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Abstract

This work explores the possibilities in terms of structural design offered by the
advent of composite materials. Through aeroelastic tailoring, it is possible to design
high aspect ratio wings with greater aeroelastic performance. The bending-torsion
coupling given by oriented fibers or stiffeners can be optimized to counter aeroelastic
phenomena such as flutter and divergence.

The first part of this work presents the derivation of a beam finite element with
bending-torsion coupling formulation for static and dynamic analysis of wing struc-
tures with oriented fibers or stiffeners. Then the finite model is extended to nonlinear
vibration analysis of pre-deformed structure through a perturbation approach. The
models have been validated with a series of experimental vibration tests and by
comparison of numerical and experimental results present in the literature.

The objective of the finite element model is to obtain a versatile tool for static
and dynamic analysis of beam structures with bending-torsion coupling, but also for
more complex analyses which requires a larger number of calculations and where
these elements can be beneficial in terms of computational cost. At this scope, the
presented element has been implemented in an optimization algorithm to compute the
optimal curvilinear stiffeners path for beam structures. Another application for the
finite element is divergence analysis, where the beam finite element structural model
can be coupled with an aerodynamic model to find the equilibrium configuration of
the wing structure under the aerodynamic load or the divergence condition.

Besides the study of finite elements for the simulation of beam structures with
bending-torsion coupling, this thesis presents extensive work on additive manufac-
turing simulation. Additive manufacturing is increasingly important in the aerospace
industry and could be adopted for the production of curvilinear stiffeners for box-
beam structures. These geometries can be used to expand the aeroelastic design
domain, and requires innovative manufacturing technologies. However, accurate
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process simulations are needed to reduce the costs of low quality or failed parts
generally associated to additive manufacturing. At this scope, an algorithm for addi-
tive manufacturing process simulation has been validated with industrial computed
tomography and used to simulate the production of a stiffened panel and a calibrating
artifact.
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Chapter 1

Aeroelastic Design and Production

1.1 Introduction and Significance

Aviation sustainability is a major concern as it contributes a large amount of green-
house gases and other pollutants. Air transport alone accounts for 1-2% CO2 emis-
sions related to human activities worldwide [1]. These numbers are destined to
increase due to the relentless expansion of air travel. Airbus in its Global Market
Forecast, expects an annual growth of 3.6% for the demand of passenger traffic over
the next 20 years. Airbus also forecast demand for 40850 new passenger and freighter
aircraft deliveries over the next 20 years [2]. Boeing, in its Commercial Market
Outlook, highlighted how the global passenger traffic continues to recover ground
lost during the pandemic and it already surpassed the pre-pandemic levels. Boeing
forecast that air travel will continue growing faster than global economic activity
driven by tourism demand and increased service levels, particularly in developing
markets. Air traffic will more than double over the next 20 years with at a 3.7%
growth, outpacing the fleet growth at 3.2%. Airlines aircraft demand is expected to
reach more than 42000 units delivered by 2042 [3]. For these reasons, the National
Aeronautics and Space Administration (NASA) and the European Commission, put
out challenging sustainable aviation goals to reduce the environmental effects of the
forecast increase in air traffic [4, 5].

The recent Paris Agreement established new goals for aviation emission target
which are unlikely to be satisfied with the current trend of air traffic [6]. The urgency
imposed by international agreements and regulations requires new game-changing
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design concepts to improve aircraft performance in terms of fuel consumption. The
augmentation of wing aspect ratio (AR) can play a crucial role for new efficient
aircraft [7]. Several research works in the aerospace field established a correlation
between an increased aspect ratio and a reduction in fuel consumption. According to
recent studies, expanding the wingspan of conventional aircraft by 15-23% can lead
to a reduction of fuel consumption estimated of 8-11% [8, 9]. The beneficial effects
of augmented AR are known to the principal aircraft manufacturer, in fact, the AR of
commercial transport aircraft has shown an increasing trend with extended wingspan
and wingtip devices.

The main goal of this change in design is to reduce lift-induced drag and thus
enhance efficiency end reduce fuel consumption [10]. Part of the aircraft drag is
associated to the fiction of the boundary layer on the aircraft surfaces and it is called
viscous drag. The boundary layer flow on today’s large aircraft is turbulent on almost
the entire wetted surface and this results in viscous drag five to ten times larger than
that of laminar boundary layers. Laminar flow control and optimized airfoils for
laminar boundary layers can considerably improve aircraft performance [11]. An
important component of an aircraft drag is the lift-induced drag, this is a primary
issue for conventional commercial aircraft constituting up to 80% of the total drag
during climb and 40 % during cruise [11]. In the recent years, many daring design
have been proposed to enhance aircraft efficiency through AR augmentation. Strut-
Braced Wings (SBW) designed in the RHEA project [12] presented an AR of 25,
while the aircraft designed in the Subsonic Ultra Green Aircraft Research (SUGAR)
project adopted an AR of 19,55 [13] with a Truss-Braced Wing (TBW) configuration.
NASA and Boeing are cooperating on the design of the transonic TBW concept
[13–16], they stated that TBW design could reduce aircraft fuel consumption by up
to 10% compared to conventional aircraft [17]. Other projects involving SBW and
TBW configuration are currently ongoing and adopt high AR [18, 10, 19]. Recently,
the HELIPLAT project [20], carried out at Politecnico di Torino, involved high AR
wing structure for the design of an high altitude very-long endurance uninhabited
air vehicle (HAVE-UAV). The most recent studies indicate that these configurations
could reduce aircraft fuel burn by 10-20% in long-range missions [21–25] and by
7-10% in short range missions [18, 26, 27].

Despite the aforementioned aerodynamic benefits, the development of High
Aspect Ratio Wings (HARW) is slowed by structural design issues inherent to HARW.
An augmented wingspan implies higher structural flexibility and higher stress levels
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at the wing root. Another problem is represented by airport terminal operations and
maintenance facilities which limit the wing allowable span airport terminal operations
and maintenance facilities [28]. Moreover, with the increase of wing structural
flexibility, the wing becomes more susceptible to higher deflections during normal
operations, this can affect the dynamic behaviour and, as a consequence, aeroelastic
instabilities for HARW occurs at lower speed than in a conventional wing structure.
According to Hodges and Dowell [29], for HARW, the flap bending mode, the chord
bending mode, and the torsion mode may couple and result in significant structural
nonlinearities. Hence, the importance of assessing the effects of nonlinearities on
the aeroelastic behavior of HARW. The first studies concerning nonlinear elasticity
are mainly connected to helicopter blades. These structures usually have a very high
aspect ratio and can present nonlinear aeroelastic behavior possibly in transonic flow
with shock and stall [30]. The interest for fixed wing aircraft nonlinear aeroelasticity
increased due to the need to understand aeroelastic response in the transonic regime
[31], where aerodynamic nonlinearities are observed. The advent of unmanned
HARW aircraft such as the High Altitude Long Endurance (HALE) aircraft [32,
33] required more studies on the effect of geometric nonlinearities on aeroelastic
behavior even in cruise conditions [34]. Moreover, a study conducted by Frulla [35]
highlighted the importance of the effect of deformed equilibrium configuration in
the dynamic behavior of slender wings. Aircraft wings are deflected by aerodynamic
loads during normal operations, this deformations introduces non-linearities which
influence the dynamic behavior and bending-twist vibrations. This coupling effect
induced by the equilibrium deformation can cause critical flutter conditions into the
system at a lower velocity if compared with the linear case. This amplifies the need
of specific design solutions and simulation tools.

One of the possible solutions is to combine aerodynamic couplings with structural
couplings and mitigate these instabilities or shift them at a higher speed [36–38].
Structural coupling can be achieved with specific materials or technologies, the
introduction of innovative solutions such as Variable Angle Tow (VAT) laminates
[39–45]. Other solutions are represented by the use of oriented rectilinear or curvi-
linear stiffeners panels [40, 46]. The design of structures with anisotropic material
properties to influence wing aeroelastic properties is called aeroelastic tailoring,
this thesis aims to realize reliable and efficient tools for aeroelastic tailoring design
and optimization. Particularly, the problem is addressed with the derivation of a
beam finite element with bending-torsion coupling formulation and its extension for
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dynamic analysis with geometric nonlinearities. The finite element has been widely
tested with numerical and experimental results and then adopted for optimization
problems and aeroelastic analysis.

1.2 Aeroelastic Tailoring: A Short Overview

Aeroelastic tailoring is a design process in which minimum weight is the prepon-
derant objective. Aeroelastic tailoring involves the use of structural deformation of
a lifting surface to achieve desired aircraft performance [47]. Aeroelastic tailoring
is a passive control where the control law is embedded within the structure in the
material constitutive relations. The first example of the use of anisotropic material to
enhance the performance of aerodynamic surfaces was given by Munk in 1949 [48].
He used oriented wood plates to provide a fixed pitch propeller where the blades
twist elastically under the aerodynamic loads. This feature was used to keep the
optimal orientation at different trust levels.

In 1969 General Dynamics proposed several applications of advanced composite
materials for weight saving but also to improve transonic performance of supercritical
wings. The purpose of the project was to design a wing capable of maintaining
the optimal shape at both cruise and design maneuver conditions. The researchers
showed that the directional properties of composites could be used to create bending-
torsion coupling which can be used to control the shape of supercritical wings
[49].

The most famous application of aerolastic tailoring is on the X-29 forward-
swept wing demonstrator aircraft. The innovative structural layout was heavily
affected by the divergence problem and needed to be controlled [50]. Weisshaar
also focused on forward-swept wings, he studied the aeroelastic performance and
stability properties of aircraft with sophisticated swept-forward composite wing
structures [38]. His investigation revealed the possible use of composite bending-
torsion elastic coupling to mitigate the undesired swept-forward wing divergence
behavior. An area that attracted aeroelastic tailoring research was the wing-box
laminate configuration. Lynch and Rogers [51] developed an algorithm to explore
wing design using anisotropy in laminate layup for improving aeroelastic drag
problems, control effectiveness, strength, divergence, and flutter without any weight
penalty.
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Librescu and Song [52] analyzed the static aeroelastic response and the diver-
gence instability of a swept-forward wing with a thin-walled anisotropic composite
beam structure. More recently the research is moving toward tools and algorithms
for aeroelastic tailoring design and optimization. This thesis aims to be a contribute
for this research field through the development and validation of specific beam finite
elements for aeroelastic analysis of composite wing structures.

1.3 Metal Additive Manufacturing in Aerospace

The sustainability goals set for the next decades requires also advanced produc-
tion technologies for their fulfillment. Weight reduction is a key requirement for
aerospace components which, alongside the increasing complexity of mechanical
parts, is setting new challenges for conventional manufacturing techniques. Additive
manufacturing (AM) is increasingly present in the aerospace industry and could
enable the development of new structural concepts associated to aeroelastic tailor-
ing. A critical challenge to metal AM applications in aerospace is represented by
certification. The regulatory bodies must be confident that AM systems are well
known and design and inspection process can satisfy the expectations in terms of
repeatability, reliability, and safety. Certifications vary based on the criticality of the
proposed AM component and require connection with existing standards and the
emerging ones for AM processes [53].

Additive manufacturing utilizes layer by layer built strategy based on a common
feedstock, typically powder for metal processes and wire for polymers. The raw
material is melted by a heat source in specific positions and solidifies to produce
a layer of the final geometry [54]. AM brings several advantages to the aerospace
industry, lead time and cost can be sensibly reduced and new lightweight complex
components can be manufactured. Moreover, multiple components can be merged
in one single part reducing the risks associated to joints failures [55, 56]. With AM
technologies is possible to include internal features which can be an advantage for
combustion chambers or turbine blades cooling channels [57, 58].

The aerospace sector relies heavily on machined forged and billet structures for
critical structural systems. These technologies are well known and guarantee high
certainty in final product quality. However, these manufacturing techniques add
substantial direct production costs and indirect costs due to high manufacturing lead



6 Aeroelastic Design and Production

times. Moreover, the material waste is considerably high, typical buy-to-fly rations
can vary from 20:1 [59] to 40:1 [60]. Due to their nature, the additive manufacturing
process produces little to no waste with the possibility to recycle unused material.
The buy-to-fly ratios in this case are between 1:1 and 3:1 [61].

Additive manufacturing is a complex procedure that involves many physical
processes at different scales. The process is influenced by a large number of process
parameters which can heavily affect the final quality of the produced parts [62]. De-
spite the continuous improvement in understanding the effect of process parameters,
AM is not able to guarantee consistency in the quality of the produced parts and this
leads to difficulties in the certification process for the use of AM for critical aerospace
components. Further disadvantages of AM include limited materials, uncertainty
in material properties, specific design constraints inherent to AM, post-processing
requirements, waste generation (used powder, build plates, failed builds), increased
requirements of design skills to allow lower-mass components with feasible complex
designs, often utilizing time-consuming topology optimization software workflows,
as well as the need for strict quality control and certification of the process [63, 53].

Despite the drawbacks mentioned, the technical advantages over traditional
manufacturing methods are clear. AM process simulation can be a useful method to
make the AM process more predictable and therefore limit the waste given by failed
or poor quality components. Several studies are already moving toward this key
aspect of AM and this thesis aims to contribute to this topic with the implementation
of AM process simulation for the production of aerospace components.

1.4 Objective of the work

The primary objective of this work is to develop and validate efficient simulation
tools to enlarge the design space for next generation aircraft structures. The main
problems addressed are the development of a beam finite element with bending-
torsion coupling formulation for aeroelastic tailoring design and the validation of
AM simulation theory. These problems are connected by a possible application of
AM process for the production of curvilinear or complex-shape stiffeners given by
topology optimization for aeroelastic performance.
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This work aims also to expand the use of beam finite elements with bending-
torsion coupling formulation to dynamic analysis in the presence of geometric
nonlinearities. Moreover, this thesis aims to develop an efficient procedure for topol-
ogy optimization of structures with bending-torsion couplings and for divergence
analysis.

1.5 Structure of the thesis

The present work is organized as follows. Chapter 2 presents the derivation of the
beam finite element with bending-torsion coupling. The equations of motion are
derived and the finite element mass and stiffness matrix are derived with Galerkin’s
method. The finite element is derived through the definition of specifically derived
shape functions which include the bending-torsion coupling.

The extension of the beam finite element with bending-torsion coupling to the
nonlinear field is presented in Chapter 3. Two nonlinear models are derived, the
first includes only the geometrical effects, while the second is derived through a
perturbation method and includes also the stiffness effects.

In Chapter 4 an equivalent single layer for stiffened panel is experimentally
validated for the modal analysis of stiffened and composite box-beams.

In Chapter 5 the beam finite element with bending-torsion coupling is validated
with numerical and experimental evidence for static and dynamic analysis. This chap-
ter presents also the numerical and experimental validation of the nonlinear version
of the finite element for nonlinear dynamic analysis of pre-deformed structures.

Chapters 6 and 7 presents two applications of the finite element derived. The
first consists in an optimization of the curvilinear stiffeners path with constraints
on bending and torsion and for AM production. In the second, divergence analysis
is performed coupling the structural analysis with the beam finite element and an
aerodynamic analysis. This procedure is validated with experimental results of
composite structures.

Chapter 8 presents an overview of AM process simulation and presents the
simulation strategy adopted in this thesis. In this chapter, an application of AM
production to oriented stiffened panels based on the results of Chapter 6 is presented.
Moreover, the theory implemented in the simulation software is validated with the
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simulation of the production of a metal component and a results comparison with an
industrial computed tomography performed on the actual part.

Chapter 9 summarizes the results obtained in this work and draws some conclud-
ing remarks.

1.6 Contribution of the thesis

The main contributions of the present work are summarized hereto:

• The derivation of a beam finite element with bending-torsion coupling formu-
lation for static and dynamic analysis of box-beam structures with rectilinear
or curvilinear stiffened panels or composite fibers.

• The derivation of two models for the dynamic analysis of box-beam structures
with bending-torsion couplings in the presence of geometric nonlinearities.

• The experimental validation of an equivalent single layer for stiffened panels
for dynamic analysis. The validation showed good accuracy and extended the
use of this model also for the modal analysis of stiffened panels box-beam
structures.

• The experimental and numerical validation of the derived finite element for
the static and dynamic problems of composite beams, stiffened and composite
thin-walled box-beam, variable stiffness beams, and pre-deformed beams.

• The development of an optimization procedure for the design of box-beam
structures with curvilinear stiffness in the presence of bending-torsion perfor-
mance constraints as well as AM constraints.

• A procedure for divergence analysis of composite wing structures using the
derived finite element and an aerodynamic analysis performed with the Vortex
Lattice Method. The results obtained have been validated with experimental
results.

• The validation of an AM process simulation algorithm with experimental
results obtained with an industrial computed tomography.
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The above-mentioned contribution has led to the publication listed below:

Journal Paper

1. Patuelli, C., Polla, A., Cestino, E. et al. Experimental and Numerical Dynamic
Behavior of Bending-Torsion Coupled Box-Beam. J. Vib. Eng. Technol. 11,
3451–3463 (2023).

2. Patuelli, C.; Cestino, E.; Frulla, G. A Beam Finite Element for Static and Dy-
namic Analysis of Composite and Stiffened Structures with Bending-Torsion
Coupling. Aerospace 2023, 10, 142.

3. Patuelli, C.; Cestino, E.; Frulla, G.; Valente, F. Optimization of Curvilinear
Stiffener Beam Structures Simulated by Beam Finite Elements with Coupled
Bending–Torsion Formulation. Materials 2023, 16, 3391.

4. Patuelli, C.; Cestino, E.; Frulla, G.; Valente, F.; Servetti, G.; Esposito, F.;
Barbero, L. FEM Simulation of AlSi10Mg Artifact for Additive Manufac-
turing Process Calibration with Industrial-Computed Tomography Validation.
Materials 2023, 16, 4754.

5. Patuelli, C.; Cestino, E.; Frulla, G. A Nonlinear Beam Finite Element with
Bending–Torsion Coupling Formulation for Dynamic Analysis with Geometric
Nonlinearities. Aerospace 2024, 11, 255.

Conference Paper

1. Cesare Patuelli, Enrico Cestino and Giacomo Frulla. "Aeroelastic Analysis
through Non-Linear Beam Finite Elements with Bending-Torsion Coupling
Formulation," AIAA 2024-1073. AIAA SCITECH 2024 Forum. January
2024.



Chapter 2

Beam Finite Element with
Bending-Torsion Coupling Derivation

Some of the contents and derivation presented in this chapter have been previously
published in Aerospace 2023.

C. Patuelli, E. Cestino, e G. Frulla, «A Beam Finite Element for Static and Dynamic
Analysis of Composite and Stiffened Structures with Bending-Torsion Coupling»,
Aerospace, vol. 10, fasc. 2, p. 142, feb. 2023.

This chapter presents the derivation of a beam finite element for static and
dynamic analysis of beam structures with material bending-torsion couplings. A
specific set of shape functions is derived in order to establish the relation between
the bending and torsional nodal degree of freedom of a two-node beam element.
These functions are derived considering Timoshenko’s hypothesis and imposing the
torsional moment constant along the element. The second hypothesis connects the
bending and torsional behavior and can be considered satisfied for small elements.
The stiffness and mass matrices are obtained through Galerkin’s method starting from
the linear equilibrium equation. The beam finite element has been tested with a static
analysis and compared with numerical and analytical results. Moreover, an LDV
modal analysis has been performed on a beam structure with oriented composite
panels and on a beam structure with oriented stiffened aluminum panels.
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2.1 Overview on Beam Structures Models with Bending-
Torsion Coupling

In this section, we provide an overview of the analytical and numerical methods for
static and dynamic analysis of beam structures with bending-torsion coupling.
Many types of this class of models are present in literature, each one addressed to a
specific kind of coupling, shape, or analysis. Hollowell [64] conducted an analytical
and experimental investigation to determine the aeroelastic flutter and divergence
behaviour of unswept, rectangular wings simulated by graphite/epoxy, cantilevered
plates with various amounts of bending-torsion stiffness coupling. The analytical
approach incorporated a Rayleigh-Ritz formulation.

Hong and Chopra [65] investigated the aeroelastic stability of flap bending,
lead-lag bending, and torsion of a composite rotor blade in hover using a finite
element theory based on Hamilton’s principle. The energy and governing differential
equations were derived for moderately large deflections. The blade was discretized
into beam elements with fifteen nodal degrees of freedom. The study revealed that
stiffness coupling terms affect heavily blade dynamic stability.

Dokumaci [66] presented an exact determination of coupled bending and torsion
vibration characteristics for beams with a single cross-sectional symmetry and
explained the effect of bending-torsion couplings on the natural frequencies and
modes.

Banerjee [67] derived the explicit expressions for the coupled bending-torsional
dynamic stiffness matrix of a uniform beam element by solving the governing
differential equation of the beam. Numerical evidence demonstrated the accuracy of
results for a cantilever beam with a substantial amount of bending torsion coupling.
However, the coupling was given by the distance between the mass and the elastic
axis and not by the material orientation. Later, Banerjee et al. [68] developed an
exact dynamic stiffness matrix for free vibration analysis of composite beams using
symbolic computation. The derived dynamic stiffness matrix was used with the
Wittrick-Williams algorithm to compute the natural frequencies and mode shapes of
composite beams with bending torsion coupling.

Smith and Chopra [69] presented a direct analytical beam formulation for pre-
dicting the elastic stiffness and the corresponding deformation behavior of tailored
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composite wing boxes. The model has been validated with numerical and experi-
mental results showing a good precision in predicting beam deformations within 10
percent of detailed finite element solutions.

Chandra [70] developed a Vlasov-type linear theory to analyze the structural
response of composite I-section beams with elastic couplings. The theoretical study
has been validated with experimental results under bending and torsional loads.
Another work [71] investigated the vibration of rotating composite box beams,
with governing equations derived using a Newtonian approach. In this case, the
bending-shear and the extension shear coupling were the main couplings affecting
the vibration frequencies.

Hashemi and Richard [72] developed a Dynamic Finite Element (DFE) formula-
tion for the vibration analysis of bending-torsion coupled beams. They found the
exact solutions for the differential equations governing the uncoupled vibrations,
then they used these solutions as basis functions for the frequency-dependent shape
function that can be used to find the nodal approximations of variables. The Dynamic
Stiffness Matrix is then obtained with the Principle of Virtual Work (PVW).

Jung et al [73] proposed a refined structural model based on a mixed forces
and displacements method for the analysis of composite rotor blades with elastic
couplings. The theory accounts for the effect of elastic couplings, warping, shell
thickness, and transverse shear deformation. They developed a first-order shear
deformation theory deriving the beam force-displacement relations with a semi-
complementary energy functional. Bending and torsion-related warping and shear
correction factors were obtained in closed form. The theory was validated against
experimental data and finite element results.

Wenbin et al. [74] formulated a finite element-based analysis for nonhomoge-
neous, initially curved, and twisted anisotropic beams from geometrically nonlinear
three-dimensional elasticity. The strain field is formulated through the decomposition
of the rotation tensor and is given in terms of one-dimensional generalized strains
and a three-dimensional warping displacement obtained from the formulation. The
warping is found via the variational asymptotic method. Numerical results presented
the variation of classical and nonclassical couplings as the initial twist and curvature
are varied.

Mohri et al. [75] investigated a theoretical and numerical model to study the
behavior of open cross-section beams in the presence of large torsion. This model
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takes into account large torsion, warping, pre-buckling deformation, and flexural-
torsional coupling. The model is implemented into a two nodes and seven nodal
degrees of freedom beam element. The model has been derived for linear and
non-linear analysis carried out with Newton-Raphson iterative method.

More recently Babuska et al. [76] presented a weak-form approach to the
development of a bend-twist coupled composite laminate beam element. The beam
element was tested for static and dynamic analysis and compared with analytical and
shell element solutions.

Most of the works already published in literature concerning structural models for
beam structures with specific couplings found their application in static and dynamic
analysis of wings or rotor blades. This highlights the great interest in this class of
models for the design of these structures. However, many of the models presented
are based on analytical formulation and can be challenging when it comes to actual
applications. A beam finite element considering the bending-torsion coupling caused
by the anisotropy of the material can be a very versatile tool for simulation and
optimization in the early phases of wing structure design. For this reason, the
derivation Bending-Torsion Coupling beam finite Element (BTCE) is addressed in
the present chapter. The model here presented establishes a relation between bending
and torsion in the presence of material coupling by means of specific shape functions.
These functions are obtained by applying the beam element boundary conditions and
introducing the hypothesis of constant torsional moment along the element length.
The stiffness and mass matrices are then derived using Galerkin’s method. The
BTCE has been tested against shell finite elements and experimental results showing
great accuracy for static and dynamic analysis.

2.2 Basic assumption on the beam model

The motion of a beam element can be described by three translational displacements
and three rotations on each section. Three Euler’s angles can be used to describe
the rotation of the beam from the undeformed condition to the deformed condition.
We consider an initially straight beam represented in Figure 2.1. Two coordinate
systems are introduced: the coordinate system xyz for the undeformed geometry and
the orthogonal curvilinear coordinate system 123 for the deformed geometry. Let s to
be the curvilinear abscissa. Let ix, iy, and iz denote the unit vectors of the coordinate
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system xyz while i1, i2, and i3 denote the unit vectors of the coordinate system
123. Let u(s, t), v(s, t), and w(s, t) be the component of the elastic displacements
with respect to the centroid of the beam at an arbitrary abscissa s. The three Euler
angles ψ , θ , and ϕ are used to describe the rotation from the undeformed position
to the deformed one. First, the angle ψ about the z axis is applied to the xyz system
to obtain the intermediate coordinate system x1y1z. Second, the x1y1z system is
rotated by an angle θ about the y1 axis to the second intermediate system 1y1z2 and
finally, the system 1y1z2 is rotated by the angle ϕ about the 1 axis to obtain the 123
coordinate system. The consecutive rotations are represented in Figure 2.2

z

y

x

1

23

v

w

φ

Fig. 2.1 Coordinate System
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Fig. 2.2 Exemplification of the three successive counterclockwise rotations defined to align
the inertial system to the deformed system.

The successive counter-clockwise rotations define a transformation matrix re-
ported in Equation 2.1.

[T ] =

cosϑcosψ cosϑsinψcosϕ + sinϑsinϕ cosϑsinψsinϕ − sinϑcosϕ

−sinψ cosψcosϕ cosψsinϕ

sinϑcosψ sinϑsinψcosϕ − cosϑsinϕ sinϑsinψ sinϕ + cosϑcosϕ


(2.1)

The angular velocity ω of the centroidal frame with respect to the inertial frame
can be written as

ω(s, t) = ψ̇iz + ϑ̇ iy1 + ϕ̇i1

= (ϕ̇ − ψ̇sinϑ)i1 +(ψ̇cosϑsinϕ + ϑ̇cosϕ)i2

+(ψ̇cosϑcosϕ − ϑ̇sinϕ)i3

(2.2)
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Where the dots denote the time derivative. The components of the curvature ρ1,
ρ2 and ρ3 can be obtained by replacing the time derivative with spatial derivatives,
denoted with the prime, into Equation 2.2 according to Love’s kinetic analogy.

ρ(s, t) = ψ
′iz +ϑ

′iy1 +ϕ
′i1

= (ϕ ′−ψ
′sinϑ)i1 +(ψ ′cosϑsinϕ +ϑ

′cosϕ)i2

+(ψ ′cosϑcosϕ −ϑ
′sinϕ)i3

= ρ1i1 +ρ2i2 +ρ3i3

(2.3)

The motion of the beam is described by six generalized displacements, three
translations (u, v, w) and, three rotations (ψ , ϑ , ϕ). The equations of motion are
derived neglecting the extension of the neutral axis, the shear deformation, and the
warping of the cross-section. These hypothesis are applicable to the cases studied
in this thesis, but this model would not be applicable for beams subject to large
centrifugal forces (e. g. helicopter rotor blades), beams with highly deformed cross-
sections, and to beams with twisting-extension or bending-extension couplings due
to anisotropy. With these assumptions, only three generalized displacements are
independent.

The extension of the beam can be written as

e =
√

(1+u′)2 + v′2 +w′2 −1 (2.4)

The inextensibility constraint equation can be written as

(1+u′)2 + v′2 +w′2 = 1 (2.5)

Moreover, the angles ψ(s, t) and ϑ(s, t) can be rewritten as a function of the
derivatives u′, v′, w′ as

tanψ =
v′

1+u′
(2.6a)

tanϑ =− w′√
(1+u′)2 + v′

(2.6b)
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The variations of curvature are derived according to Pai [77]. The coefficients of
the transformation matrix [T] are obtained with a Taylor expansion up to order two
to the coefficients reported in Equation 2.1.

T31 =−w′, (2.7a)

T21 =−v′, (2.7b)

T32 =−ϕ, (2.7c)

T22 = 1, (2.7d)

T33 = 1, (2.7e)

T23 = ϕ, (2.7f)

From Equation 2.7, the expressions of the curvature components retaining only
second order terms are

ρ1 = ϕ
′+ v′′w′, (2.8a)

ρ2 =−w′′+ v′′ϕ, (2.8b)

ρ3 = v′′+w′′
ϕ, (2.8c)

2.3 Derivation of the equation of motion

In this section, the derivation of the equation of motion of the beam is outlined. The
equations of motion are obtained by means of the extended Hamilton’s principle
expressed in Equation 2.9.

∫ t2

t1
(∂T −∂π +∂Wnc)dt = 0 (2.9)

∂w(x, t) = 0 t = t1, t2 (2.10)

∂v(x, t) = 0 t = t1, t2 (2.11)

∂φ(x, t) = 0 t = t1, t2 (2.12)
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where ∂T is the variation of kinetic energy, ∂π is the variation of the potential
energy and ∂Wnc is the virtual work of the non-conservative forces.

2.3.1 Variation of the potential energy

According to [77], the variation of the potential energy is given by:

∂π =
∫ L

0
(M1∂ρ1 +M2∂ρ2 +M3∂ρ3)ds (2.13)

where M1, M2, and M3 are the moments with respect to the principal directions,
while ∂ρ1, ∂ρ2, and ∂ρ3 are the variations of the curvatures and can be written as

∂ρ1 = ∂ϕ
′+∂v′′w′+ v′′∂w′, (2.14a)

∂ρ2 = ∂ (−w′′)+∂v′′ϕ + v′′∂ϕ, (2.14b)

∂ρ3 = ∂v′′+∂w′′
ϕ +w′′

∂ϕ, (2.14c)

Considering the beam inextensible, the contribution of the forces normal to the
section is neglected.

