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Abstract

Roughly two decades ago, it was demonstrated that the resolution limit posed by diffraction
can be overcome, a breakthrough for science and medical research acknowledged by the Nobel
Prize for chemistry in 2014 [1, 2, 3]. Since then, super-resolution optical far-field imaging
has undergone tremendous evolution, resulting in the development of a wide range of methods
especially in fluorescence microscopy. However, most of them require high optical power
and are not suited for biological applications [1, 4]. A specific branch of methods that is
also biocompatible employs the usage of emitters with either super-Poissonian bunched-light
emission due to statistical fluctuations or sub-Poissonian antibunched-light, statistics typical
of single photon sources. The ability of these techniques to beat the classical diffraction limit
has been demonstrated both in wide-field [5, 6] and confocal microscopy [7], with scaling in
the resolution of

√
j where j is the measured correlation order. Another family of methods

that have been demonstrated to achieve super-resolution relies on boosting the frequency
information on the image plane. Normally, the total amount of frequency information that
can be retrieved by an imaging setup is d−1

Abbe where dAbbe is the minimum resolvable distance
in classic imaging. The Structured Illumination Microscopy (SIM) technique can overcome
this limit by exploiting a sinusoidal light pattern to illuminate the sample, achieving twice the
frequency information than a classical imaging setup [8]. The goal of this work is to perform a
detailed study on super-resolution obtained by non-Poissonian statistics combining it with the
boost on the frequency domain provided by the structured illumination microscopy, providing
an overall super-resolution scaling factor of

√
j+ j.



Introduction

Precise measurements have always been essential for gaining knowledge and progress in science
and technology. However, as technology advanced, the constraints of traditional measuring
methods became apparent. Classical-based approaches have inherent accuracy bounds due to
fundamental limits such as shot noise and the uncertainty principle.

The increasing demand for high-precision measurements in various scientific and technical
fields has led to quantum metrology becoming a focus of study and innovation. Quantum
metrology utilizes specific properties of states and measurements to enhance measurement
accuracy beyond the limitations of classical methods.

An important emerging topic at the forefront of quantum metrology is quantum imaging,
which utilizes the properties of quantum optical systems to enhance various aspects of imaging,
providing unparalleled capabilities in resolution, sensitivity, and information retrieval.

A significant advantage of quantum imaging resides in its capacity for sub-shot-noise
sensitivity. In particular, by using quantum phenomena such as squeezing and quantum
correlations, quantum imaging approaches may improve the Signal-to-Noise Ratio (SNR)
in the estimation of optical parameters (phase, transmittance, polarization) by reducing the
effect of the shot-noise [9, 10, 11]. This is especially relevant when reducing the photon
dose on the sample is demanded to avoid photodamage or alteration of the processes under
study. Furthermore, quantum-enhanced sensing represents a frontier where quantum imaging’s
capability to refine sensing precision is unparalleled. Quantum properties of photon sources,
like Nitrogen-Vacancy centers in diamond (described in Section 1.2.2) can be used as nanoscale
sensors for temperature, electric and magnetic fields, and sample’s strain measurements, due to
variation in their luminescence properties [12, 13, 14, 15].

Another important property of quantum imaging protocols is their robustness in environ-
ments with high external noise. An example is given by the quantum illumination scheme,
where the correlation between two beams of a bipartite non-classical state of light is used to
detect target hidden in a noisy thermal background [16, 17]. Lastly, quantum imaging methods
have the potential to go beyond the diffraction limit imposed by traditional optics. Improving
the spatial resolution in imaging is an important tool in biological and biomedical research



nowadays, however, spatial resolution was considered to be fixed for long time from the funda-
mental limitation imposed by the numerical aperture of the objective and the wavelength of
light, as noted by Ernst Abbe [18].

Despite its ability to achieve orders of magnitude better resolution, electron microscopy
has historically been hampered by challenges in sample preparation, labeling, and identifying
particular molecules and structures, as well as a relatively low throughput in optics. As a
consequence, scientists looked into methods to overcome the resolution barrier and bridge the
gap between light and electron microscopy. Early studies were limited to near-field scanning
technologies, which had extremely specialized and limited use in biology. The first fundamental
principles for exceeding the optical diffraction limit in far-field fluorescence microscopy were
proposed in the early 1990s with the proposal of STED [1], Structured Illumination Microscopy
(SIM) [8] and Single Molecule Localization Microscopy (SMLM) [19]. Following the creation
of the first super-resolution methods, subsequent improvements were mostly driven by the
biologists’ requests for super-resolution techniques that allow live cell imaging and require low
levels of light to prevent photodamage effects.

Some of the super-resolution techniques suitable for biological applications, rely on the
analysis of high-order correlations of non-Poissonian light sources [5, 6, 7]. The analysis of
high-order moments offers a powerful approach for achieving super-resolution. Nevertheless,
the substantial volume of data and the large amount of time required to compute high-order
moments pose challenges when it comes to practical implementation. In recent years, it has
been shown that it is feasible to integrate non-Poissonian super-resolution methods with Struc-
tured Illumination Microscopy. This integration offers the advantage of achieving a substantial
enhancement in super-resolution by focusing on the analysis of a limited number of high-order
moments. The practical implementation of the technique exploiting super-Poissonian light
sources, known as Super-resolution Optical Fluctuation Imaging - Structured Illumination Mi-
croscopy (SOFI-SIM) [20], has been demonstrated. However, the sub-Poissonian counterpart,
known as Structured Illumination Quantum Correlation Microscopy (SIQCM) [21], has only
been theoretically proposed.

Both SOFI-SIM and SIQCM provide the same scaling in super-resolution of
√

j+ j, where
j is highest central moment assessed of the detected photon distribution, however, a limitation
of SOFI-SIM comes from a large dynamic range due to different fluctuations in the brightness
of blinking emitters [22]. On the other hand, SIQCM offers the benefit of operating effectively
under low-light conditions and preserving a limited dynamic range.

This thesis aims to provide a comprehensive investigation into super-resolution techniques
achieved through non-Poissonian statistics by elaborating a comprehensive quantum model
valid for any non-Poissonian photon sources and in every illumination regime. The super-



Poissonian photon statistics super-resolution model proposed in the literature [6] is based on
a semi-classical approach that overlooks quantum fluctuations, thereby significantly limiting
resolution enhancement in low light conditions. Specifically, in low light scenarios, the
quantization of light into photons becomes prominent, and only a fully quantum description
can achieve optimal performance in optical imaging. Conversely, the sub-Poissonian super-
resolution method reported in the literature relies on a mathematical model valid only with
single-photon emitters that emit a single photon [7]. Therefore, a comprehensive quantum
description of a generalized non-Poissonian photon statistics super-resolution method is lacking.
Developing such a model could greatly impact the advancement of super-resolution quantum
microscopes, potentially revolutionizing applications that require low power combined with
high SNR and high resolution.

Furthermore, this thesis presents an extensive analysis of the SNR in the context of both
sub and super-Poissonian super-resolution methods. The aim is to provide a guide for selecting
the most effective detection schemes, photon sources, and experimental parameters, in order to
reduce both the total data volume and acquisition time necessary for achieving non-Poissonian
super-resolved images. Additionally, the thesis explores the integration of non-Poissonian
super-resolution techniques with SIM, focusing on extremely low light levels.

The thesis will be divided into the following chapters:

Chapter 1 gives an insight into single photon emitters, focusing on their emission
statistics and covering some examples of bio-compatible emitters used in fluorescence
optical microscopy.

Chapter 2 explores the main limits of classical optical imaging and presents bio-
compatible super-resolution techniques analyzed in the framework of the thesis.

Chapter 3 gives an insight into detectors used in fluorescence imaging.

Chapter 4 details the experimental setups implemented for the research conducted in
this Ph.D. study.

Chapter 5 introduces a generalized quantum model for super-resolution developed in
the framework of the Ph.D. and compare its performance with classical analysis reported
in the literature.

Chapter 6 presents a detailed study of the SNR of sub and super-Poissonian emitters
considering the most common detection schemes employed in biological optical imaging.

Chapter 7 reports simulations and experimental results over the combination of our
generalized quantum model for super-resolution and Structured Illumination Microscopy.
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Chapter 1

Single photon sources for quantum
imaging

The experimental realization of several quantum imaging protocols relies on the special proper-
ties of the single photon emitters. A single photon emitter is a device or system that creates
and emits individual photons with well-defined quantum features, one at a time. It is intended
to generate photons characterized by specific properties such as wavelength, polarization, and
temporal profile.

A single photon emission can be triggered by an optical [23][24] or electrical [25][26]
excitation. These emitters exploit distinct quantum processes, such as quantum confinement
and energy level quantization, allowing them to emit photons one-by-one with well-defined
quantum features such as high purity, and high indistinguishability, properties useful for the
encoding, manipulation, and control of quantum information.

In order to characterize the anti-bunching statistics of a photon source, i.e. the emission of
individual photons, the second-order correlation function g(2)(τ) is commonly used as a figure
of merit. In the next sections, we will introduce the mathematical definition of the g(2)(τ) as
well as a description of solid-state single photon emitters typically employed in fluorescence
optical imaging.

1.1 Second-order correlation function

The second-order correlation function is a statistical measure used to describe the correlation
or relationship between two events or observations within a given system. It quantifies how
likely it is for two photon-detection events to occur simultaneously compared to what would be
expected if the events were statistically independent [27].



This function can be used to describe the statistical properties of an electromagnetic field
in the context of classical and quantum optics. Specifically, it provides information about the
correlation between the electric field values at two different instants t and t + τ [28]:

g(2)(τ) =
⟨Ê†(t)Ê†(t + τ)Ê(t)Ê(t + τ)⟩

⟨Ê†(t)Ê(t)⟩2
. (1.1)

The operator representing the electric field can be delineated through the decomposition
into modes as follows:

Ê(t) =
∫

∞

−∞

αkâkeikvtdk, (1.2)

Ê†(t) =
∫

∞

−∞

α
∗
k â†

ke−ikvtdk, (1.3)

where v is the speed of light in the medium in which the field propagates, αk are coefficients
that reflect the modal structure and normalization, and âk and â†

k are the annihilation and
creation operators for a specific mode k, respectively. These operators follow the commutation
rule: [âk, â

†
k′] = δ (k− k′).

The photon statistics of the emitter can be determined by examining the second-order
correlation function at zero time delay (τ = 0). For simplicity, let’s focus on a single mode field
and introduce the number operator n̂ := â†â. With this definition, Equation 1.1 simplifies to:

g(2)(0) =
⟨â†â†ââ⟩
⟨n̂⟩2 =

⟨â†(ââ† −1)â⟩
⟨n̂⟩2 =

⟨n̂2 − n̂⟩
⟨n̂⟩2 . (1.4)

Another way to write Equation 1.4 is in terms of the statistical variance (or second-order
central moment) of the number of photons emitted by the source: µ2 = ⟨n̂2⟩−⟨n̂⟩2, leading to:

g(2)(0) = 1+
1

⟨n̂⟩2 (µ2 −⟨n̂⟩). (1.5)

In the context of this study, the relationship between the second-order correlation function
and photon statistics is explored using the expression from Equation 1.5 [29].

1. Poissonian statistics
For a light source emitting photons with a Poissonian distribution, such as a laser, the
variance µ2 is equivalent to the mean value of the distribution ⟨n̂⟩, resulting in g(2)(0) = 1.

2. Thermal statistics
In the case of thermal light, like sunlight, the variance is given by µ2 = ⟨n̂⟩+⟨n̂⟩2, leading
to a correlation function of g(2)(0) = 2.



3. Single photon emitters
An ideal single photon emitter, defined by emitting exactly one photon per excitation
cycle, results in a null variance. In this specific scenario, the correlation function at zero
time delay is g(2)(0) = 0.

It is observed that for a Fock state |n⟩ (representing a state with precisely n photons),
the second-order correlation function is: g(2)(0) = 1−1/⟨n̂⟩. When examining light emitted
simultaneously from multiple single photon emitters, this relationship provides insights into
the number of emitters contributing to the signal. Detecting light from two ideal single photon
emitters results in g(2)(0) = 1/2.

As the number of single photon emitters becomes very large, the photon statistics approach
a Poissonian distribution, g(2)(0)∼ 1.

The second-order correlation function is particularly informative in proximity to zero time
delay. Regardless of the light source’s nature, for t ≫ τ , it can be observed that g(2)(∞)∼ 1.

A schematic representation of g(2)(τ) is presented in Figure 1.1.

Figure 1.1: g(2)(τ) for Poissonian (green), Thermal (blue), and Single Photon Source (red) [29]. The
temporal width of g(2)(τ) is related to the temporal coherence of the source, which in turn depends
on its modal structure (αk in Equation 1.2). If the emitter predominantly emits in a single mode, the
temporal width will be longer (indicating higher coherence), while a multimodal source will show a
shorter temporal width.



The investigation of correlations between two detection events can be broadened to encom-
pass higher orders. Specifically, the formula for a correlation function of photon events of any
given order can be articulated using the photon number operator n̂ as follows:

g( j)(τ1 = 0,τ2 = 0, . . . ,τ j−1 = 0) =

〈
j−1
∏
i=1

n̂(n̂− i)
〉

⟨n̂⟩ j . (1.6)

As outlined in Section 2.2, correlation functions of higher orders are instrumental in
enhancing super-resolution imaging techniques. Specifically, for systems utilizing single photon
emitters, these higher-order correlation functions also serve to determine the quantity of emitters
contributing to the observed intensity signal. In particular, as highlighted earlier, the second-
order correlation function for two emitters at τ = 0 is given by g(2)(0) = 1/2. Conversely, the
third-order correlation function, which corresponds to the likelihood of simultaneous three-
photon detection events, is g(3)(0,0) = 0. This principle can be generalized to any number of
emitters: to determine the number of contributing emitters, one simply needs to evaluate the
correlation functions at zero time delay until they all equal 0; for a system comprising j single
photon emitters, every correlation function of an order higher than j+1 will be identically null.

1.2 Bio-compatible single photon emitters

Optical microscopy is a foundational and invaluable tool in both biology and medicine due
to its ability to visualize and analyze biological structures and processes at the cellular and
molecular levels. Its usefulness stems from several key factors such as real-time observation of
dynamic processes within living cells and organisms, its non-invasive nature, and its ability
to enhance specificity and selectivity by using fluorescent labels and dyes. The next sections
will present biocompatible photon sources, characterized by non-Poissonian photon statistics,
commonly used in fluorescence optical imaging.

1.2.1 Quantum dots

Quantum dots are nanoscale semiconductor structures with unique quantum features owing to
their tiny size and constrained electronic states. They are sometimes referred to as artificial
atoms because, like atoms, they have distinct energy levels. The characteristics of quantum
dots may be carefully tailored by adjusting their size, shape, and composition during synthesis
[30, 31, 32, 33].

Quantum dots are often formed of semiconducting materials such as cadmium selenide
(CdSe), lead sulfide (PbS), or indium arsenide (InAs). Their small size, measured in nanometers,



confines electrons and holes within their borders. This confinement produces separate energy
levels, giving birth to unique optical and electrical features (see Figure 1.2). In particular, the
energy levels of a cubic quantum dot with length L will be:

En,o,p =
hπ

4m∗L2 (n
2 +o2 + p2), (1.7)

with n,o, p ∈ N and m∗ referring to the isotropic effective mass of electrons and holes [34].

One of the most notable characteristics of quantum dots is their size-dependent bandgap,
as represented in Figure 1.2. As the size of a quantum dot drops, so does its bandgap energy,
resulting in an adjustable range of light absorption and emission [33]. Because of their unique
properties, quantum dots have found uses in a variety of sectors, including optoelectronics,
display technologies, biological imaging, and quantum information technology [35].

(a)
(b)

Figure 1.2: Energetic properties and optical responses of size-tunable quantum dots. Panel (a):
schematic representation of energetic levels in size-tunable quantum dots [35]. Panel (b): absorption
(red) and photoluminescence (blue) spectra as a function of quantum dots diameter [33].

A peculiar characteristic of quantum dots is their occasional switching on and off of their
fluorescence or luminescence, phenomena known as blinking [36, 37, 38] and reported in
Figure 1.3. A complicated interaction of numerous elements causes blinking in quantum
dots. The existence of surface imperfections or traps inside the quantum dot structure is one
of the primary reasons. These flaws have the ability to capture and release charge carriers
(electrons and holes) involved in the light-emitting process. When a trapped carrier is released,



it recombines with its counterpart, emitting a photon. The observed fluorescence is the result of
this recombination event.

However, after the carrier is released and recombined, it may get trapped again, briefly
preventing additional recombination processes and causing the quantum dot to look dark or
"Off" at these times. This carrier trapping and release may occur at random and stochastically,
resulting in the intermittent blinking characteristic of quantum dots.

Other elements that may impact blinking include the quantum dot’s size and composition, as
well as the surrounding environment. Surface ligands or molecules, for example, may influence
charge carrier dynamics, resulting in changes in blinking behavior.

(a)

(b)

Figure 1.3: Dynamic behavior and statistical analysis of quantum dot blinking. Panel (a): time trace of
a single quantum dot blinking over a sequence of three expanded timescales [36]. Panel (b): normalized
off-time probability distribution for CdSe quantum dots [37].

Quantum dots, due to their ability to emit single photons can be exploited in sub-Poissonian
super-resolution techniques [5]. However, their peculiar blinking phenomena can be used to
perform super-Poissonian super-resolution methods, as discussed in Section 2.2.2.



1.2.2 Crystal defects

The presence of impurities in the lattice is a natural occurrence in every crystalline solid, as
it is energetically favorable for the system to introduce point defects during the formation
process, such as vacancies and substitutional defects, rather than creating an extremely ordered
crystalline structure [34]. Defects can also be introduced after the synthesis process, using for
instance, ion implantation. Irradiating the material with ions having energies ranging from
MeV to keV, it is possible to introduce both impurities and create interstitial defects due to the
damage to the crystalline matrix [39, 40, 41].

Some defects give rise to discrete levels or sub-bands within the material’s energy gap, as
schematically illustrated in Figure 1.4.

Typically, these substructures are generated in semiconductors with high energy gaps, such
as diamond [39, 40, 42, 43] (Egap = 5.5eV) or silicon carbide [44, 45] (Egap = 2.86eV), but
color centers have been observed in low-energy gap semiconductors, such as silicon [46, 47,
48] (Egap = 1.12eV). The chemical species and structures that give rise to these levels are still
under study, although different ones have been observed, particularly within diamond.

Figure 1.4: Schematic representation of photoluminescence in high band gap semiconductor [49].

Diamond is a biocompatible material commonly used for biological applications due to
it reduced toxicity and its robustness to harsh biological circumstances as high temperatures
and acidic environments [42, 50, 51, 52]. One of the most common optically active defect in
diamond, due to its peculiar spin property and natural abundance, is the Nitrogen-Vacancy (NV)
color center, which find an important role in imaging and sensing [53, 54, 55]. The electronic
structure of the NV center is defined by six electrons: two from the nitrogen atom and three
from the carbon atoms adjacent to the vacancy [56]. An additional electron is acquired from the



lattice, usually from nitrogen donors, leading to a predominant negative charge state NV−. This
structure results in the electron density primarily being distributed in a plane perpendicular to
the NV axis, concentrating around the carbon atoms and the vacancy site. The NV center exists
in multiple charge states, but NV− is the primary focus of research due to its magneto-optical
activity, which is not present in the neutral NV0 or positively charged NV+ states [57]. NV
center’s optical features are represented by a simplified energy-level model, illustrating three
key electronic states: the ground state (|g⟩), an excited state (|e⟩), and a metastable singlet
state (|s⟩). These states, mainly comprising spin triplets, are responsible for the NV center’s
emission in the 630 nm to 800 nm range, predominantly appearing as vibrational sidebands
after the 638 nm zero-phonon line, with a spin state-dependent quantum yield, defined as the
ratio of the number of photons emitted to those absorbed, of approximately 70−80% [58].

In terms of spin characteristics, the NV center is marked by its triplet ground state, divided
into three levels with mS =±1 states being energetically equivalent and the mS = 0 state being
of lower energy [59]. Application of a magnetic field removes this degeneracy, a feature crucial
for magnetic sensing technologies. Importantly, optical transitions within these states preserve
spin, enabling magneto-optical phenomena [60, 61].

A schematic representation of the structure of the NV, the energy-level diagram of NV−

and the typical emission band of ensembles of NV centers is reported in Figure 1.5.

One way to employ diamond color centers for biological imaging is by the functionalization
of diamond nanoparticles. In particular, nanodiamonds can be synthesized in numerous ways
[62], but the most common method relies on crushing micron-sized diamonds formed under
high pressure and temperature in a hydraulic press [63].

Nanodiamond particles present numerous advantages over bulk samples when dealing with
biological sensing and imaging. In particular, their small size, even on the nanometer scale,
allows for easy penetration into cells, tissues, and even subcellular structures, offering their
utilization as nanometric sensors capable of detecting changes in physiological parameters and
other biological substances. Furthermore, nanodiamonds have a strong and chemically active
surface that can easily changed with different functional groups. This allows biomolecules such
as proteins, nucleic acids, and antibodies to be attached, making them valuable instruments for
targeted medicine administration [52].

Due to these peculiar properties, color centers in diamonds and other biocompatible semi-
conductors, in general, are critical for biological sensing and imaging. Nitrogen-Vacancy
centers embedded in nanodiamonds, in particular, provide a reliable single photon source that
can be used in sub-Poissonian super-resolution techniques, as well as a dedicated tool for
nanometric environmental sensors.



(a) (b)

(c)

Figure 1.5: Overview of the Nitrogen-Vacancy Center: structure, photoluminescence spectra, and
energy levels. Panel (a): structure of a Nitrogen-Vacancy center in diamond [58]. Panel (b): typical
photoluminescence spectra of Nitrogen-Vacancy centers [42] showing excitation laser 532 nm, the
NV0 zero phonon line (575 nm), the NV− zero phonon line (638 nm), and NV− vibrational side bands
(630 nm - 800 nm). Panel (c): energy-level arrangement for NV−, indicating |g⟩ as the electronic
ground state, |e⟩ as the electronic excited state, and |s⟩ as the metastable singlet state. The diagram
uses squiggly arrows to denote radiative transitions and solid arrows for depicting the magnitude of
non-radiative decay through the singlet state. An inset reveals the trio of spin sublevels for mS = 0 and
mS =±1, observable in both absence and presence of a magnetic field B. Here, D denotes the zero-field
splitting, while 2γB illustrates the Zeeman splitting, where γ is the electron gyromagnetic ratio. By
convention, the lower energy transition is identified with mS =−1 [42].



