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Abstract— The unpredictable events can significantly 

impact energy demand and supply in the electricity market, 

leading to price volatility. This study aims to evaluate the 

effectiveness of Long Short Term Memory (LSTM) in 

analyzing real-time data on Locational Marginal Prices 

(LMPs) during periods before, during, and after the COVID-

19 pandemic. Open data from the Midcontinent Independent 

System Operator (MISO) are utilized to obtain the LMP data. 

To evaluate the accuracy of the model predictions, three 

performance metrics were utilized, namely Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and 

coefficient of determination ( 𝑹𝟐 ).  Additionally, the study 

assesses the ability of LSTM to forecast LMP, considering 

yearly fluctuations. Graphical visualizations are created to 

depict the trends and patterns of LMP changes and forecasts 

over time. The results demonstrate the promising potential of 

LSTM in forecasting LMP even in unpredictable situations like 

pandemic. Despite the challenges of accurately estimating 

extreme energy demands during the pandemic, the LSTM 

model generates reliable forecasts, as evidenced by the 

performance metrics. The graphical visualizations also 

illustrate the effectiveness of LSTM in capturing the 

underlying trends and patterns of LMP changes over time. 

Keywords— deep learning, electricity price forecasting, 

locational marginal price, long short-term memory, 

unpredictable event analysis. 

I. INTRODUCTION  

In recent decades, global energy consumption has surged 

due to significant transformations in industry and the 

economy. It is crucial for decision-makers to have accurate 

demand forecasts in order to devise optimal strategies that 

encompass risk mitigation, economic growth, and societal 

improvements [1]. 

Electricity pricing plays a pivotal role in power market 

transactions, following the power industry's reform. High 

prices incentivize sellers to supply electricity to the pool 

market or prompt buyers to use their own generation 

facilities. In order to maximize their profits and shield 

themselves from financial risks, both sellers and buyers 

depend on electricity price forecasting. Predicting electricity 

prices in power markets necessitates considering a multitude 

of factors, such as demand, supply, weather, and fuel market 

variables. The volatility of electricity prices and substantial 

errors from applying forecasting techniques to other markets 

should also be taken into account. The locational marginal 

price (LMP) is utilized to determine the price of bought and 

sold energy in different energy markets, incorporating 

system energy prices, transmission congestion costs, and 

marginal loss costs [2]-[4]. LMP is a methodology employed 

in the electricity sector to ascertain the cost of supplying 

power to a specific location, taking into account the cost of 

electricity generation and transmission system constraints. 

The US Federal Energy Regulatory Commission suggested 

this approach to manage congestion on large-scale power 

grids. By adopting LMP, electricity markets can become 

more efficient in both the short and long term. LMP-based 

pricing has been implemented in several electricity markets, 

such as PJM, MISO, and New England, and managed by 

Independent System Operators (ISO) to ensure effective 

transmission system utilization during congestion. LMP 

contributes to maintaining equitable electricity prices and 

reducing the likelihood of blackouts or voltage fluctuations 

[4], [5]. 

In the absence of transmission congestion, the Marginal 

Cost of Production (MCP) serves as the pricing mechanism 

for the entire power system. However, when congestion 

occurs, the electricity market cannot be cleared at the system 

level. Instead, the market must be cleared at each bus level, 

with the resulting price at each location known as the LMP 

[6]. 

On the other hand, the COVID-19 pandemic and 

associated lockdown measures, including social restrictions, 

travel bans, and remote work policies, have had a significant 

impact on normal business operations and led to a reduction 

in energy demand from the national grid. As a result of the 

sudden change in lifestyle, residential electricity demand has 

dramatically increased, while electricity demand in business 

and industry has decreased, thereby affecting the national 

energy demand profile [7],[8]. Therefore, accurate 

forecasting models and strategies that consider the changing 

energy consumption patterns are critical for policymakers 



and decision-makers to ensure a stable and sustainable 

energy supply in the face of future pandemics or 

unpredictable events. 

