band-pass filtering between 0.3 Hz and 15 Hz, implemented with
a 4th-order Chebyshev II filter [28]. Subsequently, the signal was divided into
non-overlapping 3-second windows for a total of 20 epochs per each record. This
segmentation served the purpose of partitioning the signals into segments of equal
length. Moreover, it allowed the identification of the pulse waveforms corrupted
by the presence of MAs. All detected epochs were annotated and subsequently
utilized as labels for assessing the performance of the tested algorithms. Finally,
the catch22 library was used to extract the 22 features from all windows along
with mean value, standard deviation, skewness, kurtosis, and the pairwise correla-
tion coefficient between two epochs sharing the same ID and derived from the two
mentioned electrode placements.

6.3.3 Tested Anomaly Detection Models
For the purpose of AD, three algorithms representing the current state-of-the-

art were selected: One Class-SVM (OC-SVM), Isolation Forest (IF), and Local
Outlier Factor (LOF). Each algorithm offers unique methodologies in detecting
anomalies within datasets. Specifically, OC-SVM establishes a boundary for stan-
dard data points, labeling those outside the boundary as anomalies [219]. Instead,
LOF evaluates the local density of data points, flagging outliers based on their
isolation within their neighborhood [220]. In contrast, Isolation Forest aggregates
predictions from multiple decision trees to assign a final anomaly score to each data
point [221]. Unlike the previous AD methods that define "normal" data and classify
deviations as anomalies, IF operates independently to isolate outliers, regardless of
surrounding data points. This study performs a comparative analysis of AD al-
gorithms, assessing their efficacy when customized for specific subjects w.r.t the
conventional training process applied across the entire dataset. The outlier detec-
tion performance of the mentioned methods was compared when applied directly to
the entire dataset and individually to each subject. In both cases, an offline and au-
tomated hyperparameter optimization was conducted for the adopted algorithms.
In the first case, optimization was performed on the entire population, while in
the second case, tuning was customized for each individual subject. Consequently,
models were trained and tested for each subject in the dataset, with the optimiza-
tion process involving various parameters. Firstly, the number of features used
ranged from 1 to 27. Initially, highly mutually correlated features were removed,
followed by sequential removal of features until the best subset was identified. Sub-
sequently, the contamination parameter, which defines the proportion of outliers
in the dataset, was varied between 0.001 and 0.1. This parameter significantly
influences the model’s ability to accurately identify anomalies.
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Figure 6.24: Motion artifacts distribution across recruited subjects.

6.3.4 Evaluation Metrics
As stated in the previous subsection, the presented models were trained and

tested per each subject in the dataset. Given the significant class imbalance between
the two classes, the performances of the OC-SVM, IF, and LOF were quantified
through evaluation metrics such as precision, recall, and F1-score. Finally, an
average of all metrics was computed along with its standard deviation to summarize
the performance of each model. Within this set of indices, the score was computed
by considering the combination of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN). The precision and recall scores computed
in Eq.6.8 and Eq.6.9 were computed for each of the two classes referring to the
presence of MAs (α ∈ Normal, Artifact). In the context of this application, the
scoring criteria for both classes were presented, with a specific emphasis on the
Artifact class. This decision arises from the notable imbalance between the two
classes, which, in the context of an overall assessment, could result in a biased
evaluation of the scoring criteria.

Precisionα = TPα

TPα + FPα

(6.8)

Recallα = TPα

TPα + FNα

(6.9)

Finally, the F1-score was computed as reported in Eq.6.10:

F1α = 2 ∗ Precisionα ∗ Recallα
Precisionα ∗ Recallα

(6.10)
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6.3.5 Data Quality Assessment Results
As a result of the detailed processing pipeline, a comprehensive total of 14,880

epochs were systematically segmented, labeled, and subjected to feature extraction.
Among the extensive dataset, only 85 epochs (approx. 0.57%) were identified as
corrupted by MAs. These instances were distributed across 18 out of the total
31 participants. The MAs distribution across the entire dataset is displayed in
Figure 6.24.

6.3.6 Anomaly detection Models Evaluation

Table 6.13: Computed evaluation metrics per each anomaly detection model.

Training Strategy MLA PrecisionAD RecallAD F1-ScoreAD Precision Recall F1-Score

Entire Dataset
OC-SVM 0.39 0.35 0.37 0.69 0.68 0.68
IF 0.53 0.49 0.51 0.77 0.74 0.75
LOF 0.43 0.39 0.41 0.71 0.69 0.70

Aggregated*
OC-SVM 0.50±0.17 0.64±0.31 0.55±0.20 0.75±0.09 0.82±0.16 0.77±0.10
IF 0.91±0.14 0.94±0.11 0.92±0.12 0.95±0.07 0.97±0.05 0.96±0.06
LOF 0.74±0.17 0.75±0.26 0.74±0.27 0.87±0.14 0.87±0.16 0.87±0.14

Abbreviations: MLA, machine learning algorithm, PrecisionAD, RecallAD and F1-ScoreAD refer to the
scoring criteria computed for the anomaly class.
* Evaluation metrics computed averaging the results achieved across subjects within dataset.

Table 6.13 compares the performance of three AD models—OC-SVM, IF, and
LOF—under two training strategies: using the entire dataset and a personalized
approach. Key metrics include PrecisionAD, RecallAD, and F1-ScoreAD for detecting
anomalies, along with overall Precision, Recall, and F1-Score.

When trained on the entire dataset, OC-SVM shows modest performance, with a
PrecisionAD of 0.39, RecallAD of 0.35, and F1-ScoreAD of 0.37. Its overall metrics are
similarly limited, indicating a weaker balance between precision and recall compared
to other models. IF, on the other hand, performs better, achieving a PrecisionAD of
0.53, RecallAD of 0.49, and F1-ScoreAD of 0.51, along with stronger overall metrics,
making it more reliable for AD. LOF, while better than OC-SVM, still lags behind
IF, with a PrecisionAD of 0.43, RecallAD of 0.39, and F1-ScoreAD of 0.41, indicating
moderate performance.

The personalized training strategy significantly enhances the performance of all
models. OC-SVM sees notable improvement, achieving a PrecisionAD of 0.50 ±
0.17, RecallAD of 0.64 ± 0.31, and F1-ScoreAD of 0.55 ± 0.20, but it still does
not surpass IF or LOF. IF remains the top performer under this strategy, with
impressive metrics across the board: a PrecisionAD of 0.91 ± 0.14, RecallAD of 0.94
± 0.11, and F1-ScoreAD of 0.92 ± 0.12. Its overall performance is equally strong,
reaffirming its robustness. LOF also improves with aggregation, showing significant
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Figure 6.25: F1-score computed for target class across subjects displaying the pres-
ence of motion artifacts.

Figure 6.26: Precision score computed for target class across subjects displaying
the presence of motion artifacts.

gains with a PrecisionAD of 0.74 ± 0.28, RecallAD of 0.75 ± 0.26, and F1-ScoreAD

of 0.74 ± 0.27, though it remains slightly behind IF.
Figure 6.25, Figure 6.26, and Figure 6.27 show respectively the F1-score, pre-

cision, and recall score performance for each subject according to the three pro-
posed algorithms. In all comparisons conducted, IF emerges as the top-performing
AD algorithm, maintaining a score of at least 0.8 for all subjects except subject
#17, where performance degradation is observed across all methods. Conversely,
OC-SVM consistently ranks as the least effective method, yielding an F1-score of
0.3. Although LOF matches IF’s performance in half of the subjects, its effective-
ness decreases significantly in the remaining cases. The observed subpar perfor-
mance in subject #17’s results can be attributed to the quality of pulse waveforms.
To gain insights into this issue, Principal Components Analysis (PCA) was em-
ployed for visualization. In Figure 6.28, the distribution of data points collected
from subjects #8 and #17 is illustrated based on the first two principal components
(explained variance equal to 98%). Meanwhile, Figure 6.29 showcases a segment
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Figure 6.27: Recall score computed for target class across subjects displaying the
presence of motion artifacts.

Figure 6.28: Data points distribution between subjects with different quality of
pulse waveforms.

of pulse waveforms used for feature extraction. A comparative analysis of the
waveform morphology and regularity between subjects #8 and #17 elucidates the
sparser distribution observed in the latter. This observation provides clarity on
the challenges associated with subject #17’s pulse waveforms, contributing to the
suboptimal performance in MAs detection.

