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Summary 

In the last decades, the detrimental effects of the asynchronous excitation on 
long-extended structures such as bridges and viaducts have drawn the attention of 
the scientific community. The observed damages from past earthquakes together 
with the data collected by dense seismic arrays installed all over the world and the 
increasing computational power have given rise to a comprehensive study of the 
main causes of the spatial variability of earthquake ground motion (SVEGM). 

Bridges have long been studied due to their crucial role in the socioeconomic 
life of modern communities. Their closure, whether permanent or temporary, can 
trigger significant ripple effects, including business losses and delays in 
emergency operations. 

It is nowadays well recognized that the causes of SVEGM are primarily the 
following: a) wave passage effect; b) loss of seismic waves coherency as the 
distance between further away support points increases, resulting from multiple 
reflections, refractions, and superimposition of seismic waves when traveling 
through the soil layers; c) local site effects corresponding to the different local soil 
conditions under the structure supports. This latter point is particularly relevant 
for structures that extend over significant distances. 

The above sources of SVEGM are mathematically expressed in terms of the 
degree of correlation between seismic time histories, which is a decreasing 
function of both distance and time. 

Among the different simulation techniques discussed in the literature, this 
work of thesis adopts the spectral-representation method. In this method, the 
ground motion at different support points is modeled as a one-dimensional, multi-
variate (1D-mV), quasi-stationary stochastic Gaussian vector process, where only 
the amplitude of the process is considered to vary with time. Within this 
framework, a specific correlation function is introduced alongside a spectrum-
compatible power spectral density function. 



 

 

The overarching goal of this PhD thesis is to enhance the understanding of 
SVEGM effects on isolated bridges, with a particular focus on those equipped 
with friction pendulum isolators. This task is accomplished through a full-
probabilistic seismic structural analysis approach, comparing the bridge seismic 
response under uniform and spatially variable input conditions. Additionally, the 
seismic reliability concerning the main isolated bridge components-piers and 
isolation devices (friction pendulum isolators)-is assessed. 

The testbed bridge adopted for the aforementioned seismic analysis is an 
existing reinforced concrete bridge with an overall length of 163.0 m, simply 
supported on four piers and two seat-type abutments at the ends. The bridge is 
located in central Italy, near the well-known city of L’Aquila, which serves as a 
reference site for seismic hazard derivation. The testbed bridge is considered to 
have been retrofitted through a friction-type seismic isolation system due to the 
lack of design seismic details in the reinforced concrete piers. In addition, a 7-
span bridge configuration derived from the original design is studied to explore 
the effects of the SVEGM on increasing bridge lengths (i.e., number of spans). To 
perform a parametric analysis concerning the friction pendulum isolator, three 
different radii of curvature and consequently three different isolation periods are 
selected. In this study, the friction pendulum behaviour is described assuming the 
friction coefficient as a function of the sliding velocity. Due to the significant 
variability of friction caused by environmental effects, this coefficient is treated as 
a random variable with ten samples extracted from a standard normal probability 
density function. 

The entire set of structural bridge models is implemented in Opensees, an 
open-source finite element software, adopting a three-dimensional spine line 
model approach. The bridge’s response is assessed through nonlinear time history 
analysis with seismic input generated as previously described and scaled to 
increasing intensity levels such as to perform incremental dynamic analysis 
(IDA). Two different incidence angle conditions of 30° and 60° relative to the 
longitudinal bridge axis are additionally included in the analysis. 

The results obtained are expressed at first in terms of IDA curves pertaining to 
isolator displacements and piers’ drift and curvature ductility, assumed as 
engineering demand parameters (EDPs). 

Following the definition of specific damage limit states for the selected EDPs, 
the seismic fragility curves for both the piers and the isolators are derived. 

Finally, considering the seismic hazard curves related to the reference site of 
L’Aquila (Italy), the seismic reliability related to both the piers and FP isolators is 
assessed through the convolution integral between seismic hazard and seismic 



 
 

 

fragility. The seismic reliability denotes the probability of exceeding a specific 
damage limit state in the time frame of interest (e.g. 50 years). In this study, a 
seismic reliability-based approach is particularly valuable since it permits the 
computation of seismic reliability-based design (SRBD) abacuses for the design 
of the friction pendulum isolator’s radius in plan. 

The results indicate that SVEGM is always detrimental when compared to the 
uniform input conditions, especially as the overall bridge length and isolation 
period increase. It has been also derived that SVEGM can require friction 
pendulum isolator radii in plan up to nearly 20cm greater than those required 
under uniform excitation conditions.  

Additionally, using the reliability-based design (SRBD) abacuses, design 
safety factors have been computed based on the seismic isolation period and the 
number of spans of the bridge, implicitly considering spatial variability of 
earthquake ground motion (SVEGM). While these results are not exhaustive, as a 
broader range of bridge lengths should be analyzed, they provide insights into the 
seismic design of friction pendulum system (FPS) under SVEGM input condition. 
The design safety factors tend to increase with the number of spans, isolation 
period, and quasi-orthogonal incidence angles. For this combination of seismic 
input and structural properties, the analyses suggest a design safety factor ranging 
from SF=1.10 to SF=1.40. 
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Preface 
This dissertation aims to evaluate the seismic reliability of multi-span 

reinforced concrete (RC) bridges seismically isolated with friction pendulum 
system (FPS) devices, considering spatial variability of earthquake ground motion 
(SVEGM). The goal is to understand how it affects the response of these 
structures and to provide design abacuses for the friction pendulum bearings 
following the performance-based-earthquake engineering (PBEE) methodology.  

 
Chapter 1 intends to provide an overlook of the most important aspects 

regarding seismic risk evaluation with specific attention on the concept of 
structural reliability, within the context of Performance-Based Earthquake 
Engineering (PBEE). At first, the methodology approach, following the PBEE, as 
framed by the Pacific Earthquake Engineering Research (PEER) Center, is 
examined. Next, the concept of seismic risk is explained both in qualitative and 
quantitative terms, emphasizing the key components involved: seismic hazard, 
seismic vulnerability, and exposure. A specific focus is given to the assessment of 
seismic vulnerability for a specific asset at risk, such as bridge structures. In this 
context, the derivation of analytical fragility functions, which are used to describe 
seismic vulnerability, is presented next.  

Finally, the chapter delves into the concept of structural reliability, exposing 
the main source of uncertainties involved in the reliability assessment. It also 
discusses different approaches (reliability methods), that may be employed for 
evaluating seismic and structural reliability. Additionally, these approaches may 
require the use of simulation techniques such as the Monte Carlo technique or the 
more efficient Latin Hypercube sampling method. Both techniques are discussed 
in this chapter within the framework of reliability assessment.    

 
Chapter 2 begins with an overview of the typical damage patterns caused to 

bridges from past earthquakes, with a particular emphasis on those damages 
observed to bridge configurations more susceptible to the spatial variability of 
ground motion. Following this, it provides a brief description of the primary 
bridge structural components. Finally, the chapter illustrates the basic principles 
of seismic isolation as applied to bridge structures, highlighting the effectiveness 
of this technique in mitigating or preventing structural damage caused by 
earthquakes.   

 
 



 

 

Chapter 3 presents an overview of the elastic seismic isolation theory. It 
begins with an introduction of the basic principles of seismically isolated systems, 
originally developed by Prof. J. Kelly in 1996 for building structures. It follows a 
detailed description of friction pendulum bearings, specifically emphasizing their 
dynamic behavior and the friction-related properties that characterize these 
devices. Furthermore, the chapter explores the key factors influencing the friction 
coefficient, including apparent pressure, sliding velocity, temperature variations, 
and the loading history.   

Finally, a proposed numerical model is presented for multi-span continuous 
deck bridges that are seismically isolated using friction pendulum devices. 

 
 Chapter 4 explores the fundamental concepts of spatial variability of 

earthquake ground motion (SVEGM). It starts with a historical overview of the 
key studies and findings in the scientific literature regarding the topic. It is 
nowadays well established that SVEGM primarily arises from factors such as the 
loss of coherence, the so-called wave-passage effect, and the site-response effect. 
Given the complexity of the phenomenon, a deterministic analysis approach is 
impractical, requiring the use of probabilistic methods instead. Before delving into 
the adopted simulation techniques, a brief description of the equation of motions 
valid for a multi-degree-of-freedom (MDOF) system, subjected to different input 
ground motions, is provided. Following this, it discusses the main aspects of the 
spectral representation method used to simulate spatially variable earthquake 
ground motions. Within this method, particular attention is given to the 
specifically selected power spectral density (PSD), coherency function, and 
modulating function. Additionally, this study adopts a generation procedure that 
accounts for spectrum compatibility with the specific site of interest. Thus, this 
procedure is described along with its implementation to the case study, which 
refers to a friction pendulum seismically isolated multi-span reinforced concrete 
bridge located near the site of L'Aquila, in Italy. 

Finally, the chapter presents a validation of the adopted procedure, which 
particularly compares the simulated coherency functions with the target ones 
initially integrated into the adopted procedure.   

 
 
 
 



 

 

Chapter 5 describes the testbed bridge adopted in the analysis: an existing 
simply supported reinforced concrete (RC) bridge located in central Italy, near the 
site of L’Aquila. 

Due to the lack of design seismic details, primarily in the pier component,  the 
bridge will be retrofitted with a seismic isolation system using friction-type 
devices (i.e., FP system). 

 The chapter includes an in-depth focus on the numerical model of each 
bridge component implemented in Opensees, the open-source software for 
structural and geotechnical problems. The model uses a three-dimensional spine 
line approach with elastic beam-column elements for the deck and fiber-section, 
force-based beam-column elements for the piers. Additionally, the FP devices are 
modeled through the built-in element of Opensees, while the soil-structure 
interaction at the abutments is implemented through a zero-length element with 
specific stiffnesses assigned along the longitudinal and transverse bridge 
directions. 

Furthermore, details are provided regarding the parametric analysis carried 
out, which encompasses a wide range of bridge properties (i.e., the total number 
of spans and the isolation period), different seismic intensity levels along with two 
incidence angle conditions. Additionally, the friction coefficient at large velocities 
and the uncertainties related to the seismic input are treated as random variables 
relevant to the problem. 

Finally, the chapter illustrates the procedure for implementing multiple-
support excitation in Opensees. 

 
Chapter 6 focuses on the seismic reliability assessment of two configurations 

of isolated bridges equipped with friction pendulum devices. It examines both 5-
span and 7-span bridge configurations across three different isolation periods, 
analyzing their seismic response under both uniform input condition and spatially 
variable earthquake ground motion (SVEGM). The friction coefficient is treated 
as a random variable in the analysis. Additionally, to ensure convergence between 
the target response spectrum for the reference site of L’Aquila and the ensemble-
averaged spectra derived from simulations, 30 ground motions are artificially 
generated for each bridge support station. Two different incidence angle 
conditions (30° and 60° relative to the bridge longitudinal axis) are also 
considered. The reliability assessment begins with Incremental Dynamic Analysis 
(IDA), involving a total of 3600 3D simulations for each of the 9 Intensity 
Measure Levels (IMLs) considered in the IDA. Engineering demand parameters 
(EDPs), chosen to evaluate the response statistics related to both bridge piers and 



 

 

bridge isolation system, are presented next. Subsequent steps in the seismic 
reliability estimation include the derivation of fragility curves for the bridge piers 
and friction pendulum devices, assuming different damage levels and limit state 
thresholds. 

Finally, considering the seismic hazard curves at different isolation periods 
related to the reference site of L’Aquila (Italy), the seismic reliability of both 

bridge piers and friction pendulum devices is evaluated in the time frame of 
interest through the convolution integral between seismic fragility and seismic 
hazard.  

Additionally, SRBD (Seismic Reliability-Based Design) abacuses are derived 
and proposed with a twofold objective: 

a) to define the radius in plan of the friction pendulum bearings, accounting 
for both uniform excitation and spatial variability of earthquake ground 
motion (SVEGM), as a function of the bridge configuration, isolation 
period and expected reliability level.  

b) To establish specific design safety factors for the seismic design of 
friction pendulum isolators adopted to retrofit conventional highway 
bridges, implicitly considering the adverse effects of SVEGM. 
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1 Seismic risk assessment 

This dissertation aims to evaluate the seismic reliability of multi-span 
reinforced concrete (RC) bridges seismically isolated with friction pendulum 
system (FPS) devices, considering spatial variability of earthquake ground motion 
(SVEGM). The goal is to understand how it affects the response of these 
structures and to provide design abacuses for the FP bearings following the 
performance-based-earthquake engineering (PBEE) methodology [1].  

This chapter intends to provide an overlook of the most important aspects 
regarding seismic risk evaluation with specific attention on the concept of 
structural reliability, within the context of Performance-Based Earthquake 
Engineering (PBEE). At first, the methodology approach, following the PBEE, as 
framed by the Pacific Earthquake Engineering Research (PEER) Center, is 
examined. Next, the concept of seismic risk is explained both in qualitative and 
quantitative terms, emphasizing the key components involved: seismic hazard, 
seismic vulnerability, and exposure. A specific focus is given to the assessment of 
seismic vulnerability for a specific asset at risk, such as bridge structures. In this 
context, the derivation of analytical fragility functions, which are used to describe 
seismic vulnerability, is presented next.  

Finally, the chapter delves into the concept of structural reliability, exposing 
the main source of uncertainties involved in the reliability assessment. It also 
discusses different approaches (reliability methods), that may be employed for 
evaluating structural reliability. Additionally, these approaches may require the 
use of simulation techniques such as the Monte Carlo technique or the more 
efficient Latin Hypercube sampling method. Both techniques are discussed in this 
chapter within the framework of reliability assessment.    

1.1 Introduction 

Bridges are among the most vulnerable components within a transportation 
network during natural disasters, playing a crucial role in the socioeconomic life 
of modern society.  

Earthquakes are one of the most harmful natural environmental disasters that 
heavily impact human lives, social, and economic assets, as evidenced during the 
numerous strong earthquakes occurred worldwide, which made the seismic risk 
widely recognized. Notable events include 1971 San Fernando (USA), 1989 Loma 
Prieta (USA), 1994 Northridge (USA), 1995 Kobe (Japan), 2009 L’Aquila (Italy), 
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and 2012 Emilia Romagna (Italy). Such events have demonstrated that even in 
countries with seismic regulations most of the buildings and bridges, especially 
the older, non-retrofitted, and non-isolated ones, have experienced extensive 
damage or collapse. Bridge failure and the consequent bridge downtime can have 
significant adverse consequences for industry, commerce, and for emergency 
response operations in the case of a catastrophic event.  

Two main examples can be quoted between others: during the 1989 Loma 
Prieta earthquake, the Oakland Bay Bridge was closed to traffic leading to the 
interruption in the transportation network between San Francisco and Oakland; 
likewise, the 1995 Kobe earthquake caused the closure of relevant bridges 
between Kobe and Port Island resulting in significant loss of business and delays 
in delivery of essential goods. It is therefore essential to redefine the assessment 
of existing bridge structures or adequately design new ones in the seismic-prone 
areas [2], recognizing that collapse prevention, especially for bridge structures, is 
one of the objectives but not the only one, in the efforts to build resilient cities and 
communities. 

To address this need, seismic provisions have gradually moved from a 
traditional “adequate strength” approach to a “performance-based” one, 

conceptually formalized in the report “Vision 2000” [SEAOC 1995] under the 
concept of Performance-Based Earthquake Engineering. This approach was at 
first based on the definition of acceptable levels of failure probability (with some 
energy dissipation systems considered) of individual structural components. 
Today, it is more oriented towards system-level considerations, including risk of 
collapse, fatalities, repair costs, and post-earthquake loss of functionality which 
are more comprehensible to decision-makers. While the new paradigm of 
performance-based Earthquake Engineering (PBEE) is now aligned with public 
expectations of infrastructure performance, it needs to be accompanied by the 
same advances in reliability methods and risk assessment tools, to quantitatively 
link between engineer's practice and its social consequences [3].  

1.2 Performance-based earthquake engineering (PBEE) 
methodology 

Performance-based engineering stands for a novel philosophy approach in 
structural engineering that better aligns building performances with the 
expectations of building owners, occupants, and the public.  

In the field of earthquake engineering, performance-based earthquake 
engineering (PBEE) has been framed by the Structural Engineers Association of 
California (SEAOC), which produced the Vision 2000 report in 1995. This 
framework has been further supported by documents such as FEMA 273 
(ATC1997a), ATC-40 [ATC1996], FEMA 356 (ASCE 2000), and (ASCE 7-16) 
driven primarily by economic considerations.  

The Vision 2000 report [1] aims to recognize that different design facilities 
must have a multiplicity of performance under a set of discrete hazard levels. The 
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general concept is displayed in a performance matrix (Figure 1.1) in which one 
axis includes different levels of seismic excitation or severity of hazard based on 
the return periods (frequent 43 years, occasional 72 years, rare 475 years, and very 
rare 975 years). The other axis represents seismic performance levels (fully 
operational, operational, life safety, and near collapse). Seismic performances and 
excitations are indeed coupled for three categories of structures based on their 
importance (basic, essential/hazardous, and safety-critical). Performance levels 
are typically defined by setting allowable limits for displacement demand metrics, 
such as inter-storey drift index.  

 

Figure 1.1. Performance matrix proposed by Vision 2000 [1]. 

1.2.1 PEER (Pacific Earthquake Engineering Research) center-
PBEE approach 

Whereas the first-generation PBEE approach expressed the seismic 
performance primarily in terms of structural response such as inter-storey drifts, 
the PEER approach focuses on global-level performance metrics in probabilistic 
terms. These metrics involve economic losses (costs), casualties (deaths and 
injuries), and loss-of-use duration (downtime) which are more useful to 
stakeholders and policymakers to decide for acceptable performance and risk [4].  

The PEER methodology approach involves four main stages that are: hazard 
analysis, structural analysis, damage analysis, and loss analysis as reported in 
(Figure 1.2). 
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Figure 1.2. PEER-PBEE methodology [33].  

Hazard analysis: at this first stage, given a certain seismic environment 
(nearby faults, magnitude-frequency recurrence rates, site distance, local soil 
conditions) the mean hazard curve, which describes the mean annual frequency s  
(MAF) of exceeding various seismic excitation levels is constructed for the site of 
interest via probabilistic seismic hazard analysis (PSHA) [5]. Seismic excitation is 
represented through an intensity measure (IM), which can be expressed by the 
peak ground acceleration, PGA, peak ground velocity, PGV, spectral acceleration 
at a given period 1( )aS T , and Arias intensity aI , among others. 

Structural analysis: at this stage, a representative numerical structural model 
of the facility is created by engineer analysts to perform nonlinear time-history 
analysis. These analyses are used to estimate the uncertainty in the structural 
response as measured by specifically selected engineering demand parameters 
(EDPs).  

Damage analysis: The aforementioned EDPs are used at this stage as input to 
a set of fragility functions that model the probability of various levels of physical 
damage (DLS-i) to be exceeded.  

Loss analysis: At this final stage the probabilistic estimation of performances 
that are of interest to the building’s owners or stakeholders, known as decision 
variables (DVs) is conducted. These decision variables, which can include costs 
(dollars), casualties (deaths), or facility downtime, are evaluated based on the 
conditioned damage measures (DM). 

All these four stages are summarized into the following triple integral as for 
Eq.(1.1): 

 
( ) [ | ] [ | ] [ | ] [ ]sDV p DV DM p DM EDP p EDP IM IM dIMdEDPdDM =   (1.1) 

 
Where [ | ]p X Y  is the probability density function of X conditioned on the 

level of Y , whereas s  represents the mean annual frequency of exceeding a 
given level of the intensity measure (IM), as derived from the hazard evaluation. 

Accordingly, the analysis yields the mean annual frequency (MAF) at which 
various levels of decision variables (DV) are exceeded. For instance, it can 



Seismic reliability of 3D isolated bridges accounting for spatial variability of earthquake ground motion 

P a g .  5 | 225 

 

determine the MAF of economic losses exceeding a specified amount. This data is 
crucial for risk management strategies, helping to assess whether a bridge or 
building meets acceptable thresholds for economic losses.  

1.3 Elements of seismic risk evaluation 

After an earthquake occurs, buildings or bridges can experience physical 
damage and/or loss of functionality. Seismic risk is consequently defined as the 
probability that within an interval of time, specific asset types (residential 
buildings, infrastructures, critical facilities, etc.) will reach predetermined seismic 
performance levels in a region of interest. Quantitatively, risk can be expressed as 
a relation that involves seismic hazard, seismic vulnerability of the assets at risk, 
and their exposure. 

 
Seismic Risk= Seismic Hazard x Vulnerability x Exposure 

Where: 
 
Seismic Hazard of an assigned region is defined as the probability of 

exceedance, in a given interval of time, a given level of a certain earthquake 
intensity measure (IM). Another perspective characterizes seismic hazard as the 
expected number of events that in a unit of time (generally years) exceeds a 
certain intensity measure (IM) threshold or level.  

 Seismic hazard is quantified through probabilistic seismic hazard assessment 
(PSHA) whose final outcome is the hazard curve (Figure 1.3), which links the 
generic intensity measure (IM) level IM=im, to the mean annual rate of 
exceedance such level ( )IM im [5].  

According to J. Baker [6], PSHA integrates models describing the potential 
location and size of future seismic events with estimates of the resulting shaking 
intensity. 

At a larger territorial scale, the implementation of PSHA produces hazard 
maps, a spatial distribution representation of the intensity level of a certain IM 
having a given probability of exceedance in an assigned interval of time (Figure 
1.5). 

It is possible to demonstrate that, by applying the Total Probability Theorem, 
( )IM im is expressed as: 
 

max max

min min
( ) [ | ] ( ) ( )

M R

IM R MM R
im P IM im M m R r f r f m dm dr =   =  =       (1.2) 

 
Where: 
  is the rate of occurrence of earthquakes at the source; 
 [ | ]P IM im M m R r =  = is the probability of exceeding the IM=im level 

and is given by the ground motion prediction model; 
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 ( )Rf r  and ( )Mf m are the distances and magnitudes’ PDFs. 

The integral in probabilistic seismic hazard assessment (PSHA) is computed 
across all considered magnitudes and distances. This involves summing the 
conditional probabilities of exceedance (given specific magnitudes and distances), 
weighted by the probability of occurrence associated with those magnitudes and 
distances. For more in-depth information on the implementation of PSHA, refer to 
[6]. 

 

Figure 1.3. Hazard curve. 

 

 

Figure 1.4. Seismic Hazard map in Italy in terms of PGA and exceeding probability of 10% in 50 
years [7]. 

Vulnerability for the specific asset at risk, such as bridges, is defined as their 
susceptibility to suffer damages or losses caused by a given earthquake with a 
given intensity measure. Such damages can bring the facility to a temporary 
closure or temporary loss of its functions, even causing their complete collapse. 

The vulnerability is typically described by means of fragility curves, which 
express the conditional probability of exceeding a given limit state damage limit 
state (DLS-i), or more generally a performance level, as a function of the seismic 
intensity measure IM (Figure 1.5).  
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Figure 1.5. Fragility curve. 

Exposure is meant to represent the quality and quantity of facilities exposed to 
the seismic hazard at the site of interest, the number of people involved, and their 
ability to respond. The exposure is generally viewed as responsibility of urban 
planning decision-makers and so assumed as negligible in the seismic risk 
calculation (equal to unity).  

Given a generic intensity measure IM (e.g., spectral acceleration at the 
fundamental period of the structure 1( )aS T ) and for a generic asset, the mean 

annual rate ,f LS of an earthquake that causes the attainment of a damage limit 

state DLS , can be expressed as for Eq. (1.3): 
 

, , ( [ ]) ( )f LS f LS IMP DLS im d im 
+

−
=        (1.3) 

 
Where , ( [ ])f LSP DLS im represents the vulnerability (fragility) of the asset (e.g., 

buildings or bridges) concerning the specific damage limit state under 
consideration, when subjected to an earthquake with ground motion intensity level 
IM=im.  

( )IM im is the seismic hazard at the site of interest (reference site), defined as 
the mean annual rate of exceeding a given ground motion intensity level IM=im. 

The term ( ) ( )
( )

im
IM

dd im d im
d im


 =   denoted the absolute value of the 

derivative of the hazard curve, indicating the rate of change of the hazard with 
increasing ground motion intensity level, multiplied by ( )d im .  

The mean annual rate ,f LS can be used to compute the probability ,f LSp of 

exceeding the generic damage limit state DLS  in a given interval of time t . 
This probability is given by Eq. (1.4): 

 
,

, [ ( ) 1] 1 f LS t
f LSp N t e − 

  = −  (1.4) 
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Where N is the number of seismic events that cause the attainment of the 
damage limit state DLS .  

A fundamental hypothesis in Eq. (1.4)  is that the occurrence of earthquakes 
follows a stationary stochastic Poisson process with distribution given in Eq. 
(1.5): 

 

,,
,

( )
[ ( ) 1]

!
f LS

n
tf LS

f LS

t
p N t e

n
 − 

  =   
(1.5) 

 
It follows that Eq. (1.4)  represents the probability that at least one event 

causes the attaining of a damage limit state DLS  in the interval of time t . 
This interpretation arises because the probability of at least one damaging 

event happening is the complement of the probability of zero events causing 
damage, which sums up to 1. 

It can be further demonstrated that for really small values of ,f LS  (rare 

events) then , ,f LS f LSp   when 1t = , so that the rate of occurrences ,f LS and 

the probability of having at least one event causing damage in the unit of time, 
with rate ,f LS , are interchangeably used.  

In simpler terms, seismic risk can be interpreted as the convolution integral 
between seismic fragility and seismic hazard. This relation can be read as follows: 
“The Seismic risk is the Vulnerability at each level of intensity weighted for the 
Seismic hazard”. 

1.3.1 Seismic vulnerability assessment 

Fragility functions are typically computed using various methods, which can 
be categorized into the following groups: empirical, judgmental, analytical, and 
hybrid [8].  

In this work of thesis the focus is specifically on those fragility functions 
derived from linear or nonlinear dynamic structural analysis to simulate damage 
statistics [9]. These fragility functions, also called analytical fragility functions, 
are nowadays increasingly adopted due to the advancements in computer 
capabilities, which enable analysts to have greater control over the derived data 
and incorporate if needed different sources of uncertainties. Other methods rely on 
a combination of damage data sources (e.g., post-seismic surveys or expert 
judgments and opinions). Each method has its advantages and disadvantages, such 
as the lack of data in the case of non-frequent large earthquakes. 

1.3.1.1 Generation of analytical fragility functions 

Analytical fragility functions rely on the implementation of a numerical 
model to be analyzed under seismic loads scaled at different levels of the selected 
intensity measure. Regarding the seismic assessment of bridge structures, the 
implementation involves generating a comprehensive model where different 
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bridge components are represented.  For instance, beam-column elements may be 
used for the deck and piers, while spring elements are employed for abutments 
and bearings/isolators. Regarding analysis methods, elastic spectral analysis, non-
linear static analysis, and nonlinear time history analysis are commonly utilized. 
Among these methods, nonlinear time history analysis is often preferred for its 
accuracy, despite being computationally demanding. Then, depending on the 
ground motion selection and scaling approach within the nonlinear time history 
analysis framework, different procedures can be implemented. Incremental 
Dynamic Analysis (IDA) [10] involves scaling the selected ground motions from 
a single suite of records to various IM levels (generally until the onset of the 
structure collapse). The major drawback of such a method is that it may need for 
excessive down-scaling and/or up-scaling possibly causing to deal with 
inconsistent ground motions. Rather than adopting incremental dynamic analysis 
the analyst can select different ground motions at each IM level. This is generally 
the approach followed by the multiple stripe analysis (MSA) method [11] that is 
commonly used when ground motions are selected such as to match a Target 
Conditional Spectrum [12], which is indeed representative of a specific site and 
IM level. Due to different ground motions selected for each IM level, it is possible 
to have that for higher ground motion intensities there will be a reduction of the 
fractions of collapses and vice-versa. The third method refers to cloud analysis 
(CA) [11]. This method deals with a set of unscaled ground motions selected at 
different IM values and yields a “cloud” of the response rather than stripes, but it 
requires for a much more careful choice of records [13].   

The ground motion intensity measure IM plays the role of interface between 
hazard and variability in the resulting outcomes [14]. Selecting an appropriate IM 
is crucial, as it should possess properties such as sufficiency, efficiency, and 
scaling robustness [15]. However, no one single IM can fully capture all aspects 
of ground motion characteristics [16]. Accordingly, an intensity measure IM is 
assumed to be sufficient if the probability distribution of the structural response 
conditioned on that specific IM, remains independent of other ground motion 
features such as magnitude and distance. The IM must be sufficient with respect to 
all the variables that affect the seismic hazard. An intensity measure IM is instead 
defined as efficient if a small variability emerges from the structural response. 

The choice of a more efficient IM allows for a reduction in the number of 
analyses without reducing the accuracy of the response.  

Scaling robustness refers to the practice of scaling the accelerograms. The 
chosen IM should ensure that the structural response at a generic IM level is the 
same as would be if an unscaled ground motion with that IM level is applied to the 
structure [17]. Peak ground acceleration (PGA) has been largely used in the last 
decades mainly because hazard models and particularly the ground motion 
prediction equations (GMPE) were formulated in terms of PGA [18]-[19]. 
However, PGA is more suitable for short-period structures under low-intensity 
levels [20].  Nowadays the commonly used IMs are the spectral acceleration or 
spectral displacement at the fundamental period of the structure 1( )aS T , 1( )dS T  
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[21]-[22]. In this thesis, which focuses on isolated bridges, the spectral 
acceleration at the isolation period of the structure is used for the analysis.  

More recently, [23] studied the efficiency of several IMs in predicting the 
response of non-isolated reinforced concrete bridges, and found out that the 
average spectral acceleration ( )AvgSA over a certain bridge period range is much 
more reliable than PGA, PGV, and 1( )aS T  as it limits the dispersion in the 
fragility curves for all the analyzed bridges and intensity measure levels. 
However, because this work of thesis deals with isolated reinforced concrete 
bridges, whose dynamic behavior is mainly influenced by the isolation period, the 
choice of the spectral acceleration or spectral displacement at the fundamental 
period of the structure will provide sufficiently accurate results. 

Once the structural response, obtained from the structural analysis, has been 
gathered in the form of the specifically selected engineering demand parameters 
(EDPs), seismic fragility functions are estimated by fitting the sample data with a 
lognormal cumulative distribution function according to Eq. (1.6) [24]-[25]: 

 
ˆln( / )[ | ] [ ]

ˆf
imP f im P IM im 



 
=  =  

 
 

(1.6) 

 
In Eq. (1.6) a sample of n values,  1 2, ,...., nim im im im=  is considered 

extracted from the distribution of the ground motion intensity causing the failure 
of the structure, called fIM . 

The term ( )  is representative of the standard normal cumulative 

distribution function of this random variable and it is indeed the seismic fragility. 
̂  is the median of the fragility function (IM level with 50% probability of 

failure) whereas ̂  is the standard deviation of the ln( )im . These two terms can 
be estimated through the following equations: 

 

1

1
ˆ log( )

n

i
i

im
n


=

=   
(1.7) 

2 2

1

1ˆ ˆ[log( ) ]
1

n

i
i

im
n

 
=

=  −
−
  

(1.8) 

 
Being n the number of the selected ground motions and iim the value of fIM

associated with the onset of failure coming from the i-th ground motion. 
The parameters ̂ and ̂ , as reported in [24], are characterized by uncertainty 

because of the record-to-record variability (for an assigned structure different 
ground motions can cause different seismic responses even if the same IM level is 
considered) and as such they have to be estimated based on the observed data. 
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The two common statistical approaches generally followed for this estimation 
depend on the nonlinear dynamic analysis procedure adopted [24]. They are 
generally categorized as follows: 

a. The method of moments finds can define a model distribution with the 
same sample moments of the observed data; 

b. The maximum likelihood estimation finds the parameters such that the 
corresponding distribution has the highest likelihood of having 
produced the observed data. 

For further details on the fragility parameters estimation refer to [24]. 

1.3.2 Seismic reliability 

Society expects buildings and bridges to be designed such to withstand the 
demands imposed by their service requirements and natural hazards with a 
reasonable and acceptable level of safety. To meet these expectations, structural 
reliability methods have progressively imposed into code developments, and 
evolved to include several sources of uncertainty in the design criteria. In 
particular, a structure should be conceived, designed, and executed to sustain all 
the actions that may occur during its design working life while maintaining its 
performances. These requirements should be achieved with predefined and 
appropriate levels of reliability and economic sustainability. In this context, the 
acceptable safety levels that are currently prescribed in the building codes are 
strongly influenced by values that stakeholders, politicians, and decision-makers 
assign to human life, material loss, interruption of services, and so on. 

The reliability of structures can be defined as their ability to fulfill given 
performance requirements under specific load conditions during their design 
working life. Quantitatively, the term reliability may be considered as the 
complement to one of the probability of structural failure, where the term failure 
does not necessarily mean catastrophic failure but can refer to a structure that does 
not achieve the desired performances. The design working life is intended as the 
period of time for which a structure or a structural component should be able to 
satisfy its requests without needing for major repairing actions. Structural 
reliability concepts can be applied to new building design and to the assessment of 
the existing ones providing the instruments to decide about repair, rehabilitation, 
or replacement strategies. Particularly, according to fib Model Code 2010 and fib 
Bulletin 80, the design process can be recognized as a series of activities devoted 
to allowing the structural reliability in the design working life of a new structural 
realization, whereas, the assessment process represents the set of activities 
performed in order to verify the actual reliability of an existing structural system 
or component accounting for its residual service life. As mentioned earlier, the 
term failure is note associated to a unique definition: for a simply supported steel 
beam one analyst can say that the structure fails if the maximum deflection is 
attained whereas the other can claim that the structure will only fail when a plastic 
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hinge is developed. These comments make clear that before performing structure 
reliability analysis a failure criteria needs to be defined by introducing the concept 
of Limit States that, according to [26], is defined as: “the condition beyond which 

the structure, or a part of it, does no longer satisfy one of its performance 
requirements”. For a bridge structure, as an example, the failure can be assumed 
as its inability to carry traffic loads. Other undesired performances or limit states 
can be the following: concrete cracking, steel corrosion, excessive material 
deformations, exceeding shear or flexural capacity and so on.  The main 
performance requirements for structural design are represented by safety (i.e., 
structural resistance and ductility), serviceability, durability, and robustness.  

