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Abstract: This work investigates the fuel efficiency potential of Adaptive Cruise Control (ACC)
systems, focusing on two optimization-based control approaches for internal combustion engine
(ICE) vehicles. In particular, this study compares two model predictive control (MPC) designs. In the
first approach, a strictly quadratic cost is adopted, and fuel consumption is indirectly minimized by
adjusting the weights assigned to state tracking and control effort. In the second approach, a fuel
consumption map is explicitly included in the MPC cost function, aiming to directly minimize it. Both
approaches are compared to a globally optimal benchmark obtained with dynamic programming.
Although these methods have been discussed in the literature, no systematic comparison of their
relative performance has been conducted, which is the primary contribution of this article. The results
demonstrate that, with proper tuning, the simpler quadratic approach can achieve comparable fuel
savings to the approach with explicit fuel consumption minimization, with a maximum variation of
0.5%. These results imply that the first alternative is more suitable for online implementation, due to
the more favorable characteristics of the associated optimization problem.

Keywords: adaptive cruise control; model predictive control; dynamic programming; energy savings;
safety

1. Introduction

The concept of mobility has undergone significant transformations in recent years,
with driving automation emerging as a pivotal development. This evolution aims to im-
prove road safety, enhance passenger comfort, and achieve energy savings [1]. Autonomous
vehicles and advanced driver assistance systems (ADAS) are central to realizing these objec-
tives [2]. Among the various ADAS, adaptive cruise control (ACC) is particularly effective
in reducing energy consumption and greenhouse gas emissions by maintaining a target
speed while adjusting the vehicle’s velocity to follow another vehicle at a safe distance.
Even straightforward ACC implementations yield modest fuel savings [3], while further re-
duction can be obtained through an appropriate optimization framework [4]. Furthermore,
full-range ACC, which operates across the entire speed spectrum, from complete stops to
highway speeds, can enhance energy savings by intelligently managing stop-and-go situa-
tions [5], which typically involve higher and more frequent acceleration and deceleration
than highway cruising.

A driving factor for research in ACC developments stems from the pressing need to
reduce the environmental impact of the transportation sector. Internal combustion engine
(ICE) vehicles, both conventional and hybrid, which still dominate the global market [6],
are significant contributors to greenhouse gas emissions. While electric vehicles (EVs) offer
a promising solution, their widespread adoption is currently limited by factors such as
high costs, limited driving range, and insufficient charging infrastructure. Consequently,
optimizing the fuel efficiency of existing ICE vehicles remains a critical objective. Fuel
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consumption and emissions from the transportation sector have a considerable impact on
global environmental health [7]. Even minor improvements in fuel efficiency can yield
significant environmental benefits [8]. ACC systems optimized for fuel efficiency present a
viable contribution to address this challenge.

This research explores the optimization of full-range ACC using dynamic program-
ming (DP) and two model predictive control (MPC) approaches to balance fuel savings
with passenger comfort while maintaining safe driving conditions.

1.1. Background

Adaptive cruise control is one of the most widely adopted ADAS technologies. It
extends traditional cruise control by automatically adjusting the vehicle’s speed to maintain
a safe distance from the vehicle ahead [9]. This capability not only enhances driving comfort
by reducing the need for manual speed adjustments and reducing frequent changes in
acceleration but also has the potential to improve fuel efficiency by promoting smoother
driving behavior. Moreover, full-range ACC can take care of the longitudinal control of the
vehicle in urban, highway, and mixed scenarios.

Several studies have sought to improve ACC’s performance by optimizing fuel con-
sumption while ensuring safety and comfort for both conventional and hybrid vehicles [10].
In some works, pollutant emissions were also considered as control objectives [11]. Various
optimization approaches, such as dynamic programming (DP) [12–14], model predictive
control (MPC) [15–18], linear-quadratic regulators [19,20], and reinforcement learning
solutions [21–23] have been proposed. Each approach has its merits and disadvantages.

Dynamic programming is effectively the only technique among these that can guaran-
tee optimal solutions, albeit with high computational costs. In short, DP works by breaking
down a complex decision-making process into simpler sub-problems and solving them
sequentially. Bellman’s principle of optimality is central to DP, enabling the formulation of
an optimal policy accounting for the cumulative cost of future actions [24].