These findings underscore the efficacy of IF in AD while highlighting the limi-
tations of OC-SVM. While LOF manages to match IF’s performance in half of the
subjects, its effectiveness decreases significantly in the remaining cases. The higher
consistency of IF w.r.t LOF is also reflected in the standard deviation computed
for all scoring criteria. Indeed, IF achieves half of the standard deviation compared
to LOF across all metrics. Notably, for subject #12, LOF exhibits a reduction
in performance equal to 65% when compared to IF, highlighting the variability in
efficacy across different subjects.
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Figure 6.29: Pulse waveforms acquired from subject #17 and subject #8 in blue
and green respectively.

6.3.7 Discussion
This work investigated the identification of MAs in PPG signals collected from

diverse locations through a high-performing feature subset known as catch22 along
with AD algorithms. In artifact detection, numerous studies have traditionally
employed waveform-derived features, such as heart rate, amplitude, waveform mor-
phology, and spectral features [206, 217]. However, a significant limitation arises
from the inter-subject variability in participants with diverse pulse waveform mor-
phologies. In addressing this drawback, catch22 emerges as a promising solution as
it prevents the need for user-specific parameter adjustments and avoids reliance on
pre-defined features that may not be universally applicable across subjects. More-
over, they captures a diverse and interpretable signature of time series, encom-
passing properties like linear and non-linear autocorrelation, successive differences,
value distributions, and outliers, as well as fluctuation scaling properties making
them suitable for this application. In addition, this study scrutinizes the perfor-
mance differences when customizing the methods for individual subjects versus
employing a more generalized approach. In the context of AD, three specific algo-
rithms were thoughtfully chosen: OC-SVM, IF, and LOF [117, 118, 222]. Analyzing
the motion artifact recognition algorithms across the entire dataset, as outlined in
Table 6.13, unveils a pervasive challenge in achieving consistent and robust perfor-
mance in the identification of MAs within PPG data. These results can be clarified
by examining the underlying mechanisms of the tested AD algorithms. These un-
supervised models employ distinct methodologies for identifying anomalies, leading
to diverse performances on the same dataset. PCA was employed to visualize the
distribution in space available in the dataset. Figure 6.30 provides a representation
based on the first two principal components (explained variance equal to 98%),
highlighting epochs affected by artifacts in red and normal instances depicted in
blue.
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Figure 6.30: Principal component analysis employed to highlight the intrinsic dis-
crepancies between normal data belonging to different subjects.

Figure 6.31: Target class aggregated evaluation metrics computed per each anomaly
detection model.

Examining the relative position of artifacts in close proximity to the blue clus-
ter offers valuable insights. This observation could clarify the challenges faced by
OC-SVM and LOF, both reliant on the spatial distribution of normal points for AD.
A personalized solution by tuning each model specifically for individuals exhibiting
one or more MAs was adopted to address this issue. The results demonstrated
that ML models tailored on specific characteristics of the recording such as base-
line level, timing and pattern repeatability, deliver more accurate identification of
MAs when compared to a traditional generalized approach. This approach aligns
with the broader trend in healthcare studies, where various studies aim to mon-
itor physiological parameters such as blood pressure [126], diabetes management
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[223], and stress [224]. An unsupervised approach was adopted to overcome the
drawbacks associated with supervised methods, such as the need for data label-
ing and handling missing data in long-term monitoring using wearable technology
[119].By personalizing each model to subject data and extracting the most informa-
tive features, the challenges associated with local AD were successfully mitigated,
improving the identification of MAs by up to 41% for the F1-score on the IF, Fig-
ure 6.31. However, developing and maintaining these models is resource-intensive
and raises privacy concerns due to the need for sensitive data. Generalized models,
on the other hand, are built for broad use across diverse populations, making them
more scalable and easier to manage. Despite the associated resource costs, our
findings suggest that a tailored solution improves the accuracy in detecting MAs,
leading to better identification of high-quality records. To conclude, the proposed
work effectively demonstrated the feasibility of detecting MAs in biological data
using the catch22 feature subset combined with a personalized strategy. These fea-
tures are versatile and suitable for various time-series applications, independent of
the specific signals being recorded. The personalized approach not only improves
the performance of the AD model but also extends its applicability to a wide range
of wearable devices beyond PPG sensors. By customizing the model for individual
users, this method shows significant potential for future use across diverse wearable
health monitoring systems.
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Chapter 7

Discussion, Future Works and
Conclusions

7.1 Thesis Contributions
Cardiovascular diseases are the foremost cause of mortality globally, resulting

in approximately 17.9 million deaths annually [1]. Over 80% of these deaths are
attributed to heart attacks and strokes, with one-third occurring prematurely in
individuals under 70 years of age. Hypertension, or high blood pressure, markedly
elevates the risk of coronary heart diseases, including stroke and heart failure [5]. It
is identified as the leading risk factor for mortality and disability in the European
Region, responsible for nearly a quarter of deaths and 13% of disabilities. Often
presenting without symptoms, uncontrolled high BP can lead to serious outcomes
such as heart attacks and strokes [6]. Thus, regular monitoring of critical biomark-
ers, including blood pressure and pulse wave velocity, is crucial in preventing the
onset of CVDs. Integrating these assessments into routine health check-ups enables
healthcare providers to better detect and manage the development and progression
of CVDs. This proactive strategy improves patient outcomes and reduces health-
care costs by preventing severe complications and optimizing resource use [10].

This thesis aims to explore innovative methodologies and develop advanced
hardware and firmware solutions to enhance the accuracy, convenience, and reli-
ability of non-invasive cardiovascular health monitoring systems, with a specific
focus on pulse wave velocity and blood pressure monitoring.

7.1.1 Cost and Accessibility
The investigation into the first biomarker centers on addressing the primary

challenges related to the cost, accessibility, and reliability of the standard method-
ology for assessing PWV. Integrating PWV measurements into routine medical
practice encounters significant obstacles, mainly due to the complexity and time
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required for these assessments. Despite PWV’s recognized importance in evaluat-
ing arterial stiffness and cardiovascular risk, its clinical adoption remains limited.
Although advanced non-invasive devices offer high accuracy, their prohibitive cost
and limited availability in various healthcare settings restrict widespread use. Con-
sequently, the first objective is to develop an affordable and user-friendly device
that meets the requirements for reliable PWV estimation [82, 85, 88].

As an initial step, extensive research was undertaken to identify a sensing el-
ement that meets the specified requirements for the proposed device. The sensor
must first have sufficient resolution to accurately capture the pressure waveform.
Secondly, it should possess a compact form factor to ensure ease of handling by
the operator and seamless integration into the system. Additionally, low power
consumption is crucial to achieve the desired autonomy in practical applications,
allowing the device to operate efficiently for extended durations. Moreover, the
sensing element must be commercially available, as reliance on a prototypal sensor
in previous iterations hindered widespread adoption of the former version of the
Athos device [139]. Chapter 3 details the analysis conducted on the application of
commercial micro force sensors for PWV assessment. The chosen sensing element
for this application is the load cell FMAMSDXX005WCSC3, produced by Hon-
eywell. This piezoresistive load cell was selected due to its compact size (5mm x
5mm base, 2.15mm height), low power consumption (approximately 14mW), and
affordability. It offers a digital output with a 12-bit data resolution over a 0-5N
force range, making it ideal for detecting the arterial pulse necessary for precise
PWV measurement.

Once the sensing element was determined, the novel device was developed. Un-
like traditional PWV measurement devices [88, 89], this system features real-time
data transmission to a receiving station equipped with a graphical user interface
(GUI), providing clinicians with immediate PWV values and feedback on signal
quality. This real-time feedback loop significantly enhances the process by elimi-
nating the need for post-processing. With respect to its predecessor [139], the new
design aimed to eliminate the need for an ECG connection and wired components,
resulting in a fully portable and user-friendly device that maintains high accuracy
in PWV measurements. The device’s accuracy and reliability were validated in a
pre-clinical study against the gold-standard SphygmoCor device, demonstrating a
strong linear correlation (R2 = 0.89) and acceptable agreement in Bland-Altman
analysis [160]. Additionally, the device underwent thorough electromagnetic com-
patibility and clinical usability testing to ensure adherence to medical safety stan-
dards (IEC-60601) and confirm the ease of use in a real-case scenario.