Related to the abovementioned performance requirements, in structural 
reliability three limit states are generally selected and considered: 
- ultimate limit states (ULSs), that refer directly to the structural safety, the 

safety of people and/or protection of the content of a structure. Beyond 
ultimate limit state the bearings or members capacity of the structure is 
exceeded and the whole system can fail. Commonly, different ULSs can be 
defined in bridge structures such as: excessive bearing displacements, 
exceeding moment-carrying capacity in the piers, displacements that cause a 
‘walk-out’ phenomenon in the superstructure and so on.  

- serviceability limit states (SLSs), which refer to the functionality, users’ 
comfort, and visual aspect of the structures during their daily use. The 
serviceability of the structures is generally related to deformations, 
vibrations, and damages that may influence their integrity. Excessive 
deflection can interfere with surgery performed in a hospital structure and as 
so should be limited to prescribed values.   

- Fatigue limit states (FLSs) refer to loss of strength under repeated (cyclic) 
loads and are mainly due to the accumulation of damage. The FLSs can 
occur in steel elements and reinforcement bars in concrete. In any fatigue 
analysis, the critical factor is both the magnitude and the load frequency.  

1.3.2.1 Uncertainties and their classification 

Many sources of uncertainty are present in structural design, loading 
parameters and capacity of structural members are not deterministic quantities but 
rather random variables, making a zero probability of failure not achievable. 

Consequently, structures are always designed to perform their functions with 
a finite and acceptable probability of failure. These uncertainties may be of 
different nature and are primarily represented by: 
- randomness (or inherent variability): it represents the natural variability that 

can be considered as intrinsic to physical process or properties (e.g., 
material properties, natural variation of wind pressure, earthquakes, live 
loads etc). The randomness can not be affected or reduced by external (i.e., 
human) intervention. 

- model uncertainty: it is the uncertainty related to the idealization and 
simplification of mathematical models adopted to describe and make 
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predictions related to the physical process or property. It can be reduced by 
increasing the knowledge and improving the quality of the model. 

- statistical uncertainty: this type of uncertainty arises from estimating 
parameters based on a limited size of sample of observations for statistical 
analysis and it can be reduced by increasing the data from experience (e.g., 
experimental results). 

Alternatively, uncertainties can be gategorized into two major groups based 
on their causes: 
- natural causes: these arise from unpredictability of loads such as wind, 

earthquake, snow, etc. 
- human causes: these result in approximations, calculation errors during the 

design phase and can be associated with the use of inadequate materials, 
construction methods and so on, during the construction phase.  

All the different sources of uncertainty affect the reliability analysis of a 
structural system to varying degrees. 

Furthermore, it can be observed that if the randomness (i.e., inherent 
variability) of a physical process or property can be considered as inherent in 
nature and not reducible, other sources of uncertainty may be reduced by 
improving, for example, experiments, measurement procedures, and predictive 
models. Generally, in the scientific literature, two different macro-families of 
uncertainty are recognized namely aleatory and epistemic. 

Specifically, concerning structural reliability analysis, the aleatory 
uncertainties concern the intrinsic randomness of the variables that govern a 
specific structural problem, whereas the epistemic uncertainties are mainly related 
to the inaccuracy in the prediction of reality. For example, in order to estimate the 
response of a structural system, different numerical models or material properties 
may be adopted. These choices can affect the global level of uncertainty within 
reliability analysis.  

A typical example regarding the difference between aleatory and epistemic 
uncertainties is provided in [27] with regard to the concrete material: if the 
reference is on both new and existing structures, then the concrete compressive 
strength may be considered as aleatory in the former case and as epistemic in the 
latter case. Indeed, the concrete compressive strength is assumed to be affected by 
an aleatory uncertainty in the case of a new structure as there is no way of 
improving our knowledge by means of measurements and experiments on 
something that still does not exist at the design phase. Conversely, in an existing 
structure, concrete has been already casted, its compressive strength exists even if 
it is the actual realization of a random variable and as such unknown. 
Nevertheless, the problem can be accomplished by performing an adequate 
number of tests and inspections to increase the knowledge about the structural 
properties.  
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1.3.2.2 General formulation of the structural reliability problem 

The procedure to estimate the reliability of a structural system requires for the 
definition of a unit of measure that can quantify the available level of reliability, 
and to provide the mathematical idealization of the limit state conditions. In this 
section these two aspects are clarified. 

1.3.2.2.1 The measure of structural reliability 

In reliability analysis, the state of a structure can be described by using a 
vector of random variables X : 

 
( )1 2, ,..., ,..., 1,2,...,i NX X X X X i N= =   (1.9) 

 
where the i-th variable iX  may be representative of load and resistance 

variables such as dead load, live load, geometric data, compressive strength, and 
yield strength. These basic load and resistance variables are also called state or 
basic variables. Considering the probabilistic nature of the variables involved in 
the structural design, it is necessary to express the level of protection concerning a 
given limit state in a probabilistic sense. The most common measure of structural 
reliability is represented by the probability of exceeding a limit state ,f LSP at least 

once during the design working life of the structure. This means to check that the 
following inequality is satisfied: 

 
*

,f LS fP P  (1.10) 
 
Where *

fP  is a target value for the probability of collapse, that is strictly 

related to the acceptable risk determined by the socioeconomic consequences that 
the attainment of the limit state under consideration may cause.  Indeed, 
minimizing *

fP  means to reduce the probability of collapse by designing more 

expensive structures with costs that can be incompatible with the function of the 
structure itself or with the socioeconomic conditions of a country. As such, the 
definition of the acceptable value of the probability of collapse is something that 
involves not only the structural engineering field but also political and 
socioeconomic competencies. 

An alternative measure of structural reliability is represented by the reliability 
index β, which formally can be defined as the negative value of the inverse of the 
standard normal variable corresponding to the probability of exceeding a limit 
state ,f LSP : 

1( )fP −= −  (1.11) 
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Figure 1.6. Relationship between the probability of failure and the reliability index. 

where Φ represents the cumulative standard normal distribution. The bigger 
the reliability index β, the more reliable the structure (i.e. lower ,f LSP ). 

The numerical correspondence between the reliability index β and the 
probability of failure fP  is reported in Figure 1.6.  

1.3.2.2.2 The limit state function 

To numerically define the attainment of a limit state it is possible to introduce 
a limit state function ( )G G X=  which, in general, is defined as a function of the 
basic variables vector ( )1 2, ,..., ,...,i NX X X X X= and is denoted as performance 

function. Conventionally, in the space of the X variables, the condition G>0 
defines the sub-space of the structure’s survival states whereas the condition G<0 
is associated with the failure domain (Figure 1.7). For a vector X of N-state 
variables the condition G=0 defines a failure surface in a N-dimensional space.  

 

1 2

0
( , ,...., ) :

0N

G safe region
G X X X

G failure region
 →


 →

 
 

(1.12) 

 

 

Figure 1.7. General representation of the limit state domain with 2 random variables X1 and X2. 

Based on this definition the probability of failure fP can be calculated as: 
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[ ( ) 0]fP P G X=   (1.13) 
 
If the joint probability density function 1 2( , ,..., )X Nf X X X is introduced to 

express the uncertainty in the X  vector of the state variables then the probability 
of failure fP  can be expressed in the following integral form: 

0

( ) 1,2,...,f X i
G

P f X dX i N


= =  (1.14) 

The Probability of failure must always be calculated relative to a specific time 
frame of interest t , which commonly, though not necessarily, corresponds to the 
design or residual working life. 

1.3.2.3 Reliability methods and theory background 

The evaluation of the structural reliability and consequently the probability of 
survival, can be performed using various approaches. These methods generally 
offer an increasing level of approximation while demanding less computational 
efforts, thereby facilitating the introduction of reliability concepts into engineering 
practice. These different levels of approximation for the evaluation of structural 
reliability are listed below: 

- III level methods (probabilistic); 
- II level methods (probabilistic);  
- I level methods (semi-probabilistic); 
- 0 level methods (deterministic). 
Progressively, starting from the III level methods to the 0 level methods the 

computational efforts for estimation of structural reliability decrease significantly, 
but this comes with a considerable increase in the level of approximation.  

1.3.2.3.1 Level III methods 

The so-called III level methods have as main objective the calculation of the 
integral expressed in Eq. (1.14) via analytical solutions, numerical integration, or 
Monte Carlo simulations. 

Analytical solutions are feasible in a limited number of situations when the 
number of variables involved in the reliability calculations is limited. For more 
complex systems is otherwise possible to take advantage of various simulation 
techniques, such as the Monte Carlo method, which are very efficient tools to 
solve the integral expressed by Eq. (1.14).  

In the following paragraph, a simple example is presented to show the 
application of the analytical solution in the context of III level methods. In this 
example, the basic variables vector ( )1 2, ,..., ,...,i NX X X X X= consists of just two 

random variables: R (structural resistance or capacity) and Q (structural loads or 
demand).  
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1.3.2.3.1.1 Reliability analysis with two independent random 
variables  

In the simple case where two variables R and Q are considered the limit state 
function G can be defined as G(R,Q)=R-Q. The limit state, corresponding to the 
boundary between desired and undesired performance, would be: 

( , ) 0G R Q R Q=  =  (Figure 1.8). Clearly, if Q is greater than R, meaning 
( , ) 0G R Q  the structure is not safe, otherwise when G(R,Q)>0 the structure is 

safe. The probability of failure is equal to the probability that the undesired 
performance occurs, i.e.: 

 
( 0) [ ( , ) 0]fP P R Q P G R Q= −  =   (1.15) 

 

  
Figure 1.8. Limit state function for the case of a 2-dimensional space with variables R and S.  

Assuming that the two random variables are statistically independent then the 
joint pdf 

iXf in Eq. (1.14) can be expressed as the product of  the two marginal 

Pdfs of R and Q, ( )Rf r  and ( )Qf q , so that the probability of failure expressed 

through Eq. (1.14) is defined as follows: 
 

0 0

( ) ( ) ( )f X i R Q
G G

P f X dX f r f q drdq
 

= =    (1.16) 

 
Exploiting Eq. (1.16) is it possible to derive the following: 
 

0

( ) ( ) ( ) ( ) ( ) ( )
q

f R Q Q R Q R
G

P f r f q drdq f q f r dq f q F q dq
 

− − −


 =  = =
       

(1.17) 

 
Therefore fP is given by the convolution integral of two functions of q, ( )Qf q

and ( )RF q .  
In general, both R and Q can be functions of other random variables (e.g., the 

flexural capacity of a beam section can be a function of the steel yield strength), 
and so are random variables themselves. It follows that resolving analytically the 
problem of reliability through Eq. (1.17) becomes difficult if not impossible in 
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some cases and therefore it requires the adoption of numerical solutions in the 
form of simulation techniques such as the Monte Carlo method [28].  

1.3.2.3.1.2 The Monte Carlo method  
The Monte Carlo method [28] is a simulation technique used to directly 

calculate the probability of failure fP of a structural system solving the integral in 

Eq. (1.17). It starts with the introduction of an indicator function ( )I X  that is 

equal to zero for those values of the vector X  that makes the limit state function 
G positive, 0G  , and equal to one in those cases where the vector X is such that 

0G  : 

( )
( )

( )

0 0
:

1 0
if G X

I X
if G X






 
(1.18) 

With the introduction of the indicator function ( )I X  Eq. (1.17) can be 

rewritten in the following form: 
 

0 0

( ) ( ) ( ) k
f X i X i

G G

nP f X dX I X f X dX
n

 

= =    
(1.19) 

 
In the last member of Eq. (1.19) it is easy to recognize as the probability of 

failure can be approximated with the ratio between the total number of 
simulations n and the number kn  of times of observed collapses, meaning that 

( ) 0G X  . The Monte Carlo simulation is therefore based on the generation of a 
large number of samples of the random variables iX  and on the subsequent 

evaluation of the limit state function ( )G G X=  used to check if it is greater or 
less than zero. 

Nevertheless, the so-obtained probability is inevitably affected by 
uncertainties depending on the number of simulation n that is adopted. Indeed, can 
be demonstrated that the variance of the ratio /kn n and so of the probability of 
failure, tends to decrease as n grows. To check the accuracy of the probability of 
failure estimation through the Monte Carlo technique, the coefficient of variation 
of Pf may be estimated assuming that each simulation cycle constitutes a 
“Bernoulli trial”, and the number of failures in n trials can be considered to follow 
a binomial distribution. Then the coefficient of variation of fP  at the j th−  

sample, ( )j
jCOV P , may be calculated as: 

(1 )

( ) 1,2,...,

j j
f f

j
f j

f

P P
j

COV P j n
P

−

= =  

 
(1.20) 

It is possible to demonstrate that the number of simulations to be used is 
directly proportional to the inverse of the target probability of failure to be 
estimated. Consequently, the number of simulations required for the structural 
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reliability analysis, where the probabilities of collapse are very low (10-3-10-4) is 
then extremely high (commonly around 105 – 106 simulations).  

To reduce the number of simulations and consequently the computational 
effort, several advanced sampling techniques have been developed and reported in 
scientific literature. These methods are more efficient than the so-called ‘brute-
force sampling methods’, where elements of the statistical population are 

generated purely at random. More refined techniques can generate statistical 
samples that maintain good representativeness with fewer simulations by 
following appropriate criteria. 

 In the following section one of these methods, specifically the Latin 
hypercube sampling method (LHS) [29], is described. 

1.3.2.3.1.3 Latin Hypercube sampling method 
The Latin  hypercube  sampling method (LHS) [29], is a stratified sampling 

method that is proposed to subdivide (‘stratify’) the sampling space into n non-
overlapped intervals and extract from each of them a random variable in a random 
way. This procedure is able to avoid the possibility of having unallocated 
sampling over the domain of the random variable and as such it represents a more 
efficient sampling technique with respect to the Monte Carlo simulation. The 
basic concept on which the LHS method is based on is the following: the input 
range is represented by the cumulative distribution function opportunely divided 
into n disjoint intervals with the same probability of occurrence equal to 1/ n . For 
each of these intervals, the sampling algorithm extracts randomly between 0 and 1 
in such a way that, depending on the considered interval, permits the computation 
of the correct value of the cumulative function which can be inverted to compute 
the random variable (Figure 1.9).    

 

 

Figure 1.9. Latin hypercube sampling technique. 
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Specifically, the procedure consists of the following steps: 
 
1) for each of the n intervals, the cumulative probability is evaluated throughout 

a linear transformation expressed by the following relationship: 
1 1

m m
mP U

n n
− 

=  
 

  
(1.21) 

 
Where m is an integer number included between 1 and n; mU is the randomly 

generated number between 0 and 1, and mP  is the value of the cumulative 
distribution function to be calculated belonging to the m-th interval.  

Eq.  
(1.21) ensures that one and only one of the so-obtained values of the 

probability mP will belong to the interval 1
m

m mP
n n
−

  , where 1m
n
− and m

n
  

are respectively the lower extreme and the upper extreme of the m-th interval. 
  

2) Once the value mP is obtained, the m-th value of the k-th random variable of 

interest , ,k mX , is generated through the following Eq. (1.22): 

 
1

, ( )k m x mX F P−=  (1.22) 
 
by inverting the cumulative distribution function. 
3) A random permutation between the m values sampled for each variable ,k mX

is performed to randomly couple the outcomes. In this way, the vector of n 
basic random variables is finally defined to perform the simulations. 

 

1.3.2.3.2 Level II methods 

The II Level methods deal with statistical moments of the basic random 
variables to perform reliability analysis. Specifically, first and second-order 
moments, including the covariance matrix, are selected within this approach.  

In this method, it is advantageous to work with the ‘standard form’ of the 
basic variables. For simplicity, if the problem is reduced to two variables R 
(structural resistance) and Q (structural loads), the standard form can be expressed 
as: 

R
R

R

RZ 



−
=  

(1.23) 

Q
Q

Q

Q
Z





−
=  

(1.24) 

Where RZ and QZ  are sometimes called ‘reduced variables’. 
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In this case the limit state function ( , )R QG Z Z takes a linear form expressed 

by:  
 

( , ) ( ) ( )R Q R R R Q Q Q R Q R R Q QG Z Z Z Z Z Z       = + − + = − + −  (1.25) 
 
Eq. (1.25), as shown in Figure 1.10, defines a straight line in the space of the 

reduced variables RZ and QZ , delineating the boundary between the safe and 

unsafe (failure) domains. The shortest distance from the origin of the reduced 
variables space, to the line ( , ) 0R QG Z Z =  represents the so-called reliability index 

  as defined by Cornell in 1969 [30]. 

 

Figure 1.10. Reliability index  , defined as the shortest distance in the space of the reduced 
variables. 

Using geometry, the reliability index  can be calculated as: 
 

2 2

R Q G

GR Q

  


 

−
= =

+
 

(1.26) 

 
 This reliability index is called a first-order, second-moment, mean value 

reliability index (FOSM). It means that:  
First-order: we use first-order terms in the Taylor series expansion; 
Second moment: only statistical means and variances are needed; 
Mean value: the Taylor series expansion is about the mean values; 

Due to the invariance issue associated with the First-Order Second-Moment 
(FOSM) reliability index (where the index value depends on the specific form of 
the limit state function), Hasofer and Lindt proposed a modified reliability index 
in 1974 [31] to resolve this problem. Specifically, the correction consists of 
evaluating the limit state function at a point known as the design point or most 
likely failure point instead of the mean value. The design point z* is always a 
point on the failure surface ( , ) 0R QG Z Z =  that is not known in advance and as 

such requires for an iteration technique. This leads to the so-called First-order 
Reliability Methods (FORM) developed almost 30 years ago. 
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Figure 1.11. Definition of design point and reliability index [31]. 

The design point z* represents the point associated with the limit state surface 
having the highest probability density. According to the FORM method, the 
procedure is based on the introduction of the vector  (Figure 1.11), which is 
defined as the outward-directed normal vector to the failure surface (i.e. a vector 
of unit length perpendicular to the limit state hyperplane) defined in the design 
point z*, which is the point on the linearized failure surface with the shortest 
distance   from the origin. The components of the vector   are known as 
sensitivity factors as they assign a weighted importance to the individual random 
variables for the evaluation of the reliability index. Furthermore, their signs 
indicate whether the corresponding variables are related to a resistance component 
or to a load component. In the case of two variables R and Q the design point 
coordinates can be expressed as: 

 

d R R RR   = −  (1.27) 

d Q Q QQ   = −  (1.28) 
 
And the FORM sensitivity factors R and Q  of the random variables R and 

Q  can be evaluated as the direction cosines of the design point: 

2 2
R

R

Q R




 
=

+
 

(1.29) 

 

2 2

Q
Q

Q R




 
=

+
 

(1.30) 

with: 
2 2 1Q R + =  (1.31) 
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In EN 1990 an approximation of these values according to [32] is introduced. 
Specifically, the value of R  is set equal to 0.8 and the value of Q  is set equal to 

0.7. Though, the validity of this approximation is limited by the following 
inequality: 0.16< σR/σQ <7.6.  

In the case that R and Q are normally distributed random variables, the design 
point coordinates can be evaluated according to the following probabilities: 

 
  ( ) ( )0.7

0.7

d Q

d Q Q

P Q Q

Q

  

 

 =  =  −

= +

 

(1.32) 

 
  ( ) ( )0.8

0.8

d R

d R R

P R R

R

  

 

 =  = 

= −

 

(1.33) 

 

1.3.2.3.3 Level I methods 

The Level I method or load-resistance-factor-design (LFRD) method is 
centered on the probabilistic assessment of structural safety without directly 
computing it, which is indeed carried out in a simplified (i.e. scalar verification) 
way. In this approach the basic variables are assumed equal to their characteristic 
values, which correspond to a low quantile in case of resistance R or to a high 
quantile in case of action loads Q. Furthermore, partial safety factors are 
introduced with values that are based on Level II calculations. 

The basic verification format consists as said of a scalar relationship that 
checks whether the design resistance /d n mR R = is at least equal to the design 

value of the load effects d q i
Q Q= : 

n
q i

m

RQ


  
(1.34) 

Being dR and dQ  function of the following quantities: 

( ),1 ,1 ,1 ,2 ,1 ,1, ,...; , ,...; ,d d d d d d dQ Q F F a a  =  (1.35) 

( ),1 ,1 ,1 ,2 ,1 ,1, ,...; , ,...; ,d d d d d d dR R X X a a  =  (1.36) 

Where ,d iF represents an external action; ,d iX represents a material property; 

,d ia is a geometrical property; ,d i is the model uncertainty. 

The partial safety factors for material properties (i.e., m ) and actions (i.e., q

), in general, are derived from their characteristic values according to: 

k
m

d

R
R

 = for resistances 
(1.37) 
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d
q

k

Q
Q

 = for load effects 
(1.38) 

The design values Rd and Ed may be evaluated according to Eq.s (1.32)-(1.33) 
as derived from Level II methods. In general, the characteristic value is 
considered as the 5% quantile of the probabilistic distribution of the resistance, 
the 50% quantile of the probabilistic distribution of permanent actions, and the 
95% quantile in the case of variable actions. 
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2 Seismic damage in bridges and 
seismic isolation 

This chapter begins with an overview of the typical damage patterns caused to 
bridges from past earthquakes, with a particular emphasis on those damages 
observed to bridge configurations more susceptible to the spatial variability of 
ground motion. Additionally, the chapter illustrates the basic principles of seismic 
isolation as applied to bridge structures, highlighting the effectiveness of this 
technique in mitigating or preventing structural damage caused by earthquakes.   

2.1 Bridge structures 

A bridge can be intended as a structure that is needed when an obstacle such 
as a river or a sea is present and has to be traversed. It can be named differently 
depending on the obstacle: are indicated as viaducts those bridges that span over 
valleys or overpasses, and underpasses those bridges that pass over or under main 
roads. Other terminologies are in general adopted depending on the various bridge 
uses: highway bridges are facilities that support vehicular and pedestrian traffic, 
canal bridges are devoted to the transportation of water, and pipeline bridges are 
used for transferring liquids and gasses. 

Bridge structures are made of two main parts: the superstructure, which is the 
ensemble of components that are needed to cross over the obstacle, and the 
substructure, whose scope is twofold: it carries the loads acting on the 
superstructure (vertical and horizontal) and transfers it to the ground. 

The superstructure is generally made up of the deck slab and the girders, 
whereas the substructure includes beam caps (with or without shear keys), piers, 
abutments, and their respective foundation systems that, depending on the soil 
conditions, may be shallow foundations (footing) or deep foundations (piles). 

Despite several configurations (e.g., frame, arch, truss, and suspension 
bridges) and materials (e.g., masonry, steel, and reinforced concrete/post-
tensioned concrete/pre-tensioned concrete) could be adopted or have been adopted 
in the past for the bridge design, the most commonly encountered typology, 
especially in Italy, is the reinforced concrete beam bridge that for this reason will 
be the testbed bridge adopted in this work of thesis. 

Beam bridges are relatively simple structures having spans supported by 
abutments at each end and piers. They are typically adopted for highway bridges 
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(Figure 2.1) where they span over relatively short distances. The connection 
between superstructure and substructure is generally non-monolithic as they are 
connected through simple bearings or seismic isolation bearings in the case of an 
isolated bridge. Seismic isolators as will be specified next, are generally classified 
into two categories: those that make use of elastomeric components (e.g., lead-
rubber-bearings (LRB)) and those that use sliding components (e.g., friction 
pendulum system (FPS)). 

When the superstructure comprises multiple spans it is generally 
discontinuous at each span end because of the presence of an expansion joint that 
needs to accommodate movements due to temperature variations or other 
horizontal actions (creep and shrinkage deformations). 

As far as the pier is concerned, a wide variety of reinforced concrete (RC) and 
steel sections, as well as composite steel-concrete sections are in use [34]. The 
circular section is the most desirable for those cases where longitudinal and 
transverse demands are similar. Rectangular sections have the disadvantage of not 
providing adequate protection of longitudinal bars against buckling, unlike 
circular sections. Finally, the hollow sections are used in those cases where the 
height of the piers is excessive. 

 

 
Figure 2.1. Components of a typical highway bridge [33]. 

2.2 Observed damage patterns to reinforced concrete 
bridges from past earthquakes 

During the last four decades, earthquakes caused several damages, and in the 
most severe cases, complete collapse to bridge structures. These events have 
revealed the high vulnerability of specific components belonging to the bridge 
layout.  

Bridges are generally designed to have piers that are more flexible than the 
deck to which they are connected. Consequently, seismic damage can likely be 
concentrated on the piers, which are demanded to possess high ductility to 
withstand the deformations imposed during an earthquake. Conversely, the 
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superstructure assembly (diaphragm slab and girder) is assumed to remain 
fundamentally elastic when an earthquake occurs and is mainly devoted to 
transferring the lateral forces to the substructure components. 

Based on the previous comments, typical damages observed concern 
foundation failure, piers damage (flexural failure or shear failure), shear keys 
failure, and deck unseating or pounding of adjacent deck spans at expansion joints 
[35].    

2.2.1 Deck damages 

One of the most dangerous types of failure regarding superstructure is 
associated with unseating at abutments and expansion joints. This risk arises 
primarily from the spatial variability of earthquake ground motion at different 
bridge supports (piers and abutments), leading to dynamic relative displacements 
of the superstructure (adjacent bents may move out of phase). As adjacent bents 
move out of phase, significant openings can occur at expansion joints, potentially 
causing the deck to become unseated. This kind of event has been observed even 
in those bridges provided with restraining devices. Typical examples of bridges 
that collapsed through unseating are the Nishinomiyako simply supported bridge 
during the Kobe 1995 earthquake and the Oakland Bay steel truss bridge in San 
Fernando earthquake which lost a full span because of inadequate seat width 
(Figure 2.2). The cited examples show that the necessary seat width cannot be 
replaced by restrainers or fixed bearings as they can undergo unpredictable high 
horizontal forces even during low seismic events leading to their failure [36]. 

Local destructions in the superstructure can also occur due to pounding 
between adjacent spans or against abutments, resulting in very high forces that 
may exceed the material strength limit. This scenario often occurs when 
expansion joints, designed to accommodate unrestrained relative movements in 
long bridges, fail to sustain the large displacements imposed by seismic actions, 
leading to the gap closure followed by high pounding forces. While this type of 
damage may not critically endanger structural safety by causing bridge collapse or 
significantly altering seismic behavior, it can pose a greater concern for bridges 
that are essential to the lifeline transportation network. Pounding damage between 
spans or against abutments has the potential to impede the timely transportation of 
emergency supplies following an earthquake, thereby affecting the bridge's 
operational resilience in post-disaster scenarios. 
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Figure 2.2. Typical superstructure unseating during the Northridge 1994 and Loma Prieta 1989 

earthquakes [36]. 

 

Figure 2.3. Local damage at the expansion joint during the Northridge 1994 earthquake [36]. 

2.2.2 Pier damages 

Bridge piers can experience various types of failure, primarily associated with 
the attainment of flexural and/or shear capacity, or due to the axial failure. Axial 
failure, in particular, can lead to a potential total collapse of the bridge, as the 
substructure cannot carry the loads coming from the above. It is worth mentioning 
that in a robust structure where multiple load paths exist, even if a pier undergoes 
heavy damage with flexural degradation, can happen that other less damaged piers 
or abutments still contribute to the bridge's horizontal capacity. The same is not 
true for the case of an axial failure because generally, the axial loads have just one 
possible path from the superstructure to the foundation that cannot be replaced by 
other members.  

Typical observed damages of piers are a consequence of yielding or buckling 
of reinforcing longitudinal steel bars, spalling of concrete cover, or sudden 
fracture of transverse reinforcements. Buckling it’s likely to occur when 
longitudinal bars are not restrained by transverse reinforcements as could be the 
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case of rectangular cross-sections where only the hoop corners provide enough 
transverse restraint.  Generally, the primarily flexural failure is related to the 
absence of seismic details that limit the possibility for the pier to deform 
inelastically. Another issue that can occur is associated with lap-splices that 
represent a typical weak point especially under cyclic loading and mainly in those 
pier regions that are prone to be subjected to significant cyclic-inelastic strains 
(pier bases). 

Shear failure is generally suffered by short and massive cross-section piers 
that result in a very high stiffness capable of attracting high levels of inertia 
forces. Shear failure is particularly critical because is rather brittle and 
accompanied by small horizontal displacements, and may lead to subsequential 
loss of axial load capacity (Figure 2.4). 

 
Figure 2.4. Typical piers failure during the Kobe 1995 earthquake [36].  

2.2.3 Abutment damages 

The seismic behavior of abutments is significantly influenced by both soil-
structure interaction and interaction with the superstructure. As mentioned earlier, 
during a seismic event, the superstructure can transfer pounding forces to the 
abutments, further complicating their response. The latter phenomenon is likely to 
occur if the gap between superstructure and abutment is small or is reduced 
because of thermal deformations. The typical damage pattern for the abutments 
consists of movements (sliding) and rotations along the transverse axis, especially 
in those cases where the passive earth pressure coming from the backfill soil 
increases significantly due to dynamic effects. Even if bridge collapse due to 
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abutment failure is rather uncommon it can produce high economic costs for post-
earthquake repair measures.  

 

 
Figure 2.5. Typical abutment damages during the Northridge 1994 earthquake [36].  

2.2.4 Foundation damages 

As mentioned earlier, abutments and piers can be funded either on spread 
footings or deep foundations. In new bridge design, these foundations are 
typically required to remain elastic under seismic actions. This is not the case for 
the existing structures, where foundations were mainly designed for gravity loads 
without considering for seismic effects. During the Kobe 1995 earthquake, several 
damages were observed to footings which happened to fail mainly due to the 
development of shear cracking or rocking type of behavior. Particularly, this latter 
phenomenon is associated to a significant moment demand caused by seismic 
actions coupled with uplifting of the foundation.   

 

2.3 Seismic isolation of highway bridges 

Seismic isolation is an effective tool for improving the seismic performance 
of bridges and mitigating seismic damages. This technique permits to uncouple 
the bridge superstructure from the substructure by interposing mechanical devices 
with a reduced (very low) horizontal stiffness (Figure 2.6) [37]. This has the effect 
that when an earthquake occurs the deformations mainly focus on the seismic 
isolation devices rather than on the substructure elements.  As shown in Figure 
2.7, the isolators’ flexibility shifts the response of an isolated bridge towards 
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higher fundamental periods with the advantage of reducing the seismic forces in 
the substructure while providing additional damping that can limit relative 
displacements between the superstructure and substructure. Simultaneously, the 
isolator devices possess an adequate rigidity under service loads such as wind, and 
vehicle braking and can accommodate with no restraints environmental effects 
such as thermal expansion, creep, and shrinkage. 

 
Figure 2.6. Seismically isolated bridge vs ordinary bridge: a comparison [37]. 

 
Figure 2.7. Effects of seismic isolation on the shear forces (a); and on the displacements (b), for 

various levels of damping. 

Even though in the case of isolated bridges it is possible to work with reduced 
seismic forces, they are at the same time characterized by higher superstructure 
displacements that should be accommodated by increasing seat lengths and/or 
with wider expansion joints. This is the reason why isolator devices are generally 
provided with specific energy dissipation mechanisms aimed at introducing a 
significant level of additional damping into the bridge such as to limit these 
displacements. In Figure 2.8 a typical force-displacement relationship for a 
seismic isolator is presented: the energy dissipated over one cycle of motion dE is 
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represented by the shaded area under the bilinear curve, which is not recovered 
during unloading because it is lost in the form of heat from  the system.  

In order to simplify the derivation of the energy dissipation it is common in 
literature to introduce an effective elastic stiffness, effK (Figure 2.8), and an 

equivalent viscous damping ratio e  such that: 
 

2L eC m =     (2.1) 

 
Where LC is the linear viscous damping constant. 
It is indeed possible to demonstrate that the energy dissipated by a linear 

viscous damper in each cycle vdE  (that is the area under the force-displacement 
relationship presented in Figure 2.9) is the same as the energy dissipated by a 
generic hysteretic device DE (Figure 2.8).  

 
2
maxvd LE C D=  (2.2) 

 
Where maxD is the maximum displacement exhibited from the isolator.  

Based on this assumption the equivalent viscous damping ratio e  is 
calculated by imposing the following equality: 

 
2
maxvd L DE C D E= =  (2.3) 

2
max

2 D
L e

EC m
D

 


=    =  
(2.4) 

And so: 
 

2 2 2
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D D
e
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
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Figure 2.8. Force-displacement relationship for an isolator [37]. 

 

Figure 2.9. Force-displacement relationship for a linear viscous damper. 

Seismic isolators generally adopted for bridge structures or ordinary structures 
can be grouped into two categories that are: 

- Elastomeric bearings (with or without lead core for the energy dissipation); 
- Sliding isolators that use friction as an energy dissipator mechanism. 

2.3.1 Elastomeric isolators 

Elastomeric bearings are the most adopted devices for bridge isolation and 
have been around for more than 50 years as they were initially implemented to 
accommodate thermal expansion in bridges.  

They are characterized by the superimposition of elastomer layers (5-20mm) 
and steel sheets (2-3mm), that are solidarized by a vulcanization process. 
Elastomeric bearings were initially non-reinforced and this caused high axial 
deformability to the rubber with a potential rocking effect to the device (rotation 
of the isolator about a horizontal axis). The presence of the steel reinforcing plates 
is therefore fundamental to provide confinement, vertical stiffness, and vertical 
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load capacity to the rubber layers, which are specifically designed to be larger 
than the steel layers such as to protect them from corrosion (Figure 2.10).   

