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Abstract: This study investigates the application of neural networks to the evaluation of minimum-
time low-thrust transfers in low Earth orbit. The findings demonstrate the effectiveness of utilizing
costates to regularize the training loss, significantly enhancing the accuracy of the predictions of
the neural networks, even when working with limited datasets. Remarkably precise estimates of
transfer times are achieved by training the regularized networks on datasets comprising one million
samples. The incorporation of a warm-started guess strategy, involving simpler neural networks
to provide transfer time and costates predictions for new transfers, accelerates the data collection
process, making this approach highly practical for real-world applications. Overall, the methodology
employed in this research study holds significant promise for low-thrust space missions, particularly
when the evaluation of multiple minimum-time transfers is necessary in mission planning. In fact, the
trained neural networks significantly speed up convergence when solving optimal control problems
with indirect optimization methods. Furthermore, the remarkable accuracy in estimating both
minimum transfer times and costates provides the flexibility of relying entirely on neural networks
for determining minimum time.

Keywords: neural network; machine learning; trajectory optimization; LEO orbit

1. Introduction

Low-thrust electric propulsion is a favored choice for numerous space missions due to
its significant benefits in terms of propellant consumption [1]. Mission designers often seek
to evaluate time-optimal and fuel-optimal transfer trajectories. The optimization of low-
thrust trajectories is typically formulated as an optimal control problem (OCP), which can
be typically solved by using numerical approaches, classified as direct or indirect methods.

Direct methods are known for their flexibility and robustness, although they require
increased computational resources to achieve high accuracy. In contrast, indirect methods
offer several advantages, including high numerical accuracy and the ability to ensure
that any solution satisfies the necessary optimality conditions. These methods employ
Pontyagin’s Maximum Principle (PMP) and result in a boundary value problem (BVP).
However, the challenge with indirect methods lies in solving the BVP by using shooting
methods, which heavily rely on accurate initial guesses for the costates. Since the costates
may not possess physical meaning, providing precise initial guesses is rarely a simple task.
This limitation reduces the robustness of indirect methods and makes their implementation
time-consuming, especially when evaluating numerous transfers.

To address these limitations, recent advancements have introduced methods such as
the enhanced smoothing technique described in [2] and the Uniform Trigonometrization
Method detailed in [3,4]. These approaches offer significant improvements in the solution
process for indirect methods, even when dealing with control and state constraints. Their
contributions underscore that this is a very active area of research, with continuous efforts
to improve the practicality and robustness of indirect methods.
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Despite these advancements, challenges remain, particularly in multitarget missions,
where the objective is to find the optimal sequence of transfers that minimizes an overall
mission cost index. In these scenarios, the reliable evaluation of transfer legs is crucial, but
the vast number of potential transfers makes classical optimization methods impractical for
early mission planning stages. Instead, there is a need for the rapid estimation of transfer
costs with sufficient accuracy, without delving deeply into the optimal control law of each
individual trajectory.

Active debris removal (ADR) missions in low Earth orbit (LEO) and on-orbit servicing
(OOS) missions of satellites represent classical examples of this kind of problems. A key
challenge in these missions is the ability to rendezvous with multiple objects within a
limited timeframe. As a matter of fact, the time that a servicer spacecraft spends in transfer
orbits plays a pivotal role in determining the overall duration of a servicing mission.
Therefore, the aim of this study is to explore the use of neural networks as function
approximators to enhance the efficiency of designing multitarget missions in LEO by using
electric propulsion.

Recently, interest in the application of machine learning (ML) techniques, in particular
deep neural networks (DNNs), to different fields of optimal control has grown [5,6]. In
the existing literature, the use of DNNs has been explored in several contexts which are
relevant for space trajectory optimization problems.

First, some studies have applied DNNs for real-time guidance applications [7–13],
highlighting their potential for immediate decision making in dynamic environments. In
particular, a computationally efficient DNN is presented in [7], demonstrating its near-
optimal performance as a controller across different scenarios. It tackles a significant issue
in low-thrust propulsion, i.e., missed thrust events, and shows how the DNN can correct the
trajectory when such events occur. In [8], the authors propose an approach that integrates
optimal control theory with DNNs to tackle various challenges encountered in spacecraft
missions. These challenges include navigating unknown deep space environments, manag-
ing limited communication capabilities, and handling complex dynamics. The proposed
method involves training a DNN by using state–control and state–costate pairs derived
from a high-fidelity algorithm. Specifically, the authors apply this method to address
two specific spacecraft missions: the hypersonic reentry problem and the fuel-optimal
moon landing problem. The trained DNN plays a pivotal role in enhancing the real-time
performance of their algorithm: it is utilized to provide accurate guesses for the initial
costates, thereby improving the efficiency of the indirect method during mission execution.

A second application domain of DNNs in space trajectory optimization is as a replace-
ment of traditional methods for solving the BVP produced by indirect methods. Recent
studies [14,15] have successfully applied this approach, demonstrating the capability of
DNNs to simplify and speed up complex trajectory optimization tasks. In [14], the authors
proposed an approach that utilizes artificial DNNs to approximate the solution of optimal
control problems by minimizing an error function incorporating the PMP conditions.

An additional application domain, which is of specific interest for the present article, is
the use of DNNs to accelerate global optimization processes, particularly those that require
frequent evaluation of transfer costs [16–19]. The effectiveness of this approach stems from
the representational power of DNNs, as they can learn the functional mapping between
initial and final states to the objective function. However, obtaining a large and dense
dataset for OCPs can be challenging. DNN models can be viewed as complex geometric
transformations, and their generalization capability heavily relies on the ability to smoothly
interpolate the dataset points. Therefore, having a large and dense dataset is crucial to
achieving better models. In the framework of OCPs solved with indirect methods, the
collection of samples requires solving BVPs, making dataset generation laborious.

To address this issue, researchers have explored the utilization of adjoint variables, in-
troduced by the indirect formulation of optimal control problems, as a means to regularize
the loss function of DNNs [12,13]. Adjoint variables, also known as costates, represent the
gradient of the objective function with respect to variations in the initial states [20]. There-
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fore, a term can be added to the DNN loss function that ensures that the derivative of the
DNN’s output (i.e., the predicted objective function) with respect to the initial states given
as inputs to the DNN is equal to the initial value of the costates. This regularization aims at
enhancing the generalization power of the DNN by constraining it to learn the underlying
mathematical law governing the OCP. Consequently, the parameter space (weights and
biases) that minimizes the DNN’s loss function is restricted to configurations adhering to
this property. This strategy, inspired by physics-informed neural networks (PINNs) [21],
aims to enhance the DNN’s performance even when dealing with small datasets.