Substituting Equation 2.14 into Equation 2.13 one obtains the following expres-
sion:

∂π =
∫ L

0
(M1∂ϕ

′+M2v′′∂ϕ +M3w′′
∂ϕ+

+M1w′
∂v′′+M2ϕ∂v′′+M3∂v′′+

+M1v′′∂w′+M2∂ (−w′′)+M3ϕ∂w′′)ds

(2.15)

The terms containing the variations of the derivative of the generalized displace-
ments can be integrated by parts to obtain the terms associated with the variation of
the generalized displacements and the boundary conditions. After some algebraical
manipulation, it is possible to obtain the following:
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∂π =
∫ L

0

[(
−M′

1 +M2v′′+M3w′′)
∂ϕ +

(
M′′

1 w′′′+M′′
2 ϕ

′′+M′′
3
)

∂v+(
−M′

1v′′′−M′′
2 +M′′

3 ϕ
′′)

∂w
]

ds+
[
M1∂ϕ +

(
M1w′+M2ϕ +M3

)
∂v′+

−
(
M1w′+M2ϕ +M3

)′
∂v+(M2 +M3ϕ)∂w′− (M2 +M3ϕ)′ ∂w

]L

0
(2.16)

Knowing that for a bend-twist coupled beam, the resultant of the moment can be
written as in Equation 2.17, the terms associated with the variation of the generalized
displacements can be obtained as in 2.18

M1 = GJtρ1 +Kρ2, (2.17a)

M2 = EI2ρ2 +Kρ1, (2.17b)

M3 = EI3ρ3, (2.17c)

∂ϕ : −GJt(ϕ
′′+ v′′′w′′)+K(w′′′− v′′′ϕ ′+ v′′ϕ ′)+(EI3 −EI2)v′′w′′, (2.18a)

∂v :EI3v′′′′+(EI3 −EI2)w′′′′
ϕ
′′+GJt(ϕ

′′w′′′+w′′
ϕ
′′′)+

+K(ϕ ′′
ϕ
′+ϕ

′′
ϕ
′′−w′′′w′′′−w′′w′′′′),

(2.18b)

∂w : EI2w′′′′+(EI3 −EI2)ϕ
′′v′′′′−GJtv′′′ϕ ′′−K(ϕ ′′′+ v′′′′w′′), (2.18c)

2.3.2 Equations of motion

Assuming that the mass and the moments of inertia of the structure are constant in
time, the variation of the mass is assumed a higher-order effect that can be neglected.
Moreover, the center of gravity of the structure is assumed coincident with the x-axis
and the centroid of the section. Denoting j = ρIp the mass moment of inertia about
the beam axis and fϕ , fw, and fv the generalized forces. The governing equations of
the beam with bending-torsion coupling are given as follows
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jϕ̈ −GJt(ϕ
′′+ v′′′w′′)+K(w′′′− v′′′ϕ ′+ v′′ϕ ′)+(EI3 −EI2)v′′w′′ = fϕ , (2.19a)

mv̈+EI3v′′′′+(EI3 −EI2)w′′′′
ϕ
′′+GJt(ϕ

′′w′′′+w′′
ϕ
′′′)+

+K(ϕ ′′
ϕ
′+ϕ

′′
ϕ
′′−w′′′w′′′−w′′w′′′′) = fv,

(2.19b)

mẅ+EI2w′′′′+(EI3 −EI2)ϕ
′′v′′′′−GJtv′′′ϕ ′′−K(ϕ ′′′+ v′′′′w′′) = fw, (2.19c)

Which can be also written considering only the first-order terms to obtain 2.20

jϕ̈ −GJtϕ
′′+Kw′′′ = fϕ , (2.20a)

mv̈+EI3v′′′′ = fv, (2.20b)

mẅ+EI2w′′′′−Kϕ
′′′ = fw, (2.20c)

2.4 Finite Element Formulation

This section presents the derivation of a beam finite element with bending-torsion
coupling stiffness and mass matrices. A two-node beam finite element with six de-
grees of freedom per node, represented in Figure 2.3, is considered for the derivation.
One of the hypotheses for the derivation of the beam equations of motion obtained
in the previous section was the inextensibility of the beam. For this reason, the axial
deformation is neglected and the equations concerning the axial degree of freedom u
will not be discussed, and the nodal degrees of freedom are reduced to five per node.

The equations of motion 2.20 can be rewritten as:

ρA
∂ 2v
∂ t2 +EIz

∂ 2

∂x2

(
∂ 2v
∂x2

)
= fv (2.21a)

ρA
∂ 2w
∂ t2 +EIy

∂ 2

∂x2

(
∂ 2w
∂x2

)
−K

∂

∂x

(
∂ 2ϕ

∂x2

)
= fw (2.21b)

ρIp
∂ 2ϕ

∂ t2 −GJt
∂

∂x

(
∂ϕ

∂x

)
+K

∂

∂x

(
∂ 2w
∂x2

)
= fϕ (2.21c)
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� 

� 

Fig. 2.3 Beam element reference system with dimensions, nodal degrees of freedom. and
resultants

2.4.1 Galerkin’s method

Galerkin’s method can be used to derive the stiffness and mass matrices for the beam
finite element with bending torsion formulation. The method starts with the partial
differential equation of motion 2.21. The maximum spatial partial derivative order
for w(s, t), v(s, t), and ϕ(s, t) are denoted with p, q, and r respectively. w(s, t), v(s, t),
and ϕ(s, t) must be expressed as a series of functions with one or more terms. For
the case here considered this means:

v(x, t) =
N

∑
j=i

ξ j(t)φv j(x) (2.22a)
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w(x, t) =
N

∑
j=i

ξ j(t)φw j(x) (2.22b)

ϕ (x, t) =
N

∑
j=i

ξ j(t)φϕ j(x) (2.22c)

According to [78], for use in Galerkin’s method, the functions φi must possess
the following characteristics

• Each function must satisfy all boundary conditions.

• Each function must be respectively at least q, s, t times differentiable. The qth
derivative of at least one function must be nonzero.

• If more than one function is used, it must be chosen from a complete set of
functions.

• The set of functions must be linearly independent.

Once the shape functions are defined, the set of functions must be multiplied by
a residual function Re and integrated over the beam length. Imposing the solution of
Equation 2.23 equal to zero, the error between the approximation introduced with
the shape functions and the solution of the problem is minimized.

∫ L

0
φ jRedx = 0 (2.23)

The results of this process consent to obtain the mass matrix [M] and the stiffness
matrix [K] for a beam finite element.

2.4.2 Shape functions

Polynomials are a typical choice for this class of problems as approximate solutions
since they satisfy all the requirements for Galerkin’s method. For the presented case,
the approximate solutions as a function of the position can be written as follows:

v(x) = c1 + c2x+ c3x2 + c4x3 (2.24a)
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w(x) = c5 + c6x+ c7x2 + c8x3 (2.24b)

ϕ (x) = c9 + c10x+ c11x2 (2.24c)

The coefficients ci can be obtained by applying the boundary conditions listed
in Table 2.1. Boundary conditions (1-8) give the classical Hermite’s polynomials
for v(x) and w(x), while boundary conditions (9-11) result in an expression for ϕ(x)
which link bending and torsion through the coupling coefficient K.

Table 2.1 Boundary conditions for a two-nodes element.

x = 0 x = L

v = v1 1 v = v2 2

v′ = θ
z
1 3 v′ = θ

z
2 4

w = w1 5 w = w2 6

w′ =−θ
y
1 7 w′ =−θ

y
2 8

ϕ = ϕ1 9 ϕ = ϕ2 10

As additional constraint the torsional moment is considered constant over the
length.

M′
x = 0 11 (2.25)

v(x) =
[

1−3
x2

L2 +2
x3

L3

]
v1 +

[
x−2

x2

L
+

x3

L2

]
θ

z
1+

+

[
3

x2

L2 −2
x3

L3

]
v2 +

[
−x2

L
+

x3

L2

]
θ

z
2

(2.26a)

w(x) =
[

1−3
x2

L2 +2
x3

L3

]
w1 −

[
x−2

x2

L
+

x3

L2

]
θ

y
1+

+

[
3

x2

L2 −2
x3

L3

]
w2 −

[
−x2

L
+

x3

L2

]
θ

y
2

(2.26b)
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ϕ(x) =
[
1− x

L

]
ϕ1 +

[
6K

GJtL3

(
x2 −Lx

)]
w1 +

[
3K

GJtL2

(
Lx− x2)]

θ
y
1+

+
[ x

L

]
ϕ2 +

[
6K

GJtL3

(
Lx− x2)]w2 +

[
3K

GJtL2

(
Lx− x2)]

θ
y
2

(2.26c)

Equations 2.26 can be written as the product of the shape functions array times
the nodal degrees of freedom column matrix.

v(x) = {Nv(x)}{qv}T (2.27a)

w(x) = {Nw(x)}{qw}T (2.27b)

ϕ (x) = {Nψ(x)}{qϕ}T (2.27c)

Where {qv}, {qw}, and {qϕ} are defined as follow

{qv}= {v1,θ
z
1,v2,θ

z
2} (2.28a)

{qw}= {w1,θ
y
1 ,w2,θ

y
2} (2.28b)

{qψ}= {ϕ1,w1,θ
y
1 ,ϕ2,w2,θ

y
2} (2.28c)

and {Nv(x)}, {Nw(x)}, and {Nϕ(x)} are defined as

{Nv(x)}= {Nv1,Nv2,Nv3,Nv4} (2.29a)

{Nw(x)}= {Nw1,Nw2,Nw3,Nw4} (2.29b)

{Nϕ(x)}= {Nϕ1,Nϕ2,Nϕ3,Nϕ4,Nϕ5,Nϕ6} (2.29c)

The terms Ni j are summarized in Table 2.2
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Table 2.2 Shape Functions for Bending-Torsion Coupled Beam Element.

{Nv(x)} {Nw(x)} {Nϕ(x)}

Nv1

[
1−3

x2

L2 +2
x3

L3

]
Nw1

[
1−3

x2

L2 +2
x3

L3

]
Nϕ1

[
1− x

L

]
Nv2

[
x−2

x2

L
+

x3

L2

]
Nw2 −

[
x−2

x2

L
+

x3

L2

]
Nϕ2

[
6K

GJtL3

(
x2 −Lx

)]
Nv3

[
3

x2

L2 −2
x3

L3

]
Nw3

[
3

x2

L2 −2
x3

L3

]
Nϕ3

[
3K

GJtL2

(
Lx− x2)]

Nv4

[
−x2

L
+

x3

L2

]
Nw4 −

[
−x2

L
+

x3

L2

]
Nϕ4

[ x
L

]
Nϕ5

[
6K

GJtL3

(
Lx− x2)]

Nϕ6

[
3K

GJtL2

(
Lx− x2)]

2.4.3 Stiffness and mass matrices

Once a set of shape functions compliant with Galerkin’s method has been defined,
the approximate solution for the equations of motion can be written as follows:

v(e) = Nv1v1 +Nv2θ
z
1 +Nv3v2 +Nv4θ

z
2 = {Nv(x)}{qv(t)}T (2.30a)

w(e) = Nw1w1 +Nw2θ
y
1 +Nw3w2 +Nw4θ

y
2 = {Nw(x)}{qw(t)}T (2.30b)

ϕ
(e) = Nϕ1ϕ1 +Nϕ2w1 +Nϕ3θ

y
1 +Nϕ4ϕ2 +Nϕ5w2 +Nϕ6θ

y
2 = {Nϕ(x)}{qϕ(t)}T

(2.30c)

Where the shape functions Ni are only space-dependent while the nodal degrees
of freedom qi are only time-dependent. Substituting the approximate solutions 2.30
into the partial differential equation of motion 2.21, a residual function is obtained.

Re
v = ρA

∂ 2v(e)

∂ t2 +EIz
∂ 2

∂x2

(
∂ 2v(e)

∂x2

)
− fv (2.31a)

Re
w = ρA

∂ 2w(e)

∂ t2 +EIy
∂ 2

∂x2

(
∂ 2w(e)

∂x2

)
−K

∂

∂x

(
∂ 2ϕ(e)

∂x2

)
− fw (2.31b)

Re
ϕ = ρIp

∂ 2ϕ(e)

∂ t2 −GJt
∂

∂x

(
∂ϕ(e)

∂x

)
+K

∂

∂x

(
∂ 2w(e)

∂x2

)
− fϕ (2.31c)
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The residual functions 2.31 can be multiplied times the shape functions associated
with the respective generalized displacement variable and integrated over the length.
Imposing the solution of the integral equal to zero, the error between the exact
solution and the approximate solution is minimized and the stiffness and mass
matrices can be derived.

∫ L

0
{Nv}Re

vdx = 0 (2.32a)

∫ L

0
{Nw}Re

wdx = 0 (2.32b)

∫ L

0
{Nϕ}Re

ϕdx = 0 (2.32c)

The Equations 2.31 can be substituted into Equations 2.32 to obtain

∫ L

0
{Nv}ρA

∂ 2v(e)

∂ t2 dx+
∫ L

0
{Nv}EIz

∂ 2

∂x2

(
∂ 2v(e)

∂x2

)
dx−

∫ L

0
{Nv} fvdx = 0 (2.33a)

∫ L

0
{Nw}ρA

∂ 2w(e)

∂ t2 dx+
∫ L

0
{Nw}EIy

∂ 2

∂x2

(
∂ 2w(e)

∂x2

)
dx+

−
∫ L

0
{Nw}K

∂

∂x

(
∂ 2ϕ(e)

∂x2

)
dx−

∫ L

0
{Nw} fwdx = 0

(2.33b)

∫ L

0
{Nϕ}ρIp

∂ 2ϕ(e)

∂ t2 dx−
∫ L

0
{Nϕ}GJt

∂

∂x

(
∂ϕ(e)

∂x

)
dx+

+
∫ L

0
{Nϕ}K

∂

∂x

(
∂ 2w(e)

∂x2

)
dx−

∫ L

0
{Nϕ} fϕdx = 0

(2.33c)

Integrating two times by parts the second member of Equation 2.33 and one time
the third member of Equation 2.33b and 2.33c, Equation 2.33 becomes:
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∫ L

0
{Nv}ρA

∂ 2v(e)

∂ 2t
dx+

∫ L

0
{Nv}′′EIz

(
∂ 2v(e)

∂x2

)
dx =

=
∫ L

0
{Nv} fvdx−{Nv}EIz

∂

∂x

(
∂ 2v(e)

∂x2

)∣∣∣∣∣
L

0

+{Nv}′EIz

(
∂ 2v(e)

∂x2

)∣∣∣∣∣
L

0

(2.34a)

∫ L

0
{Nw}ρA

∂ 2w(e)

∂ t2 dx+
∫ L

0
{Nw}′′EIy

∂ 2w(e)

∂x2 dx−
∫ L

0
{Nw}′′K

∂ϕ(e)

∂x
dx =

=
∫ L

0
{Nw} fwdx−{Nw}EIy

∂

∂x

(
∂ 2w(e)

∂x2

)∣∣∣∣∣
L

0

+{Nw}K

(
∂ 2ϕ(e)

∂x2

)∣∣∣∣∣
L

0

+

{Nw}′EIy

(
∂ 2w(e)

∂x2

)∣∣∣∣∣
L

0

−{Nw}′K

(
∂ϕ(e)

∂x

)∣∣∣∣∣
L

0
(2.34b)∫ L

0
{Nϕ}ρA

∂ 2ϕ(e)

∂ 2t
dx+

∫ L

0
{Nϕ}′GJt

(
∂ϕ(e)

∂x

)
dx−

∫ L

0
{Nϕ}′K

(
∂ 2w(e)

∂x2

)
dx =

=
∫ L

0
{Nϕ} fϕdx+{Nϕ}GJt

(
∂ϕ(e)

∂x

)∣∣∣∣∣
L

0

−{Nϕ}K

(
∂ 2w(e)

∂x2

)∣∣∣∣∣
L

0
(2.34c)

The right part of Equations 2.34 can be rewritten to obtain the element nodal
forces and moments.

∫ L

0
{Nv} fvdx+



Nv1

[
−EIz

∂

∂x

(
∂ 2v(e)

∂x2

)]∣∣∣∣∣
L

0

Nv2

[
−EIz

∂

∂x

(
∂ 2v(e)

∂x2

)]∣∣∣∣∣
L

0

Nv3

[
−EIz

∂

∂x

(
∂ 2v(e)

∂x2

)]∣∣∣∣∣
L

0

Nv4

[
−EIz

∂

∂x

(
∂ 2v(e)

∂x2

)]∣∣∣∣∣
L

0



+



N′
v1EIz

(
∂ 2v(e)

∂x2

)∣∣∣L
0

N′
v2EIz

(
∂ 2v(e)

∂x2

)∣∣∣L
0

N′
v3EIz

(
∂ 2v(e)

∂x2

)∣∣∣L
0

N′
v4EIz

(
∂ 2v(e)

∂x2

)∣∣∣L
0


(2.35a)
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∫ L

0
{Nw} fwdx+



Nw1

[
−EIy

∂

∂x

(
∂ 2w(e)

∂x2

)
+K

∂ 2ϕ(e)

∂x2

]∣∣∣∣∣
L

0

Nw2

[
−EIy

∂

∂x

(
∂ 2w(e)

∂x2

)
+K

∂ 2ϕ(e)

∂x2

]∣∣∣∣∣
L

0

Nw3

[
−EIy

∂

∂x

(
∂ 2w(e)

∂x2

)
+K

∂ 2ϕ(e)

∂x2

]∣∣∣∣∣
L

0

Nw4

[
−EIy

∂

∂x

(
∂ 2w(e)

∂x2

)
+K

∂ 2ϕ(e)

∂x2

]∣∣∣∣∣
L

0



+

+



N′
w1

(
EIy

∂ 2w(e)

∂x2 −K
∂ϕ(e)

∂x

)∣∣∣∣∣
L

0

N′
w2

(
EIy

∂ 2w(e)

∂x2 −K
∂ϕ(e)

∂x

)∣∣∣∣∣
L

0

N′
w3

(
EIy

∂ 2w(e)

∂x2 −K
∂ϕ(e)

∂x

)∣∣∣∣∣
L

0

N′
w4

(
EIy

∂ 2w(e)

∂x2 −K
∂ϕ(e)

∂x

)∣∣∣∣∣
L

0



(2.35b)

∫ L

0
{Nϕ} fϕdx+



Nϕ1

[
GJt

∂ϕ(e)

∂x
−K

∂ 2w(e)

∂x2

]∣∣∣∣∣
L

0

Nϕ2

[
GJt

∂ϕ(e)

∂x
−K

∂ 2w(e)

∂x2

]∣∣∣∣∣
L

0

Nϕ3

[
GJt

∂ϕ(e)

∂x
−K

∂ 2w(e)

∂x2

]∣∣∣∣∣
L

0

Nϕ4

[
GJt

∂ϕ(e)

∂x
−K

∂ 2w(e)

∂x2

]∣∣∣∣∣
L

0

Nϕ5

[
GJt

∂ϕ(e)

∂x
−K

∂ 2w(e)

∂x2

]∣∣∣∣∣
L

0

Nϕ6

[
GJt

∂ϕ(e)

∂x
−K

∂ 2w(e)

∂x2

]∣∣∣∣∣
L

0



(2.35c)
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Knowing that: 

−EIz
∂

∂x

(
∂ 2v(e)

∂x2

)
= Ty

EIz

(
∂ 2v(e)

∂x2

)
= Mz

−EIy
∂

∂x

(
∂ 2w(e)

∂x2

)
+K

∂ 2ϕ(e)

∂x2 = Tz

−EIy
∂ 2w(e)

∂x2 +K
∂ϕ(e)

∂x
= My

GJt
∂ϕ(e)

∂x
−K

∂ 2w(e)

∂x2 = Mx

(2.36)

and that the shape functions and their derivatives assume the following values
for the first node (x = 0) and the second node (x = L) of the element:

Nv1(0) = 1,Nv1(L) = 0,N′
v1(0) = 0,N′

v1(L) = 0

Nv2(0) = 0,Nv2(L) = 0,N′
v2(0) = 1,N′

v2(L) = 0

Nv3(0) = 0,Nv3(L) = 1,N′
v3(0) = 0,N′

v3(L) = 0

Nv4(0) = 0,Nv4(L) = 0,N′
v4(0) = 0,N′

v4(L) = 1

(2.37)


Nw1(0) = 1, Nw1(L) = 0, N′

w1(0) = 0, N′
w1(L) = 0

Nw2(0) = 0, Nw2(L) = 0, N′
w2(0) =−1, N′

w2(L) = 0

Nw3(0) = 0, Nw3(L) = 1, N′
w3(0) = 0, N′

w3(L) = 0

Nw4(0) = 0, Nw4(L) = 0, N′
w4(0) = 0, N′

w4(L) =−1

(2.38)



Nϕ1(0) = 1, Nϕ1(L) = 0

Nϕ2(0) = 0, Nϕ2(L) = 0

Nϕ3(0) = 0, Nϕ3(L) = 0

Nϕ4(0) = 0, Nϕ4(L) = 1

Nϕ5(0) = 0, Nϕ5(L) = 0

Nϕ6(0) = 0, Nϕ6(L) = 0

(2.39)

Equation (2.40) are obtained.
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∫ L

0
{Nv}ρA

∂ 2v(e)

∂ t2 dx+
∫ L

0
{Nv}′′EIz

(
∂ 2v(e)

∂x2

)
dx =

∫ L

0
{Nv} fvdx+


−T y

1

−Mz
1

T y
2

Mz
2


(2.40a)

∫ L

0
{Nw}ρA

∂ 2w(e)

∂ t2 dx+
∫ L

0
{Nw}′′EIy

∂ 2w(e)

∂x2 dx−
∫ L

0
{Nw}′′K

∂ϕ

∂x
dx=

∫ L

0
{Nw} fwdx+


−T z

1

−My
1

T z
2

My
2


(2.40b)

∫ L

0
{Nϕ}ρIp

∂ 2ϕ(e)

∂ t2 dx+
∫ L

0
{Nϕ}′GJt

∂ϕ(e)

∂x
dx−

∫ L

0
{Nϕ}′K

∂ 2w(e)

∂x2 dx=
∫ L

0
{Nϕ} fϕdx+



−Mx
1

0
0

Mx
2

0
0


(2.40c)

where T y
1 , T y

2 , T z
1 , T z

2 , Mz
1, Mz

2, My
1, Mz

2, Mz
1 and Mx

2 are the nodal loads of the
beam finite element associated to the boundary conditions.

Substituting the expression of the approximate solutions (2.30) into Equation
(2.40), one obtains:

∫ L

0
ρA{Nv}{Nv}{q̈v}dx+

∫ L

0
EIz{Nv}′′{Nv}′′{qv}dx =

=
∫ L

0
{Nv} fvdx+


−T y

1

−Mz
1

T y
2

Mz
2


(2.41a)
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∫ L

0
ρA{Nw}{Nw}{q̈w}dx+

∫ L

0
EIy{Nw}′′{Nw}′′{qw}dx−

∫ L

0
K{Nw}′′{Nϕ}′{qϕ}dx =

=
∫ L

0
{Nw} fwdx+


−T z

1

−My
1

T z
2

My
2


(2.41b)

∫ L

0
ρIp{Nϕ}{Nϕ}{q̈ϕ}dx+

∫ L

0
GJt{Nϕ}′{Nϕ}′{qϕ}dx−

∫ L

0
K{Nϕ}′{Nw}′′{qw}dx =

=
∫ L

0
{Nϕ} fϕdx+



−Mx
1

0
0

Mx
2

0
0


(2.41c)

Equations (2.41) can be rewritten in the matrix form as follows:

[Mv]{q̈v}+[Kv]{qv}= {pv}+


−T y

1

−Mz
1

T y
2

Mz
2

 (2.42a)

[Mw]{q̈w}+[Kw]{qw}− [Kwϕ ]{qϕ}= {pw}+


−T z

1

−My
1

T z
2

My
2

 (2.42b)
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[Mϕ ]{q̈ϕ}+[Kϕ ]{qϕ}− [Kϕw]{qw}= {pϕ}+



−Mx
1

0
0

Mx
2

0
0


(2.42c)

The matrices in Equation (2.42) are defined as follows

[Kv] =
∫ L

0
EIz{Nv}′′{Nv}′′dx =

EIz

L3


12 6L −12 6L

4L2 −6L 2L2

12 −6L
4L2

 (2.43)

[Kw] =
∫ L

0
EIy{Nw}′′{Nw}′′dx =

EIy

L3


12 −6L −12 −6L

4L2 6L 2L2

12 6L
4L2

 (2.44)

[Kϕ ] =
∫ L

0
GJt{Nϕ}′{Nϕ}′dx=



GJt

L
0 0 −GJt

L
0 0

12K2

GJtL3 − 6K2

GJtL2 0 − 12K2

GJtL3 − 6K2

GJtL2

3K2

GJtL
0

6K2

GJtL2
3K2

GJtL
GJt

L
0 0

12K2

GJtL3
6K2

GJtL2

3K2

GJtL


(2.45)
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[Kwϕ ] =
∫ L

0
K{Nw}′′{Nϕ}′dx=



0
12K

GJtL3 − 6K
GJtL2 0 − 12K

GJtL3 − 6K
GJtL2

−1
L

− 6K
GJtL2

3K
GJtL

1
L

6K
GJtL2

3K
GJtL

0 − 12K
GJtL3

6K
GJtL2 0

12K
GJtL3

6K
GJtL2

1
L

− 6K
GJtL2

3K
GJtL

−1
L

6K
GJtL2

3K
GJtL


(2.46)

[Kϕw] =
∫ L

0
K{Nϕ}′{Nw}′′dx =



0 −1
L

0
1
L

12K2

GJtL3 − 6K2

GJtL2 − 12K2

GJtL3 − 6K2

GJtL2

− 6K2

GJtL2
3K2

GJtL
6K2

GJtL2
3K2

GJtL

0
1
L

0 −1
L

− 12K2

GJtL3
6K2

GJtL2
12K2

GJtL3
6K2

GJtL2

− 6K2

GJtL2
3K2

GJtL
6K2

GJtL2
3K2

GJtL


(2.47)

[Mv] =
∫ L

0
ρA{Nv}{Nv}dx =

ρAL
210



78 11L 27
−13L

2

2L2 13L
2

−3L2

2
78 −11L

2L2


(2.48)
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[Mw] =
∫ L

0
ρA{Nw}{Nw}dx =

ρAL
210



78 −11L 27
13L

2

2L2 −13L
2

−3L2

2
78 11L

2L2


(2.49)

[Mϕ ] =
∫ L

0
ρA{Nϕ}{Nϕ}dx= ρIp



L
3

− K
2GJt

KL
4GJt

L
6

K
2GJt

KL
4GJt

6K2

5GJ2
t L

− 3K2

5GJ2
t

− K
2GJt

− 6K2

5GJ2
t L

− 3K2

5GJ2
t

3K2L
10GJ2

t

KL
4GJt

3K2

5GJ2
t

3K2L
10GJ2

t
L
3

K
2GJt

KL
4GJt

6K2

5GJ2
t L

3K2

5GJ2
t

3K2L
10GJ2

t


(2.50)

It is now possible to define the array q which includes all the nodal degrees of
freedom for a two-node element as:

q = {v1, w1, ϕ1, θ
y
1 ,θ

z
1, v2, w2, ϕ2, θ

y
2 ,θ

z
2 } (2.51)

The finite element global stiffness matrix [K] and mass matrix [M] can be
obtained by combining matrices (2.43) to (2.50) with the sum of the members
involving the same degrees of freedom.
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[K] =



12EIz

L3 0 0 0
6EIz

L2 −12EIz

L3 0 0 0
6EIz

L2

K1 0 K2 0 0 −K1 0 K2 0

GJt

L
K
L

0 0 0 −GJt

L
−K

L
0

K3 0 0 −K2 −K
L

K4 0

4EIz

L
−6EIz

L2 0 0 0
2EIz

L
12EIz

L3 0 0 0 −6EIz

L2

K1 0 −K2 0

GJt

L
K
L

0

K3 0

4EIz

L


(2.52)

with

K1 =
12(EIyGJt −K2)

GJtL3 K2 =
6(K2 −EIyGJt)

GJtL2

K3 =
4EIyGJt −3K2

GJtL
K4 =

2EIyGJt −3K2

GJtL

(2.53)
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[M] =



13ALρ

35
0 0 0

11AL2ρ

210
−9ALρ

70
0 0 0 −13AL2ρ

420

M1 −
IpKρ

2GJt
M2 0 0 M3 −

IpKρ

2GJt
M4 0

IpLρ

3
IpKLρ

4GJt
0 0

IpKρ

2GJt

IpLρ

6
IpKLρ

4GJt
0

M5 0 0 −M4
IpKLρ

4GJt
M6 0

AL3ρ

105
13AL2ρ

420
0 0 0 −AL3ρ

140
13ALρ

35
0 0 0 −11AL2ρ

210

M1
IpKρ

2GJt
−M2 0

IpLρ

3
IpKLρ

4GJt
0

M5 0

AL3ρ

105


(2.54)

with

M1 =
6IpK2ρ

5GJ2
t L

+
13ALρ

35
M2 =−

3IpK2ρ

5GJ2
t

− 11AL2ρ

210
M3 =−

6IpK2ρ

5GJ2
t L

+
9ALρ

70

M4 =−
3IpK2ρ

5GJ2
t

+
13AL2ρ

420
M5 =

3IpK2Lρ

10GJ2
t

+
AL3ρ

105
M6 =

3IpK2Lρ

10GJ2
t

− AL3ρ

140
(2.55)

It is worth noting that if the configuration is uncoupled and K is equal to 0, the
matrices [K] and [M] are the standard Hermitian beam element uncoupled matrices.



Chapter 3

Introduction of Geometric
Non-Linear Effects in the BTCE
Formulation

Some of the contents and derivation presented in this chapter have been previously
published in Aerospace 2024.

Patuelli, C.; Cestino, E.; Frulla, G. «A Nonlinear Beam Finite Element with Bend-
ing–Torsion Coupling Formulation for Dynamic Analysis with Geometric Nonlineari-
ties.» Aerospace 2024, 11, 255.

3.1 Introduction and Motivation

High aspect ratio slender wings can improve the aerodynamic efficiency of modern
aircraft. However, these structures are more prone to high deformations which
introduce geometric non-linearities that can influence the aeroelastic performance.
the importance of aerodynamic and structural geometrical non-linearities in the
aeroelastic behavior of high-aspect-ratio wings has been established by Patil and
Hodges [79]. Patil et al. [80] studied the effects of structural geometric non-
linearities on the flutter behavior of high aspect-ratio wings they presented the
changes in structural and aeroelastic characteristics of a steady state deflection of
a wing. Their study revealed a significant change in the structural frequencies and
a significant reduction in the flutter speed. Frulla and Cestino [35], investigated an
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equivalent configuration derived from the HELIPLAT HAVE-UAV (high-altitude
very-long endurance unmanned air vehicle) wing structure. With this study, they
assessed the presence of non-linearities induced by the slenderness of the wing
structure and proposed a modified wing configuration to highlight these effects on
flutter behavior.

