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Opinion Dynamics With Set-Based Confidence:
Convergence Criteria and Periodic Solutions

Iryna Zabarianska and Anton V. Proskurnikov , Senior Member, IEEE

Abstract—This letter introduces a new multidimensional
extension of the Hegselmann-Krause (HK) opinion dynam-
ics model, where opinion proximity is not determined by a
norm or metric. Instead, each agent trusts opinions within
the Minkowski sum ξ + O, where ξ is the agent’s current
opinion and O is the confidence set defining acceptable
deviations. During each iteration, agents update their opin-
ions by simultaneously averaging the trusted opinions.
Unlike traditional HK systems, where O is a ball in some
norm, our model allows the confidence set to be non-
convex and even unbounded. The new model, referred to
as SCOD (Set-based Confidence Opinion Dynamics), can
exhibit properties absent in the conventional HK model.
Some solutions may converge to non-equilibrium points in
the state space, while others oscillate periodically. These
“pathologies” disappear if the set O is symmetric and
contains zero in its interior: similar to the usual HK model,
the SCOD then converge in a finite number of iterations to
one of the equilibrium points. The latter property is also
preserved if one agent is “stubborn” and resists changing
their opinion, yet still influences the others; however, two
stubborn agents can lead to oscillations.

Index Terms—Agents-based systems, network analysis
and control, emerging control applications.

I. INTRODUCTION

THE HEGSELMANN-KRAUSE (HK) model [1] can be
viewed as a deterministic averaging consensus algorithm

with an opinion-dependent interaction graph, illustrating the
principle of homophily in social interactions: agents trust like-
minded individuals and readily assimilate their opinions, while
approaching dissimilar opinions with discretion. For historical
discussions and an overview of the HK model’s development
over the past 20 years, refer to surveys [2], [3], [4].
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The original model from [1] addresses scalar opinions,
but many opinions are better represented as vectors, cap-
turing individuals’ positions on multiple topics, like belief
systems [5], [6] or experts’ assessments of multifaceted
problems, such as probability distributions [7] or resource
allocation between multiple entities [8]. This led to the
development of multidimensional HK models [9], where
opinion formation involves averaging opinions within a
multidimensional ball centered on the agent’s opinion, ignor-
ing those outside. The key consideration is the norm used
to measure the proximity of opinions, which is usually
�2, �1 (Manhattan) [10] or �∞ [11]. The HK system with
the Euclidean norm allows for convenient Lyapunov func-
tions [9], [12] and a mechanical kinetic energy analogue
employed in many convergence analyses [13], [14], [15].

At the same time, there is no substantial experimental
support for using the Euclidean or any specific norm to assess
opinion proximity within the cognitive mechanisms under-
lying social homophily. Moreover, as the dimension of the
opinion space grows, the “nearest-neighbor” rules in opinion
assimilation are undermined by the phenomenon of distance
concentration, studied in data science [16], [17], [18], where
distances between all pairs of points in high-dimensional
random data tend to become equal. Using the �p distance,
higher values of p exacerbate this phenomenon. Even in 2, 3,
and 4 dimensions, �1 norm outperforms the Euclidean norm
in evaluating data similarity, but is surpassed by �p distances
with p < 1 [17].

Objectives: The goal of this letter is to explore how
much the properties of bounded confidence opinion dynamics
depend on the distance-based homophily mechanism. To this
end, introduce a generalized model, termed SCOD (Set-based
Confidence Opinion Dynamics), where the confidence ball is
replaced by a set of admissible opinion discrepancies, O. An
agent with opinion ξ trusts opinions within the Minkowski sum
ξ + O, ignoring those outside; the averaging opinion update
mechanism remains the same as in the HK model.

Contributions: We explore the properties of the SCOD
system by identifying its similarities and differences with the
standard HK model and examining the role of the set O:

(i) The SCOD model inherits the HK model’s convergence
properties when O is symmetric and contains zero in its
interior: the group splits into clusters with equal opinions,
and the dynamics terminate after a finite number of stages;
(ii) Under the same conditions, opinions remain convergent
even with one stubborn agent who never changes their opinion
but influences others. However, several stubborn agents can

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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give rise to periodic oscillations unless their opinions coincide.
(iii) If these conditions on O are violated, the SCOD model
can exhibit behaviors untypical for the HK model, e.g., some
solutions oscillate or converge to non-equilibrium points.