This study seeks to leverage DNNs building on these advancements and develop a
more efficient framework for planning multitarget missions, specifically for ADR and OOS
operations. This work investigates the ability of DNNs to predict minimum transfer times
(the value function) for low-thrust transfers in LEO. In [22], the focus was on building
an approximation of optimal transfers for fast evaluations of minimum-time transfers in
LEO, but the BVP solution was still required. In contrast, the approach presented here
offers a significant advantage: while it can accelerate the convergence of the BVP, its greater
benefit lies in its ability to directly estimate the transfer cost, thereby avoiding the need
to solve the BVP and reducing computation time. While there is research on using DNNs
to estimate the time of flight in LEO transfers [16,17], such studies are typically confined
to impulsive transfers and do not use the PINN framework. Our research extends this
concept to low-thrust transfers, which also involve constraints on state variables, such
as maintaining a spacecraft above a certain altitude limit. This often results in complex
optimal trajectories with a three-arc structure, where the middle arc is flown at the altitude
limit. This significantly complicates the application of indirect methods, as they require
the precise handling of boundary conditions and adjoint variables across multiple phases,
making the convergence to an optimal solution more challenging.

In the field of space applications, previous research has applied similar PINN methods
to OCPs. The authors in [15] proposed a novel framework for solving BVPs using PINNs
in a purely physics-driven manner. Their approach focuses solely on the residuals of
the differential equations governing the BVPs. While this method has proven effective
for learning optimal controls in intercept problems, it still needs the solution of the BVP
and is not suited to obtain rapid estimation costs for multiple transfers. The present
work shifts the focus to these rapid estimations; in this context, the regularization of
a DNN using adjoint variables to approximate the value function of an OCP has been
successfully employed only by the authors in [12]. Their work, which concerned satellite
attitude control without state or control constraints, demonstrated better value function
approximations with regularization compared with non-regularized DNNs. In the context
of low-thrust trajectories, however, the only prior attempt to use a regularized network
for this purpose was made in [13], specifically in an Earth–Venus transfer. The analysis
concerned a set of trajectories in a narrow beam around a nominal path. That work focused
on retrieving, for real-time guidance, the optimal controls from the DNN as derivatives
of the represented value function with respect to the initial states. While the regularized
DNN offered improved control approximations, it failed to outperform the non-regularized
network in value function approximation. These limitations highlight a significant gap in
the space trajectory optimization literature.

The present study aims at extending and improving the application of regularized
DNNs to space trajectory optimization. First, the selection of LEO transfers as an appli-
cation explores the method’s capabilities to deal with state constraints (in addition to the
obvious practical interest for LEO missions). Also, this study identifies key hyperparame-
ters enabling a regularized DNN to outperform a non-regularized one for low-thrust orbital
transfers in a wide range of the state space. As discussed in [13], the benefits of regulariza-
tion were either limited or not noticeable when estimating the value function. However,
the results presented here will demonstrate the effectiveness of the proposed approach and
will prove that regularization can improve both the accuracy of value function estimation
and the model’s ability to be generalized to new data.
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The first step in this study consists in building three datasets with different character-
istics. In order to speed up the collection of new samples, namely, time-optimal trajectories
in LEO between given initial and final states, partial data are used to train non-optimized
DNNs. In turn, these coarse DNNs provide warm-started guesses for the unknowns of
new transfers. Once the datasets are collected, a thorough optimization of the DNNs’
hyperparameters is performed by using a Bayesian optimization approach. Then, an as-
sessment of the use of costates as a means to regularize the DNNs’ loss is conducted, and
the results are compared to those obtained without regularization. Finally, the method
is compared to other state-of-the-art algorithms. Section 2 provides a description of the
optimal control problem and the DNN approach. Section 3 describes the collection strategy
for the datasets and outlines the fine-tuning process of the DNNs’ hyperparameters. The
results are presented in Section 4 and are validated in Section 5 considering multitarget
missions. Finally, the conclusions are drawn in Section 6.

2. Background
2.1. Optimal Control Problem

In this study, the OCP is formulated following the approach presented in [22]. This
section provides a concise summary of that work. The motion of the spacecraft is governed
by the perturbed two-body problem equations, accounting for the secular effects of J2 and
low-thrust acceleration. The analysis focuses on nearly circular orbits and long-duration
transfers, disregarding variations in eccentricity, the argument of periapsis, and mean
anomaly. This approximation is deemed suitable for preliminary evaluations in the context
of sequence planning. Since the solutions of interest perform a large number of revolutions
around the Earth, one can reasonably expect that eccentricity and phase corrections can be
spread along the trajectory with small variations in total cost, without remarkably affecting
the DNN’s estimation accuracy. In the multitarget missions in Section 5, five days are
reserved for rendezvous operations and are included in the transfer cost; they could also
be used for small orbit corrections. Gauss’ planetary equations [23] are employed. The
differential equations for the orbital elements are expressed as functions of the orthogonal
components of the perturbing acceleration, specifically the thrust-to-mass ratio (T/m), in
the radial–tangential–normal reference frame. Edelbaum’s approximation [24] assumes a
constant angle β between the thrust vector and the orbit plane with a sign switch every
half revolution and gives the element changes over one revolution. These values are
divided by the time required to complete that revolution in order to approximate the time
derivatives of the orbital elements. Consequently, the resulting state equations can be
expressed as follows:

da
dt

= 2
T
m

√
a3

µ
cos β (1)

di
dt

=
2
π

T
m

√
a
µ

sin β cos ϑ0 (2)

dΩ
dt

=
2
π

T
m

√
a
µ

sin β(sin ϑ0/ sin i) + Ω̇J2 (3)

dm
dt

= − T
g0 Isp

= −T
c

(4)

where a represents the semimajor axis, i denotes the inclination, Ω represents the right
ascension of the ascending node (RAAN), g0 represents the gravitational acceleration on
Earth’s surface, and Isp is the specific impulse (assumed to be constant). Furthermore,
c = g0 Isp denotes the effective exhaust velocity, and Ω̇J2 represents the secular variation in
the RAAN due to the J2 perturbation, given by

Ω̇J2 = −3
2

J2

( rE
a

)2
√

µ

a3 cos i
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with rE and µ the Earth’s radius and gravitational parameter. The controls are the thrust
angle β and the angle ϑ0, which determines the argument of the latitude ϑ, where the sign
switch occurs (at ϑ = ϑ0 + π/2 + kπ for any integer k). To determine the optimal control
law, the theory of optimal control is applied. The Hamiltonian takes the following form:

H =
2
π

T
m

√
a
µ

(
πλaa cos β + λi sin β cos ϑ0 + λΩ sin β

sin ϑ0

sin i

)
−λΩ J2

3
2

( rE
a

)2
√

µ

a3 cos i − λm
T
c

(5)