1.3 Other sources of single photon

For completeness, this section will briefly cover few other single-photon sources that are used
in quantum-related applications.

Isolated atoms

The simplest form of an ideal single-photon emitter is an isolated atom, as it inherently cannot
emit more than one photon per excitation cycle. In recent years, several attempts to trap single
atoms in optical cavities have been proposed and implemented using both optical and magnetic
traps [64, 65, 66]. Once trapped, the atom can be excited by a laser pulse, resulting in the
emission of a single photon. A schematic of the working principle is reported in Figure 1.6.
While this method theoretically offers the purest generation of single photons, the practical
challenges in setting up such systems and the difficulties associated with their scalability limit
their range of applications [67, 68].

Figure 1.6: Scheme of functioning of a trapped atom system: The atom is trapped inside the cavity
through an opto-magnetic trap and subsequently excited through pump beams. The emitted radiation
from the atom is subsequently collected by a single-photon detector. [69]

Non-linear photon generation processes

Both solid-state single-photon emitters and isolated atoms can be considered deterministic
single-photon sources due to their ability to emit a single photon upon each excitation pulse.
In contrast, other single-photon sources depend on probabilistic processes that utilize the



nonlinear properties of specific materials, such as Beta Barium Borate (BBO), Potassium
Titanyl Phosphate (KTP), and Lithium Niobate (LiNbO3). In particular, in these materials, the
polarization response is not directly proportional to the intensity of the incident light, giving
rise to second and third order processes.

Specifically, an incoming pump beam interacting with a nonlinear crystal can generate
pairs of entangled photons through second-order nonlinear processes such as Spontaneous
Parametric Down Conversion (SPDC) and third order ones like Spontaneous Four Wave Mixing
(SFWM) [70, 71].

In SPDC, a photon from the pump beam is annihilated, producing a pair of photons while
conserving energy and momentum. SFWM, on the other hand, involves the annihilation of
two pump photons to generate a pair of entangled photons. These processes are schematically
illustrated in Figure 1.7.

When photon pairs are produced, they are emitted simultaneously (within a few fs). The
detection of one photon, known as idler, heralds the presence of the second photon known as
signal, which can then be used as a single photon in quantum systems [72]. Although heralded
sources are inherently probabilistic because they depend on spontaneous processes and cannot
produce photons on demand, their efficiency can be enhanced. One method is through spatial
multiplexing, which involves combining photons from different spatial modes enhancing the
heralded single-photon efficiency of the system [73]. Furthermore, these single-photon devices
can be easily integrated with standard integrated CMoS technology. This, and their ability of
tailoring photon wavelengths, enables flexible and scalable solutions for advanced quantum
technologies [74, 75, 76].

Figure 1.7: Schematic representation of the second-order nonlinear process SPDC (left) and the
third-order nonlinear process SFWM (right). In both processes, energy (ω), linear momentum (k), and
angular momentum (l) are conserved. [77].



Chapter 2

Overview of imaging techniques

This chapter will briefly present some basic concepts of classical optical imaging and its
physical resolution limits. Subsequently, some super-resolution methods suitable for biological
applications will be discussed. In particular, it will be presented two types of techniques;
the first one relies on achieving super-resolution by harnessing the photon statistics of non-
Poissonian light sources, while the second one relies on increasing the maximum spatial
frequency information achievable by exploiting structured light illumination.

2.1 Point Spread Function and diffraction limit

The response of a focused optical imaging system to a point source or point object is described
by the Point Spread Function (PSF). In many cases, the PSF may be viewed as an extended
spot in the image plane representing a single-point object that is considered a spatial impulse
(see Figure 2.1). The analytical expression of the PSF is related to the Bessel Function of order
one J1:

PSF(r) ∝
J1(r)2

r2 , (2.1)

where r refers to the radial distance from the optical axis. However, it is more practical to
ignore the relatively small high-order maximum of the Bessel function and to approximate the
central lobe with a Gaussian profile [78] as shown in Figure 2.2.

The degree of blurring of an image is related to the spatial width of the PSF and is a
measure of the imaging system’s quality. The image creation process in non-coherent imaging
systems, such as fluorescence microscopes, telescopes, or optical microscopes, is linear in
image intensity and is represented by a linear system theory.



Figure 2.1: Schematic representation of the effect of imaging systems on point-like emitters.

Figure 2.2: Cross-section through the PSF (dashed curve) and its Gaussian profile approximation
(solid curve) [78].

In a non-coherent imaging system, the image of two objects A and B is equal to the
independent sum of the two images as taken separately [79]. In other words, since the photon
coming from the two points does not have a definite phase relation, there are no interference
effects, and imaging of A is unaffected by imaging of B and vice versa. The image of a complex
object is thus the convolution of that object and the PSF in space-invariant systems, i.e. those
in which the PSF is the same everywhere in the imaging space.

Variables such as lens flaws or misalignment may limit the resolution of an optical imaging
instrument such as a microscope, telescope, or camera. The physics of diffraction, on the
other hand, puts a basic limit on the resolution of any optical system when direct intensity
measurement at the detection plane is performed.

The smallest resolvable features in a microscope are determined by Abbe’s diffraction
limit (see Figure 2.3). The lowest resolvable distance (dAbbe) between two points in an image,



according to Abbe’s diffraction limit, is equal to half the wavelength of light (λ ) divided by the
numerical aperture (NA) of the objective lens [80]:

dAbbe =
λ

2NA
. (2.2)

An objective lens’ numerical aperture is a measurement of its ability to collect light and
discern tiny details. NA can be expressed through the relation:

NA = nsin(θ), (2.3)

where n is the index of refraction of the medium through which the lens operates and θ is
the half-angle of the widest cone of light that can pass through the lens. A big numerical
aperture means that a wide light cone enters the objective lens, allowing for better resolution.
The wavelength λ utilized in the imaging process is also important in determining resolution.
Smaller wavelengths of the electromagnetic spectrum, such as those in the ultraviolet or blue
ranges, allow for greater resolution imaging than longer wavelengths, such as those in the red
or infrared spectrum.

Figure 2.3: An image of two points blurred by diffraction can be resolved only at distances d ≥ dAbbe.
In the bottom part of the image is displayed the brightness in the direction of the separation [81].



2.2 Super-resolution with non-Poissonian light sources

As previously discussed, the image of a point-like emitter is blurred in the image plane due to
diffraction phenomena that can be approximated by a Gaussian profile:

PSF(r) ∝ e−
(r−r0)

2

2σ2 , (2.4)

where r0 is the position of the emitter and σ is the spatial standard deviation of the PSF.
The spatial standard deviation of the approximated PSF can be linked to the minimum

resolvable distance, dAbbe. Specifically, the relationship is given by: dAbbe = σ/0.42 [78]. This
implies that, according to the definition of Abbe’s limit, two emitters can be spatially resolved
if the distance between them is greater than σ/0.42.

Performing the k-th power of the Point Spread Function will cause the PSF to shrink by a
factor of

√
k, retrieving a narrower image spot. However, in the presence of multiple emitters

closer in the image plane by a distance less than the minimum resolvable one, performing
the k-th power of the fluorescence signal will not provide better resolution due to cross-term
contributions.

Consider a general case of a random distribution of Nc single photon emitters in the object
plane S(r) = ∑

Nc
α=1 δ (r−rα) where δ (r−rα) represents the Dirac delta function. The intensity

recorded in the image plane will be:

D(r) ∝ PSF(r)∗S(r) =
Nc

∑
α=1

PSF(r− rα), (2.5)

Dk(r) ∝

Nc

∑
α=1

PSFk(r− rα)+ c.t. (2.6)

The symbol ∗ denotes the spatial convolution.
To achieve a super-resolved image, a correction for the cross-terms must be applied; in

particular, it has been demonstrated that analyzing the photon distribution of sub-Poissonian
[5, 7] or super-Poissonian [6] light sources can be effective. These super-resolution methods
are ideal for biological applications because they operate efficiently without requiring high
excitation power or special label preparation.

A visualization of how increasing the exponentiation of the PSF introduce super-resolution
is reported in Figure 2.4.



(a) (b)

Figure 2.4: Resolution enhancement through PSF shrinking. (a) Sum of two PSFs closer than the
minimum resolvable distance. (b) Sum of the square of the PSFs makes a dip appearing, highlighting
the presence of the internal structure.

2.2.1 Super-resolution via sub-Poissonian statistics

Super-resolution using sub-Poissonian light sources can be achieved by reconstructing the
second-order correlation image of a sample of single-photon emitters [5, 7]. Let’s consider
a specimen with Nc ideal single photon sources randomly distributed and excited by a single
laser pulse. Each emitter will be characterized by a density matrix:

ρ̂α(r) = ηα(r)|1⟩⟨1|+[1−ηα(r)] |0⟩⟨0|, (2.7)

where ηα(r) represents the probability of detecting a single photon (considering all optical
losses and the effect of the PSF) at position r on the detector plane.

Since all emitters are independent, the total density matrix for the entire system is given by
ρ̂(r) =⊗Nc

α=1ρ̂α(r).
Defining the number of detected photons from the system of single-photon emitters as:

N̂(r) =
Nc

∑
α=1

â+α (r)âα(r) =
Nc

∑
α=1

n̂α(r), (2.8)

yields:

⟨N̂(r)⟩= Tr[ρ̂(r)N̂(r)] =
Nc

∑
α=1

⟨n̂α(r)⟩=
Nc

∑
α=1

ηα(r) = D(r). (2.9)

The final equality coincide with the expression presented in Equation 2.5, where the sum of
the α-th PSFs results in the classical mean intensity image D(r).



Squaring Equation 2.9 results in a sum of PSF with spatial variance reduced by a factor of
2 and cross-terms given by the sum of the product of PSF of different emitters:

⟨N̂(r)⟩2 =
Nc

∑
α=α ′

⟨n̂α(r)⟩2 +
Nc

∑
α ̸=α ′

⟨n̂α(r)⟩⟨n̂α ′(r)⟩. (2.10)

The cross terms can be expressed using the second-order correlation function, as described
in Section 1.1:

⟨N̂(r)⟩2g(2)(0,r) = ⟨N̂2(r)− N̂(r)⟩=
Nc

∑
α=α ′

⟨n̂2
α(r)⟩+

Nc

∑
α ̸=α ′

⟨n̂α(r)n̂α ′(r)⟩−
Nc

∑
α=1

⟨n̂α(r)⟩.

(2.11)

Since the emission of two different emitters is uncorrelated, the term ∑
Nc
α ̸=α ′⟨n̂α(r)n̂α ′(r)⟩

can be written as ∑
Nc
α ̸=α ′⟨n̂α(r)⟩⟨n̂α ′(r)⟩, which is precisely the cross term in Equation 2.10.

Therefore, we obtain:

⟨N̂(r)⟩2 =
Nc

∑
α=α ′

⟨n̂α(r)⟩2 + ⟨N̂(r)⟩2g(2)(0,r)+
Nc

∑
α=1

⟨n̂α(r)⟩−
Nc

∑
α=α ′

⟨n̂2
α(r)⟩. (2.12)

Given that the emitters are single photon sources, the quantities ⟨n̂α(r)⟩ = ⟨n̂2
α(r)⟩ are

equal. Therefore, the terms ∑
Nc
α=1⟨n̂α(r)⟩ and ∑

Nc
α=α ′⟨n̂2

α(r)⟩ cancel out. Rearranging Equation
2.12 leaves the expression for the second-order super-resolved map with sub-Poissonian light
(labeled SR(2)

sub(r)):

SR(2)
sub(r) =

Nc

∑
α=1

η
2
α(r) = ⟨N̂(r)⟩2[1−g(2)(0,r)]. (2.13)

Here, η2
α(r) = ⟨n̂α(r)⟩2.

This analysis can be extended to an arbitrary k-th power of the signal. For example, the
third-order power will be:

SR(3)
sub(r) =

Nc

∑
α=1

η
3
α(r) = ⟨N̂(r)⟩3[1− 3

2
g(2)(0,r)+

1
2

g(3)(0,0,r)]. (2.14)

The general expression for an arbitrary k-th power can be written as:

SR(k)
sub(r) =

Nc

∑
α=1

η
k
α(r) = ⟨N̂(r)⟩k

imax

∑
i

γiβi, (2.15)



where γi are multiplicative coefficient and βi represents terms like
g( j1)(τ1 = 0, . . . ,τ j1−1 = 0,r) . . .g( jl)(τ1 = 0, . . . ,τ jl−1 = 0,r) and imax is the number of possible
(ordered) combinations, satisfying the condition ∑

l
p=1 jp = k [7].

In Figure 2.5 is reported a sub-Poissonian super-resolution obtained exploiting by the
anti-bunching of single Nitrogen-Vacancy centers in diamond in a confocal microscopy setup.

Figure 2.5: Example of the super-resolution technique applied to a cluster of Nitrogen-Vacancy centers.
(a) Scan on a region of the sample obtained collecting the signals emitted by each center on a pixel-by-
pixel basis via a single-photon sensitive confocal microscope. (b) Magnification of the area of interest.
(c) g(2)(0) map. (d) g(3)(0,0) map. (e) Second-order super-resolved map. (f) Third-order super-resolved
map [7].



2.2.2 Super-resolution via super-Poissonian statistics

As discussed in Section 1.2.1, quantum dots blinking leads the emitter to an "Off" state. Since
this process is associated with charge carrier traps inside individual quantum dots, the blinking
mechanism is independent for each emitter. This phenomenon can be exploited to achieve
super-resolution, using a technique known as Super-resolution Optical Fluctuation Imaging
(SOFI) [6] here briefly presented.

Usually, SOFI is described by a classical model in the literature. In this section we will
present this approach, although a more rigorous quantum description will be presented in
Chapter 5. Here, the signal from each emitter is assumed as time dependent statistical variable.
As before, the fluorescence image F(r, t) at position r on the detector plane at a specific time t
from a sample of Nc emitters is given by the convolution of the distribution of emitters and the
PSF, i.e. the function η(r− rα):

F(r, t) =
Nc

∑
α=1

η(r− rα)εαsα(t) =
Nc

∑
α=1

ηα(r)εαsα(t). (2.16)

Here, εα represents the mean brightness of the center, while sα(t) represents the time-
dependent part. The temporal mean value (D(r)) and variance (µ2(r)) of the fluorescence
image are:

D(r) = ⟨F(r, t)⟩, (2.17)

µ2(r) = ⟨F2(r, t)⟩−⟨F(r, t)⟩2. (2.18)

Substituting F(r, t) with its expression and dividing the sum into components α = α ′ and
α ̸= α ′ yields:

µ2(r) =
Nc

∑
α=α ′

η
2
α(r)ε

2
α⟨s2

α(t)⟩+ (2.19)

Nc

∑
α ̸=α ′

ηα(r)ηα ′(r)εαεα ′⟨sα(t)sα ′(t)⟩−

Nc

∑
α=α ′

η
2
α(r)ε

2
α⟨sα(t)⟩2−

Nc

∑
α ̸=α ′

ηα(r)ηα ′(r)εαεα ′⟨sα(t)⟩⟨sα ′(t)⟩.



Since the fluctuation in the emission of different emitters is uncorrelated, the two terms
with α ̸= α ′ will cancel each other, leaving the expression for the second-order super-resolved
map exploiting super-Poissonian statistics (labeled SOFI(2)):

SOFI(2)(r) = µ2(r) =
Nc

∑
α=α ′

η
2
α(r)εα

(
⟨s2

α⟩−⟨sα⟩2) . (2.20)

This approach can be extended to a generic k-th power of the fluorescence image. In this
case, we must consider the cumulant of order k, ck, a quantity used to characterize the behavior
of a probability distribution or a stochastic process.

Cumulants are a combination of central moments of a given distribution P(n) and can be
derived starting from the cumulant-generating function:

C (t) = log

(
∞

∑
n=0

etnP(n)

)
. (2.21)

In particular the k-th order cumulant can obtained by performing the k-th derivative of C (t)
evaluated in t = 0:

c(k) =
dC

dt
(t)|t=0. (2.22)

In SOFI, it is stated that a super-resolved map can be obtained by evaluating the k-th order
cumulant of the detected photon distribution [6]:

c(k)(r) =
Nc

∑
α=1

η
k
α(r)ε

k
αbα . (2.23)

Here, bα is a correlation-based weighting function, depending on the specific fluctuation
properties of each emitter. The exact expression for bα depends on the order of the cumulants.
It’s worth noting that a challenge associated with this super-resolution technique is its dynamic
range; if there are multiple emitters closer than the minimum resolvable distance, high-order
cumulants will enhance the information of those with a higher blinking rate, as shown in Figure
2.6.



Figure 2.6: Wide-field image of two different quantum dots (first panel) and increasing high order
cumulants (2,4,9,16,25). Note that the relative intensities of the two quantum dots vary depending on
the specific blinking behavior of each emitter, effect enhanced with higher order cumulants [6].

2.3 Structured Illumination Microscopy

As discussed in Section 2.1, the image of a point-like emitter is distorted due to the inevitable
diffraction in the imaging setup, resulting in a non-point-like PSF. Considering this effect from
a frequency domain perspective, the blurring induced by the imaging setup can be viewed
as a low-pass filter. To achieve super-resolution, it is essential to recover high-frequency
information.

Structured Illumination Microscopy (SIM) is a super-resolution microscopy technique that
has demonstrated the capability to enhance the high-frequency components of a specimen [8].

SIM operates by illuminating the sample with a patterned light source, typically a grid or a
sequence of parallel lines. This structured light interacts with the sample, generating Moiré-like
interference patterns [82], as depicted in Figure 2.7. High-frequency information is extracted
by acquiring a series of images with varying phases and orientations of the patterned lighting.

This super-resolution method work without prior knowledge of the nature of the emitters
and can be operated at low excitation power, making it a biocompatible super-resolution
technique.



Figure 2.7: Moirè fringes formation. Two high frequency patterns are superimposed, creating a
low-frequency spatial pattern [8].

Computational procedures are employed to combine these high-frequency images into
the final super-resolved image. These algorithms analyze the spatial frequency content of
the images and use the known lighting pattern to reconstruct a higher-resolution image with
enhanced spatial details. This approach effectively surpasses the diffraction limit, providing an
improvement in resolution by up to two times.

The fundamental principle of SIM involves using a non-Gaussian beam as an excitation
source. In practice, a typical Gaussian laser beam is directed at a diffraction grating, from
which the first two diffraction maxima are selected. These two maxima then interfere on the
sample surface, resulting in an excitation profile given by:

Iθ ,φ (r) =
I0

2
[1− cos(2πpθ · r+φ)] . (2.24)

Here, I0 represents the peak illumination, r is the spatial position vector, φ is the phase of
the illumination pattern, and pθ is the illumination frequency vector in reciprocal space.

Considering a random distribution of emitters S(r), the observed distribution through the
optical system is [83]:

Dθ ,φ (r) =
[
S(r)Iθ ,φ (r)

]
∗η(r). (2.25)

Exploiting the convolution theorem, the Fourier transform of the signal will be:

D̃θ ,φ (k) =
[
Ĩθ ,φ (k)∗ S̃(k)

]
η̃(k), (2.26)



where η̃(k) denotes the Fourier transform of the product between the transmission efficiency
of the setup and the PSF, also known as Optical Transfer Function (OTF). Writing the intensity
profile in terms of complex exponential and using the convolution theorem leads to:

D̃θ ,φ (k) =
I0

2

[
S̃(k)− 1

2
S̃(k−pθ )e−iφ − 1

2
S̃(k+pθ )eiφ

]
η̃(k). (2.27)

The Fourier transform of the observed emission distribution is a linear combination of three
frequency contents inside three circular sections of specimen S̃(k): one centered at the origin,
and two centered respectively at −pθ and +pθ . The component S̃(k)η̃(k) is the frequency
component achievable with conventional illumination profiles, however, due to the sinusoidal
light pattern exploited, a greater region in the reciprocal space (along the direction given by the
angle θ ) is reconstructed. A graphic representation is reported in Figure 2.8.

Figure 2.8: Frequency components in Structured Illumination Microscopy. (a) Observable frequency
component limited by the optical system. (b) Position in the reciprocal space of the vector pθ1 and
−pθ1 (θ1 = 0) with respect to the observable frequency components. (c) Observed frequency content
exploiting structured illumination for a specific value of θ1 = 0 [83].

Equation 2.27 alone does not provide sufficient information to discern the three circular
regions. To separate all the components, it is necessary to capture three distinct images with
the same θ but varying φ and construct the system of equations presented in Equation 2.28.D̃θ ,φ1(k)

D̃θ ,φ2(k)
D̃θ ,φ3(k)

=
I0

2
M

 S̃(k)η̃(k)
S̃(k−pθ )η̃(k)
S̃(k+pθ )η̃(k)

 , (2.28)

where:

M =

1 −1
2e−iφ1 −1

2eiφ1

1 −1
2e−iφ2 −1

2eiφ2

1 −1
2e−iφ3 −1

2eiφ3

 . (2.29)



As the quantities of interest are S̃(k)η̃(k), S̃(k−pθ )η̃(k), and S̃(k+pθ )η̃(k), we need to
invert Equation 2.28:  S̃(k)η̃(k)

S̃(k−pθ )η̃(k)
S̃(k+pθ )η̃(k)

=
2
I0

M−1

D̃θ ,φ1(k)
D̃θ ,φ2(k)
D̃θ ,φ3(k)

 . (2.30)

To span double the radius in reciprocal space that is usually accessible with standard
illumination, it is essential to conduct acquisitions at varying θ values, as depicted in Figure
2.9. Following this, the procedure outlined earlier must be replicated for each unique value of
θ .

Figure 2.9: Merging all the frequency information acquired with the three different values of θ is
possible to cover twice the specimens frequency information [83].

The minimum number of orientations θ required to achieve a super-resolved map is three
(0◦, 60◦, 120◦). Nevertheless, increasing the number of orientations will result in a less noisy
super-resolved image.

2.3.1 Combining SIM with non-Poissonian light

Non-Poissonian super-resolution and Structured Illumination Microscopy in principle can be
performed independently [20, 21]: while the first relies on the analysis of the photon statistics
of the source, the latter exploits a peculiar way of illuminating the specimen.