Structure of the text: The SCOD model is introduced in
Section II, showing that even a small-size SCOD system
with a general set O can behave very differently from the
conventional HK model. In Section III, we formulate our main
result, establishing the convergence of the SCOD in the case
of symmetric O. The proof of this main theorem is given in
Section IV. Section V concludes this letter.

II. THE MODEL DEFINITION AND EXAMPLES

The SCOD model introduced below naturally extends the
multidimensional HK model introduced in [9].

1) Opinions: Denote the set of agents by V and their number
by1 n = |V|. At period t = 0, 1, . . . , agent i ∈ V holds an
opinion vector ξ i(t) ∈ R

d, whose element ξ i
k stands for the

agent’s position on topic k ∈ {1, . . . , d}. The system’s state is
naturally written as the n × d matrix [4], [5], [7]

�(t)
�= (

ξ i
k(t)

)i∈V
k=1,...,d.

2) Confidence Graph: Each agent forms their opinions based
on the “similar” opinions of their peers, with “similarity” rela-
tions defined by the confidence set O ⊆ R

d and conveniently
characterized by a confidence graph G(�) = (V, E(�)). In
this graph, the nodes represent the agents, and an arc i → j
exists (agent i trusts agent j’s opinion) if and only if ξ j − ξ i ∈
O. Node i ∈ V has the set of (out-)neighbors

Ni(�)
�= {

j ∈ V : ξ j ∈ ξ i + O}
. (1)

We adopt the following assumption, entailing that i ∈
Ni(�)∀i ∈ V (i.e., each node has a self-loop).

Assumption 1 (Self-Confidence): 0 ∈ O.
3) The SCOD (Opinion Update Rule): The mechanism of

opinion evolution is same as in the HK Model. The opinion
of agent i is formed by averaging the trusted opinions,

ξ i(t + 1) = 1

|Ni(�(t))|
∑

j∈Ni(�(t))

ξ j(t), i ∈ V . (2)

4) Extension: Stubborn Agents: The SCOD model can
be generalized to include stubborn agents whose opinions
always remain unchanged. The SCOD with a set of stubborn
individuals Vs ⊂ V and set of ordinary agents V \ Vs is the
system (2), where Ni for ordinary agents i ∈ V \Vs is defined
by (1), whereas Ni(�) ≡ {i} ∀i ∈ Vs.

A. The SCOD vs. Previously Known Models
In the standard HK model the opinions are scalar (d = 1),

and O = (−R, R) is an interval.2 Later asymmetric intervals
O = (−�, u) have been studied [20]. Multidimensional HK
models are special cases of the SCOD, where O is a ball cen-
tered at 0 with respect to some norm or metrics [9], [10], [11].
Usually, O is the �p-ball (Fig. 1(a))

O = Op,R
�=

{
ξ ∈ R

d : |ξ1|p + . . . + |ξd|p ≤ Rp
}
.

1Hereinafter, the cardinality of a set N is denoted by |N|.
2In some works [19], closed intervals [−R, R] have also been considered.

Fig. 1. Examples of confidence sets.

Fig. 2. A union of disconnected cliques.

Some models considered in the literature deal with
unbounded confidence sets, e.g., the averaged-based HK
model from [11] is a special case of (2) with O = {ξ ∈
R

d : |ξ1 + . . . + ξd| ≤ R} being a “stripe” between two
hyperplanes.

Another interesting example is inspired by a more sophis-
ticated dynamical model from [21]. One may suppose that
an agent with opinion vector ξ can be influenced by another
individual with opinion ξ ′ if their positions ξk, ξ ′

k on
some topic k ∈ {1, . . . , d} are close: O = {ξ : |ξl| ≤
εl for some k = 1, . . . , d}. Fig. 1(b) demonstrates this set for
the special case of d = 2 and ε1 = ε2 = 0.1.

B. Gallery of Untypical Behaviors
Before analyzing the general behavior of the SCOD system,

we consider small-scale examples showing that with a general
confidence set O, it can behave very differently from standard
HK models, where O = {ξ : ‖ξ‖ ≤ R} is a ball. Namely, in the
HK model (a) all solutions converge to equilibrium points in
finite time, and (b) the agents split into clusters: those within a
cluster reach consensus, while those in different clusters do not
trust each other [22]. None of these properties are generally
valid for the SCOD model.

1) Non-Clustered Equilibria: The SCOD model can have
equilibria, which are absent in the HK model.