Detailed coupled computational fluid dynamics and finite element method formu-
lation for aeroelastic analysis and formulation have been widely studied [28]. These
models can be very sophisticated and can involve a large number of calculations
which is not efficient during early design stages. Low-order aeroelastic models
allow for a reduction of computational cost granting similar prediction capabilities
of higher-order models. A popular approach for non-linear elasticity consists of
geometrically exact beam formulation. Hodges [81, 82] presented an intrinsic for-
mulation for non-linear dynamics of initially curved and twisted anisotropic beams.
Geometrically exact beam models use equivalent beam properties derived from finite
element models [83, 84]. These formulations found an application in several works
involving flexible wing structures. Drela [85] used a non-linear beam model to
develop an integrated model for aerodynamic and structural simulation of flexible air-
craft, while Patil [86] presented a theory for flight dynamic analysis of highly flexible
wing configuration accounting for geometrically non-linear structural deformations.
Recently, Ritter [87] and Medeiros [88] developed a new class of low-order structural
models that relies on high-order modal expansions, these models require non-linear
static analysis of a FEM to determine the modal expansion terms. Another model has
been presented by Bruni et al. [89], who used an expansion of the partial differential
equations for beam dynamics up to the third order, the solution was obtained with
Galerkin’s method and with a multi-modal approach. With this model, they explored
the effects of static deflection, external trim, gust loads, and aerodynamic stalls.

The variety of structural models for static and dynamic non-linear analysis of
beam structures present in literature employ different solutions to simulate specific
conditions, some models consider only one-dimensional finite elements as in [90]
while other developed models that include all the degrees of freedom. Yang et
al. [91] developed a six-degree of freedom beam element including material non-
linearities, they described a procedure for non-linear static analysis which consists of
a piecewise linearization of the response quotations and iterations at each incremental
step to achieve equilibrium. Surana et al. [92] presented a formulation for a three-
dimensions curved beam element with geometric non-linearities using a Lagrangian
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approach and verified the accuracy of the formulation against literature results of non-
linear static analysis. More recently, Duan and Li [93] developed a three-dimensional
beam element for dynamic analysis with geometric non-linearities, the derivation is
based on the co-rotational formulation. The model showed good results under large
deflection and rotations, but small strains are assumed.

Low-order structural models can be further developed to consider also material
couplings and expand the aeroelastic design domain. Cestino et al. [94] studied
flutter instability of high aspect ratio wings and considered the phenomenon as the
sum of two effects, the Geometrical Effect (GE) given by the deformed geometry
and the Stiffness Effect (SE), which is the effect caused by the loads at the equi-
librium condition on the differential stiffness matrix. They demonstrated that the
GE represents the main contribution to the non-linear dynamic analysis of slender
structures and that the results of flutter analysis are verified by experimental evidence
either when considering only GE or when accounting also for SE.

In this chapter, a procedure to perform dynamic analysis in the presence of
geometric non-linearities with the derived BTCE is presented. A first formulation
for the BTCE allows for the consideration of both non-linear effects, the GE and the
SE (BTCE-NL) through a perturbation approach. Moreover, a simplified approach
including only the GE (BTCE-GE) has been developed considering a deformed
equilibrium-dependent transformation matrix to account for the orientation of a
deformed BTCE model.

3.2 Models Derivation

In this section, the BTCE derived in [95] is used to develop two procedures for
modal analysis of pre-deformed structures. The first procedure considers only the
geometrical effects given by the deformed configuration while the second procedure
uses a perturbation approach to include non-linear effects in the beam element
stiffness matrix.
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3.2.1 Geometrical Effect (BTCE-GE)

The BTCE stiffness and mass matrices [Kel] and [Mel] can be obtained through
Galerkin’s method following the procedure described in the second chapter of this
thesis. The BTCE formulation allows to consider the bending-torsion coupling given
by oriented fibres or stiffeners for a slender box-beam in CAS configuration. This
coupling is obtained through the shape functions reported in Table 2.2 derived with
the hypothesis of the constant torsional moment along the beam element. To perform
a dynamic analysis of a pre-deformed structure considering only the geometrical
effects, the beam can be discretized in finite elements with position and orientation
given by a known equilibrium configuration. This can be achieved with the rotation
of the mass and stiffness matrices with an opportune transformation matrix [T ]
defined in Equation (3.1):

[T ] =

T11 T12 T13

T21 T22 T23

T31 T32 T33

 (3.1)

The members Ti j for an inextensible beam are reported in Equation (3.2) accord-
ing to the derivation presented in [77]. The Ti j are obtained with Taylor’s expansion
truncated at the second order, this introduces the hypothesis of moderate-to-large
deformations with deflections between 10% and 15% of the beam length. This
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correspond to a 2-5 meters deflection considering the wingspan of typical HARW
which can range from 39 m (RHEA-Short Range) to 62 m (RHEA-Mid Range).



T11 = 1− 1
2

v′2 − 1
2

w′2

T12 = v′

T13 = w′

T21 =−v′−w′ϕ

T22 = 1− 1
2

v′2 − 1
2

ϕ2

T23 = ϕ

T31 =−w′+ϕv′

T32 =−ϕ − v′w′

T33 = 1− 1
2

w′2 − 1
2

ϕ2

(3.2)

v, w, and ϕ are the displacement variables function of the coordinate x. The
known deformed configuration can be denoted with v0, w0, and ϕ0. For a two-
node finite element represented in Figure 3.1, the equilibrium deformation can be
expressed as the product of shape functions times the nodal degrees of freedom of
the element as represented in Equation (3.3), the suffix 0 denotes the equilibrium
value of the degree of freedom.


w0(x) = Nw1(x)w01 +Nw2(x)θy01 +Nw3(x)w02 +Nw4(x)θy02

v0(x) = Nv1(x)v01 +Nv2(x)θz01 +Nv3(x)v02 +Nv4(x)θz02

ϕ0(x) =Nϕ1(x)ϕ01 +Nϕ2(x)w01 +Nϕ3(x)θy01 +Nϕ4(x)ϕ02 +Nϕ5(x)w02+

+Nϕ6(x)θy02
(3.3)

Substituting Equation (3.3) into Equation (3.2), the transformation matrix is
obtained for each element of the structure. However, the members Ti j, vary along the
beam element length. The orientation of the element can be obtained by evaluating
the Ti j at the first node of the beam element. This procedure introduces the hypothesis
that the deformations along the element are negligible and can be considered straight.
Once the matrix [T ] is obtained, the finite element mass and stiffness matrices
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in local coordinates [Kel] and [Mel] can be rotated according to the orientation of
the deformed structure with Equations (3.4) and (3.5). The oriented element can
be assembled to solve the eigenvalue problem (3.6) computing the corresponding
eigenvectors solution of Equation (3.7) with the global stiffness and mass matrices
[Kg] and [Mg].

[Kg] = [T ]T [Kel][T ] (3.4)

[Mg] = [T ]T [Mel][T ] (3.5)

det
(
[Kg]−ω

2
n [Mg]

)
= 0 (3.6)

([Kg]−ω
2
n [Mg])φn = 0 (3.7)

3.2.2 Introduction of Stiffness Effect (BTCE-NL)

The second model developed in this chapter takes into account the stiffness effect
of an equilibrium-deformed configuration. Consider a uniform straight orthotropic
inextensible beam, the Cartesian coordinate system xyz describes the undeformed
geometry, and the Cartesian system ξ ηζ describes the deformed geometry (Figure
3.2). The derivation uses the generalized Hamilton’s Principle reported in Equation
(3.8).

∫ t2

t1
(∂T −∂π +∂Wnc)dt = 0 (3.8)

∂w(x, t) = 0 t = t1, t2 (3.9)

∂v(x, t) = 0 t = t1, t2 (3.10)

∂φ(x, t) = 0 t = t1, t2 (3.11)
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where ∂T is the kinetic energy and ∂Wnc are the non conservative terms. The
variation of the elastic energy ∂π can be written as in Equation (3.12) according to
[77].

∂π =
∫ L

0
(M1∂ρ1 +M2∂ρ2 +M3∂ρ3)ds = 0 (3.12)

with the moment resultants:


M1 = GJρ1 +Kρ2

M2 = EI2ρ2 +Kρ1

M3 = EI3ρ3

(3.13)

The curvatures ρ1, ρ2 and ρ3 are obtained from the transformation matrix [T]
according to [77] with a Taylor expansion truncated at the second order.


ρ1 = ϕ ′+ v′′w′

ρ2 =−w′′+ v′′ϕ

ρ3 = v′′+w′′ϕ

(3.14)
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the assumption that allows to obtain linear equations is to consider the displace-
ment variables as the sum of an equilibrium term denoted with the suffix 0 and a
perturbation term.


ϕ = ϕ0 + ϕ̃

w = w0 + w̃

v = v0 + ṽ

(3.15)

substituting Equation (3.15) in Equation (3.14) and neglecting the equilibrium
terms, Equation (3.14) becomes:


ρ1 = ϕ̃ ′+ v′′0w̃′+w′

0ṽ′′

ρ2 =−w̃′′+ v′′0ϕ̃ +ϕ0ṽ′′

ρ3 = ṽ′′+w′′
0ϕ̃ +ϕ0w̃′′

(3.16)

the differential of the curvatures can be written as:


∂ρ1 = ∂ ϕ̃ ′+ v′′0∂ w̃′+w′

0∂ ṽ′′

∂ρ2 = ∂ (−w̃)′′+ v′′0∂ ϕ̃ +ϕ0∂ ṽ′′

∂ρ3 = ∂ ṽ′′+w′′
0∂ ϕ̃ +ϕ0∂ w̃′′

(3.17)

With these considerations is it possible to substitute Equation (3.16) and Equation
(3.17) into Equation (3.12). Considering only the perturbation terms it is possible
to obtain Equation (3.18). The three members of Equation (3.12) are presented
separately for the sake of clarity.


M1∂ρ1 =

[
GJ
(
ϕ̃ ′+ v′′0w̃′+w′

0ṽ′′
)
+K(−w̃′+ v′′0ϕ̃ +ϕ0ṽ′′)

]
∂ρ1

M2∂ρ2 =
[
EI2(−w̃′′+ v′′0ϕ̃ ′+ϕ0ṽ′′)+K(ϕ̃ ′+ v′′0w̃′+w′

0ṽ′′)
]

∂ρ2

M3∂ρ3 =
[
EI3(ṽ′′+w′′

0ϕ̃ +ϕ0w̃′′)
]

∂ρ3

(3.18)

Equation (3.18) can be written in matrix form as
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M1∂ρ1 = {∂ d̃}{ 1 0 w′

0 v′′0 0 }T{ GJ K GJw′
0 +Kϕ0 GJv′′0 Kv′′0 }{d̃}T

M2∂ρ2 = {∂ d̃}{ 0 1 ϕ0 0 v′′0 }T{ K EI2 EI2ϕ0 +Kw′
0 Kv′′0 EI2v′′0 }{d̃}T

M3∂ρ3 = {∂ d̃}{ 0 −ϕ0 1 0 w′′
0 }T{ 0 −EI3ϕ0 EI3 0 EI3w′′

0 }{d̃}T

(3.19)

with {∂ d̃} and {d̃} defined as in Equations (3.20) and (3.21)

{∂ d̃}= {∂ ϕ̃ ′ ∂ (−w̃′′) ∂ ṽ′′ ∂ w̃′ ∂ ϕ̃ } (3.20)

{d̃}= {ϕ̃ ′ (−w̃′′) ṽ′′ w̃′ ϕ̃ } (3.21)

the vectors containing only equilibrium terms can be multiplied obtaining:
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M1∂ρ1 = {∂ d̃}



GJ K GJw′
0 +Kϕ0 GJv′′0 Kv′′0

0 0 0 0 0

GJw′
0 Kw′

0 w′
0(GJw′

0 +Kϕ0) GJv′′0w′
0 Kv′′0w′

0

GJv′′0 Kv′′0 v′′0(GJw′
0 +Kϕ0) GJ(v′′0)

2 K(v′′0)
2

0 0 0 0 0


{d̃}T

M2∂ρ2 = {∂ d̃}



0 0 0 0 0

K EI2 EI2ϕ0 +Kw′
0 Kv′′0 EI2v′′0
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Equation (3.12) can be rewritten in the matrix form as:

∂π =
∫ L

0
{∂ d̃}[C̃]{d̃}T ds = 0 (3.23)

The matrix [C̃] is obtained with the sum of the matrices in Equation (3.22).



3.2 Models Derivation 47
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(3.24)

The displacement variables can be expressed as a set of space-dependent shape
functions [N(x)] which multiplies the time-dependent nodal degrees of freedom {q̃}.
In this case, the shape functions used are the ones that include the bending torsion
coupling derived in the previous chapter and reported in Table 2.2.

d̃ = [N(x)]{q̃(t)}T (3.25)

Substituting the shape functions into equation (3.23) it can be rewritten as:

∂π = ∂{q̃}
(∫ L

0
[N(x)]T [C̃][N(x)]ds

)
{q̃}T = 0 (3.26)

where the non-linear stiffness matrix is expressed as:

[K̃] =

(∫ L

0
[N(x)]T [C̃][N(x)]ds

)
(3.27)

The result of the integral reported in equation 3.27 is a 10×10 symmetric matrix
dependent on the equilibrium configuration nodal displacements and rotations. A
symbolic calculator can give the exact equations for the member of the matrix
which are not reported in this thesis due to their extension. A known equilibrium
configuration can be used to compute the non-linear stiffness matrix [K̃] and solve
the eigenvalue problem by computing the corresponding eigenvector solution of the
equations. The mass matrix [M] can be assembled using the linear BTCE formulation
since the effect of non-linear terms is negligible.



Chapter 4

Equivalent Single Layer for Stiffened
Panels

Some of the contents and derivation presented in this chapter have been previously
published in Journal of Vibration Technology 2022.

C. Patuelli, A. Polla, E. Cestino, e G. Frulla, «Experimental and Numerical Dynamic
Behavior of Bending-Torsion Coupled Box-Beam», J. Vib. Eng. Technol., nov. 2022.

In this chapter, the Equivalent Single Layer (ESL) model developed by Danzi
[96] is presented. The model can be applied to stiffened structures to obtain a layer
with mechanical properties equivalent to the stiffeners. With this homogenization, it
is possible to consider a symmetric stiffened panel as a laminate with orthotropic
mechanical properties. However, the model was only validated for static analysis
[97] and a dynamic analysis validation for the BTCE application was needed. The
first part of the chapter briefly describes the ESL. The second part of the chapter
presents an experimental validation of the ESL model.

4.1 Equivalent Single Layer Model

The bending torsion coupling effect can be achieved with oriented composite materi-
als, but also with stiffened panels. However, for an efficient simulation, the stiffeners
must be reduced to an ESL with equivalent mechanical properties. The stiffeners
can be considered as an ESL with orthotropic properties following the work done
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by Danzi et al. [96, 44, 97]. According to Nemeth [98], a kinematic equivalence
is imposed between the strains of the stiffeners and the corresponding plate strains.
Furthermore, the plate stresses resultants are related to the beam forces and moments
with a static equivalence. The condition of kinematic and static equivalence is called
direct compatibility. The variation of the stress resultants across the width of the
stiffeners is considered negligible. The direct compatibility can be derived for a
family of equally spaced rectilinear stiffeners with ds being the stiffeners spacing
and oriented with an angle Ψs with respect to the x-axis of the plate. The stiffeners
are considered symmetric and perfectly bonded to the skin. In addition to direct
compatibility, the bending of the stiffener in the plane parallel to the plate mid-plane
is considered negligible and thus, the variation of the strains across the width of
the ESL can be neglected. Furthermore, it is presumed that the eccentric stiffener
contributes only half of the in-plane shearing strain and half of the change in the
surface twist of the equivalent stiffener layer. To establish the static equivalence
between the repetitive stiffened panel and the equivalent plate elements, the stress
resultants of the equivalent plate have to be equal to the beam forces and moments
of the beam following Timoshenko’s hypothesis for the straight beam. After some
algebraic manipulation, the stress resultants of the stiffeners layer can be written as:

Nsti f f
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(4.1)

The constitutive equations for the stiffeners in terms of the strain expressed in
the equivalent plate can be written as follows:
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 (4.4)

Finally, a rotation must be performed to align the beam reference system to the plate
reference system (x,y,z), then one can obtain the expression of the stiffness matrices
of the usual Reissner-Mindlin plate:
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Where τs
y =

k2
yGs

Es
, τs

z =
k2

z Gs

Es
are the in-plane and transverse shear-deformation

parameters, k2
y and k2

z are the respective correction factor, Es is the Young’s Modulus
of the stiffener, bs and ds are the stiffeners width and spacing respectively. It should
be noted that the resulting matrix

[
Q
]

for the straight stiffener is singular; particularly,
from the equation in (2) is worth noting that, the rank is 2. If one aims to derive the
equivalent properties of the UD material, one has:
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(4.6)

Further details concerning equations (4.1)-(4.6), can be found in [96] and [98].

4.2 ESL Dynamic Validation

The validation of the ESL for the dynamic analysis consisted of the application of
the ESL to a SHELL Model (EQM from hereinafter) of a metal-stiffened structure.
The characteristic frequencies obtained with the EQM have been compared with
numerical and experimental results. Moreover, a composite structure has been tested
with a similar procedure to show that the coupling effect introduced with oriented
composite fibers is similar to the one obtained with oriented stiffeners.

4.2.1 Box-Beam Stiffened Structure

The first structure considered is an aluminum beam represented in Figure 4.1 and
presented in [97]. The beam is composed of two stiffened symmetric panels with
stiffeners oriented at 25◦ glued to two C-shaped spars with constant cross-sections
20 mm, 40 mm wide, and with a thickness equal to 2 mm. The stiffened panels
are 2 mm thick and 50 mm wide, with symmetric rectangular stiffeners with base
bs = 3 mm and height hs = 4 mm. The number of stiffeners is Ns = 6 defining a ratio
ds = b/Ns = 8.33. The beam is 1200 mm long, but 100 mm are used to constrain the
structure, and thus the useful length is 1100 mm. The material is a 6060 aluminum
alloy with mechanical properties reported in Table 4.1
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Table 4.1 Al6060 mechanical and physical properties.

Property Value

Young’s Modulus, E [MPa] 58000
Shear Modulus, G [MPa] 21805
Poisson’s ratio, ν 0.33
Mass Density, ρ [kg/dm3] 2.66

MID-THICKNESS LINE

Fig. 4.1 Aluminium Stiffened Beam

Dynamic numerical and experimental tests have been performed on real and
digital models of the structure with cantilever configuration. The finite element
model which includes the ESL formulation is a SHELL model of the aluminum
box-beam with the stiffened panels modeled as laminates. The equivalent mechanical
properties of the ESL can be computed with Equation 4.6 and are reported in Table
4.2. The results of a modal analysis obtained with the EQM have been tested
against experimental results and against a TETRA4 finite element model with a full
representation of the stiffeners. The finite element models have been constrained
imposing all the nodal displacements equal to zero for the nodes highlighted in
Figure 4.2B.
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Table 4.2 Equivalent Single Layer Material Properties.

Property Value

Longitudinal Young’s Modulus, E1 [MPa] 20,888.36
Transverse Young’s Modulus, E2 [MPa] 0
Shear Modulus, G12 [MPa] 1636.03
Poisson’s ratio, ν 0
Mass Density, ρ [kg/dm3] 0.99

Fig. 4.2 Experimental and numerical boundary conditions

4.2.2 Box-Beam Composite Structure

The second beam presented the same configuration already considered by Cestino
et. al [99] for static analysis. The structure represented in Figure 4.3 presents two
carbon fiber reinforced polymer (CRFP) panels with four unidirectional (UD) T700
carbon/epoxy prepreg layers with fibers oriented at 18◦. The total thickness is 1 mm.
The lateral plates are obtained with C-shaped spars of 6060 aluminum alloy with
section 20 mm high, 40 mm wide, and thickness equal to 2 mm. The mechanical
properties of the carbon/epoxy prepreg are reported in Table 4.3. The beam is 1450
mm long with bolted metal extensions which allow to constraint of the beam without
useful length penalties.

The experimental results for the composite beam have been tested against a
SHELL finite element model with composite panels described by a laminate model.
The finite element model has been constrained with the rigid body element which
connects the nodes corresponding to the position of the bolts to two fixed points as
represented in Figure 4.2A.
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Fig. 4.3 UD Carbon FRP Beam - Geometry and dimension in mm

Table 4.3 UD T700/Epoxy mechanical and physical properties.

Property Value

Longitudinal Young’s Modulus, E1 [MPa] 118000
Transverse Young’s Modulus, E2 [MPa] 9938
Shear Modulus, G12 [MPa] 3400
Poisson’s ratio, ν 0.33
Mass Density, ρ [kg/dm3] 1.60

4.2.3 Experimental Procedure

The dynamic behavior of the two beams has been investigated with an experimental
modal analysis. For this experimental test, a Laser Doppler Vibrometer (LDV)
apparatus has been used. LDV uses the Doppler effect of a laser beam reflected by a
vibrating surface to determine its speed during a period of time. This technology is
particularly interesting for experimental modal analysis due to the absence of contacts
and additional masses. However, some drawbacks are represented by the constraint
imposed by the mutual position of the test component and the laser scanning head.
The device used is a Polytec PSV-500 scanning laser head with a control box and a
signal amplifier. The excitation of the beam was given by an electrodynamic shaker
K200xE01 and measured with a load cell. The measurement chain, represented in
Figure 4.4, consists of an input signal generated by the control box and managed by
the PSV software. The signal is amplified and sent to the electrodynamic shaker. An
impedance head is installed between the shaker and the test piece with cyanoacrylate
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Table 4.4 Experimental parameters used for modal testing

Property Aluminium Beam Carbon UD FRP Beam

Resolution Points 36 34
Frequency Span [kHz] 0-2 0-2
Window Span [kHz] 0-1 0-1
Spectral Lines 6400 6400
Averaging Complex 8 8
Shaker Amplitude [V] 0.025 0.1
Vibrometer Sensibility [mm/s] 50 100

glue and it provides acceleration and force signal to the LDV front-end. The sample
vibrations are measured in predetermined scanning points on the beam structure,
multiple scanning points allow to capture the dynamic behavior of the tested structure.
After a single scanning cycle, the PSV software computes the resulting frequency
response function (FRF) and sends it to the PC for visualization and storage.

The excitation of the test piece is obtained through a periodic chirp signal, which
consists of a continuous sweep in a defined frequency range. The frequency range
was set based on the FE simulations in order to observe all the modes relevant to the
experimental activity. For each scanning point, the system repeats the data acquisition
as many times as the number of complex averages chosen. With this method, the data
are cleaned from eventual noise. Two different experimental sessions are prepared
for the box beam: TEST1 and TEST2. The shaker was fixed to an independent
aluminum rigid frame which was positioned behind the beam structure at a distance
indicated in Table 4.5. The experimental parameters used during the experimental
modal analysis are listed in Table 4.4.

Table 4.5 Shaker position from clamped end

Beam TEST1: Position [mm] TEST2: Position [mm]

Aluminium 1120 700
Carbon FRP 1450 960
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Fig. 4.4 Measurement Chain

The experimental results are compared with the numerical ones in terms of
natural frequencies and mode shapes. the natural frequencies prediction accuracy is
evaluated by computing the relative difference with equation 5.6. The mode shapes
are compared with the Modal Assurance Criterion (MAC). MAC is a statistical
indicator used to evaluate the similarity between two sets of mode shapes. A value
equal to one indicates complete similarity, while a value equal to zero indicates no
similarity [100, 95]. The MAC value for the i-th mode of the mode set A and the
j-th mode of the mode set B is given by equation 4.7.

MACi j =
|ΦiT

A Φ
j
B|2(

ΦiT
A Φ

j
A

)(
ΦiT

B Φ
j
B

) (4.7)

4.2.4 Box-Beam Stiffened Structure Results

The test with the excitation at the tip of the beam (TEST1) revealed four global
vibration modes below 600 Hz in accordance with the numerical simulations. The
experimental and numerical Frequency Response Functions (FRF) are reported
in Figure 4.5. However, the peak between 400 Hz and 500 Hz revealed a mode
shape inconsistent with the boundary conditions applied. This anomaly is probably
connected to the reduced number of scanning points chosen or to a not perfect
constraint which can affect the accuracy of the measurement. On the other hand,
a higher number of scanning points increases the acquisition time. Moreover, the
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scanning points are positioned on the free portion of the C-shaped spars and this
could cause the detection of local modes. Another discrepancy is related to the failed
detection of the torsional mode, expected close to 400 Hz according to the numerical
simulations. This was probably caused by the position of the shaker exciting at the
center of the structure and thus preventing the torsional degree of freedom excitation.

The second test with the shaker positioned at 700 mm from the clamped edge
gave better results. In this case, the torsional mode was correctly captured, but the
anomaly already discussed in the previous paragraph was still present.
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Fig. 4.5 FRF Comparison for Box-Beam Stiffened Structure

The frequencies obtained during the second test have been compared to the
frequencies obtained with the EQM and the TETRA4 model, the results are reported
in Table 4.6. The relative errors between the TETRA4 model and experimental
modal frequency are less than 4%. The EQM predicted characteristic frequencies
within the 5% of relative error if compared to the experimental results. The torsional
mode frequency was slightly underestimated and presented a relative error equal to
7.59%. This difference is due to the ESL approximation which alters the behavior of
the stiffeners.

The mode shapes obtained for the four modes are reported in Figure 4.6. The
first, second, and fourth modes are bending modes coupled with torsion. It is possible
to observe that the fringe lines are inclined with respect to the vertical direction. The



58 Equivalent Single Layer for Stiffened Panels

Table 4.6 Natural frequencies [Hz] for the aluminum beam compared to numerical and EQM
procedure.

Aluminium Beam

Mode Experimental [Hz] Num. SOLID [Hz] Relative diff. [%] Num. (EQM) [Hz] Relative diff. [%]
1 34.53 35.82 3.74 35.59 3.07
2 206.90 214.80 3.82 211.77 2.35
3 390.25 395.44 1.33 360.62 7.59
4 571.10 563.14 1.39 547.54 4.12

third mode is a torsional mode with a small bending coupling. A more quantitative
mode comparison is given by the MAC matrices reported in Figure 4.7. The matrices
relative to TEST1 reveal that the anomaly is very similar in mode shape with the third
bending mode due to the not-zero off-diagonal values. Moreover, the comparison
with the EQM confirmed that no correlation exists between the observed anomaly
and the numerical modes. The MAC matrices for TEST2 confirmed the accuracy of
the EQM in predicting the experimental mode shapes which results coincident with
the experimental results.

Fig. 4.6 Natural Mode Shape Comparison of the first modes of the aluminum beam: Every
mode is compared with relative experimental, numerical, and equivalent model results.
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Fig. 4.7 MAC matrices for the comparison of mode shapes for aluminum beam. (A) Auto-
MAC of TEST1 experimental modes, (B) MAC of TEST1 experimental and numerical
modes, (C) Auto-MAC of TEST2 experimental modes, (D) MAC of TEST2 experimental
and numerical modes.

4.2.5 Box-Beam Composite Structure Results

The experimental FRF curves are reported in Figure 4.8. The tests presented a similar
FRF with a good correlation with the one obtained with the SHELL finite element
model. Minor reported differences can be attributed to the hypothesis of perfectly
glued components. This hypothesis brings over stiffness and causes the prediction
of slightly higher frequencies of the natural modes. The FRF presents some noise
after 300 Hz, this is related to the local vibrations of the carbon fiber panels and the
chosen experimental parameters.
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Fig. 4.8 FRF Comparison for Box-Beam Composite Structure
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The frequencies obtained during TEST1 and TEST2 have been compared to the
numerical results reported in Table 4.7. The measured natural frequencies presented
a relative error lower than 4%.

Table 4.7 Natural frequencies [Hz] for an UD Carbon FRP beam compared to the numerical
procedure. Relative difference with experimental frequency as reference value within
parentheses.

UD Carbon FRP Beam

Mode Experimental [Hz] Num. SHELL [Hz] Relative diff. [%]
1 19.06 19.65 3.10
2 115.30 118.05 2.39
3 140.15 139.71 0.31
4 207.50 208.00 0.24

The mode shapes represented in Figure 4.9 show a good correlation between
experimental and numerical results. This is confirmed by the MAC matrices in
Figure 4.10 that reveal complete agreement of the numerical results with TEST1 and
TEST2. It is worth noting that the non-zero off-diagonal values indicate a certain
degree of similarity between the third bending mode and the torsional mode.

Fig. 4.9 Natural Mode Shape Comparison of the first modes of the UD carbon FRP beam:
Every mode is compared with relative experimental and numerical results.
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Fig. 4.10 MAC matrices for the comparison of mode shapes for UD carbon FRP beam. (A)
Auto-MAC of TEST1 experimental modes, (B) MAC of TEST1 experimental and numerical
modes, (C) Auto-MAC of TEST2 experimental modes, (D) MAC of TEST2 experimental
and numerical modes.

4.3 Summary and Conclusions

The ESL model validation has been completed with the dynamic analysis validation.
The ESL model, applied to an aluminum stiffened box-beam structure revealed
a good level of accuracy for characteristic frequency prediction but also for the
mode shapes. The torsional frequencies presented some differences with respect
to the experimental results, these discrepancies can be attributed to the constraint
modelization. The effect of constraint can be further investigated to assess the
accuracy of the ESL for the torsional frequencies. These findings allow to apply the
concept of ESL to the computation of thin-walled box-beam stiffness coefficients for
dynamic analysis.



Chapter 5

BTCE Validation

Some of the contents and derivation presented in this chapter have been previously
published in Aerospace 2023 and in Journal of Vibration Technology 2022.

C. Patuelli, E. Cestino, e G. Frulla, «A Beam Finite Element for Static and Dynamic
Analysis of Composite and Stiffened Structures with Bending-Torsion Coupling»,
Aerospace, vol. 10, fasc. 2, p. 142, feb. 2023.

C. Patuelli, A. Polla, E. Cestino, e G. Frulla, «Experimental and Numerical Dynamic
Behavior of Bending-Torsion Coupled Box-Beam», J. Vib. Eng. Technol., nov. 2022.

In this chapter, several numerical and experimental tests are presented. The
BTCE has been tested for static and dynamic analysis of beam structures with
different characteristics. The tests included composite and aluminum box-beam
structures, variable stiffness structures, and oriented stiffeners panel structures. The
first part of the chapter presents some of the relations and surrogate models applied
for the simulation of the structures.

