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A B S T R A C T

Within the Best Estimate Plus Uncertainty framework for the safety analysis of Nuclear Power Plants, the
quantification of the uncertainties affecting the Thermal-Hydraulics (T-H) codes used is crucial. For this, Inverse
Uncertainty Quantification (IUQ) methodologies are being developed for determining the probability density
functions of relevant T-H codes input parameters, based on experimental data from Separate Effect Tests (SETs)
experimental facilities. In practice, IUQ is challenged by the large range of variability of the experimental data in
terms of Initial and Boundary Conditions (ICs & BCs), because the experimental campaigns are designed to cover
the widest possible domain of conditions with the smallest number of experiments, so that same or similar ICs
and BCs are seldomly repeated. To address this issue, we propose to use global sensitivity analysis, to tailor the
IUQ on specific sub-regions described by segmented ICs & BCs domains. The methodology proposed is exem-
plified on two SETs, namely Sozzi-Sutherland and Super Moby Dick, whose experimental databases have been
made available in the ATRIUM (Application Tests for Realization of Inverse Uncertainty quantification and
validation Methodologies in thermal hydraulics) project promoted by the OECD/NEA/CSNI. The results obtained
are superior to those of traditional IUQ methodologies for models highly sensitive to ICs & BCs.

1. Introduction

In the last decades, the Best Estimate Plus Uncertainty (BEPU)
approach has been increasingly used in nuclear Thermal-Hydraulic (T-
H) for performing the safety analysis of Nuclear Power Plants (NPPs)
(D’Auria et al., 2012; Agnello et al., 2022; D’Auria et al., 2022). The
objective is the verification that enough safety margin exists for some
safety relevant Quantity of Interest (QoI) (e.g., fuel element Peak
Cladding Temperature (PCT), hydrogen generation or core level), to
demonstrate the capability of NPPs to withstand even the most
demanding accidental conditions (Marquès et al., 2005; Unal et al.,
2011; Sánchez et al., 2012). In general terms, safety margins quantifi-
cation in the BEPU approach requires the assessment of the sources of
uncertainty affecting the T-H code that can be due to the inherent
variability of the phenomena (aleatory uncertainty) or to the lack of
knowledge on its nature (epistemic uncertainty), and their forward
propagation through simulation models so as to estimate the

uncertainties of the QoI. Thanks to the research activity carried out in
the last years (NEA, 2011, 2016), such forward Uncertainty Quantifi-
cation (UQ) is being increasingly adopted in the nuclear sector. On the
contrary, as pointed out in (IAEA, 2008, 2014), the characterization and
quantification of the uncertainty in the model input parameters still
raises concerns. In the current practice, the distributions of the input
parameters of T-H codes are generally guessed by expert judgment or
derived by literature analysis (Bersano et al., 2020; Hou et al., 2020). To
limit the inherent subjectivity, Inverse Uncertainty Quantification (IUQ)
methods relying on experimental data are being considered to find the
input distributions that, propagated through the simulation model, have
generated the data, to name a few (Wu et al., 2021):

• Empirical (design-of-experiments): the IUQ is based on heuristics and
trial-and-error procedures, typically exploiting Monte Carlo sam-
pling from plausible input distributions, running the model and infer
ranges able to envelop the experimental data (Vinai et al., 2007).
Examples of this class of methods are IPREM (Input Parameter Range
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Evaluation Methodology) (Kovtonyuk et al., 2017) based on sensi-
tivity calculations performed through the Fast Fourier Transform
Based Method (FFTBM) and the approach developed by (Domitr and
Włostowski, 2021), in which UQ results are used to build the training
database for a classification algorithm, that distinguishes the pre-
diction capabilities of the uncertain parameters.

• Frequentist (deterministic): the IUQ is formulated as an optimization
problem, in which Maximum Likelihood Estimation (MLE) and the
Expectation Maximization (EM) algorithm are employed to find
“best-fit” estimators of the model uncertain parameters. For
example, relevant frequentist approaches are CIRCE (Calcul des In-
certitudes Relatives aux Corrélation Elementaires) (De Crécy, 2001)

Nomenclature

Acronyms
ATRIUM Application Tests for Realization of Inverse Uncertainty

quantification and validation Methodologies in thermal-
hydraulics

BCs Boundary Conditions
BE Best Estimate
BEPU Best Estimate Plus Uncertainty
CASUALIDAD Code with the capability of Adjoint Sensitivity and

Uncertainty AnaLysis by Internal Data ADjustment and
assimilation

CIRCE Calcul des Incertitudes Relatives aux Corrélation
Elementaires

CSNI Committee on the Safety of Nuclear Installations
DAA Data Adjustment and Assimilation
ENEA Agenzia nazionale per le nuove tecnologie l’energia e lo

sviluppo economico sostenibile
FFTBM Fast Fourier Transform Based Method
IBLOCA Intermediate Break Loss Of Coolant Accident
ICs Initial Conditions
IETs Integral-Effect Tests
IPREM Input Parameter Range Evaluation Methodology
IUQ Inverse Uncertainty Quantification
KL Kullback-Leibler divergence
LWR Light Water Reactor
MAP Maximum A Posteriori
MCMC Markov Chain Monte Carlo
MLE Maximum Likelihood Estimation
MRAE Mean Relative Absolute Error
NEA Nuclear Energy Agency
NPPs Nuclear Power Plants
OECD Organization for Economic Cooperation and Development
PDF Probability Density Function
PREMIUM Post-BEMUSE Reflood Models Input Uncertainty