 

 
Figure 2.10. Schematic representation of laminated rubber bearing. 

The performance of such devices also depends on the kind of rubber they are 
made with; based on this aspect the following typologies are distinguished: 

- Natural rubber elastomeric bearings; 
- Synthetic rubber elastomeric bearings. 

Rubber is a hydrocarbon called isoprene and natural rubber consists of 
regular sequences of isoprene arranged in a chain fashion that provides elasticity 
to the material. The chains can be stretched out when an external force is applied 
until the point when the connections are broken. This behavior manifests itself at a 
macroscopic scale with large displacements that the rubber can accommodate. 

On the other hand, synthetic rubber is made up of neoprene with some 
advantages when compared to isoprene: it has higher fire-resistant capacities, it is 
less prone to aging, and much more impermeable to gas. Nevertheless, neoprene 
has been extensively used in thermal expansion devices for bridges and rarely for 
the manufacturing of elastomeric bearings due to lower elongation at break, when 
compared to natural rubber. 

Independently of the rubber type adopted, three types of elastomeric bearings 
have developed over the years to meet different requirements. These are: 

- Low-damping rubber bearings: these are natural rubber bearings with 
standard low-damping rubber: to withstand the damping forces required in 
seismic isolation design they are generally coupled to viscous dampers for 
energy dissipation; 

- High-damping rubber bearings: these are manufactured with high-damping 
rubber (natural rubber) for energy dissipation purposes; 

- Lead-rubber bearings: manufactured with natural rubber equipped with an 
internal lead core for energy dissipation. 



Seismic reliability of 3D isolated bridges accounting for spatial variability of earthquake ground motion 

P a g .  35 | 225 

 

2.3.1.1 Low-damping rubber bearings (LDRB) 

They can be made with either natural rubber or neoprene. The isolator 
response is essentially elastic with the increase of displacements (Figure 2.11). 
The main advantages of these devices are: very easy to assemble, low production 
costs, and mechanical properties independent of temperature and aging. 
Contrarily, they are characterized by low damping value (in the order of 2-4%) 
and do not provide enough rigidity under service loads (e.g., wind). Because of 
this last feature, they are generally coupled with additional energy dissipator 
devices such as hysteretic or viscous dampers. 

 

Figure 2.11. Force-displacement relationship for LDRB. 

2.3.1.2 High-damping rubber bearings (HDRB) 

These devices were first developed by Prof. Kelly in 1995 [40], at the 
University of California, Berkeley. They are generally made up of natural rubber 
‘charged’ with special additives such as carbon black and silicon that give higher 
damping capacity to the rubber (between 10% and 20% at a 100% shear 
deformation). This kind of property makes the HDRB an efficient and complete 
device that does not need to be coupled with mechanical dissipation systems, as it 
provides by itself the required flexibility and dissipation properties.  

By looking at the force-deformation relationship (Figure 2.12) it is possible to 
highlight the following features: 

- High initial lateral stiffness that enhances to withstand the service loads (e.g. 
wind) with low displacements; 

- The mechanical properties of the isolator change in dependence of the 
loading history (e.g. scragging effect); 

- Non-linear strain rate dependence; 
- The hysteretic behavior depends on temperature variations (low temperature 

generally causes an increase in stiffness and characteristic strength); 
- Aging effects generally result in increasing both the stiffness and the 

characteristic strength, even if of a relatively small amount (10%-20% over 
30 years). 
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Figure 2.12. Force-displacement relationship for HDRB. 
 

2.3.1.3 Lead-rubber bearings (LRB) 

This type of device is the most common isolator in bridge applications. 
Similar to LDRB, it incorporates a cylindrical lead core fitting inside the center of 
the isolator (Figure 2.13-Figure 2.14). The lead core is meant to dissipate energy 
by yielding during lateral displacements. The constitutive force-deformation 
behavior is a bilinear type as it is the combination of the typical linear elastic 
model of LDRB and the elastoplastic behavior of the lead core. Overall the 
bearing is very stiff in the vertical direction and flexible in the horizontal 
direction, provided that the lead core yields. Under service loads the combined 
lateral stiffness of rubber layers and lead core offers a sufficient stiffness. 
However, during a seismic event, the lead core deforms in shear and yields at a 
low shear stress of about 9.0Mpa. This mechanism reduces the overall lateral 
stiffness of the bearing, leading to large deformations in the rubber layers that 
provide the required flexibility to elongate the bridge period.   
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Figure 2.13. Lead rubber bearing isolator (a); Force-displacement relationship for LRB (b). 

 

Figure 2.14. Section view of LRB [37]. 

In the force deformation behavior, because the elastomer is a low-damping 
natural rubber, the yield force yF and the characteristic strength dQ (Figure 2.8) 

come from the lead core alone as specified in the following Eq. (2.6)[37]: 
 

21
4

L
y yL

dF f 


=  

(2.6) 

 
Where: 

yLf = shear yield stress of the lead (9.0Mpa); 

Ld =diameter of the lead plug; 
 = load factor that takes into account the creep effect in lead (= 1.0 for 

seismic loads; = 2.0 for service loads); 
The characteristic strength is then provided by: 
 

1 d
d y

u

kQ F
k

 
= − 

 
 

(2.7) 

 
Where: 

dk =  post-elastic stiffness; 

u dk n k=  elastic loading and unloading stiffness, with n=10 for seismic loads, 
n=8 for service loads; 

The post-elastic stiffness dk  is a function of the initial elastic stiffness coming 
from the contribution of the rubber, given by: 
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GAk
h

=  
(2.8) 

 
 Where: 
G = shear modulus of the rubber; 

rh = total height of the rubber; 

bA =neat area of the rubber, that is the total area of the rubber minus the lead 

core area: 
2 2( )
4

b L
b

d dA  −
=  . 

Indeed, the post-elastic stiffness is equal to: 
 

d rk fk=  (2.9) 
 
Being  f  a correction factor that accounts for the presence of the lead core, 

generally assumed equal to f=1.1. 
From the hysteretic behavior of Figure 2.8 it derives that the horizontal force 

F at the generic displacement D is given by: 
 

d dF Q k D= +  (2.10) 
 
Then the effective stiffness effk is simply obtained by dividing Eq. (2.10) for 

the displacement D, as follows: 
 

d
eff d

Qk k
D

= +  (2.11) 

 
The equivalent viscous damping ratio is finally calculated according to Eq. 

(2.5): 
 

2

4 ( ) 2 ( )
2 ( )

d y d y
e

eff d d

Q D D Q D D
k D D Q k D


 

− −
= =

+
 

(2.12) 

 
The elastomeric bearings need to be checked for axial instability in the 

undeformed and deformed state. The relations that express the buckling loads are 
strongly dependent on the type of connection between the isolator and the 
structure, which can be of two types: 

- A bolted connection, in which the rotation is constrained properly and only 
instability coming from axial loads is possible; 

- A dowelled connection, in which also instability by overturning can occur. 
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Undeformed state 
In the undeformed state, the buckling load for the two configuration types is 

theoretically the same and equal to: 
 

2

23
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=  

(2.13) 

Where: 
 
I =moment of inertia along the weak axis of the isolator; 
A = the area of the rubber attached to the plates (must be reduced to take into 

account the lateral displacement); 
G = shear modulus of the rubber; 

2

1
1 4

6 3

cE

GS K

=
 

+ 
 

is the modulus of elasticity of rubber in compression; K= 

bulk modulus of rubber (2000Mpa); S is the shape factor of rubber layer of 
thickness t. 

The safety check against instability is carried out by dividing the critical load 
crP by the combination of dead loads and live loads. 

 
Deformed state 
In the deformed state, the critical load depends on which of the two 

configurations is adopted. For the bolted connection case the critical load is given 
by: 

' r
cr cr

AP P
A

=  (2.14) 

 
Where: 

'
crP =buckling load in the deformed state; 

A = bonded elastomeric area; 

rA = overlapped area during lateral displacements between the top bonded 
area and the bottom bonded area. 

As shown in Figure 2.15, in the case of a circular hollow bearing 
( sin )rA

A
 



−
 , being 12cos td

B
 −  
=  

 
such that: 

' ( sin )
cr crP P  



−
  (2.15) 

Eq. (2.15) is valid for the case of circular hollow bearings. 
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Figure 2.15. Overlapped area in an elastomeric bearing [37]. 

 
In the case of the second configuration, dowelled bearings may experience 

roll-over or overturn when subjected to large lateral displacements. Specifically, 
the critical value of the lateral displacement at which overturning occurs is given 
by: 

d
cr

d

P B Q hD
P k h
 − 

=
+ 

 
(2.16) 

Where: 
P = axial load on the bearing; 
B = bearing diameter; 

dQ = characteristic strength; 
h = total height of the bearing (sum of the rubber layers and steel layers). 

2.3.2 Sliding isolators 

Sliding isolators can be of two types: 
- Unidirectional (generally adopted for bridges) 
- Multi-directional (mostly adopted for buildings). 

2.3.2.1 Flat surface sliding device (SD) 

They are multi-directional devices with two sliding surfaces with a circular or 
squared shape that slide one on another with a low friction coefficient (Figure 
2.16). They are manufactured with stainless steel and PTFE (Teflon), properly 
selected to develop a slow friction resistance. Accordingly, the dynamic friction 
coefficient is comprised between 5% and 20% and it can drastically reduce in the 
case of lubrication.  

The friction coefficient is greatly influenced by factors such as the sliding 
velocity, temperature, and contact pressure. Due to the variability in friction and 
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uncertainties in environmental conditions, it is common practice to disregard 
friction forces and their associated energy dissipation. Instead, reliance is placed 
on the lateral deformability of the isolation devices for seismic mitigation 
purposes. However, such systems lack of restoring force capability, and can thus 
generally undergo significant permanent displacements.  

 

Figure 2.16. SD isolator (a); typical SD hysteretic loop (b) [Fip Industriale catalogue]. 

2.3.2.2 Friction Pendulum System (FPS) 

Friction Pendulum System (FPS) stands for those sliding devices with a 
curved surface that allows the movement between superstructure and substructure. 
These devices are provided with an energy dissipation capacity based on friction,  
and with a recentering mechanism that uses gravity according to the pendulum 
law. The system consists of an articulated slider that moves on a spherical 
concave surface generally made of Polytetrafluoroethylene (PTFE) applied on a 
stainless steel surface (Figure 2.17). 

The most valuable characteristics of these sliding isolators are summarized 
next: 

- The radius of curvature of the spherical surface controls the concavity-
related stiffness and the fundamental isolation period of vibration of the 
structure; 

- The isolation period is independent of the structural mass; 
- The friction coefficient is responsible for the energy dissipation. 

In the upcoming chapter, these isolation devices will be examined in greater 
detail. They are the chosen isolation system intended for retrofitting an existing 
highway bridge, which serves in this thesis as the testbed bridge for analyzing 
seismic response under spatial variability of earthquake ground motion.  
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Figure 2.17. Typical single curvature FPS device [Fip Industriale catalog]. 
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3 Elastic theory of isolated bridges 
with friction pendulum system 
(FPS) 

In this chapter, an overview of the elastic seismic isolation theory is 
presented. It begins with an introduction of the basic principles of seismically 
isolated systems, originally developed by Prof. J. Kelly in 1996 for building 
structures. It follows a detailed description of friction pendulum bearings, 
specifically emphasizing their dynamic behavior and the friction-related 
properties that characterize these devices. Furthermore, the chapter explores the 
key factors influencing the friction coefficient, including apparent pressure, 
sliding velocity, temperature variations, and the loading history.   

Finally, a proposed numerical model is presented for multi-span continuous 
deck bridges that are seismically isolated using friction pendulum devices.  

3.1 Basis of the isolation theory 

The present section is extensively based on the theoretical analysis of seismic 
isolation developed by Prof. J. Kelly at the University of California and detailed 
in [40-41-45]. 

Similar to the case of fixed-base structures where the theory starts with the 
analysis of a single-degree-of-freedom system, the study of base-isolated systems 
is applied to a two-degrees-of-freedom (2DOF) system, one accounting for the 
isolation level and the other for the superstructure level. 

The theory developed by Prof. J. Kelly assumes that the 2DOF system 
behaves linearly and as such, being many of the isolation devices intrinsically 
nonlinear, it can be considered, as also Prof. J. Kelly pointed out, the theory is 
only an approximation of the real dynamic behavior of the isolated structures, 
necessitating for the application of various linearization techniques within its 
framework. 
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Figure 3.1. 2DOF model of a base-isolated system [40-41]. 

 
The mechanical and kinematic parameters governing the dynamic behavior of 

a single-story structure are introduced next: 

- sm =  mass of the superstructure; 

- ,s sk c = stiffness and damping of the superstructure; 

- bm =mass of the slab level over the isolation system; 

- ,b bk c = stiffness and damping of the isolation system; 

- gu = ground motion displacement; 

- su =  absolute lateral displacement at the superstructure level; 

- bu =  absolute lateral displacement at the isolation level; 

Applying the Newton’s second law to both the slab mass and the 
superstructure mass determines the following equation of motions (expressed in 
terms of absolute displacements): 

 
( ) ( )s s s s b s s bm u c u u k u u= − − − −  (3.1) 

( ) ( )s s b b b b g b b gm u m u c u u k u u+ = − − − −  (3.2) 
 
It is convenient to work in terms of relative displacements sv  and bv , 

respectively equal to the relative displacement of the superstructure with respect 
to the isolation level and the relative displacement of the isolation level to the 
ground: 

 
( )s s bv u u= −  (3.3) 
( )b b gv u u= −  (3.4) 

 
Substituting Eq.s (3.3)-(3.4) into Eq.s (3.1)-(3.2) yields: 
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( ) 0s b s g s s s sm v v u c v k v+ + + + =  (3.5) 

( ) ( ) 0b b g s b s g b b b bm v u m v v u c v k v+ + + + + + =  (3.6) 
 
And then highlighting the ground motion-related terms: 
 

s b s s s s s s s gm v m v c v k v m u+ + + = −  (3.7) 

( ) ( )s b b s s b b b b s b gm m v m v c v k v m m u+ + + + = − +  (3.8) 
 
It is worth noting that if the relative motion between the superstructure and 

isolation level is suppressed ( 0sv = ), then Eq. (3.8) becomes: 
 

( ) ( )s b b b b b b s b gm m v c v k v m m u+ + + = − +  (3.9) 
 
That is the equation of motion of a system with total mass s bM m m= +

supported on the isolation level. 
Similarly, if the relative motion between the isolation level and the ground is 

restrained ( 0bv = ), Eq. (3.7) becomes the equation of motion valid for the more 
general fixed-base SDOF system: 

 

s s s s s s s gm v c v k v m u+ + = −  (3.10) 
 
It is possible to rewrite the equations of motion of the 2DOF in a matrix 

notation: 
 

0 0 1
0 0 0

s b b b b b s
g

s s s s s s s s s

M m v c v k v M m
u

m m v c v k v m m
               

+ + = −              
              

 
(3.11) 

 
Or even in a more compact form: 
 

          [ ] gM v C v K v M r u+ + = −  (3.12) 
 
It is at this stage convenient to introduce the following quantities: 

- s
s

s

k
m

 = the natural frequency of the fixed base structure; 

- b
b

k
M

 = the natural frequency of the isolation system with stiffness bk  ; 

- 
2

s
s

s

c
m




= the viscous damping ratio for the superstructure; 
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- 
2

b
b

b

c
M




= the viscous damping ratio for the isolation level; 

Being M equal to s bM m m= + . 
Additionally, the following order of magnitudes hypothesis can be done 

considering the properties of the isolation system and superstructure: 

- s b  ; this means that if the following quantity is defined 
2

b

s






 
=  
 

, then it is assumed to be of the order 10-2; 

- b sm m but of the same order of magnitude; 

- b  and s are of the same order of magnitude as  . 

Also, defining the mass ratio  as: 

1s s

s b

m m
m m M

 = = 
+

 
(3.13) 

 
It is finally possible to express the system of the equation of motions 

governing the problem in a dimensionless form, dividing Eq. (3.7) for sm and Eq. 

(3.8) for s bM m m= + : 

s s s s s
b s s s g

s s s s s

m m c k mv v v v u
m m m m m

+ + + = −  
(3.14) 

( ) ( )s b s b b s b
b s b b g

m m m c k m mv v v v u
M M M M M
+ +

+ + + = −  (3.15) 

 
Obtaining: 
 

22b s s s s s s gv v v v u  + + + = −  (3.16) 
22b s b b s b s gv v v v u   + + + = −  (3.17) 

 
The natural frequencies of the system can be found by solving the eigenvalue 

problem: 
2[ ] [ ] 0K M− =  

That leads to the following characteristic equation for  : 
4 2 2 2 2 2(1 ) ( ) 0b s b s      − − + + =  (3.18) 

The solution of Eq. (3.18) consists of two roots ( 1 2,  ) given by: 

 2 2 2 2 2 2 2 2 2
1 2

1, ( ) ( ) 4(1 )( )
2(1 ) s b s b s b        


= +  + − −

−
 

(3.19) 

 
Moreover, making the following position for the term under the square root: 



Seismic reliability of 3D isolated bridges accounting for spatial variability of earthquake ground motion 

P a g .  47 | 225 

 

 
2 2

2 2 2 2 2 2 2
2 2 2

4 ( )( ) 4(1 )( ) ( ) 1
( )

s b
s b s b s b

s b

  
      

 
+ − − = − +

−
 

(3.20) 
 

 
 
And then expanding the right-hand side of Eq. (3.20) using a binomial series 

it is possible to write: 
 

2 2
2 2 2 2 2 2 2

2 2 2

2( ) 4(1 )( ) ( ) 1
( )

s b
s b s b s b

s b

 
      

 

 
+ − −  − + 

− 
 

(3.21) 
 

 
Eq. (3.21) is then substituted into Eq. (3.19) such as to derive the expression 

for the two natural frequencies of the isolated system: 
2 2

2
1 2 21

(1 ) ( )
b s

s b

 


  

 
= − 

− − 
 

(3.22) 
 

 
2 2

2
2 2 21

(1 ) ( )
s b

s b

 


  

 
= + 

− − 
 

(3.23) 
 

 
Since the following assumption is valid: s b  , Eq.s (3.22)-(3.23) can be 

rewritten us: 
 

2
1 1b b   = −   (3.24) 

 
2 2

2
2 21

( )(1 ) (1 )
s b s

s

  


 

 
= +  

− − 
 

(3.25) 
 

 
 
The first natural frequency 1 is the frequency of the isolation system, which 

is only slightly modified by the presence of the superstructure (the modification 
factor is of the order of  ).  

The second natural frequency 2  is the superstructure’s frequency which is 
on the contrary significantly affected by the presence of the base slab mass.  

Once the natural frequencies are determined it is possible to derive the first 

 (1)A  and second  (2)A  mode shapes, which it is possible to demonstrate being 

equal to the following mathematical expressions: 

 (1) 1
A



 
=  
 

 
(3.26) 

 
 

 (2)

1

1 (1 )A  



 
 

=  − − 
−  
  

 

(3.27) 
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Figure 3.2. Mode shapes for a Base Isolated 2DOF system [40-41]. 

The first two mode shapes for the isolated structure are illustrated in Figure 
3.2. It can be observed that the first mode shape is approximately the deformation 
of a rigid structure on a flexible isolation system placed at the base. The second 
mode shape determines deformations both in the isolation system and in the 
superstructure, with the displacement at the top of the structure that is out of phase 
and of the same order of magnitude as the isolation displacement. 

The second mode appears to be the mode of vibration of two masses vibrating 

freely in space about the center of mass of the isolated system. The great result of 

this behavior is that the second mode is not responsible for a large base shear even 

for strong values of the acceleration. 

By using the modal superimposition method, it is possible to rewrite the 
relative displacements sv and bv  as follows: 

(1) (2)
1 1 2 1( ) ( ) ( )bv t u t A u t A= +  (3.28) 

 
(1) (2)

1 2 2 2( ) ( ) ( )sv t u t A u t A= +  (3.29) 
 

Where 1( )u t and 2 ( )u t are the principal coordinates in the modal space that 
allow to rewriting Eq.s (3.16)-(3.17) in the following way: 

 
2

1 1 1 1 1 1 12 gu u u u   + + = −  (3.30) 
2

2 2 2 2 2 2 22 gu u u u   + + = −  (3.31) 
 
Being 1  and 2  the modal damping ratios and 1 , 2  the modal participation 

factors. Based on the hypothesis concerning the factor  , it is possible to 
demonstrate that the following relations hold for the first mode: 

1 1 = −  (3.32) 
*
1M M  (3.33) 

Where *
1M  is the modal mass in the first mode. 

Similarly, for the second mode it is possible to derive the following: 
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2 =  (3.34) 

*
2

(1 )[1 2 (1 )]M M   



− − −
=  

(3.35) 

with *
2M the modal mass in the second mode. 

The last results explain why the seismic isolation system is effective in 
reducing the seismic effects on the superstructure: the participation factor 2 , 
associated with the second mode and as so involving structural deformation, is of 
the order of magnitude of  and in general, could be very small if the original 
natural frequencies ,s b   are well separated. Additionally, the natural frequency 
of the second mode is shifted towards higher values than the original fixed-base 
frequency (Eq. (3.25)) which means that the isolated structure will be out of range 
of strong earthquake ground motion with large acceleration at the fixed-base 
structure. 

Furthermore, an important feature related to the seismic isolation is the energy 
dissipation. A natural rubber isolation system provides a degree of damping 
typically in the range of 10-20% of the critical one, which, as is well known, is 
just of the order of 5% for a non-isolated structure. 

It is possible to demonstrate that the following relations are valid for the 
computation of the first and second modal damping ratio 1 and 2 : 

 

1
31
2b  

 
 − 

 
 

(3.36) 

2 1 1
s b  


 

 +
− −

 
(3.37) 

 
It is therefore possible to infer that the first modal damping ratio practically 

coincides with the high value of the damping ratio of an isolator device. 
Conversely, the structural damping (second modal damping ratio) is increased by 
the damping in the isolation system by the term  . Particularly, the product 

b  could have a high weight to the overall damping of the isolated system 

especially if the structural damping s  is as small as it generally is. 

Knowing 1 2 1 2, , ,    the response of the 2DOF isolated structure under a 

ground acceleration time history gu can be calculated (in terms of modal 

displacements) through the Duhamel’s integral: 
 

1 11
1 10

1

( ) ( ) sin ( )
t

gu t u t e t d  
   



−
= − − −  

(3.38) 

2 22
2 20

2

( ) ( ) sin ( )
t

gu t u t e t d  
   



−
= − − −  

(3.39) 
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Or is simply possible to obtain the maximum values of 1u and 2u  by using the 

displacement response spectrum for the ground motion gu  at the frequencies 1

and 2 and for damping ratios 1 and 2 : 

1 1 1 1max
( ) ( , )du t S  =  (3.40) 

2 2 2 2max
( ) ( , )du t S  =  (3.41) 
 
Once the maximum displacements are obtained in the principal coordinates 

notation, it is possible to estimate the corresponding maximum values of the 
relative displacements (in the geometric space) sv and bv , using the SRSS 
combination: 

 
(1) 2 (2) 2
2 1 2 2max max max

( ) ( ( ) ) ( ( ) )sv t A u t A u t= +  (3.42) 

(1) 2 (2) 2
1 1 1 2max max max

( ) ( ( ) ) ( ( ) )bv t A u t A u t= +  (3.43) 

 
And recalling the most powerful results and approximations made in the 

previous equations: 
(1)
1 1A = and (1)

2A = ; 

(2)
1 1A = and ( )(2)

2 (1 ) 1 /A   = − − ; 

1 1 = − and 2 = ; 

The following relations are derived: 

 
2 2 2 2 2

1 1 2 2max
( ) (1 ) [ ( , )] [ ( , )]b D Dv t S S      = − +  (3.44) 

 

and: 

2 2 2 2 2 2 2
1 1 2 22max

1( ) (1 ) [ ( , )] [(1 ) 1] [ ( , )]s D Dv t S S         


= − + − −  
(3.45) 

 
Where generally the second term from Eq.s (3.44)-(3.45) can be neglected if 

the displacements at a higher frequency 2 , are smaller than the ones at 1 . 
Making this assumption it is finally possible to simplify Eq.s (3.44)-(3.45) 
accordingly: 

1 1max
( ) (1 )[ ( , )]b dv t S   −  (3.46) 

and: 
2 2

1 1 2 2max
( ) [ ( , )] [ ( , )]s d dv t S S     +  (3.47) 
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Since the primary objective of this thesis is to apply the theoretical principles 
of base isolation systems, for those structures specifically equipped with friction 
pendulum devices, the next section will delve into the primary physical and 
dynamic characteristics of these devices.  

3.2 Friction Pendulum devices 

FPS devices, originally developed and manufactured by Earthquake 
Protection Systems in Richmond California [45], is a friction-type bearing that 
uses the physical law of the pendulum motion to increase the period of vibration 
of the structure (to 4 seconds or longer), independently of the isolated mass. The 
main components of friction pendulum bearings include a stainless-steel concave 
surface upon which an articulated friction slider moves, typically coated with a 
low-friction material such as PTFE (Figure 3.3). 

 

 

Figure 3.3. Friction pendulum isolator [37]. 

In the case it is required to accommodate large displacement demands without 
increasing the isolator’s dimension, it is possible to use the double concave 

friction pendulum system [21-46-48], which consists of two facing concave 
stainless steel surfaces separated by an articulated double friction slider provided 
with a low-friction material. The upper and lower concave surfaces can have both 
different radii of curvature 1R , 2R  and different friction coefficients 1f , 2f . From 
Figure 3.4 it is evident that the articulated double friction slider is needed to 
accommodate differential movements along the two sliding concave surfaces. 
Particularly, when the friction resistance 2f  is exceeded at the bottom surface 
then the movement is started at the bottom first, while the top surface stays fixed 
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with respect to the slider (Figure 3.4 (b)). As soon as the friction resistance 1f  is 
reached also at the top sliding surface, the situation depicted in  Figure 3.4(c) 
arises, with the isolator that can eventually displace a total distance of 2d. 

 

 

Figure 3.4. Double Concave Friction Pendulum isolator (DCFP) [46]. 

3.2.1  Formulation of the dynamic behavior 

The principle of operation of the friction pendulum system, as originally 
developed by Zayas in 1990 [49] is presented next.  It considers a rigid structure 
with weight W supported by an FPS device displaced horizontally by d on the 
spherical concave surface of radius R . In this configuration, the forces acting on 
the bearing, as illustrated in Figure 3.5 are the following: 

- W =weight of the superstructure; 
- F = lateral force acting on the slider;  
- fF =  friction force acting on the slider; 

- S =normal force acting on the slider and due to the superstructure 
weight; 

- 1t = tensile forces acting on the slider surface which will not be 

explicitly modeled as they are a component of the friction forces fF ; 
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Considering the forces involved in the dynamic behavior, it is possible to 
write the equilibrium equations in both vertical and horizontal directions: 

 
0sincos =+−  fFSW  (3.48) 

and: 

sin cos 0fF S F − − =  (3.49) 
 
Whereas the displacement d results equal to: 

sind R =  (3.50) 
Being R the radius of curvature of the isolator, measured from the center of 

the sliding concave surface to the center of the slider. 
Combining Eq.s (3.48)-(3.49)-(3.50), it is possible to obtain the horizontal 

force F required to displace the bearing: 
 

cos cos
cosf f
WF W tg F d F

R
  


=  + = +  

(3.51) 

 
Additionally, making the hypothesis of small pendulum oscillations, it is 

possible to assume that: cos 1  , sin 1/tg R     . Thus, the two 
components (normal and horizontal) of the vertical force W respectively become: 

 
cosW W   (3.52) 

sin WW
R

   
(3.53) 

 
As a result, the expression for the horizontal force acting on the bearing 

simplifies to: 
 

f
WF d F
R

= +  
(3.54) 
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Figure 3.5. Dynamic isolation behavior of friction pendulum bearing expressed through the free 
body diagram of the forces involved during the motion. 

The friction force fF acting along the tangent direction of the sliding surface 

with a sign equal to the tangent component of the gravity force W is clearly a 
function of the friction coefficient f and the normal component of W, equal to 

cosW W  . Therefore, it is possible to write: 
 

fF f W=   (3.55) 
Regarding the first term of Eq. (3.54), it is associated with the restoring force 

coming from the bearing pendulum movement: 
 
WF d
R

=  
(3.56) 

Therefore, the lateral stiffness of the isolator is equal to: 

Wk
R

=  
(3.57) 

Consequently, the natural period T is given by: 

2 2W RT
gk g

 = =  
(3.58) 

 
The expression derived for the isolatio period demonstrates how the natural 

frequency of a structure, isolated with FP devices, depends solely on the radius of 
curvature of the bearings. This is a significant insight because demonstrates that 
adopting an FP system it is possible to achieve a target-isolation period 
independent of the mass of the superstructure. 

The idealized force-displacement hysteresis loop for the friction pendulum 
isolator provided with a generic amount of friction f  is represented in Figure 3.6. 
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The system behaves nearly rigidly until the friction force fF is overcome. 

Subsequently, the pendulum motion is triggered, and the force increases 
proportionally to the stiffness of Eq. (3.57). When the motion is reversed, the 
friction force suddenly drops to zero. To initiate motion in the opposite direction, 
the sliding surface must overcome the same friction force fF , such that the 

vertical segment in Figure 3.6 at the reversal of the sliding motion is equal to 2 f . 
Considering the case of the double-concave-friction-pendulum (DCFP) 

isolator, according to [46-47], it can be modeled as a serial combination of two 
single FP isolators. Additionally, if the inertial force related to the movement of 
the articulated slider mass is neglected, then the forces acting on the upper and 
lower surfaces, respectively equal to 1F and 2F , result equal and can be obtained 
as follows: 

( )1 1 2 2
1 2

1 2 1 2

M g R f R fM gF F F d
R R R R

  +
= = =  +

+ +
 

(3.59) 

Where d represents the global bearing displacements and 1 2,f f are the friction 

coefficients that characterize the upper and lower surface, while 1R and 2R refer to 
the radii of curvature of the concave sliding surfaces. 

The first part of Eq. (3.59) represents the equivalent stiffness of the restoring 
force from the combined DCFP isolator, denoted as combK , which is equal to: 

 

1 2
comb

M gK
R R


=

+
 

(3.60) 

 
Conversely, the second part of Eq. (3.59) aims at representing the equivalent 

friction coefficient of the DCFP, under the hypothesis that sliding occurs on both 
surfaces and in the same direction: 

  
1 1 2 2

1 2
eqv

f R f R
R R


+

=
+

 
(3.61) 

 
 It will be demonstrated next that, being the behavior of the isolator affected 

by several factors such as the apparent pressure, sliding velocity, and temperature, 
its response is generally nonlinear, meaning that in the case an elastic method of 
analysis is used, it is necessary to introduce some equivalent linear properties that 
generally coincide with the effective bearing stiffness effK  and the equivalent 

viscous damping ratio e . 
Specifically, the effective stiffness is obtained by dividing the horizontal force 

F  for the corresponding bearing displacement d : 

eff
W fWK
R d

= +  
(3.62) 
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Eq.(3.62) clearly demonstrates that the equivalent stiffness effK is  higher than 

the pendulum stiffness of Eq. (3.57). 
Then, since the area under the hysteresis loop is equal to: 
 
4A fWd=  (3.63) 

 
By employing the equivalence established between the energy dissipated due 

to viscous damping and the energy dissipated by the generic hysteretic device, as 
discussed in Chapter 2, we obtain the following relationship: 
 

2
2

4 2
2 2

D
e

e ff

E fWd f
dfW Wk d fd
Rd R


 



 
 

= = =  
   ++    

 

 
 

(3.64) 

 

 

Figure 3.6. Idealized force-displacement hysteretic behavior of the FPS. 

It is evident that the equivalent viscous damping is a function of the friction 
coefficient, of the radius of curvature, and function of the displacement demand. 
The displacement demand can be understood as the required displacement at the 
limit state of interest (e.g., Life-Safety limit state (SLV)). It follows that the 
equivalent viscous damping to be adopted in an elastic analysis changes as a 
function of the demand parameter for the structure at the site of interest. 

3.2.2 Frictional properties of the sliding surface 

Friction is a dissipative force that restrains the relative motion between two 
sliding solids in contact, arising from tangential forces exchanged between the 
contact surfaces. The friction theory is based on three assumptions that have been 
validated experimentally [45]: 

- The total friction force is independent of the apparent surface of 
contact; 

- The total friction force is proportional to the total normal force acting 
on the sliding solids in contact; 

- When the sliding relative velocity is slow, then the friction coefficient 
is independent of the sliding velocity. 
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During sliding, a relation is developed between the frictional force fF arising 

along tangentially at the interface of sliding, opposite to the direction of motion, 
and the normal force N, according to the following relation: 
 fF f N=   (3.65) 

Where f is the friction coefficient and N is the normal force acting at the 
interface.  

Two main kinds of frictional forces can be recognized: a static friction force, 
which occurs between solid surfaces at the beginning of the motion or at the 
reversal of it, and a dynamic friction force which occurs when the surfaces in 
contact are in relative movement.  

At the macroscopic scale of interest for engineering purposes, three general 
phenomena can be recognized between two sliding surfaces: 

- The adhesion component; 
- The ploughing component at the bulk zone; 
- The presence of contaminants or wearing debris that acts like a third 

body along the sliding surface: 

3.2.2.1 Adhesion component 

When two bodies are in contact, before the normal load is applied, their points 
of contact are represented by the asperities. After the load appliance, the asperities 
deform plastically and specific areas of contact, called junctions, are formed. The 
presence of a tangential force can increase the area at the junctions which can 
subsequently increase the shear stresses and decrease the normal force. 