The Euler–Lagrange equations are

dλa

dt
= −3λaa

T
m

√
1

µa
cos β − λi

[
1
π

T
m

√
1

µa
sin β cos ϑ0

]

−λΩ

[
1
π

T
m

√
1

µa
sin β(sin ϑ0/ sin i) + J2

21
4

( rE
a

)2
√

µ

a5 cos i

]
(6)

dλi
dt

= λΩ

[
2
π

T
m

√
a
µ

sin β
sin ϑ0

sin2 i
cos i − J2

3
2

( rE
a

)2
√

µ

a3 sin i
]

(7)

dλΩ

dt
= 0 (8)

dλm

dt
= 2

T
m2

√
a
µ

[
λaa cos β + λi

1
π

sin β cos ϑ0 + λΩ
1
π

sin β
sin ϑ0

sin i

]
(9)

In agreement with PMP, the optimal controls maximize the Hamiltonian (since the
problem is formulated to maximize the opposite of the final time: J = −t f ). The algebraic
equations for the controls are, therefore,

tan ϑ0 =
λΩ

λi sin i
(10)

tan β =
λi cos ϑ0 +

λΩ
sin i sin ϑ0

πaλa
(11)

The Hamiltonian is linear with respect to the thrust magnitude, and bang–bang control
is required in agreement with PMP. Introducing the switching function

SF =
2
π

1
m

√
a
µ

√
(πaλa)2 + λ2

ı +

(
λΩ

sin ı

)2
− λm

c

maximum thrust is used when the switching function is positive and null thrust when
SF is negative. The optimal control problem is formulated by specifying the boundary
conditions that define the desired transfer and the performance index. The initial orbital
elements a0, ı0, and Ω0 are prescribed. The target orbit to be reached at the end of the
transfer is characterized by its elements at the initial time t0 = 0, represented by aT , ıT , and
ΩT0. The time-derivative of the target RAAN (Ω̇J2)T is a function solely dependent on aT
and iT . At the final time, the following conditions must be satisfied: a f = aT , ı f = ıT , and
Ω f = ΩT0 + (Ω̇J2)Tt f .

The theory of optimal control also provides the boundary conditions for optimality.
For a minimum-time trajectory with free final mass, the boundary conditions are given by
H f − λΩ(Ω̇J2)T = 1 and λm f = 0. From these conditions and from the observation that
the mass adjoint derivative is always positive, it follows that SF is always positive, and
the engine operates at maximum thrust for the entire duration of the transfer. The five
boundary conditions at t f determine the five unknowns of the problem: t f and the initial
values of the adjoint variables. In some cases, a decrease in orbital altitude (necessary to
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amplify the effect of J2 perturbation on the spacecraft) may lead to transfers that penetrate
the atmosphere. A constrained optimization problem must be defined by fixing a minimum
altitude hlim to avoid such occurrence. In such cases, a three-arc structure becomes optimal.
The spacecraft follows the optimal control law during the initial and final arcs, from t0 to
t1 and from t2 to t f , respectively. It maintains constant altitude (i.e., β = 90 deg) during
the intermediate arc from t1 to t2. The altitude constraint is enforced at point 2, where an
additional boundary condition, a2 = rE + hlim, is introduced. The boundary conditions
for optimality state that the adjoint variables and the Hamiltonian are continuous at t1
and t2, except for λa2, which exhibits a free discontinuity. Based on the continuity of the
Hamiltonian at t1, it follows that λa1− = 0 (the subscripts − and + indicate the values
just before and after the relevant point where the discontinuity occurs). Similarly, at t2,
λa2+ = 0. The three boundary conditions on a2, λa1−, and λa2+ determine the three
additional unknowns: t1, t2, and λa2+. The formulation of both the unconstrained and the
constrained problems is summarized in Table 1.

Table 1. Optimization problem formulation.

Unconstrained Constrained

State equations Equations (1)–(4) Equations (1)–(4)

Euler–Lagrange equations Equations (6)–(9) Equations (6)–(9)

Boundary
conditions

a f = aT
i f = iT

Ω f = ΩT0 + (Ω̇J2)Tt f
λm f = 0

H f − λΩ(Ω̇J2)T = 1

a f = aT
i f = iT

Ω f = ΩT0 + (Ω̇J2)Tt f
λm f = 0

H f − λΩ(Ω̇J2)T = 1
a2 = rE + hlim

λa1− = 0
λa2+ = 0

Unknowns t f , λa0, λi0, λΩ0, λm0 t1, t2, t f , λa0, λa2+, λi0, λΩ0, λm0

The order of the BVPs presented in Table 1 can actually be reduced by one. The
condition on the final value of the Hamiltonian is essentially a scaling condition, since
the problem is homogeneous in the adjoint variables. It can be replaced by specifying
one of the initial values; here, we pose λΩ = ±1. By fixing λΩ (which remains con-
stant), the adjoint variables and the Hamiltonian are scaled relative to the solution that
satisfies H f − λΩ(Ω̇J2)T = 1. However, as only ratios of adjoint variables appear in
Equations (10) and (11), the optimal controls remain unaffected. In the constrained prob-
lem, the BVP order is further reduced by one, as the unknown λa2+ is actually specified
(equal to 0); the proper value is imposed during integration at the beginning of the third
phase. It is important to select the appropriate sign of λΩ to avoid solutions with negative
time of flight. Its sign is determined by the difference between the perturbed RAAN values
of the final and initial orbits, evaluated at the final time of Edelbaum’s transfer (which
neglects RAAN correction) for the same changes in the semimajor axis and inclination.

2.2. Neural Networks

In the context of the optimal control problem at hand, a minimum transfer time is
associated with every possible set of initial state, target state, specification of the propulsion
system, and altitude constraint. That is, the minimum transfer time, denoted by t f , is a
function of the initial state (a0, i0, ∆Ω0, m0), the target state (aT , iT), the parameters of the
propulsion system (T, c) and the altitude constraint (hlim). Since fixed values of T, c, and
hlim are used in this analysis, t f can be expressed mathematically as

t f = gt f (a0, i0, ∆Ω0, m0, aT , iT) (12)
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For any Ω0 and ΩT0, one can select the reference axis such that Ω0 = 0 and ΩT0 = ∆Ω0,
where ∆Ω0 is the difference between the target and the initial RAAN at start time. There-
fore, the function depends only on the initial RAAN difference. Similarly, for the initial
costate λx0 associated with variable x and for the intermediate time ti, the following
relationships hold:

λx0 = gλx0(a0, i0, ∆Ω0, m0, aT , iT) x = a, i, Ω, m (13)

ti = gti (a0, i0, ∆Ω0, m0, aT , iT) i = 1, 2 (14)

In this analysis, fully connected feed-forward DNNs are designed to interpolate the
functions gt f , gλx0 , and gti . The inputs to each DNN are, therefore, the initial states and
target states. All DNNs have a single-output neuron (Figure 1), so the mapping defined
by the DNNs has the general form y = f ∗(a0, i0, ∆Ω0, m0, aT , iT , θ), where y is the scalar
output and θ denotes the weights and biases of the DNN.