Methods
QoI Quantity of Interest
SA Sensitivity Analysis
SAPIUM Systematic Approach for Input Uncertainty quantification

Methodology
SETs Separate-Effect Tests
SMD Super Moby Dick experiment
SNAP Symbolic Nuclear Analysis Package
S-S Sozzi-Sutherland experiment
T-H Thermal Hydraulics
TI Tolerance Interval
TRACE TRAC/RELAP Advanced Computational Engine
UQ Uncertainty Quantification
V&V Verification and Validation
WGAMA Working Group on the Analysis and Management of

Accidents

Latin symbols
E[⋅] Expectation operator
G (⋅) Model Function
H Hellinger sensitivity measure

J (⋅) Posterior distribution
KL Kullback-Leibler sensitivity measure
L (⋅) Likelihood function
L/D Length over diameter ratio
N Dimension of quantification database
N (⋅) Normal distribution
Ns Number of forward simulations
P (⋅) Prior distribution
P0 Pressure at stagnation point
P Number of model outputs/observations
Q(⋅) Quantile of a PDF
S First order Sobol index
ST Total Sobol index
T0 Temperature at stagnation point
V Dimension of validation database
Var(⋅) Variance
X0 Quality at stagnation point
Ym Model predictions database
Yobs Experimental observations database
Yval Experimental observations database (validation domain)
det(⋅) Matrix determinant
exp[⋅] Exponential function
f(⋅) Probability density function
h0 Enthalpy at stagnation point
i Calibration parameters index
j ICs & BCs index
k Sub-regions index
n Observations points index
p Model output/observations index
r Number of observations exceeding the γ coverage extent
s Forward simulation index
v Validation database index
x ICs & BCs domain
ym Model predictions (QoI)
yHighm Model predictions (High values cluster)
yLowm Model predictions (Low values cluster)
yMediumm Model predictions (Medium values cluster)
yobs Experimental observations
yval Experimental observations (validation domain)

Greek symbols
Γ̇ Steady state critical mass flux at the break section
Σobs Covariance matrix of experimental observation error
β Confidence level
γ Coverage value
δ Discrepancy model
δi Borgonovo Delta sensitivity measure
εobs Experimental observations noise
θ Calibration parameters
ρ Two-phase mixture density
ρg,sat Saturated vapour density
ρl,sat Saturated liquid density
σobs Experimental observation error

F. Di Maio et al.
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based onMLE and EM and CASUALIDAD (Code with the capability of
Adjoint Sensitivity and Uncertainty AnaLysis by Internal Data
ADjustment and assimilation) (Petruzzi, 2019) based on Data
Adjustment and Assimilation (DAA).

• Bayesian (probabilistic): The IUQ is based on the application of the
Bayes theorem and the Markov Chain Monte Carlo (MCMC) algo-
rithm (Brooks et al., 2011); the input distributions can be obtained
through the marginalization of the joint posterior distribution esti-
mated with MCMC (Stuart, 2010). Among the Bayesian methods, we
mention the Modular Bayesian (Wu and Kozlowski, 2017) and the
Full Bayesian (Kennedy and O’Hagan, 2001) methods, which basi-
cally differ on the treatment of the model uncertainty (discrepancy)
term (Wu et al., 2021). Usually, Bayesian approaches are quite
computationally expensive because of MCMC: to address this issue
they have been coupled with metamodelling techniques (e.g., Krig-
ing, Polynomial Chaos Expansion) and dimensionality reduction
methods like (e.g., Principal Component Analysis, Autoencoders)
(Roma et al., 2021, 2022).

With regards to the IUQ of nuclear T-H Best Estimate (BE) models,
the PREMIUM (Post-BEMUSE Reflood Models Input Uncertainty
Methods) project (NEA, 2017) and the SAPIUM (Systematic Approach
for Input Uncertainty quantification Methodology) project (Baccou
et al., 2019, 2020) have been promoted by OECD/NEA/CSNI for
benchmarking the different IUQ methods. In the following, we present a
novel approach for IUQ, tailored on the data made available within the
most recent ATRIUM (Application Tests for Realization of Inverse Un-
certainty quantification and validation Methodologies in thermal hy-
draulics) project, in which a set of experimental databases related to two
Separate Effect Test (SETs), i.e., Super Moby Dick (SMD) (Rousseau,
1987) and Sozzi-Sutherland (S-S) (Sozzi and Sutherland, 1975), have
been identified in (Di Maio et al., 2024) as the most suitable for the IUQ
of a T-H code for simulating the break flow in an Intermediate Break Loss
Of Coolant Accident (IBLOCA) of an Integral Effect Test experiment
(IETs), i.e., the LSTF IB-HL-01 (NEA, 2017). The T-H codes have been
developed in TRAC/RELAP Advanced Computational Engine (TRACE)
code (v5 patch 6), developed by (U.S. Nuclear Regulatory Commission,
2020) and the nodalization using the Symbolic Nuclear Analysis Pack-
age (SNAP) (Applied Programming Technology Inc., 2021).
The rationale behind the methodological development here pre-

sented is that SETs experimental facilities are an abundant source of data
for the study of safety relevant T-H phenomena, hence performing the
IUQ on SETs models can greatly increase the knowledge on the input
parameters of nuclear T-H systems codes. Nevertheless, performing a
satisfactory IUQ analysis on SETs is often challenged by:

• the large variability of the experimental campaigns in terms of Initial
and Boundary Conditions (ICs & BCs);

• the non linearity of the phenomenon reproduced by the SET exper-
iment, i.e., the model QoI is greatly affected by the variability of ICs
& BCs;

• the sparsity of the experimental information, e.g., specific sub-
regions of the ICs & BCs domain are better investigated than others;

• the sensitivity of the model response to small portions of the ICs &
BCs domain;

To capture the localized behaviour of the model response (driven by
specific ICs & BCs sub-regions), we propose a Bayesian IUQ approach
(Kennedy and O’Hagan, 2001) driven by a global SA (Puppo et al.,
2021), inspired by (Wu et al., 2019) where a clear link between SA and
IUQ is conjectured: intuitively, only sensitive parameters to the QoI can
be properly characterized by IUQ and, thus, SA can be used for dimen-
sionality reduction. In addition to this, we claim that SA can enable the
space segmentation of such inputs to a priori characterize the input
domain in the sub-regions of the ICs & BCs that mostly affect the QoI.
Without loss of generality, for the SA we adopt the Kullback-Leibler (KL)

divergence (Park and Ahn, 1994) to guide a localized IUQ, which
objective is obtaining parameter distributions conditioned only on the
relevant sub-regions of the SET ICs & BCs domain, to ultimately better
capture QoI behaviour in safety relevant regions.
The results obtained with the proposed method are compared with

those provided by a traditional IUQ procedure, as suggested in the work
of (Porter and Mousseau, 2019; Porter et al., 2019). It is shown that:

1) The results of the proposed approach are comparable with respect to
the ones obtained with a traditional IUQ analysis for QoI not sensi-
tive to the ICs & BCs domain.

2) The proposed approach provides better results when the QoI is sen-
sitive to the ICs & BCs domain.

The structure of the paper is organized as follows: Section 2 presents
the adopted SA and IUQ approaches; Section 3 introduces the case study
and the developed TRACE BE models of SMD and S-S; Section 4 shows
the results of the application of the approach to the models; also, a
comparison of the results with those obtained with a traditional IUQ is
described. Finally, in Section 5 conclusions are drawn.

2. The integrated SA-IUQ framework

In this work, we propose an integrated SA-IUQ methodology whose
flowchart is sketched in Fig. 1:
The following steps are to be performed:

1) Collection of the SETs databases: the available experimental data
regarding the phenomena of interest (i.e., the SETs experimental
databases related to the QoI) are collected and organized in data-
bases (Ghione, 2023).

2) Data adequacy evaluation: a preliminary analysis of the available
experimental data is conducted to identify which SETs are the most
suitable to be used within the following IUQ. This, for example and
without loss of generality, can be formulated as a multi criteria de-
cision making problem where the available experimental databases
are evaluated accordingly to the representativeness and complete-
ness criteria (Di Maio et al., 2024; Baccou et al., 2024). The outcome
of this step is a ranking of the most adequate SETs experimental
databases, that are, then partitioned into two independent databases:
the quantification database (that will be used within the steps 3-4-5)
and the validation database (that will be used in step 6).

3) T-H model development: the T-H BE models of the adequate SETs
experiments are to be built (D’Auria et al., 2012; D’Auria et al.,
2022).

4) Sensitivity Analysis (SA): distribution-based global SA approaches
(Borgonovo, 2007; Di Maio et al., 2015; Puppo et al., 2021) are
adopted to deal with the complexity and strong nonlinearities of the
T-H BE models to evaluate whether the developed BE T-H models
show any localized behaviour due to the dependency on ICs and BCs
and to perform the input space segmentation.

5) IUQ: depending on the SA results, if a low sensitivity of the model to
ICs and BCs is observed, a traditional IUQ analysis (step 5.a) is per-
formed on the whole quantification database. Otherwise, when a
high sensitivity of the model to ICs and BCs is observed, a local IUQ
(step 5.b) is performed by exploiting the data according to the
segmented input domain.

6) Validation: the goodness of the obtained IUQ results is verified
through the comparison of the models predictions after the IUQ with
the experimental data retained for the validation database.

For the sake of brevity, the interested reader may refer to (Baccou
et al., 2020), (Di Maio et al., 2024), (D’Auria et al., 2012), for further
insights on steps 1 to 3, respectively; instead, for the sake of clarity, in
the following the developed SA methodology will be firstly presented in
Section 2.1 along with the corresponding notation adopted throughout

F. Di Maio et al.
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the paper. Then, the employed traditional IUQ framework will be
illustrated in Section 2.2 alongside with the deduction of the developed
(novel) local IUQ approach. Finally, the validation step is presented in
Section 2.3. (Di Maio et al., 2015; Di Maio et al., 2024).