It follows that the frictional force due to adhesion can be written as [50]: 
 

fa rF sA=  (3.66) 
 
Where s is the shear strength of the junctions and rA is the so called “true 

contact area”. 

 

Figure 3.7. Asperities and junctions in sliding interface [50]. 

    Understandably, the highest friction force develops in those cases where the 
true contact area is equal to the apparent contact area. The adhesion mechanism is 
at the base of the difference between static and dynamic friction coefficient: 
indeed, as soon as the sliding is triggered, the true contact area tends to reduce and 
the shear strength of the junctions does not exist anymore.  
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3.2.2.2 Ploughing component 

All the surfaces are characterized by roughness and ploughing. During 
sliding, the roughness of each body undergoes elastic or plastic deformations. 
Nevertheless, summing up this phenomenon for all the contact points it can be 
inferred that the overall effect, and so the frictional force related to roughness, 
tends to cancel out. The phenomenon that concerns the ploughing can be easily 
explained by referring to a hard and non-spherical roughness over a soft and flat 
surface. If an axial force is applied, the asperities located on the harder surface dig 
into the softer surface, and contemporary junctions are formed in other softer 
asperities. Introducing a tangential force, it happens that the sharp edges on the 
hard surface, moving horizontally, drag with it part of the soft material producing 
scores or grooves along the traveled trajectory. The debris tend to accumulate at 
the ploughing edge and therefore a higher friction force is required to overcome 
the accumulated debris on the sliding path. The phenomenon tends to increase as 
much as the sliding length increases.  

3.2.2.3 Third bodies component 

 This aspect is mainly related to contaminants or wearing debris that can 
affect the friction coefficient. It is not always a detrimental effect: for example 
contaminants can accumulate on very high roughness surfaces (ploughing) and 
reduce their asperity while increasing the true contact area. This would increase 
the static friction force. 

On the other hand, if the contaminants are round in shape and made of strong 
material, they reduce the friction coefficient by facilitating the sliding.   

3.2.2.4 Stick-slip motion 

Stick-slip motion is a phenomenon that arises every time the dynamic friction 
coefficient is lower than the static one (Figure 3.8). Before reversal of motion the 
static friction force, which is generally larger than the dynamic one, is mobilized 
again. When this happens causes an irregular stick-slip motion with the frictional 
force that drops for increasing displacement and then increases again as the 
sliding velocity starts to rise up. 
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Figure 3.8. Stick-slip phenomenon. 

3.2.3 Effects influencing frictional behavior 

The determination of the friction coefficient is rather complex as it is 
influenced by several aspects such as apparent pressure, sliding velocity, 
temperature, history of loading, etc. For a comprehensive study of the 
experimental results that have highlighted this dependence refer to [38-39]. 

3.2.3.1 Effect of sliding velocity 

At the initiation of motion, in quasi-static conditions, the interfaces exhibit a 
rather high value of the friction coefficient f due to the adhesion component 
mainly. Furthermore, the interface of the sliding surfaces is covered of a thin 
crystalline and oriented PTFE film that is easier to deform in shear than the 
frictional material itself. At very low velocities a small amount of force is enough 
to shear the film and this is the reason why the friction reduces to a minimum 
value minf . Nevertheless, the sliding friction coefficient increases as the sliding 

velocity increases and attains a constant maximum value maxf  at velocities almost 
equal to 100mm/sec. This behavior is mainly due to the increasing true contact 
area during the movement, which happens at the level of the friction materials and 
not at the level of the thin film, while also the accumulation of debris from the 
softer material on the surface of the harder material contributes to the increasing 
of the friction.  

Figure 3.9 [46] illustrates the dependence of the friction coefficient on the 
sliding velocity and on the apparent pressure: after the initial slip the coefficient 
of friction decreases until it reaches its minimum value minf and then it increases 

again with increasing velocity, eventually reaching its maximum value maxf , after 
which it remains about constant. Increasing the normal load has the effect of 
reducing the friction coefficient, with a degree of reduction that starts to decrease 
when the normal load reaches some limiting value. 

For intermediate velocities, the sliding friction coefficient depends on the 
sliding velocity throughout the following relationship [38-39-50]: 
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Figure 3.9. Relation between sliding velocity, pressure, and friction coefficient [46]. 

max max min( ) vf f f f e −
= − −  

(3.67) 

 
Where maxf and minf are the already mentioned friction coefficients at high 

and low velocities, v  is the absolute value of the sliding velocity, and  is a 

coefficient typically ranging from 20 to 30 sec/m for devices using teflon-PTFE 
stainless steel interfaces. This coefficient regulates the transition from velocities 
minimum values to velocities maximum values. 

Figure 3.10 shows two curves that are based on Eq. (3.67) for two different 

values of the ratio max

min

f
f

= 2.5 and 5.0 and  =100 m/sec, and 20 m/sec. 

 

Figure 3.10. Effect of the   parameter on the variation of friction coefficient with velocity [50]. 

3.2.3.2 Effect of temperature 

After sliding motion initiates, frictional heating occurs and the temperature 
increases abruptly and in proportion to sliding velocity. Elevated temperatures 
resulting from this heat can lead to the accumulation of debris and a modest 
reduction in the friction coefficient. This reduction occurs despite several 
components contributing to the friction force, each responding differently to 
increased temperature. As shown in Figure 3.11, as temperature decreases, the 
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friction value substantially increases at the beginning of motion but as the velocity 
goes up the degree of increase tends to diminish.  

 

Figure 3.11. Influence of temperature on the friction coefficient [50]. 

3.2.3.3 Effects of loading history 

Buckle in [37] has reported that for tests conducted on full-scale friction 
pendulum isolators, involving 3-5 cycles of displacement, the coefficient of 
friction related to the first cycle is generally 20% higher than the average friction 
coefficient from the other cycles. Consequently, the average friction coefficient is 
considered the target design value according to AASHTO specifications [51].  

3.3 Elastic structural model of isolated bridges 

Seismic isolation of bridges is an effective technique that decouples the bridge 
deck from horizontal earthquake components, significantly reducing deck 
acceleration and minimizing forces transferred to the substructure, while also 
providing efficient energy dissipation. These features have been demonstrated in 
many studies adopting both lead rubber bearings (LRBs) and frictional isolators 
(Friction pendulum system [FPS]) [43-44]. 

In the referenced literature [21-22-42-44], various numerical models are 
proposed for modeling multi-span continuous deck bridges seismically isolated 
with friction devices, either accounting for the presence of a rigid abutment [21-
22] or neglecting it (i.e. isolated viaducts) [42].  

One specific numerical model employed to represent the equivalent 
configuration of a continuous multi-span reinforced concrete (RC) deck bridge 
supported by the FP devices, as proposed in [22], is represented in  Figure 3.12. It 
consists of an equivalent 6DOF model with 5DOF used to represent the behavior 
of the elastic RC pier, indeed discretized in 5 lumped masses, and 1 DOF for the 
RC deck mass equipped with FPS. 
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Figure 3.12. 6dof model of a bridge isolated by FP bearings considering pier-abutment-deck 

interaction [22]. 

Under these assumptions, the equations of motion, expressed in terms of drifts 
between the different degrees of freedom that govern the response of the system,  
when a ground motion gu  is considered applied along the longitudinal bridge 

direction, are as follows: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( )

5 4 3 2 1
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p g
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(3.68) 

Where aF and pF are the reaction forces of the isolators placed over the 

abutment and over the pier, that can be evaluated according to Eq. (3.54); du  
denotes the horizontal displacement of the deck relative to the pier, 

1, 2, 3, 4, 5p p p p pu u u u u  are the pier relative displacements, 1 2 3 4 5, , , , ,d p p p p pm m m m m m  

are respectively the mass of the deck and each pier degree-of-freedom, 

1, 2, 3, 4, 5p p p p pk k k k k  and 1, 2, 3, 4, 5p p p p pc c c c c  respectively the stiffness and inherent 

viscous damping coefficient of the same pier DOFs, dc  the bearing viscous 
damping factor. 

It should be pointed out that, according to [43], the following hypotheses are 
considered within the context of the aforementioned equivalent representation of 
the multi-span continuous deck bridge isolated with FPS: 

1. The bridge superstructure and piers are assumed to remain elastic 
during the seismic excitation; 

2. The superstructure is supposed to move as a rigid body; 
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3. The abutments are assumed to be rigid; 
4. The deck is supposed to be straight and representative of a large 

number of spans, supported at discrete locations by piers and 
abutments, while the skew angle is assumed to be zero; 

5. Both pier and deck are modeled as a lumped mass system, divided into 
a certain number of elements connected by nodes; 

6. The piers are assumed to be all of equal height and stiffness, fully 
restrained at their base. 
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4 Generation of spectrum-
compatible seismic ground 
motion accounting for spatial 
variability (SVEGM) 

This chapter explores the fundamental concepts of spatial variability of 
earthquake ground motion (SVEGM). It starts with a historical overview of the 
key studies and findings in the scientific literature regarding the topic. It is 
nowadays well established that SVEGM primarily arises from factors such as the 
loss of coherence, the so-called wave-passage effect, and the site-response effect. 
Given the complexity of the phenomenon, a deterministic analysis approach is 
impractical, requiring the use of probabilistic methods instead. Before delving into 
the adopted simulation techniques, a brief description of the equation of motions 
valid for a multi-degree-of-freedom (MDOF) system, subjected to different input 
ground motions, is provided. Following this, it discusses the main aspects of the 
spectral representation method used to simulate spatially variable earthquake 
ground motion. Within this method, particular attention is given to the specifically 
selected power spectral density (PSD), coherency function, and modulating 
function. Additionally, this study adopts a generation procedure that accounts for 
spectrum compatibility with the specific site of interest. Thus, this procedure is 
described along with its implementation to the case study, which refers to a 
friction pendulum seismically isolated multi-span reinforced concrete bridge 
located near the site of L'Aquila, in Italy. 

Finally, the chapter presents a validation of the adopted procedure, which 
particularly compares the simulated coherency functions with the target ones 
initially integrated into the adopted procedure.      

4.1 Introduction 

Bridges are structures that are often required and designed to link areas 
separated by water and some geological marks, they often span over long 
distances with their support points being far away from each other. Differently to 
other structures, such as buildings, spatial variability of earthquake ground motion 
(SVEGM) is a critical factor in the seismic design of bridges due to the significant 
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differences in seismic waves characteristics such as amplitude, frequency content, 
and arrival time when travelling across successive piers separated by long 
distances. The first isolated studies date back to 1970s [52-53], even if only with 
the data recorded from dense seismographic arrays, installed in the late 1970s-
early 1980s (e.g. El Centro differential array) [54-58], significant advancements in 
understanding the causes of spatial variability were made. Prior to the installation 
of these arrays, the variation of the earthquake ground motion between two 
consecutive points was primarily attributed to the time delay in the arrival of 
seismic waves. As specified in [54] the array that has been studied and analyzed 
the most by engineers and seismologists is the SMART-1 array, located in 
Taiwan, consisting of 37 triaxial accelerometers arranged on three concentric 
circles. Twelve equispaced stations were placed at each ring with an additional 
station at the center of the array, named C00. The array started being operative in 
1980 and the data collected from the instruments quickly started to appear in 
literature. This disposal of collected seismic data allowed for significant 
advancements in the knowledge of spatial variability of ground motion. 

 

Figure 4.1. SMART-1 array in Taiwan. 

Being the seismic response of bridges under SVEGM of great relevance for 
engineers due to the potential negative effects of the phenomenon on such 
structures, it has long been studied [55]. The detrimental effects of SVEGM on 
bridges started to become particularly clear following on-field evidence from past 
earthquakes such as 1989 Loma Prieta and 1995 Kobe earthquakes [56]. 

It is now a well-established convention as also specified in [57-58] to consider 
the phenomenon of spatial variability as coming from mainly three causes: the 
loss of coherence (i.e. loss of statistical correlation) of the motion as a function of 
distance caused by reflections and refractions of seismic waves, the so-called 
wave-passage effect, that is the time delay between the arrival of the wave trains 
when different support points (stations) are considered at different distances in 
space and finally, the site-response effect that takes into account the changing in 
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the motion properties assuming that each of the support points of interest is 
characterized by a specific soil stratigraphy.  

Given the rather complex nature of the phenomenon, a deterministic analysis 
approach is impractical, requiring for probabilistic methods instead.   

One such probabilistic approach is the Random Vibration Analysis (RVA) 
[59-60], which despite its statistical robustness and relevance for Performance-
Based-Earthquake-Engineering it is unfortunately also too complex to be applied 
in the engineering practice [58]. 

An alternative approach, widely adopted in the scientific literature, consists of 
extending the response spectrum method to SVEGM by adopting the theoretical 
principles of the random vibration analysis [61-62]. The major drawback of this 
approach is that it deals with linear or linearized problems that make it inadequate 
for bridge assessment purposes. 

On the other hand, although computationally demanding, simulation of non-
synchronous ground motions in time history analysis can be used practically for 
all sources of nonlinearity (material and geometric) and are particularly 
appropriate in a Montecarlo framework. Within this context, different simulation 
techniques can be adopted, which describe stochastic processes through a 
combination of a power spectral density (PSD) model and an appropriate 
coherency model [63]. Spectral representation method is among the most 
frequently adopted methods for the simulation of stochastic process model [64] 
and has been further improved to simulate ergodic, multivariate stochastic 
processes [65]. 

Starting from simulated ground motions, different algorithms have been 
developed to satisfy the seismic codes requirements in terms of spectrum 
compatibility between the target spectrum of the considered site and the ensemble 
response spectra of the simulated motions [66-67-68]. 

Given the aforementioned methods different sensitivity analysis of structures 
under multiple support excitation have been presented by the scientific 
community. 

Nonlinear time history analysis, in particular, have been used in several 
studies to analyze the response of different types and configurations of bridges 
under multiple support excitation [57-69-70-71-73-73], while only few 
contributions investigate the seismic response of base isolated bridges [74-75]. 

 Neverthless, despite the extensive research on the topic discussed above most 
of the seismic codes worldwide, do not follow a common approach to spatial 
variability of ground motion while often preferring simplified methods or indirect 
provisions such as designing larger seating deck lengths. Currently, only two 
seismic codes address specifically the SVEGM in the seismic design and 
assessment of bridges, which are Eurocode 8-Part 2 [76] and the Italian Building 
Code [77], even if they are far from providing a code-oriented approach that can 
be easily implemented by the civil engineering community. 
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4.2 Equations of motion for Multiple Degree of Freedom 
(MDOF) subjected to SVEGM 

Considering the case of a linear elastic structure with N unconstrained 
degrees-of-freedom and M degrees-of-freedom at the supports, subjected to 
different input ground motions, the formulation of the seismic response to each of 
the considered excitation components would be different from the case of uniform 
excitation. It is indeed widely accepted that the difference is that if the system 
supports are moving independently one of each other, they induce a pseudo-static 
response that needs to be sum up to the dynamic component resulting from 
inertial forces.  

As already mentioned, for multi-support excitation the support motions at 
every time instant are different along the MDOFs at the supports and this requires 
that the total displacement of the superstructure (N unconstrained DOFs) should 
be expressed as the sum of the relative displacements of the superstructure with 
respect to the supports ( )u and the quasi-static displacements ( )su , where the 

latter consist of the displacements generated at the superstructure due to a quasi-
static motion at the supports. Thus the following relation is valid: 

 
( ) ( ) ( )t su t u t u t= +  (4.1) 

 
It is convenient to express the quasi-static displacement ( )su in the following 

way: 
 

( ) ( )s gu t u t=   (4.2) 
 

( ) ( ) ( )t gu t u t u t= +   (4.3) 
 

Where   is an influence matrix of dimension [NxM] and has the same 
significance that has the influence vector for the case of uniform excitation, where 
each column  k represents the static displacements of the superstructure nodes 

when the k-th support is subjected to unit displacement while all the others are 
kept fixed.   

According to [72-78] the equations of motion for an MDOF system under 
multiple support excitations have the following expression: 

 
0c t c t c t

T T T
c g g c g g c g g g

M M u C C u K K u
M M u C C u K K u P
             

+ + + =            
             

 
 (4.4) 

 

 
Where: 

, ,M C K =mass, damping, and stiffness matrices [NxN] of superstructure with 
N unconstrained DOFs; 
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, ,g g gM C K =mass, damping, and stiffness matrices [MxM] associated with 

the MDOFs at the supports; 
, ,c c cM C K =coupling mass, damping, and stiffness matrices [NxM] between 

the N unconstrained and the M constrained nodes; 

tu =vector  1Nx  of the total displacements corresponding to the 

superstructure/unconstrained DOFs; 

gu = vector  1Mx of the input ground motion displacements at the support 

DOFs; 

gP = vector  1Mx of forces generated at the support DOFs. 

Furthermore, to write the equations of motion according to Eq. (4.3) and thus 
separate the total superstructure displacements into two components, the vector 

 
T

t gu u  is exploited as follows: 

 

0 0
t s g

g g g

u u uu u
u u u

        
= + = +         
        

 
 (4.5) 

 

 
To find the quasi-static displacements su  produced by the support 

displacements gu the following equilibrium equation can be written according to 

[78]: 
 

0c s
T s
c g g g

K K u
K K u P
     

=    
     

 
 (4.6) 

 

 
Where s

gP are the support forces that arise when displacements gu is applied 

in a quasi-static way.  
From Eq. (4.6) it derives that: 
 

0s c gKu K u+ =   (4.7) 
 

And so: 
 

1
s c gu K K u−= −   (4.8) 

 
Where: 
 

1
cK K− = −   (4.9) 

 
Such that: 
 

s gu u=    (4.10) 
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Further, by substituting Eq. (4.10) into Eq. (4.7) the following relation is 
derived: 

 
( ) 0c gK K u+ =   (4.11) 

 
Starting from the system of equations of motion expressed in Eq. (4.4) the 

following are derived: 
 

0t c g t c g t c gMu M u Cu C u Ku K u+ + + + + =   (4.12) 
 

t t t c g c g c gMu Cu Ku M u C u K u+ + = − − −   (4.13) 
 

Substituting Eq. (4.3) into Eq. (4.13), together with the equally derived 
expression for acceleration:  

 
( ) ( ) ( )t gu t u t u t= +    

 
and velocity: 
 

( ) ( ) ( )t gu t u t u t= +   

 
The equations of motion are expressed as follows: 
 

( ) ( ) ( )c g c g c gMu Cu Ku M M u C C u K K u+ + = − + − + − +   (4.14) 
 

 
Following Eq. (4.11) the term ( )c gK K u+ is equal to zero; additionally, the 

coupling mass can be generally neglected for most structures; also the 
contribution of the damping term ( )c gC C u+ is generally very small and can be 

neglected. Thus Eq. (4.14) is reduced as follows: 
 

gMu Cu Ku Mu+ + = −   (4.15) 
 

The above equation is the most general equation of motion for an MDOF 
system subjected to multiple support excitation and is consistent with the same 
equation that can be generally written for the case of uniform excitation.  

The main difference in the calculation is that if in the uniform excitation case, 
the influence matrix   is obtained straightforwardly, for multiple support 
excitation it is obtained from a static analysis of the structure under relative 
movements. 

In addition, expressing the displacements u in terms of modal contribution: 
 

1

N

i i
i

u q q
=

=  =  
 (4.16) 
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Being q the modal coordinates, substituting Eq. (4.16) into Eq. (4.15), under 

the hypothesis of modes’ orthogonality, the N decoupled equations of motion are 

derived: 
 

 2
, , ,

1
2

TM
i k

i i i i i i i k g k i k T
k i i

M
q q q u

M


   
 =


+ + = − =  

 (4.17) 
 

 
Where ,i k is the modal participation factor for mode i when the k-th support 

of the structure is excited and k is the k-th column of the influence matrix 
introduced above. It is worth noting that in the case of uniform excitation, the 

modal participation factor for mode i is defined as: ,
1

M

i i k
k

 
=

= . 

The solution of the i-th (i=1,…,N) equation of motion is given by: 

, , ,
1 1

M M

i i k i k i k
k k

q q D
= =

= =   
 (4.18) 

 
 

 Where ,i kD is the displacement related to the single-dof oscillator with 

dynamic properties given by mode i  when the k-th support is excited. 
Substituting into Eq. (4.16) the total displacement expressed in Eq. (4.1) can 

be rewritten as: 

   , , ,
1 1 1

M N M

t k g k i i k i k
k i k

u u D 
= = =

=  +   
 (4.19) 

 
 

Eq. (4.19) shows how the response of a structure under different motions can 
differ from the uniform excitation one because if in the latter case, the first term of 
Eq. (4.19) represents a rigid body motion with no overstresses in the structure, the 
multiple support produces additional internal forces. 

4.3 Simulations of spatially variable ground motions 
(SVEGM) 

In the literature, various simulation techniques can be found for the generation 
of spatially variable ground motion time histories [79]. In this study, the Spectral 
representation method [64-65] has been adopted as it integrates well with the 
Montecarlo framework approach. Accordingly, the ground motion is considered 
to be a sample of a stochastic Gaussian process.  

Particularly, following the algorithm explained in [65] it is possible to 
generate 1D-mV (one-dimensional, multi-variate) quasi-stationary (only the 
amplitude of the process is considered to vary with time) stochastic vector process 
with components ( ), ( 1,..., )jf t j m=   having zero mean: 

 
( ) 0jE f t  =  (j=1,…,m)  (4.20) 
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And cross-correlation matrix given by:  

   

11 12 1

21 22 2

1 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

( , )

( , ) ( , ) ( , )

m

m
f

m m mm

R t t R t t R t t
R t t R t t R t t

R t t

R t t R t t R t t

  

  


  

 + + +
 

+ + + + =
 
 

+ + +  

 (4.21) 

 
Consistently, the corresponding cross-spectral density matrix is equal to: 

11 12 1

21 22 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( )

m

m
f

m m mm

S S S
S S S

S

S S S

  

  


  

 
 
 =
 
 
  

 

 
(4.22) 

 
Additionally, the cross-correlation matrix results a function of time lag 

only, whereas the cross-spectral density matrix is Hermitian and has off-diagonal 
elements expressed in the following form: 

 
( ) ( ) ( ) ( ),jk j k jkS S S   =       

, 1, 2,..., ;j k m j k=   

(4.23) 

 
Where ( )jk   is the complex coherence function between ( )jf t  and ( )kf t . 

It follows that the off-diagonal terms of ( )fS   are complex functions of the 

frequency   satisfying the following properties: 
 

*( ) ( ),jk jkS S = −               , 1,2,..., ;j k m j k=   (4.24) 
*( ) ( ),jk kjS S =               , 1,2,..., ;j k m j k=   (4.25) 

 
Where the asterisk is assumed to represent the complex conjugate. 
On the other hand, the diagonal elements are both real and non-negative: 
 

( ) ( ),jj jjS S = −               1, 2,..,j m=   (4.26) 

 
For the special case of a uniformly modulated quasi-stationary vector process, 

it is possible to introduce the modulating functions ( )jA t , 1, 2,..,j m=  as a 

function of time only and relate the elements of the cross-correlation matrix to the 
corresponding elements of the cross-spectral density matrix through the following 
transformations: 
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( , ) ( ) ( ) ( ) ;i
jj j j jR t t A t A t S e d   

+

−

+ = +      1,2,...,j m=  (4.27) 

( , ) ( ) ( ) ( ) ( ) ( ) ;i
jk j k j k jkR t t A t A t S S e d     

+

−

+ = +   (4.28) 

1,2,..., ;j m j k=   
 
In such a case, the m-components of the quasi-stationary stochastic vector 

process with zero mean can be expressed as: 
 
( ) ( ) ( )j j jf t A t g t= , 1,2,..., ;j m=  (4.29) 

 
Where ( )jg t , 1,2,...,j m= , are the m-components of a stationary stochastic 

vector process having mean value equal to zero. 

4.3.1 Power Spectral Density (PSD) 

The power spectral densities (PSD) ( )jjS   of the motion at the station 

1,2,...,j m= with j k= are estimated from the Fourier analysis of the recorded 
data. Once the power spectra of the ground motion at the stations of interest is 
known, a parametric form is evaluated via a regression scheme and used to fit the 
estimates. 

The most commonly used parametric power spectral density [80-83] is the 
Kanai-Tajimi PSD, further extended by Clough and Penzien. The physical 
meaning of the Kanai-Tajimi PSD is that it results from a filtered process whose 
input is a white-gaussian-noise at the bedrock and the filter is represented by the 
soil strata, resulting in the following expression: 

 
2

2

0 22 2

2

1 4
( )

1 4

g
g

a

g
g g

S S







 


 

 
+   

 =
    
 − +           

 

 
 
 

(4.30) 
 

   
In which 0S is the amplitude of the white-gaussian-noise at the bedrock and 

g and g are the frequency and damping coefficient of the soil filter. The major 

drawback of Eq.  
 
 

(4.30) is that it gives infinite variances for the ground velocity and 
displacement. Indeed, the power spectral velocity and displacement are related to 
that of the acceleration through the following: 
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2

1( ) ( )v aS S 


= ,  
4

1( ) ( )d aS S 


=  (4.31) 
 

 
Such that as 0→ the velocity and displacement spectrum of Kanai-Tajimi 

go to infinity. The Clough and Penzien PSD [81] adds a second soil filter with 
parameter f  and f  to the Kanai-Tajimi model to yield finite variances for 

velocities and displacements. The resulting power spectral density has the 
following expression: 

 
  

2 4

2

0 2 22 2 2 2

2 2

1 4
( )

1 4 1 4

g
g f

a

g f
g g f f

S S

 


 


   
 

   

   
+       

   = 
          
   − + − +                           

  

(4.32) 
 

 
Depending on the soil condition, the soil filter parameters can assume 

different values [65]: 
Rock or stiff soil conditions: 

8 / secg rad = ,  0.6g =  (4.33) 
 

Medium soil conditions: 
5 / secg rad = ,  0.6g =  (4.34) 

 
Soft soil conditions: 

2.4 / secg rad = ,  0.85g =  (4.35) 
 

Whereas the filtering parameters f is set generally equal to 0.10 g and 

f g = [65].  
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Figure 4.2. Power spectral density functions according to the Kanai-Tajimi modified model for 
stiff, medium, and soft soil. 

It should be pointed out that the aforementioned power spectra model is only 
representative of the local soil conditions, since the excitation at the bedrock is 
modeled through a white-Gaussian-Noise. Because the seismic ground motion is 
the result of a complex phenomenon that starts with the rupture at the fault and is 
followed by the transmission of waves through the soil from the fault to the 
ground surface, alternatively seismological models that consider these effects can 
be uses in lieu of the Kanai-Tajimi model. One of the most adopted in literature is 
the Joyner and Boore model [82].    

4.3.2 Coherency 

The coherency of the seismic motion is obtained by inverting Eq. (4.23), it 
can be therefore expressed through the ratio between the cross power spectral 
density of the motion between station j and k  and the corresponding power 
spectral density: 

 
( )

( )
( ) ( )

jk
jk

jj kk

S
S S




 
 =       

(4.36) 

 
The so obtained coherency is a complex number while its absolute value 

squared, called coherence, is a real number bounded between zero and one. 
 

2
2 ( )

( )
( ) ( )

jk
jk

jj kk

S
S S




 
 =       

(4.37) 

 
An alternative way of expressing the coherency is the following: 
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( ) ( ) exp ( )jk jk jki     =     (4.38) 

 
Being ( )jk  the phase spectrum expressed as: 

 

1 Im[ ( )]
( ) tan

Re[ ( )]
jk

jk
jk

S
S


 



−
 

=   
 

 
(4.39) 

  
The coherency is also a function of the separation distance jk  between two 

further away stations j and k  on the ground surface and can be alternatively 
expressed as: 

 
( , ) ( , ) exp ( , )jk jk jki        =     (4.40) 

4.3.2.1 Wave passage effect 

The complex term in the above equation exp ( , )jki     represents the wave-

propagation effect and so the delay in the time arrival of seismic waves at two 
separated stations. Under the hypothesis that waves propagate with constant 
velocity along a line connecting the stations of interest on the ground surface, 

( , )jk   is expressed as: 

 

( , ) jk
jk

appv


  
−

=   
(4.41) 

Where appv indicates the apparent propagation velocity of the motion along 

the line connecting the stations j and k with separation distance jk .  

Based on the coherence estimates derived from recorded ground motions 
(e.g., SMART-1 array in Taiwan), various mathematical models have been 
proposed in the literature to fit the data points through regression analyses. In the 
following section, two of the most commonly used mathematical models for 
coherence will be presented. However, it's important to note that many other 
models, each with their own advantages and limitations, could also be utilized for 
this purpose.   

4.3.2.2 Empirical coherency models  

Most of the empirical expressions for the coherency were proposed based on 
the analyses of data collected at the SMART-1 array. One of these is the 
Harichandran and Vanmarcke model [52], whose expression is specifically based 
on the fitting of data related to the SMART-1 array event 20: 
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2 2
( ) exp (1 ) (1 )exp (1 )

( ) ( )
jk jk

jk A A A A A A
 

  
   

   
    = − − − + − − − −
      

 
(4.42) 

 

0.5

0

( ) 1
b

k 
 



−

  
 = +  
   

 
(4.43) 

 

 
This coherency model makes use of the parameters derived by Harichandran 

and Wang [85]: 0.606A = , 0.0222 = , 19700k m= , 0 12.692 / secrad = , 

3.47b = . 
Figure 4.3 presents the decay of the coherency with frequency   at three 

different separation distances equal to 100, 300, and 500m according to the 
Harichandran and Vanmarcke model. 

 

Figure 4.3. Harichandran and Vanmarcke Coherency model [79]. 

 

4.3.2.3 Semi-empirical models 

Semi-empirical models are those that employ an analytical function to 
describe data, using parameters that are calibrated based on recorded data. 

The wider-used semi-empirical coherency model is the one introduced by 
Luco and Wong in 1986 [53] and is based on the following expression: 

 
2

( ) exp jk
jk

sv


 
 − 
 =  
   

 
(4.44) 

 

 
Where sv is the shear-wave velocity of the soil strata and   is a constant 

empirically calibrated; according to the observation of field data, Luco and Wong 
[53] suggested for the ratio / sv   a value comprised between 

4 42.5 10 / 3.0 10sx v x− −  . The coherency, according to this model, decays 
exponentially with the frequency  , the separation distance between two stations 

jk , and the inverse of the mechanical property of the soil (Figure 4.4). 
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Zanardo et al. [71] proposed to adopt different correlation patterns for the 
ground motion time history simulation, depending on the value of the ratio / sv

as summarized below: 

- / 0sv = meaning the ground motions are perfectly coherent; 

- 5/ 2.5 10sv x −= the ground motions are strongly correlated; 

- 4/ 2.5 10sv x −= the ground motions are intermediately correlated; 

- 3/ 2.5 10sv x −= the ground motions are weakly correlated; 

- 2/ 2.5 10sv x −= meaning that the ground motions are totally 
incoherent. 

 

Figure 4.4. Luco and Wong coherency model for three separation distances and for a value of 
4/ 2.5 10sv x −= . 

4.3.3 Simulation formula of spatially variable ground motions 
(SVEGM) 

To simulate the 1D-mV quasi-stationary ground motion vector process 
( ), ( 1,..., )jf t j m= , according to [65], the first step of the procedure involves 

decomposing the cross-spectral density matrix ( )fS   at every time instant t using 

the Cholesky’s method as follows: 
 

*( ) ( ) ( )T
fS H H  =    (4.45) 

 
Where ( )H   is a lower triangular matrix written as: 
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( ) 0( ) 0( )
( ) ( ) 0( )

( )

( ) ( ) ( )m m mm

H
H H

H

H H H

  
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
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 
 
 =
 
 
 

 

 
 

(4.46) 

 
Once the cross-spectral density matrix ( )fS   has been decomposed 

according to Eqs.   (4.45) and  
 
(4.46) it is possible to generate the quasi-stationary ground motion vector 

process ( ), ( 1,..., )jf t j m=  through the following series as N →  and being 

1,2,....,j m= : 

1 1
( ) ( ) 2 ( ) cos[ ( ) ]

j

m N

j jr s s jr s rs
r s

f t A t H t     
= =

=   − +   
(4.47) 

Where: 

 1 Im[ ( )]
( ) tan

Re[ ( )]
jr

jr
jr

H
H


 



−
 

=   
 

 (4.48) 

In which Im and Re denote respectively the imaginary and real part of a complex 
number, whereas: 

,s s =     1,2,..., ,s N=      C

N


 =  
(4.49) 

In Eq. (4.49) C represents an upper cut-off frequency beyond which the 
elements of the cross-spectral density matrix ( )fS   can be considered equal to 

zero. In addition, inside Eq.  
(4.47) m sequences of N independent random phase angles rs , uniformly 

distributed over the interval [0, 2 ] , are introduced. 
Additionally, the simulated quasi-stationary stochastic vector process 

( ), ( 1,..., )jf t j m=  is asymptotically Gaussian as N →  invoking the central 

limit theorem. 
In order to generate multiple sample function ( ) ( )i

jf t  of the quasi-stationary 

stochastic vector process ( ), ( 1,..., )jf t j m= , each of the m sequences of the 

random phase angles rs can be substituted with their respective realizations ( )i
rs . 

Following this approach, the generic sample function ( ) ( ), ( 1,..., )i
jf t j m=  can be 

written as follows: 
 

( ) ( )

1 1
( ) ( ) 2 ( ) cos[ ( ) ]

j

m N
i i

j jr s s jr s rs
r s

f t A t H t     
= =

=   − +  (4.50) 
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4.4 Spectrum-compatible quasi-stationary ground 
motion vector process 

Given the importance of generating simulated time histories for the design or 
the assessment of structures according to the international seismic codes, and 
considering that the elastic response spectrum is the most widely used tool for the 
seismic design of structures and infrastructures, it is crucial for the simulated 
ground motion to be spectrum-compatible. Accordingly, in this work of thesis, the 
method proposed by Cacciola in 2010 [66] for the generation of fully non-
stationary, spectrum-compatible earthquake motions and further extended by 
Cacciola and Deodatis [67] for the case of multi-variate simulation, is adopted. 