Definition 1: Opinion matrix (the system state) � is clus-
tered if for all i, j ∈ V either ξ i = ξ j or ξ j − ξ i ∈ O.

A clustered matrix � is an equilibrium of the SCOD (2),
and the graph G(�) is a union of disjoint complete graphs,
or cliques (Fig. 2). Unlike the HK model with norm-based
confidence, SCOD systems admit non-clustered equilibria.

Example 1: Choosing O as an equilateral triangle centered
at the origin (Fig. 3(a)) and choosing the opinions of n = 4
agents as shown in Fig. 3(b), one gets an equilibrium of
the SCOD that is not clustered as the strongly connected
components of G(�) are not disconnected (Fig. 3(c)).

2) Periodic Solutions: We next show that small-size SCOD
systems can exhibit periodic solutions.

Example 2: Consider n = 3 agents and the confidence set

O = (−7, 7) \ M, M = {±1,±3,±5,−4,−2, 6} (3)
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Fig. 3. Non-clustered equilibrium of the SCOD.

Fig. 4. Example 2. ξ1 oscillates with period 3.

Fig. 5. Example 3. (a) the confidence set; (b) opinions.

Then, the system (2) has a periodic solution with ξ2 ≡ 0,
ξ3 ≡ 7 (their sets of neighbors N2 ≡ {2}, N3 ≡ {3} are
constant) and ξ1(t), N1(t) switching with period 3 (Fig. 4):

6 −−−−−→
N1={1,2}

3 −−−−−→
N1={1,3}

5 −−−−−→
N1={1,3}

6. (4)

Remark 1: Notably, periodic solutions do not exist in the
case where O is an interval, containing 0 [4], [20], [23]; in this
case the dynamics terminate in time polynomially depending
on n. Recent works [24], [25], focused on achieving of
practical consensus under homophily and heterophily effects,
also prove convergence in presence of a “deadzone” around
0, in which case O = (−�,−ε) ∪ {0} ∪ (ε, u).

Our next example demonstrates that, when dealing with
multidimensional opinions, periodic solutions are possible
even with a confidence set being star-shaped at 0.

Definition 2: Set O is star-shaped at point ξ∗ if [ξ∗, x]
�=

{aξ∗ + (1−a)x : a ∈ [0, 1]} ⊆ O for any x ∈ O. For instance,
a convex set is star-shaped at any of its points.

If O is star-shaped at 0, then the following natural property
holds: If an agent with opinion ξ trusts another opinion ξ ′,
they trust all “intermediate” opinions from the interval [ξ, ξ ′].

Example 3: Consider a confidence set O ⊂ R
2 which is

a union of rays {ξ : ξ1 > 0, ξ2 = 0}, {ξ : ξ2 = ξ1/5 <

0}, {ξ : ξ2 = −ξ1/5 > 0} and the unit circle (Fig. 5(a)).
Then, (2) has a periodic solution (see Fig. 5(b)) with ξ2 ≡
(−3, 1), ξ3 ≡ (−3,−1), ξ4 ≡ (4, 0) and ξ1(t), N1(t)
switching as follows:

ξ1 = (0, 0) −−−−−→
N1={1,4}

(2, 0) −−−−−−−−→
N1={1,2,3,4}

(0, 0). (5)

Remark 2: In the latter example, unlike in Example 2, O is
closed, but the periodic solution remains unchanged replacing
O by its small open neighborhood.

Revisiting Examples 1-3, an important feature is noted: the
confidence set is asymmetric with respect to 0. This is not
coincidental: as discussed in the next section, the symmetry
(O = −O) excludes the possibility of diverging solutions and

Fig. 6. Example 4: set O.

Fig. 7. Example 5: (a) confidence set; (b) opinions.

non-clustered equilibria in the SCOD model without stubborn
agents. However, the periodic solutions reemerge if the SCOD
system with O = −O includes stubborn agents (Vs = ∅), as
demonstrated by our next example.

Example 4: Consider a confidence set O which is a union
of lines {ξ2 = 0}, {ξ2 = ξ1/5} and {ξ2 = −ξ1/5} with the
ball of unit radius (see Fig. 6). The SCOD with n = 4, the
set of stubborn agents Vs = {2, 3, 4} and the initial opinions
from Fig. 5(b) exhibits the oscillations in opinion ξ1 as in (5).
Similarly, consider n = 3 agents whose initial opinions are
chosen as in Examples 2, but O = (−7, 7) \ {±1,±3,±5}.
If agents 1, 3 are stubborn, then ξ2 oscillates as in (4).