2.1. Sensitivity analysis (SA)

Let us define ym(x, θ) = G (x, θ) as the output of a T-H BE code G

simulating the physical behaviour of a SET experimental facility whose

experimental observations are yobs(x) =
[
yobs(x)1, ⋯, yobs(x)p,

⋯, yobs(x)P
]T
, where p = 1, 2, ⋯, P, is the index of the measured vari-

ables. We can describe the code behaviour as a black box function G :

RJ × RI → RP linking the prediction of a vector of QoI ym(x, θ) (P× 1),
with respect to a set of design variables x =

[
x1, ⋯, xj, ⋯, xJ

]T and
calibration parameters θ = [θ1, ⋯, θi, ⋯, θI]T, with j = 1, 2, ⋯, J and i =
1, 2, ⋯, I, respectively. Sensitivity Analysis (SA) can be employed to
rank the inputs x in terms of their relative contribution to the uncer-
tainty of the model output ym (Saltelli et al., 2004). In literature, it is
customary to make the distinction between local SA (or one-at-a-time),
in which just one input is varied typically in the neighborhood of its
nominal values, and global SA, where the interactions between the in-
puts are considered along their whole support. In this work, we apply
global SA methods with respect to the design variables x and the cali-
bration parameters θ to highlight and distinguish their peculiar roles in
shaping the model response: intuitively, the QoI is expected to depend
mainly on x (because the physics is driven by x), whereas the de-
pendency on θ becomes relevant just when x is fixed (because of the ym
fine tuning role of θ). In other words, the model is evaluated at fixed
combinations of x (i.e., leading to Yobs(x) =

[
yobs
(
x1
)
, ⋯, yobs(xn) , ⋯,

yobs
(
xN
) ]
where n = 1, 2, ⋯, N are different sets of ICs & BCs): thus, to

evaluate the impact of θ on the model response it is possible to fix xn for
each n-th experimental condition. In what follows we will, therefore,
first define the SA procedure to rank the contribution of x to the QoI
(localized behaviour) and then the SA procedure for ranking θ, condi-
tioned on the segmented domain of x. In particular, to perform the SA of

the input x, distribution-based SA techniques are adopted for ranking
the sensitive inputs of multimodal model output distributions
(Borgonovo and Plischke, 2016), as in the case for the T-H codes outputs
fym , due to the changes in the underlying physics and the respective
implemented modelling solutions (e.g., empirical correlations, closure
relationships) at varying values of the input x. Two different
distribution-based metrics, i.e., Hellinger (H) and Kullback-Leibler (KL),
are compared to add robustness to the ranking results. Instead, for the
SA of the model parameters θ, since the variability of the input x is
removed (i.e., x is kept fixed), a unimodal output distribution is expected
and, hence, in this case the application of a variance-based technique (i.
e., Sobol Indexes) is appropriate and less computationally demanding.
Nevertheless, the parameters θ ranking results are compared with a
moment independent measure (i.e., Borgonovo Delta) to validate the
assumptions on the output unimodality.

2.1.1. Input space segmentation
Distribution-based (or moment independent) SA methods

(Borgonovo and Plischke, 2016; Xiong et al., 2020b; Xiong et al., 2020a;
Alibrandi et al., 2022) are particularly suitable to investigate the local
(and global) behaviour of the model responses ym(x) = G (x, θ*), where
θ* are the calibration parameters values frozen at their default value (e.
g., prior mean), with respect to the variability of the design variables
domain x. Indeed, T-H codes usually exhibit non smooth andmultimodal
output Probability Density Function (PDF) fym , because of the changes in
the underlying physics reproduced by the simulation model at varying
inputs x (e.g., ICs and BCs). Among the distribution-based methods,
without loss of generality we adopt that developed in (Di Maio et al.,
2015) that, first, clusters the QoI into K different response regions and,
then, quantifies the sensitivity of the j-th input x in shaping the k-th
response region of the output, i.e., ykm, with k = 1, 2, ⋯, K, by measuring
the distance between the unconditional input distribution fxj and the
same input distribution conditioned on the k-th region of the output
distribution fxj |ykm , for example by H distance (Gibbs and Su, 2002):

Fig. 1. The flowchart of the proposed SA-IUQ approach.

F. Di Maio et al.
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Hk
j =

[
1
2

∫ ( ̅̅̅̅̅
fxj

√
−

̅̅̅̅̅̅̅̅̅̅
fxj |ykm

√ )2
dxj
]1
2

(1)

and KL divergence (Park and Ahn, 1994):

KLkj
(
fxj
⃦
⃦
⃦ fxj|ykm

)
=

∫

fxj log

(
fxj
fxj|ykm

)

dxj (2)

an example of a multimodal distribution with a scalar output ym and K =

3 is plotted in Fig. 2.

Each fxj |ykm carries relevant information on the role of x on the model
responsiveness to the ICs & BCs domain: the support of fxj |ykm generates a

segmented input space xk that drives the model output in the k-th region,
with k = 1,2,⋯,K, which maps the relationship between the inputs xk

and the output ykm. An example, for K = 3, two ICs inputs x1 and x2 and
one output ym is shown in Fig. 3.
The identified segmentation of x1 and x2 with respect to k = 1, 2,3

can, thus, be used to identify the domain of the experimental data used
both for the IUQ and the validation, i.e., IUQ for the Ykobs

(
xk
)
and the

validation using the database Ykval
(
xk
)
.