Maintaining a balance between electricity demand and 

supply is essential for ensuring the reliable operation of the 

power grid, and accurately understanding fluctuations in 

demand is crucial for grid operators. The COVID-19 

pandemic has resulted in a significant reduction in electricity 

demand, with the New York Independent System Operator 

(NYISO) reporting levels up to 10% below typical levels [9]. 

While electric energy consumption is a factor in grid 

reliability, the variability of demand and generation holds 

greater significance. Large and sudden shifts in demand 

create significant challenges for grid operators, who must 

ensure that the demand and supply of electricity remain 

balanced. Despite the unprecedented circumstances brought 

on by the pandemic, power grids across the United States 

have maintained their reliability. This success can be 

attributed to the early implementation of special precautions 

by grid operators to prevent disruptions to grid operations. 

Moving forward, understanding demand changes will be 

critical to ensuring the resilience and reliability of the 

national power grid in the face of future challenges [9], [10].  

Historically, various methods such as statistical [10], 

[11], and artificial intelligence techniques [13], [14] have 

been employed for price forecasting over the past two 

decades. Deep learning has recently emerged as a popular 

approach for solving complex problems, often yielding 

results comparable to or surpassing human expertise. 

Nonetheless, configuring the parameters of a deep learning 

network can be challenging, as their values govern the 

learning process and influence the network's performance 

[15]. 

Multivariate time series forecasting, particularly using 

LMP spatiotemporal data series, entails predicting future 

values of multiple interrelated variables over time, where 

these variables can impact one another. This forecasting 

method is widely used in various fields, such as economics, 

finance, weather prediction, and energy markets, to make 

predictions and decisions based on the interactions and 

dependencies among multiple variables over time [16]. 

Short-term electricity price prediction in power markets 

is a complex task due to the intricate and dynamic nature of 

price series. Factors like nonlinearity, non-stationarity, 

spikes, and seasonality make it difficult to accurately forecast 

electricity prices [15]. Conventional forecasting methods can 

be classified into several categories, including statistical 

methods [11], [12], fuzzy inference [17], artificial neural 

networks (ANN) [13], [14], and decision trees [18]. 

In this study, historical annual real-time LMP data [19] 

from MISO were leveraged to analyse the effectiveness of 

the LSTM method in assessing the impact of deep learning 

on electricity usage during, before and after an unpredictable 

fluctuation. The LSTM method has been optimized to yield 

the most accurate possible estimation. This study contributes 

to the existing literature by focusing the impacts of 

unexpected large-scale events, such as pandemics, on LMP 

based localized energy transaction arguments. 

 

Fig. 1. The map displays the boundaries of the MISO market along with 

colored real-time total load values sample from 18-Apr-2023.  

The remainder of the study is organized as follows: 

Section II provides a brief background on the applied 

methodological details. Section III discusses the obtained 

results while Section IV provides the concluding remarks. 

II. CONCEPTUAL BACKGROUND 

A. Locational Marginal Price 

LMP data and time sequences have plentiful applications 

such as market analysis, congestion management, economic 

dispatch, risk management, and grid operations. Stakeholders 

like grid operators, regulators, market participants, and 

researchers use them to enhance their understanding of the 

electricity market's behavior, optimize transmission and 

generation operations, and facilitate decision-making for 

pricing, dispatch, and investments. This mechanism also 

provides incentives for market participants to invest in new 

generation facilities, upgrade transmission infrastructure, and 

implement energy-efficient measures. In a deregulated 

electricity market, predicting LMP is crucial for both system 

operators and market participants. Accurate real-time LMP 

forecasts are vital for smart grid efficiency, demand 

response, and managing revenue and risks. Therefore, 

probabilistic forecasting techniques that can provide a 

distribution of future prices are considered to be of great 

value [20], [21].  

LMP is the price of electricity during times of 

congestion. It's calculated using an optimal power flow 

(OPF) solution that takes into account the cost of making 

electricity, moving it to where it's needed, and other factors. 