In the context of ACC, DP can be used to determine the optimal acceleration and
deceleration patterns that minimize fuel consumption over a given driving cycle. How-
ever, its high computational complexity makes it impractical for real-time applications.
Because of this limitation, DP is best suited for offline applications, where it remains
valuable as a benchmark for evaluating the performance of other, more computationally
efficient methods.

Model predictive control is advantageous for online applications due to its ability
to anticipate future events and optimize control actions accordingly. MPC’s capability to
handle multi-variable interactions and constraints explicitly makes it a promising approach
for real-time ACC optimization. Unlike DP, MPC operates in a receding horizon manner,
continuously updating its predictions based on the latest state measurements.

MPC involves solving an optimization problem at each time step, where the objective
is to minimize a cost function. By incorporating constraints directly into the optimization
process, MPC ensures that the resulting control actions are feasible and safe. The primary
challenge with MPC is maintaining real-time feasibility, especially when dealing with
complex vehicle models and long prediction horizons. In a recent study [25], deep neural
networks were used to generate an approximated policy that reproduces an MPC-based
ACC system in order to reduce execution time and memory footprint. Nonetheless, explicit
MPC implementations have been proven to be capable in real-time, such as the robust MPC
algorithm developed by [26].

Linear quadratic regulators (LQRs) can be seen as a special case of model predictive
control under specific conditions. Firstly, LQRs always assume that the system is linear
and the cost function is quadratic [27]. In MPC, this is also assumed to be the standard
problem structure, but other variations can be treated. For example, nonlinear costs can be
considered, although in this case, the term nonlinear MPC is commonly used. Secondly,
LQR does not handle constraints, while one of the primary strengths of MPC is its ability to
explicitly incorporate constraints on inputs, states, and outputs. Lastly, LQR is inherently
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an infinite-horizon controller, while MPC typically operates over a finite horizon in the
receding horizon technique that was previously described.

Despite all its limitations, LQR presents a notable advantage with respect to MPC in
terms of computational costs. LQR results in a fixed feedback gain matrix that is computed
offline, while MPC requires solving an optimization problem at each time step, which can
adapt to changing conditions.

Reinforcement learning (RL) differs from the previously mentioned techniques in that
it typically does not require a model of the system to be controlled. The RL controller
(also called the agent) trains control policies through trial and error by interacting with
the environment. It continuously improves using rewards received from the environment,
without requiring a model of the system. Deep reinforcement learning, in particular,
is deemed to be particularly suitable to deal with complex real-life environments [28].
Thus, RL is a powerful tool to deal with highly variable scenarios, complex environments,
or where a system model is difficult to define. Its downside is that it often requires extensive
training effort [29].

1.2. Motivation

As previously mentioned, ACC systems, when intelligently controlled, can play a
crucial role in this context. By optimizing speed control to minimize fuel consumption
while ensuring safety and comfort, these systems can contribute to significant reductions
in emissions. Optimization-based techniques like MPC and RL offer significant flexibility
in defining a cost function, allowing for various formulations to achieve objectives such
as fuel economy, car-following, safety, and comfort. Specifically, for MPC, two main
approaches can be distinguished: one that explicitly incorporates fuel consumption in the
objective functions, and another that attempts to indirectly minimize fuel consumption by
other means.

For example, ref. [30] incorporates a fuel consumption map in the cost function, where
the fuel flow rate is obtained via linear interpolation on experimental engine data to maxi-
mize fuel economy. Similarly, ref. [31] exploits a fuel map, but a fourth-order polynomial
approximation is ultimately used in the MPC cost function rather than an interpolant
function. In a different approach, ref. [32] utilizes a strictly quadratic formulation of the cost
function and relies on the tracking objective to maximize fuel economy. More specifically,
a reference trajectory for the acceleration is defined with an exponential attenuation of
its current value; thus, a smooth response for the ACC controller is favored, which in
turn should minimize fuel consumption. A similar approach was developed and tested
in [33], and an impressive 12–13% improvement in fuel consumption with respect to a
traditional ACC implementation based on PID (proportional–integral–derivative) control
was reported.

In many ACC applications, fuel consumption is not a quadratic function of the control
effort, though it is strictly monotonic. Therefore, adhering to a quadratic cost function
requires significant approximations and may lead to sub-optimal performance. On the
other hand, adopting a non-quadratic cost function significantly increases the complexity
of the optimization problem. Thus, more sophisticated solvers and more computational
power might be needed, and the optimality of the solution might not be guaranteed if the
problem is non-convex.