Remark 3: Note that in Examples 2-4, oscillations arise due
to presence of static opinions, enabled by the geometry of
set O or stubbornness of some agents. This effect, where
static opinions induce oscillations, is well-known in models
with randomized asynchronous interactions [26], [27]. Our
examples show that the same effect occurs in the deterministic
SCOD model with asymmetry or stubborn individuals.3

3) Convergent Solutions Absent in HK Models: Even if O is
symmetric, solutions of the SCOD may converge in infinite
time and reach non-equilibrium states.4 This behavior is
demonstrated by the following example.

Example 5: Let the two-dimensional confidence set be the
union of two lines: ξ1 = 0 and ξ2 = 0 (Fig. 7(a)). The
initial opinions of n = 5 agents are shown in Fig. 7(b): four
opinions are the vertices of the square (±1,±1), while ξ5 =
(0, a), where a > 1. Evidently, ξ5 is static, while ξ i, i =
1, . . . , 4 converge to 0. The resulting opinion profile is not an
equilibrium. Removing the fifth agent, the solution converges
over the infinite time to the null equilibrium.

III. THE SCOD WITH A SYMMETRIC CONFIDENCE SET

Using the theory of averaging algorithms and inequali-
ties [29], it can be shown that for a symmetric confidence set

3Notice that the systems in Examples 2, 3 are very different from their
counterparts in Example 4, although the trajectories �(t) for the specific initial
condition are same. In the former two examples, none of agents is stubborn,
although some agents remain “isolated” (Ni ≡ {i}) in the sense that they
do not trust to the others because of the specific geometry of set O and the
opinion trajectory �(t). In the latter example, some agents are stubborn and
keep constant opinions for all possible initial conditions.

4Similar behaviors are reported in continuous-time HK systems with
generalized solutions [28] yet are absent in the discrete-time HK model.
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O = −O the asymptotic behaviors of the SCOD model are
similar to those of conventional HK models in the absence
of stubborn agents. In the HK model based on the Euclidean
norm, stubborn agents do not destroy convergence [15], which,
however, is not the case for the SCOD (see Example 4).
Convergence can be guaranteed, however, in special situations,
e.g., when only one agent is stubborn or all stubborn individ-
uals share the same opinion.

We first introduce the three key assumptions.
Assumption 2 (Symmetric Confidence Set): O = −O.
Assumption 3 (Trust in Similar Opinions): O contains 0

along with a small neighborhood5: a radius R > 0 exists such
that O ⊇ {ξ : ‖ξ‖ < R}.

Assumption 2 entails that the relations of trust are recip-
rocal: if i trusts j, then j trusts i for each opinion matrix �,
in particular, graph G(�) is undirected. Assumption 3 is a
stronger form of Assumption 1, requiring the agent to trust
all opinions that are sufficiently close (in the sense of usual
distance) to their own. For instance, the sets in Fig. 1 and
Fig. 6 satisfy Assumptions 2 and 3. The set in Fig. 5(a) satisfies
Assumption 3 but violates Assumption 2, while the set in
Fig. 7(a) satisfies Assumption 2 but not Assumption 3.

Assumption 4 (Homogeneous Stubborn Agents): All stub-
born agents (if they exist) share the same opinion6:

ξ i(0) = ξ∗ ∀i ∈ Vs. (6)

Main Result: Convergence and Equilibria
The following theorem examines the convergence of the

SCOD trajectories �(t) and structures of their limits.
Theorem 1: If O obeys Assumptions 1, 2, and the stubborn

agents obey Assumption 4, the following statements are true:
(A) �(0) is an equilibrium if and only if it is clustered.
(B) All opinions have finite limits ξ i(∞) = limt→∞ ξ i(t),

and ξ i(∞) = ξ j(∞) whenever agents i, j trust each other
infinitely often: ξ j(tk) − ξ i(tk) ∈ O for a sequence tk → ∞.

If Assumption 3 also holds, then:
(C) The terminal state �(∞) is a (clustered) equilibrium.
(D) If Vs = ∅ (no stubborn agents), the dynamics terminate

in a finite number of steps. Otherwise, every opinion ξ i(t)
either converges to the stubborn agents’ common opinion ξ∗
from (6) or stops changing after a finite number of steps.