The method assumes that the average response spectrum derived from the 
simulated time histories, closely matches the target response spectrum provided 
by the code within a code-specified tolerance and over a certain frequency range: 

 
( ) ( )

( )

jfj

j

RSA RSA
RSA
 




−
  ( 1,...., )j m=  (4.51)  

 
Where ( )jRSA   is the j-th target response spectrum associated with the j-th 

station and ( )jfRSA  the j-th ensemble-averaged response spectrum of the 
simulated ground motion vector process ( ), ( 1,..., )jf t j m= that superimposes to 

the target spectrum, satisfying a constant   code-specified tolerance. 
Given a target pseudo-acceleration response spectrum 0( , )RSA    for a given 

natural frequency 0  and damping ratio  , the procedure requires for the 
simulated time histories to have a power spectral density matrix whose response 
spectrum matches (within the aforementioned tolerance  ) the target one.  

The first crossing problem defined by Vanmarcke and Gasparini [84] is 
essential to accomplish this task as it provides a relationship between the 
response-spectrum and the ground motion power spectral density. In this problem, 
the ground motion acceleration process is assumed to be a zero-mean Gaussian 
stationary process. The pseudo-acceleration response-spectrum, 0( , )RSA   , 

given a damping ratio   and the natural circular frequency 0 , is associated 
through the following expression to the median value of the maximum peak of the 
response of a single degree of freedom system: 
 

2
0 0 0, 0 1, 0

2, 0 0, 0

( , ) ( , 0.5, ( , ), ( , ),

( , )) ( , )
U S U U

U U

RSA T p         

     

= =


   

 

(4.52) 

Where U is the peak factor given by the following expression: 
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 1.22ln 2 [1 exp[ ln(2 )]U U U UN N  = − −       (4.53) 

  
With: 
 

 2, 0 1

0, 0

( , )
(ln )

2 ( , )
US

U
U

TN p
  

   

−= −       (4.54) 

And: 
 

 
2

1, 0

0, 0 2, 0

( , )
1

( , ) ( , )
U

U
U U

  


     
= −       (4.55) 

 
In Eq. (4.53)  the term TS is the observing time window whereas p is the not-

exceeding probability.  
Additionally, the terms , 0( , )i U   , with (i=0,1,2) represent the response 

spectral moments expressed as: 
 

 2
, 0 0

0

( , ) ( , , ) ( )i
i U jH G d        



=   (4.56)    

In which ( )( )
122 2 2 2 2 2

0 0 0( , , ) 4H        
−

= − +  is the energy transfer 

function of the system and ( )jG  is the unilateral power spectral density to be 

determined as a property of the seismic acceleration process. Specifically, the 
unilateral power spectral density ( ) (2 ( ), 0; 0 )j jG S elsewhere  =  = , 

compatible with a given response spectrum, has the following recursive 
expression: 
 

( ) 0jG  = , 0 l    (4.57) 
2 1

2
11

( , )4( ) ( )
4 ( , )

i
i

j j r
ri i U i

RSAG G 
  

    

−

=−

 
= − 

−  
  

 l   (4.58) 

 
To determine the peak factor U and the parameter U  it is possible to make 

the assumption that the input PSD features a smooth shape and 1 . 
Accordingly, the following simplified relations are valid: 
 

 1(ln )
2

S
U i

TN p


−= −       (4.59) 

and: 
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1/22

2 2

1 21 1 arctan
1 1

U



  

  
  = − −

  − −  

      (4.60) 

In Eq. (4.58) l has the significance of a lower bound in the frequency domain for 

U and is assumed to be  1 / secl rad  . 
Having determined the unilateral spectrum-compatible power spectral density 

function it is then possible to evaluate the elements of the cross-spectral density 
matrix ( )SC

fS  defined as for Eq.  

(4.22). Particularly, the elements on the diagonal are specified by the 
following relation between  ( )jG  and ( )SC

jS  : 

( ) ( ) / 2SC
j jS G = , 1,2,...,j m=  (4.61) 

   
Whereas the off-diagonal terms are defined in perfect analogy with Eq. (4.23) as: 
 

( ) ( ) ( ) ( )SC SC SC
jk j k jkS S S   =  , 

, 1, 2,....,j k m= , j k  

(4.62) 
 

  
where the superscript “SC” stands for “spectrum-compatible”. 

At the end of the procedure, it is possible to generate at each station or 
support points of the ground surface quasi-stationary ground motion time histories 
that make use of a certain coherence function ( )jk  and are spectrum-

compatible.   

4.5 Generation of input ground motion accounting for 
spatial variability for the case study 

In this section, the adopted methodology for generating quasi-stationary and 
spectrum-compatible ground motion vector process is further detailed for the case 
study, where the seismic response under spatially variable earthquake ground 
motion of respectively 5-span and 7-span isolated bridges (testbed bridges) is 
investigated. 

The acceleration time histories at six (two abutments + four piers) and eight 
(two abutments + six piers) support points on the ground surface of the two 
testbed bridges are considered as 6-variate and 8-variate quasi-stationary, 
spectrum-compatible input motions. The wave train is assumed to propagate along 
the bridge’s longitudinal axis from left to right.  

The 5-span bridge is located in Central Italy, near the city of L’Aquila, known 
for its high seismic hazard. As for NTC2018 [77], a total of 9 intensity measure 
levels, corresponding to a mean return period ranging from 30 to 2475 years are 
considered to evaluate the structural response under increasing seismic intensity 
levels.  
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The soil underneath the support points is assumed to be either of Category A 
(rock or other rock-like geological formation) or of Category B (very dense sand, 
gravel, or very stiff clay) as defined in [77]. This classification allows the 
evaluation of the target elastic response spectrum for the site of interest and for 
the specific soil category. In this study, the following combination of local soil 
conditions for the 5-span bridge and the 7-span bridge is adopted: 

 
5-span bridge- Soil condition at support points 

Ab1 P1 P2 P3 P4 Ab2 
Soil A Soil B Soil B Soil B Soil B Soil A 

Table 4.1. Soil condition combination for the 5-span bridge. 

 
7-span bridge- Soil condition at support points 

Ab1 P1 P2 P3 P4 P5 P6 Ab2 
Soil A Soil B Soil B Soil B Soil B Soil B Soil B Soil A 

Table 4.2. Soil condition combination for the 7-span bridge. 

The first and the last letters indicate the soil type underneath the abutments, 
which are assumed to be founded on soil of Category A, differently from the piers 
that rest on a soil B Category, according to the soil type combinations proposed in 
[57].  
The acceleration time histories at the abovementioned support points are 
considered partially correlated according to the Harichandran and Vanmarcke 
coherency model [52] (Figure 4.5), which makes use of the parameters that 
Harichandran and Wang [85] obtained by analyzing the data from the SMART-1 
array: 0.606A = , 0.0222 = , 19700k m= , 0 12.692 / secrad = , 3.47b = : 
 

2 2
( ) exp (1 ) (1 )exp (1 )

( ) ( )
jk jk

jk A A A A A A
 

  
   

   
    = − − − + − − − −
      

 
(4.63) 

 

0.5

0

( ) 1
b

k 
 



−

  
 = +  
   

 
(4.64) 
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Figure 4.5. Harichandran and Vanmarcke loss of coherency between the ground motion time series 
for station at Abutment 1 and Pier#1 (32m) and Abutment 1 - Abutment 2 (229m), for the 7-span 

bridge configuration. 

The model used here differs from other mathematical expressions, such as the 
semi-empirical models by Luco and Wong [53], because it avoids a sharp 
exponential decay with distance and frequency. This allows for a greater 
contribution coming from the dynamic component (and not just the pseudo-static 
component) of the seismic bridge response. This dynamic contribution has been 
demonstrated to be particularly crucial for isolated bridges. Alternatively, any 
other model can be adopted straightforwardly.   

The wave propagation effect as defined in §4.3.2.1 is also taken into account 
assuming an apparent wave propagation velocity equal to 900 /appv m s= [74]. 

As such, the complex coherence function ( )jk   defined in Eq. (4.23) must 

include the wave propagation term expressed as: 

exp jk
wp

app

i
v



 

= − 
  

 
(4.65) 

 

in which jk is the distance between points j and k and appv  is the 

abovementioned apparent velocity. Including the wave propagation term the 
coherency can be written as follows: 

 

( , ) ( , ) exp jk
jk jk

app

i
v


   
 

 =  − 
  

 
(4.66) 

 

 
Based on the previous comments, it is possible to simulate time histories that 

are at the same time spatially correlated, that incorporate the wave propagation 
effect, and that are representative of different local soil conditions. 
Such ground motion time histories ( )jf t , modeled as quasi-stationary stochastic 

vector process, need for the definition of a modulating function ( )jA t   

1,2,...,j m=  as per Eq. (4.29).  
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In this study the modulating function proposed by Jennings, Housner, and 
Tsai [86], (Figure 4.6), is selected. Its mathematical expression is as follows: 
 
 

2

1
1

1 2

2 2

( ) 1

exp[ ( )]

j s

t t t
t

A t t t t T

t t t t

  
  
  
 
 

=   = 
 
 
 − − 
 
 

1, 2,...j m=  

 
 
 
 

(4.67) 
 

In Eq. (4.67), named 2 1ST t t= −  the duration of the stationary part of the 
ground motion time history (i.e. the duration of the strong motion S-wave 
observing window) and based on the requirements of Eurocode 8 ( 10secsT  ) 
[76], the constant segment of the Jennings et al. function has been extended over a 
time length 15ST s= .  

Regarding the values of  , 1t and 2t , they are evaluated by ensuring that the 
energy of the stochastic ground motion reaches the values of 5% and 95% 
respectively at times 1t and 2t . This assumption extends the well-known Husid 
function (Eq. (4.68)) to the stochastic process [66]; accordingly, it is possible to 
evaluate the values of 1( ) 0.05H t = and 2( ) 0.95H t = . 

2

0 0

2

0 0

( ) ( )
( )

( ) ( )

t

j

tf

j

a t G dt
H t

a t G dt








=
 

 

 

(4.68) 
 

Eq. (4.68) permits to derive the following relationship [68] between the 
parameters   and 1t , 2t , once defined the strong motion stationary duration ST : 
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9

ST
 = ; 1

2.5 ;t


=  2
11.5t


=   (4.69) 

 

Figure 4.6. Modulating function Aj(t) according to the Jennings, Housner, and Tsai model [86]. 

In (Figure 4.7) the power spectral density functions defined according to Eq.s 
(4.57)-(4.58) and related to the pseudo-acceleration response spectrum 

0RSA(ω ,ζ=2%) for the specific site of interest, a mean return period 

2475RT years= , PGA=0.452g,  and for Soil Category A and Soil Category B is 
presented: 

 

Figure 4.7. Power spectral density functions spectrum-compatible with the pseudo-acceleration 
response spectrum 0RSA(ω ,ζ=2%)   for the site of L’Aquila (Italy), mean return period 

2475RT yrs= , Soil Category A, and Soil Category B. 

The i-th sample of the spectrum-compatible acceleration time histories ( ) ( )
j

if t

, generated according to Eq. (4.50), is then presented in (Figure 4.8) for each 
station or bridge support, for the case of the 7-span testbed bridge, 

2475RT years= , PGA=0.452g and 900 / secappv m= . For the simulation of 
( ) ( )
j

if t , in both cases of 6-variate and 8-variate vector processes, the upper cut-off 

frequency C  has been set equal to 157rad/sec whereas the frequency step is 

defined as C

N


 = , being N=1000. Simulation of acceleration time histories is 

performed at 3000-time instances with a time step equal to 0.01s.  
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Figure 4.8. Set of accelerograms along the 7-span bridge supports for the case of PGA=0.452g, 

appv =900m/sec . 

In this study, a total of 30 realizations (sample functions) are generated for 
each bridge support to express the uncertainty related to the seismic input and to 
reach convergence between the mean spectra of the realizations and the targeted 
pseudo-spectral acceleration response spectrum for the site of interest 

0RSA(ω ,ζ=2%) . In (Figure 4.9) a comparison between the ensemble-averaged 
simulated response spectrum and the target one, for the specific case of a mean 
return period 2475RT years= , PGA=0.452g, is shown, and the effectiveness of the 
followed procedure is demonstrated.  
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Figure 4.9. Comparison of mean response spectrum (30 realizations) of the i-th generated motions 

for the case of PGA=0.452g, TR=2475yrs, 900 / secappv m= . 
 

 

4.6 Validation of the adopted procedure 

To numerically validate the adopted procedure for the 5-span testbed bridge, 
it is possible to compare the ensemble-averaged coherence functions with the 
prescribed ones defined in Eq. (4.63) [65]. 
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For the 5-span, 6 support points bridge, (6-variate quasi-stationary stochastic 
vector process) the elements of the 6x6 spectrum-compatible cross-spectral 
density matrix (Eq.  

(4.22)) are defined as follows: 
 

1 12 13 14 15 16

21 2 23 24 25 26

31 32 3 34 35 36

41 42 43 4 45 46

51

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( ) ( )

SC SC SC SC SC SC

SC SC SC SC SC SC

SC SC SC SC SC SC
SC
f SC SC SC SC SC SC

S

S S S S S S
S S S S S S
S S S S S S

S
S S S S S S
S

     

     

     


     
=

52 53 54 5 56

61 62 63 64 65 6

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

C SC SC SC SC SC

SC SC SC SC SC SC

S S S S S
S S S S S S

     

     

 
 
 
 
 
 
 
 
  

 

 
 
 
(4.70) 

 
Where the diagonal terms are computed as half of the unilateral power 

spectral density ( )jG  :  ( ) ( ) / 2SC
j jS G = , ( 1, 2,.., )j m= , whereas the off-

diagonal terms are defined as for Eq. (4.62):  ( ) ( ) ( ) ( )SC SC SC
jk j k jkS S S   =  . 

The 6 diagonal elements of the spectrum-compatible cross-spectral density 
matrix will reflect the aforementioned soil combinations.  

The first step of the validation involves the computation of the ensemble-
averaged time autocorrelation and cross-correlation for stochastic processes: 

 

   ( ) ( ) ˆ( ) ( ) ( ) ( )SC i SC i
jj X j j X jjR E f t f t E R  − =

, with 1,2,...6j =  
 

(4.71) 

   ( ) ( ) ˆ( ) ( ) ( ) ( )SC i SC i
jk X j k X jkR E f t f t E R  − =

with , 1, 2,...6j k = , j k  

(4.72) 

Where   XE  is the expectation operator,  indicates the time lag, the accent 

in Eq.s (4.71)-(4.72) indicates ensemble averages while the accent ^ stands for 
the time average. Indeed, ˆ ( )jjR   and ˆ ( )jkR   are the time averages of the 

autocorrelation and cross-correlation functions based on the i-th sample defined 
as: 

( ) ( )

0

1ˆ ( ) lim ( ) ( )
T

SC i SC i
jj j jT

R f t f t dt
T



 

+

→
= +  

(4.73) 

( ) ( )

0

1ˆ ( ) lim ( ) ( )
T

SC i SC i
jk j kT

R f t f t dt
T



 

+

→
= +  

(4.74) 

 
The components of the spectrum-compatible cross-spectral density matrix of 

the stochastic process are then linked to the ensemble-averaged time 
autocorrelation and cross-correlation functions through the Wiener-Kintchin-
Einstein formula: 
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 ( ) ( )SC
j jjS F R =  

with 1,2,...6j =  

(4.75) 

 ( ) ( )SC
jk jkS F R =  

with , 1, 2,...6,j k j k=   

(4.76) 

 
It is also important to highlight the following properties of the autocorrelation 
function: 
 

( ) 
2( )(0) SC i

jj X j XR E f P= =  (4.77) 

( ) (0)jj jjR R   (4.78) 

( ) ( )jj jjR R = −  (4.79) 

Where ( )SC
X jP S d 

+

−

=   coincides with the average power of the process, such 

that, by differentiation: 

( )SCX
j

dP S
d




=  

it is possible to obtain the power spectral density of the average power XP , 

( )SC
jS  . 

Moreover, assuming that the stochastic process is stationary inside the time 
interval defined by the time values 1t and 2t during which the Jenning modulation 
function remains constant at ( ) 1jA t = ,  it is reasonable to assume that the process 

is ergodic within this interval of time. A stochastic process is said to be ergodic 
for a specific average if the statistical and the temporal averages coincide for each 
and all the realizations of the process. For example, a process is said to be ergodic 
for the autocorrelation if: 
 

 ( ) ( ) ( ) ( )( ) ( ) ( ; ) ( ; )SC i SC i SC SC i SC SC i
X j j j j j jE f t f t f t f f t f − =  − 

, ( )SC i
jf  

(4.80) 

 
Where the right-hand side of Eq. (4.80) coincides with the time average of the 
autocorrelation ˆ ( )jjR  for the specific i-th sample function  given in Eq. (4.73). 

The assumption of ergodicity implies that the statistical of a single realization 
over its stationary duration are representative of the ensemble statistical property. 
This implication has herein been used for the computation of the ensemble-
averaged time autocorrelation and cross-correlation to increase the number of 
sample functions up to 8000 samples.   

In Figure 4.10 the spectrum-compatible cross-spectral density matrix 
components, 1( )SCS  and 2( )SCS  , calculated according to Eq. (4.75) by Fourier 
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transforming the ensemble-averaged time autocorrelation function 11( )R  and

22( )R  are compared with the target ones calculated according to Eq. (4.61). 

  

Figure 4.10. Comparison between the target spectrum-compatible cross-spectral density matrix 
components 1( )SCS  and 2 ( )SCS  , and the corresponding ones calculated throughout Eq. (4.75). 

Once the cross-correlation matrix and the corresponding cross-spectral 
density matrix are calculated according to Eq.s (4.71) to (4.76) it is possible to 
evaluate the ensemble-averaged coherence functions, comprehensive of the wave 
propagation complex term, between two different support points 1, 2,..,6j =  and 

1, 2,...,6k =  with j k , as obtained from 8000 sample functions. 
Specifically, the ensemble-averaged coherence function has been computed by 
inverting Eq. (4.62):  
 

( )
( )

( ) ( )

SC
jk

jk SC SC
j k

S

S S




 
 = , 

, 1, 2,...., ;j k m= , j k  

 
(4.81) 

 
To show the effectiveness of the adopted methodology the following Figure 

4.11 compares the ensemble-averaged coherence functions 1 ( )k  , 1j = , 

1,2,...6k =  with the corresponding prescribed ones calculated starting from Eq. 
(4.63).  
The same comparison could be made for 2,..,6j = .  
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Figure 4.11. Comparison between the ensemble-averaged coherence functions 1 ( )k   1j = , 

2,...6k =   and the corresponding prescribed ones calculated as for Eq. (4.63) using 8000 sample 
functions. 
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5 Numerical modeling and 
structural analysis 

This chapter describes the testbed bridge adopted in the analysis: an existing 
simply supported reinforced concrete (RC) bridge located in central Italy, near the 
site of L’Aquila. 

Due to the lack of design seismic details, primarily in the pier component, the 
bridge will be retrofitted with a seismic isolation system using friction-type 
devices (i.e., FP system). 

 The chapter includes an in-depth focus on the numerical model of each 
bridge component implemented in Opensees, the open-source software for 
structural and geotechnical problems. The model uses a three-dimensional spine 
line approach with elastic beam-column elements for the deck and fiber-section, 
force-based beam-column elements for the piers. Additionally, the FP devices are 
modeled through the built-in element of Opensees, while the soil-structure 
interaction at the abutments is implemented through a zero-length element with 
specific stiffnesses assigned along the longitudinal and transverse bridge 
directions. 

Furthermore, details are provided regarding the parametric analysis carried 
out, which encompasses a wide range of bridge properties (i.e., the total number 
of spans and the isolation period), different seismic intensity levels along with two 
incidence angle conditions. Additionally, the friction coefficient at large velocities 
and the uncertainties related to the seismic input (both for the SVEGM condition 
and the uniform one) are treated as random variables relevant to the problem. 

Finally, the chapter illustrates the procedure for implementing multiple-
support excitation in Opensees. 

5.1 Description of the Case-Study Bridge 

The bridge used as analysis testbed [87] is an existing straight, simply 
supported reinforced concrete (RC) bridge (Figure 5.1) constructed in 1979 and 
located in central Italy, at the border between the regions of Marche and Abruzzo, 
in an area where the design peak ground acceleration that corresponds to a Return 
Period 475RT years= (SLV limit state as for NTC18) is 0.3 [g] . 

The layout information and material properties of the testbed bridge were 
retrieved as courtesy of Dr. Volkan Ozsarac from Scuola Universitaria Superiore 
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IUSS Pavia [33]; they have to be considered as expected material strength values 
which are obtained via laboratory tests. 
 
a) 

 

b) 

 

c) 

 
Figure 5.1. Bridge site location a); Bridge Street-view photograph b); 5-span bridge model - 

extrude view in SAP2000 [91] c).  

The superstructure spans over a total length of 163.0m and consists of five 
simply-supported spans with an average length of 32.0m and a deck section that is 
12.5m wide, including five reinforced concrete I-shaped girders and a superior 
reinforced concrete slab of 27.0cm (Figure 5.2).   

 
 
 
 
 
 

 



Guglielmo Amendola 

 

P a g .  94 | 225 

 

a) 

 
b) 

 
Figure 5.2. Deck geometry a); Pier section geometry b). 

The substructure of the bridge comprises thin un-reinforced elastomeric 
bearings (70x50x2cm) placed on each of the girder beams, a cap beam with a 
hollow rectangular section and a width of 11.0m and four reinforced concrete 
piers with different heights of H1=9.75m, H2=13.4m, H3=12.35m, and 
H4=10.22m, all characterized by an equal circular section of 2.6m diameter with a 
compressive concrete strength of 29.1MPa  and a longitudinal reinforcement ratio 
of 1.6% (90 34 ), with a yield strength of 420.MPa (Figure 5.2). Transverse steel 
reinforcement consists of hoops with a clear distance of 44cm for a total 
transverse steel ratio of 0.055%. 

The bridge at each end is supported by a seat-type, zero skew-angle abutment 
with five elastomeric bearings placed on the abutment stemwall. The abutment is 
12m wide and 3.5m high as provided in [33].  

Two monolithic nonisolated shear keys are present both on the cap beams and 
on the abutments stemwall in order to restrain the movement of the bridge in the 
transverse direction by a gap of 5cm. In the longitudinal direction, the bridge is 
restrained at each end by the abutments backwall.  

As far as the foundation system is concerned, both piers and abutments are 
sustained on pile foundations even though no further details regarding the 
geometric pile features are provided in [87], and as such they are considered fully 
restrained at the base.  

Given the main mechanical and geometrical properties of the testbed bridge, 
because of the absence of seismic details, the lack of confinement provided by the 
hoops, it is assumed that a retrofit intervention has been carried over providing the 
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bridge with an isolation system through friction-type devices. Specifically, 
friction pendulum bearings (FPS), are considered installed in place of the un-
reinforced elastomeric bearings, maintaining their same number and spacing, both 
on the abutments stemwall and on the cap beams.  

Furthermore, in the context of the retrofit intervention with friction pendulum 
isolators, it is essential to allow for unrestrained bearing displacements along the 
transverse direction. To achieve this, the shear keys are removed from both the 
cap beams and the abutments. In the next section, an overview of the numerical 
model adopted for all the structural components of the FPS seismically isolated 
testbed bridge is presented. This model will enhance to analyze the bridge seismic 
response under spatial variability of earthquake ground motion.   

5.2 Computational model of the bridge system 

A three-dimensional nonlinear finite element (FE) model of the considered 
testbed isolated bridge is implemented using OpenseesPy [89], a Python library 
for Opensees [90], the open-source software for creating FE models both in 
structural and geotechnical engineering. The adopted numerical model is depicted 
in (Figure 5.3) and a detailed description of the modeling approach employed for 
each of the bridge components is illustrated in the following sections. 

To take advantage of a better visualization environment, the model geometry 
is initially implemented in SAP2000 [91] and then the connectivity data (frames 
and structural nodes) imported in OpenseesPy to assign to each component the 
specific properties.  

 

Figure 5.3. Illustration of the adopted numerical modeling approach for the testbed bridge. 
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5.2.1 Deck modeling 

The bridge superstructure is generally designed to remain elastic under 
seismic actions. According to this, the deck of the isolated bridge is modeled 
using five elastic beam-column elements per span. The section properties depicted 
in Figure 5.2 are assigned to the elements together with the mean material 
properties provided in [87]. The deck mass density (per unit length) is considered 
and assigned to each element for the determination of the lumped mass matrix.   

5.2.2 Pier modeling 

In the adopted modelling approach the bridge inelasticity is considered solely 
for pier elements and FP isolator devices. Accordingly, two Euler-Bernoulli fiber-
section, force-based beam-column elements [92] are used for each pier (Figure 5.4 
a). 

Geometric nonlinearity is included in the pier elements model via P-Delta 
effects. 

This kind of element permits the definition of a detailed fiber-section that can 
be discretized into unconfined concrete fibers, confined concrete fibers and 
individual fibers to model each of the steel reinforcing bars. Specifically, for the 
adopted fiber-section, 90 fibers are used for the steel reinforcing bars, whereas the 
confined area is discretized into 200 fibers (Figure 5.4 b). 

The behavior of concrete fibers is defined using Concrete 02 [93] material in 
Opensees that implements a uniaxial Kent-Scott-Park [94] concrete material with 
the addition of a tensile stress strength and a linear tension softening behavior 
(Figure 5.4 d). In the case of the unconfined concrete, the mean compressive 
strength is equal to 29.1cf MPa=  and the corresponding strain is equal to 

0.002c = . According to the Concrete 02 material definition, the initial slope in 
compression is equal to: 

2 /c c cE f =  (5.1) 
 The concrete unconfined compressive strength at crushing uf  is assumed 

equal to 0.2 5.82cf MPa=  whereas the concrete unconfined crushing strain is set 

equal to 0.006u = . 

The parameter   required in the Concrete 02 material definition that refers to 
the unloading and reloading loops in compression is set equal to a value of 0.1. 

As far as the concrete tensile strength is concerned, it is calculated using the 
relation proposed by Collins and Mitchell in 1991 [95]: 

 
0.56ct cf f=  (5.2) 

 
The stiffness tsE  of the tension softening branch is approximately equal to the 

concrete tensile strength divided by the strain at which zero stress is reached in 
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tension. The latter is assumed equal to the strain c  at which the maximum 
compressive strength is reached, equal to 0.002. 

In the case of confined concrete fibers, the mean compressive strength and 
strain is obtained by the following Eq.s (5.9-(5.4): 

,cc fc Mander cf k f=   (5.3) 

,cc fc Mander ck =   (5.4) 

Where ,fc Manderk is the amplification factor proposed by Mander in 1988 [96] 

to take into account the confinement effect on the concrete stress-strain response. 
SpecificallyIt is equal to: 

 

, 2.254 1 7.94 2 1.254e e
fc Mander

c c

f fk
f f

 
= + − −  
 

 
(5.5) 

 
Where ef  is the confining pressure which can be obtained as: 
 
0.5e e v yhf k f=  (5.6) 

 
In which yhf  is the yield strength of transverse reinforcements and ek is the 

so-called confinement effectiveness coefficient calculated as per Eq. (5.7): 
 

2

2
0 0

1 1
2 / 4

h sl
e

s Ak
D D

   
= −  −   
   

 
(5.7) 

 
With 0D being the concrete core diameter, hs the spacing of transverse 

reinforcements and slA  the total area of longitudinal reinforcements. 

As far as v  is concerned, it is the ratio of the volume of transverse 
reinforcements to the volume of confined concrete core (Eq. (5.8)): 
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sh sh
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




 
= =


 

 (5.8) 

 
Regarding the material definition for the steel fibers, a uniaxial stress-strain 

law (Steel01 in Opensees) is selected for modeling both the longitudinal and 
trasnverse reinforcements (Figure 5.4 c). In the material definition, the yield 
strength has a value 420yf MPa= , with an initial elastic tangent stiffness equal to 

200000sE MPa= and a strain-hardening ratio 0.001b = . The ultimate strain is 
limited to 0.1 through the MinMax Opensees material, as recommended by 
Prestley [97]. 
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When it comes to the quadrature rule adopted in the force-based formulation, 
considering that the commonly used Gauss-Lobatto beam integration scheme can 
lead to a loss of objectivity in the case of softening section behavior (the element 
response is not unique as it depends on the number of integration points) [98] in 
this study the modified two-point Gauss-Radau integration scheme [99] is 
preferred for the pier mathematical model definition. According to this model, the 
integration points location and weight are the following: 

 
 0,8 / 3, 8 / 3,pI pJl L l L = −   

(5.9) 
 ,3 ,3 ,pI pI pJ pJl l l l =  
 
Where pIl  and pJl  are the plastic hinge lengths at the element ends I and J , 

that are the regions where the plastic behavior is assumed to be confined. 
With the adopted two-point modified Gauss-Radau integration scheme it is 

possible to integrate exactly linear curvature distributions and the characteristic 
length for softening plastic hinges is equal to the model-related plastic hinge 
length.  

It is worth pointing out that within the context of the two-point modified 
Gauss-Radau quadrature rule, for the interior element it is used the same inelastic 
fiber section adopted for the plastic hinge regions.  

Plastic hinge length is specified according to the empirically validated relation 
given in Eq. (5.10) as proposed by Paulay and Priestley in 1992 [100]:  

 
0.08p spL L L= +  ( , )kN mm  (5.10) 

 
Being 0.022sp y lL f d=  the strain penetration length and yf , ld  respectively the 

yield strength and diameter of the longitudinal reinforcement bars, whereas L= 
length of the member. 

A further modeling detail is represented by the rigid element attached to the 
top node of the force-based beam-column element. This is done with the scope of 
modeling the portion of the pier embedded in the cap beam and has a length equal 
to the distance between the cap-beam centroid and the pier top (Figure 5.4 a). 

The pier mass density (per unit length) is considered and assigned to each 
element for the determination of the lumped mass matrix. 

In (Figure 5.5-Figure 5.6) the moment-curvature relation is calculated 
according to the previously defined pier section mechanical properties. Coherently 
with a moment-curvature analysis, the axial force P acting on each pier is 
retrieved employing a linear elastic static analysis under gravity load. 
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a)  

 
b) 

 
c) 

 

d) 

 
Figure 5.4. Bridge column model: a) Modelling details; b) pier section fiber discretization; c) 

Material hysteretic stress-strain law for reinforcing steel fibers; d) Material hysteretic stress-strain 
laws for unconfined (red) and confined (orange) concrete fibers.   
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Figure 5.5. Tensile branch detail of the unconfined (red) and confined (orange) concrete fibers. 

 

 
Figure 5.6. Moment curvature analysis for Pier #3 section. 

 

5.2.3 Abutment modeling 

The abutment modeling approach is consistent with Caltrans guidelines and 
recommendations [101]. Accordingly, they are considered to contribute to the 
bridge stiffness in both longitudinal and transverse directions. 

In detail, the abutment resistance in the longitudinal direction is provided by 
the passive earth pressure offered by both embankment fill-backwall interaction 
and piles-soil interaction. On the other hand, it is assumed that if the abutment is 
pulled away from the backfill soil, no resistance is offered, meaning that no active 
soil pressure is taken into account. Therefore, in the active direction the sole 
contribution is the one provided by piles. 

In the transverse direction it is assumed that the stiffness is coming from the 
backfill-wingwall and piles-soil interaction resistance. 

In the bridge numerical model (Figure 5.3), the abutment/soil interaction at 
the two bridge endpoints in both longitudinal and transverse direction is modeled 
through the adoption of a ZeroLength element in Opensees connected to each 
deck end at one extreme, and fully restrained at the other. The piles-soil 
interaction and the abutment backwall/abutment wingwall-soil interaction are 
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assumed to act as springs in parallel both in the longitudinal and in the transverse 
direction and as so, assigned separately to the ZeroLength element. To model this 
double parallel spring interaction, a parallel uniaxial material in Opensees is 
assigned to each one of the two springs with the scope of considering in each 
direction the contribution offered from piles and from the abutment components 
(backwall and wingwall). 

The abutment backwall-soil interaction is accounted for using an elastic 
perfectly plastic backbone curve with zero tension strength, i.e. ElasticPPGap 
material in Opensees with zero compression gap. The stiffness and the ultimate 
strength needed for the material definition are obtained according to the 
guidelines provided by Caltrans [101] and expressed in the following two Eq.s: 

 

/ (5.5 20)abut backwall soil backwall backwall skk w h R− =   +   (kips/in) (5.11) 
2.5

/
5.5( )

1 2.37
backwall

abut backwall soil backwall sk
backwall

hF w R
h−


=  

+
 

(kips) (5.12) 

 
Where backwallw , backwallh are respectively width and height of the abutment 

backwall, with backwallh having a lower boundary of 2ft and an upper boundary of 

10ft. The third term, skR , is the skew reduction factor given by Eq. (5.13): 
 

/45sk
skR e −
= with 66sk    (5.13) 
 
Where sk is the skew angle, equal to zero for the testbed isolated bridge. 
According to the geometrical features of the testbed bridge abutments (

12.0backwallw mt= and 3.5backwallh mt= ), the backwall-soil stiffness and ultimate 
strength calculated according to Eq.s (5.11-(5.12) are respectively equal to 

/ 517106  /abut backwall soilk kN m− = and / 12331abut backwall soilF kN− = . 
As far as the transverse direction is concerned, to the abutment wingwall-soil 

interaction is assigned an elastic perfectly plastic backbone curve.  Stiffness and 
strength are computed starting from the corresponding ones in longitudinal 
direction /abut backwall soilk − and /abut backwall soilF − , properly modified using factors 

corresponding to wall effectiveness ( 2 / 3LC = ) and participation coefficients (

4 / 3wC = ) according to Maroney and Chai [102] assuming the wingwall length 
being 50% of the backwall width. As such, an ElasticPP material in Opensees is 
selected for the transverse direction with stiffness and ultimate strength given by 
Eqs. (5.14(5.15): 

/ /0.5abut wingwall soil L w abut backwall soilk c c k− −=     (5.14) 

/ /0.5abut wingwall soil L w abut backwall soilF c c F− −=     (5.15) 
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and respectively equal to 229824 /kN m  and  5480kN . This time, for the 
transverse direction, the backbone curve is defined both in tension and 
compression. 
As noted before, the abutment piles are assumed to act in either the active or 
passive direction. Again an ElasticPP material in Opensees is used and the 
recommendations from Caltrans [101] of using 40 kip/in/pile for the pile stiffness 
denoted as pile soilk −

, and an ultimate strength value of 199kN/pile are followed.  

a)  

 
b)  

 
Figure 5.7 Geometry of a typical seat-type abutment a); abutment numerical modeling b). 