7.1.2 Variability and Inaccuracies in Traditional Methods
In parallel with the development of the wireless acquisition system, the vari-

ability and potential sources of inaccuracy in traditional PTT evaluation methods,
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specifically fiduciary points, were examined[74, 171, 172]. Nowadays, wearable de-
vices that meet clinical standards can monitor numerous clinical indicators, such
as heart rate and blood pressure. Many studies have explored assessing PWV us-
ing standalone wearable devices following this trend. Extracting pulse waves from
locations other than clinically defined sites can distort signal shapes, thereby reduc-
ing the accuracy of these traditional methods [101]. To overcome the limitations
of using a single localized feature for PWV evaluation, a new set of algorithms
has been developed. These algorithms focus on analyzing specific sections of pulse
waveforms, thus avoiding the reliance on a single feature for PWV assessment.
Although further validation studies are necessary, region-based approaches like ’di-
astole patching’ [74] and ’region-matching’ [68], [75] have demonstrated excellent
accuracy in PWV assessment, in line with the accuracy criteria outlined in the 2010
ARTERY Society guidelines [53].

Chapter 5 introduces a region-based cross-correlation (RBCC) method for as-
sessing carotid-femoral pulse wave velocity. Previous research, such as [169, 173,
174], utilized cross-correlation for calculating PTT, but its application was re-
stricted to local PWV assessments due to morphological differences in pulse waves
at distant acquisition sites. The proposed RBCC approach addresses this limita-
tion by using a set of signals with a consistent shape for cross-correlation, ensuring
the portion of the signal used for PTT calculation remains constant across different
sites. This study emphasizes the methodology for identifying a signal window that
optimizes the algorithm’s performance. As highlighted in [175], pulse waveforms
from various body locations exhibit distinct morphologies. Factors such as sen-
sor positioning, operator expertise, and individual anatomy can alter the shape of
blood pulses. The need to define a specific signal section arises from the necessity
to minimize morphological disparities between pulse waves while maintaining tem-
poral information. Research has shown that the early systolic and end-diastolic
portions of the blood pulse are less likely to be affected by reflected waves and
MAs compared to the diastolic component [74, 176, 177, 178]. Consequently, the
search for the processing window involved analyzing the amplitude and slope of the
rising front of all waveforms in the dataset. Three different indicators were em-
ployed to identify the optimal feature and best location on the signals for accurate
assessment. Two specific points have been considered in the definition of the upper
limit. The first one corresponds with the maximum of the slope, (B1), and the one
located at 95% of the systolic peak’s amplitude (B2).

The CV indicator was used to determine whether to select the slope or the
amplitude as the parameter to define the processing window’s upper boundary.
The intraSV was used to quantify the consistency of the tested points within each
subject. Finally, interSV was employed to assess the stability of those across the
entire dataset. A set of indicators was defined to quantify the stability of the
identified pulse section over the entire dataset. As result of the carried-out analysis,
B1 proved to be the most stable point to be used for the application of the algorithm.
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The accuracy of PWV estimation was evaluated by comparing cfPWV values
obtained using the Intersecting Tangent Point (ITP) method and the RBCC ap-
proach on both high-quality data and data corrupted by varying noise levels.

When comparing the IT method and RBCC without noise, the only notable
difference in the best-case scenario is the average PWV difference of −0.07 m/s for
IT and 0.16 m/s for RBCC. The RMSE difference between the two methods is
less than 10%, while the mean difference in standard deviation, Pearson correlation
coefficient, and coefficient of determination (R2) is less than 1%.

The robustness of the algorithms under different noise levels revealed that RBCC
is more tolerant compared to the IT method. The Friedman test established the
statistical significance of the differences in cfPWV values between IT and RBCC
across four noise levels. In all cases, the P value was below 0.05, with three values
significantly lower (10−5, 10−8, and 10−8, respectively, for 15, 20, and 25 dB). The
exception was at an SNR of 10 dB, where P equaled 0.04. It is important to note
that 10 dB is a limiting case and might not be suitable for clinical applications.
According to [180], there is an inverse relationship between RMSE and SNR at a
constant sampling frequency, indicating the significant impact of SNR on estimation
error. Additionally, [181] identifies 15 dB as the SNR threshold below which peak
detection algorithm performance declines by more than 20%.

The acquisition process also depends on a skilled operator who would discard
a signal with distorted morphology. In all other comparisons, the RBCC method
showed a significantly lower mean absolute error in individual PWV evaluation
compared to reference values from noise-free signals. This underscores the limi-
tations of relying on a single feature in the signal for PTT assessment, as noise
or artifacts can lead to significant estimation errors. By realigning the pulse’s
upslope and considering more data points, the RBCC method mitigates the poten-
tial misdetection of points A or B, resulting in a more robust and accurate PWV
assessment. Although the RBCC method performs slightly differently from the in-
tersecting tangent method, it proves to be an excellent and more robust alternative
for estimating PWV. The study of PWV is closely connected to blood pressure
research, as PWV serves as an essential indicator of arterial stiffness, which is a
major determinant of cardiovascular health. Increased arterial stiffness, measured
through PWV, is often associated with higher systolic blood pressure and the de-
velopment of hypertension. This relationship occurs because stiffer arteries lead to
faster pulse wave propagation, which in turn reflects elevated blood pressure levels.
Furthermore, PWV is used to predict the progression of blood pressure and the
potential development of hypertension, offering a valuable tool for early detection
and management of cardiovascular risk.
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7.1.3 Limitations of Traditional Cuff-Based Devices for BP
Monitoring

The field of cuffless blood pressure assessment is set for significant advancements
due to clinical needs and technological innovations. While traditional cuff-based
methods have been invaluable, they come with limitations that cuffless technologies
aim to address. The potential for continuous, non-invasive BP monitoring is be-
coming more feasible, offering a more comprehensive and dynamic understanding
of cardiovascular health.

Cuffless BP measurement technologies present several key advantages over tra-
ditional methods. A primary benefit is the ability to provide continuous monitoring.
Traditional cuff-based methods only offer intermittent measurements, capturing a
snapshot of the patient’s BP at a single moment. In contrast, cuffless methods
can continuously monitor BP, providing a complete 24-hour profile and capturing
its variability. This continuous data stream offers a more accurate and detailed
picture of cardiovascular health, reflecting natural BP fluctuations throughout the
day. Optical sensors, similar to those in fitness trackers, measure beat-to-beat vari-
ability and calculate systolic and diastolic readings through mathematical modeling
[90, 91, 92]. These sensors, typically worn on the wrist or finger, enable continuous
BP monitoring without the discomfort and sleep disruption caused by traditional
cuff inflations.

Another significant advantage of cuffless technologies is their non-invasive na-
ture. Traditional BP cuffs can cause discomfort and may induce stress responses
that affect reading accuracy. Cuffless methods eliminate the need for cuff inflation,
reducing patient discomfort and providing a more accurate reflection of true BP
levels. Additionally, these methods can be used during everyday activities, offering
a realistic view of BP fluctuations in real-life conditions.

Several innovative approaches are being explored for cuffless BP measurement.
One method is PTT, which estimates BP by measuring the time it takes for the
pulse wave to travel between two arterial sites. While promising, this method
requires further refinement to improve accuracy and reliability across diverse pop-
ulations. Another approach involves optical systems based on PPG sensors, which
detect blood volume changes in the microvascular bed of tissue. These sensors are
integrated into wearable devices and can be used alone or in combination with other
metrics to estimate BP. Additionally, machine learning algorithms applied to large
datasets are playing a crucial role in developing cuffless BP technologies by ana-
lyzing complex data and creating predictive models to enhance BP measurement
accuracy.

In collaboration with the Wireless Sensors Network (WSN) Group at the Tyn-
dall National Institute, University College Cork, a custom optical-based acquisi-
tion system was designed to assess variations in blood volume between the brachial
artery and the thumb. This custom device addresses the limitations of traditional
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cuff-based devices, which, while effective for on-the-spot BP measurements, are
impractical for continuous monitoring. Traditional devices are cumbersome and
intrusive, making them unsuitable for long-term use. Continuous monitoring is
essential for managing hypertension and assessing cardiovascular risk, yet current
devices do not offer the necessary comfort and convenience for extended use. Ac-
cording to [190], PPG-based BP measurement devices, including those that detect
PTT, should either maintain a consistent contact pressure (CP) or incorporate CP
measurement into the calibration equation for deriving BP.