5.1 Circumferentially Asymmetric Stiffness Configu-
ration

For a generic beam, the relation between the force resultants and the deformations
can be derived as in [97], and expressed as:
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The beam considered is a thin-walled beam with a closed cell section. The
bending-torsion coupling effect is given by the oriented stiffeners. The stiffened
panels can be considered as a laminate composed of two symmetric ESL with
orthotropic properties and an isotropic aluminum mid-layer. According to the
Classical Laminate Theory (CLT), the stiffness matrix can be divided into three sub-
matrices called A, B, and D, where A represents the laminate extensional stiffness, B
is the bending-stretching coupling stiffness and D is the laminate bending stiffness.
The beam considered has a Circumferentially Asymmetric Configuration (CAS) and
the stiffness coefficients can be computed with Equation 5.2.
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Ω is the area enclosed by the midline of the contour section according to the clas-
sical Bredt theory, A∗

i j and D∗
i j are the coefficient of the reduced laminate extensional

stiffness matrix and reduced laminate bending stiffness matrix respectively. They
are obtained from the coefficients of matrices [A] and [B] in the case of symmetric
lamination with Equation (5.3) according to [97].
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These relations allow to compute the mechanical properties of a CAS beam
in the presence of laminates and composite materials. Stiffened symmetric panels
can be considered as laminates as described in the previous chapter and therefore
introduced for this class of structures. Moreover, the dynamic validation of the ESL
model allows to extend its application also for dynamic analysis of CAS structures
simulation.

5.2 Box-Beam Stiffened Structure

The first structure considered is an aluminum beam represented in Figure 4.1 and
presented in [97]. The beam has been already described in the previous chapter
where it was used for the dynamic analysis validation of the ESL model. However,
a further step is the application of the concept of ESL to the computation of the
stiffness of a beam element. At this scope, the stiffened panels have been considered
as laminate with equivalent mechanical properties reported in Table 4.2 in order to
obtain the corresponding laminate extensional and bending stiffness matrices. Then,
with equations 5.3 and 5.2 the stiffness coefficients can be computed and applied to
a BTCE element, with the exception of the axial stiffness due to the hypothesis of
inextensibility.

Static and dynamic numerical and experimental tests have been performed on
real and digital models of the structure with cantilever configuration. The BTCE
model was obtained by assembling ten two-nodes beam finite elements with the
presented formulation. The degrees of freedom of the first node have been imposed
equal to zero for the cantilever configuration. The stiffness coefficients of the beam
elements reported in Table 5.1 can be obtained with the procedure described in
the previous paragraph. The BTCE model has been tested against two FE models
solved with NASTRAN, the first model used solid TETRA10 elements for an exact
geometric representation (Figure 5.1) while the second used SHELL elements with



5.2 Box-Beam Stiffened Structure 65

the stiffened panels modeled as laminates and the stiffeners as an ESL. The finite
element models have been constrained imposing all the degrees of freedom of nodes
corresponding to the first 100 mm of the length equal to zero.

Table 5.1 Beam Section Stiffness Coefficients

Coefficient Value [N mm2]

C11 5.79 × 109

C22 1.41 × 1010

C33 2.17 × 1010

C12 1.44 × 109

(A)

(C)(B)

Fig. 5.1 (A) TETRA10 FE model, (B) Detail of the MPC for free end load application, (C)
Detail of the constrained nodes.

5.2.1 Static Analysis

Static analysis for an FE model consists of the solution of the linear static problem
5.12.
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[KT ]{q}= { f}; (5.4)

where [KT ] is the global stiffness matrix obtained assembling the FE stiffness
matrices, {q} is the nodal degrees of freedom array, and { f} is the nodal forces array.
For the presented test, the load cases chosen are reported in Table 5.2. They consist
of three concentrated loads applied at the free end of the beam as shown in Figure
5.1.

Table 5.2 Load cases for linear static analysis, loads applied at the free end of the beam

Name Value

Load Case 1 Tz = 500 [N]
Load Case 2 My = 5×104 [N mm]
Load Case 3 Mx = 5×104 [N mm]

A first test has been performed for an uncoupled case setting the coupling term
C12 equal to zero. The BTCE in the uncoupled case has been tested against the
TETRA10 model, but also against the analytical results obtained with the Principle
of Virtual Works (PVW) which gives the following expression for the determination
of the tip deformations:

wTz =
TzL3

3C22
(5.5a)

wMy =−
MyL2

2C22
(5.5b)

ϕMx =
MxL
C11

(5.5c)

The results of this static analysis are summarized in Table 5.3. The accuracy of
the BTCE is evaluated by computing the relative difference with the reference value.
The relative difference can be computed with Equation 5.6.

Rel.Di f f .% =
|Resultre f erence −Result|

Resultre f erence
·100 (5.6)
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Table 5.3 Static analysis results comparison for Load Case 1, 2, and 3 for the uncoupled
configuration

Static Analysis Results Comparison (C12 = 0)

Load Case 1

Tip Displacement PVW BTCE Rel. Diff. [%]
w [mm] 15.69 15.69 0

Load Case 2

Tip Displacement PVW BTCE Rel. Diff. [%]

w [mm] −2.14 −2.14 0

Load Case 3

Tip Displacement PVW BTCE Rel. Diff. [%]
ϕx [rad] 0.95 × 10−2 0.95 × 10−2 0

The analytical results are in agreement with the results obtained with the BTCE
model. A second test has been performed for the coupled case comparing the BTCE
with the TETRA10 model solved with NASTRAN. The results are summarized in
Table 5.4 and in Figures 5.2, 5.3, and 5.4.
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Table 5.4 Static analysis results comparison for Load Case 1, 2, and 3 for the coupled
configuration

Static Analysis Results Comparison

Load Case 1

TETRA10 BTCE Rel. Diff. [%] Mean Rel.
Diff. [%]

w [mm] 15.77 16.09 2.06 1.49
ϕx [rad] 5.68 × 10−3 5.45 × 10−3 4.13 3.50

Load Case 2

TETRA10 BTCE Rel. Diff. [%] Mean Rel.
Diff. [%]

w [mm] −2.13 −2.19 2.84 3.18
ϕx [rad] 1.03 × 10−3 0.99 × 10−3 4.23 3.65

Load Case 3

TETRA10 BTCE Rel. Diff. [%] Mean Rel.
Diff. [%]

w [mm] 0.57 0.54 4.13 3.18
ϕx [rad] 9.24 × 10−3 9.74 × 10−3 5.39 5.48

The results obtained with a TETRA10 model for the three load cases confirmed
the accuracy of the BTCE model with a relative difference of the tip values and a
mean relative difference evaluated in all the nodes mostly under 5%.
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Fig. 5.2 Load Case 1 Results Comparison, (A) Deflection along z-axis, (B) Torsion Angle.
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Fig. 5.3 Load Case 2 Results Comparison, (A) Deflection along z-axis, (B) Torsion Angle.
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Fig. 5.4 Load Case 3 Results Comparison, (A) Deflection along z-axis, (B) Torsion Angle.

5.2.2 Modal Analysis

The BTCE model has been tested for the dynamic case with a modal analysis. The
eigenvalue problem 5.7 has been solved by computing the corresponding eigenvectors
solution of Equation 5.8 and giving a graphical representation of the results.

det
(
[KT ]−ω

2
n [MT ]

)
= 0 (5.7)

([KT ]−ω
2
n [MT ])φn = 0 (5.8)

The BTCE model for the stiffened beam has been preliminary tested considering
the coupling term C12 = 0 and comparing the characteristic frequencies obtained
with the analytical solution described in [78], where the natural frequencies are
computed with Equation 5.9 and 5.10 for bending and torsion modes respectively.
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ωi = (αiL)2

√
C22/33

mL4 (5.9)

ωi =
(2i−L)π

2L

√
C11

ρIP
(5.10)

where L is the length of the beam, m is the mass per unit length, i is the number
of the mode and the non-dimensional product αiL assumes the value 1.8719, 4.69409
and 7.85476 for the 1st, 2nd and 3rd bending mode respectively according to [78].
To obtain the corresponding frequency values expressed in Hertz, the ωi were divided
by 2π .

A second modal analysis has been performed including the bending-torsion
coupling given by the stiffeners. The results have been compared with the TETRA10
FE model and with experimental results collected with an LDV system represented
in Figure 5.5 and with the procedure described in Chapter 3.

Test Piece

Shaker and Load Cell

Scanning Head

Constraint

PC

Control Box and 

Signal Amplifier

Fig. 5.5 Experimental Setup for Experimental Modal Analysis

The performance of the BTCE model has been evaluated in terms of natural
frequencies and mode shapes prediction capabilities. The accuracy of the results
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has been assessed by computing the relative differences with Equation 5.6, while
the similarities between the numerical and the experimental mode shape have been
evaluated with the modal assurance criterion 5.14. For the comparison of the mode
shapes obtained with the BTCE model and the TETRA10 FE model, all the degrees
of freedom have been considered. For the comparison between the BTCE model and
the experiment, only the components of the eigenvector observed during the physical
tests were considered, that is, the out-of-plane component along the z-axis.

A convergence study on the computed natural frequencies has been performed
considering a number of elements varying from 3 to 50. The results are represented in
Figure 5.6 in terms of natural frequency normalized with respect to the convergence
value. It is possible to observe that the first three natural frequencies converge rapidly
with the increase in the number of elements and their curves result coincident in
Figure 5.6, while the fourth, fifth and sixth mode require more elements to converge.
However, the natural frequency computed for Mode 6 with 10 elements is only
0.026% greater than the convergence value.
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Fig. 5.6 BTCE Modal Analysis Results convergence study (Test Case 1).
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The natural frequencies computed for the uncoupled case are resumed in Table
5.5. The results obtained with equation 5.9 and 5.10 are almost coincident with the
numerical results predicted with the BTCE model. The comparison between the FE
models reported in Table 5.6 revealed a good agreement between the present theory
and the TETRA10 FE model solved with NATRAN, with a relative error lower than
5% for most of the natural frequencies computed. The 6th natural frequency presents
a higher relative difference equal to 9.29%. The correlation with the experimental
results reported in Table 5.7 is generally good. The relative error is around 5% for
the 1st and the 5th modes, but with a considerably higher difference for the 3rd and
the 6th modes. The discrepancies are caused by the approximations introduced when
the cross-section of the beam is reduced to its mid-thickness line with effects on the
stiffness coefficients and the inertia properties of the beam.

Table 5.5 Natural frequencies [Hz] comparison for uncoupled BTCE model (C12 = 0) and
analytical results

Analytical Results Comparison

Mode Analytical [Hz] Num. BTCE [Hz] Rel. Diff. [%]

1 36.31 36.31 0
2 45.02 45.02 0
3 227.55 227.57 7.20 × 10−3

4 282.10 282.12 7.20 × 10−3

5 410.88 411.31 1.03 × 10−1

6 637.18 628.34 2.54 × 10−2
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Table 5.6 Natural frequencies [Hz] comparison of a TETRA10 FE model and a coupled
bending-torsion BTCE model.

Numerical Results Comparison

Mode Num. TETRA10 [Hz] Num. BTCE [Hz] Rel. Diff. [%]

1 36.73 35.85 2.40
2 47.11 45.02 4.44
3 219.57 224.51 2.25
4 285.29 282.12 1.11
5 399.36 411.47 3.03
6 574.83 628.24 9.29

Table 5.7 Natural frequencies [Hz] comparison of experimental results and a coupled bending-
torsion BTCE model.

Experimental Results Comparison

Mode Experimental [Hz] Num. BTCE [Hz] Rel. Diff. [%]

1 34.53 35.85 3.82
2 - 45.02 -
3 206.900 224.51 8.5
4 - 282.12 -
5 390.25 411.47 5.43
6 571.10 628.24 10.00

The mode shapes obtained with the BTCE model are graphically represented
in figure 5.7. The representation is limited to the three eigenvectors components
involved in the modes investigated, the in-plane component v, the out-of-plane
component w, and the rotation about the x-axis (torsion) ϕx. The representation
highlights the coupling effect for the first, third, and fifth modes which are mainly
bending modes, and for the sixth mode which is mainly torsional. It is worth noting
that the second and fourth modes are in-plane bending modes and result correctly not
influenced by the coupling term C12 and result uncoupled. Similar conclusions can
be inferred by observing the comparison of mode shape reported in Figures 5.8–5.13,
where the mode shapes and the coupling effects are in accordance with the results
obtained for the TETRA10 model. Minor differences are reported for the torsional
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degree of freedom in the coupled mode, .Furthermore, the mode shapes are in good
agreement with the experimental results for the z component of the eigenvectors.
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Fig. 5.8 First Mode Shape Comparison between BTCE, TETRA10 and Experimental results.
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Fig. 5.9 Second Mode Shape Comparison between BTCE and TETRA10 results.
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Fig. 5.10 Third Mode Shape Comparison between BTCE, TETRA10 and Experimental re-
sults.



76 BTCE Validation

0 200 400 600 800 1000 1200

x [mm]

v
BTCE

v
TETRA4

1.5

1

0.5

0

−0.5

−1

−1.5
N

o
rm

a
li
z
e
d

 E
ig

e
n

v
e
c
to

r

Fig. 5.11 Fourth Mode Shape Comparison between BTCE and TETRA10 results.
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Fig. 5.12 Fifth Mode Shape Comparison between BTCE, TETRA10 and Experimental re-
sults.
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Fig. 5.13 Sixth Mode Shape Comparison between BTCE, TETRA10 and Experimental re-
sults.

The MAC matrices computed for the mode shape comparisons are reported in
Figure 5.14. The BTCE model showed a very good accordance with the TETRA10
model. The MAC matrices highlight the similarity between the third and the fifth
modes. This effect was expected since the torsional mode (Mode 5) is coupled with
the bending degrees of freedom through the term C12. The out-of-plane bending
component of the fifth mode is similar to the same component of the second bending
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mode (Mode 3) as can be observed in Figures 5.10 and 5.12. The same coupling effect
can be observed in the MAC matrix which compares the experimental results with
the BTCE model. The MAC value for the out-of-diagonal elements is higher because
only the vertical component of the eigenvector is considered in this comparison. The
lower similarity between the fifth BTCE mode and the corresponding experimental
mode is probably related to the low number of acquisition points along the beam
axis during the physical test.

(B)(A)

Fig. 5.14 (A) MAC matrix for TETRA10-BTCE mode shapes comparison; (B) MAC matrix
for Experimental -BTCE Z component of mode shapes comparison.
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5.3 Composite Box-beam Structure

The second test case considered for the BTCE validation is a CAS composite box-
beam structure described in [101, 71]. This test case allowed to validate the BTCE
model also for composite materials. The dimensions and mechanical properties of
the composite beam are reported in Table 5.8. The cross-sectional stiffness of the
BTCE has been computed with Equation 5.1 for two different layups, with six layers
oriented at 30◦ and 45◦. The FE model with the presented elements was obtained by
assembling 10 two-node elements and imposing the degrees of freedom of the first
node equal to zero.

Table 5.8 CAS cantilever graphite/epoxy box beam properties

Property Value

Width [mm] 24.21
Depth [mm] 13.46
Length [mm] 762
Ply thickness [mm] 0.127
E11 [GPa] 142
E22 = E33 [GPa] 9.8
G12 = G13 [GPa] 6.0
G23 [GPa] 4.83
ν12 = ν13 0.42
ν23 0.5

5.3.1 Modal Analysis

The results of the modal analysis performed on the CAS composite box-beam
structure are reported in Table 5.9. The results have been compared to experimental
data reported in [71] and numerical results from [101]. The results are in good
agreement with numerical and experimental results. The comparison between the
BTCE model and the experimental results revealed a relative difference lower than
7% for the twisted vertical bending modes. The accuracy was slightly lower for the
predicted frequencies of the first horizontal bending mode, with a relative difference
of 13.81% for the lamination at 45◦. The accordance with numerical results reported
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in [101] is generally good, with a relative difference for the predicted frequencies
lower than 7%.

Table 5.9 Comparison of frequencies (Hz) with numerical results and experimental data

Layup Mode BTCE [101] [71]

[30]6 CAS 1TV 20.20 19.92 20.96
(1.41%) (3.63%)

2TV 126.47 124.73 128.36
(1.40%) (1.47%)

1HB 35.108 37.62 38.06
(6.68%) (7.78%)

[45]6 CAS 1TV 15.63 14.69 16.67
(6.40%) (6.24%)

2TV 97.92 92.02 96.15
(6.41%) (1.84%)

1HB 25.41 25.13 29.48
(1.11%) (13.81%)

TV = Twisted Vertical bending. HB = Horizontal Bending.

5.4 Non-uniform stiffness wind turbine blade

The previous test case involved only structures with a uniform stiffness and section.
However, many structures present variable sections and, for composite structures,
different laminations along the beam length. The National Renewable Energy
Laboratory (NREL) presented a 5MW horizontal axis wind turbine (HAWAT) [102]
with a variable stiffness wind turbine blade represented in Figure 5.15. The structure
is 61.5 m long with a total mass of 17.740 kg, the cross-sectional stiffness properties
are reported in Figure 5.16. The wind turbine blade properties are defined in [102]
for 49 sections along its axis, for this reason, the BTCE model has been assembled
using 48 elements. The model has been constrained imposing all the first node
degrees of freedom equal to zero.
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Fig. 5.15 NREL 5MW HAWAT blade.
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Fig. 5.16 Cross-Sectional Stiffness properties of NREL 5 MW HAWT blade
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5.4.1 Modal Analysis

A modal analysis of the wind turbine blade has been performed to predict the first five
natural frequencies of the structure. The results of the modal analysis performed on
the BTCE model of the NREL 5MW HAWAT blade described in [102] are reported
in Table 5.10. The results have been compared with the natural frequency obtained
with Rayleigh theory, with Timoshenko theory, and with Bernoulli theory reported
in [103]. The values computed with the BTCE model have been compared also with
the results obtained with two software developed by NREL [103], B-Modes and
FAST, with the results obtained by Jeong et al. [104] using BEM-ABAQUS commer-
cial software and with the results obtained by Li et al. [105] where a geometrically
exact beam theory was used.

Table 5.10 Natural frequency comparisons for the different beam theories and results for
NREL 5 MW HAWT blade in the flap-wise (F) and edge-wise (E) directions of a single
blade without an aerodynamic force.

Mode BTCE Rayleigh [103] B Modes [103] FAST [103] [105] [104] Timoshenko [103] Bernoulli [103]
[Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz]

1 0.68 F 0.68 0.69 0.68 0.67 0.68 0.67 0.68
(0%) (1.44%) (0%) (1.49%) (0%) (1.49%) (0%)

2 1.09 E 1.11 1.12 1.10 1.11 1.10 1.09 1.11
(1.80%) (2.68%) (0.91%) (1.80%) (0.91%) (0%) (1.80%)

3 1.95 F 1.98 2.00 1.94 1.92 1.98 1.95 3.05
(1.51%) (2.5%) (0.52%) (1.56%) (1.51%) (0%) (36%)

4 4.04 E 4.10 4.12 4.00 3.96 3.99 3.98 3.91
(1.46%) (1.94%) (1.00%) (2.02%) (1.25%) (1.51%) (3.32%)

5 4.51 F 4.45 4.69 4.43 4.43 4.66 4.42 4.21
(1.35%) (3.84%) (1.81%) (1.81%) (3.28%) (2.04%) (7.13%)

The BTCE model showed great accordance with other beam theories and com-
mercial software results, with a relative difference below 5% for the computed natural
frequencies. The error is considerably higher when the BTCE model is compared to
the Bernoulli theory, however, the natural frequencies computed with the Bernoulli
theory for the third and the fifth frequencies are not in accordance with the other
theories or commercial solvers.
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Fig. 5.17 Beam Dimensions

Table 5.11 Aluminium 6060 Mechanical Properties

Property Value

E 61000 [MPa]
ν 0.3
ρ 2675 Kg/m3

5.5 Isotropic Beam with Equilibrium Deformation

The models derived in Chapter 3 have been validated through experimental modal
analysis. The tests have been performed on a rectangular section aluminum 6060
beam with dimensions L = 3000 mm, b = 40 mm, and h = 8 mm (Figure 5.17) and
mechanical properties listed in Table 5.11. The beam has been clamped in four
different positions to gather data from four cases respectively with useful lengths
L1 = 1000 mm, L2 = 1500 mm, L3 = 2000 mm, and L4 = 2500 mm (Figure 5.18).
Defined the ratio λ = µ/L with µ equal to the tip deflection, one of the scopes of
the experimental test is to understand at which level of λ the geometric non-linear
effects have an influence on the beam mode shapes and characteristic frequencies
determining the need of a non-linear modal analysis. The other objective of the
experimental testing is to verify the accuracy of the presented models in predicting
characteristic frequencies and mode shapes.

The beam has been investigated with four experimental tests with similar equip-
ment. The structure has been clamped between two steel blocks to guarantee a
rigid constraint (Figure 5.19) at the first section of the beam. Ten poly-lactic acid
(PLA) targets (Figure 5.19) have been placed along the span to acquire data at ten
equidistant stations. The number of targets has been limited to ten units to keep the
additional weight negligible. More targets can be added to improve the acquisition
resolution, but mass and inertia must be considered and can alter the non-linear
effects observed. Each target presents two vertical surface for signal acquisition
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where a squared piece of reflective tape has been positioned to improve the surface
reflectiveness. The acquisition has been performed with a Polytec PSV-500 Laser
Doppler Vibrometer (LDV) system while the excitation has been obtained with an
electrodynamic shaker K200xE01. The shaker has been placed at 550 mm from
the constraint and perpendicular to the beam axis as represented in Figure 5.19.
The objective was to excite only the edgewise degree of freedom because edgewise
and torsional characteristic frequencies are the most affected by flapwise deflection,
moreover, the torsional modes should be visible only when the non-linear coupling
effect becomes important according to [79]. The experimental validation considers
the case where the coupling term K is equal to 0. This allows to reduce the number
of variables and keeps the interpretation of the results straightforward. Moreover,
the term K induces bending torsion deformations, this means that a mode shape that
involves the torsional degree of freedom, determine also a flap-wise displacement
which needs a 3D LDV system to be detected.

Four numerical models have been defined for experimental result comparison.
Two models have been created with MATLAB and use the BTCE finite element.
One uses the formulation accounting for the geometrical effect (BTCE-GE), while
the second uses the non-linear BTCE (BTCE-NL). Two additional models have
been defined in PATRAN and solved with NASTRAN starting with an undeformed
configuration, both used SHELL elements to describe the beam geometry but one
was solved with SOL103 and the second one was solved with the non-linear solution
SOL106. The linear modal analysis has been performed on the undeformed con-
figuration to obtain linear mode shapes and frequencies for the result comparison.
The choice behind the use of SHELL finite elements is the possibility of adding
bending-torsion coupling terms which is possible for the BTCE but not for conven-
tional beam elements. The BTCE models have been obtained by assembling 10
elements which represent the 10 segments described by the targets positioned on the
experimental beam. The first node has been constrained imposing the translations
and the rotations equal to 0. For the BTCE-GE model, the modal analysis has been
performed using the linear stiffness matrix rotated with the equilibrium configuration
dependent transformation matrix [T ] reported in 3.1. The BTCE-NL model uses
the stiffness matrix derived from Equation 3.27, which depends on the equilibrium
static deformation. The mass of each element has been lumped at the nodes and
a linear static analysis determined the equilibrium deformation used to complete
the element stiffness matrix and perform the non-linear modal analysis. Alterna-
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(A) (B)

(C) (D)

Fig. 5.18 Experimental setup: L=1000 mm (A), L=1500 mm (B), L=2000 mm (C), L=2500
mm (D)
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Fig. 5.19 Experimental Setup
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tively, the deformed configuration can be obtained with a non-linear static analysis
performed with NASTRAN. The linear static analysis for a vertical load does not
present edge-wise displacements or rotation, while the non-linear static analysis has
a small in-plane component v0 and θz0 which can be considered negligible. The
SHELL elements have been created with 10 mm QUAD4 elements and then solved
with SOL103 for the linear modal analysis in the undeformed configuration as a
reference. The model has been completed with an inertial load to perform also the
non-linear modal analysis SOL106 that accounts for preload. The numerical models
results have been compared with the experimental results in terms of mode shapes
and characteristic frequencies. The linear analysis has been performed to understand
at which level of deformation it becomes unreliable and a non-linear formulation
is needed. The dynamic behavior of the non-linear BTCE has been compared in
terms of predicted natural frequencies and mode shapes. The accuracy of the natural
frequencies was evaluated in terms of relative difference. The similarity between the
FE models and the experimental mode shapes has been evaluated with the Modal
Assurance Criterion (MAC). Equation (4.7) has been applied to the experimental and
numerical mode shapes computed to obtain the MAC matrices. The mode sets of
the experimental mode shapes have been compared with themselves computing the
Auto MAC, which may indicate the existence of similarities between different mode
shapes and thus the presence of couplings between the degrees of freedom. The
couplings, if present, should show the same pattern for experimental and non-linear
numerical modes. When the structure does not present couplings, the expected
matrices for experimental and numerical linear and non-linear modes should be
diagonal.

5.5.1 Static Analysis Results

The non-linear finite element derived depends on the equilibrium deformation under
static load. The deformation can be obtained through linear or non-linear static
analysis. In this research, a linear static analysis is used to determine the initial
equilibrium deformation for the load cases considered during the experimental tests
on the isotropic beam. The results of the deflection at the tip have been compared
with the result of a SHELL model of the beam solved with SOL106 and experimental
results, the accuracy has been evaluated by computing the relative difference between
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Table 5.12 Comparison of experimental deflection measured at the tip with linear and non-
linear static analysis results

Beam Length [mm] Experimental [mm] BTCE [mm] SHELL SOL106 [mm] µ/L%

1000 10 10 10 1.1 %
0% 0%

1500 54 51 51 3.7 %
5.5% 5.5%

2000 166 162 160 8.3 %
2.4% 3.6%

2500 367 395 386 14.68 %
7.6% 5.2%

numerical and experimental results. The comparison is reported in Table 5.12 with
the relative difference for each result.

5.5.2 Experimental Modal Analysis Results

The Frequency Response Functions (FRF) obtained through experimental modal
analysis are reported in Figure 5.20. The experimental and numerical results for the
characteristic frequencies are reported in Table 5.13. For a beam length equal to
1000 mm, the first torsional mode was not detected, while for a length of 1500 mm,
the torsional mode was detected but the peak was significantly smaller than the
others. This confirms that the coupling between edgewise bending and torsion is
weak for deformations below 5%. On the other hand for bigger deformations, the
excitation of the edgewise degree of freedom provoked also the detection of the first
torsional mode coupled with the edgewise bending mode.

The frequencies reported in Table 5.13 show a good accordance with the predicted
values and the experimental results. In this case, both linear and non-linear models
can be used to determine the characteristic frequencies of the structures. The relative
difference between predicted and observed frequencies, reported within parenthesis
in Table 5.13, is generally below 5% with some exceptions compatible with the
approximations introduced with the derivation of the BTCE models. Moreover, the
differences between the BTCE-GE model and the BTCE-NL model are minimal,
confirming the findings reported in [94] concerning the major contribution of the
geometrical effect in this class of analysis.



88 BTCE Validation

Table 5.13 Experimental and numerical natural frequencies results comparison for the
isotropic beam

L=1000mm

Mode Exp Analytical LIN [Hz] SOL103 [Hz] BTCE-GE[Hz] BTCE-NL [Hz] SOL106 [Hz]
1E 30.86 30.86 30.84 30.85 30.85 30.83

(0%) (0.06%) (0.03%) (0.03%) (0.03%)
2E 190.14 193.37 191.93 193.36 193.34 191.8

(1.7%) (0.94%) (1.67%) (1.68%) (0.87%)
3E 525.68 541.45 531.55 541.57 541.56 530.87

(3%) (1.12%) (3.02%) (3.02%) (0.98%)
4E 1001.56 1061.02 1025.7 1062.01 1062.00 1023.4

(5.94%) (2.41%) (6.03%) (6.03%) (2.18%)
1T / 271.34 279.95 271.67 271.71 264.02

L=1500mm

Mode Exp Analytical LIN [Hz] SOL103 [Hz] BTCE-GE [Hz] BTCE-NL [Hz] SOL106 [Hz]
1E 14.38 13.71 13.71 13.68 13.66 13.68

(4.66%) (4.66%) (4.87%) (5.01%) (4.87%)
2E 88.20 85.94 85.67 85.87 85.82 85.55

(2.56%) (2.89%) (2.64%) (2.7%) (3.0%)
3E 245.08 240.64 238.69 240.67 240.63 238.5

(1.81%) (2.61%) (1.80%) (1.82%) (2.68%)
4E 477.42 471.56 464.43 471.85 471.86 463.79

(1.23%) (2.72%) (1.16%) (1.16%) (2.85%)
1T 171.02 180.89 186.14 181.43 181.61 176.0

(5.75%) (8.84%) (6.08%) (6.19%) (2.91%)

L=2000mm

Mode Exp Analytical LIN [Hz] SOL103 [Hz] BTCE-GE [Hz] BTCE-NL [Hz] SOL106 [Hz]
1E 7.71 7.71 7.71 7.62 7.56 7.60

(0%) (0%) (1.17%) (1.95%) (1.43%)
2E 50.20 48.34 53.12 48.13 48.02 47.96

(3.71%) (5.82%) (4.12%) (4.34%) (4.46%)
3E 133.20 135.36 134.75 133.67 134.12 131.9

(1.62%) (1.15%) (0.35%) (0.69%) (0.98%)
4E 273.24 265.25 262.99 265.15 265.15 262.49

(2.92%) (3.75%) (2.96%) (2.96%) (3.93%)
1T 140.92 135.67 139.42 138.89 138.99 135.96

(3.72%) (1.06%) (1.44%) (1.37%) (3.52%)

L=2500mm

Mode Exp Analytical LIN [Hz] SOL103 [Hz] BTCE-GE [Hz] BTCE-NL [Hz] SOL106 [Hz]
1E 4.86 4.94 4.94 4.71 4.61 4.68

(1.65%) (1.65%) (3.18%) (5.42%) (3.7%)
2E 31.94 30.94 30.94 30.44 30.27 30.29

(3.13%) (3.13%) (3.33%) (5.73%) (5.44%)
3E 89.81 86.63 86.39 85.76 85.82 85.54

(3.54%) (3.81%) (4.51%) (4.44%) (4.86%)
4E 176.06 169.76 168.84 169.16 169.19 168.04

(3.58%) (4.1%) (3.92%) (3.90%) (4.56%)
1T 112.94 108.53 111.44 113.62 114.71 110.97

(3.9%) (1.33%) (0.60%) (1.57%) (1.74%)
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L=2500 mm

Fig. 5.20 Experimental FRF

The experimental Auto MAC matrices are reported in Figures 5.21(A), 5.22(A),
5.23(A), and 5.24(A). The modes order is based on the frequency value, from the
mode with the lowest frequency to the one with the highest. With this convention
for L=1000 mm and L=1500 mm, the torsional mode occupies the third position,
while for the other cases it is placed in the fourth position. The remaining modes
represent the edgewise modes. In figure 5.21, it is possible to notice the absence
of the torsional mode. As already stated, when nonlinear effects are not present,
edgewise displacement and torsion are not coupled, thus exciting the edgewise
displacement, the torsional mode can not be observed. On the other hand, the
numerical modes predicted five uncoupled modes as expected. For L=1500 mm,
the experimental Auto MAC matrix reported in Figure 5.22(A) revealed a certain
level of coupling between the torsional mode and the second and third edgewise
modes, this coupling is not detected by the linear FE models while is present in the
nonlinear FE models MAC matrices. The experimental and nonlinear FE models
MAC matrices present some differences in the out-of-diagonal values. In this case,
the torsional mode presented a small peak in the FRF because the nonlinear effects
are present but not very relevant with a 3.7% of deflection. Moreover, the number of
targets is relatively low and can cause some discrepancies. However, it is possible to
conclude that for L=1500 mm the nonlinear effects are present and can be predicted
with the nonlinear BTCE models, but linear modal analysis can be a reasonable
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approximation for this level of deflection. The Auto MAC matrices for L=2000 mm
and L=2500 mm are reported in Figure 5.23(A) and 5.24(A). The pattern given by the
experimental results is correctly predicted by the nonlinear models, moreover, these
cases, highlight the lack of accuracy obtained when linear models are considered
for modal analysis of structures with moderate deformations. Figures 5.21, 5.22,
5.23, and 5.24 presents also the comparison between the experimental modes and
the numerical modes calculated with linear and nonlinear FE models. Ideally, if the
numerical modes are coincident with the experimental modes, the MAC matrices
should be identical to the Auto MAC experimental matrices. In general, it is possible
to affirm that the mode shapes predicted with the nonlinear BTCE model are in good
accordance with experimental modes, moreover, they are confirmed by the results of
the SHELL FE model solved with NASTRAN SOL106. In the first case (L=1000
mm), the torsional mode was not detected and for this reason ,the comparison with
the numerical counterpart is not reported in Figure 5.21. The MAC matrices for
the beam with L=1500 mm reveal a high similarity with experimental results when
nonlinear modal analysis is used, while the similarity is considerably lower when
nonlinear effects are not considered. This is even more evident for L=2000 mm and
L=2500 mm. The fourth case presented a relatively low similarity for the fourth
mode (Figure 5.24) which corresponds to the third edgewise mode coupled with
the torsional mode. This is probably connected to the resolution obtained with the
chosen number of targets and can be improved by considering more acquisition
points. However, the objective was to keep the mass of the targets negligible for all
the cases considered and for this reason, the number of acquisition points has been
kept constant throughout all the experimental activity.