1.3. Contributions

This work contributes to the field by conducting a comprehensive, unbiased compari-
son of two MPC strategies for ACC optimization:

• one with a strictly quadratic cost and indirect minimization of fuel consumption;
• a second one that explicitly includes a fuel consumption map in the MPC cost function.

To ensure a complete comparison, dynamic programming is introduced as a bench-
mark solution to determine the most effective approach for real-time full-range ACC
optimization. The optimization problem is tailored for an internal combustion engine light-
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duty vehicle, which is extensively utilized in the aforementioned mixed driving scenario,
encompassing both urban and highway conditions in a car-following scenario. The latter
entails a single-lane and straight road. Both vehicles considered in this study share identical
physical properties. The first vehicle, referred to as the lead vehicle, sets the pace, while the
second, defined as the ego vehicle, follows. In this car-following scenario, the ego vehicle
acts as the follower and is considered as an autonomous vehicle.

2. Methods

As mentioned in the introduction, MPC and DP are model-based optimization tech-
niques that require a control-oriented simulation model of the system to be controlled.
Also, both techniques were tested with a higher-fidelity simulation model. In this section,
we first describe the equations governing the simulation model. Then, we describe the
control-oriented model. Finally, we describe the implementation of the MPC algorithm as
well as the DP algorithm that was used as a benchmark.

External disturbances, aside from the lead vehicle’s speed, are disregarded at this
stage, as the primary focus is on comparing potential energy savings.

2.1. Simulation Model

The simulation model aims to simulate an internal combustion engine vehicle in a
car-following scenario. Its goal is to evaluate the potential fuel consumption benefits of
full-range ACC and the effectiveness of MPC through two different formulations of the cost
function. The vehicle model was developed in MATLAB, considering only longitudinal
dynamics to simplify the analysis while retaining the essential dynamics for ACC.

As previously discussed, the primary vehicle model employed to describe vehicle dy-
namics and simulate the real vehicle, for the purpose of evaluating controller performance,
incorporates a detailed representation of the longitudinal dynamics and the powertrain.
The vehicle’s position, speed, and acceleration were computed using a fixed reference
system. The ICE provides the necessary torque to overcome road load and achieve the
desired acceleration, as commanded by the controller. This setup mimics real-world driv-
ing conditions where the following vehicle adjusts its acceleration in order to proceed at
the speed required to maintain a safe distance from the leading vehicle while optimizing
fuel consumption.

The equation of motion [34] for the ego vehicle is given as follows:

mtota = ηgb · τgb ·
Twh
rwh

−
[
mg sin(α) + mg f0 cos(α) + mg f2 cos(α)v2

]
(1)

where:

• mtot is the equivalent translating mass of the vehicle, considering both translating and
rotating components;

• a and v are the vehicle’s acceleration and speed;
• Twh is the torque at the wheels;
• f0, f2 are the rolling resistance coefficients;
• rwh is the wheel radius;
• τgb and ηgb are the transmission’s gear ratio and efficiency, respectively;
• α is the road slope.

The wheel speed is given as follows:

ωwh =
v

rwh
. (2)

The powertrain model includes a final drive, a six-speed gear transmission, and the
engine; its goal is to link the wheel speed and torque to the engine fuel consumption.
In particular, a backward vehicle model was considered, meaning that the required engine
torque and speed are computed in order to match the given acceleration. The model is also



Appl. Sci. 2024, 14, 9833 5 of 17

influenced by the engaged gear, as this changes the transmission’s gear ratio (τgb). In this
work, we assume that the gear shift logic is not part of the ACC controller but rather is
implemented with a traditional gear shift schedule. Therefore, the gear number was not
included as a control variable for the DP and MPC algorithms.

The vehicle model also incorporates a fuel consumption map, which provides the fuel
flow rate (in grams per second) as a function of the engine’s torque Teng and speed ωeng
via linear interpolation on experimental data points:

ṁfuel = max(0, f (ωeng, Teng)). (3)

2.2. Control-Oriented Model

As further described in Section 2.5, model predictive controllers require a predictive
model to compute a control sequence. Since the model is used to solve an optimization
problem in real-time, this control-oriented model must have a favorable structure. To do so,
the best choice from a computational perspective is to use a linear model of the plant and a
quadratic cost function. A simplified model was therefore derived for ACC which links the
control variable u, i.e., the acceleration command, to the vehicle’s motion [35]:

τ
d
dt

s̈(t) + ṡ(t) = u(t). (4)

Here, τ is a constant that models the inertia between the controller command and its
actuation, and its value is set to 0.5; s and its derivatives ṡ, s̈ refer to the vehicle position,
velocity, and acceleration; and u is the control variable.