Therefore, during the creation of the proposed device, careful consideration was
given to the design of the enclosures. These enclosures were engineered to ensure
that the sensor maintains steady pressure at the sample site without requiring the
operator’s presence to keep it in place. This design feature allows for consistent
acquisition setups for individual subjects, thereby enhancing measurement repro-
ducibility. Additionally, since the device aims to detect blood flow from the brachial
artery, the PPG sensors were equipped with multiple LEDs. A comparison was
conducted with the Biosignal Plux acquisition system to assess the quality of the
retrieved PPG signals. PTT measurements for each subject at rest were performed
over three consecutive one-minute data captures. Each acquisition was done with
the patient seated, both feet on the floor, and hands on the table at heart level.
The results show that the PTT measurements obtained by the proposed device
are significantly equivalent to those from the reference system. Furthermore, an
assessment of the standard deviation indicates that both systems have comparable
repeatability. These results demonstrate that the developed acquisition system is
a valuable solution for providing high-quality data over an extended period. Its
design effectively overcomes the current limitations of cuff-based monitoring sys-
tems, offering a steady and reliable alternative. In conclusion, the proposed device
serves as a solid foundation for creating a robust platform that marks a significant
advancement in the field of cuffless blood pressure monitoring.

7.1.4 Capturing Individual-Specific Variations in BP Mon-
itoring

The research further explored the promising field of cuffless BP measurement,
focusing on developing a machine learning-based approach to capture individual-
specific variations in BP monitoring. Traditional BP monitoring methods fall short
in addressing these variations, which are crucial for precise blood pressure man-
agement and cardiovascular risk assessment. Personalized approaches may offer a
solution, but existing methods do not effectively address this need. Improving BP
monitoring accuracy and reliability requires models that account for the unique
physiological characteristics of each individual.

To address this, a personalized multiclass classification model was developed
to detect BP variations associated with physical or cognitive workload. BP is
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influenced by various factors, including physical activity, cognitive stress, and en-
vironmental conditions. The lack of a standardized protocol for validating cuffless
BP devices presents significant challenges in ensuring their accuracy and reliability
in clinical settings. To overcome these issues, a structured data collection protocol
was created to induce BP variations through physical and cognitive tasks among
different subjects. Adhering to strict guidelines during data capture sessions en-
sured measurement accuracy and minimized errors, attributing BP variations to
the specific tasks performed.

This study compares the performance of person-dependent and generalized mod-
els in tracking BP macro-variations associated with physical or cognitive workload
using a Random Forest (RF) classifier. RF was chosen for its ability to handle non-
linear relationships between extracted features and BP variation. In other studies,
RF has outperformed other nonlinear models like SVM with a nonlinear kernel and
neural networks, and it is less prone to overfitting.

The choice between personalized and universal models depends on the specific
context and objectives. Personalized models, tailored to individual characteristics
like age, gender, medical history, and lifestyle, provide more accurate and relevant
BP predictions, especially for individuals with complex health conditions or unique
risk factors. However, constructing and maintaining personalized models for each
user is resource-intensive and raises privacy and data protection concerns. Gen-
eralized models, on the other hand, are designed to work across a wide range of
users without individual customization, making them more scalable and easier to
implement. However, they may lack the accuracy of personalized models.

This study found that the generalized approach struggled with high inter-subject
variability, as reflected in the averaged metrics (0.36, 0.36, 0.31, 0.37). A hybrid
approach combining personalized and universal models could be beneficial for BP
monitoring. A universal model could provide initial predictions, while personalized
models could enhance performance for users with complex health conditions or
unique risk factors, accommodating the inherent diversity in BP patterns.

In [126], a transfer learning technique that personalizes specific layers of a pre-
trained network improved the performance of PPG-based BP estimation, empha-
sizing the importance of the number of data samples and source subjects used for
training. The conducted analysis shows that using 30% of the total available data
(approximately 162 seconds) for the personalization phase significantly reduces the
required time compared to the approach in [126], which used 250 seconds per sub-
ject. Combining a subset of source subjects with an adequate fraction of data for
pre-training enhances the robustness and generalizability of personalized models
across a broader spectrum of BP assessment cases compared to standard general-
ized models.
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7.1.5 Challenges in Long-Term Monitoring
Finally, the problem of MAs detection over physiological data is examined. A

major challenge in long-term monitoring systems, especially in real-world condi-
tions, is the ability to distinguish high-quality signal windows from those affected
by MAs. Wearable health monitoring devices, such as those using PPG sensors,
often suffer from signal degradation due to MAs. These artifacts can result from
changes in blood flow velocity, relative movement between the sensor and the skin,
and low tissue perfusion. Traditional filtering techniques are often inadequate for
effectively addressing these issues.

For this purpose, a personalized anomaly detection model using a high-performing
subset of time-series features called catch22 was developed to detect the presence
of MAs in PPG data. In artifact detection, numerous studies have traditionally
employed waveform-derived features, such as heart rate, amplitude, waveform mor-
phology, and spectral features [206, 217]. However, a significant limitation arises
from the inter-subject variability in participants with diverse pulse waveform mor-
phologies. In addressing this drawback, catch22 emerges as a promising solution as
it prevents the need for user-specific parameter adjustments and avoids reliance on
pre-defined features that may not be universally applicable across subjects. More-
over, they captures a diverse and interpretable signature of time series, encom-
passing properties like linear and non-linear autocorrelation, successive differences,
value distributions, and outliers, as well as fluctuation scaling properties making
them suitable for this application. In addition, this study scrutinizes the perfor-
mance differences when customizing the methods for individual subjects versus
employing a more generalized approach. In the context of anomaly detection, three
specific algorithms were thoughtfully chosen: OC-SVM, IF, and LOF [117, 118,
222]. In this work, an unsupervised approach was adopted to overcome the draw-
backs associated with supervised methods, such as the necessity for data labeling
and the challenges of handling missing data in long-term monitoring using wear-
able technology [119]. In this regard, we explored a personalized solution by tuning
each model specifically for individuals exhibiting one or more MAs. The results
demonstrated that machine learning models personalized to subjects’ physiological
characteristics significantly enhanced predictive performance compared to a tra-
ditional generalized approach. By personalizing each model to subject data and
extracting the most informative features, we successfully mitigated the challenges
associated with local anomaly detection, improving the identification of MAs up
to 41% for the F1-score on the isolation forest. This approach aligns with the
broader trend in healthcare studies, where various studies aim to monitor physi-
ological parameters such as blood pressure [126], diabetes management [223], and
stress [224].

The study employs three unsupervised algorithms—One-Class Support Vector
Machine (OC-SVM), Isolation Forest (IF), and Local Outlier Factor (LOF)—to
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identify anomalies. By focusing on these methods, the paper aims to improve the
reliability of PPG-based health monitoring by effectively distinguishing high-quality
signal windows from those affected by MAs. This approach is particularly valuable
for long-term health monitoring in real-world conditions, where traditional methods
fall short.

7.2 Future Works

7.2.1 Pulse Wave Velocity
Despite the improvements reported in this thesis concerning the PWV assess-

ment, several challenges affect the accuracy and reliability of measurements. One
significant issue is the accuracy of measuring the pulse travel distance. Tradi-
tional methods often use approximations based on body surface measurements or
the subject’s height, which can systematically overestimate or underestimate PWV
[85, 169, 225]. In this context, vascular curvature poses an additional challenge.
External measurements do not consider the complex curvatures within the vascu-
lature, especially in the presence of tortuous vessels. The actual path traveled by
the pulse wave is often not linear, and ignoring these curvatures can lead to signifi-
cant errors in PWV assessment. As a result, the measurements may not accurately
reflect the true velocity of the pulse wave, further complicating the evaluation of
arterial stiffness and cardiovascular health.

Another critical factor is operator dependence. Many PWV measurement de-
vices, especially those utilizing tonometric or piezoelectric technology, require pre-
cise sensor positioning by the operator. The skill and experience of the operator
play a crucial role in obtaining accurate measurements. This dependency introduces
variability and potential errors, as inconsistent sensor placement can significantly
impact the results[85]. In addition to addressing the existing challenges, significant
efforts should be made to actively incorporate ML solutions into PWV assess-
ment [226]. ML algorithms have the remarkable capability to process and analyze
large volumes of complex data, including time-series and waveform data from pulse
signals. By detecting subtle patterns and variations that might be missed by tra-
ditional methods, ML significantly improves the precision of PWV measurements
[227]. Case studies have demonstrated the successful implementation of ML models
to estimate PWV from various inputs, such as age, blood pressure, and pulse wave
features. These studies showcase the practical applicability and accuracy of ML-
based PWV assessments. Validation studies have shown good agreement between
ML models and traditional methods, ensuring the reliability and reproducibility of
these models. This body of evidence underscores the potential of ML to transform
PWV measurement into a more precise and user-friendly process, facilitating its
adoption in clinical settings.
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Furthermore, ML would facilitate the integration of PWV assessment into con-
sumer devices like smartphones and fitness trackers. These devices, equipped with
sensors such as low-cost and unobtrusive sensors, can capture pulse signals and use
ML algorithms to estimate PWV[228]. This integration could make cardiovascular
health monitoring more accessible to the general population, promoting proactive
health management.