Figure 1. Neural network with two hidden layers. The number of layers and neurons per layer
define θ.

2.2.1. Loss Functions

Two types of DNNs are trained to interpolate the minimum transfer time function.
The first type, denoted by Nt, utilizes the mean squared error loss. The loss associated with
a sample in the dataset is defined as

Lt =
[
t f (a0, i0, ∆Ω0, m0, aT , iT)− tN

f (a0, i0, ∆Ω0, m0, aT , iT , θ)
]2

(15)

Here, t f represents the true minimum time found by the indirect method and tN
f

denotes the DNN’s prediction. The second type of DNN for minimum-time interpolation,
denoted by Ntreg , utilizes a modified loss function. By the theory of optimal control, the
derivative of the objective function with respect to an initial state corresponds to the costate
associated with that state. Consequently, by using the initial values of the costates from
solved transfers, a regularization term is defined as

Lreg =

∣∣∣∣λx0 opt −
d

dx0
t f

N(a0, i0, ∆Ω0, m0, aT , iT , θ)

∣∣∣∣2 (16)
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Here, λx0 opt =
(

λa0opt , λi0opt , λΩ0opt , λm0opt

)T
is the costate vector at the initial time,

with the subscript ’opt’ denoting that it corresponds to the optimal solution. Moreover,
x0 = (a0 , i0 , Ω0 , m0)

T is the initial state vector. The modified loss function is defined as

Ltreg = Lt + rLreg (17)

In the above equation, r represents a regularization factor controlling the strength of
the regularization term in updating the trainable parameters of the DNN. The regularization
term forces the DNN to learn information about the physics of the problem, restricting
the domain of possible configurations of θ that minimize Lt. By leveraging TensorFlow’s
automatic differentiation capabilities, retrieving the gradient of tN

f with respect to x0 is
computationally efficient, as it only requires the forward pass through the computation
graph. Moreover, the gradient is exact.

Additional single-output DNNs, denoted by Nλa , Nλi , and Nλm are used to approx-
imate Equation (13), while Nt1 and Nt2 approximate the intermediate times. The mean
squared error loss is employed for these five DNNs. Notably, the derivatives of the output
of Ntreg with respect to the initial states are also used to approximate the costates. In sum-
mary, a total of seven DNNs were employed in this work: Nt, Ntreg , Nλa , Nλi , Nλm , Nt1, and
Nt2. All DNNs were implemented by using Python, with Keras and Tensorflow. In addition,
training was performed on NVIDIA GeForce RTX 3070 Ti GPUs and the optimal control
problems between the initial, and final states were solved by using a Fortran program
that implemented PMP and solved the BVPs, relying on an Intel(R) Core(TM) i5-8400
CPU. The optimal control problems were solved in dimensionless units , and no additional
normalization of the data was performed before feeding them to the DNNs.

2.2.2. Learning Rate Schedulers

All DNNs in this paper were trained by using the Adam algorithm [25]. The exponen-
tial decay rates for the moment estimates was kept fixed at default values (β1 = 0.9 and
β2 = 0.999), weight decay was not applied, and ϵ̂ was set to 10−7. The stepsize α (i.e., the
learning rate upper bound for each parameter in the DNN) was either kept fixed at a
given value or updated at the end of every batch according to a scheduler. A total of
five schedulers were implemented. The cosine annealing scheduler described in [26] was
implemented in two variants. The first one, which will be referred to as cosine annealing
(CA), set the learning rate η at each batch iteration t according to the following:{

ηt = ηmin + 1
2 (ηmax − ηmin)

(
1 + cos

( t
T
))

if t ≤ T
ηt = ηmin if t > T

(18)

where ηmin and ηmax define the range for the learning rate and t is the number of batches
processed since the beginning of training. When t = 0, ηt = ηmax, whereas ηt = ηmin is
reached at t = T. The learning rate stays constant at ηmin thereafter. The second variant,
which will be referred to as restarted cosine annealing (RCA), restarted the learning rate
value every time the lower boundary was reached according to the following:

ηt = ηmin +
1
2

(
ηi

max − ηmin

)(
1 + cos

(
t
Ti

))
(19)

Here, ηi
max denotes the upper bound of the learning rate during the i-th cycle, t is

the number of batches processed since the last restart, and Ti is the i-th cycle’s length.
At every restart, ηi

max is updated according to ηi
max = γcηi−1

max, where γc is a decay rate
between 0 and 1. Analogously, the cycle length is updated according to Ti = kmultTi−1,
where kmult is a multiplication factor greater than 1.



Aerospace 2024, 11, 879 9 of 20

The other three schedulers, described in [27], adopted a triangular policy. The first
triangular scheduler, denoted hereafter as triangular 1 (T1), set the learning rate according to
the following:

ηt = ηmin + (ηmax − ηmin)max
(

0, 1 −
∣∣∣∣2 t

T
− 2

⌊
1 +

t
T

⌋
+ 1

∣∣∣∣) (20)

Here, all symbols have the same meaning as in Equations (18) and (19), and ⌊x⌋
denotes the floor function of x. The learning rate starts at ηmin and cyclically varies linearly
between ηmin and ηmax, and T represents the number of batches until the learning rate
returns to the initial value. The second triangular scheduler, denoted by triangular 2 (T2), is a
variation of the first one where the maximum learning rate is halved at the end of each cycle:

ηt = ηmin +
(

ηi
max − ηmin

)
max

(
0, 1 −

∣∣∣∣2 t
T
− 2

⌊
1 +

t
T

⌋
+ 1

∣∣∣∣) (21)

The upper bound for the learning rate during the i-th is ηi
max = 1

2 ηi−1
max. The last

triangular scheduler, denoted by triangular 3 (T3), is described by

ηt = ηmin + γt
e(ηmax − ηmin)max

(
0, 1 −

∣∣∣∣2 t
T
− 2

⌊
1 +

t
T

⌋
+ 1

∣∣∣∣) (22)

Here, γt
e is an exponential factor that causes the upper bound to decay after every batch.

3. Methods
3.1. Dataset Collection Strategy

All datasets in this study contain 1 million samples. Each sample in the dataset consists
of the initial and final states of the transfer (the input of the DNNs), the optimal time t f , the
intermediate times t1 and t2 (only for the constrained transfers), and the costate vector λx0.
The logic of the strategy adopted to collect samples is illustrated in Figure 2.