A. Numerical Example
The following numerical example illustrates the behavior of

the SCOD with the set O from Fig. 1(b) for n = 100 agents
and ξ∗ = 0. The left plot in Fig. 8 demonstrates the case
where |Vs| = 1 and two clusters emerge. The right plot is for
|Vs| = 50: the group reaches consensus at 0. The opinions of
regular agents are sampled uniformly from [−1, 1]2.

One may notice that the convergence to the stubborn opinion
is quite slow; the estimate of the convergence rate in the SCOD
models remains a non-trivial open problem.

B. Discussion
The assumptions of Theorem 1, while formally only suffi-

cient, are essential and cannot be readily discarded.

5Since all norms on R
d are equivalent, the norm here is unimportant.

6We assume that (6) holds automatically if Vs = ∅.

Fig. 8. The SCOD with 1 (left) and 50 (right) stubborn agents.

Assumption 1, besides making (2) well-defined (|Ni| = ∅),
also excludes trivial periodicity. For instance, if O = R

d \ {0},
the trivial SCOD dynamics ξ1(t+1) = ξ2(t), ξ2(t+1) = ξ1(t)
violates (B). Furthermore, every pair of different opinions is a
clustered yet a non-equilibrium state, so (A) also fails to hold.

Discarding Assumption 2 can result in oscillatory solutions
(Examples 2 and 3). Example 1 shows that non-clustered
equilibria may exist. Even in the absence of stubborn agents,
both (A) and (B) may be violated without the symmetry of O.

Assumption 4 also cannot be fully discarded, as shown by
Example 4: two stubborn agents with different opinions can
lead to periodic solutions, even if O obeys Assumptions 1-3.

As Example 5 shows, (C) and (D) may be violated without
Assumption 3, and �(∞) may fail to be non-equilibrium.

Note that HK models with stubborn agents have mostly been
studied for scalar opinions [4], except in [14], [15], where con-
fidence sets are Euclidean balls. These results, estimating the
system’s “kinetic energy”, have not been extended to arbitrary
norms. Hence, to the best of our knowledge, Theorem 1 is
new and non-trivial even for the norm-based HK models.

IV. PROOF OF THEOREM 1

We will use the following lemma on the convergence of
recurrent averaging inequalities [29, Th. 5]

x(t + 1) ≤ W(t)x(t), t = 0, 1 . . . , (7)

where x(t) are m-dimensional column vectors, W(t) are row-
stochastic m × m matrices and the inequality is elementwise.

Lemma 1: Let matrices W(t) be type-symmetric, that is, for
some constant K ≥ 1 one has K−1wji(t) ≤ wij(t) ≤ Kwji(t)
for all pairs i = j and all t = 0, 1, . . . Assume also that the
diagonal entries are uniformly positive: wii(t) ≥ δ > 0 for all
i and t ≥ 0. Then, any solution x(t) of (7) that is bounded
from below enjoys the following properties:

(a) a finite limit x(∞)
�= limt→∞ x(t) exists;

(b) xi(∞) = xj(∞) for all pairs of agents i, j that interact
persistently, that is,

∑∞
t=0 wij(t) = ∞;

(c) the residuals �(t)
�= W(t)x(t)−x(t+1) are �1-summable,

that is,
∑∞

t=0 �(t) < ∞.
Remark 4: Lemma 1 is well-known for averaging con-

sensus algorithms x(t + 1) = W(t)x(t), whose trajectories
are always bounded from below and satisfy (7). Under the
assumptions of Lemma 1, the consensus dynamics thus enjoys
properties (a) and (b), with (c) being trivial. This statement,
in a more general setting, appeared in [30, Th. 1], while its
special case dates back to the seminal paper [31].
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A. Case I: No Stubborn Agents
Henceforth Assumptions 1 and 2 are supposed to be valid.
We first prove Theorem 1 in the case where Vs = ∅. The

proof retraces one for the usual HK model [22]. For a fixed
solution �(t), the SCOD dynamics (2) entails that

ξ i(t + 1) =
∑

j∈V
w̄ij(t)ξ

j(t), (8)

where matrices W̄(t) = (w̄ij(t)) are determined by

w̄ij(t)
�=

{ 1
|Ni(t)| , if j ∈ Ni(t)
0, otherwise

(9)

and satisfy the assumptions of Lemma 1 thanks to
Assumptions 1 and 2. Furthermore, w̄ij(t) ∈ {0} ∪ [1/n, ∞),
and hence i, j trust each other infinitely often if and only if