A further aspect requiring a deeper investigation is the relationship between
baPWV (or raPWV) and cfPWV [58, 59, 60]. The clinical validity of local PWV
assessments remains a subject of debate [169]. Nevertheless, measurement errors
related to blood pulse propagation distance, variations in pulse waveform shapes
from different arterial sites, and the impact of multiple arterial wave reflections
on local PWV estimates are minimal. These factors imply that local PWV mea-
surements could serve as reliable indicators of arterial stiffness with appropriate
validation and standardization.

Extensive validation and comparative studies are necessary to determine the
feasibility of using peripheral arterial sites as reliable sources of data for arterial
stiffness evaluation. This would enhance the accessibility of the measurement,
leveraging the large number of wearable devices currently available and introducing
PWV assessment into everyday healthcare.

7.2.2 Cuffless Blood Pressure Assessment
The landscape of blood pressure monitoring is undergoing a significant trans-

formation with the advent of cuffless technologies. These innovative approaches
promise to make blood pressure measurement more convenient, continuous, and
accessible, paving the way for better hypertension management and cardiovascular
health monitoring. However, despite of the advancements in the field of cuffless
blood pressure measurement need to continue in the future. To fully realize the po-
tential of cuffless BP technologies, several key research areas need to be addressed.
Comprehensive data collection and calibration are essential for developing accu-
rate predictive models. Therefore, large training datasets, used to define both new
physiological models and machine learning approaches must include a wide range of
demographic and physiological variables to ensure that the models can accurately
estimate BP across different populations. Calibration methods, whether periodic or
one-time, must be standardized and validated to ensure consistency and reliability.

Rigorous clinical trials are also necessary to compare cuffless BP devices against
established cuff-based methods and intra-arterial measurements. These trials should
assess the reproducibility, accuracy, and clinical relevance of cuffless BP readings in
diverse populations and settings. Additionally, developing international standards
for the evaluation and validation of cuffless BP devices is crucial. These standards
should address the specific challenges of continuous, non-invasive BP monitoring
and ensure consistency across different types of devices.
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The integration of cuffless BP measurement into everyday healthcare has the
potential to transform hypertension management and cardiovascular risk assess-
ment. Continuous BP monitoring allows for more personalized treatment plans,
adjusting medication and lifestyle interventions based on real-time data. By cap-
turing BP fluctuations and trends over time, cuffless devices can help in the early
detection of hypertension and other cardiovascular conditions, potentially before
clinical symptoms appear. On a broader scale, the widespread use of cuffless BP
monitors could enhance population-level health monitoring, enabling more effective
public health interventions and reducing the burden of cardiovascular diseases.

In conclusion, the future of cuffless blood pressure assessment is bright, with sig-
nificant advancements expected in technology, research, and clinical applications.
As these innovations continue to develop, they promise to offer more accurate,
convenient, and comprehensive BP monitoring, ultimately improving patient out-
comes and advancing the understanding of cardiovascular health. The shift from
traditional cuff-based methods to continuous, non-invasive monitoring represents a
major leap forward in the field of hypertension management, promising a new era
of personalized and precise healthcare.

7.3 Conclusions
This thesis aimed to enhance the accuracy, convenience, and reliability of non-

invasive cardiovascular health monitoring systems, focusing particularly on PWV
and BP monitoring. Several innovative solutions were developed to address critical
issues in this field.

The problem of cost and accessibility in integrating pulse wave velocity mea-
surements into routine medical practice has been tackled by developing a reliable,
affordable, and yet user-friendly device. The proposed system employs commer-
cially available piezoresistive load cell sensors, making it economical and easy to
integrate into clinical settings. By lowering the cost and complexity barriers, PWV
measurements become more accessible and feasible for regular use in diverse health-
care environments.

Traditional methods for PWV measurement, which rely on point-to-point fea-
ture extraction, often suffer from variability and inaccuracies due to the differing
morphologies of pulse waveforms at various arterial sites. To address this, a region-
based cross-correlation algorithm was developed. This novel method enhances the
robustness and accuracy of PWV measurements by analyzing specific sections of
pulse waveforms, thus reducing susceptibility to noise and artifacts. This improve-
ment ensures a more reliable assessment of arterial stiffness and cardiovascular risk.

The limitations of traditional cuff-based devices, which are effective for on-the-
spot measurements but impractical for continuous monitoring, were also addressed.
Thanks to the collaboration with Tyndall National Institute, a custom optical-based
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acquisition system that uses PPG sensors to measure blood volume changes was
developed. This system utilizes PPG sensors to measure blood volume changes
continuously, offering a non-invasive and less intrusive alternative to traditional
cuff-based devices. This enables long-term monitoring crucial for managing hyper-
tension and cardiovascular risk.

Current BP monitoring methods fall short in capturing individual-specific vari-
ations, which are crucial for precise blood pressure management and cardiovascular
risk assessment. To address this, the research introduced a personalized multiclass
classification model for BP monitoring. This model employs machine learning algo-
rithms tailored to individual physiological characteristics, significantly improving
the accuracy and reliability of BP monitoring. By accommodating the unique needs
of each individual, this personalized approach ensures precise BP management and
cardiovascular risk assessment.

In tackling the challenges of long-term monitoring, particularly the issue of
MAs, a personalized anomaly detection model was developed using catch22 time-
series features. This model effectively distinguishes high-quality signal windows
from those affected by MAs, thereby improving the reliability of wearable health
monitoring devices in real-world conditions. This approach enhances the accuracy
of long-term health monitoring by addressing signal degradation issues.

In conclusion, the advancements presented in this thesis offer significant im-
provements in non-invasive cardiovascular health monitoring. By addressing the
limitations of traditional methods and introducing innovative solutions, this work
paves the way for more accurate, convenient, and comprehensive monitoring, ulti-
mately improving patient outcomes and advancing the understanding of cardiovas-
cular health.
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PCB Schematics Wireless System
for PWV Assessment
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Results of Generalized and Personalized Strategies for Cuffless BP Assessment

Table B.1: Test set Results using the person independent model (PIM).

Sub-ID Test Set RF Hyperparameters
Precision Recall F1 Accuracy Max Depth Estimators

1 0.35 0.36 0.28 0.35 20 80
2 0.19 0.22 0.20 0.23 20 80
3 0.38 0.29 0.19 0.28 20 80
4 0.19 0.27 0.19 0.27 20 80
5 0.54 0.36 0.32 0.34 20 80
6 0.43 0.54 0.44 0.51 20 80
7 0.74 0.74 0.74 0.75 20 80
8 0.36 0.40 0.35 0.39 20 80
9 0.35 0.40 0.36 0.42 20 80
10 0.09 0.27 0.14 0.26 20 80
11 0.41 0.45 0.40 0.53 20 80
12 0.64 0.60 0.60 0.64 20 80
13 0.16 0.16 0.16 0.19 20 80
14 0.77 0.59 0.53 0.60 20 80
15 0.15 0.33 0.21 0.44 20 80
16 0.40 0.19 0.16 0.18 20 80
17 - - - - - -
18 0.30 0.30 0.29 0.30 20 80
19 0.09 0.20 0.12 0.20 20 80
20 0.38 0.45 0.38 0.43 20 80
21 0.36 0.27 0.20 0.29 20 80
22 0.18 0.10 0.11 0.10 20 80
23 0.09 0.20 0.13 0.21 20 80
24 0.46 0.54 0.49 0.56 20 80
25 0.56 0.63 0.52 0.63 20 80
26 - - - - - -
27 0.15 0.34 0.20 0.35 20 80
28 0.72 0.60 0.53 0.59 20 80
29 - - - - - -
30 0.25 0.30 0.20 0.35 20 80
31 0.13 0.24 0.14 0.23 20 80
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Results of Generalized and Personalized Strategies for Cuffless BP Assessment

Table B.2: Test set results using person specific model PSMSD.