5.6 Box-Beam Composite Structure with Equilibrium
Deformation

A numerical comparison has been performed for a case with bending-torsion cou-
pling, the reference structure is a box-beam structure with a circumferentially asym-
metric stiffness (CAS) laminated composite configuration. The structure is the
same used in [106], the section is represented in Figure 5.25. The beam is obtained
with a unidirectional T700 carbon-epoxy layer bonded onto wooden spars with
fibers oriented at 24◦. The structural box has the following dimensions: length,
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Fig. 5.21 MAC L=1000 mm, comparison with Experimental Mode Shapes: Auto MAC (A),
BTCE-GE (B), BTCE-NL (C), SHELL SOL 103 (D), SHELL SOL 106 (E)
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Fig. 5.22 MAC L=1500 mm, comparison with Experimental Mode Shapes: Auto MAC (A),
BTCE-GE (B), BTCE-NL (C), SHELL SOL 103 (D), SHELL SOL 106 (E)
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Fig. 5.23 MAC L=2000 mm, comparison with Experimental Mode Shapes: Auto MAC (A),
BTCE-GE (B), BTCE-NL (C), SHELL SOL 103 (D), SHELL SOL 106 (E)
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Fig. 5.24 MAC L=2500 mm, comparison with Experimental Mode Shapes: Auto MAC (A),
BTCE-GE (B), BTCE-NL (C), SHELL SOL 103 (D), SHELL SOL 106 (E)
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Table 5.14 Cantilever composite beam material and properties

T700 Wood
Property Value Property Value

E11 118.4 GPa E11 16.6 GPa
E22 8.7 GPa E22 8 GPa
G12 = G13 3.4 GPa G12 = G13 3.4 GPa
ν12 = ν13 0.31 ν12 = ν13 0.31

L = 522mm; width, w = 20mm; height, h = 2,8mm; upper and lower panel thick-
ness, t = 0.2mm; mass per unit length, m = 1.095× 10−5 kg/mm; torsional unit
inertia, I p = 4.75× 10−4 kg/mm. The mechanical properties of the material are
listed in Table 5.14.

Fig. 5.25 Composite Box-Beam Section

The reference model has been defined in PATRAN with SHELL elements (Figure
5.26) while a beam model with the formulation presented in this thesis has been
obtained by assembling 10 BTCE. The load condition chosen for the numerical
comparison is a concentrated tip load. The load has been incremented to reach
different deformation levels and observe the limits of validity of the presented model.
The deformation has been evaluated with a nonlinear static analysis, then a nonlinear
modal analysis has been performed for each load case and the numerical results have
been compared in terms of characteristic frequencies. The deformed configuration
used to orient and compute the nonlinear beam finite element has been retrieved from
the nonlinear static analysis performed with NASTRAN. The first eight characteristic
frequencies have been computed for the two FE models and normalized with the
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x
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z

Fig. 5.26 Composite Box-Beam SHELL model

value obtained with a linear modal analysis of the undeformed configuration. The
normalized frequencies have been compared for each mode at different deformation
levels.

5.6.1 Numerical Modal Analysis Results

The results of the numerical modal analysis of the composite box-beam structure
described by [106] are represented in Figures 5.27, 5.28, 5.29, and 5.30. Eight load
cases have been considered for a maximum deflection λ = 28.55%, six of them
correspond to a deflection below 10% and can help to observe more precisely at
which point the nonlinear effects cause the deviation from the linear results. The
results of the simulation performed with the BTCE models have been compared to the
frequencies obtained with a SHELL model solved with NASTRAN SOL106. For this
comparison, the first eight modes have been investigated. In this case, the comparison
is performed on the frequencies computed with the nonlinear models normalized
with their linear counterparts computed for the undeformed configuration, with this
method the variation of the characteristic frequency is highlighted. The material
orientation causes the flapwise bending-torsion coupling, while the deflection causes
the edgewise bending-torsion coupling, for this reason, all the modes involve the three
degrees of freedom. However, one component of the eigenvector has a considerably
higher value than the other, for this reason, the modes where flapwise bending is the
major effect will be denoted with the letter F, while the modes where the edgewise
bending component is the predominant will be denoted with the letter E and the
mainly torsional modes will be denoted with the letter T as previously.
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Fig. 5.27 FE Models results comparison for 1st and 2nd Modes
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Fig. 5.29 FE Models results comparison for 5th and 6th Modes
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The results show a good correlation between the BTCE models and the SHELL
FE model. The 1st, 2nd, 5th, and 7th modes presented very similar results even for
large displacements. The 3rd, 4th, 6th, and 8th modes present some discrepancies
when the deformations are bigger than 15%. A less accurate prediction of charac-
teristic frequencies can be attributed to many factors. First of all the number and
the nature of the finite element used brings approximations that are necessary to
lower the computational costs but can influence the results. Secondly, the hypothesis
of inextensibility adopted for the BTCE could be not verified for for large nonlin-
ear deformations. Moreover, the curvatures and the rotation matrix are obtained
under the hypothesis of moderate-to-large displacements. Finally, the perturbation
introduced for the nonlinear formulation is small and the expression used for the
perturbation and the rotation matrices are truncated in the second order. For large
deformations, higher-order terms may be considered. This comparison shows that
the BTCE models could be used for nonlinear analysis of pre-deformed structures
with deflection below 15% with results comparable to the characteristic modes of a
SHELL FE model of the same structure solved with NASTRAN SOL106. Moreover,
the results show that the differences between BTCE-GE and BTCE-NL are minimal
up to a deflection of 15% and increase for larger deformations. The models here
presented can be further improved with an experimental test involving coupled struc-
tures to assess the performance and correctly evaluate the influence of geometrical
and stiffness effects.

5.7 Summary and Conclusions

The beam finite element with bending-torsion coupling formulation derived in Chap-
ter 2 underwent validation for the static case by simulating an aluminum beam with
stiffened panels in a cantilever configuration, subjected to three different load config-
urations at the free end. The inclusion of oriented stiffeners enabled the attainment
of a noticeable bending-torsion coupling effect, accurately depicted in the results of
both static and modal analyses. Comparison between the results of the static analysis
and those from a TETRA10 FE model in identical configurations revealed relative
differences below 5% for most load cases considered, with discrepancies primarily
arising from approximations made when reducing the beam’s cross-section to its
mid-thickness line, affecting stiffness coefficients. Validation for the dynamic case
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involved modal analysis in a cantilever configuration, with results compared to ex-
perimental and TETRA10 FE model outcomes. Relative errors were generally below
5% for numerical comparisons but higher, up to 10%, for experimental comparisons
due to approximations introduced by the BTCE model’s cross-section reduction and
constraints during experimental tests. Mode shapes obtained using the present theory
were compared with the TETRA10 FE model and experimental mode shapes using
the modal assurance criterion, showing close agreement despite minor discrepancies
attributed to the limited number of scanning points during experimental tests. The
finite element was further tested for modal analysis of an NREL 5MW HAWT blade
and a CAS graphite/epoxy cantilever box beam with varying layups, with natural
frequencies compared to numerical and experimental results. Results exhibited
good alignment with the BTCE model, affirming its compatibility with such struc-
tures. Overall, the coupled beam finite element was validated through numerical
and experimental evidence across various structures, showcasing its effectiveness
in capturing coupling effects induced by oriented stiffeners or composite material.
Its consistency with kinematics and equilibrium equations extends its applicability
beyond box-section beams, offering the potential for nonlinear static and dynamic
analysis and addressing aeroelastic problems involving fluid-structure interactions or
aerodynamic tailoring.

Chapter 3 introduced two models for dynamically analyzing beam structures
with bending-torsion coupling in the presence of geometric nonlinearities. Experi-
mental testing was conducted to verify the level of deflection necessary to observe
appreciable nonlinear effects and assess the accuracy of nonlinear analysis with
the BTCE models. These experiments utilized an LDV system on an aluminum
beam constrained at four different lengths, allowing for the study of nonlinear effects
at varying deformation levels. Results indicated that geometric nonlinearities had
minimal effects on the structure’s characteristic frequencies, with both linear and
nonlinear numerical models predicting frequencies generally within a 5% error mar-
gin. Regarding mode shapes, it was found that for deformations below 3.7%, mode
shapes exhibited low levels of coupling, and linear numerical models were suitable
for studying structures under these conditions. However, for deformations of 8.3%
or 14.7%, significant differences in mode shapes were observed due to nonlinear
couplings, accurately predicted by the derived BTCE models. Minor discrepancies
between observed and predicted modes were attributed to the relatively low number
of scanning points, affecting resolution, and the reliance of BTCE models on equilib-
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rium solutions computed with linear static analysis, which may be less accurate for
higher deformations. Experimental findings suggested that stiffness effects played
a minor role in the analyzed scenarios, and the BTCE-GE model could sufficiently
predict characteristic modes and frequencies. The BTCE models were also tested on
a composite structure with bending-torsion coupling, showing good agreement with
results obtained from a SHELL FE model solved with NASTRAN SOL106. The pre-
sented model’s application can be extended to studying the aeroelastic performances
of wing structures. Moreover, the bending-torsion coupling formulation allows for
the optimization of material orientation to achieve desired dynamic properties, even
in the presence of geometric nonlinearities.



Chapter 6

Optimization of Curvilinear Stiffener
Path

Some of the contents and derivation presented in this chapter have been previously
published in Materials 2023.

Patuelli, C.; Cestino, E.; Frulla, G.; Valente, F. Optimization of Curvilinear Stiffener
Beam Structures Simulated by Beam Finite Elements with Coupled Bending–Torsion
Formulation. Materials 2023, 16, 3391.

6.1 Introduction and Motivation

The orientation of anisotropic materials is the most relevant design variable for
aeroelastic tailoring problems. The design process to find the optimal configuration
can be very demanding in terms of computational cost, especially if the curvilinear
path is considered and the design space is sensibly increased. Recently, many authors
investigated the problem of optimization for aeroelastic tailoring. Haftka [107]
investigated the properties of parametric constraints for flutter optimization showing
that the the parametric continuous flutter constraint can be replaced by the equivalent
minimum value constraint for a more efficient optimization. Martins and Alonso
[108] developed an integrated aero-structural method for the design of aerospace
vehicles. They used a high-fidelity parametric model with a large number of design
variables for the optimization of a supersonic business jet assessing the accuracy
of the sensitivity information obtained with the procedure. Stroud et al. [109]
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presented an approach for the reliability-based optimization of metallic wing plates
to meet strength and flutter requirements. The design variable was the thickness
distribution, while the constraints were the weight and the probability of failure.
Maute et al. [110] presented a topology optimization methodology for the design of
aeroelastic structures, accounting for the fluid-structure interaction. The optimization
results showed the significant influence of the design dependency of the loads on
the optimal layout of flexible structures when compared with results that assumed a
constant aerodynamic load. Kameyama et al. [37] examined the effects of laminate
configurations on flutter and divergence characteristics of composite plate wings with
different sweep angles and performed an optimization to find the minimum weight
design, with constraints on the flutter and divergence speeds. Equivalent models
or beam elements can be adopted for more efficient optimization problems during
early design stages. Danzi et al. [44] used an equivalent continuum plate model to
obtain an optimal configuration through a topology optimization problem, where the
design variables became the orientation of the stiffeners at prescribed points. In the
present chapter, the BTCE developed in this thesis, is used for the optimization of the
stiffeners curvilinear path for box-beam structures. The BTCE can be a versatile and
efficient tool for topological optimization under different load cases and constraints.

6.2 Optimization Problem

The structure chosen for the optimization is based on the aluminum stiffened box-
beam structure introduced in the previous chapters. The structure, represented in
Figure 6.1, is a generic box-beam structure with a length L= 1100 mm and composed
of two stiffened panels with a width of b = 50 mm connected with two C-shaped
spars with dimensions 20 mmx40 mm. The stiffeners dimensions are hs = 4 mm and
bs = 3 mm. The distance between the stiffeners is ds = b/N = 8.33 mm, with N = 6
the number of stiffeners. The orientation of the stiffeners follows a curvilinear path
which varies linearly with Equation 6.1 from the orientation at the first section of
the beam ϑ1 to the orientation at the end section ϑ2. The C-shaped spars and the
mid-layer of the stiffened panels are s = 2 mm thick. The material considered for the
structural analysis was an Al6060 aluminum alloy, with its properties listed in Table
5.11.
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Fig. 6.1 Beam structure geometry.

ϑ(x) = ϑ1 +
(ϑ2 −ϑ1)

b
x (6.1)

The stiffener orientations evaluated at the prescribed control points with equation
6.1 constitute the design variables of the topology optimization. The linear variation
of the curvature has been selected according to [111–113].

The optimization problem for the static bending-torsion considers two different
conditions described in Equations 6.2 and 6.3. For the first case, a load can be
considered applied in the section shear center of the beam with stiffeners oriented
at 0◦ and the objective of the optimization is to obtain a specific coupling effect
described by target values of torsion and deflection and achieved through the root
and tip orientation of the stiffeners. The second case considers a vertical load applied
at a distance d = 13 mm from the shear center. In this situation, the vertical load
is combined with a torsional moment and the objective is to obtain a configuration
able to nullify the torsional angle at the tip. In both cases, the objective is the
maximization of the strain energy in Equation 6.4 where [K] is the global stiffness
matrix, {u} is the vector of nodal displacements, and {p} is the vector of nodal
moments and forces. The static solution and the strain energy were obtained with a
100-element BTCE model constrained at one end. The optimization was carried out
with the MATLAB optimization algorithm "fmincon" which generated randomly 200
initial couples ϑ1, ϑ2 for the static analysis. The allowable orientations ranged from
ϑlb to ϑub, which represented the lower and upper boundaries of the problem. The
stiffness coefficients C11, C12, C22, and C33 were computed with Equation 5.2; the
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CLT matrices were obtained by considering the stiffeners as equivalent orthotropic
materials, and with properties computed with Equation 4.6 and listed in Table 5.11.
For each element, the stiffener orientations were considered equal to the mean angle
between the angles at the element nodes.



max
1
2
{u}T [K]{u}

sub ject to [K]{u}= {p}

ϑlb ≤ ϑ1,2 ≤ ϑub

|ϕtip| ≥ |ϕ0|

|wtip| ≤ |w0|

(6.2)



max
1
2
{u}T [K]{u}

sub ject to [K]{u}= {p}

ϑlb ≤ ϑ1,2 ≤ ϑub

ϕtip = 0◦

(6.3)

1
2
{u}T [K]{u} (6.4)

The load cases (LC) considered for the optimization are listed in Table 6.1.
For each load case, the force F is equal to 41.37 kg, in accordance with the load
considered in [44].
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Table 6.1 Load cases descriptions

Load Case Equation Graphical Representation

LC1 qw = F

L

qw

LC2 qw = F/L
L

LC3 qw =
F
L

(
1− x

L

)
L

The cases with the load applied at the shear center are denoted with LCiC, while
the cases with the load applied at d = 13mm from the shear center are denoted with
LCiU . The constraints applied for each optimization are listed in Table 6.2, and
those related to the cases LCiC were the same used in [44]. An additional case is
represented by the case LC1AM where the load case LC1 is applied, but the design
domain is modified in order to avoid or minimize the use of support structures during
an additive manufacturing (AM) process. In general, the minimum overhang angle
for a production without the need of support structure is 40◦, for this reason the
optimization domain has been reduced to angles larger than 40◦. In general, it is not
possible to determine “a priori” if the imposed constraints will be satisfied within the
design space: the desired minimum torsion angle could be impossible to achieve with
the imposed constraints on the deflection and vice-versa. Subsequent optimization
cycles can be performed to refine the optimization, but for the scope of this work,
the configuration with the highest strain energy that was closer to the constraints was
considered the best solution. As an example of the application for beam structure
design optimization, the optimal values related to ϑ1 and ϑ2 for each load case
were rounded to the nearest angle with a precision of 0.5◦, defining a set of design
solutions with a slight variation in final deflections. Such a variation was considered
acceptable for the scope of this work. A feasible design was so generated. The
chosen configurations were subsequently simulated with three different FE models:
a 10 BTCE model, a SHELL FE model, and a TETRA10 FE model, following the
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procedure and the FE modeling used in the previous chapters. For each model, the
applied load was discretized with 10 concentrated loads positioned at element nodes
for the BTCE and applied at the section centroid for the SHELL and the TETRA10
models. The three models were constrained at one end, imposing all the degrees of
freedom equal to 0. The BTCE and the SHELL models consisted of ten sections.
Each section considered a constant stiffener orientation equal to the mean value of the
orientation angle at the section ends. The stiffened plates were considered laminates
for the BTCE and the SHELL models, where the curvilinear stiffeners were modeled
as an equivalent single layer. Their mechanical properties were computed by means
of Equation 4.6.

Table 6.2 Optimizations loads, design limits, and constraints.

Optimization Load Applied [ϑlb ϑub] Constraints [ϕ0 wub]

LC1C LC1 [−45◦ 45◦] [0.287◦ 14mm]

LC2C LC2 [−45◦ 45◦] [0.08◦ 4.6mm]

LC3C LC3 [−45◦ 45◦] [0.03◦ 1.1mm]

LC1AM LC1 [40◦ 90◦] [0.2◦ 17mm]

LC1U LC1 d = 13mm [−45◦ 45◦] ϕtip <×10−5[rad]
LC2U LC2 d = 13mm [−45◦ 45◦] ϕtip <×10−5[rad]
LC3U LC3 d = 13mm [−45◦ 45◦] ϕtip <×10−5[rad]

6.3 Optimization Results

The optimization procedure revealed that many configurations can produce a defor-
mation within the constraints under the specified loads. However, it is possible to
determine the configurations that achieved the highest strain energy values. The
optimization results are presented in Figures 6.2-6.8. The green circles represent the
configuration within the constraints with the highest strain energy value, the blue
circles represent the solutions with a tip deformation and a torsion angle with a 5%
relative difference with respect to the best solution. The red circles represent the
non-convergent solutions or configurations with tip deflections and torsion angles
with a relative difference with respect to the best solution greater than 5%. The cases
LC1U , LC2U , and LC3U where the load is positioned outside the shear center and
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Fig. 6.2 Optimization results for the LC1C configuration.

a tip torsion angle equal to zero is required, revealed an interesting pattern for the
acceptable configurations. For each of these load cases, the solutions lay on a line at
a similar level of strain energy. The optimal solutions are listed in Table 6.3

Table 6.3 Optimal solutions.

Optimization Applied Load [ϑ1 ϑ2] wtip [mm] ϕtip [◦]

LC1C LC1 [30.77◦ 29.96◦] -13.98 -0.26
LC2C LC2 [18.32◦ 21.95◦] -4.60 -0.08
LC3C LC3 [12.50◦ −0.11◦] -1.10 -0.01

LC1AM LC1 [45.45◦ 40.24◦] -15.93 0.2
LC1U LC1 d = 13mm [30.16◦ −45◦] -11.88 |ϕtip|< 0.01
LC2U LC2 d = 13mm [25.10◦ −45◦] -4.39 |ϕtip|< 0.01
LC3U LC3 d = 13mm [23.88◦ −45◦] -1.15 |ϕtip|< 0.01

The optimal orientations for the cases LCiC were approximated to the nearest
value within 0.5◦. Due to the similarities between the optimal solutions for the cases
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Fig. 6.3 Optimization results for the LC2C configuration.

Fig. 6.4 Optimization results for the LC3C configuration.
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Fig. 6.5 Optimization results for the LCAM configuration.

Fig. 6.6 Optimization results for the LC1U configuration.
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Fig. 6.7 Optimization results for the LC2U configuration.

Fig. 6.8 Optimization results for the LC3U configuration.
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LCiU a single test configuration was chosen. The resulting configurations are listed
in Table 6.4 and represented in Figure 6.9A-E. Three different FE models were
created for each one of the geometries selected. The reference model consists of a
TETRA10 FE model with three-dimensional stiffeners. Another model is obtained
with SHELL elements, the beam is divided into ten segments where the orientation of
the stiffeners is assumed constant and equal to the mean value between the segment
ends orientation. The stiffened panels are considered laminates with two symmetric
ESL for the stiffeners and a mid isotropic layer. The mechanical properties of the
ESL are computed with Equation 4.6. The third model consists of a BTCE model
with the same class of elements used for the optimization. The beam is divided into
ten sections corresponding to ten beam finite elements. The stiffness coefficients of
the element are computed with Equation 5.2 using the same hypothesis considered for
the SHELL FE model. The results obtained with the different FE models are reported
in Figures 6.10-6.23 and in Table 6.5 where the relative difference is computed to
evaluate the accuracy with respect to the reference model.

Table 6.4 Configurations derived from optimal solutions.

Optimization Load Applied [ϑ1 ϑ2]

LC1C LC1 [31◦ 30◦]
LC2C LC2 [18.5◦ 22◦]
LC3C LC3 [12.5◦ 0◦]

LC1AM LC1 [45.5◦ 40◦]
LC1U LC1 d = 13mm [25◦ −45◦]
LC2U LC2 d = 13mm [25◦ −45◦]
LC3U LC3 d = 13mm [25◦ −45◦]

The geometries obtained from the optimal solutions produced a deformation
compliant with the design constraints in the majority of the cases considered. Some
differences with respect to the deformations results reported in Table 6.4 are present,
these differences are linked to the approximations of ϑ1 and ϑ2 introduced in the
design procedure. In particular, the case LC2C violated the imposed constraints on
the deflection.
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Fig. 6.9 Configuration derived from optimal solutions: (A) LC1C, (B) LC2C, (C) LC3C, (D)
LC1AM, and (E) LCiU .

The BTCE model showed a good agreement with the other FE models with a
relative difference generally below 6% with respect to the TETRA10 FE and below
10% if compared with the SHELL FE model results. The developed beam element
considered the stiffeners straight along the element length; moreover, an equivalent
single-layer material was adopted to describe the stiffened panel behaviors. In
addition, the beam element section was considered non-deformable. However, the
BTCE model demonstrated good fidelity in representing the static behavior of a
box-beam structure with curvilinear stiffener panels. This was a very interesting
result for a tool useful in the preliminary design environment.
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C

Fig. 6.10 LC1C deflection results comparison between the TETRA10 FE model, the SHELL
FE model, and the BTCE model

C

Fig. 6.11 LC1C torsion results comparison between the TETRA10 FE model, the SHELL FE
model, and the BTCE model
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C

Fig. 6.12 LC2C deflection results comparison between the TETRA10 FE model, the SHELL
FE model, and the BTCE model

C

Fig. 6.13 LC2C torsion results comparison between the TETRA10 FE model, the SHELL FE
model, and the BTCE model
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C

Fig. 6.14 LC3C deflection results comparison between the TETRA10 FE model, the SHELL
FE model, and the BTCE model

C

Fig. 6.15 LC3C torsion results comparison between the TETRA10 FE model, the SHELL FE
model, and the BTCE model
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AM

Fig. 6.16 LC1AM deflection results comparison between the TETRA10 FE model, the SHELL
FE model, and the BTCE model

AM

Fig. 6.17 LC1AM torsion results comparison between the TETRA10 FE model, the SHELL
FE model, and the BTCE model
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U

Fig. 6.18 LC1U deflection results comparison between the TETRA10 FE model, the SHELL
FE model, and the BTCE model

U

Fig. 6.19 LC1U torsion results comparison between the TETRA10 FE model, the SHELL FE
model, and the BTCE model
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U

Fig. 6.20 LC2U deflection results comparison between the TETRA10 FE model, the SHELL
FE model, and the BTCE model

U

Fig. 6.21 LC2U torsion results comparison between the TETRA10 FE model, the SHELL FE
model, and the BTCE model
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U

Fig. 6.22 LC3U deflection results comparison between the TETRA10 FE model, the SHELL
FE model, and the BTCE model

U

Fig. 6.23 LC3U torsion results comparison between the TETRA10 FE model, the SHELL FE
model, and the BTCE model
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Table 6.5 Configurations derived from optimal solutions.

Load Positioned in the Shear Center

Load Case DOF BTCE SHELL TETRA10

LC1

w [mm] -14.20 -13.47 -13.75
(5.4%) (3.3%)

ϕx [◦] -0.26 -0.29 -0.27
(10.3%) (3.7%)

LC2

w [mm] -5.23 -5.03 -5.16
(4.0%) (1.4%)

ϕx [◦] -0.09 -0.10 -0.10
(10.3%) (3.7%)

LC3

w [mm] -1.10 -1.07 -1.09
(0.9%) (0.9%)

ϕx [◦] -0.01 -0.01 -0.01
(0%) (0%)

LC1 AM

w [mm] -16.17 -15.24 -15.34
(6.1%) (5.4%)

ϕx [◦] -0.20 -0.18 -0.19
(11.1%) (5.26%)

Load Positioned Outside the Shear Center

Load Case DOF BTCE SHELL TETRA10

LC1

w [mm] -11.61 -11.19 -11.45
(3.8%) (1.4%)

ϕx [◦] 0.03 0.03 0.02
(0%) (50%)

LC2
w [mm] -4.96 -4.79 -4.90

(3.5%) (1.2%)
ϕx [◦] -0.01 < ϕx < 0.01 -0.01 < ϕx < 0.01 -0.01 < ϕx < 0.01

LC3
w [mm] -1.10 -1.07 -1.09

(0.9%) (0.9%)
ϕx [◦] -0.01 < ϕx < 0.01 -0.01 < ϕx < 0.01 -0.01 < ϕx < 0.01
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6.4 Summary and Conclusions

The utilization of a beam finite element with bending-torsion formulation for opti-
mizing stiffener paths in box-beam structures with curvilinear stiffened panels was
introduced and validated. Optimization efforts were directed towards three distinct
load cases applied along the beam axis, including a typical scenario associated with
geometric constraints in additive manufacturing (AM) processes. The objective of
the optimization procedure was maximizing strain energy under prescribed loads
while ensuring the selected configuration met global constraints for maximum ver-
tical deflection and minimum torsional angle. This approach facilitated achieving
the highest level of bending-torsion coupling. A secondary optimization focused on
the same load cases but positioned at one-fourth of the beam width, introducing an
additional torsional moment. Here, the aim was to minimize the bending-torsion
effect, thereby maximizing strain energy while maintaining a torsion angle of zero at
the tip. The outcomes of the optimization process were translated into beam structure
designs to evaluate their structural performance and verify the BTCE ability to accu-
rately represent deformations under static loads of beam structures with curvilinear
stiffeners. For each design, TETRA10 FE, SHELL FE, and BTCE models were
created, and static analyses were conducted. Comparisons among these different FE
models demonstrated the BTCE precision, with relative differences in deformation
results generally below 6% when compared to TETRA10 FE models and below
10% when compared to SHELL FE models. Discrepancies between models were
attributed to assumptions made during the BTCE derivation, such as straightening
stiffeners along the element length and reducing them to an equivalent single layer,
as well as considering the beam element section as non-deformable. The potential
of the BTCE as both an optimization and static analysis tool for beam structures
with curvilinear stiffeners was confirmed. Furthermore, the ability to achieve spe-
cific configurations capable of enhancing or reducing the bending-torsion effect
was demonstrated. Additionally, an optimal configuration addressing geometric
constraints for AM production, featuring a self-supporting structure to minimize
post-production machining, was investigated.



Chapter 7

BTCE Divergence Analysis of
Structures with Bending-Torsion
Coupling

Some of the contents and derivation presented in this chapter have been previously
published in AIAA SCITECH 2024 Forum.

C. Patuelli, E. Cestino, and G. Frulla. Aeroelastic analysis through non-linear beam
finite elements with bending-torsion coupling formulation.In AIAA SCITECH 2024
Forum, 2024.