At the beginning of dataset collection, the Fortran program randomly selects the
costates from a uniform distribution within the range [−5, 5]. The transfer time guess is
chosen randomly between upper and lower bounds, which are defined with reference to
simplified transfers. The lower bound tEdel represents the transfer duration in the absence
of RAAN changes, i.e., the original problem treated in Edelbaum’s paper [24]. It is a lower
bound for the actual transfer, which must, in addition, achieve the required RAAN. The
upper bound tmax = tEdel + tRAAN is the total duration of the transfer that first changes the
semimajor axis and inclination and then uses thrust at constant altitude and inclination to
actively achieve the required RAAN change. It is worthwhile to note that these bounds only
hold for the initial guess, but the indirect method may actually converge to a minimum-time
value outside of this range (even though never below tEdel).

The program first attempts to solve the problem without the altitude constraint.
A maximum of 10 random guesses per transfer are attempted. If the problem converges,
the trajectory is analyzed. If the converged trajectory falls below the specified altitude limit,
the program attempts to solve the constrained transfer. In this case, an initial guess t1 is
selected from a uniform distribution within the range between tin and 1.1tin, where tin
represents the time at which the spacecraft penetrates the atmosphere in the unconstrained
problem. Similarly, t2 is guessed from a uniform distribution between tout and 1.1tout,
where tout represents the time at which the satellite rises above the altitude limit in the
unconstrained problem.

Since any point on the optimal path between the initial and the target states is actually
an initial state for the same optimal controls [20], 10 points along the trajectory of each
transfer are sampled and collected in the dataset. This strategy helps obtain a dense dataset,
which is crucial for the DNN to learn the underlying function.
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Figure 2. Warm-started guess strategy adopted for the collection of the datasets.

Once 10,000 samples are collected (i.e., 1000 transfers are solved), all seven DNNs are
trained in parallel on the partial dataset while collecting more data. The partial dataset is
split in three in a 8:1:1 ratio, for training, validation, and testing, respectively. After training,
the DNN that best approximate the unknowns are used to provide a warm-started guess
for new transfers. As already mentioned, Ntreg is employed to also predict λx0opt. Since
the Fortran program uses scaled costates by fixing |λΩ| = 1, the scaled costate vector is
given by λx0 = signλΩ

(
λx0opt/λΩopt

)
. The hyperparameters for all DNNs used for the

warm-started guesses are fixed a priori to reduce the training time. The DNN architecture
consists of 10 hidden layers, 1000 neurons per layer, softplus activation functions for the
hidden layers, and linear activation function for the output. The weights are initialized by
using the He normal algorithm [28]. The CA scheduler is employed, with ηmax = 10−4,
ηmin = 10−7, and T = 0.9 b nmax, where b is the number of batches per epoch and nmax is
the maximum number of epochs for training. In order to train the DNNs in a matter of
a few minutes on the available hardware, nmax is set to 1000, and the batch size is set to
256 samples. The regularization factor r from Equation (17) is set to 10−4, as the gradient of
Lt with respect to the DNNs’ trainable parameters is observed to be smaller than the one of
Ltreg , on average, by roughly 4 orders of magnitude.

Three different datasets are collected, denoted by D1, D2, and D3. For each transfer in
the datasets, the initial semimajor axis a0 is randomly picked from a uniform distribution
in the range between 200 km and 2000 km. The same range is used for the target semimajor
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axis aT . Therefore, roughly the entire spectrum of altitudes in LEO is considered. The
initial RAAN difference between the final and initial orbit is randomly selected from a
uniform distribution in the range between −30 deg and 30 deg. To explore the impact
of the initial inclination i0 on the effectiveness of the DNNs, dataset D1 encompasses a
narrow range of initial inclinations, ranging from 50 to 55 degrees. The second dataset,
D2, covers the range from 45 to 60 degrees, while the third dataset, D3, covers a broader
range, from 40 to 65 degrees. Qualitatively, one can expect that by broadening the initial in-
clination range, the DNN interpolation of the objective function becomes more challenging.
The target inclination is randomly picked from a uniform distribution in the range from
i0 − 1 deg to i0 + 1 deg. The maximum available thrust is set to 1 N for all experiments,
with a specific impulse of 2500 s. The initial mass for each transfer is randomly selected
within a range from 800 kg to 1500 kg. Finally, the altitude limit is set to 200 km.

3.2. Hyperparameters Fine Tuning

After the collection of the datasets, Ntreg DNNs are trained with fine-tuned hyperpa-
rameters. The hyperparameter search is performed with the partial dataset containing
104 samples by using KerasTuner [29]. The Bayesian Optimization tuner is employed, which
uses Bayesian optimization with the Gaussian process to choose new hyperparameter
values by computing a distribution of the objective function based on the models already
trained. The search space grows combinatorially with the number of hyperparameter
choices and each trial involves training a new model. In order to minimize the search time,
only a few crucial hyperparameters are optimized. In particular, the hyperparameters are
divided into two groups: those that define the architecture of the DNNs and those related
to the learning rate scheduler. A two-step tuning strategy is implemented. The first step
involves fixing the scheduler hyperparameters and tuning the architecture ones. Then,
the scheduler hyperparameters are tuned for the best three architectures. For both steps,
the batch size is set to 128 samples. To reduce the impact of the initialization of θ, every
trial is performed three times, and the results are averaged. The number of trials test for
architecture tuning is 100. The same figure is used to tune the three best architectures,
giving a total of 400 trials to test per model.

During the first step (Table 2), the Bayesian optimizer is tasked with finding the best
combination of the number of hidden layers, the number of units per layer and the type
of activation function for the hidden units. The number of hidden layers can range from
1 up to 20, and the number of units for layer ranges from 100 to 2000 with a discrete step
size of 100. The activation function choices are Softplus, ReLU, and Exponential Linear
Unit (ELU). The regularization factor r is also optimized during this step, ranging from
10−1 to 10−5 with a logarithmic step size of 10. The CA scheduler is employed, with
ηmax = 10−4, ηmin = 10−7, and T = 128,000 (corresponding to 1000 epochs). The maximum
number of epochs per trial is generously set to 20,000 with an early stopping policy that
tracks the best epoch and interrupts training if no improvement occurs after 500 epochs.

Table 2. Architecture hyperparameter search space.