Sub-ID Test Set RF Hyperparameters
Precision Recall F1 Accuracy Max Depth Estimators

1 1 1 1 1 50 60
2 0.43 0.67 0.52 0.63 10 60
3 1 1 1 1 10 60
4 1 1 1 1 10 60
5 0.95 0.94 0.94 0.95 10 90
6 0.85 0.85 0.86 0.86 50 100
7 0.99 0.99 0.99 0.99 10 60
8 0.98 0.98 0.98 0.98 10 60
9 1 1 1 1 10 60
10 0.98 0.98 0.98 0.98 10 60
11 0.95 0.97 0.96 0.96 10 60
12 0.99 0.98 0.98 0.99 10 90
13 1 1 1 1 20 70
14 0.5 0.67 0.56 0.68 10 60
15 1 1 1 1 10 60
16 1 1 1 1 10 60
17 - - - - - -
18 1 1 1 1 10 60
19 1 1 1 1 10 80
20 0.99 0.85 0.84 0.84 10 70
21 0.8 0.78 0.77 0.75 20 60
22 1 1 1 1 10 100
23 1 1 1 1 50 60
24 1 1 1 1 10 60
25 0.8 0.78 0.78 0.78 10 60
26 - - - - - -
27 1 1 1 1 10 60
28 0.50 0.67 0.55 0.67 10 90
29 - - - - - -
30 0.98 0.98 0.98 0.98 30 60
31 0.86 0.86 0.86 0.86 10 70
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Results of Generalized and Personalized Strategies for Cuffless BP Assessment

Table B.3: Test set results using person specific model PSM5,30%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Estimators Subjects for Training

1 0.97 0.97 0.97 0.97 40 80 2 10 12 13 31
2 0.97 0.97 0.97 0.97 20 70 3 4 7 20 23
3 0.96 0.96 0.96 0.96 20 70 12 21 23 24 30
4 0.97 0.96 0.97 0.97 50 100 5 9 12 15 25
5 0.89 0.89 0.89 0.89 30 70 15 18 20 25 31
6 0.90 0.90 0.90 0.90 20 70 7 8 20 24 28
7 0.94 0.94 0.94 0.94 50 80 3 7 12 13 31
8 0.97 0.97 0.97 0.97 20 70 3 7 12 13 31
9 0.97 0.97 0.97 0.98 50 70 2 12 13 18 19
10 0.95 0.95 0.95 0.94 40 90 4 13 20 21 24
11 0.97 0.96 0.97 0.97 20 90 7 8 14 15 18
12 0.96 0.94 0.95 0.95 10 70 3 4 14 16 22
13 0.92 0.91 0.91 0.93 50 80 3 5 8 12 30
14 0.99 0.99 0.99 0.99 30 90 4 11 12 24 30
15 0.98 0.97 0.97 0.97 20 70 5 11 21 24 31
16 0.97 0.97 0.97 0.97 30 80 1 12 20 25 31
17 - - - - - - -
18 0.96 0.95 0.96 0.96 50 100 11 20 23 27 30
19 1.00 1.00 1.00 1.00 20 100 2 3 14 24 30
20 0.94 0.94 0.94 0.94 30 100 1 5 8 30 31
21 0.82 0.81 0.82 0.81 20 100 3 4 5 19 25
22 0.97 0.97 0.97 0.97 30 80 12 15 27 28 30
23 0.95 0.95 0.95 0.95 30 70 2 10 14 19 21
24 0.99 0.99 0.99 0.99 20 90 13 19 27 30 31
25 0.93 0.93 0.93 0.93 30 90 18 27 28 30 31
26 - - - - - - -
27 1.00 1.00 1.00 1.00 50 70 8 9 16 25 28
28 0.95 0.94 0.94 0.94 30 70 2 6 20 24 31
29 - - - - - - -
30 0.92 0.93 0.93 0.93 50 70 1 8 11 28 31
31 0.94 0.94 0.94 0.94 30 70 3 19 20 22 30
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Results of Generalized and Personalized Strategies for Cuffless BP Assessment

Table B.4: Test set results using person-specific model PSM10,30%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Estimators Subjects for Training

1 0.93 0.93 0.93 0.93 20 100 2 7 8 12 13 14 15 20 22 31
2 0.88 0.88 0.88 0.88 40 90 1 3 7 15 18 21 22 23 28 31
3 0.97 0.97 0.97 0.97 40 90 2 8 9 11 12 13 16 20 25 27
4 0.97 0.96 0.97 0.97 30 80 1 2 10 15 16 21 22 23 27 31
5 0.90 0.90 0.90 0.91 40 100 2 4 6 9 21 22 23 27 28 30
6 0.86 0.85 0.85 0.85 50 80 4 5 7 9 13 19 21 22 27 31
7 0.96 0.96 0.96 0.96 30 100 3 4 5 8 10 14 15 20 22 31
8 0.97 0.97 0.97 0.97 40 90 4 5 6 9 12 13 14 16 23 27
9 0.97 0.97 0.97 0.97 50 100 1 3 4 14 15 18 21 23 24 25
10 0.93 0.93 0.93 0.93 20 100 6 9 12 14 15 16 22 25 28 30
11 0.87 0.85 0.86 0.88 30 100 3 10 12 18 21 23 24 27 28 30
12 0.89 0.86 0.86 0.89 50 100 1 4 6 7 11 18 19 21 23 31
13 0.95 0.92 0.93 0.93 20 90 2 3 6 10 11 14 15 18 20 28
14 0.97 0.97 0.97 0.97 30 80 4 7 9 11 12 16 19 20 23 25
15 0.99 0.99 0.99 0.99 30 100 1 2 4 11 13 20 24 25 27 31
16 0.92 0.92 0.92 0.92 50 100 6 10 12 13 15 19 25 27 28 30
17 - - - - - - -
18 0.93 0.93 0.93 0.94 50 70 1 5 6 10 14 20 21 27 28 30
19 0.98 0.98 0.98 0.98 50 70 6 9 10 14 20 22 23 25 27 28
20 0.94 0.94 0.94 0.94 50 90 1 2 6 7 8 11 19 21 27 31
21 0.82 0.77 0.78 0.76 30 90 2 5 6 10 14 16 22 24 25 31
22 0.88 0.85 0.85 0.86 40 80 4 5 6 7 10 12 18 24 25 30
23 0.95 0.95 0.95 0.95 40 70 8 9 16 19 20 21 24 25 28 31
24 0.99 0.99 0.99 0.99 30 100 1 4 6 8 10 11 14 22 27 30
25 0.92 0.92 0.91 0.92 50 100 1 3 4 12 15 19 21 22 28 31
26 - - - - - - -
27 0.94 0.94 0.94 0.94 40 90 6 7 9 14 16 18 24 28 30 31
28 0.97 0.97 0.97 0.97 40 100 1 4 8 13 14 18 19 23 24 25
29 - - - - - - -
30 0.91 0.88 0.89 0.91 30 90 1 4 6 10 13 18 22 25 27 28
31 0.90 0.90 0.90 0.90 50 80 2 5 10 15 16 19 20 23 24 30
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Results of Generalized and Personalized Strategies for Cuffless BP Assessment

Table B.5: Test set results using person-specific model PSM15,30%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Estimators Subjects for Training