7.1 Introduction and Motivation

High aspect ratio structures are particularly affected by aeroelastic phenomena
like divergence and flutter. Moreover, large deformations can introduce non-linear
structural effects which can further alter the aeroelastic behavior of wing structures
[79]. Divergence is a typical aeroelastic instability involving torsion deformation
which can potentially increase and become critical. Bending-torsion flutter is an
aeroelastic dynamic instability that causes increasing amplitude oscillation and can
become dangerous for structural integrity. However, aeroelastic phenomena can
be controlled through the use of aeroelastic tailoring. Sherrer et al. [114] used
aeroelastic tailoring to increase the divergence speed of composite forward-swept
wing and validated the results with wind tunnel tests. Guo [115] demonstrated
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aeroelastic tailoring to significantly reduce the weight of aircraft structures and
increase up to 30% of the flutter speed. Librescu and Song [52] adopted a thin-
walled anisotropic composite beam model to study the sub-critical static aeroelastic
response and the divergence instability of swept-forward aircraft wing structures. Li
et al. [116] presented a rapid computational fluid dynamics-based aeroelastic tool that
used a reduced order model for aerodynamics that is updated for any modification of
the structure by using the structural dynamics reanalysis method.

Aeroelastic analysis requires the interaction between aerodynamic and struc-
tural analysis. Coupled computational fluid dynamics and finite element method
formulation for aeroelastic analysis can be used for detailed simulations [81]. These
models are generally very advanced and usually require a large computational power
which is not efficient for early design stage optimization. For this reason, low-order
structural models can help to reduce the computational cost and guarantee similar
accuracy for preliminary optimization. Geometrically exact beam formulation is a
popular approach [81, 82] and has been used in several works for highly deformed
wing structure analysis. Drela [85] used beam elements with non-linear formulation
to develop an aerodynamic and structural simulation model for flexible aircraft,
while Patil [86] presented a theory for flight-dynamic analysis of highly flexible
wing configurations accounting for geometric non-linearities. More recently, a new
class of low-order structural models relying on high-order modal expansion has been
developed [87, 117]. However, these models require non-linear static responses of a
Finite Element Model (FEM) to identify modal expansion terms.

Anisotropic materials can be adopted to enhance the aeroelastic performances
of wing box structures according to the concept of aeroelastic tailoring [118, 36].
This technique demonstrates important advantages when combined with composite
material where the lay-ups can be optimized to mitigate the aeroelastic phenom-
ena. Other aeroelastic tailoring techniques involve functionally graded materials
[119–121], variable angle tow [122, 111], or curvilinear stiffener panels [111, 40].
Aeroelastic tailoring relies on the structural couplings introduced with a specific
orientation of composite fibers or stiffeners to modify the aeroelastic properties of
a wing structure. The optimization of these structures can be very demanding in
terms of time and computational costs, for this reason, equivalent models with beam
finite elements can be adopted during early design stages. The problem encouraged
the development of aeroelastic prediction methods that account for the nonlinear
effects on highly flexible structures [123–125], but the introduction of a nonlinear
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beam finite elements that account for the material bending torsion coupling could be
a benefit for this class of analysis.

The beam finite element with bending torsion coupling formulation developed in
this thesis can be efficiently adopted as a structural model for divergence analysis.
In this chapter, a structural analysis performed using a BTCE model is coupled
with aerodynamic analysis to compute the divergence speed of wing structures with
oriented composite fibers or stiffeners. The use of the model presented in this chapter
is not limited to divergence analysis, but it can be used to compute the equilibrium
configuration of wing structures under aerodynamic loads.

7.2 Divergence Analysis Model

The model presented in this chapter is based on iterations of structural and aerody-
namic simulation to find equilibrium configurations. When an equilibrium config-
uration is not reached, it means that the speed considered is above the divergence
speed. The model can consider wing structures with sweep angle, dihedral angle,
variable chord, and different airfoils. Once the geometry is described, the initial
configuration can be used as input for the aerodynamic model alongside the aerody-
namic parameters such as air density, flight speed, and vortices. The aerodynamic
analysis is performed with Athena Vortex Lattice (AVL). AVL is a software created
by Mark Drela from MIT Aero & Astro and Harold Youngren. The software is based
on the numerical method Vortex Lattice Method (VLM). VLM calculates lift curve
slope, induced drag, and lift distribution for a given wing configuration. The wing is
modeled with horseshoe vortices distributed along the span and chord. These vortices
produce a lift according to Biot-Savart Law, Kutta-Joukovsky theorem, Herman von
Helmholtz theory, and Prandtl lifting-line theory. The wing structure geometry is
described, in the aerodynamic model, with panels delimited by defined sections.
AVL computes the resultant forces acting on each panel and its vertical (lift) and
horizontal (drag) components. These components can be used to obtain the loads
acting on the nodes of the structural model and therefore to obtain the correspond-
ing deformations. The structural model consists of beam elements (BTCE) with
nodes coincident with the position of the sections defined in the aerodynamic model,
with this method the displacement of the nodes corresponds to the displacement of
the aerodynamic section. Each element represents a portion of the wing structure
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which can present different geometry, stiffness properties, materials or play angle
with respect to other areas of the wing. These differences can be represented with
finite elements associating the different characteristics of the wing portion to the
corresponding element. The aerodynamic resultants are computed at the center of
the wing panel and must be transformed in nodal forces, this can be achieved with
an interpolation of the panel loads. Each element has an orientation in the space
given by the initial geometry with sweep angle, dihedral angle and, rigid angle in
addition to the deformation caused by the aerodynamic loads. For this reason, the
element and the nodal loads should be oriented with a transformation matrix to
obtain the system in global coordinates and therefore obtain the deformations in the
global reference system. The linear static system can be solved to obtain the nodal
displacements and rotation which describe the new deformed geometry and therefore
the input for a new aerodynamic analysis. The process is iterated with the deformed
geometry until the deformed configuration does not change the aerodynamic loads
of the previous iteration and thus equilibrium is reached or until the deformations
become too large indicating that the system is in divergence condition. The analysis
workflow is summarized in Figure 7.1.

7.3 Aeroelastic Divergence of Coupled Graphite/Epoxy
Cantilever Plates

The divergence analysis model has been tested on beam structures with bending-
torsion coupling given by oriented fibers. The test case consists of graphite/epoxy
cantilever plates with different fiber orientations. The plates are the same studied
by Hollowell and Dungundji [64], they conducted an analytical and experimental
investigation to determine the aeroelastic divergence behavior of unswept, rectangular
wings simulated by graphite/epoxy, cantilevered plates with various bending-torsion
stiffness coupling represented in Figure 7.2. The plates have an effective length
l = 305 mm and a chord c = 76 mm for an aspect ratio AR = 8. The total thickness
is six plies.

The plates were laminated with a midplane symmetric stacking sequence, and the
graphite/epoxy tape used for the experimental models was Hercules ASI/3501-6 with
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Fig. 7.1 Analysis workflow.
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mechanical properties listed in Table 7.1, with the orthotropic engineering constants
it is possible to obtain the off-axis lamina modulus components Qi j.

The laminate flexural and torsional stiffness can be obtained with equation 7.1
according to [126, 127].

GJt = 4c
(

D66 −
D2

26
D22

)
(7.1a)

K = 2c
(

D11 −
D12D26

D22

)
(7.1b)

EIy = c
(

D11 −
D2

12
D22

)
(7.1c)

EIz = EL
c3t
12

(7.1d)



7.3 Aeroelastic Divergence of Coupled Graphite/Epoxy Cantilever Plates 127

Table 7.1 Hercules ASI/3501-6

Property In-plane loading Out-of-plane loading

EL [MPa] 130×103 98×103

ET [MPa] 10.5×103 7.9×103

νLT 0.28 0.28
GLT [MPa] 6.0×103 5.6×103

Ply Thickness [m] 0.134×10−3

Density [kg/m3] 1520

Table 7.2 Flexural moduli for laminates [Nm]

Laminate DDD11 DDD12 DDD16 DDD22 DDD26 DDD66

[02/90]s 4.125 0.096 0 0.490 0 0.243

[±45/0] 1.550 0.928 0.437 1.404 0.437 1.075

[+452/0]s 1.550 0.928 0.946 1.404 0.946 1.075

[−452/0]s 1.550 0.928 -0.946 1.404 -0.946 1.075

[+302/0]s 2.704 0.720 1.180 0.666 0.459 0.866

[−302/0]s 2.704 0.720 -1.180 0.666 -0.459 0.866

Where the flexural modulus Di j for an n-play laminate with arbitrary ply angle
orientation was obtained from Equation 7.2, l is the lamina length and t is the lamina
total thickness.

Di j =
n

∑
k=1

Q(θk)
i j
[
z3

k − z3
k−1
]
/3 (7.2)

Where Q(θk)
i j is the off-axis lamina modulus of the k-th ply, θk the ply angle of

the k-th ply, and zk the distance up from the midplane to the upper surface of the k-th
ply. The flexural moduli computed for the six laminates investigated are reported in
Table 7.2

The divergence analysis is performed with multiple simulations at increasing
flight speed until the structure presents divergence, and then the divergence speed
value is refined with the bisection method. The lift curve slope Clα = ∂Cl/∂α can
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Table 7.3 Divergence velocities [m/s]

Laminate Experimental Analytical
(((CCCLLLααα === 222πππ)))

Analytical
(((CCCLLLαr)))

BTCE
(((CCCLLLααα === 222πππ)))

BTCE
(((CCCLLLαr)))

[02/90]s flutter 22.3 25.0 22.62 24.34

[±45/0] >32.0 infinite no divergence >32.0 >32.0

[+452/0]s flutter infinite no divergence >32.0 >32.0

[−452/0]s 12.5 9.9 11.1 11.56 12.44

[+302/0]s flutter infinite no divergence >32.0 >32.0

[−302/0]s 11.7 10.2 11.5 11.12 11.94

be assumed equal to 2π , however, this approximation can reduce the accuracy for
small AR. The divergence analysis has been performed considering also an empirical
correction of Clα of the airfoil which is reduced with a coefficient equal to 0.8
according to [128].

7.3.1 Divergence Analysis Result

The results obtained are summarized in Table 7.3. The first three columns report
the experimental and analytical results presented in [64], while the last two columns
present the results obtained with the procedure here presented computed for Clα = 2π

and for Clαr .

The [02/90]s,[−452/0]s and [−302/0]s which have a negative or null bending-
torsion coefficient presented divergence at a certain speed. The plate with lamination
[02/90]s can be used as a reference case, the plate has straight fibers and therefore
bending, and torsion are uncoupled, during the experimental tests reported in [64] the
specimen experienced flutter right before divergence and this affected the detection
of the divergence velocities. However, as shown in Figure 7.3, the numerical results
here presented are in accordance with the previously published analytical results.
The lamination [−452/0]s present to a negative bending-torsion stiffness D16, for this
reason, the section of the beam increases the incidence when the aerodynamic loads
cause a deflection. This coupling determines a reduction of the divergence speed
with respect to the straight lamination as shown in Figure 7.4. The results present
some differences if compared to the analytical divergence velocities, however, they
seem to be more in agreement with the experimental evidence. The test case with
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Fig. 7.3 Results comparison plate [02/90]s

lamination [−302/0]s has the most negative bending-torsion stiffness D16 which
reduce further the divergence velocity as shown in Figure 7.5. In this case, there is
good accordance with both experimental and analytical results.

7.3.2 Deformation Results

The procedure presented can be applied also to compute the equilibrium deformation
of plates with bending torsion coupling subject to aerodynamic loads. Hollowell
[129] studied the effect of angle of attack on tip deflection and rotation of coupled
graphite/epoxy cantilever plates with different laminations. In particular studied the
laminations [±45/0] and [−45/0]s. The results obtained have been compared with
the equilibrium deformations obtained with the BTCE model and are presented in
Figures 7.6-7.9.

For the lamination [±45/0] the results concerning the tip deflection are in good
agreement with the experimental data, the deflection predicted with the BTCE model
has a good level of accuracy even for high levels of deformation up to 50%. Some
discrepancies are present in the case where α0 = 6◦ for high deformations. The
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tip rotation predicted with the BTCE tends to decrease with the speed, while the
experimental tip rotation remains constant or slightly increases. Divergent tendencies
of both the tip lateral deflections and angle of attack for the [−45/0]s are evident in
Figures 7.8 and 7.9. The trend predicted with the BTCE model where similar to the
experimental results presented in [129], however, the numerical and experimental
results did not correlate. Finally, the numerical data appear to diverge faster than the
experimental data. The case with [±45/0] lamination presents a small coupling term,
thus a difference in the actual lamination with respect to the model can affect sensibly
the results. Moreover, Hollowell in [129] reported some difficulties in measure the
tip rotation angle due to buffeting.

7.4 Effect of Curvilinear Lamination

The BTCE model presented in this thesis can be used for the simulation of variable
stiffness structures. The previous chapter presented an application for curvilinear
stiffeners path optimization demonstrating the capabilities of the structural model. In
this section, the same principle can be applied to composite fiber orientation to show
that curvilinear lamination can be adopted to improve the aeroelastic performance of
a composite wing structure. The structure chosen is the same used in the previous
section but with the fibers’ orientation varying linearly with equation 7.3 with θ1

denoting the orientation at the root section of the beam and θ2 the angle at the end
section of the beam (Figure 7.10).

θ(x) = θ1 +
θ2 −θ1

l
x (7.3)

The divergence speed has been computed for the possible configuration with
curvilinear lamination with θ1 and θ2 varying from −90◦ to 90◦. The divergence
speed for the configuration with θ1 = θ2 = 0◦ is taken as a reference value. The
results are reported in Figure 7.11, where the divergence speed is normalized with
respect to the reference value. A divergence speed value equal to three times the
reference divergence speed has been considered as the limit for the calculation.

It is possible to notice that most of the curvilinear laminations with an initial
negative orientation are not beneficial in terms of divergence speed, while the con-
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figurations with an initial positive orientation present many possible designs that
present a higher divergence speed.

7.5 Summary and Conclusions

This chapter demonstrates the capabilities of a beam finite element incorporating
bending-torsion coupling for static aeroelastic analysis. This approach involves
structural analysis using a BTCE model alongside aerodynamic analysis based on
VLM, with validation against experimental and analytical literature results. The
divergence velocities predicted align well with experimental data, although for lami-
nation [−452/0]s, the tip deflection and rotation did not correlate with experimental
findings. The methodology was also applied to various curvilinear laminations to
assess their impact on static aeroelastic analysis outcomes and explore potential
applications of the BTCE. The BTCE emerges as a versatile analytical tool suit-
able for integration into aerodynamic analyses and static aeroelastic investigations.
Moreover, it allows for the use of curvilinear lamination, enabling the manipulation
of design variables to achieve specific aeroelastic performance objectives. Future
advancements may involve the integration of optimization algorithms to address
optimization challenges and expand their applicability to flutter analysis.



Chapter 8

Laser Powder Bed Fusion Process
Monitoring and Simulation

Some of the contents and derivation presented in this chapter have been previously
published in Materials 2023.

Patuelli, C.; Cestino, E.; Frulla, G.; Valente, F.; Servetti, G.; Esposito, F.; Barbero, L.
FEM Simulation of AlSi10Mg Artifact for Additive Manufacturing Process Calibration
with Industrial-Computed Tomography Validation. Materials 2023, 16, 4754

This chapter presents an overview of Laser Powder Bed Fusion (LPBF) process
simulation. The simulation is applied to a section of curvilinear stiffener panel
obtained from the topological optimization performed in Chapter 6. The introduction
of complex geometries require the use of advanced technologies such as AM pro-
duction. However, the high costs associated to this manufacturing technique impose
the needs of accurate simulations to improve the knowledge of process parameters
and to reduce the number of failed or low quality parts. At this scope, a multi-scale
simulation method is briefly presented. This method, implemented in the software
AMTOP® developed by ITACAe Srl, has been used for the simulation of a test
artifact and the deformation caused by the residual stress relief. The artifact has
been manufactured with LPBF technology and the deformations were measured
through industrial Computed Tomography (iCT). Numerical and experimental data
are compared to assess the precision of the simulation.
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8.1 Additive Manufacturing Simulation Literature
Overview

The importance of additive manufacturing is increasing due to its effectiveness in the
field of lightweight structure design. Topology optimization is a technique that allows
to reduce the weight of the structures with almost no stiffness penalty. However, the
optimized geometries are often complex or not suitable for traditional manufacturing
technologies like casting, extrusion, or machining. Lattice structures are another
feature that is increasingly present in AM design due to their performance in weight
reduction and heat exchange applications, however, this kind of geometries requires
AM to be manufactured [130]. AM technologies for metals, such as selective laser
melting (SLM) allow to manufacture of complex geometries with high precision
and can significantly enlarge the design space. However, SLM can be considered
as a series of micro-welding processes and carries the same problems related to
residual stresses and deformations [131], [132]. The SLM process consists of a
thin layer of metal powder spread with a roller and heated with a laser beam. The
laser beam follows a scanning path based on the manufacturer’s process param-
eters. The molten powder cools down and consolidates building the layer of the
part. After consolidation, the process is iterated lowering the part and building the
subsequent layer. As already stated, SLM-processes present issues related to residual
stresses, for this reason, SLM produced parts with complex geometries often present
undesired deformations or defects. This uncertainty of the process can limit the
industrial development of such a technology [133]. The outcome of an AM process
and its quality are strictly connected to the right set of process parameters. The
characteristics of the powder, its morphology and, size distribution, are also relevant
for the choice of process parameters [134]. Trial-and-error or empirical methods
are widely spread among manufacturers, who rely on design of experiment (DOE)
[135] to find a suitable set of parameters. The measurement of the distortions is an
effective method to evaluate the quality of the production [136]; however a DOE can
require tens of specimens and can become time and cost expensive. Moreover, the
results may be not extendable to different geometries [63].

For these reasons, analytical methods can be an efficient alternative to calculate
temperatures, stresses, and final deformation and to correlate them with process
parameters [137]. These methods are suitable for simple geometries and features



138 Laser Powder Bed Fusion Process Monitoring and Simulation

but show their limits when the complexity increases. Understanding the physical
mechanisms occurring during the melting process in SLM production is crucial for
the comprehension of the effect that the process parameters have on the manufactured
part. Several studies [138–141] investigated single aspects of the SLM process such
as melting pool, scan speed, size of the laser beam, build height effect, and inner
layer time. These design variables are strictly related to the residual stresses and
subsequent distortion on the final part. The residual stresses can be calculated with
different analytical or numerical approaches. Analytical methods can be useful
to understand the effects of the process parameters on the physical phenomena, a
reliable method considers the eigenfunctions approach [137] that can calculate the
temperature and the stresses that occur at different layers. The method can give a
good result in terms of physical variable fields, however, it is more convenient to use
a numerical approach when using complex geometries.

A popular numerical method used for AM process simulation is the Finite
Element Method (FEM) which can be used also for process parameter identification.
This technique allows also the simulation of the process on different scales. Detailed
micro or meso-scale models can used to study the scanning path or the melt pool
[142, 143], while macro-scale models can be used to study the temperature evolution
and the residual stresses during the process [144, 116, 145–147]. The heating
processes occurring during different AM processes have been the subject of several
studies allowing us to understand the micro-scale physical phenomena and the
importance of micro and mesoscale modeling. Geng et al. [148] published a study
of AM micro-scale processes, they combined FE with a microscopic phase field
(PF) model to determine the temperature distribution field during a melting phase
process for a wire arc additive manufacturing process, moreover, they studied the
effects of the microstructure evolution. The PF model can be combined also with
computational fluid dynamics and it proved to be effective in predicting the chemical
composition through concentration field equations and grain morphology. This
allowed for the determination of the quality of the microstructure by the temperature
evolution and it allowed for the identification of the columnar dendritic spacing. All
these evaluations can be useful to determine optimized process parameters such as
laser speed and power. Cattenone et al. [149] used FE analysis to determine the
distortions and residual stresses at the meso and macro-scale. The study, validated
with experimental results, investigated the process parameters and the modeling
method, moreover, it determined the importance of constitutive material models as
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well as the meshing strategy and the time step in the local temperature distribution
calculation. The result of the research was an FE analysis capable of predicting
defects and distortion of an object manufactured with fused deposition modeling
(FDM) with a coefficient of variation of 12.2%. Song et al. [150] simulated a laser
direct energy deposition (LDED) AM process using FE implemented in Abaqus AM
module. The research established the importance of the surrounding powder bed but
also of the building plate thickness and its geometry constraint effects. The powder
bed thickness becomes increasingly relevant for small features; in this case, also
the FE mesh must be carefully evaluated. Another important finding was that the
time step for the thermal analysis can be incremental without compromising the final
result and saving time for the calculation.

The use of AM process simulation for complex geometries is limited for in-
dustrial applications due to the excessive calculation time. The reason is that the
direct modeling of laser scan lines requires a considerable number of nodes for a
high-fidelity representation and a small time increment. The works done by Van
Belle [151] and Price [152] reported run times of tens to hundreds of hours for
medium-size models. These limits increased the need for reliable and fast simulation
for the determination of the optimal process parameters. The common assumption
for the most recent efficient simulation method is the modeling of the individual
laser scan line is no longer required, but approximations to simplify the analysis can
be used. Carraturo et al. [153] used the finite cell method for a part-scale simulation
of an LPBF process by means of a layer-by-layer activation process. The simulation
was validated by experimental measurements of an Inconel 625 cantilever structure
showing a maximum error of 4.72% and a very good correlation between experi-
mental and numerical data. A technique called process agglomeration has been used
by Hodge et al. [154] where the layers are modeled with a bigger scale equal to 20
times the actual layer thickness. The models have been validated with experimental
measurements performed by Wu et. al [155] on relatively small components made
of stainless steel 316L. The simulation required high-performance clusters and the
surface deformations were measured via digital image correlation (DIC), while in-
terior stresses were measured via neutron diffraction. The deformations predicted
with the numerical method were good in terms of magnitude, but the with high
discrepancies in the distribution. Other approaches operate by activation of a group
of layers or single full layers at high temperatures. The activation temperature can
be determined with an analytical thermal load calculation and then the mechanical
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response is determined with a coupled thermo-mechanical calculation. Zaeh and
Branner [156] simulated the production of a T-shaped cantilever beam made with
tool steel 1.2709 (X3NiCoMoTi18- 9-5) and verified the deformations with experi-
mental results obtained with a coordinate measuring machine (CMM). They showed
that the method captured the trend of distortions, but the absence of a moving heat
source model caused considerable overestimation of the peak distortion by 22.8%.
Papadakis et al. [157] predicted the residual stress and distortion of an Inconel 718
cantilever using a reduced thermal input method, however, the peak distortion was
overestimated by 26%. Inherent strain models are another approach to AM process
simulations. They rely on the assumption that the plastic strain developed during
the process is uniform [158]. Inherent strain models need two fundamental steps,
the plastic strain calculation and the plastic strain application [146]. The first step
is usually achieved with several experimental builds [159] which can be time and
cost-consuming. Another drawback of the inherent strain theory is the hypothesis of
plastic strain homogeneity, this means that any difference in the plastic strain field
caused by different geometries is neglected [159].

An advanced method for LPBF simulation is multi-scale modeling, where the
results of the simulation of micro-scale physical phenomena are used as input for
bigger-scale simulations. Li et al. [160] developed a multi-scale model with multiple
stages. The first step is a micro-scale simulation of a moving heat source which
generates an integrated heat input. This input is used for a meso-scale thermo-
mechanical analysis of a larger volume for the residual stress tensor calculation.
The last step consist of mapping the residual stress tensor into a macro-scale model.
The research showed good agreement between predicted and measured distortions,
but the model was limited to simple geometries. Another study of the same author
[161] used a multi-scale model for the simulation of an AlSi10Mg cantilever beam
production, reporting an error equal to 28% for the peak deformation.

It is worth mentioning that most of the models present in the literature consider
only simple geometries. This allows for more accurate results but limits the under-
standing of the capabilities of FEM AM process simulation. One of the research
studies that considers complex geometries has been proposed by Gouge et al. [162].
They used small-scale analysis results as input for the part-scale analysis of a small
thin-walled Inconel 625-compliant cylinder, a small Inconel 718 build with both very
thin and very thick sections, and an industrial-scale part formed from AlSu10Mg.
The multi-scale model proposed showed a good correlation with the experimental re-
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sult with a maximum error of 13% for the peak distortion and a minimum correlation
of 90.5%.

8.2 Thermal-Mechanical Model

The strategy adopted for the LPBF process simulation performed in this research is
a thermal-mechanical model developed by ITACAe S.r.l and SimTech Simulation
et Technologie SARL. The model is implemented into a platform of software tools
called AMTOP® developed to analyze and optimize additive manufacturing products
and processes. The platform is based on several algorithms for the evaluation of
stresses and distortions through a layer-by-layer approach, consisting of loops of
coupled thermal structural analysis [163, 164]. AMTOP® calculates the temperature,
stress, and displacements history of the different equivalent layers at the end of
the LPBF process. The equivalent layers consist of bundles of actual layers. The
software can compute the distortions that occur after the removal of the supports and
the component from the base plate. The process parameters needed for the simulation
are laser speed, laser power, laser path, layer thickness, hatch distance, material
mechanical properties, base plate temperature, environment temperature, shape, and
dimensions of the supports. The latest are particularly important because they affect
considerably the distortion mechanism and therefore the manufacturability of the
component. The finite element analysis (FEA) is performed with the external solver
Calculix. The FEA consists of a series of thermal-mechanical simulations for each
layer bundle, the results computed for each bundle constitute the initial conditions of
the subsequent one. Once the simulation is complete and the part is fully built, it is
possible to determine the deformed geometry. A scheme of the analysis workflow is
reported in Figure 8.1 and the correlation between the phases of the process and the
corresponding modeling is resumed in Table 8.1

The physical process parameters are critical for an accurate simulation, however,
there are also numerical parameters that need to be set up to guarantee the best
compromise between calculation time and accuracy. The mesh size significantly
affects this aspect of the simulation through the beam diameter scale (DIASCALE)
and the layer thickness scale (LAYTHKSCALE) that determine the actual size of
the mesh and the layer bundle height. The assumption is that the size of the laser
dot can be considered negligible if compared with the dimensions of the component.
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Table 8.1 Modeling of the physical process.

Process Phase Simulation Phase

Part orientation and placement. AMTOP® can suggest the best orienta-
tion strategy. Process parameters need
to be assigned and a mesh sensitivity
study performed.

Layer 1: fusion of the powder for the
first layer bundle.

The model calculates the temperature
of the first bundle of layers. The model
requires the temperature field as the ini-
tial condition for the FEM solver and
the geometry of the first layer bundle.

Recoating: deposition of the powder for
the next layer

At each layer, the calculation provides
stress, displacement, and temperature
field that depends on the results of the
previous layer which are the initial con-
dition of the current one.

Layer 1+n: fusion of the powder for the
first layer.

At each layer, the calculation provides
stress, displacement, and temperature
field that depends on the results of the
previous layer which are the initial con-
dition of the current one.

Cutting from the plate and the supports. The cutting removes elements (supports
+ plate) that do not belong to the printed
part. In this phase, AMTOP® calculates
the final distortion.
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Fig. 8.1 AMTOP® workflow scheme.

During the pre-processing phase, an algorithm prepares the FE model starting from
the triangle tessellated boundary surface of the surface mesh of the part with a
voxel meshing of the domain. The voxel sizes are multiples of DIASCALE and
LAYTHKSCALE. The model is based upon the simplification that the laser energy
is instantaneously absorbed into the system for each voxel layer. Therefore, the new
layer elements are associated with a temperature higher than the melting temperature
of the material considered.

The coupled thermal-mechanical analysis at the macro scale level follows the
governing equation for transient heat conduction

∇(−κ∇T )+ρcṪ = ρh (8.1)

with

−κ∇T = q−hc(T −T0)−σeε(T 4 −T 4
0 ) (8.2)

where T is the temperature, κ is the thermal conductivity of the material, ρ is the
material density, h is the heat generation per unit of mass, q is the input heat flux, hc

is the heat transfer coefficient under natural convection, σe is the Stefan-Boltzmann
constant, T0 is the ambient temperature, and ε is the emissivity. The deformations of
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the component are calculated with a quasi-static mechanical analysis. The results
of the thermal analysis constitute the thermal load for the mechanical analysis. The
governing stress equilibrium equation is

∇σ = 0 (8.3)

where σ is the mechanical stress which follows the Hook’s Law

σ =Cε (8.4)

C is the isotropic material stiffness tensor and ε is the total strain which includes
the elastic strain εe, the plastic strain εp, and the thermal strain εT the thermal strain
is computed as

εT = α(T )(T −Tre f ) (8.5)

with α(T ) the temperature dependent thermal expansion coefficient of the mate-
rial and Tre f is the environment temperature.

8.3 Application to Stiffened Panels

The advantages of additive manufacturing technologies can be exploited the most
when complex geometries are considered. Stiffened metallic panels can be machined
from a metallic bar with great costs and material waste. The introduction of curvi-
linear stiffeners or complex stiffener sections can further increase these costs or
make traditional manufacturing technologies obsolete. Additive manufacturing is
unlikely to reduce production costs unless nesting strategies are introduced, however,
it allows for more design opportunities.

Large flat and thin surfaces are not always easy to manufacture with AM tech-
nologies because the thermal stresses can easily deform the structure. Another
drawback of the production of panel structures are the support structures. A solution
for this problem can be the vertical or lateral positioning of the panel to eliminate the
need for support. Another aspect to consider is the increment of the panel thickness
to make the structure less prone to deformation and able to stand on one of its



8.3 Application to Stiffened Panels 145

5
0
 m

m

4
5
.5

°

112 mm

2
0
 m

m

2 mm
4
 m

m

2
 m

m

Fig. 8.2 Portion of curvilinear stiffener panel

sides. However, it is not necessary to increase the thickness too much, because the
symmetric configuration of the stiffeners can be used to support the whole structure.
The presence of support structures in the undercuts formed by the oriented stiffeners
can be undesired due to the additional machining cost, the problem can be avoided
by limiting the design domain to orientations that create an undercut with an angle
bigger than 40◦.

These considerations have been taken into account for the optimization performed
in Chapter 6. The result of the optimization was a stiffened panel box-beam structure
with slightly curvilinear stiffeners. A portion of the stiffened panel has been designed
for additive manufacturing production (Figure 8.2). The model has been simulated
with AMTOP® to obtain the residual deformations caused by an LPBF process.
The process parameters used for the simulation are summarized in Table 8.2. The
resulting finite element model is represented in Figure 8.3.