∞∑

t=0

w̄ij(t) = ∞. (10)

To prove (B), fix a coordinate k ∈ {1, . . . , d}. The vectors

x(t)
�= (ξ1

k (t), . . . , ξn
k (t))� obey the consensus dynamics x(t +

1) = W̄(t)x(t). Thus, the limits x(∞) = limt→∞ x(t) exist, and
xi(∞) = xj(∞) if (10) holds by virtue of Lemma 1. Applying
this for all k, statement (B) follows.

To prove (A), notice that for an equilibrium �(t) ≡ �

the respective matrix W̄(t) ≡ W̄ is also constant. If two
agents i, j trust each other at the state �, then ξ i = ξ j in
view of (B). This implies that every equilibrium is clustered
(Definition 1): agents i, j cannot trust each other unless their
opinions coincide. Trivially, clustered states are equilibria.

Assume now that Assumption 3 additionally holds. We will
prove that the SCOD terminate in a finite number of steps,

which implies both (C) and (D). Notice first that Ni(t)
�=

Ni(�(t)) = {j : ξ j(∞) = ξ i(∞)} for t being large. Indeed,
if limt→∞ ξ i(t) = limt→∞ ξ j(t), then ‖ξ i(t) − ξ j(t)‖ < R
for t being large, where R is the radius from Assumption 3,
whence ξ j(t) − ξ i(t) ∈ O. On the other hand, we know that if
ξ j(∞) = ξ i(∞), then j ∈ Ni(t) starting from some step t = tij.
Hence, in a finite number of steps the graph G(�(t)) splits
into several disconnected cliques (Fig. 2) and stops changing.
In view of (2), at the next step the agents in each clique reach
consensus, arriving at an equilibrium. This finishes the proof.

B. Case II: Stubborn Agent are Present
The core idea of the proof is to demonstrate that the set

of ordinary agents, denoted V ′ �= V \ Vs, can be divided into
two (potentially, empty) groups. The first group, I, consists
of agents influenced by the stubborn individuals, directly or
indirectly; as a result, their opinions eventually converge to
ξ∗. The second group, J, comprises agents whose dependence
on stubborn agents and those in I ceases at some time instant
t∗. After this moment, their evolution follows a reduced-order
SCOD model, which was analyzed in the previous step. To
formalize this approach, we introduce an auxiliary recurrent
averaging inequality (7) and examine it using Lemma 1.

Without loss of generality, we assume that V ′ = {1, . . . , m},
where agents Vs = {m + 1, . . . , n}. For each regular agent,

denote xi(t)
�= ‖ξ i(t) − ξ∗‖, where ‖ · ‖ is some norm on R

d.

Step 1 - Recurrent Averaging Inequality: Note that vectors
x(t) = (x1(t), . . . , xm(t))� ∈ R

m satisfy inequality (7), where
the m × m stochastic matrices W(t) are as follows

wij(t)
�=

{
w̄ij(t), i, j ∈ V ′, i = j,
w̄ii(t) + ∑

�∈Vs
w̄i�(t), i = j ∈ V ′, (11)

where w̄ij(t) are defined in (9). Indeed, using (8), the relation∑
j∈V w̄ij(t) = 1 and the norm’s convexity, one arrives at

xi(t + 1)
(8)=

∥∥∥∥∥∥

∑

j∈V
w̄ij(t)

(
ξ j(t) − ξ∗)

∥∥∥∥∥∥
≤

≤
∑

j∈V ′
w̄ij(t)

∥∥ξ j(t) − ξ∗∥∥
︸ ︷︷ ︸

=xj(t)

+
∑

j∈Vs

w̄ij(t)
∥∥ξ j(t) − ξ∗∥∥
︸ ︷︷ ︸

=0

=
∑

j∈V ′
w̄ij(t)xj(t) ≤

∑

j∈V ′
wij(t)xj(t) ∀i ∈ V ′.