 

5.2.4 Friction pendulum isolator modeling 

Regarding the friction pendulum isolator elements, as previoulsy mentioned 
they are introduced in place of the elastomeric bearings to seismically isolate the 
bridge. Five FPS are modeled both at the cap beams and at the two abutments.  

The numerical model of such elements has been implemented by adopting the 
built-in SingleFrictionPendulumBearing element from the Opensees library 
(Figure 5.10). According to the element definition, the i-node represents the 
concave sliding surface and the j-node the articulated slider. In a 3D space, the 
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isolator definition assumes a shear force-deformation relationship both in the 
longitudinal direction and in the transverse direction. Along the vertical direction, 
in order to capture the uplift behavior an Elastic-NoTension material in Opensees 
is adopted. In addition, three Elastic Uniaxial Material are properly defined to 
model the moments along longitudinal and transverse directions (flexural 
moments) and along the vertical direction (torsional moment). Specifically, a very 
low value of 1kN is assigned to the initial elastic stiffness in order to describe the 
mechanical behavior of the friction pendulum isolators with no flexural resistance.   

The distance between i-node and j-node coincides with the isolator’s height 
and is assumed equal to 25cm [103]. In order to fully define the shear-deformation 
behavior of the isolator element it is necessary to enter the initial elastic stiffness 

initk  and the effective radius of curvature R  of the concave sliding surface. 
 Additionally, an appropriate sliding-friction model must be provided. As 

specified in §3.2.3, this model could be assumed to follow a velocity-dependent 
law based on the value of the friction coefficient at high velocities maxf  and at low 

velocities minf [80]. 
The initial elastic stiffness along the two horizontal directions is defined as 

follows: 
iso

init
y

f Wk
d


=  
(5.16) 

Where f  is the friction coefficient evaluated accordingly to the adopted 
velocity-dependent model, isoW is the weight acting on the single isolator and yd  is 

the FPS displacement at which the isolator changes its behavior from a friction 
dependent law to a pendulum dependent law; in this study yd is assumed equal to 

1mm. 
A typical force-deformation response along the longitudinal direction of the 

testbed bridge is provided in Figure 5.8-Figure 5.9 for an FPS with a Radius of 
curvature R  of respectively 1.0m ( 1 2secT = ) and 4.0m 1( 4sec)T = . 
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Figure 5.8. FPS Force-Displacement relationship for R=1m. 

 

Figure 5.9. FPS Force-Displacement relationship for R=4m. 

Regarding the isolator connection with the rest of the bridge components, a 
distinction needs to be made between isolators at the cap beams and those at the 
abutments. At the cap beam, the j-node of each isolator is connected to the end of 
the deck span by means of five rigid links (Figure 5.11). Meanwhile, at the 
abutments, an additional rigid link connection between the i-node and the non-
restrained extreme of the abutment spring is provided. This kind of modeling 
approach assumes that the isolator stiffness along transverse and longitudinal 
directions are in series with the abutment/soil springs as illustrated in detail in 
(Figure 5.12). 
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Figure 5.10. FPS isolator object in Opensees (Figure taken from OpenseesWiki). 

 

f 
f 
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Figure 5.11. FPS isolator modeling details at the generic cap beam. 

  

Figure 5.12. FPS isolator modeling details at the abutments. 
 

5.2.5 Modal analysis 

After defining the bridge model and completing the static analysis under 
gravitational loads, a modal analysis is performed to derive eigenvectors and 
eigenperiods.  

The natural periods and frequencies for the 5-span testbed isolated bridge with 
R=1m ( 1 2secT = ), are summarized in Table 5.1 with the first three mode shapes 
shown in Figure 5.13. The first mode is along the transverse direction (Global axis 
Y), the second mode is along the longitudinal direction (Global axis X) whereas 
the third mode is a torsional mode.  
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Mode Modal 
participation 
masses [%] 

Natural period (sec) Natural Frequency 
(Hz) 

1 85.367 0.849 1.177 

2 91.634 0.70 1.427 

3 92.885 0.58 1.1719 

Table 5.1. Natural periods and frequencies for the testbed bridge, with R=1m ( 1 2secT = ). 

a) 

 

b) 

 

c)  

 
Figure 5.13. Mode shapes for the testbed isolated bridge, with R=1m (T1=2sec): first mode a); 

second mode b); third mode c). 

5.3 Parametric analysis 

Since the main goal of this work of thesis is to assess the seismic response of 
bridges equipped with FPS considering spatial variability of earthquake ground 
motion, the same testbed isolated bridge described above is considered with a 
larger number of spans (i.e., 7 spans). In addition, the most influential properties 
of the friction pendulum isolators (i.e., radius of curvature and friction coefficient) 
are treated as deterministic and random parameters, respectively.    
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5.3.1 Deterministic structural parameters 

Two different overall lengths of the testbed bridge are considered: the existing 
5-span, 163m long bridge and a longer 7-span bridge spanning a total length of 
229m. In addition, three FPS isolation periods 1 2,3,4secT =  (i.e., radii of 
curvature) are selected, resulting in a total of 6 bridge structural deterministic 
models with the aim of performing a comprehensive parametric analysis. 
 5-Span 7-Span 
BridgeID   
T1=2sec 5SP-T1=2sec 7SP-T1=2sec 
T1=3sec 5SP-T1=3sec 7SP-T1=3sec 
T1=4sec 5SP-T1=4sec 7SP-T1=4sec 

Table 5.2. Bridge model IDs.  

5.3.1.1 Number of spans 

It is well known that spatial variation of seismic ground motions particularly 
affects those bridges that extend over long distances, as their pier foundations are 
more likely to undergo earthquake with differences in amplitude and phase [52]. 
Considering this aspect, a second structural configuration of the testbed isolated 
bridge has been considered for the analysis by duplicating the fourth span with a 
length of 33.0m and its left-support pier (12.35m) twice, such as to obtain a 7-
span isolated bridge with an overall length of 229m. This choice strikes a good 
balance between the model of a sufficiently longer bridge than the real one, to 
explore to what extent it is much more affected by SVEGM, and the time 
demanded by the generation of different artificial records at each bridge supports.    

An extruded view of the so-modelled bridge in SAP2000 (as for the 5-span 
bridge the first-phase of the modeling procedure is the implementation in 
SAP2000) is shown in Figure 5.14 reporting also piers’ dimension. Spans’ 
dimension are detailed in Table 5.3.  

 

Figure 5.14. 7-Span bridge model - extrude view.  
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Span 1 Span 2 Span 3 Span 4 Span 5 Span 6 Span 7 
32m 33m 33m 33m 33m 33m 32m 

Table 5.3. 7-Span bridge dimensions – span lengths and pier heights. 
 

5.3.1.2 FPS radius of curvature R 

As already pointed out earlier, one of the key parameters of friction pendulum 
isolator is the radius of curvature of the sliding surface as it governs the isolated 
bridge period 1T  throughout the well-known expression 1 2 /T R g= .  

It is straightforward that the radius of curvature is a key design parameter to 
reach the desired level of seismic isolation degree. In this study, three different 
values of the radius of curvature, meaning three different values of the isolation 
period are considered for both the 5-span and 7-span testbed bridge configurations 
considered for the analysis (Table 5.4): 

R [m] T1 [sec] 

1.0 2.0 
2.25 3.0 
4 4.0 

Table 5.4. Radii of curvature of the FPS sliding surface and corresponding values of the isolation 
period used in the analysis for each bridge configuration. 

 

5.3.2 Random parameters 

The behavior of the FPS isolator is strongly influenced by the friction 
coefficient. As mentioned in §3.2.2 the friction phenomenon does not necessarily 
follow the Coulomb friction law (friction constant during sliding) but rather 
depends on several mechanisms that can influence its magnitude value such as 
pressure, temperature, and sliding velocity. Following the experimental results 
from Mokha et al. [38] and Constantinou et al. [39], in this study the sliding 
friction coefficient is assumed velocity-dependent, according to Eq. (3.67): 

max max min( ) vf f f f e −
= − −  

 In this context, the maximum value of the friction coefficient maxf  (i.e., the 
friction coefficient related to large velocities) is assumed to be a random 
parameter due to the uncertainty in its statistical value especially under dynamic 
conditions as demonstrated in [38]- [39]. To model such uncertainty a standard 
normal distribution ranging from 2% to 8% is selected and 10 different samples of 
the friction coefficient maxf are extracted with the Latin Hypercube Sampling 
Method [29]. According to [21-22-80] the value  from  Eq. (3.67) is set equal to 

30 = , whereas the friction coefficient at low velocities minf  is related to maxf via 

the following ratio: max

min

3f
f

= . 
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5.4 Seismic action 

Following the procedure described in §4.5, thirty different realizations of 
multi-variate quasi-stationary and spectrum-compatible acceleration time histories

( ) ( )
j

if t , 1, 2,...,6j = , in the case of the 5-span, 6-supports bridge and 1,2,...,8j =  

for the 7-span, 8-supports bridge are generated according to Eq. (4.50). 
As mentioned earlier in Chapter 4, the ensemble-averaged spectra of the thirty 

generated sample functions are matched according to the adopted procedure to the 
target elastic response spectra of L’Aquila (Italy). L’Aquila is selected as the 
reference site for the evaluation of the seismic hazard due to its proximity to the 
testbed bridge and its high seismicity. Particularly, following the april 6, 2009, 
L’Aquila Earthquake (Mw=6.3), this site has been extensively investigated in 
terms of geotechnical characterization. In this study the data collected by [105] 
are used given the absence of specific soil properties information at the bridge site 
[33]. Accordingly, a subsoil profile of Category B (360 / 800 /sm s V m s  ) is 
assumed under each bridge piers. 

Additionally, following the study by Lupoi [74] on isolated bridges 
accounting for spatial variability of ground motion, the soil beneath the abutments 
is assumed to be of Category A [77] ( 800 /sV m s ). This assumption accounts for 
the third main cause of spatial variability: the difference in soil conditions 
between two different support points.  

The elastic response spectra are then calculated for the site of L’Aquila and 

for two different soil categories (A and B) and the ensemble-averaged spectra of 
the thirty generated sample functions is matched to these spectra at each bridge 
supports (abutments and piers). Within the context of the PEER’s PBEE 

methodology, the structural response under increasing intensity levels needs to be 
determined. To this purpose, 9 different Intensity Measure Levels (IMLs) are 
considered according to NTC2018 [77], which correspond to a return period 
ranging from 30 years to 2475 years with a probability of exceedance in 50 years 
that goes from 81% to 2%. In Table 5.5 the nine values of PGA for the site of 
L’Aquila (outcrop stiff soil of category A) corresponding to the abovementioned 
nine different values of the return periods are reported: 
TR [yrs] POE in 50 yrs [%] PGA [g] 
2475 2 0.4526 
975 5 0.3343 
475 10 0.2610 
201 22 0.1908 
140 30 0.1640 
101 39 0.1424 
72 50 0.1226 
50 63 0.1041 
30 81 0.0789 

Table 5.5. PGA values for the site of L’Aquila (soil A) for 9 IMLs. 
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Then, in (Figure 5.15) the Uniform Hazard Spectrum for the site of L’Aquila 
(soil A and 2% = ) corresponding to nine different IMLs according to the 
NTC2018 [77] are shown: 

 

Figure 5.15. Uniform Hazard Spectrum for the site of L’Aquila (soil A) corresponding to nine 
return periods.  

Once the acceleration time histories for each bridge support (abutments and 
piers) are generated including spatial variability effects and satisfying the 
spectrum compatibility for each return period and soil category, they are scaled 
such that their corresponding elastic spectrum is equal to the target spectral 
acceleration at the isolated bridge period and for the i-th intensity level 

, arg 1( )i
a t etS T , being 1 2,3,4secT =  and i=1:9. The spectral acceleration 1 1( , )aS T  at 

the isolation period 1T and for the inherent damping ratio 1 2% =  is chosen as 
intensity measure (IM) due to its characteristics of sufficiency, efficiency and 
scaling robustness [15]. The scaled response spectrum 1 1( 2%, )aS T =  for 

1 2secT = and 1 3secT = , for the thirty sample acceleration time histories generated 
at right abutment (Ab2) of the 7-span bridge (Figure 5.14) for the case of soil 
category A and for 2475RT yrs=  are presented in (Figure 5.16):    
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a) 

 

b) 

 
Figure 5.16. Generated time histories response spectrum (soil A and TR=2475yrs)  scaled to 

1( )aS T : response spectrum scaled to 
1 1( 2%, )aS T = with 

1 2secT = a); response spectrum 
scaled to 

1 1( 2%, )aS T = with 
1 3secT = b). 

5.4.1 Incidence angle 

In the proposed procedure, the acceleration time histories are supposed to be 
representative of a far-field ground motion characterized by a seismic waves front 
that arrives at the bridge site with a certain incidence angle that remains constant 
with respect to the different bridge supports (abutments and piers) as 
schematically drawn in Figure 5.17-Figure 5.18.   

Two different incidence angles (i.a.) of 30° and 60° are assumed for the case 
of study and subsequentially two components of the seismic action along the 
longitudinal and transverse direction of the bridge are obtained by multiplying the 
generated acceleration time histories once for cos/sin (30°) and once for cos/sin 
(60°). 

Summarizing, two different sets of analyses will be performed for each bridge 
structural configuration and isolation period, depending on the incidence angle 
(i.a.) considered (30° and 60°).  

 For an incidence angle equal to 30°, the seismic action results nearly aligned 
to the longitudinal bridge axis whereas a seismic action with an incidence angle of 
60° is representative of a quasi-orthogonal acceleration time history. 
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Figure 5.17. Seismic wave front for the case of an incidence angle (i.a.) = 30°. 

 

 

Figure 5.18. Seismic waves front for the case of an incidence angle (i.a.) = 30°. 

5.4.2 Displacement time histories 

In the analysis to be performed and following the recommendation from the 
Opensees manual, the multiple support excitation is applied to the different bridge 
supports in the form of displacement time histories; these are calculated from their 
respective acceleration time series by means of the necessary baseline correction 
(Figure 5.19).  
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Figure 5.19. Displacement time histories at the eight supports of the 7-span bridge for T1=2s and 

for a mean return period TR=2475yrs. 
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In order to appreciate the combined effects of the three main causes that 
determine the spatial variability of ground motion along the bridge supports (i.e., 

the loss of coherence, the time lag of the wave trains, and the local soil 
conditions), the 7-span bridge displacement time histories are plotted all together 

in Figure 5.20. Additionally,  
Figure 5.21 to Figure 5.23 show the displacement time histories to highlight 

the time lag between different supports: Abutment 1-pier#1 (32m apart), pier#1-
pier#6 (165m apart), and Abutment1 (Ab1)-Abutment2 (Ab2) (230m apart). 

 
Figure 5.20. Displacement time histories at the eight supports of the 7-span bridge for T1=2s and 

for a mean return period TR=2475yrs. 

 
Figure 5.21. Displacement time histories at the Abutment 1 support and pier #1 support of the 7-

span bridge for T1=2s and for a mean return period TR=2475yrs. 
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Figure 5.22. Displacement time histories at the pier #1 and pier #6 of the 7-span bridge for T1=2s 
and for a mean return period TR=2475yrs. 

 

 
Figure 5.23. Displacement time histories at the Abutment 1 support and Abutment 2 support of the 

7-span bridge for T1=2s and for a mean return period TR=2475yrs. 
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5.5 Multiple-support excitation in Opensees 

Spatial variability of ground motion is implemented in Opensees through the 
Multisupport Excitation pattern that allows for similar or different ground motions 
to be applied to each constrained node (supports of the bridge structure). The 
pattern, differently from the mostly used Uniform Excitation one, requires the 
ground motion preferably be input as displacement ground motion rather than 
acceleration. Furthermore, in the case of Multisupport Excitation pattern the 
responses at the nodes are provided in terms of absolute values and not relative 
values as is the case of Uniform Excitation.  

In more details, the Multisupport Excitation pattern depends on a series of 
additional commands required from Opensees that are the Imposed motion 
command and the Ground Motion command. The first one is used to specify the 
ground motion to be applied to each constrained node (supports of the bridge) 
whereas the second one is used to specify the ground motion time history. 

In the case of study, for each analyzed testbed bridges, a Multisupport 
Excitation pattern is created where the Imposed motion command applies to the 
abutment and pier supports, that are enforced to move in the transverse and 
longitudinal direction according to the ground motion specified through the 
Ground Motion command. This ground motions refer to the time series along the 
longitudinal and transverse direction obtained as explained earlier for the two 
different incidence angles (i.a.). 

In order to compare the response of the testbed bridges in the case of uniform 
excitation input motion, an additional scheme is employed. This scheme adopts 
the Multisupport Excitation pattern in Opensees as well, with the difference that 
the ground motion specified through the Ground Motion command is always the 
same for all the supports (abutments and piers) and specifically it is the one 
generated at the first left abutment (Ab1) either for the case of the 5-span testbed 
bridge or the 7-span one.   
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6 Seismic reliability analysis of 
isolated bridges equipped with 
FPS accounting for spatial 
variability of earthquake ground 
motion (SVEGM) 

This chapter focuses on the seismic reliability assessment of two 
configurations of isolated bridges equipped with friction pendulum devices. It 
examines both 5-span and 7-span bridge configurations across three different 
isolation periods, analyzing their seismic response under both uniform input 
conditions and spatially variable earthquake ground motion (SVEGM). The 
friction coefficient is treated as a random variable in the analysis. To ensure 
convergence between the target response spectrum for the reference site of 
L’Aquila and the ensemble-averaged spectra derived from simulations, 30 ground 
motions are artificially generated for each bridge support station. Two different 
incidence angle conditions (30° and 60° relative to the bridge longitudinal axis) 
are also considered. The reliability assessment begins with the Incremental 
Dynamic Analysis (IDA), involving a total of 3600 tridimensional (3D) 
simulations for each of the 9 Intensity Measure Levels (IMLs) considered in the 
IDA. Engineering demand parameters (EDPs), chosen to evaluate the response 
statistics related to both bridge piers and bridge isolation system, are presented 
next. Subsequent steps in the seismic reliability estimation include the derivation 
of fragility curves for the bridge piers and friction pendulum devices, assuming 
different damage levels and limit state thresholds. 

Finally, considering the seismic hazard curves at different isolation periods 
related to the reference site of L’Aquila (Italy), the seismic reliability of both 
bridge piers and friction pendulum devices is evaluated in the time frame of 
interest through the convolution integral between seismic fragility and seismic 
hazard.  

Additionally, SRBD (Seismic Reliability-Based Design) abacuses are derived 
and proposed with a twofold objective: 
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c) to define the radius in plan of the FP bearings, accounting for both 
uniform excitation and spatial variability of earthquake ground motion 
(SVEGM), as a function of the bridge configuration, isolation period and 
expected reliability level.  

d) To establish specific design safety factors for the seismic design of FP 
isolators adopted to retrofit conventional highway bridges, implicitly 
considering the adverse effects of SVEGM. 

 

6.1 Nonlinear response time history analysis (NRHA) 

Based on the deterministic structural parameters considered and presented in 
the previous chapter (i.e. number of spans and isolation periods) it follows that 6 
different testbed bridges are properly defined by combining two different 
structural configurations (i.e. bridge with different number of spans) with three 
values of the radius of curvature (see Table 5.2). The response of the 
abovementioned six bridge structural models, considering 10 sampled values of 
the friction coefficient, using as input 30 simulated ground motions accounting for 
SVEGM, with two different incidence angle conditions, is computed. A total set 
of 3600 3D simulations (nonlinear response time history analysis [NRHA]) are 
specifically performed for each of the 9 IMLs within the context of incremental 
dynamic parametric analysis (IDA) as will be detailed later. 

In addition, the same set of 3600 simulations is carried out for the case of 
uniform excitation, assuming that the input ground motion coincides with the time 
history generated at the first bridge support, which is coincident with the first left 
abutment (Ab1). This approach allows for a direct comparison of the bridge 
response under uniform excitation and spatial variability of ground motion. 

Nonlinear response time history analyses are performed in Opensees by 
means of a transient analysis that adopts an implicit time-stepping integration 
scheme as developed by Newmark in 1959 [106]. The method is second-order 
accurate and unconditionally stable if the constant average acceleration algorithm 
is used. Additionally, to solve the nonlinear equations of structural equilibrium the 
iteration algorithm of Krylov-Newton as proposed by [107] is used. At each 
analysis time step the convergence is checked via the norm of the displacement 
increment, with a tolerance of 81.0− m and 200 iterations per analysis step.  The 
latter is performed at a time equal to 0.01 sec while the analysis duration is set 
equal to 30 sec, as much as the time length of the simulated ground motion time 
histories.  

As far as the damping model is concerned, the classical proportional Rayleigh 
damping model is adopted in the analysis, which is a combination of mass 
proportional and stiffness proportional damping as per the following equation: 

 

0 1C a M a K= +  (6.1) 
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Where C , M and K   are respectively the damping, mass and stiffness matrix 

of the bridge system and 0a , 1a are two coefficients that can be determined once 

the damping ratios m  and n  have been assigned to two generic modes m and n 

with circular frequencies m , n  through the following equation: 
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(6.2) 

 
Finally, having determined the coefficients 0a , 1a it is possible to evaluate the 

damping i  at the i-th mode with circular frequency i  based on the relation 
presented below: 

 0 11
2 2i i

i

a a
 


= +  

(6.3) 

Eq. (6.3) shows how the damping coefficient according to the Rayleigh model 
is the sum of two terms, the first one is the mass-proportional term, which 
decreases as the circular frequency   increases and the second one is the 
stiffness-proportional counterpart which increases linearly against frequency. 

Nevertheless, following the approach proposed by [108] only the tangent-
stiffness proportional damping is considered, as it seems to be a more realistic 
approach in the case of a system subjected to large inelasticity demand. 

Given this assumption, in Eq. (6.3), only the stiffness-proportional term 
survives: 

 1

2i i
a

 =  
(6.4) 

The coefficient 1a  is calculated by inverting Eq. (6.4) assuming that an 
inherent viscous damping of 2% is assigned at the first vibration period of the 
isolated bridge. 

6.2 Engineering Demand Parameters (EDPs) 

Various response parameters are registered while running nonlinear analysis 
to quantify the damage at a bridge component level. These components include 
the abutments, deck, reinforced concrete piers, and friction pendulum (FP) 
isolators.  

In more detail, the response of the FP bearings (five in total) placed at the two 
abutments and at each of the bridge cap beams is registered by computing the 
maximum in absolute terms of the relative displacement between the bearing j-
node and the bearing i-node, ( ),max max ( )b t bu u t=  (Figure 5.10), in both the 
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bridge longitudinal direction (X-direction) ( ), ,max ,max ( )b x t b xu u t=  and transverse 

direction (Y-direction) ( ), ,max ,max ( )b y t b yu u t= . In addition, the vectorial sum of 

X and Y displacements is calculated for each analysis time step through the 
following equation: 

 
2 2

, , ,( ) ( ) ( )b vet b x b yu t u t u t= +  (6.5) 

 
The maximum vector displacement over time ( ), ,max ,max ( )b vet t b vetu u t=  is 

then registered and adopted as an additional demand parameter concerning the 
friction pendulum devices. 

Moreover, only the maximum of the displacements , ,maxb xu , , ,maxb yu and 

, ,maxb vetu  among the five FP bearings placed at each bridge support (piers and 

abutments) is registered and assumed as an engineering demand parameter (EDP). 
Regarding the bridge RC piers, the monitored response parameters encompass 

both element-level metrics (i.e., pier drift ratio) and section-level metrics (i.e., pier 
curvature ductility). 

Specifically, the curvature ductility  of the pier section at the element base, 

which coincides with the integration point closest to the fully restrained node, is 
calculated during the nonlinear time history analysis. This parameter is calculated 
both in the longitudinal and transverse direction as for the following ratio: 

 

( )
( ) ,

,

( )( )( ) x y

x y
y y

ttt




 
= =  

(6.6) 

 
Where ( ) ,

( ) ( )
x y

t t =  is the section curvature in either the X-direction or Y-

direction and y is the reference nominal yield curvature defined as [109]: 

 
2.25 y

y D


 =  
(6.7) 

 
Where y  is the longitudinal steel reinforcement yield strain and D is the pier 

section diameter. 
As for the case of the FPS displacements also the curvature ductility is 

registered as the maximum over time of the absolute value of the response: 
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(6.8) 
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The curvature ductility in terms of the vectorial sum of the curvatures along 
the longitudinal and transverse directions is also retrieved using the following 
relation: 

 
2 2

, , ,( ) ( ) ( )vet x yt t t    = +  (6.9) 

 
The maximum over time of this quantity is registered as a pier demand 

parameter: 
 

( ), ,max ,max ( )vet t vet t  =  (6.10) 

 
In line with this approach, drift ratios in both longitudinal and transverse 

directions are monitored for each bridge pier. The drift ratios are registered as the 
maximum absolute value during the time history analysis: 
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(6.11) 

with 1,.., pieri N= , being pierN  the number of piers. 

The monitored response parameter ( )
,

( )p x y
u t is the relative displacement 

between the pier top node and the pier bottom node, expressed as a function of 
time in either the X or Y direction. Meanwhile, iH is the height of the i-th bridge 

piers, where i  ranges from one to the number of piers pierN , which is equal to four 

in the case of the 5-span bridge configuration and six in the case of the 7-span 
configuration. 

The drift vectorial sum is again calculated as: 
 

2 2( ) ( ) ( )vet x yt t t  = +  (6.12) 

 
The maximum value is then registered over time to be adopted as an 

additional pier demand parameter: 
 

( ),max max ( )vet t vet t =  (6.13) 
 
Other monitored response parameters are the maximum absolute values of the 

deck acceleration response over time, in both X and Y directions or in terms of the 
vectorial sum. The abutment spring forces and deformations are also monitored in 
the X and Y direction. 
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6.3 Incremental Dynamic Analysis (IDA) 

The initial phase of seismic reliability assessment involves performing 
Incremental Dynamic Analysis (IDA) [10], where the structural response of the 
bridge system under consideration is evaluated across increasing IM levels 
(IMLs). The results of the (IDA) can be summarized by reporting in a 2D plot, the 
structural response parametrized versus the seismic intensity level, (i.e., IDA 
curves). 

In this study, regarding the reference site of L’Aquila (Italy), for a soil 
category A [77], the spectral displacement 1 1( , )dS T  at the isolation period 1T  

and for the inherent damping ratio 1 2% =  is assumed as intensity measure (IM). 
Since in the implemented parametric analysis three different isolation periods are 
considered as a function of the FPS radius of curvature R, the following IM=

1 1( , )dS T , with 1 2% =  and 1 2,3,4T =  sec, are considered: 
 

 IML1 IML2 IML3 IML4 IML5 IML6 IML7 IML8 IML9 

1 1( , 2sec)dS T =  0.04 0.057 0.069 0.0813 0.096 0.1156 0.173 0.234 0.339 

1 1( , 3sec)dS T =  0.042 0.058 0.072 0.088 0.109 0.137 0.23 0.344 0.51 

1 1( , 4sec)dS T =  0.038 0.053 0.065 0.08 0.099 0.124 0.21 0.312 0.57 

Table 6.1. 1 1( , )dS T IM values for the adopted IMLs and isolation period T1. 

The intensity measure levels (IMLs) reported in Table 6.1 are assumed 
coherently with the NTC2018 [77] corresponding to a mean return period ranging 
between 30 and 2475 years, as already reported in Table 5.5. 

After performing incremental dynamic analysis (IDA) according to the 
nonlinear time history analysis specifications, cartesian planes are constructed for 
each of the abovementioned engineering demand parameters (EDPs). These 
cartesian planes illustrate the relationship between the pertinent intensity measure 
(IM) values on the horizontal axis and the corresponding values of the 
Engineering Demand Parameters (EDPs) on the vertical axis. They depict the 
bridge structural response, depending on the isolation period and bridge 
configuration as well as on the ground motion scenario, including the two ground 
motion incidence angles and considering both spatial variability of earthquake 
ground motion and uniform. 

Among the Engineering Demand Parameters (EDPs) presented in the previous 
section, only the results in terms of vectorial sum ( , ,maxb vetu , , ,maxvet , ,maxvet ) for 

the FPS bearings displacements, the piers section curvature ductility, and the piers 
drift ratio are further analyzed and used for the seismic fragility assessment of 
both bridge piers and FP isolators. 

For a fixed value of the IM level and for the specific bridge structural model 
and earthquake ground motion scenario (uniform or spatially variable), 300 values 
of the monitored EDPs are obtained considering thirty simulated time histories 
combined with 10 sampled values of the friction coefficient; these points are 
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assumed to follow a lognormal distribution according to [111-112-113]. The 
assumption of lognormality is especially useful for seismic reliability assessment 
because it allows obtaining the response at different percentile levels even with a 
limited number of samples. 

The lognormal distribution can be fitted to the assumed EDPs, , ,maxb vetu , 

, ,maxvet , ,maxvet , after estimating the sample geometric mean  ( )GM EDP , and 

the sample lognormal standard deviation ln ( )EDP , or dispersion ( )EDP  
defined as follows: 

  1( ) .....
N

NGM EDP d d=    (6.14) 
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(6.15) 

 
Where id  refers to the i-th sample value of the considered EDP while N=300 

is the total number of samples. 
The sample geometric mean GM serves as an estimator of the median of the 

structural response, and its logarithm coincides with the lognormal sample mean 

ln ( )EDP . Under the lognormality assumption, the relationship between GM, 
( )EDP and the k-th percentile [111] is expressed as: 

 
  ( )exp[ ( ) ( )]kd GM EDP f k EDP=  (6.16) 

 
Being kd  the i-th sample value of the considered EDP at the k-th percentile 

and ( )f k is a function of the percentile itself that assumes the following values 
(50) 0f = , (84) 1f = , and (16) 1f = − . The 84-th and 16-th percentiles are 

computed because indicate the dispersion of the results with respect to the 50-th 
percentile under the aforementioned lognormality assumption.  

It is worth underlying that the following results from incremental dynamic 
analysis are presented without considering the collapse cases. Indeed, as will be 
discussed later, data characterized by dynamic collapses will be incorporated in 
the seismic fragility assessment.  

Figure 6.1-Figure 6.3 show the IDA curves of the peak (absolute maximum) 
value of the vectorial sum for the piers drift ratio ,maxvet , for the three isolation 

periods considered in the parametric analysis: 1 2,3,4T =  sec. Each row is referred 
to a different bridge pier whereas the two columns include the response for an 
incidence angle (i.a.) of 30° (first column) and 60° (second column). 

Each plot presents the IDA for the three percentiles (16-th,50-th,84-th) of the 
drift ratios, reporting a comparison between the two bridge structural 
configurations (7-span and 5-span) and for the case of uniform excitation and 
spatial variability of earthquake ground motion.  
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Figure 6.1 a) and b) display the IDA curves in terms of ,maxvet for an isolation 

period equal to 1 2secT = , corresponding to the first left pier, which has the 
lowest height (9.75m) among both the 5-span and 7-span configurations. These 
curves are shown for incidence angles of 30° and 60°, respectively. 

The 50-th percentile of ,maxvet  is approximately 0.7% at the highest IM level 

for an incidence angle of 30° and 0.65% for an incidence angle of 60°, in the case 
of spatially variable earthquake ground motion. Under the uniform ground motion 
input condition, the drift ratio ,maxvet  is lower and specifically equal to 0.5% for 

both incidence angles. 
On the other hand, the response is only slightly affected by the two structural 

configurations considered in the analysis, showing slightly greater drift ratios for 
the 5-span configuration at the highest intensity measure level and under the 
SVEGM condition. Conversely, the 7-span configuration exhibits higher drifts in 
the case of uniform excitation. 

As expected, the dispersion increases with higher intensity measure levels, 
particularly noticeable under spatially variable earthquake ground motion 
(SVEGM), for both incidence angle conditions. 

The presented results provide the opportunity to quantify the effect of the 
spatial variation of ground motion on current the EDP, ,maxvet , in terms of the ratio 

,maxvet
i
  defined as follows: 

 
( )
( )

,max
,max

,max

max

max

vet
asynvet i

i vet
syn i




 =  

  
(6.17) 

This ratio is defined for each bridge configuration, isolation period, incidence 
angle, and considering the specific pier.  

Specifically, the numerator, maxEDP
asyn , indicates the maximum of the 

response computed under spatial variability of earthquake ground motion, 
whereas maxEDP

syn  at the denominator represents the corresponding quantity for 

the uniform excitation input.  
For the case of 1 2secT =  and of pier 1 (height 9.75m), the maximum 

1 ,maxP vet
i

 − among the two structural configurations and the two incidence angles 
1 ,max 1 ,max

max max ( )P vet P vet
i i

  − −= results equal to 1 ,max
max 1.344P vet − = . 