8.3.1 Stiffened Panel Simulation results

The results of the additive manufacturing process simulation performed with AM-
TOP® are reported in Figures 8.4-8.7. The software performs the thermal-mechanical
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Table 8.2 Process Parameters

Property Value

Laser Power 370 W
Platform Temperature 160 ◦C
Scan Speed 1200 mm/s
Layer Thickness (LT) 0.03 mm
Hatch Distance 0.2 mm
Laser Diameter (LD) 0.1 mm
Element Width 10×LD
Element Height 50×LT

Fig. 8.3 Finite element model for LPBF process simulation
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simulation and computes the residual stresses, then simulates the release of the
stresses caused by the base plate and support structure removal. The chosen process
parameters and the designed geometry did not generate support structures minimizing
the post-production machining. The represented results are the nodal displacements
in the principal directions with respect to the initial conditions. The simulation
showed that the part could be produced with LPBF, obtaining a component with
deformations lower than 0.82 mm.

Fig. 8.4 Deformation magnitudes for the AM component.
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Fig. 8.5 Deformations in the x-direction for the AM component.

Fig. 8.6 Deformations in the y-direction for the AM component.
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Fig. 8.7 Deformations in the z-direction for the AM component..

8.4 Test Artifact

The geometry of the component is based on the calibrating features present in the
regulation ISO/ASTM 52902:2019. In addition, some novel features like freeform
shapes, lattice structures, and cavities have been included. All the features have been
merged together to obtain a single artifact, due to the complexity of the new features
introduced, non-standard measurement methods are needed for the evaluation of the
deformations and the dimensional tolerances.

The material considered for the component production was an AlSi10Mg alloy
powder 20–60 µm, and printed with a layer thickness of 0.03 mm with one Yb
(Ytterbium) fiber laser IR. The AlSi10Mg alloy has been chosen due to its popularity
in the AM industry and the literature abundance of thermal and physical properties
data necessary for AM process simulation. The artifact has been manufactured with
a Print Sharp 250 EP-M250 by Prima Additive and with process parameters listed in
Table 8.3. The process parameters have been determined by the manufacturer based
on several tests and studies performed during their activity. The result of the AM
process is represented in Figure 8.9.
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Fig. 8.8 Test artifact

Table 8.3 Process Parameters

Property Value

Laser Power 370 W
Platform Temperature 120 ◦C
Scan Speed 1300 mm/s
Scan Strategy 10 mm Stripes
N◦ of Contour 2
Spot (Laser) 0.11 mm
Gas Type N2
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Fig. 8.9 Result of the AM process

8.5 Finite Element Model and iCT

The finite element model created with AMTOP®, represented in Figure 8.10, in-
cludes different properties to describe the components of the simulation. For an AM
process simulation, the software groups the elements with the same characteristics
identifying the base plate, the component, the powder, and the supports. The base
plate is considered undeformable, but its temperature influences the thermal analysis.
The elements of the component present the thermal-mechanical properties of the
chosen material and are added layer by layer. The supports are defined with degraded
properties and with custom geometries, the elements can be removed after the simu-
lation to calculate the deformations of the component. The powder elements in this
simulation are introduced for numeric purposes and do not affect the simulation. The
selected geometry presents lattice structures with very small pillars, a high fidelity
representation of these structures implies a high number of elements which results in
an excessive computational time. However, the two volumes with bigger lattice cells
probably do not influence heavily the thermal-mechanical analysis, since the solidi-
fied material is scarce. On the other hand, the volume with smaller cells presents a
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Removable Elements

Powder Elements

Part Elements

Base Plate Elements

Fig. 8.10 AMTOP® Voxel Meshing

higher quantity of melted powder and its influence can not be neglected. A possible
solution to avoid the full representation of the lattice geometry could be the mod-
elization of the lattice volume with a full volume and equivalent thermal-mechanical
properties. The equivalent properties could be computed with the rule of mixtures
considering the volume ratio between lattice structures and powder. However, the
software does not implement this feature yet, for this reason, the volumes with bigger
cell size have been considered void, while the volume with bigger cell size has been
considered a solid volume with mechanical properties equal to the rest of the artifact.
With this approximation, the information on the deformations of the details of the
lattice structures is not available, but it allows for the global deformation of the
component in a few hours.

The actual component went through the removal of material during the base
plate separation process, quantified in 1.5 mm of thickness of the bottom surface.
A first simulation, SIM1 from hereinafter, has been performed considering a per-
fect separation of the artifact from the base plate and neglecting advanced thermal
parameters such as convection and radiation heat exchange. Then a second simu-
lation, SIM2, was prepared considering the additional heat exchange sources and
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including the removal of 1,5 mm of material. This operation has been achieved by
creating support structures with a height of 1,5 mm and with mechanical properties
and geometry equivalent to a solid volume. With this method, the mechanical and
thermal properties of the removed volume are preserved, but the software identifies
the corresponding elements as supports and removes them during the base plate
removal procedure. The process parameters considered for the simulation are the
same used for the actual part reported in Table 8.3. The convective heat transfer
coefficient is hc = 10/m2K [165], while the thermophysical temperature-dependent
properties of the AlSi10Mg alloy used for the simulation can be found in [166].

The deformations obtained with the FE simulations have been compared to the
experimental measurements of an iCT. During an iCT scan using an X-ray system,
multiple projections are taken systematically. The images are acquired from several
different viewing angles obtained with the rotation of the sample. It is possible
to obtain radiographic imaging due to different X-ray attenuation coefficients of
materials, and the X-ray linear attenuation coefficients are represented as different
iCT grey values. From these values, it is possible to obtain a virtual three-dimensional
volume of a sample via reconstruction algorithms. The obtained volume could be
used for different purposes: One of the main applications of iCT volume is defect
analysis, where all kinds of indications are analyzed looking for defects according
to the requirements. iCT volume is also used in the field of metrology validation
because it is the only non-destructive testing (NDT) technique that allows for having
the full geometries of an internal feature. In this research, the NSI X5000 TEC
Eurolab system was used for the metrological analysis of the designed artifact. The
device is a Microfocus system with a Flat Panel detector, specifically designed to
check components manufactured with light alloys or composite materials, for which
a high resolution is required. iCT Volume could also be used for failure analysis,
reverse engineering, and FEM simulation [167]. The scan was performed at 0.094
mm of resolution, 240 kV, and 430 µA. After the surface calculation, the reference
element and the analyzed surface/STL file were aligned through a best-fit registration.

8.6 Residual Deformations Comparison

The result of the iCT consists of a cloud of points where the geometry is reconstructed
by an algorithm. The iCT can be aligned to the 3D model with the nominal geometry
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Fig. 8.11 NG-iCT comparison, top view

(NG) for a direct comparison of the deviations. The strategy used for the models
alignment can affect the results and should be chosen carefully, in this case, the
minimum square error strategy has been used to align the models. The deviations
highlighted by the comparison between the NG and the iCT volume, summarized in
Table 8.4, are represented in Figures 8.11 to 8.13.
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Fig. 8.12 NG-iCT comparison, bottom view

Fig. 8.13 NG-iCT comparison, internal view
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Table 8.4 Results of iCT volume comparison with respect to the initial geometry and with
respect to SIM2 results.

Point NG-iCT [mm] NG-SIM2 [mm] iCT-SIM2 [mm]

1 0.53 0.34 -0.20
2 -0.28 -0.48 -0.20
3 -0.08 0.08 0.11
4 -0.03 -0.43 -0.40
5 0.16 -0.26 -0.41
6 0.14 0.37 0.23
7 -0.14 -0.29 -0.15
8 -0.01 0.34 0.34
9 0.06 0.34 0.27

10 -0.27 -0.64 -0.37
11 0.21 0.20 0.00
12 0.02 0.01 0.00
13 0.37 0.02 -0.35
14 0.06 -0.35 0.42
15 -0.51 -0.28 -0.23
16 -0.13 0.04 0.17
17 0.26 0.13 -0.12
18 0.49 0.89 0.40
19 -0.29 -0.57 -0.28
20 -0.03 -0.03 0.00
21 0.00 0.01 0.01
22 0.08 0.10 0.02
23 -0.05 0.05 0.10
24 -0.01 0.06 0.07
25 -0.10 -0.15 -0.25
26 -0.02 0.28 0.30
27 -0.04 0.21 0.24
28 0.06 0.03 -0.03
29 0.36 0.42 0.06
30 -0.03 0.08 0.11
31 0.27 0.13 -0.14
32 0.12 0.05 -0.07
33 0.31 0.27 -0.04
34 0.44 0.27 -0.17
35 0.60 0.36 -0.24
36 -0.30 -0.64 -0.44
37 0.21 0.14 -0.07
38 0.21 0.39 0.18
39 0.24 -0.01 -0.25
40 0.08 0.26 0.18
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Fig. 8.14 SIM1-iCT comparison

The first simulation performed with AMTOP® has been compared with the iCT
volume, the deviations are reported in Figure 8.14 and in Table 8.5. The comparison
revealed differences in the deformations with respect to the iCT up to 1.20 mm.
Moreover, the concavity of the bottom surface is opposite to the one observed in the
manufactured part. For this reason, only 17 reference points have been considered,
and the results of the first simulation have not been compared with the NG since the
deformation pattern was clearly different. These differences can be attributed to the
hypothesis of perfect separation from the base plate and the neglect of convective
heat exchange.

The second simulation considered convection heat exchange and the removal
of 1.5 mm of material during the separation from the base plate to improve the
correlation with the manufactured part. In this case, the concavity was the same
as observed with the iCT and the differences between the manufactured part and
the predicted results are comparable and below 0.44 mm as reported in Figure 8.15
and in Table 8.4. Moreover, Figures 8.11 and 8.16 present the comparison of the
iCT and SIM2 with the initial geometry, respectively. The comparison revealed
a common deformation pattern with similar deviations for the actual part and the
digital twin as reported in Table 8.4. However, some differences are present, and the
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Table 8.5 Results of iCT volume comparison with respect to SIM1

Point iCT-SIM1[mm]

1 -1.09
2 -0.39
3 0.56
4 -0.55
5 -0.45
6 0.16
7 -0.10
8 0.33
9 -0.21

10 -0.33
11 -0.08
12 0.30
13 -0.31
14 1.20
15 0.48
16 0.42
17 -0.45

hypothesis considered for the lattice structures reduced considerably the calculation
time, but the absence of the features determined some discrepancies in the results. In
general, the numerical model and the voxel discretization introduce approximations
that contribute to reducing the simulation accuracy; moreover, the comparison with
the best-fitting alignment of the volumes can introduce small differences in the
deviations.

The accuracy of the simulations can be quantified using two metrics, percent error
of peak displacement, and by calculating the correlation over a field of representative
points. The peak displacement evaluation would give an indication of how well the
model predicts the most severe distortion. However, the base plate removal caused
the loss of material, and for this reason, when comparing the iCT volume to the
NG, the bottom of the artifact is the area indicated as the most distorted, but the
discrepancies are not caused by the stress-induced deformations but by the absence
of material. The same situation is present in the lattice structure area. For this reason,
it is not possible to locate the actual peak distortion of the artifact. On the other hand,
correlation gives a more global indication of how accurate the model is. Correlation
is calculated between two sets of data A and B with Equation 8.6
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Fig. 8.15 SIM2-iCT comparison
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Fig. 8.16 SIM2-NG comparison
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Fig. 8.17 Comparison of 40 individual simulation-measurement points

Correlation(A, B)% =
∑(a−a)(b−b)√

∑(a−a)2 ∑(b−b)2
(8.6)

where a and b are the members of the sets A and B, respectively, while a and
b are the mean of A and B. The correlation between the two sets of data has been
computed with Equation 8.6, revealing a value of 71%. This value does not reach the
level of accuracy reported in other works. For example, Gouge et al. [162] reported
a minimum correlation of 90.5% for a more sophisticated model. Considering
the complexity of the studied geometry and the approximations introduced during
the simulation phase, the correlation obtained is encouraging and can be further
improved by increasing the number of reference points. The predicted and measured
displacements taken at the 40 locations on the artifact surface are reported in Figure
8.17. The trend line represents the exact correspondence between predicted and
measured displacements. The trend line plot indicates a good agreement between
the simulation and the iCT volume.
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8.7 Summary and Conclusions

In this chapter AM process simulation has been discussed and applied. An opti-
mal configuration addressing geometric constraints for AM production, featuring a
self-supporting structure to minimize post-production machining, was investigated.
AMTOP® thermo-mechanical simulations revealed residual stress-induced defor-
mations smaller than 0.82 mm on the final component, affirming the feasibility of
AM production for such high-performance beam structures. In addition, this chap-
ter presented an artifact geometry featuring lattice structures, freeform structures,
and cavities. The designed geometry was manufactured using AlSi10Mg powder.
The manufactured part underwent analysis with iCT. An FE model was employed
to simulate the manufacturing process, with simplifying hypotheses introduced to
enhance computational efficiency for industrial applications. These assumptions
included lattice structure homogenization and the neglect of emissivity effects. In the
initial simulation, convection heat exchange and the removal of 1.5 mm of material
from the bottom surface of the part to simulate the manufacturer’s cutting procedure
were not considered. However, a subsequent simulation incorporated convection and
material removal, demonstrating significant differences in the investigated points
and overall deformation compared to the first simulation. The second simulation ex-
hibited a correlation of 71%, indicating good agreement. The implementation of the
simulation methodology within the process engineering workflow offers numerous
advantages to manufacturers. These include reduced time to market and costs, en-
hanced geometrical and structural properties, accelerated learning processes, and the
establishment of a robust design methodology, facilitated by a deeper understanding
of technology-based physical phenomena through software tools.



Chapter 9

Summary and outlook

9.1 Contribution to knowledge

The major contributions are summarized below.

• Contribution 1: The derivation of a beam finite element with bending-torsion
coupling formulation for static and dynamic analysis of box-beam structures
with rectilinear or curvilinear stiffened panels or composite fibers.

Chapter 2 introduces a novel beam finite element that predicts both static and
dynamic behaviors of beam structures with bending-torsion coupling. The
derived model establishes a relationship between the bending and torsional
nodal degrees of freedom within a two-node beam element. Equilibrium
equations are derived by neglecting nonlinear terms, while stiffness and mass
matrices are obtained using Galerkin’s method. Shape functions are determined
based on Timoshenko’s hypothesis, assuming constant torsional moment along
the element.

• Contribution 2: The derivation of two models for the dynamic analysis of box-
beam structures with bending-torsion couplings in the presence of geometric
non-linearities.

Chapter 3 introduces two dynamic analysis models for beam structures in-
corporating bending-torsion coupling and geometric nonlinearities. The first
model adjusts the orientation of the beam finite element based on a known
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equilibrium deformation, addressing geometric effects. The second model
considers nonlinear terms in the stiffness matrix derivation by assuming small
perturbations from an equilibrium configuration under static load, with Hamil-
ton’s Principle used to derive the stiffness matrix. Experimental tests were
conducted to determine the extent of deflection necessary for noticeable non-
linear effects and to evaluate the accuracy of the models in nonlinear analysis
with bending-torsion coupling effects.

• Contribution 3: The experimental validation of an equivalent single layer for
dynamic analysis of beams with stiffened panels. The validation showed good
accuracy and extended the use of this model also for the modal analysis of
stiffened panels box-beam structures.

Chapter 4 examines the vibration response of box beams with bending-torsion
coupling for aero-structural applications through experimental and numer-
ical analyses. Validation of prior static results is provided, complemented
by dynamic analysis. Comparison of experimental and numerical results
includes natural frequencies, mode shapes, and modal assurance criterion
(MAC) matrices, with good accuracy in all cases. The study demonstrates
achieving desired dynamic coupling through oriented fibers or metallic stiffen-
ers, applicable in wing box design to prevent aeroelastic instability. Finally,
agreement with experimental tests and equivalent single-layer model results
underscores the methodology’s value in the early design stages of metal wing
boxes, significantly reducing structural complexity and computational costs
while maintaining satisfactory accuracy.

• Contribution 4: The experimental and numerical validation of the derived
finite element for the static and dynamic problems of composite beams, stiff-
ened and composite thin-walled box-beam, variable stiffness beam and, pre-
deformed beams.

In Chapter 5, the present model underwent validation for static scenarios by
simulating an aluminum beam with stiffened panels in a cantilever configura-
tion, subject to three different load configurations at its free end. The inclusion
of oriented stiffeners enabled the achievement of a notable bending-torsion
coupling effect, accurately represented in both static and modal analyses. Vali-
dation extended to dynamic scenarios via modal analysis in the cantilever con-
figuration. Results were compared with experimental and TETRA10 FE model
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data, confirming the accuracy of the finite element. Further testing involved
modal analysis of an NREL 5MW HAWT blade and a CAS graphite/epoxy
cantilever box beam with varied layups. Natural frequencies exhibited good
alignment with numerical and experimental results, affirming the compatibility
of the BTCE model with these structural classes. The coupled beam finite ele-
ment, incorporating oriented stiffeners or composite materials, demonstrates
versatility beyond box-section beams. It holds promise for nonlinear static and
dynamic analyses, as well as applications in aeroelasticity with fluid-structure
interactions and aerodynamic tailoring. Experimental tests were conducted
to verify the level of deflection necessary to observe appreciable nonlinear
effects and assess the accuracy of nonlinear analysis with the nonlinear BTCE
models. Results indicated that geometric non-linearities had minor effects
on the structure’s characteristic frequencies, however, nonlinear couplings
induced significant differences in mode shapes, accurately predicted by the
derived nonlinear BTCE models. These models hold potential for studying
the aeroelastic performance of wing structures and optimizing material ori-
entation for desired dynamic properties, even in the presence of geometric
non-linearities.

• Contribution 5: The development of an optimization procedure for the design
of box-beam structures with curvilinear stiffness in the presence of bending-
torsion performance constraints as well as AM constraints.

In Chapter 6 The derived finite element has been used for optimizing stiffener
paths in box-beam structures with curvilinear stiffened panels. Three distinct
load cases, including one reflecting manufacturing geometric constraints in
the AM process, were considered. The optimization aimed to maximize strain
energy under prescribed loads, while adhering to constraints on maximum
vertical deflection and minimum torsional angle, in other cases the goal was
to minimize bending-torsion effects and achieve maximum strain energy,
with zero torsional angle at the tip. BTCE demonstrated potential as both
an optimization and static analysis tool for beam structures with curvilinear
stiffeners. It also showcased the capability to tailor configurations to enhance
or diminish bending-torsion effects as desired. Furthermore, optimization was
performed for geometric constraints related to AM production, aiming for a
self-supporting structure to minimize post-production machining.



166 Summary and outlook

• Contribution 6: A procedure for divergence analysis of composite wing struc-
tures using the derived finite element and an aerodynamic analysis performed
with the Vortex Lattice Method. The results obtained have been validated with
experimental results.

The objective of Chapter 7 was to demonstrate the capabilities of the derived
finite element for static aeroelastic analysis. The methodology, comprising
structural analysis using a BTCE model and aerodynamic analysis based on
VLM, was validated against experimental and analytical data from existing
literature. The predicted divergence velocities closely matched experimental
results, although discrepancies were noted in tip deflection and rotation in one
of the cases studied. The methodology was applied to various curvilinear lami-
nations to assess their impact on static aeroelastic analysis outcomes and the
potential use of BTCE. The versatility of BTCE was evident, as it seamlessly
integrated into aerodynamic analysis and facilitated static aeroelastic analysis.
Furthermore, its incorporation with curvilinear lamination introduced design
variables capable of achieving specific aeroelastic performance objectives.
This methodology holds promise for further development through optimiza-
tion algorithms to tackle optimization challenges and can be extended to flutter
analysis for comprehensive aeroelastic assessment.

• Contribution 7: The validation of an AM process simulation algorithm with
experimental results obtained with an industrial computed tomography.

The aim of Chapter 8 was to validate the theory behind the software AM-
TOP®, an artifact geometry that included key features such as lattice structures,
freeform structures, and cavities was presented. The designed geometry has
been manufactured with AlSi10Mg powder and has been analyzed with an iCT.
An FE model has been implemented to simulate the process considering the
removal of 1.5 mm of material from the bottom surface of the part to replicate
the manufacturer’s cutting procedure. The second simulation revealed good
accordance with a correlation equal to 71%. Thanks to the contribution of the
software tool to the knowledge of the technology-based physical phenomenon,
the implementation of the simulation methodology in the process engineering
workflow can show several advantages to the manufacturer. These can be
revealed in the reduction of time to market and costs, improvement of geomet-
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rical and structural properties, acceleration of the learning process, and the
definition of a robust design methodology.

9.2 Outlook

The present work set the basis for a comprehensive aeroelastic tailoring design and
optimization tool. The linear model has been validated for many structures and
analyses, however further investigation could be done to improve the accuracy for
the torsional frequencies. The non-linear model can be enriched with experimental
validation of composite structures and can be extended to include higher order effects
and consider also large deformations.

The optimization procedure for curvilinear stiffeners can be extended to dy-
namic optimization, where the curvilinear path is determined under constraints on
characteristic frequencies. Moreover, the optimization can be coupled with the
divergence analysis algorithm to perform aeroelastic optimization of stiffeners or
fibers orientation. The effectiveness of the model for divergence analysis can be
further demonstrated with wind-tunnel tests on composite and stiffened structures.

The mass matrices derived for the linear and nonlinear beam finite element, allow
also for the analysis of flutter speed. The extension of the BTCE to a flutter anal-
ysis application alongside an experimental validation would complete the analysis
framework.

Additive manufacturing presented great opportunities for aeroelastic tailoring.
This thesis focused on the effect of stiffened orientation on aeroelastic performances,
however, the stiffeners design parameters are numerous and each one can be opti-
mized to achieve the desired effects. The capabilities of these technologies allows
also for non-conventional stiffeners shape and sections giving an additional design de-
gree of freedom which should be further explored. The simulation of the AM process
can be further optimized with an increased comprehension of physical phenomena
given by further experimental campaigns.



References

[1] Dominik Eisenhut, Nicolas Moebs, Evert Windels, Dominique Bergmann,
Ingmar Geiß, Ricardo Reis, and Andreas Strohmayer. Aircraft requirements
for sustainable regional aviation. Aerospace, 8(3), 2021.

[2] Airbus. Airbus global market forecast 2021 - 2040, 2021.

[3] Boeing. Commercial market outlook 2021-2040, 2021.

[4] E.M. Greitzer, P.A. Bonnefoy, D.K. Hall, R.J. Hansman, J.I. Hileman,
R.H. Liebeck Liebeck, J. Lovegren, P. Mody, J.A. Pertuze, S. Sato, Z.S.
Spakovszky, C.S. Tan, J.S. Hollman, J.E. Duda, N. Fitzgerald, J. Houghton,
J.L. Kerrebrock, G.F. Kiwada, D. Kordonowy, J.C. Parrish, E.A. Tylko, and
J. Wen. N+3 aircraft concept designs and trade studies, final report. NASA
Glenn Research Center, Cleveland, Ohio 44135, 2010.

[5] European Commission. Flightpath 2050: Europe’s vision for aviation, advi-
sory council for aeronautics research in europe. Brussels, Belgium, 2021.

[6] Grewe Volker, Arvind Gangoli Rao, Tomas Grönstedt, Carlos Xisto, Florian
Linke, Joris Melkert, Jan Middel, Barbara Ohlenforst, Simon Blakey, Simon
Christie, Sigrun Matthes, and Katrin Dahlmann. Evaluating the climate impact
of aviation emission scenarios towards the paris agreement including covid-19
effects. Nature Communications, 12, 06 2021.

[7] Yiyuan Ma and Ali Elham. Designing high aspect ratio wings: A review of
concepts and approaches. Progress in Aerospace Sciences, 145, 02 2024.

[8] Sergio Ricci, Luca Marchetti, Francesco Toffol, Jacopo Beretta, and Nicola
Paletta. Aeroelastic optimization of high aspect ratio wings for environmen-
tally friendly aircraft. 01 2022.

[9] Gaetan Kenway and Joaquim Martins. Multi-point high-fidelity aerostructural
optimization of a transport aircraft configuration. Journal of Aircraft, 51:144–
160, 01 2014.

[10] Joaquim Martins, Graeme Kennedy, and Gaetan Kenway. High aspect ratio
wing design: Optimal aerostructural tradeoffs for the next generation of
materials. 01 2014.



References 169

[11] Nils Beck, Tim Landa, Arne Seitz, Loek Boermans, Yaolong Liu, and Rolf
Radespiel. Drag reduction by laminar flow control. Energies, 11:252, 01
2018.

[12] Yiyuan Ma, Stanislav Karpuk, and Ali Elham. Conceptual design and com-
parative study of strut-braced wing and twin-fuselage aircraft configurations
with ultra-high aspect ratio wings. Aerospace Science and Technology, 121,
01 2022.

[13] M.K. Bradley, C.K. Dorney, and T. Allen. Subsonic ultra green aircraft
research: Phase ii – volume i – truss braced wing design exploratio. 2015.

[14] C. Hofacker. Aerospace america (2023).
https://aerospaceamerica.aiaa.org/departments/the-bridge-to-net-zero/.
Accessed: 2024-04-07.

[15] M.K. Bradley and C.K. Dorney. Subsonic ultra green aircraft research: Phase
i final report. 2011.

[16] C.K. Dorney, A.J. Sclafani, N.A. Harrison, A.D. Grash, and M.D. Beyar.
Subsonic ultra green aircraft research: Phase iii – mach 0.75 transonic truss-
braced wing design, boeing research and technology. 2020.

[17] G. Warwick. Nasa picks boeing’s transonic truss-based wing for
sustainable x-plane | aviation week network, aviation week network
(2023). https://aviationweek.com/air-transport/aircraft-propulsion/nasa-picks-
boeings-transonic-truss-based-wing-sustainable-x-plane. Accessed: 2024-04-
07.

[18] Pier Davide Ciampa, Prajwal Shivaprakasha, Francesco Torrigiani, Jan-Niclas
Walther, Thierry Lefebvre, Nathalie Bartoli, Huub Timmermans, Pierluigi
Vecchia, Luca Stingo, Darwin Rajpal, Imco van Gent, Gianfranco La Rocca,
Marco Fioriti, Giovanni Cerino, Reinhold Maierl, Dominique Charbonnier,
Aidan Jungo, Benedikt Aigner, Kirill Anisimov, and M. Voskuijl. Streamlining
cross-organizational aircraft development: Results from the agile project. 06
2019.

[19] Sergio Ricci, Nicola Paletta, Sebastien Defoort, Emmanuel Benard, Je Cooper,
and Barabinot Philippe. U-harward: a cs2 eu funded project aiming at the
design of ultra high aspect ratio wings aircraft. 01 2022.

[20] Giulio Romeo and Giacomo Frulla. HELIPLAT: design of high altitude
very-long endurance solar powered platform for telecommunication and earth
observation. In R. A. Harris, editor, Data Systems in Aerospace, volume 509
of ESA Special Publication, page 54.1, July 2002.

[21] John Gundlach, Frank Gern, Bernard Grossman, Rakesh Kapania, Andy Ko,
William Mason, Amir Nagshineh-Pour, Joseph Schetz, and Philippe-André
Tétrault. Conceptual design studies of a strut-braced wing transonic transport.
Journal of Aircraft - J AIRCRAFT, 37:976–983, 11 2000.



170 References

[22] Martin Sohst, J. Lobo do Vale, Frederico Afonso, and Afzal Suleman. Op-
timization and comparison of strut-braced and high aspect ratio wing air-
craft configurations including flutter analysis with geometric non-linearities.
Aerospace Science and Technology, 124:107531, 04 2022.

[23] Nicholas Meadows, Joseph Schetz, Rakesh Kapania, Manav Bhatia, and Guclu
Seber. Multidisciplinary design optimization of medium-range transonic truss-
braced wing transport aircraft. Journal of Aircraft, 49:1844–1856, 11 2012.

[24] Ohad Gur, Manav Bhatia, William Mason, Joseph Schetz, Rakesh Kapania,
and Taewoo Nam. Development of framework for truss-braced wing concep-
tual mdo. Structural and Multidisciplinary Optimization, 44:277–298, 08
2011.

[25] G. Gould. A future aircraft design, supercomputed, nasa (2023).
https://www.nasa.gov/image-article/future-aircraft-design-supercomputed.
Accessed: 2024-04-07.

[26] Timothy Chau and David Zingg. Fuel burn evaluation of a transonic strut-
braced-wing regional aircraft through multipoint aerodynamic optimisation.
Aeronautical Journal -New Series-, 127, 06 2022.

[27] Timothy Chau and David Zingg. Aerodynamic design optimization of a
transonic strut-braced-wing regional aircraft. Journal of Aircraft, 59:1–19, 08
2021.

[28] Frederico Afonso, José Vale, Éder Oliveira, Fernando Lau, and Afzal Suleman.
A review on non-linear aeroelasticity of high aspect-ratio wings. Progress in
Aerospace Sciences, 89:40–57, 2017.

[29] Dewey Hodges and E.H. Dowell. Nonlinear equations of motion for the elastic
bending and torsion of twisted nonuniform rotor blades. 01 1975.

[30] Peter Dunn and John Dugundji. Nonlinear stall flutter and divergence analysis
of cantilevered graphite/epoxy wings. AIAA Journal, 30:153–162, 01 1992.

[31] In Lee. Aeroelasticity research and development activities in korea. 05 2009.

[32] Todd Quackenbush, Jeffery Keller, Alexander Boschitsch, Glen Whitehouse,
and Robert Mckillip. Modeling tools for real time aeroservoelastic simulation
with nonlinear aerodynamics. 08 2009.

[33] David Lucia. The sensorcraft configurations: A non-linear aeroservoelastic
challenge for aviation. volume 3, 04 2005.

[34] Changchuan Xie and Chao Yang. Linearization method of nonlinear aeroelas-
tic stability for complete aircraft with high-aspect-ratio wings. Science China
Technological Sciences, 54:403–411, 02 2011.



References 171

[35] Giacomo Frulla. Aeroelastic behaviour of a solar-powered high-altitude long
endurance unmanned air vehicle (hale-uav) slender wing. Proceedings of The
Institution of Mechanical Engineers Part G-journal of Aerospace Engineering
- PROC INST MECH ENG G-J A E, 218:179–188, 06 2004.

[36] Michael Shirk, Terrence Hertz, and Terrence Weisshaar. Aeroelastic tailoring
- theory, practice, and promise. Journal of Aircraft, 23, 02 1986.

[37] Masaki Kameyama and Hisao Fukunaga. Optimum design of composite plate
wings for aeroelastic characteristics using lamination parameters. Computers
and Structures, 85:213–224, 02 2007.

[38] Terrence Weisshaar. Aeroelastic tailoring of forward swept composite wings.
Journal of Aircraft - J AIRCRAFT, 18:669–676, 08 1981.

[39] Z. Gürdal, B.F. Tatting, and K. Wu. Variable stiffness composite panels: Ef-
fects of stiffness variation on the in-plane and buckling response. Composites
Part A: Applied Science and Manufacturing, 39:911–922, 05 2008.