2.1.2. Verification of calibration of parameters
As customary (Perret et al., 2019, 2022; Wu et al., 2019; Roma et al.,

2021) to verify the consistency of the IUQ results, an additional global
SA analysis has to be performed on θ prior PDF support in correspon-
dence of each model response Ym(x, θ) =
[
G
(
x1, θ

)
,⋯,G (xn, θ),⋯,G

(
xN, θ

) ]
, where n = 1, 2,⋯,N is the index

of varying ICs and BCs in the experimental database. The δi sensitivity
measure (Borgonovo 2007) can be adopted for each i-th parameter of
θ = [θ1, ⋯, θi, ⋯, θI]T:

δi =
1
2

Eθi

[ ∫ ⃒
⃒
⃒fym − fym |θi

⃒
⃒
⃒dy
]

(3)

where fym and fym |θi are the unconditional and θi − conditioned output
distributions, respectively. For completeness, also a traditional variance-
based sensitivity measure, i.e., Sobol indexes (Saltelli et al., 2004) has
been adopted:

Si =
Varθi

(
Eθ i [ym|θi]

)

Var(ym)
(4)

Fig. 2. Example of output PDF clustering with K = 3 (i.e., a low (k = 1),
medium (k = 2) and high (k = 3) values region).

Fig. 3. Example of input space segmentation with K = 3 (i.e., a low, medium and high output values region).

F. Di Maio et al.
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STi =
Eθ i [Varθi(ym|θ i) ]

Var(ym)
(5)

where Eq. (4) and Eq. (5) are also called the first order and total Sobol
Index, respectively. It is worth noting that both Delta and Sobol Indexes
can be generalized to the case of multivariate outputs (P > 1) (Xiao, Lu
and Qin, 2016; Liu et al., 2019).

2.2. Inverse Uncertainty quantification (IUQ)

Design variables x carry the information regarding ICs, BCs and all
the other observable inputs employed to describe the conditions or
scenarios under which the considered phenomenon develops. Their
uncertainty is usually easily estimated, whereas, the uncertainty of
calibration parameters θ, that refer to physical quantities (e.g., material
and fluid properties) or numerical coefficients (e.g., closure relations),
requires IUQ (Wu et al., 2021). To estimate θ we can build a relationship
between code predictions and experimental data, i.e., the so calledmodel
updating equation:

yobs(x) = yreal(x)+ ε (6)

where yreal(x) is the real (unknown) value of the measured QoI and
ε ∼ N (0,Σobs) is an additive normally distributed experimental error,
with covariance matrix:

Σobs = Iσ2obs =

⎡

⎢
⎢
⎣

σ2obs1 0 0
0 ⋱ 0
0 0 σ2obsP

⎤

⎥
⎥
⎦ (7)

on the other hand, the code predictions ym(x, θ) are related with
yreal(x) as in Eq. (8):

yreal(x) = ym(x, θ) + δ(x) (8)

where δ(x) is called discrepancy, also known as model uncertainty,
inadequacy or bias, and describes the mismatch between the simulation
and reality (e.g., numerical errors, missing physics). The main purpose
of δ(x) is to limit the probability of overfitting θ during the IUQ.
Nevertheless, its formal definition is still an open issue and various
formulations have been proposed in literature (Ling et al., 2014),
starting from gaussian distributed random variables to sophisticated
kriging metamodels (Wu et al., 2018). By combining Eq. (6) and Eq. (8)
it is possible to write Eq. (9):

yobs(x) = ym(x, θ) + ε+ δ(x) (9)

hereafter, for the sake of simplicity, we neglect δ(x): this is equiva-
lent to consider the code G capable of perfectly reproducing the
experimental observations for some given values of θ, that may lead to
an underestimation of their uncertainty (overfitting). Nevertheless, in
many applications, such as the ones investigated in this work, even
though the experimental campaign is exhaustive, enough data to build a
statistical model for δ(x) are not available. Since during the experi-
mental campaigns multiple experiments are performed, it is convenient
to extend Eq. (9) to the case of an array of measurements Yobs(x) =

[yobs(x1),⋯, yobs(xn),⋯., yobs(xN) ](N×P), where yobs(x
n) is the experimen-

tally measured QoI under n = 1,2,⋯,N varying ICs and BCs. Then, by
collecting an array of model responses Ym(x, θ) = [G (x1, θ),⋯,G (xn, θ),
⋯.,G (xN, θ) ](N×P) we obtain an extended formulation for the model
updating equation as:

⎡

⎢
⎢
⎢
⎣
yobs
(
x1
)
⋮yobs (xn)

⋮
yobs
(
xN
)

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

G
(
x1 ,θ

)
⋮G (xn ,θ) ⋮

G
(
xN ,θ

)

⎤

⎥
⎥
⎥
⎦
+

⎡

⎢
⎢
⎢
⎣

ε1

⋮
εn

⋮

εN

⎤

⎥
⎥
⎥
⎦

(10)

2.2.1. Bayesian formulation of the IUQ problem
The purpose of IUQ is the estimation of the PDFs of θ conditioned on

the experimental data Yobs(x), hereafter Yobs, which is the joint posterior
PDF J (θ|Yobs). Indeed, by applying the Bayes rule of Eq. (11).