Min Max Step Choices

N layers 1 20 1 -

Units 100 2000 100 -

Activation - - - Softplus, ReLU, and ELU

Regularization factor 10−5 10−1 10 log -

For each of the three best architectures, the Bayesian optimizer is then tasked to search
for the best scheduler. When a scheduler is selected, its hyperparameters are searched
according to Table 3. For the schedulers CA, RCA, T1, T2, and T3, ηmin and ηmax are
sampled in the range between 10−3 and 10−9 with a logarithmic step size of 10. For CA, the
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search space for T is between 1000 and 10,000 epochs, with a step size of 1000 epochs. For
RCA, T1, T2, and T3, the hyperparameter T is picked in the range from 100 to 1000 epochs,
with a step size of 100 epochs. The search spaces for γc and kmult are in the ranges from
0.1 to 1 and from 1 to 5, respectively. For T3, the range between 0.1 and 1 is searched for γe.

Table 3. Scheduler hyperparameter search space.

Min Max Step Scheduler Type

η 10−7 10−3 10 log Constant

ηmin 10−9 10−3 10 log CA, RCA, T1,T2,T3

ηmax 10−9 10−3 10 log CA, RCA, T1,T2,T3

Tepochs
1000 10,000 1000 CA

100 1000 100 RCA, T1, T2, T3

γc 0.1 1 - RCA

kmult 1 5 - RCA

γe 0.1 1 - T3

In addition to the learning rate schedulers, the Bayesian optimizer is also given
the choice of keeping the learning rate fixed, in the range between 10−3 and 10−7. The
maximum number of epochs per trial is set to 20,000. For trials with fixed learning rate,
the patience of the early stopping policy is set to 500 epochs. For the CA scheduler, the
patience is set to T/4 epochs, and for the other schedulers, the patience is set to 2T epochs,
to allow for 2 cycles of non-improvement before stopping.

4. Results
4.1. Dataset Collection

The implementation of the warm-started guess strategy shows a significant improve-
ment in the speed of the collection of the three datasets, as shown in Table 4.

Table 4. Dataset collection statistics.

D1 D2 D3

Partial Complete Partial Complete Partial Complete

Samples 104 106 104 106 104 106

Tested transfers 1022 100,266 1024 100,224 1022 100,264

% converged 97.85 99.74 97.66 99.78 97.85 99.74

Average guesses 1.681 1.041 1.623 1.042 1.691 1.041

Collection time 4 m 59 m 4 m 58 m 4 m 59 m

Average time per converged transfer 0.198 s 0.035 s 0.194 s 0.035 s 0.193 s 0.035 s

% warm-started converged - 99.62 - 99.69 - 99.65

The results are comparable and consistent for all datasets: on average, 1.7 guesses for
a transfer to converge with random guesses. With the help of the DNNs, this figure drops
very close to 1, as on average, only 3 in 1000 warm-started transfers do not converge. The
average convergence time also improves by a factor of almost 6. Notably (Table 5), these
results are obtained by using the Ntreg DNN to estimate both t f and λx0, demonstrating
superiority over Nt, Nλa , Nλi , and Nλm across all datasets (with the sole exception of Nλa

performing better on D3).
This finding is intriguing, as it indicates that Ntreg has better generalization capabilities,

not only for t f but also for the costates. The Ntreg DNN outputs only t f but also uses its
derivatives with respect to the DNN inputs that represent the initial state. This additional
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information allows for a better approximation of the costates for unseen scenarios in
comparison to DNNs specifically trained to solely predict a single costate. This is not
entirely obvious a priori. The difference between Nt and Ntreg is that Nt can adjust its
weights and biases freely to approximate t f as accurately as possible. In contrast, Ntreg is
constrained by the requirement that the derivatives of t f with respect to the initial state
must approximate the costates. This fact limits the weights and biases of the DNN to a
smaller set of configurations. Therefore, Nt tends to overfit the training dataset and its
performance is inferior in unseen scenarios. However, it is not obvious that for Ntreg the
derivatives of t f would be approximated so well that they are even better than those of
DNNs trained to approximate only one specific costate. This could strongly indicate that
the map learned by Ntreg closely replicates the real behavior.

The results on the test split of the partial datasets for Ntreg , in terms of root mean
squared error (RMSE) and mean absolute error (MAE), are shown in Table 6. As expected,
the results on D1 show the best performance, while those on D2 and D3 are relatively
comparable. These results are quite promising, with errors of just a few hours of transfer
time compared with an average optimal transfer time of approximately 10 days and a
standard deviation of around 8 days across all test splits.

Table 5. Test RMSE on partial datasets of costates predictions. Comparison of Ntreg and the
dedicated DNNs.

D1 D2 D3

λa0
Ntreg 0.859 0.241 3.189

Nλa 1.320 0.562 2.089

λi0
Ntreg 0.520 1.106 1.183

Nλi 0.895 1.524 1.239

λm0
Ntreg 0.071 0.032 0.089

Nλm 0.105 0.055 0.130

Table 6. Ntreg test results on partial datasets.

D1 D2 D3

t f
RMSE 2 h 22 m 4 h 56 m 4 h 06 m

MAE 1 h 23 m 2 h 11 m 1 h 51 m

4.2. Hyperparameter Search

The Ntreg DNN with hyperparameters fine-tuned on the 10,000-samples dataset also
achieves better results in estimating t f and λx0 than any of the other fine-tuned DNNs.
Table 7 showcases the comparison between Ntreg and Nt for the results obtained from the
test sets of D1, D2, and D3. Interestingly, there is no clear architectural pattern in the
fine-tuned Ntreg models across these datasets. Notably, Ntreg models trained on D1 and D2
tend to have considerably deeper architectures compared with the model trained on D3.
This indicates that the optimal DNN depth may vary depending on the characteristics
of the data. Nevertheless, despite architectural differences, a consistent trend emerges
regarding the choice of activation functions for the hidden layers. In fact, the ELU activation
function consistently stands out as the best performer across all datasets. This choice of
hidden activations aligns with the unique characteristic of Ntreg , as it is regularized with
the gradient of t f with respect to x0. ELU, known for its smoothness, differentiability, and
adaptability, appears to be particularly well suited for this task. Its smooth transition across
positive and negative inputs, along with robustness against issues like vanishing gradients,
makes it a strong candidate for DNNs subjected to such regularization. When these factors
are considered, it is plausible to speculate that the superior performance of ELU in the
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context of Ntreg may be attributed, at least in part, to its compatibility with the gradient-
based regularization applied to this DNN. Further investigations into the interplay between
ELU activations and gradient-based regularization could provide valuable insights into
optimizing similar DNN architectures for control problems.

Table 7. Results on partial test sets after hyperparameter search.