LMP may vary depending on location, but when there's no 

congestion, it's the same as MCP. In other words, LMP is the 

cost of producing the next unit of electricity in a particular 

place. During periods of congestion, the LMP can fluctuate 

substantially based on location. When demand for electricity 

surpasses the available supply, the LMP may increase to 

motivate producers to increase output or consumers to reduce 

their consumption. This mechanism aids in maintaining 

balance between supply and demand, ultimately mitigating 



grid congestion. It's natural to expect that LMP should be 

higher than the lowest supply bids and lower than the highest 

supply bids [8]. The advantages of LMP are explained in 

Table I. 

The LMP can be calculated as: 

𝐿𝑀𝑃 = 𝑀𝐶𝑃𝐺 + 𝐶𝑇𝐶 + 𝑀𝐶𝐿𝑜𝑠𝑠 (1) 

where 𝑀𝐶𝑃𝐺  is marginal cost of power generation, 𝐶𝑇𝐶  is 

transmission congestion cost and 𝑀𝐶𝐿𝑜𝑠𝑠 is marginal cost of 

losses. 

B. Long Short Term Memory (LSTM) 

LSTM network is a variation of recurrent neural 

networks that has gained popularity in the field of deep 

learning. It has gained significant attention in various 

domains of natural language processing, such as language 

modelling [22], speech recognition [23], and natural 

language inference [24]. 

LSTM network has caught the attention of researchers 

because it can remember things over a long time and handle 

complicated many kinds of structures. This makes it different 

from other neural networks that can't handle these 

complexities. 

This methodology is useful for electricity price 

forecasting and Adam optimizer can be used with LSTM 

neural networks to minimize errors. This model is beneficial 

because it works with different types of gradients, doesn't 

need a fixed objective, and performs well in practice 

compared to other methods. Adam optimizer can be utilized 

to optimize the loss function, which includes mean absolute 

error (MAE), root mean squared error (RMSE), and R-

squared, in LSTM neural networks. The objective of Adam 

optimization is to determine the optimal set of weights that 

minimizes the error values in LSTM neural networks [25], 

[26]. 
TABLE I. DESCRIPTION OF THE ADVANTAGES OF USING LMP 

Advantages Description 

Efficient 

pricing 
signals 

Real-time and near-real-time representation of 

supply and demand conditions, transmission 

limitations, and generation costs at specific 
locations on the power grid can help facilitate 

efficient allocation of resources. 

Congestion 

management 

By identifying congested areas on the power grid 
and using price incentives to encourage participants 

to reduce consumption or increase generation, grid 

reliability can be maintained. 

Increased 
transparency 

The promotion of competition, facilitation of 

market monitoring, and support of regulatory 

oversight can be achieved by enhancing market 
transparency through publicly available information 

on electricity prices at specific locations on the 

power grid. 

Operational 

optimization 

Providing insights into the temporal and spatial 

variability of electricity prices can help optimize 

generation, dispatch, and transmission operations, 
resulting in cost savings and improved grid 

reliability. 

Risk 

management 

Historical LMP data can be used for risk 
management purposes, such as hedging against 

price volatility, evaluating potential investment 

opportunities, and conducting risk assessments. 
Additionally, it supports market trend analysis and 

the development of risk mitigation strategies. 

 
Fig. 2. General Flowchart of LSTM Prediction Model 

In this study, three loss functions are used to evaluate the 

prediction performance of LSTM relative to the electricity 

price value: 

1. Mean Absolute Error (MAE): 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − ŷ𝑖|

𝑛

𝑖=1
 (2) 

2. Root Mean Squared Error (RMSE): 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖 − ŷ𝑖)

2

𝑛

𝑛

𝑖=1
 (3) 

3. Coefficient of determination (𝑅2): 

𝑅2 = 1 −
∑ (𝑦𝑖 − ŷ𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − ȳ)2𝑛
𝑖=1

 (4) 

where 𝑛 is the total number of predicted and actual values, 𝑦𝑖  

is the actual value, ŷ𝑖  is the predicted value, and ȳ  is the 

mean of the actual values. 