A super-resolved map obtained by analyzing the non-Poissonian statistics of the emitters
excited by structured illumination (labeled SR(2)

θ ,φ (r)) can be written as:



SR(2)
θ ,φ (r) =

[
S(r)I2

θ ,φ (r)
]
∗η

2(r). (2.31)

Performing the Fourier transform of the second-order super-resolved image and exploiting
the convolution theorem it is obtained:

S̃R(2)
θ ,φ (k) =

[
Ĩ2
θ ,φ (k)∗ S̃(k)

]
η̃2(k). (2.32)

Here, η̃2(k) refers to the Fourier transform of η2(r). We can write the square of the
structured illumination profile as [21]:

I2
θ ,φ (r) =

I2
0
4
[1− cos(2πpθ · r+φ)]2 (2.33)

=
I2
0
4
[
1+ cos2(2πpθ · r+φ)−2cos(2πpθ · r+φ)

]
=

I2
0
4

[
1+

1
2
+

1
2

cos(4πpθ · r+2φ)−2cos(2πpθ · r+φ)

]
=

I2
0
4

[
3
2
+

1
2

cos(4πpθ · r+2φ)−2cos(2πpθ · r+φ)

]
=

I2
0
4

[
3
2
+

1
4

ei(4πpθ ·r+2φ)+
1
4

e−i(4πpθ ·r+2φ)− ei(2πpθ ·r+φ)− e−i(2πpθ ·r+φ)

]
.

Executing its Fourier transform and substituting it into Equation 2.32 yields to:

S̃R(2)
θ ,φ (k) =

I2
0
4

[
3
2

S̃(k)− S̃(k−pθ )e−iφ +
1
4

S̃(k−2pθ )e−2iφ

−S̃(k+pθ )eiφ +
1
4

S̃(k+2pθ )e2iφ
]

η̃2(k). (2.34)

In Equation 2.34, the terms S̃(k)η̃2(k), S̃(k−pθ )η̃2(k), and S̃(k+pθ )η̃2(k) signify the
circular areas recoverable through the SIM technique, in addition to yielding a broader OTF
owing to the reduced PSF size. Moreover, the squared nature of the excitation profile enables
the capture of extra frequency content as indicated by the terms S̃(k−2pθ )η̃2(k) and
S̃(k+2pθ )η̃2(k).

Similarly to classical SIM, Equation 2.34 alone is insufficient to recover all the obtainable
frequency information along the direction θ . Instead, five second-order super-resolved images
with different values of φ must be acquired:





S̃R(2)
θ ,φ1

(k)
S̃R(2)

θ ,φ2
(k)

S̃R(2)
θ ,φ3

(k)
S̃R(2)

θ ,φ4
(k)

S̃R(2)
θ ,φ5

(k)


=

I2
0
4

M2


S̃(k)η̃2(k)

S̃(k−pθ )η̃2(k)
S̃(k−2pθ )η̃2(k)
S̃(k+pθ )η̃2(k)

S̃(k+2pθ )η̃2(k)

 , (2.35)

with:

M2 =



3
2 −e−iφ1 1

4e−2iφ1 −eiφ1 1
4e2iφ1

3
2 −e−iφ2 1

4e−2iφ2 −eiφ2 1
4e2iφ2

3
2 −e−iφ3 1

4e−2iφ3 −eiφ3 1
4e2iφ3

3
2 −e−iφ4 1

4e−2iφ4 −eiφ4 1
4e2iφ4

3
2 −e−iφ5 1

4e−2iφ5 −eiφ5 1
4e2iφ5

 . (2.36)

By inverting Equation 2.35, it becomes possible to derive all the components that recover
frequency information along the θ direction, achieving up to

√
2+ 2 times the resolution

attainable with classical microscopy:


S̃(k)η̃2(k)

S̃(k−pθ )η̃2(k)
S̃(k−2pθ )η̃2(k)
S̃(k+pθ )η̃2(k)

S̃(k+2pθ )η̃2(k)

=
4
I2
0

M−1
2



S̃R(2)
θ ,φ1

(k)
S̃R(2)

θ ,φ2
(k)

S̃R(2)
θ ,φ3

(k)
S̃R(2)

θ ,φ4
(k)

S̃R(2)
θ ,φ5

(k)


. (2.37)

To achieve a complete coverage of the reciprocal space and ensure uniform super-resolution
across all directions, it is necessary to acquire multiple second-order super-resolved maps with
different values of θ .

Using five distinct values of θ would be adequate for complete coverage; however, due to
the expanded OTF resulting from second-order super-resolution via non-Poissonian statistics,
four orientations will be sufficient. This implies a total of twenty independent acquisitions to
generate a complete super-resolved map.

A visual representation of the observable region in the frequency domain, achievable through
the combination of SIM and second-order super-resolution via non-Poissonian statistics, is
illustrated in Figure 2.10.

The combination of non-Poissonian light statistics super-resolution and SIM can be extended
to higher correlation orders. The generalization for an arbitrary correlation order m of Equation
2.32 is [21]:



Figure 2.10: Frequency components in traditional Structured Illumination Microscopy and when
combined with non-Poissonian photon statistics. Observable region in OTF units for (a) classic SIM
and (b) SIM combined with a second-order non-Poissonian super-resolution technique. The radius of
the OTF in (b) is increased by a factor

√
2 due to the shrinking of the PSF, bringing an overall increase

in super-resolution of 2+
√

2 [21].

S̃R(m)
θ ,φ (k) =

[
Ĩm
θ ,φ (k)∗ S̃(k)

]
η̃m(k). (2.38)

In this context, the size of the OTF radius will increase by a factor equal to
√

m, and the
Fourier transform of the excitation profile raised to the power of m will include frequency
components ranging from −m|pθ | to +m|pθ |. The overall enhancement in super-resolution
will grow proportionally to m+

√
m, offering the possibility of theoretically unlimited optical

super-resolution. Nevertheless, this advantage is accompanied by the requirement of capturing
a total of 5(2m+1) super-resolved images, which increases the total acquisition time.



Chapter 3

Image sensors

This chapter, structured into two main parts, will introduce the principal detectors utilized
in both traditional and quantum optical imaging. The initial section will discuss detectors
that exhibit a linear response to incident light, enabling their use as photon number resolving
(PNR) detectors, at least in regimes where the equivalent detector noise can be neglected.
This discussion will primarily center on Charge-Coupled Devices (CCDs), Complementary
Metal-Oxide-Semiconductor (CMOSs) and Superconducting transition-edge sensors (TESs).
The subsequent section will cover detectors noted for their exceptional single-photon sensitivity
but non-linear response, which limits their use to distinguishing the mere presence or absence
of photons, often referred to as "On-Off" detectors. Specifically, this part will focus on
Electron Multiplying CCDs (EM-CCDs), Single Photon Avalanche Diodes (SPADs) and
Superconducting Nanowire Single-Photon Detectors (SNSPDs), highlighting their main noise
sources and operational principles.

3.1 Linear detectors

High-efficiency and low-noise linear detectors represent a critical advancement in imaging
technology. The noise level can be, in some cases, so low that they offer the unique ability to
approximately discern and count the number of photons hitting the detector. This capability
is crucial for a wide range of applications, from quantum computing and cryptography to
advanced microscopy and astronomical observation.

In the context of imaging and optical detection, a linear response implies that the detector’s
output is directly proportional to the intensity of the incoming light or radiation, i.e. the number
of incident photons. This linear relationship is characterized by a constant sensitivity across a
range of signal intensities.



This linearity simplifies the interpretation of the detector’s output and allows for straightfor-
ward calibration and quantification of the measured signal.

Subsequently, three main classes of linear detectors are discussed: CCDs and CMOSs,
which are commonly used in imaging, and TESs, which are currently being explored for
potential imaging applications.

3.1.1 Charge-Coupled Devices

Charge-Coupled Devices (CCDs) are a cornerstone of modern imaging technology, widely
utilized across various fields for their unparalleled ability to capture images with high fidelity.

CCDs operate on the principle of charge transfer. Light photons striking the sensor are
converted into electrical charges at the pixel level. These charges are then transferred through
the chip and read out at one corner of the array. A visual representation of the function of a
CCD sensor is reported in Figure 3.1.

At its core, the architecture of a CCD involves a sequence of electrodes arranged over a
semiconductor base, separated by a slim layer of insulating oxide. Applying voltage to these
electrodes generates a depletion zone right below, essentially creating a storage space for
charge packets. Through timely pulsing of these electrodes, this charge can be moved across
the semiconductor. Incorporating additional circuits allows for the charge packets to be inserted
and detected, effectively creating a shift register [84].

The fundamental design of a CCD sensor includes a grid of electrodes atop several discrete
charge transfer paths. These electrodes are typically grouped in pairs or sets of three or four,
and activating these groups forms a matrix of separate storage spots, or pixels, for the electrons
produced by photons. After capturing an image, the electrodes in the imaging area are activated
in sequence to move the captured charge pattern through the array line by line. The last line
of the array is then shifted into a serial output register, which is clocked at a faster rate to
sequentially read out each pixel via a charge detection amplifier. This process repeats until the
entire image has been processed.

The architecture detailed above is known as a full-frame CCD array, favored for its applica-
tion in scientific imaging within both space exploration and terrestrial astronomy. A challenge
with this setup is the potential for image blurring during readout if the CCD is exposed to light,
especially when the readout duration is a substantial portion of the exposure time. Solutions
include the use of a mechanical shutter to block light during readout, or the addition of a
protected storage array for transferring the captured image before reading it out in the dark. A
design commonly used in CCD cameras for scientific applications is the frame-transfer design,
that situates the storage array below the imaging area with the cost of doubling the chip size.



Figure 3.1: Schematic of the CCD sensor in the frame transfer design [85].

The spectral response of CCD detectors is optimized for the visible region of the elec-
tromagnetic spectrum, exhibiting peak quantum efficiencies between 70% and 95% in the
wavelength range of 600–900 nm [86, 87].

This type of detector possesses different inherent sources of noise, in particular, thermal
noise and readout noise. Thermal noise arises from the random generation of electrons
within the silicon substrate of the CCD, independent of any incident light, and increases with
temperature, as well as from the exposure time. However, this source of noise is efficiently
reduced with cooling the CCD sensor, enhancing the SNR in low-light conditions or long-
exposure applications [88]. On the other hand, readout noise is generated from the electronics
associated with reading the charge from the CCD’s pixels and does not depend on the exposure
time of the frame or on the light intensity. This includes the on-chip amplifier and the analog-
to-digital conversion process. Since the read noise is related to the readout process, it is a
fundamental limit to the sensor’s low-light capabilities [88]. In particular, state of the art CCDs
sensors possess readout noise ranging from 1 to 3e−/pixel/frame [89, 90].

A phenomenon that can occur in CCD detectors is the lack of charge carriers during the
charge transfer process. As electrons are shifted through the substrate to the readout register,
some may spill into adjacent pixel wells, especially if the wells are overfilled, (blooming)
[91]. This phenomenon, known as cross-talk, can degrade image quality and, especially in
quantum imaging applications, can furnish fake adjacent pixel correlations that alter the value
of the correlation function evaluated at a specific position in the detector plane. In order to
mitigate this effect, a control of the charge capacity of each pixel and the usage of anti-blooming
structures that drain off excess charge can be applied.



3.1.2 CMOS sensors

Complementary Metal-Oxide-Semiconductor (CMOS) sensors represent a significant evolution
in imaging technology. CMOS sensors use the same advanced silicon technology found in
computer processors, allowing for the integration of millions of transistors on a single chip.
This advancement facilitates the creation of an extensive pixel array where each pixel, equipped
with its own photodiode and associated transistors, operates alongside necessary electronics for
managing the array, buffering the analog signal, and converting it into digital format for further
processing or display.

A basic CMOS pixel, for example, includes a photodiode connected to three transistors
responsible for pre-charging the photodiode, sensing the signal, and selecting the pixel row.
However, this setup can lead to variations in transistor performance, causing inconsistencies in
pixel output across the sensor. Pixel arrays are typically organized in an x-y grid controlled by
shift registers, though some designs allow for direct pixel selection through address decoders,
enabling the reading of pixels in a specified row one at a time and then column by column. The
signal from these pixels can be directed through various pathways, such as a multiplexer to an
analog output, a single analog-to-digital converter (ADC), or multiple ADCs aligned with the
columns [84].

A visual representation of the function of CMOS detectors is presented in Figure 3.2.

This pixel-level processing capability of CMOS sensors enables functionalities, such as
noise reduction algorithms and variable sensitivity to light, directly on the imaging chip, which
are not as readily achievable with CCD technology [92]. The operational spectral range of
CMOS sensors is similar to that of CCD sensors, functioning within the visible spectrum and
achieving peak quantum efficiencies between 70% and 90% [93, 94].

CMOS offers the possibility to perform complex processing functions, such as motion
detection and image stabilization, directly on the sensor chip due to the integration of sensor
arrays with on-chip processing circuitry, making them suitable for applications as live cells
imaging [95]. Furthermore, due to the individual transistors and circuitry for each pixel and the
possibility of incorporating isolation techniques, the cross talk effect present in CCD detectors
is highly mitigated [96].

Despite the advantages, CMOS sensors historically lagged behind CCDs in terms of
image quality, mainly due to higher noise levels and lower sensitivity. However, continuous
advancements in CMOS technology, including the development of back-illuminated sensors
and improvements in noise reduction techniques, have significantly narrowed this gap. In
particular, modern CMOS sensors can be considered almost PNR detectors, due to their low
readout-noise of ≃ 0.3e−/pixel/frame [97, 98].



Figure 3.2: Schematic of a CMOS sensor [99].

3.1.3 Superconducting transition-edge sensors

Superconducting transition-edge sensors (TESs) operate at low temperatures and are renowned
for their high-efficiency detection of single photons, low dark count rates and robust PNR
capabilities.

The sensor element in a TES is a superconducting film positioned at the brink of transi-
tioning from the superconducting state, where slight temperature variations lead to significant
resistance changes. The capture of a photon increases the device’s temperature, triggering a
voltage-biased detector to generate a current measured by a readout circuitry. The magnitude
of this signal correlates with the photon’s energy or, for photons of a consistent wavelength, the
number of photons [100].

A visual representation of a TES is reported in Figure 3.3.



(a) (b)

Figure 3.3: (a) Micrograph of a TES for gamma-ray spectroscopy. Superconducting molybdenum leads
contact the left and right sides of a molybdenum-copper bilayer TES at the center. [101]. (b) Resistance
vs temperature graph of a TES. Operating on the verge of a phase transition, the detector registers
each incoming photon as a temperature rise, which is reflected as an increase in resistance. The energy
captured in a single detection event reveals the energy of the absorbed photon. Furthermore, when
dealing with monochromatic sources, it is possible to determine the count of photons detected based on
the energy measured [102].

These devices require operation at an approximate temperature of 100 mK, demanding
advanced cooling techniques. Detectors made of tungsten exhibit a 20% detection efficiency
[103], which can escalate to 95% at 1550 nm when incorporated within an optical cavity and
over 80% at 850 nm [104], while maintaining minimal dark counts [105]. However, effective
dark count rates might increase due to ambient blackbody radiation at room temperature, a
challenge that can be somewhat addressed through filtering at the expense of detection efficiency
[106].

Despite their high efficiency, TES detectors’ timing accuracy is relatively low, with dead
times, i.e. the period following an event during which the detector is unable to record another
event, typically around 1 µs. Furthermore, TESs possess an intrinsic variability in the timing
accuracy of detecting photons, resulting in fluctuations in the precise moment a photon is
registered by the sensor, on the order of 100 ns , phenomenon known as jitter.

This variability means that even if photons arrive at the sensor at regular intervals, the
recorded times of their arrival might differ due to the sensor’s inability to consistently register
each photon at the exact moment it interacts with the sensor. In practical terms, this leads to a
spread in the detection times around the actual arrival time of each photon, complicating the



interpretation of fast temporal sequences of photons and affecting applications that rely on pre-
cise timing information, such as quantum cryptography or high-speed quantum communication
systems. Jitter emerges from a combination of influences, each contributing to the variability in
detection timing.

Thermal noise, for instance, can cause fluctuations in the sensor’s temperature, affecting
the consistency of the superconducting-to-normal transition. Electronic noise from the readout
circuitry adds another layer of timing uncertainty. The intrinsic process of photon absorption and
subsequent energy conversion to heat within the TES varies slightly with each event, impacting
the uniformity of response times. Lastly, fluctuations in thermal conductance between the TES
and its thermal bath can lead to variable cooling times post-detection, influencing the detector’s
readiness for subsequent photons detection. Together, these factors interplay to cause jitter in
TES sensors, presenting challenges in applications demanding high temporal precision.

These detectors have proven their effectiveness in quantum optics and long-distance quan-
tum key distribution [106, 107]. More recently, the development of arrays of TES sensors has
laid the foundation for their use in imaging applications [108, 109].

3.2 On-Off detectors

On-Off detectors, characterized by their non-linear response to incoming signals, represent a
distinct category of photon detection technology. Unlike linear detectors, where output directly
correlates with the input signal, On-Off detectors show a more complex relationship between
input light and output signal. This non-linear behavior is primarily used to identify the presence
or absence of photons without quantifying their number. Consequently, these detectors are
pivotal in contexts where precision in detecting photon arrival rather than counting them is
crucial, necessitating advanced calibration and data analysis methods.

Such detectors are particularly beneficial in applications where their unique attributes are
most needed. For example, in environments where light is scarce, the exceptional sensitivity of
non-linear detectors like Electron Multiplying Charge-Coupled Devices (EM-CCDs), Single
Photon Avalanche Diodes (SPADs) and Superconducting nanowire single-photon detectors
(SNSPDs) is vital.

3.2.1 EM-CCD

At the heart of an EM-CCD’s functionality is the electron multiplication (EM) process, which
significantly amplifies the signal before it encounters the readout noise barrier. This amplifi-
cation is achieved through a specialized structure within the CCD, known as the EM register,



which facilitates the multiplication of electrons generated by photon interactions in the sensor’s
silicon. This process, reliant on impact ionization, enables the detection of exceedingly faint
signals, effectively bringing single-photon detection within reach. The unique architecture
of EM-CCDs allows for the manipulation of the multiplication gain, providing flexibility in
balancing between signal amplification and the associated increase in noise [110]. A visual
representation of a structure of an EM-CCD camera is reported in Figure 3.4.

Figure 3.4: Schematic of the EMCCD sensor [111].

Despite their high sensitivity, EM-CCDs are not immune to noise. In particular, the main
source of noise that arises when operating with low light level conditions is the Clock-Induced-
Charged (CIC) noise. CIC noise is produced as the charge is transferred through the device
during readout, with the potential for additional charges being generated by the high-voltage
clock pulses used to drive the electron multiplication process. These spurious charges are
indistinguishable from real photo-generated charges, thereby contributing to the background
noise and affecting the detector’s ability to accurately count photons. Efforts to mitigate
CIC noise focus on optimizing the clocking schemes and the physical structure of the EM-



CCD. Precise tuning of both parallel and serial clock waveforms is essential to minimize the
generation of CIC, as well as the careful control of clock amplitudes and device temperature.

Advanced EM-CCD designs and operating strategies have been developed to reduce CIC
levels, up to 7 ·10−4 e−/pixel/frame [112] enhancing the capability for photon counting and
improving the overall performance of EM-CCDs in low-light imaging applications.

Another important source of noise in EM-CCD detector is the multiplication noise. This
type of noise is inherent to the gain mechanism within the EM register of an EM-CCD. As
electrons are accelerated through the high-voltage environment of the EM register, they collide
with the silicon lattice, generating secondary electrons in a process known as impact ionization.
This multiplication process is inherently random, leading to variations in the amount of gain
applied to different signal electrons. As a result, even if two photoelectrons enter the EM
register with identical initial conditions, the final number of electrons output from the EM
register can vary, introducing noise into the amplified signal.

The presence of multiplication noise affects the optimal operation of EM-CCDs, particularly
in low-light applications where the goal is to maximize the SNR. While the multiplication
gain allows for the detection of single photons by amplifying the signal above the readout
noise, the accompanying multiplication noise limits the achievable SNR. Specifically, EM-CCD
technology is unsuitable for use as PNR detectors due to the fact that multiplication noise
introduces uncertainty in the relationship between the output signal and the initial number of
photo-electrons, especially when dealing with more than one photon. This trade-off between
signal amplification and noise increase necessitates careful optimization of the EM gain setting
to balance the benefits of signal amplification against the detrimental effects of noise [113].

After amplification, the signal is contaminated with various noise sources, such as CIC, dark
current, and multiplication noise. To differentiate actual photon events from noise artifacts, a
method of thresholding is applied. Nonetheless, altering the threshold value of the output signal
also affects the quantum efficiency of the detector, consequently, comprehensive calibration is
required to optimize it. This is exemplified in Figure 3.5, where it is shown the efficiency’s
dependency on the threshold value.

After carefully selecting the threshold value of the system, any signal exceeding the
threshold is considered a photon detection event, while signals below the threshold are treated
as noise. The threshold level is crucial for the performance of the EM-CCD as a single-photon
detector. Setting the threshold too low increases the risk of false positives from noise, while
setting it too high may result in missed photon events.



Figure 3.5: Quantum efficiency as a function of the threshold in a EM-CCD camera [114].

3.2.2 Single-Photon Avalanche Diodes

Single-Photon Avalanche Diodes (SPADs) are highly sensitive semiconductor devices that can
detect single photons. SPADs function based on a unique principle compared to conventional
photodetectors, referred to as Geiger mode.

When the diode is biased beyond its breakdown voltage, it enters a state of high sensitivity
where the absorption of just one photon can initiate an avalanche multiplication process. This
results in a detectable current pulse generated from a single-photon event. This avalanche is
self-sustaining and continues until the bias voltage is reduced below the breakdown voltage,
a process known as quenching. After quenching, the SPAD is reset, and it is ready to detect
another photon.

The peak acquisition rate of SPADs is limited by the quenching process, requiring a period
of inactivity known as dead time, during which the detector is unable to detect incoming photons.
Specifically, contemporary SPADs feature a dead time of approximately a few nanoseconds,
restricting their acquisition rates to the hundreds of MHz range [115]. The operation of SPADs
highlights their non-PNR characteristic: the output signal from an avalanche triggered by a
single photon is indistinguishable from that triggered by multiple photons. This is because
the detection of even a single photon can initiate the avalanche that saturates the diode. A
representation of the function of SPADs is reported in Figure 3.6.