1 0.98 0.98 0.98 0.98 40 90 3 6 9 12 14 18 19 20 22 23 24 27 28 30 31
2 0.91 0.89 0.90 0.89 50 100 1 4 5 7 8 12 13 16 18 19 21 22 27 28 30
3 0.99 0.99 0.99 0.99 40 100 1 2 4 5 6 8 11 13 15 19 22 23 24 27 30
4 0.94 0.92 0.92 0.93 20 100 1 3 5 8 9 11 12 14 15 16 18 20 21 22 27
5 0.89 0.89 0.88 0.89 40 100 3 4 7 11 12 13 15 18 19 20 21 22 24 30 31
6 0.87 0.87 0.87 0.86 40 90 3 5 9 10 15 16 18 19 20 22 23 25 27 28 30
7 0.97 0.96 0.97 0.97 20 70 3 4 5 6 8 11 12 13 16 19 22 23 25 27 31
8 0.95 0.95 0.95 0.95 50 80 1 2 5 6 10 14 15 16 18 19 23 25 27 28 30
9 0.90 0.90 0.90 0.90 30 100 2 6 7 10 11 12 15 16 18 21 22 23 24 28 30
10 0.95 0.95 0.95 0.95 20 100 2 4 6 8 9 15 18 19 22 23 24 27 28 30 31
11 0.92 0.90 0.91 0.92 20 90 2 4 5 6 7 8 12 13 15 16 21 22 27 30 31
12 0.91 0.90 0.90 0.92 40 70 2 3 7 9 10 13 15 18 19 20 21 25 27 30 31
13 0.84 0.86 0.85 0.86 20 70 4 5 6 9 12 14 15 16 20 22 23 24 25 28 31
14 0.96 0.96 0.96 0.96 50 100 1 2 6 8 9 13 16 19 20 21 22 23 24 25 30
15 0.94 0.92 0.93 0.92 20 90 1 2 4 5 8 11 12 13 14 16 19 22 23 28 30
16 0.96 0.95 0.95 0.95 40 90 1 2 3 4 7 8 10 11 12 18 19 20 23 24 25
17 - - - - - - -
18 0.96 0.96 0.96 0.96 40 100 3 6 10 12 13 14 15 16 19 20 21 24 25 27 30
19 0.95 0.94 0.94 0.94 30 90 1 3 5 6 7 11 12 14 18 21 23 24 25 30 31
20 0.92 0.92 0.92 0.92 30 70 1 2 3 5 6 7 9 11 13 14 22 25 27 28 31
21 0.83 0.79 0.80 0.79 50 90 1 2 4 5 6 7 8 9 14 15 20 23 27 28 31
22 0.89 0.89 0.89 0.89 20 80 1 2 5 6 8 10 13 15 16 18 20 24 25 27 31
23 0.90 0.90 0.90 0.90 50 80 4 5 8 10 11 12 14 15 19 21 22 24 25 28 30
24 0.89 0.89 0.88 0.88 30 80 4 5 6 7 9 10 13 18 20 21 23 25 27 28 31
25 0.91 0.91 0.91 0.91 30 90 2 3 4 5 8 9 12 13 16 20 22 24 27 28 31
26 - - - - - - -
27 0.96 0.95 0.95 0.95 20 100 2 3 4 5 7 9 18 19 20 21 22 23 28 30 31
28 0.95 0.95 0.95 0.95 30 80 2 4 5 8 10 11 12 13 14 16 18 19 22 23 25
29 - - - - - - -
30 0.85 0.86 0.85 0.86 50 90 1 2 4 5 7 9 11 13 16 18 19 22 23 27 31
31 0.87 0.85 0.85 0.86 20 90 1 2 4 6 7 8 12 13 16 18 20 23 27 28 30
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Results of Generalized and Personalized Strategies for Cuffless BP Assessment

Table B.6: Test set results using person specific model PSM5,50%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Estimators Subjects for Training

1 0.98 0.98 0.98 0.98 30 80 10 14 16 27 31
2 0.98 0.98 0.98 0.98 20 60 8 9 22 24 25
3 0.98 0.98 0.98 0.98 20 100 9 10 16 21 25
4 0.98 0.98 0.98 0.98 40 100 13 20 22 30 31
5 0.94 0.94 0.94 0.95 40 80 7 15 22 28 31
6 0.92 0.92 0.92 0.92 50 80 7 8 15 21 22
7 0.96 0.96 0.96 0.96 20 100 1 15 19 28 30
8 0.98 0.98 0.98 0.98 50 70 4 12 20 23 27
9 1 1 1 1 20 90 5 6 8 24 25
10 0.97 0.97 0.97 0.97 20 80 8 9 11 19 23
11 0.98 0.97 0.97 0.98 20 100 2 10 15 19 23
12 0.97 0.95 0.96 0.96 20 60 2 4 15 16 25
13 0.97 0.96 0.96 0.96 30 80 6 10 11 21 27
14 1 1 1 1 40 90 3 7 20 21 27
15 0.98 0.98 0.98 0.98 20 100 6 10 12 16 27
16 0.99 0.99 0.99 0.99 30 70 4 5 9 10 13
17 - - - - - - -
18 0.97 0.98 0.97 0.97 30 90 10 11 14 20 31
19 0.98 0.98 0.98 0.98 20 100 5 6 8 10 13
20 0.97 0.97 0.97 0.97 30 80 6 8 22 23 28
21 0.88 0.88 0.87 0.86 50 80 4 12 14 24 31
22 0.95 0.96 0.95 0.96 50 80 7 15 16 22 28
23 1 1 1 1 40 90 9 11 19 22 27
24 0.99 0.99 0.99 0.99 40 90 7 11 16 18 19
25 0.82 0.81 0.80 0.81 20 80 1 14 15 19 22
26 - - - - - - -
27 1 1 1 1 30 90 1 7 9 12 28
28 0.98 0.98 0.98 0.98 30 70 5 12 21 22 27
29 - - - - - - -
30 0.94 0.95 0.95 0.95 30 60 1 2 5 21 23
31 0.94 0.94 0.94 0.94 40 80 7 22 23 25 30
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Table B.7: Test set results using person-specific model PSM10,50%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Estimators Subjects for Training

1 0.97 0.97 0.97 0.97 20 70 2 4 5 11 14 18 19 22 25 27
2 0.94 0.93 0.94 0.94 30 90 1 4 12 16 18 21 22 23 24 28
3 0.99 0.99 0.99 0.99 30 90 1 2 8 12 16 19 21 25 28 30
4 0.99 0.99 0.99 0.99 30 80 8 9 11 12 13 15 18 20 23 30
5 0.91 0.91 0.91 0.91 20 80 7 9 11 20 21 23 24 28 30 31
6 0.91 0.91 0.91 0.91 20 90 2 9 15 19 22 23 27 28 30 31
7 0.99 0.99 0.99 0.99 40 60 3 5 12 13 21 22 23 25 27 30
8 0.98 0.98 0.98 0.98 20 100 1 5 10 11 12 14 18 19 28 31
9 0.96 0.96 0.96 0.96 40 100 2 3 5 14 15 19 21 23 24 28
10 0.95 0.95 0.95 0.95 30 70 2 9 12 15 19 23 24 25 28 30
11 0.97 0.95 0.96 0.96 40 90 3 5 8 10 13 21 25 27 28 30
12 0.98 0.97 0.98 0.98 40 60 1 2 5 6 8 20 21 23 27 31
13 0.95 0.9 0.92 0.93 30 100 3 6 11 15 16 19 21 23 24 28
14 0.98 0.98 0.98 0.98 50 100 6 10 15 18 20 23 25 27 28 30
15 1 0.99 0.99 0.99 30 100 4 6 8 9 10 13 14 16 19 24
16 0.95 0.95 0.95 0.95 20 70 1 4 9 12 15 20 22 23 25 27
17 - - - - - - -
18 0.97 0.96 0.96 0.96 30 90 1 2 6 7 10 13 15 16 21 24
19 0.97 0.97 0.97 0.97 20 100 3 5 6 12 16 18 21 24 25 28
20 0.96 0.96 0.96 0.96 30 80 2 3 5 9 12 15 18 22 24 25
21 0.88 0.87 0.88 0.86 50 100 1 2 3 5 6 8 10 11 15 16
22 0.96 0.97 0.96 0.96 30 90 2 6 8 13 20 21 23 24 27 30
23 0.96 0.96 0.96 0.96 30 90 7 9 11 12 15 19 22 27 28 30
24 0.96 0.95 0.96 0.96 20 100 4 6 7 13 14 18 19 20 27 30
25 0.93 0.94 0.93 0.93 40 60 1 2 3 10 12 14 18 23 28 31
26 - - - - - - -
27 1 1 1 1 40 70 4 5 16 18 20 21 23 25 30 31
28 0.97 0.97 0.97 0.97 30 90 2 3 6 7 10 15 16 18 21 30
29 - - - - - - -
30 0.94 0.95 0.94 0.95 30 90 5 7 9 10 11 21 22 25 27 28
31 0.93 0.93 0.93 0.93 20 90 1 3 9 10 11 12 18 21 22 30
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Table B.8: Test set results using person-specific model PSM15,50%.