The model performs better when the loss function value 

is smaller, indicating that the predicted values are closer to 

the actual values. 

III. CASE STUDY AND RESULTS 

A. Input Market Data Collection and Preprocessing 

LMP Data is open sourced from MISO's own site. 

"Historical Annual Real-Time LMPs" data for 2018/2019 

(before the pandemic), 2020 (during the pandemic) and 2021 

(after the pandemic) were used [19].  

The trading and exchange of electricity, similar to other 

commodities, take place in both wholesale and retail 

markets. In the wholesale market, power generators and 

resellers engage in the buying and selling of electricity. 

MISO Market Reports serve as a valuable source of 

information on real-time and day-ahead energy and ancillary 

services markets, as well as reliability coordination for the 

region. MISO's collaborative and transparent approach with 

stakeholders aims to ensure the reliable delivery of cost-

effective energy through efficient and innovative operational 

and planning strategies [19]. 

MISO's energy markets act as a platform for matching 

energy supply with demand, optimizing the utilization of 



transmission infrastructure, enhancing market transparency, 

eliminating pancaked transmission rates, and centralizing 

unit commitment and dispatch processes. The boundaries of 

the MISO market along with real-time total load shown in 

Fig. 1 [27]. Controlled outages are implemented as a 

measure of last resort to safeguard the stability of the electric 

grid and minimize disruptions to consumers. MISO plays a 

critical role in determining the need for controlled outages, 

while local utilities are responsible for identifying the 

impacted customers [21]. 

For the purpose of this study, the "Archived Historical 

Annual Real-Time LMPs" dataset was utilized yearly. 

Missing values were removed from the dataset. The dataset 

consisted of 388 Load Zones for 2018, 391 for 2019, 393 for 

2020, and 406 Load Zones for 2021 collected from MISO, 

which 365 were common to all years and referred to as 

intersection zones. A common dataset was created by 

merging the data from these intersection zones. A sample of 

the first 30 Load Zones from this common dataset was 

selected for further analysis. First load zone has selected for 

“target zone”, the rest of 29 can called feature. Every year, 

the last seven days of data are selected and exhibited, 

comprising a total of 168 hours (7 x 24). The study presents a 

multivariate prediction model for the values of 2019/18, 

2020, and 2021, while also including univariate predictions 

for 2019/18*, 2020*, and 2021*. Specifically, the LSTM 

function was employed for the univariate predictions, using 

only one feature value as input. 

B. Architectural Details of LSTM 

For training the model, we utilized Google Colab with 

Python 3.8, Keras as the deep learning platform, and 

TensorFlow as the underlying framework. 

The network is trained for lookback=24, features=30, 

forecast=6. Initial rate, epochs, batch size values have been 

tried to be optimized due to the differences in data change 

over the years. To obtain the best parameters, random grid 

search from Scikit-Learn was used. The proposed prediction 

model employs the same architectural values for both 

univariate (2018/19*, 2020*, 2021*) and multivariate 

(2018/19, 2020, 2021) predictions. The architectural details 

of the LSTM model are depicted in Table II. 

The flowchart determined and used during the study is 

shown in Fig. 2. 

TABLE II. THE VALUES OF OPTIMIZATION AND UNIVARIATE 

PREDICTIONS 

 2018/19 2020 2021 

LSTM Layer 1 256 256 128 

LSTM Layer 2 128 128 64 

LSTM Layer 3 64 64 32 

LSTM Layer 4 32 32 - 

Learning Rate 0.001 0.001 0.001 

Batch Size 128 64 64 

Epoch 450 350 375 

 

 

Fig 3. 24-hour ahead graphics of predictions for 2018/19, 2020, 2021. 

 

 



 

 

Fig. 4. The comparison of 24-hour ahead graphics of predictions for 

2018/19, 2020, 2021, and total. 