Figure 6.1 c) and d) present the drift results ,maxvet  for the highest pier of the 

two bridge structural configurations, which is pier 2 with a height of 13.4m. 
Consequently, the drift ratios are greater than those for pier 1, with a mean value 
for the SVEGM input condition of 0.85% and 0.73% for the uniform case at the 
highest IM level. These values are nearly the same for both incidence angles. 

The response related to pier 2 does not differ at all between the 7-span and 5-
span testbed bridge, with an overall trend that is similar also with respect to the 
incidence angle.  
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The maximum ratio ,maxvet
i
 used to quantify the spatial variability effect on 

the drift response, for pier 2 is equal to 2 ,max
max 1.22P vet − = . 

The dispersion is higher under spatially variable earthquake ground motion 
(SVEGM) and for an incidence angle of 60°. 

Figure 6.1 e) and f) depict the drift ,maxvet for pier 3, which is 12.35m high.  

The 50-th percentile is equal to 0.87% for the SVEGM scenario combined 
with the 7-span bridge configuration and a 30° incidence angle. For the 5-span 
configuration under the same conditions, the corresponding drift is 0.78%. The 
spatial variability ground motion case for pier 3 presents slightly different results 
as the incidence angle changes: the drift is equal to 0.82% in the case of 60°, 
regardless of the number of spans. For the uniform excitation case, the drift results 
are not affected by the structural configuration and are equal to 0.67% for the two 
incidence angle conditions.    

The maximum ratio ,maxvet
i
  for pier 3 is equal to 3 ,max

max 1.29P vet − = . 
The dispersion is higher under spatially variable earthquake ground motion 

(SVEGM) and for an incidence angle of 30°. 
Finally, figure 6.1 g) and h) refer to the rightmost pier in both structural 

configurations (pier 4/6) with a height of 10.22m. 
The results for the 50-th percentile show a drift of 0.72% for spatially variable 

earthquake ground motion with a 30° incidence angle. The drift increases to 
0.84% for an incidence angle of 60°. 

Conversely, the drift results for the uniform input condition are nearly the 
same for both incidence angles and equal to 0.57%. 

These results remain consistent for both the 5-span and 7-span bridges, 
independent of the seismic input condition or the incidence angle. 

 The maximum ratio ,maxvet
i
  is equal for pier 4/6 to 4/6 ,max

max 1.48P vet − = . 
The overall trend observed in the incremental dynamic analysis, concerning 

the drift ratios vectorial sum related to an isolation period 1 2secT = , manifests a 
pronounced nonlinear behavior with an upward concavity. 

 The difference between uniform and spatially variable ground motion can 
reach a value of 4/6 ,max

max 1.48P vet − = , notably impacting the last bridge pier. In 
addition, the incidence angle slightly affects the results, either in terms of mean 
values or dispersion. An incidence angle of 60° exhibits results that are up to 1.15 
times compared to those at an incidence angle of 30°, under spatial variability of 
earthquake ground motion.     

Figure 6.2 presents the same results in terms of drift ratios vectorial sum 

,maxvet , for an isolated bridge period equal to 1 3secT = . 

Increasing the isolation period allows to reduce the drift ratios by two-thirds 
across all bridge piers as will be detailed below. 

Figure 6.2 a) and b) present the drift vectorial sum results ,maxvet  related to 

pier 1, with a height of 9.75m. 
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 The drift ratios are equal to 0.25% for the SVEGM case and for both the 
incidence angles. In the case of uniform excitation, the drift ratios remain 
unaffected by the input incidence angle, and they result equal to 0.20%. The drift 
ratios exhibit the same trend as far as the structural configuration is concerned, 
with the 7-span bridge showing higher results only at the highest IM across all the 
input conditions (i.e., incidence angle and earthquake ground motion scenario).    

The maximum ratio ,maxvet
i
 used to quantify the spatial variability effect on 

the drift response, for pier 1 and for an isolation period 1 3secT =  is equal to
1 ,max

max 1.35P vet − = . 
Figure 6.2 c) and d) focus on pier 2. As previously mentioned, the drift results 

indicate a reduction compared to 1 2secT = . The peak of the response at the 
highest intensity measure is indeed equal to 0.50% for the SVEGM, 7-span, 30° 
incidence angle combination and equal to 0.40% for the 5-span bridge 
configuration under the same earthquake input conditions. Under uniform 
excitation condition, the drifts are equal to 0.35% for the 7-span bridge, 30° 
incidence angle combination, and to 0.29% for the 5-span bridge, 30° incidence 
angle combination. Similar results are observed for the 60° incidence angle 
condition, regardless of the bridge configuration, and for both input scenarios of 
uniform and spatially variable earthquake ground motion. 

The maximum ratio ,maxvet
i
  for pier 2 is equal to 2 ,max

max 1.40P vet − = . 
The results associated with pier 3 are shown in Figure 6.2 e) and f) and can be 

compared to those for pier 2, although they are somewhat lower in magnitude. 
 The maximum ratio ,maxvet

i
 , for pier 3, is equal to 3 ,max

max 1.47P vet − =   . 
Figure 6.2 g) and h) pertain to pier 4 or 6 depending on the bridge 

configuration (5-span or 7-span). For the case of an isolation period 1 2secT = . 
This pier exhibits a trend nearly identical for both incidence angle conditions, 
with a drift of 0.29% at the highest IM level for the SVEGM, 7-span configuration 
and equal to 0.25% for the SVEGM, 5-span configuration. Under the uniform 
case, the drift decreases to 0.22% for the 7-span configuration and to 0.18% for 
the 5-span one. 

The maximum ratio ,maxvet
i
   is equal for pier 4/6 to 4/6 ,max

max 1.38P vet − = . 
As the isolation period increases, dispersion also increases, with spatial 

variability of input ground motion always yielding higher variability in results. 
As in the previous case with a lower isolation period, the IDA curves follow a 

nonlinear behavior although there is a tendency for the curves to approach a more 
linear relationship. Even here, the difference between uniform and spatially 
variable ground motion, represented by the ratio ,max

max
vet , can reach a value of 

around 1.47. 
Figure 6.3 presents the piers drift results related to an isolation period 

1 4secT = . Each of the plots shows a further reduction of the drifts demonstrating 
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the increasing effectiveness of the friction pendulum isolation system for larger 
values of the radius of curvature.   

The bridge response at the highest isolation period considered in the analysis 
is roughly the same either in the case of different structural configurations and for 
different incidence angles. Nevertheless, the negative effect of spatial variability 
is still evident especially for pier 3, as the associated ratio ,maxvet

i
 results equal to 

3 ,max
max 1.48P vet − = .  

Consistent with the results shown for the other isolation periods, dispersion 
stays higher for the spatial variability of earthquake ground motion input 
condition, though only slightly higher than that observed for 1 3secT = . 

In addition, it is worth underlying as the IDA curves tend to exhibit an almost 
linear relation against IM levels, for all the considered parametric cases.  
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.1. IDA curves for piers drift [%] for 1 2secT = ; a) Pier 1, i.a. 30°; b) Pier 1, i.a. 60°; c) 

Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; h) Pier 
4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.2. IDA curves for piers drift [%] for 1 3secT = ; a) Pier 1, i.a. 30°; b) Pier 1, i.a. 60°; c) 

Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; h) Pier 
4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.3. IDA curves for piers drift [%] for 1 4secT = ; a) Pier 1, i.a. 30°; b) Pier 1, i.a. 60°; c) 

Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; h) Pier 
4/6, i.a. 60°. 
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Figure 6.4-Figure 6.6 present the IDA curves in terms of piers curvature 
ductility (vectorial sum along longitudinal and transverse direction) , ,maxvet , 

using the same framework used for the piers drift ratio. The columns divide the 
IDA curves based on the incidence angle (30° and 60°) while the rows correspond 
to the same bridge piers already shown for the drift ratio EDP. Each figure 
corresponds to a different isolation period considered in the parametric analysis, 

1 2,3,4secT = . Again, the results are reported for three different percentiles (16-
th,50-th, and 84-th) under the hypothesis of lognormal distribution.  

Figure 6.4 a) and b) report the curvature ductility , ,maxvet results, related to 

the first left bridge pier (9.75m high) for both the 5-span or 7-span configurations, 
for an incidence angle of respectively 30° and 60°. 

The 50-th percentile of , ,maxvet is approximately 2.25 [-] at the highest IM 

level for an incidence angle equal to 30° and 1.95 [-] for an incidence angle of 
60°, under spatial variability of earthquake ground motion. Considering the 
uniform ground motion input condition, the curvature ductility decreases to a 
value of 1.45 [-] for both incidence angles. 

On the other hand, when it comes to the effect of the structural configuration, 
the results are much higher for the 5-span at the highest intensity measure level 
and under the SVEGM condition, regardless of the incidence angles. Conversely, 
for the case of uniform excitation, the IDA curves are nearly the same regardless 
of the structural configuration. 

The dispersion is higher under spatially variable earthquake ground motion 
(SVEGM) and for an incidence angle condition of 30°. 

The negative effect of spatial variability is still quantified by the ratio between 
the SVEGM response and uniform excitation response, 1 , ,maxP vet

i


− , which for 

pier 1 results equal to 1 , ,max
max 1.54P vet

−
= .  

Figure 6.4 c) and d) which pertain to pier 2, show slightly lower results in 
terms of curvature ductility compared to those for pier 1. 

The 50-th percentile of the SVEGM response reaches a peak at the highest 
intensity level equal to 1.92 [-] for an incidence angle of 30° and 1.80 [-] for a 60° 
incidence angle. Lower results are always observed under the uniform excitation 
condition, being the curvature ductility equal to 1.42 [-] for the two incidence 
angles. 

The responses are the same for the 5-span and 7-span configurations while the 
ratio 2 , ,maxP vet

i


− for pier 2 results equal to 2 , ,max
max 1.42P vet

−
= . 

Dispersion remains higher under spatial variability of earthquake ground 
motion, whereas it is approximately the same for both incidence angles. 

Pier 3 (12.35m high) in Figure 6.4 e) and f) show curvature ductility results 
comparable to pier 1, with similar mean values and levels of dispersion. 

Finally, Figure 6.4 g) and h), which describe the response of pier 4 or 6 
depending on the bridge configuration (5-span or 7-span), highlight greater results 
for an incidence angle of 60°, even if solely for the SVEGM input condition. The 
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curvature ductility is indeed equal to 2.07 [-] for the SVEGM, 30° incidence angle 
combination, and 2.61 [-] for the SVEGM, 60° incidence angle combination. In 
contrast, for the uniform excitation case, the results are almost identical among the 
two incidence angles and again equal to 1.42 [-]. Moreover, the response is 
unaffected by the bridge configuration, especially if a uniform excitation input 
motion is applied. 

The dispersion is notably high for an incidence angle of 60° and for the 
spatially variable earthquake ground motion. 

 The negative effect of spatial variability is particularly evident for pier 4/6, as 
the associated ratio 4/6 , ,maxP vet

i


− results equal to 4/6 , ,max
max 1.75P vet

−
= .  

 In summary, the IDA curves in terms of curvature ductility related to an 
isolation period 1 2secT = , exhibit a strong nonlinear behavior with an upward 
concavity. The negative effect of spatial variability of earthquake ground motion, 
quantified through the ratio , ,maxvet

i
 , is even more pronounced than that 

expressed in terms of piers drift ratio. Moreover, being the reinforced concrete 
section the same for all the piers, the results in terms of curvature ductility do not 
change significantly across different piers, especially for the uniform excitation 
case, with a curvature ductility always equal to 1.4 [-] independently of the 
specific bridge configuration and ground motion incidence angle. 

Figure 6.5 identifies the results in terms of curvature ductility for an isolation 
period equal to 1 3secT = . As already underlined for the piers drift ratio, 
increasing the isolation period from 2 to 3 seconds reduces the piers response by 
two-thirds.  

The curvature ductility , ,maxvet  at the 50-th percentile and at the highest IM 

is about 0.8 [-] for the SVEGM case and 0.6 [-] for the uniform excitation 
condition. The results are indeed only slightly affected by the incidence angle, 
whereas the 7-span bridge always presents greater results at the largest intensity 
measure.  

The IDA curves tend to exhibit a less marked nonlinear behavior compared to 
an isolation period 1 2secT = . 

As previously observed for the pier drift ratio engineering demand parameter, 
the dispersion tends to increase with an increasing isolation period, while 
remaining higher under SVEGM input condition. 

The maximum ratio , ,maxvet
i
 is associated with pier 3 and is equal to 

3 , ,max
max 1.49P vet

−
= .  

The last case depicted in Figure 6.6 refers to an isolation period 1 4secT = . 
Regardless of the incidence angle, the curvature ductility is equal to 0.65 [-] for 
pier 2 (Figure 6.6 c) and d)) and pier 3 (Figure 6.6 e) and f)) and for SVEGM 
input condition. For uniform excitation, the curvature ductility for these piers is 
reduced to 0.45 [-]. 

Pier 1 (Figure 6.6 a) and b)) and pier 4/6 (Figure 6.6 g) and h)) show slightly 
lower curvature ductility under both SVEGM (0.55 [-]) and uniform input 
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conditions (0.4 [-]). Structural configuration shows effects only at the highest 
intensity level, being the 7-span bridge always more demanding in terms of 
curvature ductility.  

Given the enhanced effectiveness of the isolation system resulting from the 
longer isolation period, the response in terms of curvature ductility at the three 
percentiles shows an almost linear relationship with the intensity measure. 

The maximum ratio , ,maxvet
i
 is associated again with pier 3 and is equal to 

3 , ,max
max 1.53P vet

−
= . 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.4. IDA curves for piers curvature ductility [-] for T1=2sec; a) Pier 1, i.a. 30°; b) Pier 1, i.a. 
60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; 

h) Pier 4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.5. IDA curves for piers curvature ductility [-] for T1=3sec; a) Pier 1, i.a. 30°; b) Pier 1, i.a. 
60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; 

h) Pier 4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.6. IDA curves for piers curvature ductility [-] for T1=4sec; a) Pier 1, i.a. 30°; b) Pier 1, i.a. 
60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; 

h) Pier 4/6, i.a. 60°. 
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Ultimately, the IDA curves for the FPS displacements as vectorial sum along 
the longitudinal and transverse direction, , ,maxb vetu , are computed at both the 

abutments and at the highest pier 2, and reported in Figure 6.7-Figure 6.9. 
In the case of an isolation period 1 2secT = (Figure 6.7), the FPS bearings 

placed at the two abutments (Figure 6.7 a) and b) - Figure 6.7 e) and f)) exhibit 
greater displacements than the ones placed at the highest bridge pier. Indeed, at 
the abutments, the FPS displacement under SVEGM input condition is close to 
0.35m (50-th percentile at the highest IM), regardless of the structural 
configuration and the incidence angle. The displacements under uniform 
excitation are not significantly lower being equal to 0.32m; furthermore, the 
isolators’ response under uniform input ground motion remains constant across 
both bridge configurations and incidence angle conditions. 

As far as the FP bearings response is concerned, the detrimental impact of the 
spatial variability of ground motion is considerably less pronounced compared to 
its effects on the piers' response. This observation is supported by the usual 
coefficient , ,maxbu vet

i , which peaks at the abutments and results equal to 
, ,max

max 1.25bu vet = .  
The IDA curves exhibit a linear relationship even at the lowest isolation 

period, which is something expected at the isolation level.  Unlike the piers’ 
response, the demand on the FPS is substantially independent of the structural 
configuration and incidence angle. 

The dispersion consistently remains higher under the SVEGM input 
condition. 

The same trend is also followed at the other two isolation periods 1 3secT =

and 1 4secT = (Figure 6.8-Figure 6.9) with slightly higher demand for those FP 
bearings placed at the pier as the isolation period elongates. 

Specifically, the friction pendulum displacement is equal to 0.26m at pier 2 
(50-th percentile at the highest IM) for an isolation period of 1 2secT = and under 
spatial variability of earthquake ground motion, whereas it increases to 0.28m for 
an isolation period of  1 4secT = . The spatial variability effect is quantified 

through the usual parameter , ,maxbu vet
i that is at the most equal to , ,max

max 1.26bu vet = , 

for 1 3secT =  and equal to , ,max
max 1.29bu vet = , for 1 4secT = . 

The dispersion increases for increasing isolation periods. 
The greater the isolation period, the more linear the FP response becomes, as 

observed from the IDA curves in Figure 6.8-Figure 6.9. 
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 a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 6.7. IDA curves for the FPS displacements [m] for T1=2sec; a) Ab1, i.a. 30°; b) Ab1, i.a. 

60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Ab2, i.a. 30°; f) Ab2, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 6.8. IDA curves for the FPS displacements [m] for T1=3sec; a) Ab1, i.a. 30°; b) Ab1, i.a. 

60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Ab2, i.a. 30°; f) Ab2, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 6.9. IDA curves for the FPS displacements [m] for T1=4sec; a) Ab1, i.a. 30°; b) Ab1, i.a. 

60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Ab2, i.a. 30°; f) Ab2, i.a. 60°. 
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6.4 Seismic fragility analysis 

This section aims to describe the computation of seismic fragility, defined as 
the probabilities fP of structural systems of exceeding different damage limit states 

or limit state thresholds at each level of the IM. The seismic vulnerability and the 
following reliability of the testbed bridges will be assessed by focusing on two 
main bridge components, which are the bridge pier and the friction pendulum 
isolation system (FP bearings).   

6.4.1 Damage limit states definition 

To measure the vulnerability of a structural system or component it is 
essential to define physical damage limit states and the corresponding LS 
thresholds. 

6.4.1.1 Piers damage limit states 

As far as the pier is concerned, according to [115] four damage limit states are 
defined: slight, moderate, extensive, and complete. 

As explained in [115] the abovementioned limit states reflect a different 
physical condition in the pier:  

i. Slight (DLS-1): it is related to the yielding of the longitudinal steel bar 
reinforcements and as such only minor damage is expected, but could 
be in any case necessary to provide a repair action to avoid further 
deterioration (e.g. corrosion); 

ii. Moderate (DLS-2): it is associated with the spalling of concrete cover. 
In this case repair actions need to be carried on, particularly focusing 
on the affected concrete area; 

iii. Extensive (DLS-3): it is related to the onset of buckling of the 
longitudinal steel reinforcements or the fracture of transverse 
reinforcements. In this case it may be necessary to replace the 
longitudinal/transverse damaged reinforcements and the affected 
surrounding concrete volume; 

iv. Complete (DLS-4): severe damage is expected at this stage, typically 
related to the crushing of the concrete core or the fracture of the 
longitudinal reinforcements. While piers may still bear gravity loads, 
their resistance to horizontal loads (e.g., seismic action) is 
compromised. This damage state is generally associated with a 
collapse limit state. 

In this research, the abovementioned damage limit states for the piers will be 
expressed in terms of the associated curvature ductility and drift ratios. Following 
the methodology presented in [116] the definition of both curvature ductilities and 
drift ratios at each damage limit state is settled on a strain-based criterion. 
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6.4.1.1.1  Curvature at different damage limit states 

Defining the curvature (and consequently the curvature ductility) at the 
abovementioned damage limit states requires initially performing a moment-
curvature analysis of the pier section defined in §5.2.2. The output from this 
analysis is then used to identify the curvature corresponding to the onset of each 
damage limit state. 

6.4.1.1.1.1 Curvature at DLS-1 
The curvature at the slight damage state is calculated according to the 

following equation, as also recommended by Priestley et al. in [109]: 
  

1
N

DLS y
y

M
M

 − =  
  

(6.18) 

 
Where y and yM  are the yield curvature and moment related to the first 

occurrence of a concrete strain equal to 0.002c =  or of a reinforcement strain of 

,
y

s s y
s

f
E

 = = , being 420yf MPa=  the longitudinal reinforcement yield strength 

and 200000sE MPa= the initial elastic tangent stiffness. NM is the so-called 
nominal moment corresponding to first occurrence among a concrete strain of 

0.004c =  or of a reinforcement strain equal to 0.015s = . 
Based on the output of the moment-curvature analysis, the curvature at the 

slight damage state 1DLS −  computed according to Eq. (6.18) results equal to: 
 

1 0.0015DLS − =    
(6.19) 

6.4.1.1.1.2 Curvature at DLS-2 
According to the recommendations of Priestley et al. in [109], the curvature 

corresponding to the onset of concrete cover spalling is given by: 
 

 2 ( 0.004)DLS c  − = =    
(6.20) 

and for the pier section of interest results equal to: 
 

2 0.0055DLS − =  (6.21) 

6.4.1.1.1.3 Curvature at DLS-3 
As mentioned above the extensive damage limit state can be associated either 

with the fracture of transverse reinforcements or with the buckling of the steel 
longitudinal bars. 
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According to Priestley et al. [109] the concrete compressive strain of the 
extreme fiber at the onset of steel reinforcement fracture is equal to: 

 

, 3 0.004 1.4 v yh su
c DLS

cc

f
f

 
 − = +  

(6.22) 

 
In Eq. (6.22), 415.2yhf MPa=  represents the transverse reinforcement yield 

strength, 0.10su =  is the ultimate transverse reinforcement strain, 

29.78ccf MPa= is the mean compressive strength of the confined concrete and v

is the transverse reinforcement ratio given by the following relation: 
 

0

4 sh
v

h

A
D s

 =


 
(6.23) 

Where 0D is the diameter of the confined concrete core section, hs is the 

transverse reinforcement spacing, and shA is the transverse reinforcement bar area. 
Consequently, it is straightforward to evaluate the curvature corresponding to 

the concrete strain at the onset of the steel transverse reinforcement fracture as: 
 

3_ , 3( )DLS h c DLS  − −=  (6.24) 
 
The so-evaluated curvature, considering the geometrical, material, and 

reinforcement characteristics of the circular pier section is equal to: 
 

3_ 0.007DLS h − =  (6.25) 
 
Because the examined piers are provided with poorly confined sections, 

featuring a clear vertical spacing between hoop bars equal to 44cm, it is crucial to 
consider the potential buckling of the longitudinal reinforcements. Following the 
formulation recommended by Priestley et al. [109], the curvature at the onset of 
the buckling is given by: 

 

( )3_ 1
max

16 12
16

l h
DLS buck ser DLS ser

l

d s
d s

   − −

 −
= + − 

− 
 

(6.26) 

 
Where 0.00135ser =  is the curvature corresponding to the yield 

reinforcement strain ,s y , 34ld mm= is the longitudinal bar diameter, 1DLS − is the 

curvature at the slight damage state expressed in Eq.s (6.18)-(6.19), and hs is again 

the vertical spacing between hoop bars. Finally, maxs , is given by the following 
equation: 
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max 3 6 1 6u
l l

y

fs d d
f

 
= + −   

 
 

(6.27) 

 
Where uf is the transverse reinforcement ultimate strength. 
The curvature at the buckling for the section of interest, calculated according 

to Eq. (6.26) is equal to: 
 

3_ 0.0064DLS buck − =  (6.28) 
 
The curvature at the extensive damage limit state will be then the minimum 

between 3_DLS h −
and 3_DLS buck −

and based on the above calculations it results 

equal to 3_DLS buck −
: 

 -3 -3_ -3_ -3_min , 0.0064DLS DLS h DLS buck DLS buck   = = =  (6.29) 

6.4.1.1.1.4 Curvature at DLS-4 
The curvature at the complete damage state is given by the following 

equation: 

3 maxDLS − =  (6.30) 
Being max the curvature corresponding to concrete core crushing 

max ( 0.00605)ccu  = = . Consequently, the curvature at the complete damage 
state results equal to: 

 

4 0.0081DLS − =  (6.31) 

6.4.1.1.2 Curvature ductility at different damage limit states 

The curvature ductility at different damage limit states is calculated according 
to the following relation [115]: 

 

,
DLS i

DLS i

y N





−

−=  
(6.32) 

 
Where ,y N is the reference nominal yield curvature [109] equal to: 

 

,
0

2.25 y
y N D


 =  

(6.33) 

 
It follows that the thresholds for the curvature ductility corresponding to the 

aforementioned damage limit states assumed for the seismic fragility assessment 
of the bridge piers at a section level, and calculated accordingly to Eq. (6.32) are 
the ones reported in Table 6.2: 
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Damage limit states in terms of 
curvature ductility 

LS  IBLS  

DLS-1 Slight damage 
1

0.72
DLS −

=  
1_

0.24
DLS IB −

=  
DLS-2 Moderate damage 

2
2.96

DLS −
=  

2 _
0.99

DLS IB −
=  

DLS-3 Extensive damage 
2

3.44
DLS −

=  
3 _

1.15
DLS IB −

=  
DLS-4 Complete damage 

4
4.37

DLS −
=  

4 _
1.46

DLS IB −
=  

Table 6.2. Damage limit states for the piers section in terms of curvature ductility. 

Moreover, according to FEMA 274 provisions [80-117], which requires 
higher performance standards for base isolated bridges, the damage limit state 
thresholds are assumed to be about one-third of the corresponding limit state 
thresholds for non-isolated bridges. It follows that the adopted curvature ductility 
LS  thresholds for the base-isolated bridge are the ones indicated as IBLS and 
reported in the last column of Table 6.2. 

6.4.1.1.3 Drifts at different damage limit states 

The drift ratios corresponding to the specific damage limit state and to the 
specific pier’s height are calculated as follows: 

DLS i
DLS i H

 −
−


=  (6.34) 

Where DLS i−  is the lateral displacement at the attainment of each of the 
aforementioned limit states and H is the pier’s height.  

The lateral displacement can be calculated according to the following 
relationship: 

y
y

y y p
y y

M M L H
M M





 





 = 

  + −  
 

 

for

for

 

y

y

 

 





 

 
 

 
(6.35) 

 
Where  and M are the outputs of the moment-curvature analysis, yM is the 

first yield moment already presented in Eq. (6.18), pL is the plastic hinge length 

calculated according to Eq. (5.10), and y is the yield displacement defined as 

follows: 

 ( )
2

3
sp

y y

H L


+
 =  

(6.36) 

 
It follows then that the lateral displacements at the attainment of each damage 

limit states ( DLS i− ) can be retrieved by substituting the curvature limit states 
calculated in §6.4.1.1.1 in Eq.  
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(6.35). 
 Following the abovementioned procedure, the drift ratios corresponding to 

each different pier’s height at the different damage limit states are presented in the 

following tables: 
 

Damage limit states - pier with height H1 
(H1=9.75m) 

LS  
IB

LS
 

DLS-1 Slight damage 
11_ 0.54%

DLSP 
−
=  

1_1_ 0.18%
DLS IBP 

−
=  

DLS-2 Moderate damage 
21_ 1.06%

DLSP 
−
=  

2 _1_ 0.35%
DLS IBP 

−
=  

DLS-3 Extensive damage 
31_ 1.16%

DLSP 
−
=  

3 _1_ 0.39%
DLS IBP 

−
=  

DLS-4 Complete damage 
41_ 1.33%

DLSP 
−
=  

4 _1_ 0.44%
DLS IBP 

−
=  

Table 6.3. Damage limit states for the pier with height H1 (H1=9.75m) in terms of drift ratios.   

Damage limit states - pier with height H2 
(H2=13.4m) 

LS  
IB

LS
 

DLS-1 Slight damage 
12_ 0.73%

DLSP 
−
=  

1_2_ 0.24%
DLS IBP 

−
=  

DLS-2 Moderate damage 
22_ 1.40%

DLSP 
−
=  

2 _2_ 0.47%
DLS IBP 

−
=  

DLS-3 Extensive damage 
32_ 1.52%

DLSP 
−
=  

3 _2_ 0.51%
DLS IBP 

−
=  

DLS-4 Complete damage 
42_ 1.74%

DLSP 
−
=  

4 _2_ 0.58%
DLS IBP 

−
=  

Table 6.4. Damage limit states for the pier with height H2 (H2=13.4m) in terms of drift ratios. 

Damage limit states - pier with height H3 
(H3=12.35m) 

LS  
IB

LS
 

DLS-1 Slight damage 
13_ 0.68%

DLSP 
−
=  

1_3_ 0.23%
DLS IBP 

−
=  

DLS-2 Moderate damage 
23_ 1.30%

DLSP 
−
=  

2 _3_ 0.43%
DLS IBP 

−
=  

DLS-3 Extensive damage 
33_ 1.42%

DLSP 
−
=  

3 _3_ 0.47%
DLS IBP 

−
=  

DLS-4 Complete damage 
43_ 1.62%

DLSP 
−
=  

4 _3_ 0.54%
DLS IBP 

−
=  

Table 6.5. Damage limit states for the pier with height H3 (H3=12.35m) in terms of drift ratios. 

Damage limit states - pier with height H4 
or H6 (H4= H6=10.22m) 

LS  
IB

LS
 

DLS-1 Slight damage 
14_ 0.57%

DLSP 
−
=  

1_4_ 0.19%
DLS IBP 

−
=  

DLS-2 Moderate damage 
24_ 1.11%

DLSP 
−
=  

2 _4_ 0.37%
DLS IBP 

−
=  

DLS-3 Extensive damage 
34_ 1.20%

DLSP 
−
=  

3 _4_ 0.40%
DLS IBP 

−
=  

DLS-4 Complete damage 
44_ 1.39%

DLSP 
−
=  

4 _4_ 0.46%
DLS IBP 

−
=  

Table 6.6. Damage limit states for the pier with height H4 -H6 (H4=H6=10.22m) in terms of drift 
ratios. 

Coherently with the approach followed for the curvature ductility limit states 
thresholds, also the drift ratios limit states LS for isolated bridges, are assumed to 

be one-third of the corresponding ones for non-isolated bridges, and indicated as 

IB
LS

. 
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6.4.1.2 FPS limit states 

  As for the FP isolators, limit state thresholds are primarily defined in terms 
of radius in plan, r[m], which is a key design parameter for the FP bearings, 
specifically adopted within this study because it is a function of the required 
maximum displacement demand for the FPS isolator.  

In the following table different LS thresholds are considered with the aim of 
providing reliable recommendations for the design of the FP isolation system: 

 
 LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8 LS9 

[ ]r m  0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

Table 6.7. Limit states thresholds for the FP isolation system in terms of radius in plan r[m]. 

6.4.2 Seismic fragility curves 

Once the damage limit states have been defined, it is possible to proceed with 
the seismic fragility assessment through the calculation of the probability of 
exceeding those LS thresholds, (i.e. probability of failure fP ) expressed in terms 

of the aforementioned engineering demand parameters (EDPs) and as a function 
of the i-th intensity measure (IM) level. This probability of failure is 
mathematically expressed as the complement to 1 of the cumulative distribution 

function ( )| ,iEDP IM im j EDPF LS= evaluated at the i-th IM level and for the j-th limit 

state threshold with reference to the EDP of interest. In the context of seismic 
fragility assessment, both the collapse and non-collapse results for a given 
structural configuration, isolation period, and seismic input scenarios considered 
in the analysis at each IM level have been considered employing the total 
probability theorem [118]. It follows that the implemented relation for computing 
the probability of failure fP at the j-th limit state threshold and for a given EDP is 

expressed as: 
 

( )( )| ,( ) 1 1 1
i

non collapse non collapse
LSj i EDP IM im j EDP

N N
P IM im F LS

N N
− −

=

 
= = − +  − 

 
 

(6.37) 

 
Where 300N =  is the total number of analyses at each IM level for a given 

structural configuration, isolation period, and seismic input scenario, and 
non collapseN −

is the number of numerical simulations where no collapse/numerical 

instability has been observed. The first term of Eq. (6.37)  is associated with the 
probability of exceeding the j-th limit state threshold corresponding to a non-
collapse case whereas the second part accounts for the probability of exceeding 
the j-th limit state given that the structural system has experienced collapse.  

The following tables report the number of non-collapse cases for each 
intensity measure level and for each of the analyzed structural configuration, 
isolation period, and seismic input scenarios.  
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 5-span bridge configuration-SVEGM input condition 
 1 2secT =  1 3secT =  1 4secT =  

non collapseN −
 i.a.=30° i.a.=60° i.a.=30° i.a.=60° i.a.=30° i.a.=60° 

 
IM1 300 300 300 300 300 300 
IM2 300 300 300 300 300 300 
IM3 300 300 300 300 300 300 
IM4 300 300 300 300 300 300 
IM5 300 300 300 300 300 300 
IM6 300 300 300 300 300 300 
IM7 300 300 300 300 300 300 
IM8 300 300 300 300 300 300 
IM9 290 293 300 300 300 300 
Table 6.8. Number of non-collapse non collapseN −  cases for the 5-span bridge configuration and under 

SVEGM input condition. 

 5-span bridge configuration-uniform input condition 

 1 2secT =  1 3secT =  1 4secT =  

non collapseN −
 i.a.=30° i.a.=60° i.a.=30° i.a.=60° i.a.=30° i.a.=60° 

 
IM1 300 300 300 300 300 300 
IM2 300 300 300 300 300 300 
IM3 300 300 300 300 300 300 
IM4 300 300 300 300 300 300 
IM5 300 300 300 300 300 300 
IM6 300 300 300 300 300 300 
IM7 300 300 300 300 300 300 
IM8 300 300 300 300 300 300 
IM9 299 299 300 300 300 300 
Table 6.9. Number of non-collapse non collapseN −  cases for the 5-span bridge configuration and under 

uniform input condition. 