J (θ|Yobs) =
L (Yobs|θ)P (θ)
∫

L (Yobs|θ)P (θ
)dθ (11)

it is possible to obtain J (θ|Yobs) as the product of the joint prior PDF
P (θ) and the likelihood function L (Yobs|θ). The posterior and prior
distributions represent the PDFs of θ after and before the experimental
data are observed, respectively. Whereas, the likelihood function is the
probability of observing Yobs given a particular value of θ. Then, from Eq.
(10) and by assuming zero mean Gaussian distributed measurement
error (i.e., ε ∼ N (0,Σobs)) the likelihood function assumes the form:

L (Yobs|θ) =
∏N

n=1

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)Pdet(Σobs)

√ exp
[

−
1
2
[yobs(xn)

− G (xn, θ) ]T(Σobs)
− 1
[yobs(xn) − G (xn, θ) ]

]

(12)

where N is the number of independent experimental measurements
and Σobs is the (P× P) covariance matrix for the measurement error. The
denominator of Eq. (11) is the normalization constant of the posterior
distribution, usually very difficult to calculate due to the complexity of
the integral. To address this issue, a MCMC algorithm can be adopted for
sampling from distributions known only up to a normalization constant
(i.e.,

∫
L (Yobs|θ)P (θ) dθ) (Brooks et al., 2011). Then, MCMC samples

can be used to reconstruct an estimated posterior distribution J (θ̂|Yobs).
The main drawback of MCMC is that it usually takes thousands of iter-
ations (i.e., forward model evaluations) to reach convergence, thus, for
complex T-H models the problem becomes computationally intractable.
To reduce the computational burden metamodelling and dimensionality
reduction techniques can be adopted (Wu and Kozlowski, 2017; Roma
et al., 2021, 2022). In this work, the developed models are simple
enough to not require metamodelling. Finally, exploiting MCMC, we can
estimate the posterior distribution as:

J (θ̂|Yobs)∝P (θ)
∏N

n=1

1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)Pdet(Σobs)

√ exp
[

−
1
2
[yobs(xn)

− G (xn, θ) ]T(Σobs)
− 1
[yobs(xn) − G (xn, θ) ]

]

(13)

2.2.2. The local IUQ methodology
Through SA (see Section 2.1) the ICs & BCs domain of the SETs da-

tabases can be objectively segmented: then, for each k-th region of the x
domain the traditional IUQ procedure presented in Section 2.2.1 can be
performed independently just by exploiting the subset of related
experimental data Ykobs

(
xk
)
, with k = 1, 2, ..., K. The outcome of this so

called “local” IUQ analysis are K different posterior PDFs of θ̂
k
, which

are conditioned on the segmented domain xk, i.e., θ̂
k
|xk. The conjecture

beyond the adoption of this approach is that the estimated J

(
θ̂
k
|Ykobs

)

should, in principle, be capable of better describe the localized behav-
iour of the model in the k-th region. Indeed, following this methodology,
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only the data strictly related to the k-th response region of the model are
used to tune the θ parameters. Clearly, this procedure seems promising
only in the case of highly sensitive models to the x domain, because
otherwise, there is not a justifiable reason to use just a subset of Yobs(x)
for the IUQ instead of the whole database.

2.3. IUQ reference verification and validation

Once the joint posterior PDF J (θ̂|Yobs) has been estimated, the val-
idity of the obtained results must be checked accordingly to the Verifi-
cation and Validation (V&V) framework (Trucano et al., 2006;
Oberkampf and Trucano, 2007; Oberkampf and Roy, 2010). In the
following, for Verification we refer to the evaluation of the capability of

θ̂ to correctly represent the experimental observations Yobs(x) (i.e., the
reference observations) when their uncertainty is propagated through

the model G (x, θ̂). Whereas, for Validation we refer to the uncertainty
propagated for new (unknown) data collected for different x. To perform
this latter objective, a portion of the available experimental data is
typically retained from the source database to build an independent
(validation) database, i.e., Yval(x) =

[
yval
(
x1
)
,⋯, yval(xv),⋯.,

yval
(
xV
) ]

(V×P), where yval(x
v) is the vector of experimentally measured

QoI at v = 1, 2, ...,V varying ICs and BCs. Then, the model is evaluated

by sampling from the posterior J (θ̂|Yobs) and an array of model re-

sponses is collected, i.e., Ym(x, θ̂) =
[
G
(
x1, θ̂

)
,⋯,G (xv, θ̂),⋯.,

G
(
xV , θ̂

) ]

(V×P). In the following, for notational simplicity, the case of a

scalar output (P = 1) will be assumed, i.e., Ym(x, θ̂) is a (V × 1) array

collecting the model responses ym(xv, θ̂) = G (xv, θ̂) at every v-ICs& BCs.

The number of samples s = 1, ...,Ns extracted from J (θ̂|Yobs) can vary
according to the model complexity and the corresponding computa-

tional requirements. Typically, the estimation of the output PDF f
(
ym|xv,

θ̂s
)
is not feasible due to the large number of samples required, i.e.,

Ns ⟶ ∞. Therefore, for computationally intensive simulations, Ns
could be decreased, by adopting order statistics (Wilks, 1941, 1942) to

estimate a desired Tolerance Interval (TI) of f
(
ym|xv, θ̂s

)
. Indeed, the

probability β that at least r (positive integer) observations within a
random sample of size Ns are greater than the γ percentile of the un-
known underlying distribution generating the samples can be written as
(Zio, Di Maio and Tong, 2010):

β =
∑Ns − r

b=0

(
Ns
b

)

γb(1 − γ)Ns − b (14)

Then, by choosing r = 2, Eq. (14) reduces to the expression for the
well known two sided tolerance interval (Nutt and Wallis, 2004):

β = 1 − γNs − Ns(1 − γ)γNs − 1 (15)