Here we used the fact that ξ j(t) ≡ ξ j(0) = ξ∗ for each
stubborn agent j ∈ Vs and inequalities w̄ij(t) ≤ wij(t), which
hold due to (11). Hence, the residuals can be estimated as

�i (t)
�=

∑

j∈V ′
wij(t)xj(t) − xi(t + 1) ≥

≥
∑

j∈V ′

(
wij(t) − w̄ij(t)

)
xj(t)

(11)= xi(t)
∑

�∈Vs

w̄i�(t). (12)

Matrices (11) satisfy the conditions of Lemma 1 thanks to
Assumptions 1 and 2. In view of Lemma 1, the limit exists

xi(∞)
�= limt→∞ xi(t) for each ordinary agent i ∈ V ′.

According to Lemma 1, xi(∞) = xj(∞) whenever (10) holds,
that is, two agents i, j ∈ V ′ trust each other infinitely often.

Step 2 - The Group Splitting and Reduction to Case I: We
now introduce two group of agents denoted by I

�= {i ∈
V ′:xi(∞) = 0} (i.e., ξ i(t) −−−→

t→∞ ξ∗ for i ∈ I) and J
�= V ′ \ I.

Two agents i ∈ I and j ∈ J don’t trust each other (w̄ij(t) = 0)

for t being large, because xj(∞) = 0 = xi(∞) for all i ∈ I and
j ∈ J. Using statement (c) in Lemma 1 and (12), one proves
that an agent j ∈ J does not trust stubborn agents (w̄j�(t) =
0 ∀� ∈ Vs) for t being large. In other words, for large t we
have Nj(t) ⊆ J for all j ∈ J. If J is non-empty, the opinions

�̃(t)
�= (ξ j(t))j∈J evolve independently of the remaining group,

following a SCOD model of size |J|.
Statements (B)-(D) now reduce to Case I. Since the opin-

ions of agents in both sets I, J converge, (B) is valid. If
Assumption 3 holds, �̃(t) = �̃(∞) for t being large, whereas
the opinions of remaining agents from I ∪ Vs converge to
ξ∗. This proves (D). To prove (C), recall that ξ∗ − ξ j(∞) =
ξ∗ − ξ j(t) ∈ O for j ∈ J and t being large and, according to
Case I, �̃(∞) is clustered under Assumption 3. Hence, �(∞)

is also clustered, containing clusters of �̃(∞) and the cluster
constituted by agents from I ∪ Vs with the final opinion ξ∗.

To prove (A), consider an equilibrium solution �(t) ≡ � =
limt→∞ �(t) and the corresponding sets I, J. As has been
shown, ξ i = limt→∞ ξ i(t) = ξ∗ for i ∈ I ∪ Vs, agents from J
do not trust to agents from I, and �̃ = (ξ j)j∈J is an equilibrium
of the reduced-order SCOD model, proved to be clustered
(Case I). Hence, every equilibrium of the SCOD is clustered.
The inverse statement is straightforward.
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V. CONCLUSION AND OPEN PROBLEMS

This letter extends the multidimensional HK model by
replacing the distance-based opinion rejection mechanism with
a general set-based mechanism. We analyze the resulting
SCOD model, highlighting its similarities and differences with
the usual HK model, and show that some properties of the
HK model, such as finite-time convergence and equilibrium
structure, extend to a symmetric confidence set containing 0
in its interior. However, this behavior can be disrupted by
stubborn individuals, whose presence may lead to periodic
oscillations in the opinions. Examples in Section II illustrate
that for asymmetric confidence set the SCOD model behaves
differently from usual HK models, exhibiting convergence to
non-equilibrium points and oscillations.

Finally, we mention several directions for future research.
Stubborn Agents and Oscillations: While Assumption 4 can-

not be fully discarded, it seems to be only sufficient for SCOD
convergence. A natural question arises: when do stubborn
agents give rise to oscillating trajectories?

Convergence Rate: A limitation of the averaging inequal-
ities method [29] is the absence of explicit estimates on the
convergence time or rate of the solutions. Simulations with var-
ious sets O suggest the conjecture that, under Assumptions 1-3
and Vs = ∅, the termination time depends polynomially on n.

Heterogeneity Effects and Oscillatory Solution Existence: A
natural extension of the SCOD model is the heterogeneous
SCOD, where each agent has its own confidence set Oi.
Heterogeneous SCOD can have periodic solutions even if all
Oi are open and symmetric.7 On the other hand, heteroge-
neous HK models with balls of different radii are believed
to converge [22], [32], although a formal proof seems to
be unavailable. This raises a natural question: under which
assumptions on Oi does the heterogeneous SCOD model have
periodic and other oscillatory solutions?
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