 

TABLE III. EVALUATION OF PERFORMANCE METRICS 

 2018/19* 2018/19 2020* 2020 2021* 2021 

MAE 9.54 7.83 7.22 5.57 13.75 11.81 

RMSE 24.58 19.52 16.21 11.66 30.96 25.17 

𝐑𝟐 0.58 0.73 0.46 0.72 0.32 0.56 

 

 

 

 
Fig. 5. The comparison of 24-hour ahead graphics of predictions for 

2018/19, 2020, 2021 (multivariate) vs. 2018/19*, 2020*, 2021*  

(univariate). 

C.  Simulation and Results 

Using the "Historical Annual Real-Time LMPs" data 

sets, the LSTM-based LMP estimation study for the years 

2018/2019, 2020, 2021 has been evaluated. Based on the 

analysis of Fig. 3, Fig. 4, Fig. 5, and Table II, it is crucial to 

interpret the results in the context of the associated error 

rates.  

2018/2019 Dataset leads to much lower MAE and 

RMSE, and higher R-Squared values than 2021. Restated, 

the predictions based on Dataset 2018/2019 are much lower 

MAE and RMSE, and higher R-Squared values than 2021. 

Based on the dataset from 2018/2019, the R-squared values 

are much better than those from 2020 and 2021. However, 

the MAE and RMSE values are lower for 2020 than for 

2018/2019, 2021. The promising results obtained through the 

low MAE and RMSE values demonstrate the potential for 

improvement using LSTM models under challenging 

conditions. The performance metrics of the LMP results are 

shown in Table III and the relevant results are depicted in 

Figs. 3-5. 

24-hour ahead graphics of predictions for 2018/19, 2020, 

2021 are visualized in Fig. 3. It is evident that even though 

the data have a fluctuating profile that may deteriorate the 

performance of a prediction approach, the predictions 

acceptably follow the actual profile for different time 

horizons before and during the unexpected event, the 

pandemic in this case.  

Thanks to the optimization and LSTM utilized for 2020, 

the control method values achieved were closely aligned 

with the best results obtained during the 2018/2019 period 

and enabled us to maintain performance levels similar to 

those achieved during the 2018/2019 period.  

The comparison of 24-hour ahead graphics of predictions 

for 2018/19, 2020, 2021 (multivariate) vs. 2018/19*, 2020*, 

2021* (univariate) shown in Fig. 5. Herein illustrates the 

LMP predictions for a single zone, wherein the multivariate 

predictions exhibit strong predictive performance metrics 

compared to the univariate predictions. The underscores the 

crucial role of LMP forecast in enhancing the accuracy of 

electricity price prediction models. The coefficient of 

determination evaluation of the 2020 Pandemic Dataset and 

2021 Pandemic Dataset are lower than 2018/2019 Dataset. 

However, the promising results obtained through the low 

MAE and RMSE values demonstrate the potential for 



improvement using LSTM models under challenging 

conditions.  

These findings highlight the need for further 

investigation and refinement of deep learning techniques to 

better understand and predict complex phenomena such as 

pandemics. 

IV. CONCLUSION 

Electricity price forecasting plays a crucial role in power 

system decision-making. The accuracy of real-time LMP 

forecasts is crucial for ensuring the efficient operation of the 

smart grid, demand response, and managing revenue and 

risks.  

In this study, we propose an Adam-optimized LSTM 

neural network, and evaluate its performance through various 

graphics and tables, even during the pandemic. Empirical 

results demonstrate that the LSTM neural network's 

performance is satisfactory, even when using MISO's LMP 

data, which are notoriously difficult to predict. 

If an ordinary data set was trained in the electric market 

system with the parameters used in this study, much better 

results would be obtained. In this study the data provided by 

MISO as open source, was difficult to analyze and predict 

the data in the load zones we selected. In addition, it will be 

possible to get better results with different deep learning and 

optimization techniques by trying other methods other than 

LSTM to advance this project. 

In order to further develop and refine the proposed 

method, additional factors that influence electricity price 

forecasting. Other relevant data (temperature for example) 

will be taken into consideration in future studies. By 

incorporating these factors, the method can be systematically 

and carefully tested and validated, enabling a more 

comprehensive evaluation of its accuracy and reliability. 
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