D1 D2 D3

Ntreg Nt Ntreg Nt Ntreg Nt

t f RMSE 1 h 51 m 3 h 05 m 2 h 47 m 5 h 16 m 1 h 52 m 4 h 42 m

t f MAE 50 m 1 h 50 m 1 h 38 m 3 h 01 m 57 m 2 h 15 m

λa RMSE 0.077 2.532 0.235 20.0 0.077 4.93

λi RMSE 0.126 0.827 0.285 4.05 0.130 4.80

λm RMSE 0.020 0.141 0.018 1.75 0.018 1.15

Units per layer 300 100 500 1000 600 600

Layers 12 14 15 5 7 10

Hidden activations ELU ELU ELU softplus ELU softplus

Output activation linear linear linear linear linear linear

Regularization factor 10−3 - 10−2 - 10−2 -

Scheduler RCA T CA CA RCA RCA

ηmin 10−6 10−6 10−8 10−7 10−5 10−4

ηmax 10−4 10−4 10−5 10−5 10−4 10−3

Tepochs 400 500 5000 7000 400 500

γc 0.2 - - - 0.1 0.2

kmult 1.6 - - - 1.2 2.1

4.3. Full Dataset Test Results

Since no clear pattern emerges from the partial test sets, Ntreg is trained on the full
datasets with all three types of hyperparameter sets, H1, H2, and H3, obtained from
the searches on the partial D1, D2, and D3, respectively. Table 8 summarizes the test
results. Training is repeated three times for all hyperparameter sets, and the results shown
are the averages over the three trials. The results are remarkable for all DNNs, as the
minimum transfer time is predicted with incredible accuracy. Notably, a hyperparameter
set always performs slightly better on the same full dataset when compared with the other
hyperparameter sets. Therefore, it is safe to assume that the best architecture and learning
parameters depend largely on the specific characteristics of the data. As for the initial
costate prediction, all hyperparameter sets perform very similarly and demonstrate an
excellent generalization capability.

Table 8. Test results on full datasets.

Dataset D1 D2 D3

Hyperparameters H1 H2 H3 H1 H2 H3 H1 H2 H3

t f RMSE 27 m 47 m 33 m 46 m 38 m 42 m 46 m 52 m 40 m

t f MAE 17 m 32 m 21 m 30 m 24 m 26 m 27 m 32 m 25 m

λa RMSE 0.23 0.27 0.24 0.21 0.12 0.29 0.33 0.20 0.4

λi RMSE 0.37 0.42 0.42 0.22 0.17 0.33 0.40 0.33 0.62

λm RMSE 0.02 0.02 0.03 0.02 0.01 0.04 0.03 0.01 0.07
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5. Validation

The fine-tuned Ntreg DNN trained on D1 is compared with traditional state-of-the-art
ML algorithms (namely, bagging, random forest, decision tree, and extra tree) to assess the
performance of the DNNs and the overall methodology. All algorithms are trained on the
same dataset. The hyperparameters are fine-tuned according to Table 9 by using random
search with 5-fold cross-validation, where the training and validation datasets used to train
the DNN are combined. The scikit-learn library [30] is used to implement the algorithms
and perform hyperparameter tuning. Each algorithm is allowed a maximum of 100 search
iterations. The results of the fine-tuned models on the test dataset are presented in Table 10,
evaluated by using RMSE, MAE, and mean relative error (MRE). MRE is calculated as

MRE =
1
n

n

∑
i=1

∣∣∣t f p − t f

∣∣∣
t f

where t f is the true minimum-time value, t f p is the predicted value, and n is the number of
test samples. The results clearly demonstrate the superior performance of the DNN, which
is capable of predicting optimal minimum-times with remarkable accuracy. Although all
ML algorithms perform reasonably well, high accuracy is crucial when these models are
integrated into global optimization loops, as transfer time prediction errors can accumulate
across multiple transfers.

Table 9. Hyperparameter search space for the ML algorithms.

Algorithm Hyperparameter Space

Decision tree splitter: [best, random]; max_depth: [2, 100, None];
min_samples_split: [2, 10]; min_samples_leaf: [1, 4]

Extra tree splitter: [best, random]; max_depth: [2, 100, None];
min_samples_split: [2, 10]; min_samples_leaf: [1, 4]

Random forest
n estimators : [10, 100]; max_depth: [2, 100, None];

min_samples_split: [2, 10]; min_samples_leaf: [1, 4],
bootstrap: [True, False]

Bagging n estimators : [10, 100]; max_samples: [0.2, 0.8];
bootstrap: [True, False]

Table 10. Test result comparison of the fine-tuned models on D1.

Model RMSE [Hours] MAE [Hours] MRE [%]

DNN 0.45 0.28 0.21

Decision tree 19.16 9.86 5.70

Extra tree 19.13 9.85 5.69

Random forest 11.37 5.46 3.65

Bagging 11.58 5.53 3.76

To further validate these observations, the DNN is applied to a multitarget on-orbit
servicing (OOS) mission, where the goal is to minimize the total time required to service
50 satellites (this large value is chosen to highlight the method’s capabilities). The servicer
has the same parameters as the spacecraft described in Section 3.1. The target spacecraft
states are randomly generated, with altitudes uniformly sampled between 600 km and
1000 km, inclinations between 50 deg and 55 deg, and initial RAANs uniformly distributed
between 0 deg and 360 deg. The objective is to service all spacecraft in the shortest possible
time. The transfer times between targets are time-optimal low-thrust transfers, with the
costs estimated by the DNN. A fixed service time of 5 days is added after each transfer to
account for rendezvous and servicing operations.
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The total number of possible sequences is 50!, which is in the order of 1064. A beam
search algorithm with beam width set to 5000 is used to explore this large solution space.
For the sake of comparison, the same beam search analysis is also carried out by replacing
the regularized DNN with the other state-of-the-art ML algorithms. After the beam search,
the best sequence found by each method is optimized by using the indirect method to find
the true total mission time, which is compared to the estimated time. The results for the
sequence found with the DNN are presented in Table 11.

Table 11. The best sequence of the minimum-time multitarget mission.

True Total Time [Days] Estimated Time [Days] Error

524.74 525.03 0.14%

The total mission time error is below 0.2%, which is an impressive result considering
that each sequence consists of 50 low-thrust transfers. Figure 3 compares the performance
of the DNN with other ML algorithms on this sequence. The DNN shows a strong ability
to estimate transfer times across all 50 legs, producing results that closely align with those
obtained by using the indirect method. This high level of accuracy demonstrates that the
DNN can reliably approximate transfers, making it a robust and effective surrogate for
the indirect method. The other ML algorithms also perform reasonably well in estimating
the single transfers that make up the sequence, achieving comparable estimates to those
of the DNN. However, slight variations are observed in certain legs, leading to marginal
differences in their accuracy. Nonetheless, the overall cost of the sequence is estimated with
good accuracy by all methods, with a tendency to underestimating the costs.