[40] Rakesh Kapania, Jing Li, and Hitesh Kapoor. Optimal design of unitized
panels with curvilinear stiffeners. 09 2005.

[41] S.U Benscoter and R.H. MacNeal. Equivalent plate theory for a straight
multicell wing. NACA TN, (2786), Hanover,MD, USA, September 1952.

[42] Navin Jaunky, Norman Knight, and Damodar Ambur. Formulation of an
improved smeared stiffener theory for buckling analysis of grid-stiffened
composite panels. Composites Part B: Engineering, 27:519–526, 12 1996.

[43] C.V. Jutte and B.K. Stanford. Aeroelastic tailoring of transport aircraftwings:
State-of-the-art and potential enabling technologies. NASA TM, (218252),
Hanover, MD, USA, 1 April 2014.

[44] Francesco Danzi, E. Cestino, Giacomo Frulla, and James Gibert. Numerical
and experimental validation of unitized box beam model. 09 2018.

[45] E. Cestino, Giacomo Frulla, and Pier Marzocca. A reduced order model
for the aeroelastic analysis of flexible wings. SAE International Journal of
Aerospace, 6:447–458, 07 2013.

[46] Davide Locatelli, Sameer Mulani, and Rakesh Kapania. Wing-box weight
optimization using curvilinear spars and ribs (sparibs). Journal of Aircraft,
48:1671–1684, 09 2011.

[47] Michael Shirk, Terrence Hertz, and Terrence Weisshaar. Aeroelastic tailoring
- theory, practice, and promise. Journal of Aircraft, 23, 02 1986.

[48] M.M. Munk. Propeller containing diagonally disposed fibrous material, U.S.
Patent 2, 484, 308, 1111, Oct. 1949.



172 References

[49] ME Waddoups. Composite wing for transonic improvements, composite wing
aeroelastic response study. AFFDL-TR-71-24, 1972.

[50] Jr Krone. Forward swept wing flight demonstrator. 08 1980.

[51] R Lynch and W Rogers. Aeroelastic tailoring of composite materials to
improve performance. In 17th Structures, Structural Dynamics, and Materials
Conference, page 1505, 1976.

[52] Liviu Librescu and Ohseop Song. On the static aeroelastic tailoring of compos-
ite aircraft swept wings modeled as thin-walled beam structures. Composites
Engineering, 2:497–512, 12 1992.

[53] Byron Blakey-Milner, Paul Gradl, Glen Snedden, Michael Brooks, Jean Pitot,
Elena Lopez, M. Leary, Filippo Berto, and Anton Du Plessis. Metal additive
manufacturing in aerospace: A review. Materials and Design, 209:110008,
07 2021.

[54] Dirk Herzog, Vanessa Seyda, Eric Wycisk, and Claus Emmelmann. Additive
manufacturing of metals. Acta Materialia, 117:371–392, 2016.

[55] Atin Angrish. A critical analysis of additive manufacturing technologies for
aerospace applications. pages 1–6, 03 2014.

[56] A. A. Shapiro, J. P. Borgonia, Q. N. Chen, R. P. Dillon, B. McEnerney,
R. Polit-Casillas, and L. Soloway. Additive manufacturing for aerospace flight
applications. Journal of Spacecraft and Rockets, 53(5):952–959, 2016.

[57] Jacob C. Snyder and Karen A. Thole. Effect of Additive Manufactur-
ing Process Parameters on Turbine Cooling. Journal of Turbomachinery,
142(5):051007, 04 2020.

[58] Fabio Kerstens, Angelo Cervone, and Paul Gradl. End to end process evalua-
tion for additively manufactured liquid rocket engine thrust chambers. Acta
Astronautica, 182:454–465, 2021.

[59] Malte Gebler, Anton J.M. Schoot Uiterkamp, and Cindy Visser. A global
sustainability perspective on 3d printing technologies. Energy Policy, 74:158–
167, 2014.

[60] B. Dutta and Francis H. (Sam) Froes. 24 - the additive manufacturing (am) of
titanium alloys. In Ma Qian and Francis H. (Sam) Froes, editors, Titanium
Powder Metallurgy, pages 447–468. Butterworth-Heinemann, Boston, 2015.

[61] A. Barz, T. Buer, and H.-D. Haasis. A study on the effects of additive
manufacturing on the structure of supply networks. IFAC-PapersOnLine,
49(2):72–77, 2016. 7th IFAC Conference on Management and Control of
Production and Logistics MCPL 2016.

[62] Lawrence Murr. Handbook of Materials Structures, Properties, Processing
and Performance, pages 969–984. 01 2015.



References 173

[63] Harry Bikas, Panagiotis Stavropoulos, and George Chryssolouris. Additive
manufacturing methods and modeling approaches: A critical review. The
International Journal of Advanced Manufacturing Technology, 83, 07 2015.

[64] Steven Hollowell and John Dugundji. Aeroelastic flutter and divergence of
stiffness coupled, graphite/epoxy cantilevered plates. Journal of Aircraft - J
AIRCRAFT, 21:69–76, 01 1984.

[65] Chang-Ho Hong and Inderjit Chopra. Aeroelastic stability analysis of a
composite rotor blade. Journal of The American Helicopter Society - J AMER
HELICOPTER SOC, 30, 04 1985.

[66] Erkan Dokumaci. An exact solution for coupled bending and torsion vibrations
of uniform beams having single cross-sectional symmetry. Journal of Sound
and Vibration, 119:443–449, 12 1987.

[67] J.R. Banerjee. Coupled bending–torsional dynamic stiffness matrix for beam
elements. International Journal for Numerical Methods in Engineering,
28:1283 – 1298, 06 1989.

[68] J.R. Banerjee and F. Williams. Free vibration of composite beams - an exact
method using symbolic computation. Journal of Aircraft, 32:636–642, 04
1995.

[69] Edward Smith and Inderjit Chopra. Formulation and evaluation of an ana-
lytical model for composite box-beams. Journal of the American Helicopter
Society, 36, 02 1990.

[70] Ramesh Chandra and Inderjit Chopra. Experimental and theoretical analysis
of composite i-beams with elastic couplings. Aiaa Journal - AIAA J, 29:2197–
2206, 04 1991.

[71] Ramesh Chandra and Inderjit Chopra. Experimental-theoretical investigation
of the vibration characteristics of rotating composite box beams. Journal of
Aircraft - J AIRCRAFT, 29:657–664, 07 1992.

[72] Seyed Hashemi and Marc Richard. A dynamic finite element (dfe) method
for free vibrations of bending-torsion coupled beams. Aerospace Science and
Technology - AEROSP SCI TECHNOL, 4:41–55, 01 2000.

[73] Sung Jung, Inderjit Chopra, and V. Nagaraj. Refined structural model for thin
and thick-walled composite rotor blades. Aiaa Journal - AIAA J, 40:105–116,
01 2002.

[74] Wenbin Yu, Dewey Hodges, Vitali Volovoi, and Carlos Cesnik. On
timoshenko-like modeling of initially curved and twisted composite beams.
International Journal of Solids and Structures, 39:5101–5121, 09 2002.

[75] Foudil Mohri, Abderrahman Ed-dinari, Noureddine Damil, and Michel Potier-
Ferry. A beam finite element for non-linear analyses of thin-walled elements.
Thin-Walled Structures, 46:981–990, 07 2008.



174 References

[76] Pavel Babuska, Richard Wiebe, and Michael R. Motley. A beam finite element
for analysis of composite beams with the inclusion of bend-twist coupling.
Composite Structures, 189:707–717, 2018.

[77] Ali Nayfeh and Perngjin Pai. Linear and Nonlinear Structural Mechanics. 01
2004.

[78] Dewey Hodges and G. Pierce. Introduction to Structural Dynamics and
Aeroelasticity. 01 2011.

[79] Mayuresh Patil and Dewey Hodges. On the importance of aerodynamic and
structural geometrical nonlinearities in aeroelastic behavior of high-aspect-
ratio wings. Journal of Fluids and Structures, 19:905–915, 08 2004.

[80] Mayuresh Patil, Dewey Hodges, and Carlos Cesnik. Characterizing the effects
of geometrical nonlinearities on aeroelastic behavior of high-aspect ratio
wings. pages 501–510, 01 1999.

[81] Dewey Hodges. Geometrically exact, intrinsic theory for dynamics of curved
and twisted anisotropic beams. AIAA Journal, 41:1131–1137, 06 2003.

[82] Dewey H. Hodges. A mixed variational formulation based on exact intrinsic
equations for dynamics of moving beams. International Journal of Solids and
Structures, 26(11):1253–1273, 1990.

[83] Ryan Kitson, Christopher Lupp, and Carlos Cesnik. Modeling and simulation
of flexible jet transport aircraft with high-aspect-ratio wings. 01 2016.

[84] Jessica Jones and Carlos Cesnik. Nonlinear aeroelastic analysis of the x-56
multi-utility aeroelastic demonstrator. 01 2016.

[85] Mark Drela. Integrated simulation model for preliminary aerodynamic, struc-
tural, and control-law design of aircraft. volume 3, 04 1999.

[86] Mayuresh Patil and Dewey Hodges. Flight dynamics of highly flexible flying
wings. Journal of Aircraft - J AIRCRAFT, 43, 11 2006.

[87] Markus Ritter, Jessica Jones, and Carlos Cesnik. Enhanced modal approach
for free-flight nonlinear aeroelastic simulation of very flexible aircraft. 01
2016.

[88] Renato Medeiros, Carlos Cesnik, and Etienne Coetzee. Computational aeroe-
lasticity using modal-based structural nonlinear analysis. AIAA Journal,
58:1–10, 10 2019.

[89] C. Bruni, E. Cestino, G. Frulla, and P. Marzocca. Nonlinear slender beam-wise
schemes for structural behaviour of flexible uas wings". SAE Technical Paper
2015-01-2462, 2015.



References 175

[90] D Paavani, Aswathy M., Arun C O, and Praveen I R. Analysis of geometrically
nonlinear euler-bernoulli beam using efgm. IOP Conference Series: Materials
Science and Engineering, 936:012050, 10 2020.

[91] T. Yang and Sunil Saigal. A simple element for static and dynamic response
of beams with material and geometric nonlinearities. International Journal
for Numerical Methods in Engineering, 20:851 – 867, 05 1984.

[92] K. Surana and Robert Sorem. Geometrically non-linear formulation for three
dimensional curved beam elements with large rotations. International Journal
for Numerical Methods in Engineering, 28:43 – 73, 01 1989.

[93] Jin Duan and Yun Li. A beam element for geometric nonlinear dynamical
analysis. Advanced Materials Research, 919-921:1273–1281, 04 2014.

[94] E. Cestino, Giacomo Frulla, M Spina, D Catelani, and M Linari. Numerical
simulation and experimental validation of slender wings flutter behaviour.
Proceedings of the Institution of Mechanical Engineers. Part G: Journal of
Aerospace Engineering, 233(16):5913–5928, 2019.

[95] Cesare Patuelli, Alessandro Polla, Enrico Cestino, and Giacomo Frulla. Ex-
perimental and numerical dynamic behavior of bending-torsion coupled box-
beam. J. Vib. Eng. Technol., 2022.

[96] Francesco Danzi, E. Cestino, Giacomo Frulla, and James Gibert. Equivalent
plate model of curvilinear stiffened panels. In PROCEEDINGS M2D2017,
Albufeira (Algarve)/Portugal, pages 553–568, 07 11-15 June 2017. ISBN:
978-989-98832-7-7.

[97] E. Cestino and Giacomo Frulla. Analysis of slender thin-walled anisotropic
box-beams including local stiffness and coupling effects. Aircraft Engineering
and Aerospace Technology: An International Journal, 86, 07 2014.

[98] Michael Nemeth. Nasa/tp-20- a treatise on equivalent-plate stiffnesses for
stiffened laminated-composite plates and plate-like lattices. Technical report,
02 2011.

[99] E. Cestino, Giacomo Frulla, Paolo Piana, and Renzo Duella. Numeri-
cal/experimental validation of thin-walled composite box beam optimal design.
Aerospace, 7:111, 07 2020.

[100] D. Ewins. Modal Testing, Theory, Practice and Application. Research Studies
Press LTD., Baldock; Hertfordshire; England, 2 edition, 2000.

[101] Erian Armanios and Ashraf Badir. Free vibration analysis of anisotropic
thin-walled closed-section beams. Aiaa Journal - AIAA J, 33:1905–1910, 10
1995.

[102] Jonkman JM, S. Butterfield, W. Musial, and G. Scott. Definition of a 5mw
reference wind turbine for offshore system development. National Renewable
Energy Laboratory (NREL), 01 2009.



176 References

[103] AMNA ALGOLFAT, Weizhuo Wang, and A. Albarbar. Dynamic responses
analysis of a 5mw nrel wind turbine blade under flap-wise and edge-wise
vibrations. Journal of Dynamics, Monitoring and Diagnostics, 09 2022.

[104] Min-Soo Jeong, Myung-Chan Cha, Sang-Woo Kim, In Lee, and Taeseong
Kim. Effects of torsional degree of freedom, geometric nonlinearity, and
gravity on aeroelastic behavior of large-scale horizontal-axis wind turbine
blades under varying wind speed conditions. Journal of Renewable and
Sustainable Energy, 6:1–19, 03 2014.

[105] Zhan-Wei Li, Binrong Wen, Xing-Jian Dong, Z. Peng, Yegao Qu, and
W. Zhang. Aerodynamic and aeroelastic characteristics of flexible wind
turbine blades under periodic unsteady inflows. Journal of Wind Engineering
and Industrial Aerodynamics, 2020:105057, 12 2019.

[106] E. Cestino, Giacomo Frulla, E. Perotto, and Pier Marzocca. Experimental
slender wing model design by the application of aeroelastic scaling laws.
Journal of Aerospace Engineering, 27:112–120, 01 2014.

[107] Raphael Haftka. Parametric constraints with application to optimization for
flutter using a continuous flutter constraint. AIAA Journal, 13, 05 1975.

[108] Joaquim Martins, Juan Alonso, and James Reuther. High-fidelity aero-
structural design optimization of a supersonic business jet. 12 2002.

[109] W. Stroud, T. Krishnamurthy, Brian Mason, Steven Smith, and Ahmad Naser.
Aiaa-2002-1464 probabilistic design of a plate-like wing to meet flutter and
strength requirements. 07 2002.

[110] Kurt Maute and Matthew Allen. Conceptual design of aeroelastic structures
by topology optimization. Structural and Multidisciplinary Optimization,
27:27–42, 01 2004.

[111] K. Chauncey Wu, Zafer Gurdal, and James H. Starnes. Structural response of
compression-loaded, tow-placed, variable stiffness panels. 04 2002.

[112] Dan Wang and Mostafa Abdalla. Global and local buckling analysis of grid-
stiffened composite panels. Composite Structures, 119:767–776, 01 2015.

[113] Dan Wang and Mostafa Abdalla. Buckling optimization of steering stiffeners
for grid-stiffened composite structures. 07 2015.

[114] V. Sherrer, T. Hertz, and M. Shirk. Wind tunnel demonstration of aeroelastic
tailoring applied to forward swept wings. Journal of Aircraft - J AIRCRAFT,
18:976–983, 11 1981.

[115] Shijun Guo. Aeroelastic optimization of an aerobatic aircraft wing structure.
Aerospace Science and Technology, 11:396–404, 06 2007.



References 177

[116] Chao Li, Michael Gouge, Erik Denlinger, Jeff Irwin, and Pan Michaleris.
Estimation of part-to-powder heat losses as surface convection in laser powder
bed fusion. Additive Manufacturing, 26, 02 2019.

[117] Renato Medeiros, Carlos Cesnik, and Etienne Coetzee. Computational aeroe-
lasticity using modal-based structural nonlinear analysis. AIAA Journal,
58:1–10, 10 2020.

[118] Bret Stanford, Carol Wieseman, and Christine Jutte. Aeroelastic tailoring of
transport wings including transonic flutter constraints. 01 2015.

[119] Chris Pettit and Ramana Grandhi. Optimization of a wing structure for
gust response and aileron effectiveness. Journal of Aircraft - J AIRCRAFT,
40:1185–1191, 11 2003.

[120] Peter Dunning, Bret Stanford, H Alicia Kim, and Christine Jutte. Aeroelastic
tailoring of a plate wing with functionally graded materials. Journal of Fluids
and Structures, 51, 11 2014.

[121] Liviu Librescu and Karam Maalawi. Material grading for improved aeroe-
lastic stability in composite wings. Journal of Mechanics of Materials and
Structures, 2:1381–1394, 09 2007.

[122] M.W. Tosh and Donald Kelly. On the design, manufacture and testing of
trajectorial fibre steering for carbon fibre composite laminates. Composites
Part A: Applied Science and Manufacturing, 31:1047–1060, 10 2000.

[123] Lars Bernhammer, Roeland De Breuker, and Moti Karpel. Geometrically
nonlinear structural modal analysis using fictitious masses. IFASD 2013 -
International Forum on Aeroelasticity and Structural Dynamics, 55, 01 2013.

[124] Etay Kantor, Daniella Raveh, and Rauno Cavallaro. Nonlinear structural,
nonlinear aerodynamic model for static aeroelastic problems. AIAA Journal,
57:1–13, 02 2019.

[125] Ariel Drachinsky and Daniella Raveh. Modal rotations: A modal-based
method for large structural deformations of slender bodies. AIAA Journal,
58:1–15, 05 2020.

[126] Terrence Weisshaar and Brian Foist. Vibration tailoring of advanced composite
lifting surfaces. Journal of Aircraft, 22, 03 1985.

[127] Matthew Kramer, Zhanke Liu, and Yin Lu Young. Free vibration of
cantilevered composite plates in air and in water. Composite Structures,
95:254–263, 01 2013.

[128] R.L. Bisplinghoff, H. Ashley, and R.L. Halfman. Aeroelasticity. Dover Books
on Aeronautical Engineering. Dover Publications, 2013.



178 References

[129] Steven J. Hollowell. Aeroelastic flutter and divergence of graphite/epoxy
cantilevered plates with bending-torsion stiffness coupling. Phd thesis, Mas-
sachusetts Institute of Technology. Department of Aeronautics and Astronau-
tics, January 1981.

[130] Nagesha BK, Dhinakaran Veeman, Varsha Mahesh, K.P. Kumar, Damodar
Chalawadi, and T. Sathish. Review on characterization and impacts of the
lattice structure in additive manufacturing. Materials Today: Proceedings, 21,
08 2019.

[131] Dieter Radaj. Heat effects of welding. 01 1992.

[132] G. Servetti and Xiang Zhang. Predicting fatigue crack growth rate in a welded
butt joint: The role of effective r ratio in accounting for residual stress effect.
Engineering Fracture Mechanics - ENG FRACTURE MECH, 76:1589–1602,
07 2009.

[133] William Frazier. Metal additive manufacturing: A review. Journal of Materials
Engineering and Performance, 23, 06 2014.

[134] Z. Duriagina, I. Lemishka, A. Trostianchyn, Volodymyr Kulyk, s Shvachko,
Tetiana Tepla, E. Pleshakov, and Taras Kovbasyuk. The effect of morphology
and particle-size distribution of vt20 titanium alloy powders on the mechanical
properties of deposited coatings. Powder Metallurgy and Metal Ceramics, 57,
04 2019.

[135] Ali Gökhan Demir and Barbara Previtali. Investigation of remelting and
preheating in slm of 18ni300 maraging steel as corrective and preventive
measures for porosity reduction. The International Journal of Advanced
Manufacturing Technology, 93:2697–2709, 11 2017.

[136] Paras Shah, Radu Racasan, and Paul Bills. Comparison of different addi-
tive manufacturing methods using computed tomography. Case Studies in
Nondestructive Testing and Evaluation, 6, 05 2016.

[137] Hao-Jie Jiang and Hong-Liang Dai. Effect of laser processing on three dimen-
sional thermodynamic analysis for hsla rectangular steel plates. International
Journal of Heat and Mass Transfer, 82:98–108, 03 2015.

[138] Aniruddha Gaikwad, Richard Williams, Harry Winton, Benjamin Bevans,
Ziyad Smoqi, Prahalada Rao, and Paul Hooper. Multi phenomena melt pool
sensor data fusion for enhanced process monitoring of laser powder bed fusion
additive manufacturing. Materials & Design, 221:110919, 07 2022.

[139] J. P. Oliveira, A.D. LaLonde, and Ji Ma. Processing parameters in laser powder
bed fusion metal additive manufacturing. Materials & Design, 193:108762,
04 2020.

[140] Gunther Mohr, Simon Altenburg, and Kai Hilgenberg. Effects of inter layer
time and build height on resulting properties of 316l stainless steel processed
by laser powder bed fusion. Additive Manufacturing, 32:101080, 03 2020.



References 179

[141] Xiaoqing Wang, Tahmina Keya, and Kevin Chou. Build height effect on the in-
conel 718 parts fabricated by selective laser melting. Procedia Manufacturing,
5:1006–1017, 11 2016.

[142] Mangesh Pantawane, Yee-Hsien Ho, Sameehan Joshi, and Narendra Dahotre.
Computational assessment of thermokinetics and associated microstructural
evolution in laser powder bed fusion manufacturing of ti6al4v alloy. Scientific
Reports, 10, 05 2020.

[143] I.A. Roberts, Chang Wang, R. Esterlein, M. Stanford, and Diane Mynors.
A three-dimensional finite element analysis of the temperature field during
laser melting of metal powders in additive layer manufacturing. International
Journal of Machine Tools and Manufacture, 49:916–923, 10 2009.

[144] Kenneth Cooper, Phillip Steele, Bo Cheng, and Kevin Chou. Contact-free sup-
port structures for part overhangs in powder-bed metal additive manufacturing.
Inventions, 3:2, 12 2017.

[145] Claire Bruna-Rosso and Ali Gökhan Demir. Selective laser melting finite
element modeling: Validation with high-speed imaging and lack of fusion
defects prediction. Materials & Design, 156, 06 2018.

[146] Y. Huang, Lijun Yang, Xiaoze Du, and Y.P. Yang. Finite element analysis of
thermal behavior of metal powder during selective laser melting. International
Journal of Thermal Sciences, 104:146–157, 06 2016.

[147] Zhibo Luo and Yaoyao Zhao. Efficient thermal finite element modeling of
selective laser melting of inconel 718. Computational Mechanics, 65:1–25,
03 2020.

[148] Ruwei Geng, Jun Du, Zhengying Wei, Siyuan Xu, and Ninshu Ma. Modelling
and experimental observation of the deposition geometry and microstructure
evolution of aluminum alloy fabricated by wire-arc additive manufacturing.
Journal of Manufacturing Processes, 64:369–378, 04 2021.

[149] Alberto Cattenone, Simone Morganti, Gianluca Alaimo, and Ferdinando Au-
ricchio. Finite element analysis of additive manufacturing based on fused
deposition modeling (fdm): distortion prediction and comparison with exper-
imental data. Journal of Manufacturing Science and Engineering, 141, 10
2018.

[150] Xu Song, Stefanie Feih, Wei Zhai, Chen-Nan Sun, Feng Li, Raj Maiti, J. Wei,
Yangzhan Yang, V. Oancea, León Romano Brandt, and Alexander Korsunsky.
Advances in additive manufacturing process simulation: Residual stresses and
distortion predictions in complex metallic components. Materials & Design,
193:108779, 05 2020.

[151] Laurent van Belle, Guillaume Vansteenkiste, and Jean Boyer. Comparisons of
numerical modelling of the selective laser melting. Key Engineering Materials,
504-506:1067–1072, 02 2012.



180 References

[152] Steven Price, Bo Cheng, James Lydon, Kenneth Cooper, and Kevin Chou. On
process temperature in powder-bed electron beam additive manufacturing:
Process parameter effects. Journal of Manufacturing Science and Engineering,
136:061019, 12 2014.

[153] Massimo Carraturo, John Jomo, Stefan Kollmannsberger, Alessandro Reali,
Ferdinando Auricchio, and Ernst Rank. Modeling and experimental validation
of an immersed thermo-mechanical part-scale analysis for laser powder bed
fusion processes. Additive Manufacturing, 36:101498, 08 2020.

[154] N.E. Hodge, Robert Ferencz, and R.M. Vignes. Experimental comparison of
residual stresses for a thermomechanical model for the simulation of selective
laser melting. Additive Manufacturing, 12, 05 2016.

[155] Amanda Wu, Don Brown, Mukul Kumar, Gilbert Gallegos, and Wayne King.
An experimental investigation into additive manufacturing-induced residual
stresses in 316l stainless steel. Metallurgical and Materials Transactions A,
45, 12 2014.

[156] Michael Zaeh and Gregor Branner. Investigations on residual stresses and
deformations in selective laser melting. Production Engineering, 4:35–45, 02
2009.

[157] Loucas Papadakis, Andreas Loizou, Jeroen Risse, and Johannes Schrage. Nu-
merical computation of component shape distortion manufactured by selective
laser melting. Procedia CIRP, 18:90–95, 12 2014.

[158] P. Michaleris, L. Zhang, S. Bhide, and P. Marugabandhu. Evaluation of
2d, 3d and applied plastic strain methods for predicting buckling welding
distortion and residual stress. Science and Technology of Welding & Joining,
11:707–716, 11 2006.

[159] Matteo Bugatti and Quirico Semeraro. Limitations of the inherent strain
method in simulating powder bed fusion processes. Additive Manufacturing,
23, 06 2018.

[160] Chao Li, Chenhao Fu, Y.B. Guo, and Fengzhou Fang. A multiscale model-
ing approach for fast prediction of part distortion in selective laser melting.
Journal of Materials Processing Technology, 229:703–712, 10 2015.

[161] Chao Li, Jingfu Liu, X. Fang, and Y.B. Guo. Efficient predictive model
of part distortion and residual stress in selective laser melting. Additive
Manufacturing, 17:157–168, 09 2017.

[162] Michael Gouge, Erik Denlinger, Jeff Irwin, Chao Li, and Pan Michaleris.
Experimental validation of thermo-mechanical part-scale modeling for laser
powder bed fusion processes. Additive Manufacturing, 29, 06 2019.

[163] Nils Keller, Fabian Neugebauer, H Xu, and Vasily Ploshikhin. Thermo-
mechanical simulation of additive layer manufacturing of titanium aerospace
structures. 09 2013.



References 181

[164] Fabian Neugebauer, Nils Keller, Hongxiao Xu, Christian Kober, Vasily
Ploshikhin, et al. Simulation of selective laser melting using process specific
layer based meshing. In Proc. Fraunhofer Direct Digital Manufacturing
Conf.(DDMC 2014), Axel Demmer, Aachen, Germany, pages 297–302, 2014.

[165] Liwei Chen, Hui Li, Sheng Liu, Shengnan Shen, Tao Zhang, Yicang Huang,
Zhang Guoqing, Yunfan Zhang, Bo He, and Chongkun Yang. Simulation of
surface deformation control during selective laser melting of alsi10mg powder
using an external magnetic field. AIP Advances, 9:045012, 04 2019.

[166] Xiaochuan Zhang, Jin-wu Kang, Yiming Rong, Pengyue Wu, and Tao Feng.
Effect of scanning routes on the stress and deformation of overhang structures
fabricated by slm. Materials, 12:47, 12 2018.

[167] F. Esposito, Andrea Gatto, Elena Bassoli, and Lucia Phd. A study on the use
of xct and fea to predict the elastic behavior of additively manufactured parts
of cylindrical geometry. Journal of Nondestructive Evaluation, 37, 09 2018.


	Contents
	List of Figures
	List of Tables
	1 Aeroelastic Design and Production
	1.1 Introduction and Significance
	1.2 Aeroelastic Tailoring: A Short Overview
	1.3 Metal Additive Manufacturing in Aerospace
	1.4 Objective of the work
	1.5 Structure of the thesis
	1.6 Contribution of the thesis

	2 Beam Finite Element with Bending-Torsion Coupling Derivation
	2.1 Overview on Beam Structures Models with Bending-Torsion Coupling
	2.2 Basic assumption on the beam model
	2.3 Derivation of the equation of motion
	2.3.1 Variation of the potential energy
	2.3.2 Equations of motion

	2.4 Finite Element Formulation
	2.4.1 Galerkin's method
	2.4.2 Shape functions
	2.4.3 Stiffness and mass matrices


	3 Introduction of Geometric Non-Linear Effects in the BTCE Formulation
	3.1 Introduction and Motivation
	3.2 Models Derivation
	3.2.1 Geometrical Effect (BTCE-GE)
	3.2.2 Introduction of Stiffness Effect (BTCE-NL)


	4 Equivalent Single Layer for Stiffened Panels
	4.1 Equivalent Single Layer Model
	4.2 ESL Dynamic Validation
	4.2.1 Box-Beam Stiffened Structure
	4.2.2 Box-Beam Composite Structure
	4.2.3 Experimental Procedure
	4.2.4 Box-Beam Stiffened Structure Results
	4.2.5 Box-Beam Composite Structure Results

	4.3 Summary and Conclusions

	5 BTCE Validation
	5.1 Circumferentially Asymmetric Stiffness Configuration
	5.2 Box-Beam Stiffened Structure
	5.2.1 Static Analysis
	5.2.2 Modal Analysis

	5.3 Composite Box-beam Structure
	5.3.1 Modal Analysis

	5.4 Non-uniform stiffness wind turbine blade
	5.4.1 Modal Analysis

	5.5 Isotropic Beam with Equilibrium Deformation
	5.5.1 Static Analysis Results
	5.5.2 Experimental Modal Analysis Results

	5.6 Box-Beam Composite Structure with Equilibrium Deformation
	5.6.1 Numerical Modal Analysis Results

	5.7 Summary and Conclusions

	6 Optimization of Curvilinear Stiffener Path
	6.1 Introduction and Motivation
	6.2 Optimization Problem
	6.3 Optimization Results
	6.4 Summary and Conclusions

	7 BTCE Divergence Analysis of Structures with Bending-Torsion Coupling
	7.1 Introduction and Motivation
	7.2 Divergence Analysis Model
	7.3 Aeroelastic Divergence of Coupled Graphite/Epoxy Cantilever Plates
	7.3.1 Divergence Analysis Result
	7.3.2 Deformation Results

	7.4 Effect of Curvilinear Lamination
	7.5 Summary and Conclusions

	8 Laser Powder Bed Fusion Process Monitoring and Simulation
	8.1 Additive Manufacturing Simulation Literature Overview
	8.2 Thermal-Mechanical Model
	8.3 Application to Stiffened Panels
	8.3.1 Stiffened Panel Simulation results

	8.4 Test Artifact
	8.5 Finite Element Model and iCT
	8.6 Residual Deformations Comparison
	8.7 Summary and Conclusions

	9 Summary and outlook
	9.1 Contribution to knowledge
	9.2 Outlook

	References