Along with the thermal noise, typical for all the semiconductor detectors, a peculiar noise
that arises in SPADs is the After-Pulse noise, a phenomenon where trapped carriers from a
previous avalanche are released, causing subsequent avalanches unrelated to photon detections,
affecting the accuracy and reliability of photon counting and timing measurements. After-



Figure 3.6: Scheme of functioning of a SPAD. 1) Absorption of a photon and creation of a electron-hole
pair. 2) Acceleration of the electron and hole by the bias voltage. 3) The accelerated electron knocks
other electrons loose, creating an avalanche of carrier pairs. 4) Production of a rapidly growing
current across the junction, which can be detected. 5) The bias voltage is then lowered, "quenching" the
semiconductor to remove the existing carrier pairs. 6) The bias voltage is raised back to its initial state,
resetting the device [116].

pulsing is particularly critical in SPADs due to their operation in the high field regime, which
enhances the probability of carrier trapping and release [117, 118].

SPADs excel in timing resolution due to their single-photon sensitivity and the discrete
nature of their detection mechanism. When a photon triggers an avalanche in a SPAD, it
generates a sharp, easily discernible signal, allowing for precise timing of photon arrival. The
timing resolution of SPADs can be as low as a few picoseconds, limited by its intrinsic temporal
variability, making them perfect for different applications in which knowing the arrival time of
different photons is demanded, like fluorescence lifetime imaging microscopy [119], remote
sensing [120] and quantum key distribution [121].

Jitter in SPADs originates the inherent stochastic nature of the photon absorption pro-
cess, where the precise instant of photon interaction leading to an electron-hole pair varies
unpredictably. Additionally, the physical attributes of the detector, including the geometry
and material properties of the semiconductor junction, influence the signal propagation speed,
thereby contributing to jitter. Specifically, in SPADs, the time required for the avalanche of
charge carriers to reach a detectable magnitude can fluctuate.

While SPADs are noted for their rapid response and lower noise, their operational spectral
range is primarily restricted to the visible portion of the electromagnetic spectrum, with peak
quantum efficiencies ranging from 50% to 70% in the 500−700 nm wavelength range [122,
123].



3.2.3 Superconducting Nanowire Single-Photon Detectors

Superconducting Nanowire Single-Photon Detectors (SNSPDs) stand at the forefront of quan-
tum optics and photonics, offering unparalleled sensitivity and timing resolution for single-
photon detection. These devices operate on the principle of superconductivity, employing
ultra-thin films of superconducting materials, such as niobium nitride (NbN) [124] or molyb-
denum silicide (MoSi) [125], which are cooled below their critical temperatures to achieve a
superconducting state. The nanowires, typically only a few nanometers thick and hundreds of
nanometers wide, are configured in a meandering pattern to maximize the active detection area
while maintaining a compact footprint.

When a photon interacts with the nanowire, it imparts sufficient energy to break Cooper
pairs, the electron pairs that form the basis of superconductivity, creating a localized region,
known as hotspot, where superconductivity is suppressed. This event generates a transient
resistive state, causing a brief interruption in the superconducting current that flows through the
nanowire. This change is detected as an electrical signal, marking the arrival of a photon. Events
involving multiple photons cannot be distinguished from the detection of a single photon; both
scenarios result in the creation of a hotspot, therefore suppressing superconductivity. A visual
representation of SNSPDs functioning is reported in Figure 3.7.

As SPADs and TESs, also SNSPDs are characterized by the presence of jitter, in particular,
the precise instant of photon interaction leading to the disruption of Cooper and the dynamics
of hotspot formation characterize an high variability in the detected arrival time of photons.
Furthermore, physical attributes of the detector, including the geometry and material properties
of the nanowire, influence the signal propagation speed.

The unique architecture of SNSPDs enables them to exhibit extremely low dark count rates
(10−2−10−1 count/s [126, 127]) and rapid recovery times (1−10 ps [128, 129]), making them
highly effective for a wide spectrum of photon-starved applications. Moreover, SNSPDs feature
an operational wavelength range extending from UV to 10 µm, achieving quantum efficiencies
near unity across a wide wavelength spectrum [130].

This exceptional quantum efficiency, particularly within the IR spectrum, renders SNSPDs
more favorable than SPADs for applications such as remote sensing and quantum key distribu-
tion and, in recent years, there have been developments in the creation of arrays of SNSPDs,
which have shown potential for imaging applications [131, 132]. Nonetheless, the necessity for
cryogenic temperatures for their operation poses a significant challenge, requiring advanced
cooling systems.



(a) (b)

Figure 3.7: (a) Image of a single-pixel SNSPD designed to couple to light from a single-mode fiber
[133]. (b) Functioning scheme of a SNSPD. 1) The SNSPD is cooled below its superconducting transition
temperature and biased with a constant current. 2) When a photon is absorbed in the material, Cooper
pairs are broken, resulting in a localized non-superconducting region called hotspot. 3) - 4) The hotspot
grows until it covers the entire width of the nanowire, causing its resistance to increase to several kΩ

on a timescale of picoseconds. 5) The nanowire cools off, returning to the superconducting state, and
current rebuilds in the nanowire on a time scale of 10 ns. At this stage, the device is ready to count
another photon. [130].



Chapter 4

Experimental setup

In this Chapter is presented a detailed description of the experimental apparatus utilized in the
framework of my Ph.D. thesis work, for both the realization of non-Poissonian super-resolution
and its combination with Stuctured Illumination Microscopy.

4.1 Description of the optical setup

The experimental setup, reported in Figure 4.1, comprises an excitation source, specifically a
532 nm continuous-wave (CW) laser, which interacts with a Spatial Light Modulator (SLM)
(Hamamatsu LCOS-SLM model X10468). The SLM first imposes a spatially varying phase
shift onto the incoming wavefront of light, with each pixel on the SLM being individually
controlled to adjust the phase of the light passing through it. The phase shift is determined
using a grayscale image generated by a MATLAB script, which has the same pixel count as
the SLM. The gray level of each pixel in the image specifies the degree of phase shift applied
to the incoming wavefront by the corresponding pixel on the SLM. Subsequently, the phase
shifted wavefront propagates through free space towards a lens.

This lens crucially performs an optical Fourier transform on the incoming wavefront,
effectively converting the spatial phase modifications introduced by the SLM into amplitude
variations at the focal plane. As a result, an interference pattern forms in the far field, which
corresponds to the Fourier transform of the phase pattern applied by the SLM. The capability
to control phase shift at the pixel level enables the creation of various interference patterns in
the far field by simply generating different grayscale images.

From the interference beam, the two first maxima are selected through a mask, collimated
by another lens and directed through a dichroic mirror with a cutoff wavelength of 550 nm.

Subsequently, the beam is focused on the surface of a glass sample, using a 100× air
objective, containing a toluene solution of CdSe/ZnS colloidal quantum dots deposited via



spin-coating. The fluorescence emitted by the quantum dots, centered at 620 nm with a Full
Width at Half Maximum (FWHM) of 20 nm, is captured by the objective and transmitted
through the dichroic mirror. This radiation is further filtered by a 600 nm long-pass filter and a
700 nm short-pass filter, and finally collected by a low-noise CMOS camera.

It is important to note that in the experimental realization of non-Poissonian super-resolution
images, as discussed in Section 5.2, the SLM is employed merely as a mirror and does not
generate a diffraction pattern.

Figure 4.1: Schematic of the experimental setup. (a) 532 nm continuous wave (CW) laser source. (b)
Spatial Light Modulator (SLM). (c) Collimation lenses and a mask (in black) employed to isolate the first
two interference maxima. (d) Dichroic mirror. (e) 100x air objective. (f) CdSe/ZnS quantum dots sample.
(g) Structured illumination pattern, exciting the quantum dot sample, created by the interference of the
two first orders of diffraction of the laser incident on the sample surface. (h) Optical filters comprising a
600 nm long-pass filter and a 700 nm short-pass filter. (i) Low-noise CMOS camera.



4.2 CMoS camera

The CMoS camera utilized is an ORCA-QUEST C15550-20UP from Hamamatsu, characterized
by a nominal low value of readout noise RMS (Root Mean Square) of 0.23e−.

The camera incorporates a back-illuminated sensor design in which the light hits the
photodiode layer without having to pass through the electronic circuitry first, enhancing camera
sensitivity and efficiency, especially in low light conditions. The quantum efficiency of the
camera, reported in Figure 4.2, peaking at 85% at 460 nm, makes it suitable for visible light
applications.

Figure 4.2: Quantum Efficiency (QE) of the Hamamatsu ORCA-QUEST C15550-20UP as a function of
wavelength λ [134].

In a CMOS camera sensor, each pixel’s output is given as a count value, C, which indirectly
measures the photo-electrons, npe, generated during the exposure time. The relation between
the count value and the actual number of photo-electrons is governed by a conversion factor, G,
as expressed by the equation:

C = Gnpe, (4.1)

where G represents the amplification factor intrinsic to the pixel’s electronic circuitry.
To accurately determine the conversion factor G of the sensor, a series of experimental

acquisitions were conducted using a Poissonian light source. During these experiments, the light
intensity was systematically varied, and the inherent bias count of each pixel was subtracted to
isolate the effect of the light alone.

The mathematical relationship between the mean number of counts, ⟨C⟩, and its variance,
Var(C), can be represented as follows:



⟨C⟩= Gµpe, (4.2)

Var(C) = G⟨C⟩+Var(N). (4.3)

In these equations, µpe is the mean number of photo-electrons, which, in a Poisson distri-
bution, is equal to its variance. Additional noise, denoted as N, contributes to the variance,
altering its estimation.

By plotting the variance of the counts against their mean, as shown in Figure 4.3, and
applying a linear fit to these data, the conversion factor was determined. The analysis yielded a
conversion factor G = 9.4±0.2 Counts/pe, which was utilized in the experiments discussed
in subsequent sections. Furthermore, considering that in silicon, for wavelengths greater than
400nm, only one electron-hole pair is generated per photon [135, 136], the actual number of
photons detected at a specific position on the detector plane, denoted as N(r), in experiments
involving the use of quantum dots is estimated as:

N(r) =
Counts(r)

G
. (4.4)

Figure 4.3: Plot of the variance of the camera counts versus the mean number of counts, featuring
a linear regression line. The slope of the line represents the conversion factor G between counts and
photo-electrons.



An analysis was performed to assess the readout-noise RMS of the camera, aiming to verify
the effective low-noise characteristics of the sensor. An acquisition was made with only the
presence of environmental stray light where the bias count of each pixel was subtracted from its
total counts. These adjusted counts were then converted to photo-electrons using the previously
determined conversion factor. The mean photo-electron value for each pixel is depicted in
Figure 4.4a.

Subsequently, a histogram of the overall acquisition was created, correctly normalized to
represent a probability distribution of photo-electrons, depicted in Figure 4.4b.

As described in Section 3.1.2, a typical CMOS camera is characterized by readout noise,
which can be modeled as a Gaussian distribution [137]. Consequently, the overall distribution
of photo-electrons is represented by the convolution of the Poisson distribution, which describes
the photo-electrons generated during the integration time, and the Gaussian distribution with
mean value µRN = 0 and standard deviation RMS, which characterizes the readout noise.

A fitting of the convoluted distribution was executed, depicted by a continuous line in
Figure 4.4b. From this analysis, the mean value of the Poissonian distribution was determined
as µpe = 0.06±0.03 pe, and the standard deviation of the Gaussian, representing the readout-
noise level, was found to be RMS = 0.23± 0.01 pe, compatible with the nominal value of
RMS = 0.23 pe. This low value of readout noise confirms the camera’s capability to discern
single photon events in low-light conditions.

(a) (b)

Figure 4.4: Characterization of the readout noise in the Hamamatsu ORCA-QUEST C15550-20UP
camera. (a) Distribution of average photo-electron counts across pixels. (b) Observed probability
distribution of photo-electrons (histogram) and the fitted probability distribution (red line) derived
from a convolution of Poisson (µpe = 0.06±0.03 pe) and Gaussian (centered at 0 and with standard
deviation RMS = 0.23±0.01 pe), illustrating the noise characteristics of the sensor.



4.3 CdSe/ZnS quantum dots

The emitters utilized in both non-Poissonian statistics super-resolution microscopy and their
integration with Structured Illumination Microscopy are commercial colloidal CdSe/ZnS
quantum dots with nominal quantum yield exceeding 70%, ensuring significant brightness of
the emissions.

The quantum dot sample was prepared by depositing a toluene solution containing the
quantum dots onto a glass slide, subsequently diluted with an isopropyl alcohol solution to
reduce the concentration of the deposited quantum dots.

To ensure a uniform distribution of the emitters, the sample was subjected to spin coating,
a technique used to apply uniform thin films to substrates. It involves depositing a liquid
solution onto the center of a substrate and then spinning it at high speeds. The centrifugal force
generated by the spinning spreads the solution evenly across the surface and expels excess
liquid from the edges, leaving a thin film on the substrate. The thickness and uniformity of the
film can be regulated by modifying the rotation speed and duration of the spin-coating process.
In particular, the quantum dots sample was spin coated for 60 s at 100 rps.

Each quantum dot emitter exhibits independent blinking photon statistics, as delineated
in Section 1.2.1, even under equal excitation conditions. To demonstrate this independence,
photon statistics from two proximate emitters were analyzed. The mean photon count map
from these emitters is shown in Figure 4.5a. Figures 4.5d and 4.5e illustrate the temporal
profiles of the photon emissions from the regions circumscribing each emitter. Additionally,
the experimental photon statistics Probability Density Functions (PDFs) for each emitter are
presented in Figures 4.5b and 4.5c, respectively.

Both emitters display distinct ’On’ and ’Off’ states, but the overall blinking probability
b, defined as the ratio of the time spent in the ’Off’ state to the total acquisition time, varies
between the emitters.

This variability is attributed to specific physical characteristics of the emitters, such as their
size and shape. These results underscore that, even under identical excitation and detection
conditions, adjacent emitters maintain independent photon statistics, thereby ensuring unique
emission profiles.



(a) (b) (c)

(d) (e)

Figure 4.5: Illustration of independent photon statistics for two closely positioned quantum dots,
labeled as 1 and 2. Panel (a) shows the mean photon map, highlighting the emitters. Panels (b) and (c)
present the experimental PDFs for emitters 1 and 2, respectively. Panels (d) and (e) display the temporal
profiles of the sum of detected photons in the highlighted regions for centers 1 and 2, respectively. To
emphasize the distinct On and Off states of the emitter a zoom on a small region is displayed for both
the emitters. Data acquisition was performed using a 25 ms exposure time and a 3.6 mW laser power at
the objective, with a total of 12 ·103 frames stacked.



Chapter 5

Generalized quantum model of
super-resolution

As discussed in Sections 2.2.1 and 2.2.2, super-resolution can be achieved by exploiting sub-
and super-Poissonian emitters. However, the mathematical model has been developed only
for a limited class of photon sources. In particular, a proper quantum model taking into
account the discrete nature of the photons has been developed only for single photon emitters
(see Section 2.2.1). For super-Poissonian emitters, used within SOFI, the existing model is
classical and fails to incorporate various stochastic fluctuations such as shot noise. This chapter
introduces a generalized quantum model developed within the framework of this Ph.D. work,
valid for any non-Poissonian emitters, called Quantum Super-resolution Imaging by Photon
Statistics (QSIPS). A comparative analysis between QSIPS and the traditional SOFI technique
is presented, illustrating the limitations of SOFI and the significant improvements in resolution
and stability achieved by the quantum approach, especially in scenarios characterized by low
photo-counts per pixel.

5.1 Mathematical Model

Consider Nc photon sources exhibiting uncorrelated emissions and independent temporal
statistical fluctuations. Each emitter α-th possesses a probability distribution Pα(m) for emitting
m photons within the detector’s integration time. Furthermore, let PSFα(r− rα) := ηα(r),
representing the probability of detecting a photon emitted by the α-th source at position r on
the detector plane.

The probability Pα(n,r) of detecting n photons is expressed as follows:



Pα(n,r) =
∞

∑
m=n

Pα(m)

(
m
n

)
η

n
α(r)[1−ηα(r)](m−n). (5.1)

Given the distributions Pα(m) and Pα(n,r), we can derive the cumulant generating func-
tion, as described in Section 2.2.2, denoted as Cα(t) and Cα,η(t,r), for emitted and detected
photons, respectively:

Cα(t) = log

(
∞

∑
m=0

etmPα(m)

)
, (5.2)

Cα,η(t,r) = log

(
∞

∑
n=0

etnPα(n,r)

)
. (5.3)

Equation 5.3 can be expressed using Equation 5.1 as:

Cα,η(t,r) = log

(
∞

∑
n=0

etn
∞

∑
m=n

Pα(m)

(
m
n

)
η

n
α(r)[1−ηα(r)](m−n)

)
(5.4)

= log

(
∞

∑
m=0

Pα(m)[1−ηα(r)+ηα(r)et ]m

)
.

The cumulants of any arbitrary order j can be obtained by taking the j-th time derivative
of the cumulant generating function and evaluating it at t = 0, as introduced in Section 2.2.2.
Therefore, the j-th cumulant of the emitted and detected photon distribution are respectively:

c( j)
α =

d jCα

dt j (t)|t=0, (5.5)

c( j)
α,η(r) =

d jCα,η

dt j (t,r)|t=0. (5.6)

The first three cumulants of both emitted and detected distributions are reported in Table
5.1.

To ensure that the signal from the α-th emitter is proportional only to the j-th power of the
PSF we must compute the j-th cumulant of the detected photon distribution and combine it
with lower-order cumulants to eliminate terms with lower powers of the PSF that will diminish
the maximum achievable resolution enhancement. Specifically, for second and third orders,
the linear combinations of cumulants yielding only terms proportional to the second and third
power of the PSF are as follows:



c( j)
α c( j)

α,η(r)
j = 1 ⟨m⟩α ηα(r)c

(1)
α

j = 2 ⟨m2⟩α −⟨m⟩2
α η2

α(r)[c
(2)
α − c(1)α ]+ηα(r)c

(1)
α

j = 3 ⟨m3⟩α −3⟨m⟩α⟨m2⟩α +2⟨m⟩3
α η3

α(r)[c
(3)
α −3c(2)α +2c(1)α ]

+3η2
α(r)[c

(2)
α − c(1)α ]−2ηα(r)c

(1)
α

Table 5.1: First three cumulants of emitted and detected photon distributions.

c(2)α,η(r)− c(1)α,η(r) = η
2
α(r)

[
c(2)α − c(1)α

]
, (5.7)

c(3)α,η(r)−3c(2)α,η(r)+2c(1)α,η(r) = η
3
α

[
c(3)α −3c(2)α +2c(1)α

]
. (5.8)

Beginning with Equations 5.7 and 5.8, we can formulate a comprehensive expression to
derive the j-th super-resolved signal from the α-th source (QSIPS( j)

α ):

QSIPS( j)
α (r) = η

j
α(r)

j

∑
i=1

βi, jc
(i)
α =

j

∑
i=1

βi, jc
(i)
α,η(r), (5.9)

where:

βi, j =
1
i!

di

dxi

j−1

∏
k=0

(x− k)|x=0. (5.10)

Equation 5.9 outlines how to combine cumulants of the detected photon distribution
(c(i)α,η(r)) up to the j-th order to yield a signal from the α-th emitter that is solely proportional
to η

j
α(r). The coefficient multiplying the j-th power of the PSF, ∑

j
i=1 βi, jc

(i)
α , corresponds

precisely to the same combination of cumulants, albeit associated with the emitted photon
distribution rather than the detected one. Consequently, each emitter exhibits a distinct scaling
factor depending only on its intrinsic temporal fluctuations. Nonetheless, this super-resolution
technique does not require any specific prior knowledge regarding the statistical distribution of
the emitters; it consistently provides a super-resolved signal for any non-Poissonian emitter. In
fact, examining, for instance, Equation 5.7, it becomes evident that the statistical coefficient on
the right-hand side is identically zero exclusively for Poissonian light emitters; that is, when
⟨m2⟩−⟨m⟩2 = ⟨m⟩.



The derivation of Equations 5.9 and 5.10, along with the demonstration that non-Poissonian
statistics of the emitters are required for achieving super-resolution of order j, is detailed in
Appendix A.1.

The super-resolution relations reported above pertain to a generic α-th emitter, but the
signal detected at a position r on the detector plane has to be considered a convolution of
signals originating from multiple emitters. Specifically, the probability of detecting N photons
from Nc independent emitters can be expressed as follows:

P(N,r) =
Nc

∏
α=1

∞

∑
nα=0

Pα(nα ,r)δN,∑
α

nα
. (5.11)

The cumulant generating function of this distribution will be:

Cη(t,r) = log

(
∞

∑
N=0

etNP(N,r)

)
(5.12)

= log

(
∞

∑
N=0

Nc

∏
α=1

∞

∑
nα=0

etNPα(nα ,r)δN,∑
α

nα

)

= log

(
Nc

∏
α=1

∞

∑
nα=0

etnα Pα(nα ,r)

)

=
Nc

∑
α=1

Cα,η(r).

This peculiar property of cumulants implies that for independent emitters, the cumulant
generating function of the probability distribution resulting from the convolution of Nc distinct
emitters is equivalent to the sum of each individual cumulant generating function. As all
cumulants are derived from differentiating the cumulant generating function, the cumulant of
a generic order j of the overall system is equal to the sum of the j-th order cumulant of each
independent emitter:

c( j)
η (r) :=

d jCη

dt j (t,r)|t=0 =
Nc

∑
α=1

c( j)
α,η(r). (5.13)

As discussed in Section 2.2, a super resolved map of order j can be obtained by summing
the j-th power PSF of each distinct emitter contributing to the signal. Equation 5.9 outlines
the method for isolating the j-th power of the PSF for the α-th emitter, while Equation 5.13



verifies the complete independence of the cumulants associated with each emitter. This allows
for the derivation of a formula for the general super-resolved map of order j (QSIPS( j)):

QSIPS( j)(r) :=
j

∑
i=1

βi, jc
(i)
η (r) =

Nc

∑
α=1

η
j

α(r)
j

∑
i=1

βi, jc
(i)
α . (5.14)

The coefficient ∑
j
i=1 βi, jc

(i)
α , which multiplies the j-th power of the PSF of the α-th emit-

ter, is solely determined by the intrinsic photon statistics of the α-th photon source. This
fundamental relationship secures the ability to achieve super-resolution, even when emitters
possess different photon statistics. This diversity leads to varying weight factors for the PSF of
each emitter, potentially affecting the image’s dynamic range, but does not impact the actual
super-resolution capability.