Solving Eq. (15) for the desired confidence level β and coverage value γ it
is possible to define the neededNs. To objectively quantify the difference
between expected and predicted results we could adopt different vali-
dation metrics. Typically, validation metrics are calculated using only
point values for each response, e.g., the output corresponding to the

mean or the Maximum A Posteriori (MAP) of J (θ̂|Yobs). In this work, we
calculate the Mean Relative Absolute Error (MRAE) for the v-th obser-

vation of Yval with respect to the model prediction when θ̂s is sampled

from J (θ̂|Yobs), with s = 1,...,Ns. The samemetric can be extended to the
entire validation domain obtaining the global validation performance
indicator of Eq. (16):

‖η‖ = 1
VNs

∑V

v=1

∑Ns

s=1

⃒
⃒
⃒
⃒yval(x

v) − ym(xv, θ̂s)

yval(xv)
⃒
⃒
⃒
⃒

(16)

3. Case study

3.1. The ATRIUM project

The ATRIUM project (Ghione, 2023) has been promoted by OECD/
NEA/CSNI/WGAMA for advancing the methodologies of IUQ in the
framework of BEPUmodelling for NPPs safety assessment. The final goal
of the project is performing the IUQ of the uncertain parameters
affecting the modelling of the critical mass flux during an IBLOCA that
might occur in the Integral-Test Effects facility (IET) LSFT IB-HL-01
(NEA, 2017) (see Table 1) by exploiting SETs facilities BE models. The
necessity of using SETs instead of the IET is related to the impossibility of
directly performing the IUQ on the IET model, due to both the
complexity of the model and the lack of experimental data. The available
SETs experimental datasets are listed in Table 2, in which the name of
the set, the label utilized throughout the paper, the number of experi-
mental points N and the geometric (pipe diameter D, length over
diameter ratio L/D) and T-H (pressure P0, temperature T0, quality X0, all
at stagnation point, and the QoI, critical mass flux Γ̇ in steady state
conditions) properties are also given.
As said in the Introduction, through the data adequacy methodology

developed in (Di Maio, Coscia and Zio, 2024) it has been possible to rank
the SETs of Table 2 that are more suitable to model the phenomena of
interest (i.e., IBLOCA in LSTF), namely S-S and SMD. An overview of the
T-H BE TRACE models adopted is presented in Section 3.2 and Section

Table 1
Experimental data of IET for exercise 1 of ATRIUM (J. Baccou et al., 2024).

Experiment Name Label NP L/D(¡) D (mm) P0 (bar) T0 (◦C) X0 (¡) G (kg/m2s)

LSTF IB-HL-01 LSTF − 15 − 10–155 177–327 − 1500–46000

Table 2
Available experimental datasets of SETs for exercise 1 of ATRIUM (J. Baccou et al., 2024).

Experiment Name Label NP L/D
(¡)

D
(mm)

P0

(bar)
T0

(◦C)
X0

(¡)
G
(kg/m2s)

Sozzi Sutherland
S-S N2 358 0–140 12.7 56.0–71.3 232–286 − 0.0044–0.0065 17528–75824
S-S N3 58 0 12.7 42.7–69.0 212–285 − 0.0059–0.0060 33161–61226
S-S N4 23 0 19 56.0–66.3 271–282 − 0.0003–0.0099 29295–51266

Super Moby Dick
SMD Div 27 18 20 20–120.1 192.3–324.4 <0 15300–62200
SMD Exp 12 20 20 20–120.1 191.5–323.6 <0 16100–61800

Marvi ken
Marv 13 1 3 200

~ 50 transient ΔTsub ~ 31 (◦C) <0
<89200

Marv 17 1 3,7 300 <61700
Marv 24 1 0,33 500 <59750

F. Di Maio et al.
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3.3, respectively.
The framework presented in Section 2 has been implemented to

perform the IUQ on the models of both SETs and the results, shown in
Section 4, are compared with the ones obtained with the traditional IUQ
methodology described in Section 2.2. The following assumptions hold:

• The analysis has been performed independently for SMD and S-S.
• The QoI ym is a scalar quantity, i.e., the critical mass flux Γ̇ at the
break section in steady state conditions, for both SMD and S-S.

• For SMD, the data related to the divergent nozzle (SMD Div) have
been selected for the quantification database (Yobs) while the ones
from the expansion nozzle (SMD Exp) have been used for validation
(Yval).

• For S-S, from the dataset related to nozzle N2, a subset of N = 91
points (the ones with L/D closer to LSTF, i.e., between 2.5 and 12.5)
have been used for Yobs while V = 30 points have been retained for
Yval (choosing those with L/D closer to LSTF, i.e., 1.5 and 20, among
the remaining data).

• For SMD, J = 2 design variables x = [P0,ΔTsub]T (namely pressure
(P0) and the degree of subcooling (ΔTsub) at the stagnation point)
have been selected. Instead, for S-S J = 5 design variables x =

[P0,T0,X0, h0, L/D]T (pressure (P0), temperature (T0), quality (X0),
enthalpy (h0) all at the stagnation point plus the length over diameter
ratio (L/D)) have been chosen.

• The same set of I = 4 calibration parameters θ = [θ1, θ2, θ3, θ4]T has
been chosen both for SMD and S-S. They are numerical coefficients of
the TRACE critical flow model (see Table 3) and their prior ranges
have been determined through expert judgment in the work of
(Domitr and Włostowski, 2021).

• The SA related to the inputs x (see Section 2.1.1) has been performed
on a small ensemble of simulations (less than 102) to demonstrate its
applicability in the frequent case of highly demanding computational
models.

