

Doctoral Dissertation Doctoral Program in Mechanical Engineering $(36^{th}cycle)$

Sloshing tank to enhance WEC performance

Modelling, validation and integration

By

Marco Fontana

Supervisor(s):

Prof. Giovanni Bracco, Supervisor Prof. Giuliana Mattiazzo, Co-Supervisor

Doctoral Examination Committee:

Eng. Giacomo Vissio PhD., Referee, Politecnico di Torino Eng. Nicola Pozzi PhD., Referee, Politecnico di Torino

Politecnico di Torino 2024

Abstract

This thesis examines the potential for enhancing the ISWEC device by integrating a U-shaped sloshing tank to expand its operational bandwidth. The conventional linear model for sloshing tanks is augmented with nonlinear effects, which were explored using high-fidelity computational fluid dynamics (CFD) simulations. The employment of advanced CFD simulations includes hybrid RANS-LES models, which are used to analyse highly non-linear phenomena in the U-tank. This advances the state-of-the-art in sloshing simulation, with a significant improvement in the computational costs.

The tuning of the dynamic response of the U-tank system is achieved with a novel passive control logic using discrete volumes. The solution is defined theoretically and then integrated in the ISWEC system with a feasibility check and design to improve the system capabilities. The integration of the U-tank resulted in an increase in the ISWEC device's pitch motion of up to 35%. Improvements in Annual Energy Production (AEP) of up to 18% were observed in locations with broad wave period ranges, such as Alghero and Balder. In areas with narrower wave spectra, such as Pantelleria, a 9.3% AEP increment was achieved.

A cost of energy (CoE) analysis demonstrated potential energy cost savings between 8% and 16% with the U-tank integration. However, the absolute CoE figures remain a limitation for industrial-scale implementation.

This work represents a step towards expanding the ISWEC system's operational bandwidth, enhancing its adaptability to various sites and pushing it closer to industrial-scale application in diverse wave energy environments. The objective is to facilitate the mass production of a single device, reduce its cost and then tune its response through the controlled U-tank technology.