While cumulants are also utilized in SOFI, as discussed in Section 2.2.2, it obtains the
super-resolved image of order j through the direct evaluation of the j-th order cumulant of
the detected photon distribution. QSIPS, however, demonstrates that to effectively remove
lower-power components of the PSF from the signal, it is essential to subtract lower-order
cumulants using a specific linear combination, ensuring the consistent generation of a super-
resolved signal. Moreover, the SOFI technique is applicable solely to photon sources that
display super-Poissonian photon statistics, while QSIPS holds for all types of non-Poissonian
statistical behaviors.

Albeit SOFI is a classical technique, it is a good approximation of our QSIPS model when
the j-th detected cumulant dominates respect to lower order ones. This usually occurs in the
presence of a high number of detected photons, which emphasize super-Poissonian signal
characteristics.

Section 5.2 presents both simulations and experimental results that demonstrate the superi-
ority of QSIPS over the classical SOFI technique, particularly in low-light conditions.



5.1.1 QSIPS in On-Off detectors

The theoretical framework presented introduces a model capable of detecting photons using a
detector that discerns the quantity of photons at specific locations on the detection plane. As
detailed in Section 3.2, certain detectors employed in imaging function primarily as On-Off
detectors. This configuration precludes direct analysis of photon statistics distributions at
particular spatial coordinates. Nonetheless, the super-resolved relationships expressed in terms
of cumulants, can be reformulated using higher-order correlation functions.

For instance, the second order super-resolved relation in terms of second order correlation
functions is:

QSIPS(2)(r) = c(2)η (r)− c(1)η (r) = ⟨N2(r)⟩−⟨N(r)⟩2 −⟨N(r)⟩ (5.15)

=−⟨N(r)⟩2
[

1− ⟨N2(r)−N(r)⟩
⟨N(r)⟩2

]
=−⟨N(r)⟩2

[
1−g(2)(0,r)

]
,

where N(r) refers to the number of the detected photons at a fixed position r in the detector
plane. Following the same approach, we can write the third order super-resolved signal as:

QSIPS(3)(r) = c(3)η (r)−3c(2)η (r)+2c(1)η (r) (5.16)

= ⟨N(r)⟩3
[

1− 3
2

g(2)(0,r)+
1
2

g(3)(0,0,r)
]
.

These relationships are the same as those detailed in Section 2.2.1, with the exception of
a negative sign in Equation 5.15. This discrepancy arises from the fact that the relations in
Section 2.2.1 were derived using sub-Poissonian emitters. However, because these relations
can be derived from the QSIPS model, they remain valid even for super-Poissonian statistics.

The ability to represent super-resolved relationships using correlation functions allows for
achieving super-resolution with click detectors. Specifically, in a system of j independent
On-Off detectors, the j-th correlation function can be approximated based on the probabilities
of simultaneous detection events across all j-th On-Off detectors. A comprehensive explanation
of this approximation process is provided in Appendix B.1. For instance, the second-order
correlation function, evaluated in a system containing two click detectors (A and B), can be
approximated as follows [138, 139]:



g(2)(0,r) =
⟨N2(r)−N(r)⟩

⟨N(r)⟩2 ≃ PAB

PAPB
, (5.17)

where PA and PB denote the probabilities of click events in detectors A and B, respectively,
while PAB is the coincidence probability.

This concept can be generalized to a system comprising j-th detectors, labeled from 0 to
j−1, as discussed in Appendix B.1. The j-th order correlation function can be approximated
as:

g( j)(τ1 = 0,τ2 = 0, . . . ,τ j−1 = 0,r) =

〈
j

∏
i=1

N(r) [N(r)− i]
〉

⟨N(r)⟩ j ≃
P012... j−1

j−1
∏
i=0

Pi

. (5.18)

We can write the super-resolved relation of second and third order in a system with On-Off
detectors as:

QSIPS(2)(r) =−⟨N(r)⟩2[1−g(2)(0,r)]≃ PAPB −PAB (5.19)

QSIPS(3)(r) = ⟨N(r)⟩3
[

1− 3
2

g(2)(0,r)+
1
2

g(3)(0,0,r)
]

(5.20)

≃ 1
2
(PABC − (PAPBC +PBPAC +PCPAB)+2PAPBPC).

In practice, the second and third order super-resolved signals can be evaluated by perform-
ing respectively the covariance and second-order covariance between the system of On-Off
detectors. Generally, we expect that the j-th order super-resolved signal can be expressed in
terms of the j-th cross-cumulant between all the On-Off detectors:

QSIPS( j)(r)≃ kη(C1,C2, . . . ,C j), (5.21)

with Ci (i ∈ {1, . . . , j}) being the state of the i-th detector, that can be either 0 (Off) or 1
(On).

Cross-cumulants extend the concept of cumulants to measure joint statistical dependencies
between two or more random variables, in this case the state of each of the j detectors. Similar
to cumulants, cross-cumulants can be calculated from the cross-cumulant generating function:



G(t1, . . . , t j) = log

〈e

j
∑

i=1
tiCi

〉 . (5.22)

The cross-cumulant of order j is calculated by differentiating the cross-cumulant generating
function with respect to the parameters ti, for i ∈ {1, . . . , j} at ti = 0:

kη(C1,C2, . . . ,C j) =
d j

dt1 · · ·dt j
G(t1, . . . , t j)

∣∣∣∣∣
t1=···=t j=0

. (5.23)

In general, the j-th order super-resolved signal in a system of j On-Off detectors will be a
function of the click probabilities Pi of each detector, as well as on all coincidence probabilities
from order 2 up to j:

QSIPS( j) ≃ f (P0, . . . ,Pj−1,P01, . . . ,P0 j−1,P012, . . . ,P01 j−1, . . . ,P01... j−1). (5.24)

We remind that each of these probabilities can be expressed in terms of the emitted photon
distributions P(m), before accounting for binomial losses, and are dependent on the detectors’
detection probabilities ηi, as discussed in Appendix B.1.

5.2 QSIPS vs SOFI

The key disparity between QSIPS and the SOFI technique, described in Section 2.2.2, lies in its
classical nature. The absence of consideration for shot noise in the SOFI renders it unsuitable
under low light-level conditions. Specifically, the expressions for the j-th order super-resolved
signal in SOFI considering Nc independent emitters is:

SOFI( j)(r) := c( j)
η =

Nc

∑
α=1

c( j)
α,η(r). (5.25)

Due to the omission of subtracting lower order cumulants, terms proportional to lower
power of the PSF emerge in the SOFI classical technique, thereby limiting the achievable
super-resolution. To demonstrate this clearly, the first two orders of super-resolution in both the
SOFI and QSIPS models are presented as follows:



SOFI(2)(r) =
Nc

∑
α=1

(
η

2
α(r)[c

(2)
α − c(1)α ]+ηα(r)c

(1)
α

)
, (5.26)

QSIPS(2)(r) =
Nc

∑
α=1

η
2
α(r)[c

(2)
α − c(1)α ], (5.27)

SOFI(3)(r) =
Nc

∑
α=1

(
η

3
α(r)[c

(3)
α −3c(2)α +2c(1)α ]+3η

2
α(r)[c

(2)
α − c(1)α ]−2ηα(r)c

(1)
α

)
, (5.28)

QSIPS(3)(r) =
Nc

∑
α=1

η
3
α(r)[c

(3)
α −3c(2)α +2c(1)α ]. (5.29)

From the case j = 2 in Equation 5.26, it is clear that only subtracting the shot noise term
proportional to ⟨N⟩ = ∑

Nc
α=1 ηα(r)c

(1)
α , i.e. the first order cumulant of the detected photon

distribution, allows to get rid of the first power of ηα(r) in the super-resolved signal.

An experimental demonstration of the robustness of QSIPS, in comparison to classical
SOFI, was conducted using the optical setup described in Chapter 4. For each pixel in the
collected data, temporal cumulants were calculated and utilized to generate both classical and
quantum super-resolved images. Additionally, Fourier interpolation and filtering were applied
to minimize pixelation effects. Figure 5.1 displays the mean intensity image along with the
first four orders of super-resolved images using both the SOFI and the QSIPS techniques,
showcasing a small cluster of blinking emitters.

It is evident the increase in resolution provided by QSIPS compared to the one obtained
with SOFI, due to the presence in the classical model of lower orders of the PSF that reduce
the maximum achievable resolution enhancement. In particular, the visibility of each one-
dimensional plot shown in Figure 5.1c can be calculated using the following formula:

V =
Imax − Imin

Imax + Imin
, (5.30)

where Imax represents the mean value of the peaks and Imin denotes the value of the
minima. By averaging the visibility estimates from the three different measurements for both
quantum and classical signals, we obtain the following results: VQSIPS(4) = (40± 1)% and
VSOFI(4) = (12±1)%, confirming the resolution enhancement provided by the QSIPS model.

Furthermore, a simulated study over two close identical blinking quantum dots, whose PDF
is detailed in Section 6.1, was performed in order to assess the dependence of the visibility
from the mean number of detected photon, as reported in Figure 5.2. We considered a matrix
of noiseless linear detectors in which the detection of photons by each pixel was modeled using
a binomial distribution, where the number of trials corresponds to the emitted photons from



(a)

(b) (c)

Figure 5.1: Experimental comparison between the SOFI and the QSIPS methods under low light level
conditions. Panel (a) displays the intensity image of a small cluster of quantum dots, captured with an
exposure time of 20 ms, where the output power before the objective was 1.4 mW, and a total of 53 ·103

frames were acquired. Panel (b) illustrates the absolute value of the first four super-resolution orders,
where the top part showcases classical SOFI, and the bottom part depicts QSIPS technique. Panel (c)
presents a one-dimensional plot of the normalized fourth-order super-resolved signals measured along
the conjunction of each pair among the three centers identified in panel (b), comparing the results from
both techniques. The images were Fourier interpolated to minimize pixelation effects and Gaussian
filtered to mitigate artifacts and manage noise.



(a)

(b)
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Figure 5.2: Visibility vs number of detected photons for two simulated identical blinking quantum dots
closer than the minimum resolvable distance. Panel (a) showcase the mean intensity map. Panel (b)
displays the second order super resolved maps of both the classical SOFI and the QSIPS techniques
in low light condition (i.e. mean number of detected photons in the conjunction between the emitters
of ⟨N⟩= 0.4). Panel (c) displays the actual visibility of the region between the emitters as a function
of the detected number of photons. The simulated PDF of the emitter was considered with a blinking
probability b = 0.7 and the simulations were performed changing the number of excitation cycles K from
102 to 104 (see Section 6.1 for more details). The simulations considered an optical system with 95%
optical losses, excluded the effect of the PSF, and involved stacking 100 ·103 frames. The images were
Fourier interpolated to minimize pixelation effects.

the source, and the success probability is determined by the product of the PSF and the total
optical losses. These individual images were then compiled to create a composite classical
intensity image. This is possible because we only consider independent and incoherent sources.
Additionally, super-resolution maps were generated by independently applying the cumulant
operation to each pixel, utilizing both the QSIPS and the SOFI techniques.

Specifically, it is observed that QSIPS maintains a consistent visibility value across all
illumination conditions. In contrast, the visibility achieved by the classical SOFI technique
increases with the number of detected photons, eventually converging to the value predicted by
the QSIPS model.

Additionally, we can assess the dependence of the spatial standard deviation (σ ) of the
effective PSF on the detected light levels using both the classical and the quantum techniques.
Consequently, an experimental analysis was conducted on a single quantum dot for two
different exposure times of the detector, as shown in Figure 5.3a and 5.3b respectively. A
two-dimensional Gaussian fit was applied to the effective PSF of each super-resolution order.
From this fit, the standard deviation was determined by calculating the mean value of the



(a) (b)

Figure 5.3: Effective PSF spatial standard deviation (σ ) in function to the super-resolution order, for a
single quantum dot under two light level conditions: (a) ⟨N⟩= 18 ph/pixel/ f rame obtained with a 200
ms exposure time, and (b) ⟨N⟩= 3 ph/pixel/ f rame with a 50 ms exposure time, utilizing both the SOFI
and the QSIPS techniques. The theoretical behavior is also reported (continuous line), for comparison.
The y-axis displays the spatial standard deviation of the effective PSF for different super-resolution
orders (x-axis), each normalized to the one obtained in the intensity image.

estimates along the two dimensions of the image. This value was subsequently normalized by
the one obtained from the intensity map and compared with the theoretical prediction of 1/

√
j.

The enhancement in super-resolution achieved through QSIPS, as compared to classical
SOFI, is predominantly influenced by the relative magnitude of the j-th order cumulant within
the linear combinations delineated in Equations 5.9 and 5.10. The significance of the j-th
order cumulant, in that combination, is related to the specific photon distribution of the emitter.
For that, it may occasionally happen that certain super-resolved images generated using SOFI
might correspond closely with those produced by QSIPS, when the j-th cumulant magnitude
dominates.

However, super-resolution in QSIPS is always optimized and predictable at the varying of
the order j, demonstrating enhanced reliability in the produced images. This is again attributed
to the fact that the effective PSF of each emitter is not dependent on the particular photon
statistics of the source when QSIPS is used.

Furthermore, QSIPS retains its applicability even under quasi-Poissonian emission condi-
tions. When multiple clusters of quantum dots are present, the aggregate emission from each
cluster approximates Poissonian statistics. Under such circumstances, the magnitude of j-th
order cumulant typically aligns with the one of the preceding cumulants. This similarity in
orders makes it challenging for classical SOFI techniques to discriminate between different
clusters of emitters effectively.



Another distinction between QSIPS and classical SOFI lies in the management of high
dynamic range. In particular, it may happen that some emitters are almost suppressed in
the super-resolved maps due to the characteristics of their emission probability distribution,
and other emitters, that are barely visible in the intensity map can be drastically enhanced in
magnitude. This variability significantly impacts the dynamic range of highly super-resolved
images in SOFI, but it is mitigated in QSIPS.

Figure 5.4 presents an experimental acquisition of a cluster of quantum dots, depicting
both the mean image value and the super-resolution up to the fourth order using both the SOFI
and the QSIPS techniques. Notably, the high dynamic range characteristic of SOFI tends
to obscure low-intensity blinking emitters, particularly evident in the emitter highlighted in
Figure 5.4b. In contrast, our approach, which incorporates lower order cumulants, seems to
compress the effective dynamic range of the super-resolved images, as can be noticed from the
visibility enhancement of the circled emitter in the quantum super-resolved maps, compared to
the classical ones.

A possible explanation of this phenomenon can be considered by examining a situation in
which photons from two distinct emitters are collected at the position r on the detector plane.
The j-th order cumulant of the overall detected photon distribution, that coincides with the j-th
order SOFI, will be:

SOFI( j)(r) =c( j)
1,η(r)+ c( j)

2,η(r) = (5.31)

(a jη
j

1(r)+a j−1η
j−1

1 (r)+ ...)+(b jη
j

2(r)+b j−1η
j−1

2 (r)+ ...),

where ai and bi, with i ∈ {1, . . . , j},are set of coefficients depending the emitter photon
statistics distribution, deriving from the cumulant generating function reported in Equation 5.4.
Instead, the j-th super-resolved signal from QSIPS assumes the simpler form:

QSIPS( j)(r) = a jη
j

1(r)+b jη
j

2(r). (5.32)

Thus, QSIPS simplifies the scenario by retaining only the higher order of the effective PSFs,
with the related coefficients a j and b j. This modification effectively reduce the dynamic range,
enhancing the utility of the model in practical imaging applications where emitter statistics
may vary. As support to this hypothesis, a study over a series of simulated images is reported
in Figure 5.5, considering two blinking quantum dots with different photon statistics. The
simulative approach is the same as the one described for the visibility analysis reported in
Figure 5.2. Here, it is evident that the variability in the relative signal between the two emitters
is reduced when considering QSIPS technique, in comparison to classical SOFI.



(a)

(b)

Figure 5.4: Experimental comparison of dynamic range between SOFI and QSIPS under low light level
conditions. Panel (a) displays the intensity image of a small cluster of quantum dots, captured with a
3 ms exposure time, where the output power before the objective was 1.1 mW, and a total of 40 ·103

frames were acquired. Panel (b) illustrates the absolute value of first four super-resolution orders; the
upper part showcases the classical SOFI technique, while the lower part depicts the QSIPS method.
The images underwent Fourier interpolation to reduce pixelation effects and were Gaussian filtered to
manage noise and prevent artifacts.



(a)

(b)

Figure 5.5: Simulated comparison of dynamic range between SOFI and QSIPS under low light
conditions. Panel (a) shows an intensity image of two quantum dots, each with different blinking
probabilities: b = 0.25 for the left and b = 0.75 for the right emitter (see Section 6.1 for more details).
The simulations considered an optical system with 95% optical losses, excluded the effect of the PSF, and
involved stacking 50 ·103 frames. Panel (b) displays the absolute values of the first four super-resolution
orders; the upper section features the classical SOFI technique, while the lower section depicts the
QSIPS method. The images were Fourier interpolated to minimize pixelation effects.

The theoretical analysis, the experimental results and simulations presented in this section
affirm the effectiveness of our proposed technique under low-light conditions in which shot
noise is not negligible, demonstrating superior performance in achieving super-resolution
compared to the traditional SOFI technique.

While SOFI remains a viable approach for dealing with super-Poissonian emitters under
high-brightness conditions, the model introduced in this chapter offers a more comprehensive
solution. QSIPS accounts for shot noise and photon statistics more accurately, providing a
reliable method for achieving super-resolution across all brightness conditions. It presents a
detailed and systematic way to combine the cumulants of the detected distribution, maximizing
resolution enhancement by any non-Poissonian statistics beyond the typical super-Poissonian
statistics utilized by SOFI. Notably, the development of an extensive quantum model is crucial
for super-resolution in low-light scenarios. In particular, our work is prompted by advancements
in wide-field super-resolution detector technologies, which are increasingly yielding faster,
lower-noise detectors crucial for non-invasive, low-light biological imaging.



Chapter 6

Extensive analysis of the Signal-to-Noise
Ratio

In the previous chapter, we introduced the QSIPS model aimed at achieving super-resolution
with any non-Poissonian emitters. However, this approach requires the evaluation of high-order
cumulants in the detected photon distribution, typically leading to prolonged acquisition times.

In this chapter, we shift our focus to analyzing the SNR of the super-resolved signal
originating from single photon emitters that can exhibit blinking behavior. This analysis
is relevant to two distinct types of single-photon sources utilized in biological fluorescence
imaging applications: color centers and blinking quantum dots. Our objective is to provide
a guide to assess the best detection schemes, photon sources, and experimental parameters,
aiming to reduce the overall data volume and acquisition time.

Specifically, the first part of this chapter presents a generalized model of the PDF of
single photon emitters that can show blinking behavior. Subsequently, a general mathematical
description to assess the SNR of the super-resolved signals from a single emitter is proposed.
An extensive analysis of the SNR as a function of experimental parameters is then reported
for detection schemes employing both linear and On-Off detectors, including simulations of
super-resolved images.

The discussion presented here refers to a generic α-th photon source, whose emission is
detected at position r on the detector plane, a dependence that will not be explicitly reiterated
in the following sections. Additionally, the SNR under consideration is for a single acquisition;
to obtain the actual experimental SNR, it must be scaled by

√
N f , where N f represents the

number of independent images acquired.



6.1 Model of the PDF

In this section we will propose a general model of the detected PDF from a single photon
emitter that possesses a certain probability b of emitting non-radiatively upon an excitation
cycle, in order to take into account both blinking quantum dots and more stable emitters such
as color centers in high band gap semiconductors.

The state |ψ⟩ of an ideal single photon emitter undergoing K independent excitation cycles
can be expressed as the tensor product of K single-photon temporal modes:

|ψ⟩=⊗K
t=1|1⟩t , (6.1)

where t represents the index temporal interval at which the single photon is emitted.

Since typical detection systems are not able to resolve all the temporal modes, the probability
of m photons arriving at the detection plane will be:

P(m) = δm,K. (6.2)

We can take in account the fact that the emitter can possess a non-radiative state, a situation
typically achieved in quantum dots. In particular, we can modify Equation 6.2 as:

P(m) = bδm,0 +(1−b)δm,K. (6.3)

However, the detected photon statistics is strongly determined by the integration time of the
detector, in relation to the typical switching time τb of the blinking emitter between the On and
Off states, and vice versa.

Let us consider that in the integration time of the detector T the blinking emitter performs
M transitions between the two states, such that M = T/τb.

The probability of having j of the M intervals in which the emitter is in the Off state follows
a Binomial distribution, denoted as B( j/M,b), with M trials and probability of success b:

B( j/M,b) =
(

M
j

)
b j(1−b)(M− j). (6.4)

We consider that within the total integration time T of the detector, the emitter undergoes K
excitation cycles. Therefore, in each short interval time τb in which the emitter is in the On
state, it will perform K/M excitation cycles.

The probability of having m photons emitted in the time T given j Off time windows is:

P(m/ j,b,K) = δm,(M− j) K
M
. (6.5)



The overall probability density function P(m) is obtained by summing over all possible j:

P(m) =
M

∑
j=0

B( j/M,b)δm,(M− j) K
M
. (6.6)

It can be noticed that by putting b = 0 in Equation 6.6 we return to Equation 6.2, while
putting M = 1, i.e. the integration time of the detector is already fast enough to discern the On
and Off states of the emitter, we return to Equation 6.3. Considering the system’s non-unitary
detection probability, denoted by η , the overall probability of detecting n photons is:

P(n) =
∞

∑
m=0

P(m)

(
m
n

)
η

n(1−η)(m−n) (6.7)

=
∞

∑
m=0

M

∑
j=0

B( j/M,b)
(

m
n

)
η

n(1−η)(m−n)
δm,(M− j) K

M

=
M

∑
j=0

B( j/M,b)
(

K
(

1− j
M

)
n

)
η

n(1−η)[K(1− j
M )−n]

=
M

∑
j=0

B( j/M,b)B
(

n/K
(

1− j
M

)
,η

)
.