From this, the system model was cast in state-space form as follows:

xk+1 = Axk + Buk + Gdk (5)

where x is the vector of state variables, u are the controls, and d are the external disturbances.
In our problem, the state variables are as follows:

x =

ed
v
a

 (6)

where v is the velocity of the ego vehicle and a is the acceleration of the ego vehicle. ed
is the distance error, i.e., the difference between the desired inter-vehicular distance and
its desired value, as defined by the spacing policy (described in Section 2.3). The external
disturbance is the velocity of the lead vehicle vlead, which is needed to evaluate ed.

Therefore, the state-space representation for our model is as follows:

xk+1 =

 1 −Ts −Tth
0 1 Ts
Ts 0 0

xk +

 0
0

Ts/τ

uk +

Ts
0
0

dk. (7)

where Ts is the sampling time.

2.3. Spacing Policy

As shown in Equation (6), the distance error, ed, is crucial in the problem formulation.
To ensure a safe distance between vehicles, it is essential to define an appropriate spacing
policy. Various strategies can be employed, ranging from the simplest approach, such as
maintaining a constant safety distance, to more sophisticated methods that incorporate
velocity or acceleration terms into the safety distance [36]. In this study, the inter-vehicular
safety distance is determined by the following law:

δsafe = d0 + thvego (8)
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where d0 represents the desired distance at standstill and vego is the speed of the ego vehicle.
th is the time headway, i.e., the elapsed time between the front of the lead vehicle and the
front of the ego vehicle passing the same point on the roadway, assuming that both vehicles
move at a constant relative speed.

In the spacing policy, δsafe is the distance computed using the desired time headway,
which in this work is set to be th = 1.4. Consistently, with Equation (8), a constant
time headway implies a safety distance growing linearly with respect to the velocity.
Reference [37] suggests time headway in the interval [1 s, 2 s] based on safety and road
capacity concerns.

Finally, the distance error, first introduced in Section 2.2, is defined as the difference
between the current inter-vehicular distance δ and δsafe:

ed = δ − δsafe = dlead − dego − (d0 + thvego). (9)

2.4. Dynamic Programming

Dynamic programming is a mathematical optimization method used to solve multi-
stage decision problems by breaking them down into simpler sub-problems. DP is particu-
larly useful in problems where decisions need to be made sequentially and the outcome
depends on previous decisions. At each stage, the system progresses according to its inher-
ent dynamics and is affected by the decisions made. If the system’s evolution is entirely
predictable, the problem is classified as deterministic, as for the problem under investi-
gation. Conversely, if random phenomena impact the system’s evolution, the problem is
considered stochastic.

In ACC optimization, DP is used to compute the optimal speed and acceleration
profiles that minimize fuel consumption while maintaining a safe distance from the lead
vehicle and satisfactory driver comfort. The DP algorithm considers all possible acceleration
and deceleration scenarios at each time step and evaluates their impact on the total cost over
a finite horizon. The Bellman equation guides the recursive computation of the optimal
policy, which minimizes the cumulative cost [38]:

J∗(xk) = min
uk

{g(xk, uk) + J∗(xt+1)}, (10)

where:

• J∗(xk) is the optimal cost-to-go from state xk;
• g(xk, uk) is the immediate cost incurred by applying control uk at state xk;
• xt+1 is the state at the next time step resulting from control uk.

In our framework, the total cost J includes two terms. The first is the fuel flow
rate to minimize the overall fuel consumption. The second is a penalty term to enforce
acceleration constraints. The cost was formulated as follows:

J =
T

∑
t=0

(
ṁfuel(t) · Ts + w1a2(t)

)
, (11)

where w1 is a weighting factor. The penalty term ensures that the vehicle avoids abrupt
accelerations or decelerations that could compromise passenger comfort or safety.