 7-span bridge configuration-SVEGM input condition 

 1 2secT =  1 3secT =  1 4secT =  

non collapseN −
 i.a.=30° i.a.=60° i.a.=30° i.a.=60° i.a.=30° i.a.=60° 

 
IM1 300 300 300 300 300 300 
IM2 300 300 300 300 300 300 
IM3 300 300 300 300 300 300 
IM4 300 300 300 300 300 300 
IM5 300 300 300 300 300 300 
IM6 300 300 300 300 300 300 
IM7 300 300 300 300 300 300 
IM8 300 300 300 300 300 300 
IM9 291 290 300 300 300 300 
Table 6.10. Number of non-collapse cases for the 7-span bridge configuration and under SVEGM 

input condition. 
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 7-span bridge configuration-uniform input condition 
 1 2secT =  1 3secT =  1 4secT =  

non collapseN −
 i.a.=30° i.a.=60° i.a.=30° i.a.=60° i.a.=30° i.a.=60° 

 
IM1 300 300 300 300 300 300 
IM2 300 300 300 300 300 300 
IM3 300 300 300 300 300 300 
IM4 300 300 300 300 300 300 
IM5 300 300 300 300 300 300 
IM6 300 300 300 300 300 300 
IM7 300 300 300 300 300 300 
IM8 300 300 300 300 300 300 
IM9 294 296 300 300 300 300 

Table 6.11. Number of non-collapse non collapseN −  cases for the 7-span bridge configuration and 
under uniform input condition. 

  

 Once the probability of failures are calculated at all the intensity measure 
levels and for each of the limit states, the points that define the fragility at the j-th 
limit state can be approximated by a lognormal distribution through the following 
procedure: 

i. For each limit state, the standard normal variable ru associated to the i-
th point of the fragility is computed; 

ii. In a semilogarithmic plane, where the value of ru  is reported on the 
vertical axis and the logarithm of the intensity measure on the 
horizontal axis, a linear regression of the type ln( )r du a S b=  +  is 
performed. Considering that, given a lognormal variable x  its 
logarithm y=ln(x) is normally distributed with mean y and standard 

deviation y , then, by imposing that y
r

y

y
u





−
= , it is possible to 

compute the following relations: 

y
b

a


−
=  

 
(6.38) 

1
y a

 =  
 

(6.39) 

iii. With the so-obtained parameter, the fragility curve associated to the j-
th limit state, mathematically expressed through the lognormal 
cumulative distribution function, is computed. 
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Figure 6.10-Figure 6.12 present the fragility curves for the peak vectorial sum 
of the piers’ drift ratio ,maxvet , across the four damage limit states presented in the 

previous section. These figures are shown similarly to the IDA curves, with each 
figure corresponding to a different isolation period. Within each figure, rows are 
representative of the specific bridge piers, while the two columns compare the 
response for an incidence angle of 30° (first column) and 60° (second column). 

Each subplot includes a comparison between the two bridge structural 
configurations (7-span and 5-span) and the two input conditions of uniform 
excitation and spatial variability of earthquake ground motion. The plots display 
the probability of failure on the vertical axis against seismic intensity measure 

1( )dS T  on the horizontal axis. 
In terms of drift ratio ,maxvet , the fragility decreases as the isolation period 

increases, resulting in very low probabilities of exceeding especially the third and 
fourth damage limit states at the highest isolation period equal to 1 4secT = .  

From the fragility curves and according to the IDA results, it is possible to 
observe that the spatial variability of earthquake ground motion leads to higher 
probabilities of failure with respect to the uniform input condition. This trend is a 
general result regardless of the structural configuration, of the incidence angle, 
and of the isolation period. Due to their geometrical properties, the most 
vulnerable piers result to be pier 2 and pier 3, among all the isolation periods and 
for the two incidence angle conditions.  

Regarding the incidence angle, it has only a slight influence on the pier’s 

fragility. It is generally observed that an incidence angle of 60° reduces the 
probability of exceeding damage limit states, especially at the lowest isolation 
period of 1 2secT = .  

When it comes to the structural configuration it is not possible to draw a clear 
trend: at the lowest isolation period slightly higher probabilities of exceedance for 
all the damage limit states are due to the 5-span configuration and this is even 
more evident when combined with the uniform input condition; contrarily, for an 
isolation period equal to 3 sec the most vulnerable configuration is the 7-span 
combined with SVEGM input condition. At the highest isolation period the 5-span 
configuration becomes again the most vulnerable, especially under uniform 
conditions of input ground motion. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.10. Fragility curves for the piers drift [%] for 1 2secT = , for damage limit states from 

DLS-1 to DLS-4 ; a) Pier 1, i.a. 30°: b) Pier 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 
3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; h) Pier 4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.11. Fragility curves for the piers drift [%] for T1=3sec, for damage limit states from DLS-
1 to DLS-4 ; a) Pier 1, i.a. 30°: b) Pier 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 

30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; h) Pier 4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.12. Fragility curves for the piers drift [%] for 1 4secT = , for damage limit states from 

DLS-1 to DLS-4 ; a) Pier 1, i.a. 30°: b) Pier 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 
3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; h) Pier 4/6, i.a. 60°. 
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Figure 6.13-Figure 6.15 present fragility in terms of piers curvature ductility

, ,maxvet . The probabilities of exceeding each of the assumed damage limit states 

follow the same decreasing trend for increasing isolation periods, as already 
observed for the piers drift ratios. The greater evidence is again the differences in 
results among the uniform input condition and the spatially variable one, with the 
latter consistently showing higher probabilities of failure for all damage limit 
states. Structural configuration affects the fragility mainly at an isolation period 
equal to 1 3secT = combined with SVEGM condition, where higher probabilities 
of failure result from the 7-span testbed bridge. Differences can still be 
appreciated at the other isolation periods of 2 and 4 sec, though there is no clear 
preference for one configuration over the other.  
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.13. Fragility curves for piers curvature ductility [-] for 1 2secT =  , for damage limit states 
from DLS-1 to DLS-4; a) Pier 1, i.a. 30°;  b) Pier 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; 

e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; h) Pier 4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.14. Fragility curves for piers curvature ductility [-] for 1 3secT =  , for damage limit states 
from DLS-1 to DLS-4; a) Pier 1, i.a. 30°;  b) Pier 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; 

e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; h) Pier 4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.15. Fragility curves for piers curvature ductility [-] for 1 4secT =  , for damage limit states 
from DLS-1 to DLS-4; a) Pier 1, i.a. 30°;  b) Pier 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; 

e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; h) Pier 4/6, i.a. 60°. 
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Finally, Figure 6.16-Figure 6.18 show the structural fragility for the isolation 
level. According to the IDA results presented beforehand, the seismic fragility is 
higher for the isolators placed at the two abutments compared to the those placed 
at the highest pier.  

The general trend already drawn for the bridge piers is also observed for the 
isolation system: the seismic fragility decreases for higher values of the isolation 
period as well as for increasing limit state thresholds. 

As for the bridge piers, higher probabilities of exceedance are due to spatially 
variable input ground motion, while the incidence angle only slightly affects the 
fragility, mainly at the lowest isolation period. Specifically, an incidence angle of 
60° results in lower probabilities of exceeding all the limit state thresholds. 

At the lowest isolation period and especially for lower limit state thresholds, 
the fragility for the two structural configurations is about the same, with only 
slightly higher probabilities for the 7-span bridge. Differences become more 
pronounced for the last three LS thresholds, but with an increasing fragility due to 
the 5-span configuration. This behavior is observed both in case of uniform 
excitation and spatially variable ground motion conditions.  At an isolation period 
of 1 3secT = similar observations can be made. Starting from the last three LS 
thresholds the 5-span bridge results to be more vulnerable than the 7-span one. 
This trend is mainly observed for the isolators at the abutment 1 and at the pier 2. 
At the highest isolation period the difference among the structural configurations 
becomes almost negligble especially at the lowest LS. Only a small difference can 
still be observed for the uniform input case at the highest LS, with higher 
probabilities exhibiting from the 5-span bridge case. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 
 

f) 

 

Figure 6.16. Fragility curves of the FPS displacements [m] for 1 2secT =  ; a) Abutment 1, i.a. 30°; 
b) Abutment 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Abutment 2, i.a. 30°; f) Abutment 

2, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 6.17. Fragility curves of the FPS displacements [m] for 1 3secT =  ; a) Abutment 1, i.a. 30°; 
b) Abutment 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Abutment 2, i.a. 30°; f) Abutment 

2, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 
 

f) 

 

Figure 6.18. Fragility curves of the FPS displacements [m] for 1 4secT =  ; a) Abutment 1, i.a. 30°; 
b) Abutment 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Abutment 2, i.a. 30°; f) Abutment 

2, i.a. 60°. 
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6.5 Seismic hazard 

Integrating the previously defined fragility curves with the seismic hazard 
curves for the reference site of L’Aquila, expressed in terms of the same intensity 
measure IM, 1 1( , )dS T , allows for the calculation of the mean annual rates of 
exceeding the damage limit states. As will be detailed later, these latter ones can 
be transformed into probabilities of exceeding the damage limit state in the time 
frame of interest (e.g., 50 years), by adopting a Poisson distribution such as to 
evaluate the seismic reliability of the analyzed bridge components (i.e., piers and 
FP bearings). 

As already mentioned, the reference site considered for the evaluation of the 
seismic hazard is L’Aquila (Italy), with geographic coordinates 42°38’49’’N 

13°42’25’’E, ID:26306. 
Taking advantage of the information elaborated by the Italian INGV (Istituto 

Nazionale di Geofisica e Vulcanologia) through the INPV DPC-INGV-S1 project 
[119], it is possible to retrieve nine different values of the peak ground 
acceleration (PGA), adopted by the INGV as representative parameter of the local 
seismicity, for as many mean annual frequencies of exceeding s , and 
corresponding to three different percentiles (16 ,50 ,84 )th th th− − − . 

Each value of the PGA is associated with the probability of exceeding that 
value (POE) in 50 years. Using the well-known relation ,1/S R ST = , nine 

different mean values of the return periods are also identified, as summarized in 
Table 6.12. 

 
[ ]RT yrs

 

POE
 in 50 
yrs 
[%] 

1[ ]s years −

 

(16 )[ ]PGA th g−

 
(50 )[ ]PGA th g−

 
(84 )[ ]PGA th g−

 

2475 2 0.0004 0.410 0.452 0.523 
975 5 0.001 0.303 0.334 0.367 
475 10 0.0021 0.238 0.261 0.284 
201 22 0.005 0.174 0.190 0.204 
140 30 0.0071 0.151 0.164 0.175 
101 39 0.0099 0.131 0.142 0.153 
72 50 0.0139 0.113 0.123 0.132 
50 63 0.0199 0.098 0.104 0.111 
30 81 0.0332 0.087 0.078 0.087 

Table 6.12. PGA values for the reference site of L’Aquila (Italy) for soil category A, 
corresponding to three different percentiles and 9 IMLs. 

Starting from the hazard curves expressed in terms of PGA, the elastic 
pseudo-acceleration response spectrum is derived for the reference site and at the 
aforementioned return periods, corresponding to three different percentiles. 
Consequently, the spectral displacement at the three bridge isolation periods 

1 2,3,4secT = is calculated as: 
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1
1 2

1

( )
( ) pa

d

S T
S T


=  

 (6.40) 

Being 1  the circular frequency expressed as 1 12 / T =  . 
The spectral displacements are calculated for each of the return periods such 

as to obtain the median curve of s , indicated as s  and defined at nine different 
points. 

Starting from the median curve it is possible to evaluate the mean hazard 
curve s , by means of an amplification factor H , through the following 
relationship: 

21( ) ( ) exp
2S d S d HS S  

 
=  

 
 

 (6.41) 

Where the amplification factor H is evaluated as: 

,84 ,16ln( ) ln( )
2

d th d th
H

S S


− −−
=  

 (6.42) 

This accounts for the epistemic uncertainty hidden in the seismic hazard 
evaluation. 

,16d thS −
and ,84d thS −

are respectively the spectral displacements calculated for 

the isolation periods of interest and at nine different return periods, starting from 
the values of the PGA at the 16-th and 84-th percentiles. 

The mean hazard curve defined at nine points is further processed in the 
logarithmic space, by means of an interpolating quadratic function of the type: 

 

( ) ( ) ( )
2

1 2 3ln ( ) ln lns d d dS k S k S k =  +  +   (6.43) 

 
Where 1 2 3, ,k k k  are the regression parameters. By means of Eq.(6.43) it is 

straightforward to move in the linear space.  
In Figure 6.19, considering the site of L’Aquila (Italy) and with reference to 

soil category A [77], the seismic hazard curves expressed in terms of 1( )dIM S T=

with 1T  equal to the isolation period, are plotted in a semilogarithmic scale. Each 

curve, corresponding to a different isolation period 1T , expresses the average 

values of the annual rates s  of exceeding the 1( )dIM S T= . It can be observed 
that the seismic hazard increases as the isolated period increases from 2 to 4 sec. 
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Figure 6.19. Seismic hazard curves for the reference site of L’Aquila, in terms of spectral 

displacement 1( )dS T , for three different isolation periods. 

6.6 Seismic reliability analysis 

Performance-based earthquake engineering (PBEE) assumes that if seismic 
damage accumulation is not considered, not only the occurrence of earthquakes at 
the reference site follows a homogeneous Poisson process (HPP), but it also does 
the process of earthquakes causing structural failure. Following this assumption 
the probability of exceeding a generic damage limit state in the time frame of 
interest is one-parameter dependent, that is the mean annual rate of exceeding the 
corresponding damage limit state ,f LS . This must be evaluated for both the FPS 

bearings and bridge piers by means of a convolution integral between the 
beforehand calculated seismic fragilities and seismic hazard curves, expressed in 
terms of the same IM, as for the following relationship: 

 

, , [ ]f LS f LS s
s

P s d =    (6.44) 

 
Where ( ) / ( )s sd d s d d s =  is obtained from the derivative of the seismic 

hazard curve and , [ ]f LSP s  is the probability of exceeding the generic damage 

limit state  conditional to the i-th value s of the ground motion intensity measure 
IM (i.e. , 1( )d is S T= ). 

Then, the mean annual rate of exceeding the corresponding damage limit state 

,f LS is converted into probability of exceeding the same damage limit state in 

the time frame of interest (e.g., 50 years), taking advantage of the abovementioned 
Poisson distribution, through the well-known expression: 

 
, 50(50 ) 1 e f LS yrs

fP yrs  
= −   (6.45) 
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Eq. (6.45) permits to evaluate the seismic reliability curves for both the FP 
bearings and the bridge piers, for each limit state, in the time frame of interest, 
chosen equal to 50 years, as will be illustrated in the next section. The so 
computed probability of exceeding the generic damage limit state are also 

compared with acceptable probabilities of failure *
fP  (target probabilities of 

failure) as provided in [80] and reported in Table 6.13-Table 6.14: 
 

Damage limit states for bridge piers *
fP  

DLS-1 Slight damage 15 10−  
DLS-2 Moderate damage 11.6 10−  
DLS-3 Extensive damage 22.2 10−  
DLS-4 Complete damage 31.5 10−  

Table 6.13. Acceptable probabilities of failure *
fP  for bridge piers. 

Limit states for the FPS bearing 
 LS1 LS2 LS3 LS4 LS5 LS6 LS7 LS8 LS9 

[ ]r m  0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 
*
fP  

31.5 10−  

Table 6.14. Acceptable probabilities of failure *
fP  for FP bearings.  

6.6.1 Seismic reliability curves 

Figure 6.20-Figure 6.22 depict the probabilities of exceeding the damage limit 
state in the time frame of interest (50 years) valid for the bridge piers and derived 
from the seismic fragility assessment expressed in terms of drift ratios. The plots, 
that compare the two structural bridge configurations and the uniform and 
spatially variable input conditions, are presented in a semilogarithmic scale in the 
range 5 010 :10− , depending on the specific pier and on the isolation period 
considered. 

 The horizontal axis represents the damage limit state thresholds in terms of 
drift ratios. The results are further compared with the performance objective curve 
constructed based on the target probabilities of failure. The curves highlight a 
generally increasing trend of the seismic reliability (lower probabilities of failure) 
for increasing values of the isolation period 1T . This trend reaffirms the 
effectiveness of the seismic isolation in enhancing structural performances. 

In the uniform input condition, consistently higher levels of seismic reliability 
are achieved compared to the spatially variable earthquake ground motion 
(SVEGM) condition. These differences are particularly evident at the highest 
isolation period and at the highest damage limit states threshold, specifically for 
those piers of lower height. Conversely, a smaller influence is noted concerning 
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the incidence angle, some changes in results are more evident only for the highest 
isolation period; in this case, an incidence angle of 60° generally increases seismic 
reliability.  

Irrespective of the isolation period and across all the considered piers and 
structural configurations, the fourth damage limit state, which imposes the lowest 
target probability of failure, is always exceeded. This outcome primarily arises 
due to the very stringent limite state thresholds adopted for the base-isolated 
bridge structure [117]. However, exceptions to this trend are observed in cases 
involving piers with lower height, combined with the uniform ground motion 
input condition and isolation periods greater than 2 seconds.  

Structural configuration has practically no effects at the lowest isolation 
period, whereas, in line with the seismic fragility findings, tends to affect the 
response at an isolation period T1=3sec, where the seismic reliability decreases in 
the case of the 7-span configuration. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
 

Figure 6.20. Reliability curves for piers drift [%] for T1=2sec; a) Pier 1, i.a. 30°; b) Pier 1, i.a. 60°; 
c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; h) 

Pier 4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.21. Reliability curves for piers drift [%] for 1 3secT = ; a) Pier 1, i.a. 30°; b) Pier 1, i.a. 

60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; 
h) Pier 4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 
 

h) 

 
 

Figure 6.22. Reliability curves for piers drift [%] for T1=4sec; a) Pier 1, i.a. 30°; b) Pier 1, i.a. 60°; 
c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 4/6, i.a. 30°; h) 

Pier 4/6, i.a. 60°. 
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Figure 6.23-Figure 6.25 show the reliability curves associated with the pier’s 
curvature ductility , ,maxvet .  

In terms of seismic reliability evaluated through curvature ductility, it is 
possible to draw the same conclusions already stated for the seismic reliability 
expressed in terms of drift ratios ,maxvet . Spatial variability of earthquake ground 

motion worsens seismic performances, resulting in a lower seismic reliability. 
Additionaly, there is an increasing reliability as the isolation period increases 

particularly under an incidence angle condition of 60°. In terms of ductility, the 
fourth damage limit state is practically never respected under SVEGM conditions, 
even at the highest isolation period. The third damage limit state is overcome only 
under SVEGM and at the lowest isolation period T1=2sec. Indeed, increasing the 
isolation period has the effect to reduce the probability of exceeding damage limit 
states, permitting to satisfy limit states up to DLS-3. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.23. Reliability curves for piers curvature ductility [-] for 1 2secT = ; a) Pier 1, i.a. 30°;  b) 

Pier 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 
4/6, i.a. 30°; h) Pier 4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.24. Reliability curves for piers curvature ductility [-] for T1=3sec; a) Pier 1, i.a. 30°;  b) 
Pier 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 

4/6, i.a. 30°; h) Pier 4/6, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
g) 

 

h) 

 
Figure 6.25. Reliability curves for piers curvature ductility [-] for T1=4sec; a) Pier 1, i.a. 30°;  b) 
Pier 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Pier 3, i.a. 30°; f) Pier 3, i.a. 60°; g) Pier 

4/6, i.a. 30°; h) Pier 4/6, i.a. 60°. 
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Finally, Figure 6.26-Figure 6.28 show the seismic reliability with reference to 
the isolation level. The curves are presented in a semilogarithmic plane in the 
range range 4 010 :10− depending on the specific isolator’s position and on the 
isolation period. The seismic reliability of the friction devices is plotted against 
the different FP displacement thresholds, as presented in Table 6.7, ranging from 
0.10 m to 0.50m. It is possible to observe an increasing trend of the seismic 
reliability as the isolation period increases while it is always evident that the worst 
scenario is associated with the SVEGM condition with respect to the uniform 
case, particularly noticeable at the highest isolation period and for higher LSs 
thresholds.  

Regarding structural configuration, it can be stated that they result in almost 
the same reliability levels concerning the friction devices, with slightly higher 
probabilities of exceedance for the 7-span configuration, even if some inverting 
trend can be highlighted at isolation period 1T  equal to 3 sec and 4 sec for the last 
three limit states thresholds. 

The main outcome concerning the incidence angle condition is that a 60° 
angle has the main effect of magnifying the difference between SVEGM and 
uniform input conditions, especially at the highest isolation period. 
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a) 

 
 

b) 

 
 

c) 

 

d) 

 
e) 

 

f) 

 
Figure 6.26. Reliability curves for the FPS displacements [m] for 1 2secT =  ; a) Abutment 1, i.a. 

30°; b) Abutment 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Abutment 2, i.a. 30°; f) 
Abutment 2, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 6.27. Reliability curves for the FPS displacements [m] for 1 3secT =  ; a) Abutment 1, i.a. 

30°; b) Abutment 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Abutment 2, i.a. 30°; f) 
Abutment 2, i.a. 60°. 
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 6.28. Reliability curves for the FPS displacements [m] for 1 4secT =  ; a) Abutment 1, i.a. 

30°; b) Abutment 1, i.a. 60°; c) Pier 2, i.a. 30°; d) Pier 2, i.a. 60°; e) Abutment 2, i.a. 30°; f) 
Abutment 2, i.a. 60°. 
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6.6.2 Seismic Reliability-Based Design (SRBD) abacuses 

The seismic reliability curves related to the FP bearing devices are further 
processed in the same semilogarithmic plane by means of a linear regression law, 
in order to obtain seismic reliability-based design (SRBD) abacuses for a 
preliminary design of the plan dimension of the isolator (i.e. radius in plan r  of 
the FP concave surface) as a function of the selected target reliability and of the 
other structural parameters considered in the analysis, for a geographical area with 
a seismic hazard similar to the one considered in this study (i.e. L’Aquila). 

The lowest value of R-square is equal to 0.97 confirming the effectiveness of 
the regression. 

From the linear regression results, it is possible to observe that across all the 
isolation periods and structural configurations, the target probability of failure 
equal to 31.5 10fP −=  is reached through a radius in plan that ranges from a 

minimum value of 0.43m, referred to the  uniform input condition to 0.68m under 
SVEGM input condition.  
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure 6.29. Design abacuses of the FPS for 1 2secT =  ; a) Abutment 1 and i.a. 30°, b) Abutment 1 
and i.a. 60°, c) Pier 2 and i.a. 30°, d) Pier 2 and i.a. 60°, e) Abutment 2 and i.a. 30°, f) Abutment 2 

and i.a. 60°. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 
 

f) 

 

Figure 6.30. Design abacuses of the FPS for 1 3secT =  ; a) Abutment 1 and i.a. 30°, b) Abutment 1 
and i.a. 60°, c) Pier 2 and i.a. 30°, d) Pier 2 and i.a. 60°, e) Abutment 2 and i.a. 30°, f) Abutment 2 

and i.a. 60°. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 
 

f) 

 

Figure 6.31. Design abacuses of the FPS for 1 4secT =  ; a) Abutment 1 and i.a. 30°, b) Abutment 
1 and i.a. 60°, c) Pier 2 and i.a. 30°, d) Pier 2 and i.a. 60°, e) Abutment 2 and i.a. 30°, f) Abutment 

2 and i.a. 60°. 
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Based on the design abacuses, design safety factors for friction type bearing 
devices used in base isolation of typical highway bridges can be derived to 
account for the spatial variability of input ground motion in bridges’ seismic 
design. 

The following figures report the design safety factors for the two incidence 
angles of 30° and 60°. These are plotted as a function of the isolation period for 
the two structural configurations (5-span and 7-span). The overall trend 
demonstrates that higher safety factors are needed for increasing values of the 
isolation period or FP radius of curvature, and for the case of a larger number of 
bridge spans. Additionally, regarding the i.a., it is possible to observe that an 
incidence angle of 60° requires slightly higher safety factors. Summarizing the 
results from  

Figure 6.32-Figure 6.33, it can be stated that, for an incidence angle of 30°, 
combined with the 7-span bridge configuration, and an isolation period equal to 

1 4secT = , the maximum design safety factor is equal to 30 1.32SF  = , whereas in 
the case of an i.a. of 60° and for the same combination of structural configuration 
and isolation period, 60 1.39SF  = . These design safety factors are in line with the 
ones provided by Lupoi in 2009 [57] for a generic elastoplastic isolation system 
and with the recommended value of 1.5IS =  provided by EC8-Part 2: Bridges 
[76]. It is worth underlying that the amplification factor suggested by EC8 it is 
applied to the isolator displacements computed by means of a response-spectrum-
analysis. This value of the amplification factor is consistently on the side of safety 
when compared with the slightly lower values of the design safety factors 
resulting from the presented reliability assessment, which are indeed in line with 
the use of the more sophisticated tool of analysis. Nevertheless, the application of 
a simplified design procedure regarding the FP devices, using the displacement 
response spectrum for the reference site of L’Aquila, while calculating the 
equivalent damping ratio as for Eq. (3.64), yields smaller design displacements for 
the isolator, as a function of the isolation period and in the case of SVEGM 
condition, compared to those derived in this study. Indeed, when the spectral 
displacements along the two bridge directions X and Y are combined using the 
approach proposed in EC8, 0.3x yE E+ , and the recommended value 1.5IS =  is 

applied to implicitly consider the SVEGM, the results are not on the side of 
safety. The ratio of displacements calculated according to the response-spectrum-
analysis and displacements calculated through the full probabilistic reliability 
assessment presented in this study, are of the order of: 

 

Re 1.2
Full probabilistic analysis
displacement

sponse spectrum analysis
displacement

FPS
FPS

− −

− −
=  

 
The following outcome suggests that would be more conservative, to account 

for the spatial variability of earthquake ground motion (SVEGM) and in the case a 
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response-spectrum-analysis is adopted, to recommend a 20% higher value of IS  

than the one proposed by EC8 (i.e., using 1.5 1.2 1.8IS =  = ). 

 
Figure 6.32. Safety factors for the FPS design to be accounted for when the spatial variability of 

ground motion (SVEGM) is considered (Case i.a.=30°). 

 

Figure 6.33. Safety factors for the FPS design to be accounted for when the spatial variability of 
ground motion (SVEGM) is considered (Case i.a.=60°). 
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7 Conclusions 

This PhD thesis investigates the effects of the spatial variability of earthquake 
ground motion (SVEGM) on the seismic response of conventional highway 
bridges isolated with FP devices. Specifically, the input ground motion has been 
simulated using the spectral representation method, employing a spectrum-
compatible power spectral density. In the simulation process, spatial variability 
has been accounted for by means of the introduction of a complex coherency 
function. In addition, different local soil conditions have been considered at the 
bridge supports. The testbed bridge, situated near the city of L’Aquila (Italy), is an 
existing 5-span simply supported bridge supposed to have been seismically 
retrofitted with friction pendulum devices. To assess the impact of SVEGM to the 
overall bridge length, an additional bridge configuration has been introduced by 
increasing of two the total number of spans. Both configurations have been 
implemented in the finite element software Opensees, adopting a three-
dimensional spine line model, incorporating both elastic and non elastic 3D frame 
elements. Within Opensees a comprehensive set of nonlinear time history analysis 
(NRHA) has been conducted considering the FP friction coefficient as a random 
parameter alongside to three different radii of curvature (i.e. isolation periods). 
These analyses have been performed for both the case of uniform input condition 
and spatial variability of ground motion. Two different incidence angles of 30° 
and 60° have been also considered with respect to the bridge longitudinal axis. 
Finally, the simulated time histories have been scaled to different levels of the 
selected intensity measure IM (i.e. spectral acceleration at the isolation period) to 
subject the structural models to increasing levels of seismic demand. Incremental 
dynamic analyses (IDA) have been conducted to assess the seismic fragility of 
both the bridge piers and the isolation system that has required for the definition 
of specific damage limit states or limit state thresholds. Integrating the seismic 
fragility curves with the seismic hazard curves for the reference site of L’Aquila 

(Italy), the seismic reliability curves have been derived. These curves represent 
the probability of exceeding the damage limit state in a design life of 50 years for 
both the bridge piers and the friction pendulum (FP) devices. 

 
The objective of this work of thesis is twofold: 

1) Explore the influence of SVEGM on the seismic response of seismically 
isolated bridges employing FP devices. While the influence of SVEGM on 
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simply supported bridges has been extensively studied, its effect on 
seismically isolated bridges, particularly those equipped with FP devices, 
remains underexplored. Seismic isolation is crucial for protecting bridge 
piers and this raises questions regarding its effectiveness when 
asynchronous effects of earthquake ground motion are taken into 
consideration. To address this task, full probabilistic analyses have been 
conducted, incorporating both deterministic parameters (i.e. the number of 
bridge spans and the isolation period) and random variables (i.e. the FP 
friction coefficient at large velocities). These analyses have compared the 
seismic reliability of bridge piers under uniform and spatially variable 
input conditions, considering two different incidence angle conditions. 

2) Provide specific design safety factors for the seismic design of FP 
isolators adopted to retrofit conventional highway bridges, implicitly 
considering the adverse effects of SVEGM. This was achieved by deriving 
seismic reliability-based (SRBD) design abacuses and comparing the 
outcomes for different input ground motion scenarios (uniform and 
spatially variable input conditions), isolation periods, number of span 
configurations and incidence angles. 

The main findings of this study can be summarized as follows: 

- The effectiveness of the seismic isolation applied to highway RC 
bridge structures is confirmed by the results related to the bridge 
piers. This effectiveness increases as the isolation period provided by 
FPS increases. It has been derived that increasing the FP radius of 
curvature from 1.00m to 2.25m (i.e. the isolation period from 

1 2secT = to 1 3secT = ) leads to a reduction in piers drift of about two-
thirds while only slightly higher displacements are demanded to the 
FP isolators; 

- The worst seismic input scenario is always represented by the spatial 
variability of earthquake ground motion (SVEGM). This holds true 
for both the bridge piers and bridge FP isolators, with differences in 
results becoming more pronounced as the isolation period increases 
and at the highest levels of the intensity measure IM. Seismic fragility 
curves related to the bridge piers show that under SVEGM input 
condition, the bridge tends to exhibit a more fragile seismic response 
compared to uniform input ground motion, especially for the 
extensive (DLS-3) and complete (DLS-4) damage limit states. 

- The bridge structural configuration (i.e. number of spans) is a critical 
parameter in assessing the seismic response of a bridge under spatial 
variability of ground motion. This study has highlighted that 
increasing the number of spans, even though not significantly, has 
determined a magnification of the seismic effects coming from the 
SVEGM input condition. This amplification is particularly evident in 
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the case of isolation periods equal to 1 3,4secT = and concerning the 
FPS response. 

- The incidence angle with respect to the bridge longitudinal axis (i.e., 
30° and 60°) has revealed that as seismic waves travel along paths 
closer to the bridge transverse direction then the SVEGM condition 
worsens compared to the uniform condition. However, analyses for 
both incidence angle conditions show differences in magnitude of 
only a small percentage. 

- Seismic reliability analysis performed for both the bridge piers and 
the friction pendulum devices, have highlight that under the SVEGM 
input condition, there are higher probabilities of exceeding all the 
limit state thresholds, compared to the uniform condition. This is in 
line with the results coming from the fragility analysis. As mentioned 
earlier, these detrimental effects can become even more pronounced 
for a more orthogonal incidence angle and for increasing isolation 
periods and number of bridge spans.   
Accordingly, regarding friction pendulum devices, the proposed 
seismic reliability-based regressions in a semilogarithmic space show 
that under the combination of an incidence angle equal to 60° and for 
the case of 7-span bridge configuration, the radius in plan necessary to 
satisfy probabilities of failure of 31.5 10fP −=   could increase up to 

20cm when the spatially variable earthquake ground motion is 
applied.  
The so-obtained SRBD abacuses could be instrumental for the 
preliminary design of FP devices employed to seismically isolate 
highway RC bridges, located in areas with seismic hazard similar to 
that considered in this work of research, for the two conditions of 
uniform input ground motion and spatially variable one. By means of 
the reliability-based regressions, this study has computed specific 
design safety factors that should be adopted to implicitly considering 
SVEGM, depending on the seismic isolation period, the overall bridge 
length and the incidence angle. The results obtained in terms of design 
safety factors do not have the pretense to be exhaustive, since a wider 
range of overall bridge lengths should be analyzed, but of course, they 
draw a line regarding the seismic design of FPS under spatial 
variability of earthquake ground motion: they indeed tend to increase 
with increasing number of spans, isolation period, and quasi-
orthogonal incidence angles. Particularly, for an incidence angle 
i.a.=60°, combined with an overall bridge length of 7-span and with 
the highest isolation period 1 4secT = , the analyses suggest a safety 
factor equal to SF=1.40. This value is slightly lower than 
recommended value of 1.5IS = provided by EC8 to account for the 
SVEGM input condition in the seismic design of isolator devices, 
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when the response-spectrum analysis is used. Neverthless, this 
difference is justified by the use of a more sophisticated tool of 
analysis used in this work of thesis that enhances the derivation of 
lower design safety factors. Additionally, it has been verified that if 
the FP devices are designed through a response-spectrum analysis for 
the reference site of L'Aquila and the subsequent application of the 
EC8 safety factor IS , to take into account SVEGM, the designed 
displacements would be about 20% less than the ones derived in this 
study. This suggests that would be more conservative, in case a 
simplified response-spectrum analysis is used, to adopt a higher value 
of the safety factor IS  than the one provided by EC8. This 

considerations lead to a reasonable value of 1.5 1.2 1.8IS =  = .  

Future enhancements of this work of thesis could be aimed at analyzing a 
broader range of bridge overall lengths. The decision to limit the study to 
a 7-span, 8-support bridge, strikes a balance between the significance of 
the results under SVGEM and the computational efforts involved. The 
time required for generating artificial records increases directly with the 
number of bridge supports. Additionally, exploring how different 
combinations of loss of coherence and local soil conditions affect the 
isolated bridge response could provide valuable insights into the spatial 
variability of earthquake ground motion effects on seismically isolated 
bridges.   
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