For M = 1, there are two possible outcomes: the emitter either emits K photons or none
within a single exposure time of the detector. Additionally, if the emitter is in the On state, the
detected probability distribution is broadened by the non-unitary detection efficiency of the
system (Figure 6.1a). For M = 2, there are three possible outcomes within a single exposure
time: firstly, the emitter is always in the On state (resulting in a peak centered at Kη in Figure
6.1b); secondly, the emitter is in the On state half the time and in the Off state the other half
(peak centered at Kη/2 in Figure 6.1b); thirdly, the emitter is always in the Off state (peak at
0 in Figure 6.1b). As M increases, the number of possible levels increases correspondingly.
However, these levels become indistinguishable due to dispersion caused by the detection
efficiency (Figures 6.1c and 6.1d).

In the slow detection limit where M → ∞, i.e. T ≫ τb, the detected PDF converges to:

lim
M→∞

P(n) = lim
M→∞

[
M

∑
j=0

B( j/M,b)B
(

n/K
(

1− j
M

)
,η

)]
= B(n/K(1−b),η), (6.8)



where we have used the following properties:

∞

∑
j=0

B( j/M,b) = 1, (6.9)

b = lim
M→∞

j
M
. (6.10)

Equation 6.8 demonstrates that when observing blinking single-photon emitters with a
slow detector (i.e., high exposure time respect to the switching time τb), the overall detected
statistics resemble those of a binomial distribution, which shows sub-Poissonian fluctuations.
The number of trials is K(1− b), a fraction of the total excitation cycles, and the success
probability is η .

The conditions under which the emitted photon distributions, as presented in Equation 6.6,
exhibits super-Poissonian characteristics can be analyzed using the Fano factor. It is defined as
the ratio of the variance of the distribution to its mean value:

Femitted =
⟨m2⟩−⟨m⟩2

⟨m⟩
=

Kb
M

. (6.11)

Clearly, by definition, it is Femitted = 1 for Poissonian photon statistics, while for super(sub)-
Poissonian statistics it is Femitted > 1(< 1). In particular, for the photon statistics in Equation
6.6 the super-poissonian condition is K > M/b. On the other side, it should be noted that for
b = 0 we have Femitted = 0 for every value of K . The case b = 0 represents a non-blinking
emitter, resulting always in a sub-Poissonian detected photon statistics.

Nevertheless, the Fano factor of the detected photon distribution reported in Equation 6.7,
denoted by Fdetected, is expressed as follows:

Fdetected =
⟨n2⟩−⟨n⟩2

⟨n⟩
= 1−η

(
1− Kb

M

)
. (6.12)

Here, it should be noted that although Fdetected is dependent on the detection efficiency η ,
the condition under which super-Poissonian behavior emerges, specifically when Fdetected > 1,
is given by K > M

b , which is identical to the condition for the emitted distribution.



(a) (b)

(c) (d)

Figure 6.1: Simulation of 1000 samples extracted from the detected photon distribution as described in
Equation 6.7, and their histograms representation with varying values of the parameter M: (a) M = 1,
(b) M = 2, (c) M = 5, and (d) M = 10. The simulation parameters are η = 0.01, b = 0.25, and K = 104.



6.2 Evaluation of the SNR

To evaluate the SNR of the super-resolved signal, it is beneficial to express the cumulants of the
detected photon distribution in terms of combinations of the raw moments µ ′

k = ⟨nk⟩, utilizing
partial Bell polynomials (described in Appendix A.1):

c( j)
η =

j

∑
i=1

(−1)(i−1)(i−1)!B j,i(µ
′
1, ...,µ

′
j−i+1). (6.13)

Specifically, the expressions for the second and third order super-resolved signals in terms
of raw moments are:

QSIPS(2) = c(2)η − c(1)η = ⟨n2⟩−⟨n⟩2 −⟨n⟩, (6.14)

QSIPS(3) = c(3)η −3c(2)η +2c(1)η = (6.15)

= 2⟨n⟩3 +3⟨n⟩2 +2⟨n⟩−3⟨n⟩⟨n2⟩−3⟨n2⟩+ ⟨n3⟩.

The general expression for the SNR of the j-th order super resolved signal (labeled as
SNR( j)) is:

SNR( j) =
QSIPS( j)√

j
∑

α=1

j
∑

β=1

∂QSIPS( j)

∂ µ ′
α

∂QSIPS( j)

∂ µ ′
β

Cov(nα ,nβ )

, (6.16)

with:

Cov(nα ,nβ ) = µ
′
α+β

−µ
′
α µ

′
β
. (6.17)

The derivative of the super-resolves signal respect to the α-th raw moment can be evaluated
as:

∂QSIPS( j)

∂ µ ′
α

=
j

∑
i=0

βi, j
∂c(i)η

∂ µ ′
α

=
j

∑
i=0

βi, j

i

∑
k=1

(−1)(k−1)(k−1)!
∂Bi,k(µ

′
1, ...,µ

′
i−k+1)

∂ µ ′
α

(6.18)

=
j

∑
i=0

βi, j

i

∑
k=1

(−1)(k−1)(k−1)!
(

i
α

)
Bi−α,k−1(µ

′
1, ...,µ

′
i−k−α+2),



with βi, j being the coefficient reported in Equation 5.10 and where we have exploited the
relation:

∂Bi,k(µ
′
1, ...,µ

′
i−k+1)

∂ µ ′
α

=

(
i
α

)
Bi−α,k−1(µ

′
1, ...,µ

′
i−k−α+2). (6.19)

The QSIPS model applies also to On-Off detectors, as discussed in Section 5.1.1, therefore
we can also evaluate the SNR in this case. Specifically, as stated in Equation 5.21, the super-
resolution of order j is approximated by the j-th cross-cumulant of click events across j
detectors. Therefore, its SNR can be expressed as:

SNR( j) =
QSIPS( j)√

∑A ∑B
∂QSIPS( j)

∂PA

∂QSIPS( j)

∂PB
Cov(CA ,CB)

, (6.20)

where PA and PB represent the indices of click probabilities and coincidences up to the j-th
order as appearing in Equation 5.24, while CA and CB indicate the state of the detectors (On= 1,
Off = 0). The term Cov(CA ,CB) can be written, considering C2

i =Ci due to Ci ∈ {0,1}, as:

Cov(CA ,CB) = PA ∪B −PA PB. (6.21)

For instance, Cov(C01,C2) = P012−P01P2, whereas Cov(C01,C1) = P01−P01P1, since C2
1 =

C1, with C01 =C0C1.

6.3 SNR of super-resolved signals from not blinking single-
photon emitters

Some classes of solid-state photon sources, such as the NV centers described in Section 1.2.2,
are observed to behave like single photon emitters exhibiting non-blinking behavior, especially
in the non-saturation regime [140, 141].

The distributions of emitted and detected photons of a single photon emitter are obtained by
substituting b = 0 in Equations 6.6 and 6.7 respectively, yielding the following relationships:

P(m) = δm,K, (6.22)

P(n) = B(n/K,η). (6.23)

We can calculate the cumulants of both distributions using Equation 5.2 and Equation 5.3,
respectively. However, as suggested by Equation 5.4, knowing the emitted photon distribution
and the detection probability η is sufficient to retrieve the cumulants of the detected photon



distribution. Subsequently, we can substitute the cumulants in Equation 5.9 and obtain the
relation of the super-resolved signal of order j as:

QSIPS( j) = η
j

j

∑
i=1

βi, jc(i) = ( j−1)!η jK, (6.24)

where we have used that:

c(i) = Kδi,1, (6.25)

β1, j = ( j−1)!. (6.26)

Even though the super-resolved signal scales proportionally to the number of excitation
cycles K executed during the detector’s integration time for every order j, its SNR is influenced
by a complex interaction between detection probability and the number of excitation cycles.
Therefore a compact expression describing its dependence on K and η for an arbitrary super-
resolution order j is not feasible. For simplicity, we report here explicitly the expression with
j = 2:

SNR(2) =

√
Kη√

2(1−η)(3η −1+K(1−η))
. (6.27)

The SNR( j) with j = 2, . . . ,5 are reported graphically in Figures 6.2a and 6.2b as a function
of K and η , respectively. As one may appreciate from Figure 6.2a, the optimal SNR for any j
is achieved when K = 1. In fact, it can be shown that the following simple expression holds for
any order j:

SNR( j)|K=1 =
1
j

√
η

1−η
. (6.28)

Thus for single-photon emitters, it is advantageous to limit the number of excitations to
only one cycle per integration period. Note that up to now we have not yet considered the noise
of the detector (only its quantum efficiency included in η). In case of noisy detector the optimal
number of cycles may be different.

Additionally, an interesting case arises in the limit as K → ∞, a scenario typical in slow
wide-field linear detectors, like CCDs and CMOSs cameras, where the characteristic lifetime
of the emission is significantly shorter than the exposure time of the detector. In particular, we
obtain:



lim
K→∞

SNR(2) =
1√
2

η

1−η
, (6.29)

lim
K→∞

SNR( j)| j>2 = 0. (6.30)

This outcome indicates that a non-zero second-order super-resolution signal is achievable
even with a high number of excitation cycles K. The expression in Equation 6.29 represents the
value reached by the plateau of the light-blue curve in Figure 6.2a. Consequently, this makes
it feasible to perform second-order super-resolved images even using single photon emitters
employing linear detection schemes characterized by long exposure times. Conversely, for
higher orders ( j > 2), the SNR approaches zero, suggesting that a substantial increasing of
statistical data are required to obtain reliable super-resolved signals.

This behavior is also shown in Figures 6.3b and 6.3c, where the images of three close
emitters with different values of K are compared across the first five super-resolution orders.
A meaningful super-resolved map is achieved for a large number of number excitation cycles
(K = 1000) only for j = 2.

In the context of On-Off detectors, as specified in Equation 5.21, it remains feasible to
approximate the super-resolved signal of order j and evaluate its SNR using Equation 6.20.
In this framework, a system of j On-Off detectors arranged in a tree structure (illustrated in
Figure B.1) is considered, where detectors are assumed with equal detection probability, ηi = η

(i ∈ {1, . . . , j}), accounting for optical losses and the effect of the PSF.

The SNR of the first five super-resolution orders as functions of K and η are reported in
Figures 6.2c and 6.2d for an On-Off detector-tree configuration.

The SNR achieved using On-Off detectors is comparable to that obtained with linear
detectors in the regime where the number of detected photons remains smaller than 1. However,
as the number of excitation cycles K increases, saturation effects arise due to the detectors’
inability to count more than a single photon per exposure time. This results in a degraded
super-resolved signal and subsequently reduces its SNR.

This saturation effect is represented in the plots of Figures 6.3e, 6.3f, and 6.3h.

We can also introduce detection noise into our model and assess its impact. Specifically,
for linear detectors, we considered the presence of a Gaussian readout noise at various levels
convoluted with the distribution described in Equation 6.23. As shown in Figure 6.4a, the SNR
of the second-order super-resolved signal is primarily affected when the number of excitation
cycles is low so that the number of detected photons is lower than the readout noise RMS.
However, as the number of excitation cycles increases, the SNR converges to the value observed
in the noiseless case.



An illustrative simulation of the second order super-resolved map of three closely spaced
single-photon emitters subjected to high readout noise under differing excitation regimes is
shown in Figure 6.5b and Figure 6.5c. These simulations demonstrate that an increase in the
number of detected photons can effectively mitigate the influence of uncorrelated readout noise,
enabling the recovery of a super-resolved image.

Only the simulation for the second super-resolved order is presented here because overcom-
ing noise necessitates operating at high illumination levels, which in turn requires an increased
number of excitation cycles K. However, as indicated by Equation 6.30, this requirement
significantly compromises the SNR of the super-resolved signal.

Moreover, we can introduce a general, uncorrelated noise into the system of On-Off
detectors such that each detector possesses a click probability due to non-photon-related events
from the source, denoted as B, as detailed in Appendix B.1.

Similarly as the linear case, this noise affects the system when the number of photons
detected per pixel is comparable to the noise level. However, while it was possible in linear
detectors (at least in the second-order case) to increase the number of excitation cycles, i.e.
raising the mean number of detected photons, to overcome the noise level, this approach actually
deteriorates the SNR of the super-resolved signal in systems employing On-Off detectors due
to saturation effects. Figure 6.4b illustrates the SNR of the second-order super-resolved signal
in a system of two On-Off detectors with varying levels of noise probability, B. From the
compromise of reducing the noise effect while avoiding saturation it turns out that an optimal
value of K exists that maximize the SNR. This optimal value depends on the noise level.

Additionally, for a visual representation of this phenomena, simulations of intensity and the
second-order super-resolved signals of three spaced single-photon emitters in the presence of
uncorrelated noise B are presented in Figures 6.5e, 6.5f, and 6.5g for varying values of K. The
noise effect, which significantly degrades the SNR in Figure 6.5e, is mitigated in Figure 6.5f.
However, further increasing the number of excitation cycles drives the system into a saturation
regime. This phenomenon is particularly evident in the central part of Figure 6.5g, where the
contributions of multiple emitters are present, thus degrading the SNR.



(a) (b)

(c) (d)

Figure 6.2: SNR of the first five orders of super-resolved signals from a single photon emitter. Panel (a)
shows the dependence of the SNR on the number of excitation cycles K at a fixed detection probability
η = 0.01, while panel (b) shows the dependence on η with K = 1. The top axis indicates the mean
number of detected photons. Panels (c) and (d) correspond to panels (a) and (b) respectively, but for a
system of j On-Off detectors arranged in a tree-like structure, where j denotes the super-resolved order.
The top axis in panels (c) and (d) refers to the mean number of detected photons per single detector.
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Figure 6.3: Simulations of intensity images and the first five super-resolution orders of three independent
single photon emitters. Panel (a) shows the mean number of detected photons using a linear detector
in a noiseless case with K = 1. Panels (b) and (c) display the first five super-resolution orders with a
number of excitation cycles K = 1 and K = 1000, respectively. Panels (d) and (g) show the mean number
of detected photons in a matrix of noiseless On-Off detectors with K = 1 and K = 1000, respectively.
Panels (e), (f), and (h) present the first five super-resolution orders in the same On-Off detector scheme
for K = 1, K = 100, and K = 1000. All simulations consider 90% optical losses, excluding the effect of
the PSF, and 5 ·105 independent acquisition frames. All images are Fourier interpolated and Gaussian
filtered to reduce pixelation effects and avoid artifacts.



(a) (b)

Figure 6.4: SNR of the second-order super-resolved signals from a single photon emitter in the presence
of uncorrelated noise. Panel (a) shows the dependence of the SNR on the number of excitation cycles
K at a fixed detection probability of η = 0.01 for five different levels of Gaussian readout noise RMS:
RMS = 0, RMS = 0.1, RMS = 0.3, and RMS = 0.5. The top axis indicates the mean number of detected
photons. Panel (b) is the equivalent of panel (a), but employs a system of two On-Off detectors, each
with a probability B of a click due to a noise event, respectively for: B = 0, B = 0.01, B = 0.05, and
B = 0.1. The top axis refers to the mean number of detected photons per single detector for the different
values of B.
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Figure 6.5: Simulated intensity images and second-order super-resolution outputs for three independent
single-photon emitters under a noisy detection scenario. Panel (a) illustrates the average number of
photons detected using a linear detector characterized by Gaussian readout noise with an RMS value of
0.5 and K = 1. Panels (b) and (c) depict the second super-resolution order for K = 1 and K = 1000,
respectively. Panel (d) displays the average photon counts using a matrix of On-Off detectors with
K = 1 and B = 0.01. Panels (e), (f), and (g) show the second super-resolution orders in the same noise
condition employing the On-Off detection method for K = 1, K = 100, and K = 1000, respectively. All
simulations account for 90% optical losses, excluding the effect of the PSF, and 5 ·105 independent
acquisition frames. Each image has undergone Fourier interpolation and Gaussian filtering to minimize
pixelation and prevent artifacts.



6.4 SNR of super-resolved signals from blinking single-photon
emitters

As stated in Section 1.2.1, quantum dots can be seen as single photon emitters that possess a
non-radiative state that prevents photon emission.

Therefore, we have to use the complete PDF reported in Equation 6.7 in which we take
in account the blinking probability b and the ratio M between the integration time and the
characteristic switching On-Off time of the detector.

As done for the non-blinking case, we can evaluate the cumulants of the emitted and
detected photon distributions using Equation 5.2 and Equation 5.3, respectively, and exploit
Equation 5.9 to obtain the relation for the super-resolved signal of order j:

QSIPS( j) = η
jK(1−b) f (b,K,M). (6.31)

f (b,K,M) is a non-trivial polynomial in b, K, and M whose general form for an arbitrary
order j cannot be expressed in a compact manner. Nevertheless, similar to what has been done
to the non-blinking case we can analyze the SNR dependence on the number of excitation
cycles K. In Figure 6.6, the first five super-resolved orders are shown for fixed values of b and
η and for different values of M.

A peculiar behavior arises when dealing with low values of K, as shown both in Figure 6.6a
and 6.6b. The SNR starts decreasing, reaches zero and it rises again, with increasing values of
K. This behavior is closely related to the nature of the super-resolved signal. With low values
of K, quantum dots behave mostly like single photon emitters, in particular Kb < M results in
a sub-Poissonian photon statistics as we have seen in Equation 6.11. However, as K increases,
a gradual transition occurs from a fully sub-Poissonian photon distribution to a Poissonian one
(Kb = M), bringing the magnitude of the super-resolved signal to zero. Conversely, continuing
to increase K, super-Poissonian characteristics arise, reinstating the super-resolved signal.

In order to make the most of the super-Poissonian statistics, one should use fast detector,
namely M = 1, able to follow the fluctuation of the emitter jumping from the On and Off states.
As discussed in Section 6.1, the effect of slow detection schemes, i.e. high values of M, is to
reduce the measured super-Poissonian fluctuations of the detected photons distribution. This
is illustrated in Figures 6.6a, 6.6b, and 6.6c, where an increase in the parameter M increases
the number of excitation cycles needed to achieve super-Poissonian behavior. Ultimately, with
high values of M, the super-Poissonian behavior is completely eliminated.

In the high excitation regime, the maximum value of the SNR is independent of the detection
probability η and is determined solely by the blinking probability b and the parameter M. While



deriving a compact expression for this limit for a generic order j is not feasible, for clarity, we
present the limit for the second- and third-order SNR:

lim
K→∞

SNR(2) =

√
Mb(1−b)

1+2b(M−3)−2b2(M−3)
, (6.32)

lim
K→∞

SNR(3) =
2
√

Mb(1−b)(b− 1
2)

g(M,b)
, (6.33)

with:

g(M,b) =
√

1+bα1(M)+6b2α2(M)−6b3[2−b]α3(M), (6.34)

α1(M) = 18M−30,

α2(M) = M2 −18M+25,

α3(M) = M2 −15M+20.

Another interesting behavior arises when studying the dependence of the SNR on the
blinking probability. Figure 6.7 presents the behavior of the SNRs of the first five super-
resolved signals in the high excitation cycle regime at a fixed value of η and for different values
of M. We observe some sharp peaks of the SNR for certain specific values of the blinking
probability, whose location changes for each super-resolution order. For example, the value
b = 0.5 ensures a completely symmetric emitted photon distribution, yielding a maximum SNR
for even orders, while for odd orders the SNR is zero. Notably, increasing the super-resolution
order increases the number of nodes in the function, scaling with j−2. At each node, the sign
of the super-resolved signal changes.

This not-trivial behavior makes it challenging to get stability of the super-resolved images
through the different orders. It may occur that in a system of independent emitters, each with
its own blinking probability, the SNR drastically changes from one emitter to the other while
passing from even to odd orders of super-resolution. By comparing Figures 6.7a, 6.7b, and
6.7c one notes that the increasing value of the parameter M tends to mitigate the variability
of the SNR, but at the expense to an overall reduction, ultimately reverting the situation to a
sub-Poissonian one.

A visual representation of this behavior is reported in Figure 6.8 where a simulation
of three blinking emitters possessing different blinking probabilities are analyzed up to the
fifth super-resolution order, both in a fast detector situation (M = 1) and slow detector one
(M = 1000).



Regarding the introduction of uncorrelated noise to the system, we can consider convoluting
the detected PDF with a Gaussian distribution of the readout noise, as done for the sub-
Poissonian case. As shown in Figure 6.9, adding this noise to the signal affects only the
sub-Poissonian part of the graph, where the mean number of detected photons is comparable
to the value of the readout noise. When the number of excitation cycles increases and the
super-Poissonian nature arises, the effect of the readout noise is mitigated and no longer affects
the SNR.

We can also study the SNR of blinking emitters exploiting systems of On-Off detectors.
Particularly, these systems are often characterized by high acquisition speeds and very low
exposure times. Therefore, in this analysis, we will consider the most common case of M = 1,
meaning that the On-Off detectors can reliably discern between the radiative and non-radiative
states of the emitter.

The SNR of the super-resolved signal from a blinking single-photon emitter employing On-
Off detectors behaves exactly as the one obtained for the linear case, as shown in Figures 6.10a
and 6.10b, due to the absence of saturation effects. In fact, the intrinsic blinking probability b
ensures that each detector will reach a maximum mean value of detected photons ⟨n⟩= 1−b.
Even with high values of K, a fraction b of exposure times of the detector will consistently lack
photon events, preventing saturation.

Even adding a probability B to the model of having a click related to noise events, as done
for the sub-Poissonian case, saturation effects from a single emitter do not occur due to the fact
that the noise affects only when the number of excitation cycles is low compared to the noise
level. Particularly, Figure 6.10c reports the SNR of the second-order super-resolved signal of a
blinking single-photon emitter in a scheme employing On-Off detectors for different values
of B. Nevertheless, when considering the contribution of multiple emitters, the saturation of
a single detector arises due to the uncorrelated nature of emissions across different emitters.
This phenomenon is reported in the simulations provided in Figure 6.11, which shows the
intensity and super-resolved signals up to the fifth order of three identical blinking single-photon
emitters in a matrix of On-Off detectors with different values of K. Especially in the region
in the middle of the three emitters, where the probability of having more than one photon in
the same detection time window is higher, the saturation compromises the reliability of the
super-resolved maps.



(a) (b)

(c)

Figure 6.6: SNR of the first five super-resolved signals from a blinking single photon emitter in a
noiseless linear detection system as a function of the number of excitation cycles K , for: (a) M = 1, (b)
M = 10, and (c) M = 104. All SNR values are evaluated considering a detection probability η = 0.01
and a blinking probability b = 0.01. The top axis indicates the mean number of detected photons.
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Figure 6.7: SNR of the first five super-resolved signals from a blinking single photon emitter, displayed
as a function of blinking probability b in a noiseless linear detection system. The panels represent
different values of M: (a) M = 1, (b) M = 10, and (c) M = 106. Each SNR value is calculated considering
a fixed detection probability η = 0.01 and K = 106. The top axis shows the mean number of detected
photons for each blinking probability.