The optimization problem was implemented in a MATLAB environment, and a MAT-
LAB tool for general-purpose DP optimization, called DynaProg [39], was used to solve the
problem. For the current application, the optimization tool allows us to set unfeasibility, thus
constraining the problem easily. For this reason, to ensure that the vehicle maintains a safe
distance from the lead vehicle, constraints on the distance error are set. The minimum
distance constraint is set to avoid collision between the two vehicles and is formulated
as follows:
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ed,min = max(−0.9 th,desvego,−20) (12)

By imposing this constraint, we ensure that the ego vehicle does not fall below the
standstill distance. However, we allow the relative distance to be less than the predefined
safe distance without risking a collision. The maximum distance error constraint is instead
a constant value:

ed,max = 30 (13)

Setting this threshold is crucial to prevent the inter-vehicle distance from becoming too
large, which increases the likelihood of other vehicles cutting in. It is indeed important to
take into account how other traffic participants react to ecological driving strategies [40,41].

2.5. Model Predictive Control
2.5.1. MPC Algorithm and Implementation

Model predictive control is suitable for online applications, predicting future states
to optimize control actions. MPC uses a predictive model to compute a control sequence,
minimizing a cost function over a finite horizon. The process involves iterating on the
control sequence, applying only the first control input, and updating the model with
new measurements at each time step. To facilitate the online application of the controller,
a linear MPC approach was chosen, necessitating a linear plant model for predictions and a
quadratic cost function. The linear model allows the MPC to predict the system states over
the prediction horizon, consisting of Hp steps, each with a duration of Ts.

The MPC algorithm follows these steps:

1. Prediction model: Use the vehicle model to predict future states over the prediction
horizon based on the current state and control inputs.

2. Optimization: Solve an optimization problem to find the control inputs that minimize
the cost function, subject to constraints.

3. Implementation: Apply the first control input from the optimized sequence.
4. Update: Update the model with new state measurements and repeat the process.

The prediction model accounts for vehicle dynamics and the behavior of the lead
vehicle. The optimization problem is solved using numerical methods, typically with a
dedicated solver.

The control inputs include throttle and brake commands, which are adjusted to achieve
the desired speed and distance. The implementation of the first control input uses the
detailed vehicle model to end up in the update phase with the new state measurements.

The MPC controller was implemented in a MATLAB environment using the YALMIP
toolbox [42], which allows for the formulation of optimization problems using algebraic
equations and acts as an interface to an array of solvers. The optimization problem was
transcribed in an implicit, and hence sparse, formulation [43] and solved with a semidefi-
nite programming solver from the MOSEK software, 10.2.1 version number package [44].
As mentioned above, the problem is in a quadratic form; thus, the chosen solver is com-
putationally efficient for this class of optimization problems. To ensure feasibility and
stability, practical strategies were employed, including the introduction of soft constraints,
as detailed in the following section, and the use of a sufficiently long prediction horizon.

To meet the performance requirements, two formulations for the cost function are
proposed. The first one includes fuel consumption, distance error, velocity, acceleration,
and a penalty on control effort. The second one does not include fuel consumption.
The reason behind this is that the control problem of a fuel consumption-oriented solution
is typically not as simple as a linear problem with a quadratic cost function. In [15],
the authors state that under certain conditions, the fuel consumption can be considered
proportional to the acceleration. Our goal is to demonstrate that by appropriately tuning
weights, the two controllers can achieve comparable results, and we validate their goodness
by comparing them with DP.



Appl. Sci. 2024, 14, 9833 8 of 17

2.5.2. Cost Function with Explicit Fuel Economy Objective

As mentioned in the introduction, two different cost functions were formulated for the
MPC implementation. Both attempt to realize the car-following objective while minimizing
fuel consumption. Terms related to comfort and safety are also included to ensure a
realistic implementation.

The first cost function does not conform to a quadratic form and was formulated
as follows:

JFC =
Hp−1

∑
k=0

(
w1ṁfuel,k+1 + w2e2

d,k+1 + w3a2
k+1 + w4uk + w5ζ2

e,k + w6ζ2
u,k

)
(14)

where Hp is the prediction horizon, w1, . . . , w6 are the weighting factors of each term of
the cost function, and ζe, ζu are slack variables, which are variables used to soften the
constraints. Constraint softening is useful to improve the computational efficiency of the
optimization problem and to guarantee that a solution is found even if no physical solution
can be computed with the corresponding hard constraints. In such cases, the solver is
allowed to search for a feasible solution outside the boundaries but penalizes this action
using slack variables in the cost function [45].

These constraints were formulated to achieve the car-following objective without
violating the vehicle’s acceleration limits:

edmin + ζe ≤ ed ≤ edmax + ζe (15)

vmin ≤ v (16)

umin + ζu ≤ u ≤ umax + ζu (17)

where edmin = 0, edmax = 25, vmin = 0, umin = −1 and umax = 1.
Balancing different control objectives, constraint softening, and achieving satisfying

performances requires accurate tuning of the controller parameters and hence the weighting
factors. In this work these are determined through trial and error.