Figure 3. Performance comparison between the DNN and the other ML algorithms on the sequence
identified by the DNN during the beam search for the OOS mission.
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The beam search finds the best sequences with an apparently lower time of flight
when other ML methods are used to estimate the transfer times. However, verification with
the indirect method shows that these trajectories are actually unfeasible. As an example,
Figure 4 shows the sequence found by using the random forest algorithm, which represents
the best alternative ML method tested in terms of accuracy (similar results are found with
the other algorithms). While the initial transfers are well approximated, random forest
begins to significantly underestimate the transfer time by the fifth transfer. This error
accumulates, and by the 15th transfer, the true solution shows that actual duration and
propellant consumption are four times larger than the random forest estimation. At this
point, 75% of the spacecraft initial mass has already been consumed. Additionally, even
the DNN estimate begins to diverge slightly, as the sequence ventures outside the DNN’s
training domain for mass (and thus thrust acceleration). By the 24th transfer, the sequence
found by the random forest model would actually deplete the entire mass of the spacecraft
if used as fuel, making mission completion impossible.

Figure 4. Performance comparison between the DNN and the other ML algorithms on the sequence
identified by random forest during the beam search for the OOS mission.

This pattern of divergence is consistent across all alternative ML algorithms. Typically,
these algorithms handle short transfers fairly well and approximate sequences accurately
for such cases. However, for longer transfers, they occasionally misestimate to the extent
that a long transfer is estimated as short. As a result, the beam search saves sequences that
are based on poorly estimated long transfers, leading to significant cumulative errors. For
the DNN, this behavior is not observed: it consistently provides robust estimates across all
transfer lengths, ensuring feasible mission sequences.

The consistency and performance of the DNN are further validated through additional
beam searches involving shorter missions. A total of 100 sets, consisting of 10 satellites
with random elements, are defined, and the optimal 10-leg sequence is sought for each set.
The beam width is reduced to 1000. For each trial, the altitudes are uniformly sampled
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between 200 km and 2000 km (in a range broader than the 50-leg mission), and the initial
inclinations and RAANs are uniformly distributed between 50 deg and 55 deg and 0 deg
and 360 deg, respectively. The results of these trials (Table 12) reaffirm the DNN’s accuracy
and reliability. The true mission time (mean value of 237 days) shows large variations and
ranges from 185 to 295 days, depending on the random elements of the satellites in each
set. Notwithstanding, the DNN’s absolute error averages just 1.13 days, with a standard
deviation of 1.00 day. The maximum error is below 6 days. The low variance in error
demonstrates that the DNN not only provides precise transfer time estimates but does so
reliably across different mission conditions. Furthermore, the results highlight the DNN’s
ability to generalize well, even in more constrained mission settings. Shorter sequences
imply more demanding maneuvers and longer leg durations, as targets are few and far
apart. Despite the reduced beam width, which could increase the likelihood of suboptimal
sequences being selected, the DNN maintains high levels of accuracy and consistently
estimates feasible mission solutions.

Table 12. Statistical data on 100 trials for 10-leg sequences.

Mean Max Min Standard Deviation

True total time [days] 237.82 295.74 184.89 20.81

DNN absolute error [days] 1.13 5.89 0.03 1.00

To better evaluate the performance of the proposed methodology, the computation
time of the DNN framework is also compared to the estimated computation time of the
same beam search procedure if the indirect method were used to calculate transfer costs
at each step. On average, the indirect method needs approximately 0.2 s to converge to a
solution. Given that the beam search requires evaluating 5,760,050 transfers, this results
in an estimated total computation time of about 13 days. In comparison, collecting the
dataset, tuning the hyperparameters, and training the DNN takes around 2 days, while the
beam search procedure using the DNN is completed in just 1 h. This demonstrates that the
proposed method significantly reduces optimization time while maintaining accuracy.

However, the suitability of the DNN method depends on the specific case. In scenarios
where only a few transfer evaluations are required, generating the dataset and training the
network can be more computationally expensive than solving the transfers directly with the
indirect method. Therefore, the proposed approach is particularly advantageous for large-
scale problems requiring numerous evaluations, while for smaller problems, traditional
methods may be more efficient.

6. Conclusions

This study explored the application of DNNs to predict minimum transfer times for
LEO transfers in the context of global optimization and frequent evaluation of transfer
costs. The handling of state constraints and the use of the PINN framework are introduced.
The results highlight that using costates to regularize the loss during training significantly
enhances the DNN’s accuracy, even with limited datasets. Specifically, DNNs with ELU
activation functions in their hidden layers demonstrate exceptional performance when
combined with this regularization approach. Further exploration is needed to understand
the role of DNN depth, as this study did not reveal clear patterns in this regard.

Training the regularized DNNs on datasets comprising one million samples achieved
impressively accurate results in estimating transfer times. A warm-started guess strategy,
which involves using simpler DNNs to predict transfer times and costates for new trans-
fers, greatly expedites the process of collecting training datasets. This approach proves
highly practical for real-world applications, particularly in LEO low-thrust space missions.
The indirect optimization method can deal with both minimum-fuel and minimum-time
trajectories. In this article, only the minimum-time case is treated in order to maintain the
focus on the DNN’s approximation capabilities. The same approach adopted here could be
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used to train the DNN on datasets of minimum-fuel solutions with different durations; no
changes in accuracy should be expected, since the two problems are substantially equiva-
lent and only differ in two boundary conditions at the final time. However, in this case, the
optimization of long sequences becomes a daunting task for the beam search (rather than
for the DNN), as the length of each leg becomes an additional unknown. The analysis of
minimum-fuel sequences will be the subject of future work.

The comparison of the DNN model with other state-of-the-art ML algorithms shows
that the use of costates for regularization significantly improves prediction accuracy. Vali-
dation using beam search to optimize a sequence of transfer of a multitarget OOS mission
shows excellent accuracy, with the DNN achieving errors in total mission time below
0.2%. This is notable, given that each sequence involves 50 low-thrust transfers. In
contrast, the other ML algorithms show significant errors, leading to impractically high
propellant requirements.

Finally, the comparison of computation time of the beam search procedure using either
the DNN framework or the indirect method to calculate the transfer costs shows the enor-
mous time savings offered by the DNN approach. While the indirect method is estimated
to take around 13 days to evaluate all transfers, the proposed DNN approach reduces
the optimization time to just 2 days, demonstrating substantial efficiency improvements.
This efficiency, coupled with high accuracy, underscores the practical advantages of the
proposed method, especially for scenarios requiring extensive transfer evaluations.

Overall, the methodology proves highly effective for LEO low-thrust missions and
holds significant potential for global trajectory optimization, where it can provide rapid
and accurate predictions of minimum transfer costs.
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