(a) (b)
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Figure 6.8: Simulated intensity image and the first five super-resolution orders of three independent
blinking single photon emitters, characterized by blinking probabilities of b = 0.1, b = 0.2, and b = 0.5.
The simulations use K = 1000 excitation cycles with a linear detector in a noiseless environment. Panel
(a) illustrates the mean number of detected photons with M = 1. Panels (b) and (c) present the first
five super-resolution orders with M = 1 and M = 1000, respectively. The simulations account for 90%
optical losses, excluding the effect of the PSF, with 2 ·104 independent acquisition frames for panels
(a) and (b) and 1 ·105 for panel (c). All images have undergone Fourier interpolation and Gaussian
filtering to mitigate pixelation and eliminate artifacts.

Figure 6.9: SNR of second-order super-resolved signals from a blinking single photon emitter, analyzed
as a function of the number of excitation cycles K. The simulation assumes a fixed detection probability
η = 0.01, blinking probability b = 0.1, and M = 1. The graph illustrates SNR outcomes for five Gaussian
readout noise levels: RMS = 0, RMS = 0.1, RMS = 0.3, and RMS = 0.5. The top axis indicates the mean
number of detected photons for each set of conditions.
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Figure 6.10: SNR of the first five super-resolution orders from blinking single photon emitters in an
On-Off detection scheme with M = 1. Panel (a) explores the SNR’s dependency on the number of
excitation cycles K, with a blinking probability b = 0.01 and detection probability η = 0.01. Panel
(b) examines the SNR’s dependence on blinking probability b, for K = 104 and η = 0.01. Panel (c)
investigates how the SNR of the second order super-resolved signal varies with the number of excitation
cycles K, under different probabilities B of a noise-induced click, set at B = 0, B = 0.01, B = 0.05,
and B = 0.1. The top axis in panels (a) and (b) reports the mean value of detected photons per single
detector, while the top axis in (c) denotes the mean number of detected photons per single detector for
varying B values.
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Figure 6.11: Simulations of intensity image and the first five super-resolution orders of three independent
blinking single photon emitters in a noiseless On-Off detection scheme, considering a blinking probability
b = 0.3 for all the emitters. Panels (a) and (c) show the mean number of detected photons with K = 100
and K = 1000, respectively. Panels (b) and (d) display the first five super-resolution orders with K = 100
and K = 1000. All simulations are performed considering 90% optical losses, excluding the effect of the
PSF, and 2 ·104 independent acquisition frames. The images are Fourier interpolated and Gaussian
filtered to reduce pixelation effects and avoid artifacts.



6.5 SNR analysis summary

In this section, we present a summary of the key outcomes derived from the analysis of the SNR
of super-resolved signals originating from a single-photon emitter that can exhibit blinking
behavior. The analysis includes both rapid and slow linear detection methods, as well as fast
On-Off detection mechanisms.

In the initial analysis, we considered non-blinking single-photon emitters, such as color
centers in crystals. It is found that the optimal SNR is attained when utilizing a single excitation
cycle per detector integration period for all super-resolution orders, provided that detector
noise is negligible. A significant finding is that specifically second-order super-resolution,
accumulating a large number of photons in the detection time windows brings to a consistent
value of the SNR solely dependent on the system’s detection probability (refer to Figure 6.2a).
This behavior is distinct from higher orders of super-resolution, where the SNR sharply declines.
This property facilitates the retrieval of super-resolved when using slow and noisy detector,
such as CCD or CMOS cameras (see Figure 6.4a). On the other hand, On-Off detectors, such
as SPADs or EM-CCD cameras, generally exhibit lower noise levels. Additionally, SPADs
have brief exposure times that reduce the susceptibility to other noise sources, such as ambient
light. Thus, it is advantageous to utilize a minimal number of excitation cycles per integration
period when operating these detectors, ideally one cycle per detection time window.

When examining blinking single-photon emitters, we have shown that it is determined that
the SNR is maximized under high illumination conditions, namely when many photons are
collected in the detection time, that is where the super-Poissonian character emerges. The
maximum value depends solely on the blinking probability of the emitter and the detector’s
capability to discriminate the On and Off states within a single integration period, indicated
by the value of the M parameter. Conversely, under low illumination, particularly K < M/b,
blinking emitters manifest a sub-poisson behavior (see Figure 6.6). Although high illumina-
tion is generally desirable when working with blinking single-photon emitters, the blinking
probability value in this regime significantly influences the achievable SNR, enhancing certain
super-resolution orders while diminishing others, as shown in the analysis of the SNR reported
in Figure 6.7a and the simulated super-resolved images in Figure 6.8b. Specifically, blinking
probability is an experimental variable that can vary substantially among different quantum
dots, influenced by their size and shape. This variability can significantly expand the dynamic
range for specific super-resolution orders. Moreover, it is feasible to achieve super-resolution
using On-Off detectors with super-Poissonian emitters; however, it is crucial to avoid high
illumination levels that may induce saturation, particularly in scenarios where the signal is
derived from the convolution of multiple emitters, as shown in Figure 6.11.



Chapter 7

QSIPS combined with Structured Light
Illumination

In this chapter, we present the experimental and simulated work performed to integrate the
QSIPS technique with the structured light illumination as described in Section 2.3.1.

In the first part of the chapter we present simulations of second-order super-resolved maps
in combination with structured light utilizing blinking emitters in a noisy linear detection
scheme. Subsequently, an experimental realization of structured light in combination with
super-Poissonian statistics is reported, emphasizing the super-resolution enhancement achieved
with QSIPS, in comparison to classical SOFI.

7.1 Simulations

In SIM, achieving maximum resolution enhancement necessitates the precise tailoring of the
length of the illumination frequency vector |pθ | (refer to Equation 2.24) of the structured light
pattern to achieve the highest possible resolution. As detailed in Section 2.3, the optical system
acts as a low-pass filter, allowing only frequencies up to kAbbe = d−1

Abbe = 2NA/λ to be retrieved.
Consequently, also the length of the illumination frequency vector at the object plane must
be |pθ | ≤ kAbbe to ensure proper visibility at the imaging plane of the signal. In principle, the
maximum resolution improvement is achieved when the equality holds.

As described in Section 2.1, we can approximate the response function of the optical system
as a Gaussian with variance σ2. Particularly, the approximated Gaussian will be characterized
by a standard deviation σ ≃ 0.42dAbbe [78]. Therefore, the relation between the maximum
frequency transmitted by the system and the standard deviation σ is: kAbbe = 0.42/σ . In the
framework of our simulated work, the modulus of the illumination frequency vector for each



orientation θ is set to |pθ |= kAbbe. The Optical Transfer Function, denoted as η̃(k), used in
the simulations, along with its one-dimensional plot showing the relative magnitude of the
illumination frequency vector, are presented in Figure 7.1.

(a) (b)

Figure 7.1: (a) Simulated Optical Transfer Function (OTF), denoted as η̃(k). (b) One-dimensional
plot of a section of the OTF (red line) alongside the relative magnitude of the illumination frequency
vector used in the simulations (dashed blue lines).

The simulated images are produced by distributing multiple independent emitters in the ideal
conjugated object plane (unitary magnification) of the multipixel detection matrix, operating in
linear regime and characterized by Gaussian readout noise.

Each emitter α , positioned at (xα ,yα), has a probability ξα(k) of emitting k photons in the
presence of structured illumination, described as:

ξα(k) =
∞

∑
m=0

P(m)B (k/m, I(xα ,yα)) , (7.1)

where P(m) is the emitted photon probability reported in Equation 6.3 and with I(x,y):

I(x,y) =
1
2
[1− cos(2π(pcos(θ)x+ psin(θ)y)+φ)] , (7.2)

derived from Equation 2.24 by setting I0 = 1, pθ = [pcos(θ), psin(θ)] and |pθ | = p. In
practice, the structured light act as a binomial filter with transmittance probability I(xα ,yα).

Subsequently, the signal undergoes processing through another binomial filter characterized
by the transmittance probability ηα(x,y), which simulates the cumulative impact of optical
losses and the PSF effects:

Pα(n) =
∞

∑
k=0

ξα(k)B (n/k,ηα(x,y)) . (7.3)



This detected photon probability, apart from the effect of the structured illumination, corre-
sponds to the expression in Equation 6.7 with the parameter set to M = 1.

As elaborated in Section 2.3.1, integrating structured illumination with non-Poissonian
photon statistics necessitates conducting multiple acquisitions. This involves varying the angle
θ of the sinusoidal illumination pattern to cover the frequency domain comprehensively. For
each specific angle θ , multiple acquisitions must be performed by changing the phase φ to
effectively resolve all frequency components. In the framework of these simulations, the
following values were considered for θ and φ , respectively:

φ =

[
0,

2π

5
,
4π

5
,
6π

5
,
8π

5

]
+

π

8
, (7.4)

θ =

[
0,

π

4
,
2π

4
,
3π

4

]
− 3π

8
. (7.5)

These values of θ and φ are the same as those used in the experimental realization discussed
in Section 7.2. The offset values of π/8 and −3π/8, for φ and θ respectively, are empirically
selected to facilitate the generation of structured light and its experimental reconstruction.

A simulated study was conducted with independent emitters, all possessing equal blinking
probability b (see Equation 6.3), focusing on a low-light scenario. When considering second-
order super-resolved signals obtained with SOFI and QSIPS methods, as presented in Equations
5.26 and 5.27, we find that the classical SOFI technique approximates QSIPS under the
following condition:

η
2
α(r)

[
c(2)α − c(1)α

]
≫ ηα(r)c

(1)
α , (7.6)

where α is the index of a generic emitter and ηα(r) is the probability of detecting a photon
from the α-th emitter in the position r in the detector plane. Rearranging Equation 7.6 and
using the definition of the Fano Factor of the emitted photon distribution from Equation 6.11,
we derive:

ηα(r) [Femitted −1]≫ 1. (7.7)

Experimentally, we typically measure the Fano factor of the detected photon distribution
rather than the emitted one. Therefore, using Equation 6.12, we can express Equation 7.7 as:



Fdetected ≫ 2. (7.8)

Equation 7.8 provides a straightforward criterion that serves as a rule of thumb to deter-
mine if the second-order super-resolved signal evaluated with the SOFI method can correctly
approximate the QSIPS second-order signal. Consequently, we consider a high illumination
regime when Fdetected ≫ 2, and a low-light scenario otherwise.

For each value of θ and φ , ⟨N(θ ,φ)⟩, SOFI(2)(θ ,φ) and QSIPS(2)(θ ,φ) maps were
reconstructed following the steps described in Section 2.3.1. The final super-resolved maps has
been obtained by combining all maps for the different angles and phases, and are reported in
Figures 7.2a, 7.2b and 7.2c, respectively. Subsequently, utilizing the algorithm described in
Section 2.3.1, the frequency components of the images were shifted to their correct positions
in the Fourier space. Consequently, an inverse Fourier transform of the merged frequencies
components was then performed to retrieve both SOFI(2)−SIM and QSIPS(2)−SIM, which
are shown in Figures 7.2d and 7.2e, respectively.

The simulated images show that, in low photon number regime, the higher resolution
enhancement provided by QSIPS, compared to classical SOFI, is maintained through integration
with structured light.

To elucidate this point more effectively, a one-dimensional plot was generated following
the dashed line shown in Figure 7.2e. Subsequently, the visibility, described in Equation 5.30,
was assessed for both minima and averaged between them for both SOFI, V = (20± 1)%,
and QSIPS, V = (77 ± 1)%, showing the better performance of QSIPS technique in low
light conditions. However, we must notice that the visibility obtained with SOFI depends
on the parameters used in our simulation. As described in Chapter 5.2, SOFI serves as an
approximation of QSIPS, with its accuracy contingent on the considered statistics and the
regime.

To evaluate the effective enhancement in resolution of the various super-resolution tech-
niques, an analysis was conducted on an isolated blinking emitter under both low and high
levels of illumination. Specifically, the spatial standard deviation of the effective PSF was de-
termined by a two-dimensional Gaussian fit across the intensity image and the images obtained
by classical SOFI, our QSIPS techniques, and their integration with structured illumination.
The sections of the Gaussian fit, taken along one spatial axis are shown in Figure 7.3, where
the case of low and high illumination are presented in the panels (a) and (b), respectively.



(a)
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(d) (e)

(f)

Figure 7.2: Combinantion of the of second-order super-resolved signals with structured illumination
for a L-shaped distributions of identical independent blinking emitters. Panels (a), (b), and (c) show
the mean number of detected photons, the SOFI(2), and the QSIPS(2) images, respectively. Panels (d)
and (e) present the integration of SIM with classical and quantum methods, labeled SOFI(2)−SIM and
QSIPS(2)−SIM, respectively. Panel (f) displays the normalized one-dimensional plot along the dashed
line shown in panel (e) for all the super-resolution methods. The simulations are performed considering
90% optical losses, excluding the effect of the PSF, blinking probability b = 0.1, K=100 excitation cycles
per frame, a readout noise of RMS = 0.23, and 5 ·103 independent acquisition frames per single value
of θ and φ . The images are Fourier interpolated and Gaussian filtered to reduce pixelation effects and
avoid artifacts.



(a) (b)

Figure 7.3: One-dimensional projection of the Gaussian fit performed on the effective PSF of a
simulated single emitter with blinking probability b = 0.1 across the super-resolution techniques. Panel
(a) refers to a low light regime (mean number of detected photons ⟨N⟩= 0.3, K = 102) while panel (b)
refers to a high level of illumination (⟨N⟩= 30, K = 104).

We can identify an effective super-resolution factor, labeled SRF, defined as the inverse of
the standard deviation of the effective PSF, normalized by the one obtained from the intensity
image, and compared it with the theoretical value SRFth =

√
2 for both QSIPS(2) and SOFI(2)

and SRF(SIM)
th = 2+

√
2 for QSIPS(2)−SIM and SOFI(2)−SIM (see Section 2.3.1). A resume

of the super-resolution factor obtained in low and high mean photon number simulations is
reported in Table 7.1.

⟨N⟩ Fdetected SRFSOFI(2) SRFQSIPS(2) SRFSOFI(2)−SIM SRFQSIPS(2)−SIM
0.3 1.03±0.02 1.01±0.02 1.40±0.02 2.63±0.02 3.42±0.02
30 4.33±0.02 1.39±0.02 1.42±0.02 3.39±0.02 3.40±0.02

Th 1.41 1.41 3.41 3.41

Table 7.1: Simulated super-resolution factors for the various super-resolution techniques both
in low and high photon regime and their theoretical values.

In the low photon regime, the SOFI super-resolution factor is approximately 1, indicating
that in the classical SOFI signal, reported in Equation 5.26 the contributions proportional to
the first power of the optical PSF, becomes the dominant one. This is because, in the low light
regime, the factor that multiplies the square of the PSF in the SOFI(2) signal (i.e. Var(N)−⟨N⟩)
is nearly zero. This occurs due to the minimal difference between the variance and the mean
value of the detected photons, resulting in the dominance of the shot noise term. Consequently,
in this regime, SOFI(2)− SIM will not provide a super-resolution enhancement compatible
with the theoretical prediction. The super-resolution factors of QSIPS(2) and QSIPS(2)−SIM
are both in agreement with their respective theoretical values of

√
2 and 2+

√
2.



In high illumination condition, SOFI(2) approximates its quantum counterpart, as does
its integration with structured light. In this regime, the super-resolution factors of all super-
resolution methods align with their theoretical expectations.

7.2 Experimental results

An experimental realization of the comparison between SOFI(2)−SIM and QSIPS(2)−SIM
was conducted using the setup described in Chapter 4.

The PSF of the system was assessed by focusing on an isolated emitter (Figure 7.4a), from
which a two-dimensional Gaussian fit was conducted (Figure 7.4b). By performing the Fourier
transform of the Gaussian fit, the OTF was evaluated (Figure 7.4c).

(a) (b) (c)

Figure 7.4: Evaluation of the experimental PSF and OTF. Panel (a) shows an intensity image of an
isolated blinking emitter used to assess the PSF of the system, acquired with an exposure time of 100 ms
and an output power before the objective of 5 mW. Panel (b) represents the two-dimensional Gaussian
fit applied to the emitter in panel (a). Panel (c) shows the OTF of the system, evaluated by performing
the Fourier transform of panel (b).

A series of images containing a two-dimensional cosinusoidal pattern, as described in
Equation 7.2, were generated using a MATLAB script. These patterns were imposed on the
pixels of the Spatial Light Modulator. The values of the phases φ and the angles θ of the
illumination profiles used correspond to those reported in Equations 7.4 and 7.5, respectively.

To estimate the illumination frequency vector, a sample with a high concentration of
quantum dots was used, from which the interference pattern was clearly visible. An intensity
image acquired using θ = π/8 and φ = π/8 is presented in Figure 7.5a as an example. By
performing the Fourier transform of the intensity image, shown in Figure 7.5b, a bright central
region corresponding to the low frequencies transmitted by the optical system (circled in
red) can be observed, along with two bright spots indicating the positions of the illumination



frequency vector scaled by a factor 2π (circled in white). Additionally, Figure 7.5c displays
a one-dimensional plot of the OTF along with the magnitudes of the illumination frequency
vectors used in the experiment.

(a) (b) (c)

Figure 7.5: Evaluation of the experimental illumination frequency vector. Panel (a) shows an intensity
image of a quantum dot sample with a high density of emitters utilizing structured light with θ = π/8
and φ = π/8 acquired with 100 ms of exposure time and a laser power before the objective of 200 µW.
Panel (b) presents the Fourier transform of panel (a), where two peaks circled in white correspond
to −2πpθ and +2πpθ , along with the red circled region representing the low frequency information
retrieved by the system. Panel (c) shows the relative magnitude between the experimental OTF and the
modulus of the illumination frequency vector.

After assessing the illumination frequency vector, an analysis was performed on a cluster
region of a different quantum dot sample with a lower density of emitters. Specifically, the
mean value of all orientations of the cluster region is reported in Figure 7.6a.

Utilizing the previously obtained frequency vector, the SOFI(2), the QSIPS(2), and their
integration with the SIM algorithm were evaluated following the same procedure described in
Section 7.1 for the simulated case. The results are showcased in Figure 7.6. It can be observed
that the increase in resolution provided by the QSIPS technique, compared to classical SOFI, is
also maintained in their respective integration with structured light.

To highlight this, a one-dimensional plot along the black segment of the QSIPS(2)−SIM
map (Figure 7.7a) is presented in Figure 7.7b, demonstrating the visibility enhancement
achieved by the different super-resolution techniques.



(a)
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(d) (e)

Figure 7.6: Experimental realization of second-order super-resolved signals integrated with structured
illumination. Panel (a) shows the mean number of detected photons, while panels (b) and (c) show the
SOFI(2), and QSIPS(2) maps, respectively. Panels (d) and (e) present the integration of SIM with classical
and quantum methods, labeled SOFI(2)−SIM and QSIPS(2)−SIM, respectively. The acquistions are
performed setting a 200 ms exposure time, a laser power of 500 µW and 5 ·102 acquisition frames per
single value of θ and φ . The images are Fourier interpolated and Gaussian filtered to reduce pixelation
effects and avoid artifacts.
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(b)

Figure 7.7: Showcase of the resolution enhancement of the different super-resolution techniques.
Panel (a) shows the QSIPS(2) − SIM map with a black dashed line indicating the section where a
one-dimensional plot is performed, which is reported in panel (b).

As done for the simulative case, we can study the reduction of the effective PSF of an
isolated emitter for the different resolution methods to assess the super-resolution factor.
Particularly, we focused on an isolated emitter and performed a two-dimensional Gaussian fit
of the effective PSFs for all the super-resolution methods estimating the standard deviation.
Figure 7.8b reports the one-dimensional plot of the projection of the Gaussian fit for all the
super-resolution methods. The super-resolution factors, obtained by the ratio of the Gaussian
standard deviation of the intensity with that of super-resolved maps, are reported in Table 7.2.

SRFSOFI(2) SRFQSIPS(2) SRFSOFI(2)−SIM SRFQSIPS(2)−SIM
Exp 1.2±0.1 1.4±0.1 1.8±0.1 2.3±0.1
Th 1.4 1.4 3.4 3.4

Table 7.2: Experimental super-resolution factors for the various super-resolution techniques
and their theoretical values.

The super-resolution factors of QSIPS(2) and QSIPS(2)−SIM are greater than their respec-
tive classical counterparts, proving the efficacy of our quantum method in low-light conditions.



(a) (b)

Figure 7.8: Analysis of the super-resolution factor. Panel (a) shows the mean intensity image of the
emitter utilized for the study, while panel (b) presents the one-dimensional projection of the Gaussian fit
performed on the effective PSF across the super-resolution techniques.

It is important to note that, although there is an advantage, it is limited by the not particularly
low light regime. We can assess the Fano factor of the detected photon distribution by calcu-
lating the ratio of the variance to the mean number of detected photons, averaging over the
region encompassed within one standard deviation of the PSF. The estimated Fano factor for
the isolated emitter is Fdetected = 1.8±0.1. As stated in Equation 7.8, the high photon regime,
where SOFI accurately approximates QSIPS, is achieved when Fdetected ≫ 2. In this context,
the Fano factor of the detected photon distribution is near the threshold value, indicating that
the classical SOFI technique begins to approximate the QSIPS method.

A compromise was made between achieving a sufficient SNR for quantitative data analysis
and minimizing uncertainties on one hand, and on the other hand, demonstrating a clear
advantage of QSIPS over SOFI. This approach ensures that the analysis remains robust while
highlighting the benefits of QSIPS in comparison to SOFI.

Furthermore, only QSIPS(2) is compatible with the theoretical value of
√

2, while the
resolution factor of QSIPS(2)− SIM is shown to be less than the expected value of 2+

√
2.

This discrepancy may arise from the magnitude of the frequency vector used in the experiment:
the theoretical resolution is evaluated considering |pθ |= kAbbe. However, since the value of
|pθ | is derived from an experimental image, working at that frequency is challenging due to the
low transmission of the optical system at that spatial frequency. Selecting |pθ |< kAbbe makes it
easier to perform the SIM reconstruction algorithm, but at the expense of reducing the effective
resolution enhancement. Another potential source of uncertainty is accurately determining the



length of the illumination frequency vector. In particular, as shown in Figure 7.5a, pθ was
assessed by exploiting a different sample of the same classes of emitters but with a higher
density of centers. This adjustment was necessary because the low density of centers present in
the sample used in the analysis showcased in Figures 7.7 and 7.8 made direct estimation of
pθ from the acquired images challenging, requiring a large amount of data per single value of
θ and φ . However, it is possible that systematic errors arising from unequal conditions may
have impacted the estimation of pθ , thereby affecting the correct shifting of various frequency
components in the Fourier domain, diminishing the actual resolution enhancement.