As explained in Section 2.1, the fuel flow rate map (Equation (3)) is a linear interpolant;
thus, it is not a smooth function, and its derivatives present discontinuities. While this
is not a challenge for dynamic programming, it makes the MPC optimization problem
significantly harder and might seriously hamper its real-time capabilities. To overcome this
issue, the fuel flow rate map was approximated with a polynomial function. In particular,
we found that a first-order polynomial was sufficient to achieve a reasonably accurate fit
for our engine map:

˙̃mfuel = p00 + p10ωeng + p01Teng (18)

where p00, p01 and p10 represent the fit coefficients.
Figure 1 shows the fuel flow rate obtained by simulating the vehicle on the UDDS driv-

ing cycle using the fuel consumption map and its polynomial approximation. As the figure
shows, the first-order polynomial overestimates fuel consumption by approximately 6%.

Equation (18) was then rewritten as a function of the state variables only, hence giving:

˙̃mfuel = p00 + p10
x(2)
rwh

τgbτfd + p01
( f0 + f2x(2)2 + mx(3))rwh

τgbτfd
, (19)

so that the cost function can be written explicitly. We will refer to this controller as MPCFC
in the following sections.



Appl. Sci. 2024, 14, 9833 9 of 17

0 200 400 600 800 1000 1200 1400

time [s]

0

1

2

3

4

5

F
ue

l f
lo

w
 r

at
e 

[k
g/

s]

#10-3

FC
approx

FC
map

Figure 1. Fuel flow rate results along UDDS driving cycle with map and polynomial function.

2.5.3. Cost Function with Implicit Fuel Economy Objective

Since the implementation of the fuel consumption term in the cost function not only
requires algebraic manipulation of its formulation but also several parameters to tune,
and given the consideration made in [15], which states that fuel consumption is mainly
dominated by vehicle acceleration and that in a car-following scenario, the latter increases
as the absolute value of the acceleration increases, the following cost function is proposed,
aiming to achieve similar results to the previous section:

JnoFC =
Hp−1

∑
k=0

(
xT

k Qxk + ru2
k + w1ζ2

e,k + w2ζ2
u,k

)
(20)

where Q is a diagonal matrix of weights, and r, w1 and w2 are the weighting factors of
the penalization terms of the cost function. The latter is indeed structured to minimize
the variations in the states from an instant to the following one, with a higher weight on
acceleration, and to penalize large values for the control variable. The ζ terms, as for the
previous formulation (Equation (14)), are slack variables for constraint relaxation.

The problem is constrained as in Equations (15) and (17). These constraints are
incorporated into the optimization problem, ensuring that the control actions are both
optimal and feasible. MPC’s ability to handle constraints is one of its key advantages.

3. Simulation Setup

To evaluate the performance of the two MPCs in optimizing ACC systems, we tested
both implementations with the simulation model introduced in Section 2.1. The same
model was also used to derive the DP benchmark. The simulations included various
driving scenarios to assess the effectiveness of each control strategy in different conditions.

3.1. Driving Scenarios

The driving scenarios include standard driving cycles and real ones to mimic real-
world conditions, including:

• Urban driving: Frequent stops and starts, lower speeds, and varying traffic conditions.
• Highway driving: Higher speeds, fewer stops, and steady traffic flow.
• Mixed driving: A combination of urban and highway conditions.

Each scenario included a lead vehicle following a predefined speed profile, and the
ego vehicle equipped with ACC adjusted its speed accordingly. The lead vehicle’s speed
profiles include different patterns, such as constant speed, gradual acceleration, sudden
deceleration, and stop-and-go behavior.
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3.2. Performance Metrics

The performance of the DP and MPC-based ACC systems was evaluated using the
following metrics:

• Fuel consumption: Total fuel consumption over the driving cycle.
• Fuel consumption savings: Fuel percentage savings compared to the fuel consumption

arising from the optimal acceleration profile of the driving cycle.
• Tracking: Deviation from the desired following distance and reference speed.
• Acceleration smoothness: Variability in acceleration, reflecting passenger comfort.

These metrics provided a comprehensive assessment of each control strategy’s ability
to optimize fuel consumption while ensuring safety and comfort.