Sub-ID
Test Set RF Hyperparameters

Precision Recall F1 Accuracy Max Depth Estimators Subjects for Training

1 0.94 0.94 0.94 0.94 50 90 2 3 5 6 9 10 13 15 16 19 22 23 25 27 31
2 0.95 0.94 0.94 0.94 20 100 3 4 5 9 12 13 14 15 16 18 19 20 21 25 30
3 0.97 0.97 0.97 0.97 20 100 1 2 5 9 10 11 12 15 19 21 22 23 24 25 30
4 0.97 0.96 0.96 0.96 50 80 2 3 7 8 10 12 14 16 18 21 22 23 27 28 30
5 0.92 0.92 0.92 0.92 20 90 1 3 10 12 13 14 15 16 18 19 20 24 25 27 28
6 0.9 0.91 0.9 0.9 30 100 1 3 5 7 8 9 11 12 13 16 20 22 25 27 28
7 0.97 0.97 0.97 0.97 20 80 1 2 4 9 10 13 14 16 21 22 23 24 28 30 31
8 0.97 0.97 0.97 0.97 50 80 2 5 7 10 13 14 18 19 21 22 23 25 27 28 31
9 0.97 0.97 0.97 0.97 50 90 2 5 6 7 8 13 14 15 16 19 20 21 23 30 31
10 0.95 0.96 0.95 0.95 20 100 2 3 8 13 14 15 18 21 22 23 24 25 27 28 30
11 0.97 0.96 0.96 0.97 20 80 2 3 7 9 10 12 13 14 15 16 20 22 24 27 28
12 0.96 0.95 0.96 0.96 30 90 3 5 6 8 10 11 18 19 20 22 23 25 27 30 31
13 0.88 0.91 0.89 0.9 30 90 1 2 8 9 10 11 14 15 19 20 21 22 23 25 30
14 0.96 0.96 0.96 0.96 50 90 1 4 6 9 10 11 12 15 16 18 20 23 24 28 31
15 0.98 0.98 0.98 0.98 20 60 1 2 7 9 12 13 14 20 21 22 23 24 25 27 28
16 0.93 0.92 0.92 0.92 40 80 4 5 8 9 10 12 18 20 21 22 25 28 27 30 31
17 - - - - - - -
18 0.98 0.97 0.97 0.98 30 90 1 3 6 12 13 14 15 16 19 21 22 23 27 28 31
19 0.96 0.96 0.96 0.96 40 100 1 3 4 5 8 10 11 12 13 18 20 21 22 25 27
20 0.94 0.94 0.93 0.93 50 100 2 5 7 8 9 11 12 14 16 18 22 23 25 27 28
21 0.91 0.9 0.9 0.88 20 100 2 4 5 9 10 13 14 16 18 19 20 23 24 27 28
22 0.96 0.96 0.96 0.96 40 100 4 6 7 8 11 13 14 15 19 20 21 23 27 28 30
23 0.97 0.97 0.97 0.97 20 100 1 2 8 9 11 12 14 19 20 21 22 24 27 28 30
24 0.95 0.95 0.95 0.95 40 90 2 3 4 6 8 11 14 16 18 20 21 23 28 30 31
25 0.9 0.9 0.9 0.9 30 80 1 2 3 5 6 7 9 14 16 18 19 21 24 27 28
26 - - - - - - -
27 1 1 1 1 20 90 2 4 8 13 14 15 16 18 19 20 21 23 24 28 30
28 0.96 0.96 0.96 0.96 20 80 2 5 7 8 9 11 12 14 16 18 19 23 24 28 30
29 - - - - - - -
30 0.93 0.94 0.93 0.93 30 90 2 5 8 9 10 11 12 14 16 20 21 22 25 28 31
31 0.91 0.91 0.91 0.91 30 90 1 2 3 6 10 11 12 13 14 15 21 22 25 28 30
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Clinical Usability Questionnaire 
This document aims at defining a plan for the Focus Group intended for the formative evaluation of the device. The 

usability file provides the confirmation of the safety of the user interface of the medical device ATHOS, that enables 

effective use and protects against potentially harmful use errors. 

Participants are selected in accordance with IEC-62366 the participants shall include at least 4 representatives end users. 

The formative activities shall be performed by at least a product designer, a usability expert, 3 clinical experts. 

Closed response based on scores:  

0, No issues detected; 1, Cosmetic/aesthetic issue (e.g., difficult to understand figures in the instructions, causes delays 

in use but does not affect functionality in any way); 2, Minor usability issue (e.g., complex to use, frustrates the user, or 

is uncomfortable to handle); 3, Major usability issue (e.g., data is lost or it is unclear whether it has been entered correctly); 

4, Catastrophic usability issue (e.g., critical error in test execution and clinical data entry, potential diagnosis error). 

Q-1.1: Is the method for entering the patient and operator identification data clear and intuitive? 

o 0 o 1 o 2 o 3 o 4 

Q-2.1: Is the software installation and initial access procedure simple and efficient? 

o 0 o 1 o 2 o 3 o 4 

Q-3.1: Is the system easy to position and manage on a standard table? 

o 0 o 1 o 2 o 3 o 4 

Q-4.1: Is the information conveyed by the colored LEDs on the charging station clear? 

o 0 o 1 o 2 o 3 o 4 

Q-5.1: Is the information conveyed by the colored LEDs on the probes clear? 

o 0 o 1 o 2 o 3 o 4 

Q-5.2: Can the terminal part of the carotid probe be easily handled like a pen? 

o 0 o 1 o 2 o 3 o 4 

Q-5.3: Is the femoral probe flatter to be positioned between the fingers of the operator's hand? In this way, can it be 

handled easily? 

o 0 o 1 o 2 o 3 o 4 

Q-5.4: Is the intended use of each probe (femoral and carotid) easily recognizable? 

o 0 o 1 o 2 o 3 o 4 
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Q-5.5: Is the simultaneous and stable positioning of the probes possible and efficient? 

o 0 o 1 o 2 o 3 o 4 

Q-6.1: Does the "acquisition window" allow a clear view of the signal? 

o 0 o 1 o 2 o 3 o 4 

Q-6.2: Is the 5-second update of the image adequate to meet physicians' expectations regarding the quality of the 

information? 

o 0 o 1 o 2 o 3 o 4 

Q-6.3: Currently, the signal reading interface features two white lines to guide the user in obtaining a reasonable signal 

amplitude in each graph. It is recommended to adjust the signal to be as large as the amplitude defined by the two 

horizontal lines. The operator must adjust the position and pressure of the probe to obtain the correct signal. Are these 

instructions clear to the physician? Is it intuitive, or is it necessary to consult the manual or a specialist's explanation 

to understand the meaning of the white lines? 

o 0 o 1 o 2 o 3 o 4 

Q-6.4: Based on what was mentioned in the previous question, is this information perceived as useful to have during 

the analysis? 

o 0 o 1 o 2 o 3 o 4 

Q-6.5: Are the relevant parameters displayed on the side of the acquisition screen (mean PTT, mean PWV, and 

standard deviation of PTT) easily identifiable and clearly visible? 

o 0 o 1 o 2 o 3 o 4 

Q-7.1: Can the display time of each screen be modified efficiently by entering a different duration period in the 

designated box within the window? 

o 0 o 1 o 2 o 3 o 4 

Q-8.1: To end the acquisition, the spacebar must be pressed. This requires the operator to remove the probes and press 

the spacebar within 2 seconds. Is it clear how to end the acquisition? Is it intuitive, or is it necessary to consult the 

manual or a specialist's explanation to understand how to finish the examination? 

o 0 o 1 o 2 o 3 o 4 

Q-8.2: Are the details provided in the report generated at the end of the examination complete and understandable? 

o 0 o 1 o 2 o 3 o 4 

o  o  o  o  o  

Q-A: Are the contents of the provided user manual clear and complete? 

o 0 o 1 o 2 o 3 o 4 
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Q-B.A: Regarding the "Patient Preparation Phase" section of the provided user manual, are the contents clear and 

complete? 

o 0 o 1 o 2 o 3 o 4 

Q-B.B: Regarding the "Safety Aspects" section of the provided user manual, are the contents clear and complete? 

o 0 o 1 o 2 o 3 o 4 

Q-B.C: Regarding the "Cleaning and Reuse" section of the provided user manual, are the contents clear and 

complete? 

o 0 o 1 o 2 o 3 o 4 

Q-B.D: Regarding the "System Configuration" section of the provided user manual, are the contents clear and 

complete? 

o 0 o 1 o 2 o 3 o 4 

Q-C: Does the interface display all the relevant information for the correct execution of the test? 

o 0 o 1 o 2 o 3 o 4 

Q-D: Is the data presentation clear? 

o 0 o 1 o 2 o 3 o 4 

Q-E: Does the interface assist the user in evaluating the adequacy of the probe positioning and pressure? 

o 0 o 1 o 2 o 3 o 4 

Q-F: Does the interface support the user during the execution of the test? 

o 0 o 1 o 2 o 3 o 4 

Q-G: Are the alerts and notifications clear and self-explanatory? 

o 0 o 1 o 2 o 3 o 4 

Q-H: Do the probes allow for easy handling? 

o 0 o 1 o 2 o 3 o 4 

Q-I: Are the probes easily distinguishable (femoral vs carotid)? 

o 0 o 1 o 2 o 3 o 4 

 

Date of the test  
…………………………………...  
 Signature 
 ……………………………………………………… 
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