For future studies it will be crucial to estimate the frequency vector directly from the
acquired image to avoid systematic errors. Additionally, employing an illumination vector
closer to kAbbe will require higher data volumes to compensate for the low transmission
efficiency.



Conclusions

Reliable super-resolution methods in optical microscopy are crucial tools for contemporary
applications, particularly in biology, where investigating small cellular structures with minimal
photo-damage is essential. This thesis focused on a specific class of super-resolution techniques
that exploit detected photon statistics to enhance spatial resolution by a factor of

√
j, where j

is the highest detected moment evaluated, particularly suited in fluorescence microscopy. The
most known is the Super-resolution Optical Fluctuation Imaging (SOFI), that was developed in
classical optics framework.

In this work, we proposed a novel quantum model called Quantum Super-resolution Imaging
by Photon Statistics (QSIPS), valid for both linear and On-Off detectors. QSIPS improves
upon the classical SOFI approach by incorporating sub-Poissonian statistics through linear
combinations of the cumulants of the detected photon distribution (see Equation 5.14). This
model offers a robust super-resolution method that is applicable across any fluorescence
intensity level and accommodates all non-Poissonian photon statistics as typical of different
kind of emitters, from the super-Poissonian one of blinking quantum dots to the sub-Poissonian
statistics of solid-state color centers such as Nitrogen Vacancy centers in nano-diamonds.

We have demonstrated the reliability of this model through both simulations and experi-
mental validations, comparing the results with those obtained using the classical SOFI method
(see Figures 5.1 and 5.2). Our findings highlight the superior performance of our QSIPS
model, particularly in scenarios characterized by sub-Poissonian or weak super-Poissonian
photon statistics, where the classical SOFI method fails to provide a reliable super-resolution
enhancement. Furthermore, preliminary simulations and experimental studies suggest that
QSIPS provides better local compression of the dynamic range across various super-resolution
orders compared to the classical SOFI method (see Figures 5.4 and 5.5).

Additionally, this thesis analyzed the Signal-to-Noise Ratio (SNR) of the super-resolved sig-
nals provided by the QSIPS technique, considering both sub-Poissonian and super-Poissonian
statistics for both linear and On-Off detectors in the presence of noise. Our analysis indicates
that for sub-Poissonian emitters, maximizing the SNR requires limiting the number of excitation
cycles performed by the emitter in the detector’s integration time (see Figure 6.2a). However,



in real-world scenarios, when accounting for uncorrelated noise, it is essential to operate in a
regime where the number of detected photons exceeds the noise level, as illustrated in Figure
6.4a. As it may be expected, low-noise and fast single photon detector become the most suited
to collect large statistics of single-excitation signals.

However, a key finding from our analysis is that while high-order super-resolved signals
experience SNR deterioration with an increasing number of detected photons in the integration
time, second-order signals reach a constant SNR value that depends only on the system’s
detection probability (see Equations 6.29 and 6.30). This phenomenon enables second-order
super-resolved imaging with single-photon emitters employing linear detectors, by compensat-
ing the presence of electronic noise with the accumulation of many photo-counts charges in
the detector (see Figure 6.5). The experimental realization of this phenomenon is planned for
future studies.

Furthermore, our study on the SNR of the super-resolved signals emitted from blinking
quantum dots revealed significant insights into the nature of photon statistics. Specifically,
the analysis of the Fano factor, as presented in Equation 6.11, suggests that parameters such
as the blinking probability b, the number of excitation cycles K, and the ratio between the
detector’s integration time and the emitter’s characteristic blinking time, denoted as M, are
crucial in determining the nature of the photon statistics, accessing the performance of the super-
resolution in the various configurations. This study has been instrumental in understanding the
best experimental conditions to operate with, thus reducing the time needed and the amount of
data to retrieve reliable super-resolved images.

In addition, our simulated analysis showed the feasibility of achieving super-resolved
images using super-Poissonian emitters with On-Off detectors, provided that the operation
conditions avoid saturation effects of the sensors (see Figures 6.10 and 6.11). This finding is
significant because it paves the way for exploiting the high acquisition rate of On-Off detectors,
such as SPADs, to obtain super-resolved images with super-Poissonian statistics in a fast and
reliable way.

Furthermore, this thesis explored the integration of QSIPS, in the case of second order
signal, with structured light illumination through both simulated and experimental work. This
preliminary study compared our approach with the classical SOFI-SIM technique and found
that the integration of structured light with the QSIPS method maintained its reliability and
superior super-resolution enhancement even in low light conditions (see Figures 7.2 and
7.6). However, the experimental study of the effective super-resolution enhancement of the
QSIPS-SIM technique with respect to the Abbe limit, reported in Figure 7.8 and Table 7.2, did
not achieve the theoretical resolution enhancement of 2+

√
2, likely due to inaccuracies in



the assessement of the frequency vector pθ , performing nonetheless better than its classical
counterpart.

Future studies will focus on the experimental realization of higher-order super-resolution
images obtained with the QSIPS method integrated with structured light. Specifically, we aim
to demonstrate the effective j+

√
j resolution enhancement, employing both sub-Poissonian

and super-Poissonian photon sources, overcoming the limitations of the present experiment.
The super-resolution enhancement obtained with structured light, combined with the robustness
of the QSIPS model under various light conditions, paves the way for a low-power and
high-resolution imaging technique that can be valuable for future applications, particularly in
biological contexts.



Appendix A

In the following section will be presented the proof of Equations 5.9 and 5.10 for a generic
order j along with the intrinsic non-Poissonian nature of our quantum model.

A.1 Demonstration of super-resolution for a generic order j

Let us consider the cumulant generating function of the detected photon distribution for the
α-th emitter, reported in Equation 5.4, and perform a change of variable
ξα(t,r) = 1−ηα(r)+ηα(r)et :

Cα,η(ξα(t,r)) = log

(
∞

∑
m=0

ξ
m
α (t,r)P(m)

)
. (A.1)

We are interested in the derivative of order i of the cumulative generative function (i.e.
the i-th order cumulant c(i)α,η(r)) expressed in terms of ξα(t,r), therefore we can use the
Faa di Bruno’s formula [142] to assess the i-th order derivative of the composed function
Cα,η (ξα(t,r)):

c(i)α,η(r) =
i

∑
k=1

dkCα,η

dξ k
α

(ξα(t,r))|t=0Bi,k

(
ξ
(1)
α (0,r), . . . ,ξ (i−k+1)

α (0,r)
)
, (A.2)

where Bi,k

(
ξ
(1)
α (0,r), . . . ,ξ (i−k+1)

α (0,r)
)

represents the partial Bell polynomials [143]:

Bi,k(ξ
(1)
α (0,r), . . . ,ξ (i−k+1)

α (0,r)) = i! ∑
j1, j2,..., ji−k+1

i−k+1

∏
l=1

[
ξ
(i)
α (0,r)

] jl

l! jl jl!
, (A.3)

with j1, j2, . . . , ji−k+1 being non negative integers satisfying:



j1 + j2 + . . . ji−k+1 = k, (A.4)

j1 +2 j2 + . . .(i− k+1) ji−k+1 = i. (A.5)

We observe that for every generic order of derivative i of ξα(t,r) respect to the parameter t
and evaluated at t = 0, we have:

ξ
(i)
α (0,r) = ηα(r), i ∈ N. (A.6)

Substituting this result in Equation A.2 yields to:

c(i)α,η(r) =
i

∑
k=1

η
k
α(r)

dkCα,η

dξ k
α

(ξα(t,r))|t=0SII(i,k), (A.7)

with SII(i,k) being the Stirling number of the second type:

SII(i,k) = Bi,k(1, . . . ,1) =
k

∑
j=0

(−1)k− j ji

(k− j)! j!
. (A.8)

The coefficients βi, j in Equation 5.10 can be expressed in terms of the Stirling number of
the first type:

βi, j =
1
j!

d j

dx j

j−1

∏
i=0

(x− i)|x=0 =
1
j!

d j

dx j

j

∑
i=1

SI( j, i)xi|x=0 = SI(i, j). (A.9)

Performing a linear combination up to the order j of the cumulants reported in Equation
A.7 with the coefficients βi, j of Equation A.9 we obtain:

j

∑
i=1

βi, jc
(i)
α,η(r) =

j

∑
i=1

SI(i, j)
i

∑
k=1

η
k
α(r)

dkCα,η

dξ k
α

(ξα(t,r))|t=0SII(i,k). (A.10)

Rearranging the summations, Equation A.10 becomes:

j

∑
i=1

βi, jc
(i)
α,η(r) =

j

∑
k=1

η
k
α(r)

dkCα,η

dξ k (ξα(t,r))|t=0

j

∑
i=k

SI(i, j)SII(i,k). (A.11)

Now, using the identity:



j

∑
i=k

SI(i, j)SII(i,k) = δ j,k, (A.12)

Equation A.11 can be rewritten as:

j

∑
i=1

βi, jc
(i)
α,η(r) = η

j
α(r)

d jCα,η

dξ
j

α

(ξα (t,r)) |t=0. (A.13)

This relation demonstrates that a linear combination of cumulants up to order j, as described
in Equation 5.9, results in terms solely proportional to the j-th power of the PSF (η( j)

α (r)).
Specifically, the scaling factor (d jCα,η/dξ

j
α)(ξα(t,r))

∣∣
t=0 represents the same combination of

cumulants but for the emitted photon distribution rather than the detected one.

To illustrate this, we can express the cumulant generating function of the emitted photon
distribution Cα(t), reported in Equation 5.2, performing a change of variable ρ(t) = et . This
yields to the same generating function as reported in Equation A.1, but in this case, all
the derivatives of ρ(t) provides a factor of one instead of ηα(r) as in the detected photon
distribution case (see Equation A.6):

Cα,η(ρα(t)) = log

(
∞

∑
m=0

ρ
m
α (t)P(m)

)
, (A.14)

ρ
(i)
α (t) = 1, i ∈ N. (A.15)

Consequently, following the same calculations previously reported, we obtain:

j

∑
i=1

βi, jc
(i)
α =

d jCα

dρ j (ρ(t)) |t=0. (A.16)

Therefore, since:

d jCα,η

dξ
j

α

(ξα(t,r)) |t=0 =
d jCα

dρ j (ρ(t)) |t=0 , (A.17)

as suggested by Equations A.1 and A.14, combining Equations A.13 and A.16 we obtain
Equation 5.9.

Although the generating function of Equation A.1 is not a known generating function in
the literature, it possesses specific properties. Particularly, to determine which combination



of cumulants is necessary to retrieve a super-resolved signal of order j, we can perform the
j-th derivative of that generating function and evaluate it at ξ = 1 (or t = 0). This generating
function can fully deconvolve the Binomial losses of optical systems and recover a pure
combination of moments of the emitted photon distribution.

As mentioned in Section 5.1, the super-resolution formula presented here is applicable to
every non-Poissonian emitter. The nature of this non-Poissonian behavior arises from the fact
that considering Poissonian light sources, the scaling factor of the super-resolved signal (i.e.
the factor multiplying η

j
α(r) in Equation A.13) is always zero for every j > 1.

We can demonstrate it by substituting the probability density function P(m) of a Poissonian
photon source such that ⟨m⟩ = λ into Equation A.1 for the emitted photon distribution, we
have:

Cα,η(ξα(t,r)) = log

(
∞

∑
m=0

ξ
m
α (t,r)

λ m

m!
e−λ

)
. (A.18)

Taking the derivative with respect to ξα(t,r) of Equation A.18, we obtain:

dCα,η

dξα

(ξα(t,r)) =
1

∞

∑
m=0

ξ m
α (t,r)λ m

m! e−λ

λ

∞

∑
m=0

ξ
m
α (t,r)

λ m

m!
e−λ = λ . (A.19)

Since the first derivative has no dependence on the parameter t, all subsequent derivatives
of this generating function will be zero, thereby preventing any super-resolved signal from a
Poissonian source.



Appendix B

In Section 5.1.1, we discussed the feasibility of evaluating correlation functions using On-Off
detectors. This appendix will elaborate on the methodology for performing such evaluations
and delineate the experimental conditions under which this approach is valid. Moreover, we
explore how to incorporate detection events unrelated to photons emitted by the source into the
approximation of correlation functions.

B.1 Correlation functions in On-Off detectors

The general representation of the second-order correlation function in terms of the emitted
photon probability distribution P(m) at 0 time delay (τ = 0) is:

g(2)(0) =
⟨m(m−1)⟩

⟨m⟩2 =

∞

∑
m=2

m(m−1)P(m)[
∞

∑
m=1

mP(m)

]2 (B.1)

=
2P(2)+6P(3)+ . . .

[P(1)+2P(2)+ . . . ]2
.

Now, let’s consider a beam splitter with transmittance T and reflectance R = 1−T , with
two outputs connected to two click detectors, A and B. Let ρA and ρB be the total efficiency
(including losses in the optical path) of the two detectors.

The joint probability distribution of detecting κA photons in detector A and κB photons in
detector B at zero time delay (τ = 0) is:



P(κA,κB) =
∞

∑
jA=κA

∞

∑
jB=κB

(
jA
κA

)
ρ

κA
A (1−ρA)

jA−κA

(
jB
κB

)
ρ

κB
B (1−ρB)

jB−κB

(
jA + jB

jA

)
R jAT jBP( jA + jB). (B.2)

We can define a quantity, ε(2)(τ = 0), as:

ε
(2)(0) =

∞

∑
κA=1

∞

∑
κB=1

P(κA,κB)

∞

∑
κA=1

∞

∑
κB=0

P(κA,κB)
∞

∑
κA=0

∞

∑
κB=1

P(κA,κB)
, (B.3)

where the numerator indicates the probability of having at least one photon detected in
detector A and one photon detected in detector B, known as the coincidence probability PAB,
while the denominator is the product of the probability of detecting at least one photon at each
detector independently, respectively PA and PB. Therefore, ε(2)(0) can be written as:

ε
(2)(0) =

PAB

PAPB
. (B.4)

We can rewrite equation B.3 in terms of the efficiencies of the detectors and the reflectance
and transmittance of the beamsplitter. In particular, we denote a generic probability ηA = ρAR
and ηB = ρBT of detecting a photon, respectively, in detector A and B, which take into account
all possible optical losses, including the effect of the beamsplitter and the PSF:

ε
(2)(0) =

∞

∑
m=2

[1− (1−ηA)
m − (1−ηB)

m +(1−ηA −ηB)
m]P(m)

∞

∑
m=1

[1− (1−ηA)m]P(m)
∞

∑
l=1

[1− (1−ηB)l]P(l)
. (B.5)

Rearranging equation B.5 and considering the first terms of the series, we get:

ε
(2)(0) =

2P(2)+6P(3)
(
1− 1

2ηA − 1
2ηB
)
+ . . .

[P(1)+2P(2)
(
1− 1

2ηA
)
+ . . . ][P(1)+2P(2)

(
1− 1

2ηB
)
+ . . . ]

. (B.6)

Comparing Equation B.1 with B.6, it becomes evident that the initial terms in the numerator
and in each component of the denominator of ε(2)(0) precisely match those found in g(2)(0). As
photon numbers increase, ηA and ηB emerge as corrective elements, signifying an inclination
for the click detectors to underestimate higher-photon-number terms.



When detection efficiencies are extremely low, these corrections to terms associated with
higher photon numbers become inconsequential, therefore we obtain:

lim
ηA,ηB→0

ε
(2)(0) = g(2)(0). (B.7)

Alternatively, if the source has very low multi-photon generation probabilities such that
P(1)≫ P(2)≫ P(m > 2), then:

ε
(2)(0)≃ 2P(2)

[P(1)]2
≃ g(2)(0). (B.8)

Similarly, we can express the third-order correlation evaluated τ1 = 0 and τ2 = 0 function
as:

g(3)(0,0) =
⟨m(m−1)(m−2)⟩

⟨m⟩3 =

∞

∑
m=3

m(m−1)(m−2)P(m)[
∞

∑
m=1

mP(m)

]3 (B.9)

=
6P(3)+24P(4)+ . . .

[P(1)+2P(2)+ . . . ]3
.

By considering the joint probability distribution of detecting κA photons in detector A, κB

in detector B, and κC in detector C at zero time delay between the detectors, we can express
ε(3)(0,0) as:

ε
(3)(0,0) =

∞

∑
κA=1,κB=1,κC=1

P(κA,κB,κC)

∞

∑
κA=1
κB=0
κC=0

P(κA,κB,κC)
∞

∑
κA=0
κB=1
κC=0

P(κA,κB,κC) ∑
κA=0
κB=0
κC=1

P(κA,κB,κC)
. (B.10)

Here, the numerator indicates the probability of having at least one photon detected in each
of the detectors, known as three-photon coincidence PABC, and the denominator is the product
of the probability of detecting one photon independently from the output of each detector,
respectively PA, PB, PC.

Expressing the joint probability function in terms of the detection probability η for each
detector, we can write ε(3)(0,0) as:



ε
(3)(0,0) =

PABC

PAPBPC
, (B.11)

with:

PABC =
∞

∑
m=3

[1− (1−ηA)
m − (1−ηB)

m − (1−ηC)
m (B.12)

+(1−ηA −ηB)
m +(1−ηA −ηC)

m +(1−ηB −ηC)
m

− (1−ηA −ηB −ηC)
m]P(m),

PA =
∞

∑
m=1

[1− (1−ηA)
m]P(m), (B.13)

PB =
∞

∑
m=1

[1− (1−ηB)
m]P(m), (B.14)

PC =
∞

∑
m=1

[1− (1−ηC)
m]P(m). (B.15)

We can rearrange these factors in terms of detection probability and explicitly write the
sums as:

PABC = 6P(3)+24P(4)
[

1− 1
2

ηA −
1
2

ηB −
1
2

ηC

]
+ . . . (B.16)

PA = P(1)+2P(2)
[

1− 1
2

ηA

]
+ . . . (B.17)

PB = P(1)+2P(2)
[

1− 1
2

ηB

]
+ . . . (B.18)

PC = P(1)+2P(2)
[

1− 1
2

ηC

]
+ . . . (B.19)

Therefore:

ε
(3)(0,0) =

6P(3)+24P(4)
[
1− 1

2ηA − 1
2ηB − 1

2ηC
]
+ . . .

∏
i=A,B,C

(
P(1)+2P(2)[1− 1

2ηi]+ . . .
) . (B.20)

When considering the limit of low detection efficiency, ε(3)(0,0) approximates the third-
order correlation function:



lim
ηA,ηB,ηC→0

ε
(3)(0,0) = g(3)(0,0). (B.21)

Similarly to the second-order case, when considering low multi-photon generation proba-
bilities from the source (P(1)≫ P(2)≫ P(3)≫ P(m > 3)), we have:

ε
(3)(0,0)≃ 6P(3)

[P(1)]3
≃ g(3)(0,0). (B.22)

This reasoning can be extended to approximate the j-th order correlation function. Specifi-
cally, by considering a system consisting of j independent detectors, labeled from 0 to j−1
and represented in Figure B.1, we can evaluate the parameter ε( j)(τ1 = 0,τ2 = 0, . . . ,τ j−1 = 0)
as follows:

ε
( j)(τ1 = 0,τ2 = 0, . . . ,τ j−1 = 0) =

∞

∑
κ0=1,...,κ j−1=1

P(κ0,κ1,κ2, . . . ,κ j−1)

j−1
∏

n=0

∞

∑
κn=1
κm=0
n ̸=m

P(κ0,κ1, . . . ,κ j−1)

, (B.23)

which, under the same conditions as previously discussed, provides a good approximation
of the j-th order correlation function. Consequently, it can be utilized to evaluate super-resolved
signals up to order j.

Figure B.1: Detection scheme involving j independent On-Off detectors labeled from 0 to j−1. The
photons emitted by a source, following the probability distribution function labeled as P(m), pass
through a series of j−1 beam splitters. By calculating the ratio between the coincidence events of all
j detectors normalized by the product of all the independent detection probabilities, it is possible to
evaluate an approximation of the j order correlation function.



This general model can also be applied to wide-field On-Off sensors, such as SPAD arrays
or EM-CCD cameras, as outlined in Section 3.2. Specifically, the concept involves substituting
each detector in the beamsplitter configuration with a single pixel of the wide-field sensor.
Generally, we can select a small area surrounding a fixed position and estimate the parameter
ε( j)(τ1 = 0,τ2 = 0, . . . ,τ j−1 = 0) between j pixels within that region.

Moreover, we can also incorporate a generic noise to the model. Specifically, we denote
the probability of a click being due to a non-photon-related event as B. Therefore, the total
probability of a click occurring in the i-th detector is expressed as:

Pi = P(S)
i (1−B)+B. (B.24)

Here, P(S)
i denotes the probability of a click resulting from a real signal event. Considering

a system of independent detectors where the noise is uncorrelated and uniform in magnitude,
we can express the probability of observing two or three coincidences as follows:

Pi j =P(S)
i j (1−B)2 +B(1−B)

[
P(S)

i +P(S)
j

]
+B2, (B.25)

Pi jk =P(S)
i jk (1−B)3 +B(1−B)2

[
P(S)

i j +P(S)
ik +P(S)

jk

]
(B.26)

+B2(1−B)
[
P(S)

i +P(S)
j +P(S)

k

]
+B3,

where P(S)
i j and P(S)

i jk denote the probabilities of detecting two and three coincidence events,
respectively, due to real signal detection. The general formula for the coincidence probability
involving j independent detectors, which display uncorrelated noise, is given by:

P01... j−1 =
j

∑
i=0

γ j,iBi(1−B) j−i, (B.27)

where γ j,i represent all possible combinations of simultaneous click events between j− i de-
tectors in a system comprising j detectors. For instance, in the case of third-order coincidences
we have:

γ3,0 = P(S)
ABC, (B.28)

γ3,1 = P(S)
AB +P(S)

BC +P(S)
AC ,

γ3,2 = P(S)
A +P(S)

B +P(S)
C ,

γ3,3 = 1.
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