3.3. Test Cycles

The controllers were tested on five driving cycles: three standard cycles, denoted
as UDDS, ARDC, and AUDC, and two real cycles denoted as RD1 and RD2. Table 1
summarizes the main characteristics of these cycles.

• UDDS: represents city driving conditions and is used for light-duty vehicles, also
including stop-and-go simulations;

• ARDC: represents rural driving conditions, reaching higher speeds than 100 km/h;
• AUDC: represents urban conditions;
• RD1: represents urban conditions;
• RD2: represents urban conditions.

Table 1. Mean velocity and RMS of acceleration for each driving cycle.

UDDS ARDC AUDC RD1 RD2

Duration (s) 1369 1082 993 381 435

Mean velocity (m/s) 8.7520 15.9487 4.8992 5.5080 4.9888

Max velocity (m/s) 25.347 30.972 16.028 14.427 18.073

RMS acceleration (m/s2) 0.6091 0.6289 0.7785 0.7370 0.7013

4. Results and Discussion

To ensure a fair comparison between the different proposed methods, each was tested
across the five driving cycles previously described. All controllers were implemented on
the same vehicle model developed in MATLAB for consistency.

4.1. Fuel Consumption

As expected, all algorithms showed significant reductions in fuel consumption com-
pared to a baseline lead vehicle. The greatest fuel savings occurred at lower speeds and in
scenarios with frequent speed changes. Using SP as the benchmark, fuel savings ranged
from a minimum of 6.9% in rural conditions to a maximum of 22% in urban driving con-
ditions. These results reflect the theoretical best performance that an ACC control could
achieve if the entire lead vehicle’s speed profile for the whole drive cycle was known in
advance. Thus, it is no surprise that the MPC controller achieves on average about 70% of
the fuel benefit. In urban driving scenarios, MPC achieved fuel savings of up to 17.3%.

As shown in Table 2, the two MPC controllers exhibit similar behavior, with the
fuel consumption-based one performing marginally better, achieving improvements of
approximately 0.2% to 0.5%.

To thoroughly assess the controllers’ performances, the percentage of fuel consumption
reduction is considered. As shown in Table 3, the percentage savings for each proposed
controller along the five driving cycles exhibit two trends:

• The performance difference between the two MPC controllers is minimal, with a
maximum variation of 0.5%, indicating highly comparable results;
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• Both MPC controllers and DP show higher beneficial impacts in urban areas and
driving cycles characterized by lower average speeds and higher-acceleration RMS,
reflecting the efficiency of the control strategies in more dynamic driving conditions.

Table 2. Fuel consumption in Kg for each tested driving cycle and controller.

UDDS ARDC AUDC RD1 RD2

Leader (kg) 1.1102 1.5676 0.5518 0.2288 0.2479

MPCnoFC (kg) 1.0727 1.5127 0.4576 0.2017 0.2147

MPCFC (kg) 1.0692 1.5085 0.4563 0.2006 0.2142

DP (kg) 1.0141 1.4590 0.4293 0.1900 0.1953

Table 3. Percentage fuel savings for each tested driving cycle and controller.

UDDS ARDC AUDC RD1 RD2

MPCnoFC 3.4% 3.5% 17.1% 11.8% 13.4%

MPCFC 3.7% 3.8% 17.3% 12.3% 13.6%

DP 8.6% 6.9% 22.2% 16.9% 21.2%

The difference in fuel savings between DP and MPC can be attributed to the nature of
each method. As an offline optimization technique, DP is capable of exploring a broader
solution space to find the global optimum. In contrast, MPC, being an online optimization
method, focuses on local optima within the prediction horizon. However, MPC’s ability to
continuously update its predictions based on real-time data allows it to adapt to changing
conditions effectively.

4.2. Tracking and Passenger Comfort

Passenger comfort, evaluated based on acceleration smoothness, and performance
tracking of MPC-based controllers were initially examined using the UDDS driving cycle,
as illustrated in Figure 2.
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Figure 2. Distance error, MPC−equipped ego, and lead velocities and accelerations along UDDS
driving cycle.
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For improved clarity, Figure 3 provides a zoomed-in view of the velocity and accelera-
tion profiles, highlighting the controller’s ability to produce smoother profiles compared
to the lead vehicle. A comprehensive comparison, incorporating the lead vehicle, MPC,
and baseline DP velocity and acceleration profiles, is presented in Figure 4 within the
same zoomed window. Additionally, Figure 5 extends this comparison to the AUDC
driving cycle.
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Figure 3. MPC−equipped ego and lead velocities and accelerations along UDDS driving cycle,
[0, 450 s] zoom.

Figure 4. Comparison of velocity and acceleration profiles of ego equipped with fuel consumption
MPC and DP controllers with lead along UDDS driving cycle, [0, 450 s] zoom.
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Figure 5. Comparison of velocity and acceleration profiles of ego equipped with fuel consumption
MPC and DP controllers with lead along AUDC driving cycle, [0, 450 s] zoom.

Based on the preliminary findings discussed in Section 4.1, only the MPCFC results
are displayed, as both MPC controllers produced nearly identical outcomes. Furthermore,
Figures 4 and 5 showcase that while DP achieved greater smoothness in velocity due to
its access to the entire drive cycle, its acceleration profile occasionally exhibited sharper
transitions than MPC in dynamic scenarios. Table 4 further corroborates these findings,
emphasizing the minimal differences between the results of the two MPC controllers.

Table 4. Acceleration RMS comparison between the lead vehicle and the ego vehicle equipped with
MPC and DP.

Leader MPCFC MPCnoFC DP

RMS acc UDDS (m/s2) 0.6091 0.4924 0.4963 0.5218

RMS acc AUDC (m/s2) 0.7785 0.4728 0.4764 0.4412

4.3. Distance Error

The magnitude of the distance error plays an important role in optimizing the con-
trollers’ performance. Larger errors provide more leeway for the controller to smooth out
the vehicle’s speed and acceleration profiles instead of rigidly tracking the lead vehicle’s be-
havior. Figures 4 and 5 demonstrate that the DP algorithm extensively utilizes its available
margin owing to its prior knowledge of the driving cycle. This allows DP to dynamically
adjust the distance error, even occasionally resulting in negative values, although it never
leads to zero or negative inter-vehicle distances. The MPC controller, operating with less
foresight, exhibits a more conservative use of the distance error. Notably, in scenarios
with greater dynamic changes, both DP and MPC exploit this parameter more actively,
as illustrated in Figures 6 and 7, which also depict the velocity and acceleration profiles
for completeness.
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Figure 6. Comparison of distance error, velocity, and acceleration profiles of ego equipped with fuel
consumption MPC and DP controllers with lead along ARDC driving cycle, [0, 450 s] zoom.
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Figure 7. Comparison of velocity and acceleration profiles of ego equipped with fuel consumption
MPC and DP controllers with lead along RD2 driving cycle, [0, 450 s] zoom.

5. Conclusions

This paper presents a comparative analysis of two model predictive control strategies
aimed at optimizing adaptive cruise control systems for enhanced fuel efficiency and
passenger comfort while ensuring safe driving behavior, with their key difference being
the formulation of their cost functions:
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• One strategy explicitly incorporates a fuel consumption term;
• The other indirectly addresses fuel efficiency by focusing on acceleration smoothing.

The two MPC strategies are also benchmarked against a dynamic programming
controller. The results show that both MPC controllers yield comparable outcomes in terms
of computational efficiency, making them suitable for real-time implementation. In terms
of performance, the MPCFC, which includes the explicit fuel consumption term, marginally
outperforms the alternative strategy, though it operates with slightly slower computational
speed. However, the performance improvements are minimal, calling into question the
added complexity and effort required for implementing MPCFC. Furthermore, despite
both controllers having the same number of tunable parameters, the tuning process for
MPCFC was more time-consuming. Additionally, the development of MPCFC involved
several assumptions and approximations, such as maintaining a constant gear ratio over
the prediction horizon and applying polynomial fitting to the fuel map, which may not
always be readily available.

In conclusion, while MPCFC achieved slight performance advantages, the demon-
strated potential for both MPC strategies to reduce fuel consumption and improve pas-
senger comfort makes them both promising candidates for future ACC systems. As the
automotive industry progresses towards more sustainable and efficient mobility solutions,
advanced control strategies like MPC will be crucial in achieving these objectives. Given the
marginal differences in performance, a controller that is easier to tune and implement may
prove more viable for commercial deployment. Nonetheless, further validation in more
realistic simulation environments is essential to fully explore and refine this comparison.
In future work, we plan to test the developed algorithms in a more complex simulation en-
vironment and with a higher modeling fidelity in order to properly capture the vehicle and
powertrain dynamics as well as the interference due to traffic and unexpected maneuvers.
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