• A K = 3 region input segmentation has been performed for both SMD
and S-S.

• The SA on the θ (see Section 2.1.2) has been performed through
UQLab MATLAB Sensitivity Analysis package (Lamas et al., 2022)
using 104 simulations for each model to obtain robust results.

• The Affine Invariant Ensemble Sampler (AIES) (Goodman and
Weare, 2010) is used to generate twenty parallel chains (seeds or
walkers) with 105 iterations and a burn in period of 50 %. We have
adopted the UQLab MATLAB Bayesian Inversion package (Wagner
et al., 2019) to implement the MCMC algorithm and to perform the
overall IUQ analysis.

• For the validation analysis, the 95 % two sided TI of the ym(xv, θ̂) has
been estimated throughNs = 93 forwardmodel evaluations sampling

θ̂ form J (θ̂|Yobs). The value of Ns is obtained from Eq. (15) by fixing
β = γ = 0.95 (Nutt and Wallis, 2004; Zio et al., 2010).

3.2. Super Moby Dick (SMD)

The Super Moby-Dick (SMD) experiments (Rousseau, 1987) were
performed at the Commissariat à l’énergie atomique et aux énergies
alternatives (CEA) between 1982 and 1983 in order to investigate the
two-phase critical flowrate in the medium and high pressure range. The

test facility is designed to produce steam-water two-phase critical flow
in a test section under stable steady state conditions. The experimental
test procedure consisted in obtaining the desired conditions (pressure
and temperature) at the inlet of the test section. Then, maintaining these
inlet conditions constant, the critical mass flux was reached by
decreasing the pressure in the condenser. The critical flow was detected
when no effect on the mass flux and on the pressure upstream of the
throat could be observed decreasing further the condenser pressure. The
critical flow was measured by a turbine flowmeter and its uncertainty,
for values between 10,000 and 60,000 kg/m2s, was estimated as ± 2 %
for this experimental setup (Rousseau, 1987). The nodalization of the
SMD experiment is shown in Fig. 4: the nozzle where the critical flow
occurs is modelled with a pipe component initially convergent (four
cells), then straight (ten cells) and finally a conical expansion (eleven
cells); an inlet break component sets the inlet conditions of each test (i.e.
pressure and temperature), while in the outlet break component the
pressure is gradually reduced to achieve the critical flow; the choked
flow model is activated only at the edge where critical flow is expected
to occur.

3.3. Sozzi-Sutherland (S-S)

The Sozzi-Sutherland experiments (Sozzi and Sutherland, 1975)
were performed by General Electric in 1975. The goal was to obtain
critical flow experimental data at typical conditions of LOCA. Subcooled
and saturated water at relative high pressure (approximately 70 bar)
was discharged from a vessel to the atmosphere through various flow

Table 3
Summary of the prior P (θ) adopted,

Symbol Name Trace Nominal Value Prior Support Prior Distribution

θ1 Subcooled choked-flow multiplier CHM12 1.0 [0.5–2.0] Uniform
θ2 Two-phase choked-flow multiplier CHM22 1.0 [0.5–2.0] Uniform
θ 3 Choking relaxation constant 1 for set 2 C1RC2 2.0 [0.01–5.0] Uniform
θ 4 Choking relaxation constant 2 for set 2 C2RC2 1.0 [0.01–2.5] Uniform

Source (Domitr and Włostowski, 2021).

Fig. 4. TRACE nodalization of SMD nozzle developed through SNAP.
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geometries and critical flowrate measurements were obtained from the
estimation of the rate of change of the fluid mass inventory in the vessel
during the test. For the sake of simplicity and in absence of further in-
formation we have assumed an experimental error equal to the SMD
measurements. The nodalization of the S-S nozzle N2 experiment is
shown in Fig. 5. Also in this case only the nozzle where critical flow
occurs was simulated with a horizontal pipe component. A break
component fixes the inlet boundary conditions of each test (i.e., pressure
and temperature for the subcooled cases or pressure and void fraction
for the saturated cases). The break component at the outlet provides
fixed atmospheric conditions and the critical flow is achieved by the
opening of a valve component. Similarly to SMD, the choked flowmodel
is activated only at the edge where critical flow is expected to occur. In
this case, three cells were used to model the convergent inlet section
whereas the following straight pipe nodalization was adjusted to simu-
late the various configurations, having a different length, maintaining as
much as possible a similar L/D for each cell.

4. Results and discussion

In this Section the results of the application of the framework pro-
posed in Section 2 to the case study illustrated in Section 3 are presented.

4.1. SMD

In Fig. 6, it is shown the discretized response surface of the SMD
model with respect to the inputs x = [P0,ΔTsub]T along with the quan-
tification Yobs(x) and the validation Yval(x) database. The procedure of
Section 2.1.1 is applied on the K = 3 regions (namely Low (k = 1),
Medium (k = 2), High (k = 3) values ym) which will be identified by the
same colour scheme (i.e., green, yellow, red) throughout the paper.

4.1.1. SMD: SA
In Fig. 7 the results of the distribution based SA are presented; in blue

are plotted the unconditioned input distributions fx1 and fx2 ((a,b) upper
portion) while the conditioned ones fx1 |ykm and fx2 |ykm ((a,b) lower portion)
follow the three regions colour scheme. As shown by Fig. 7, there is a
dependence of the model response by x, because there are some visible
differences between the fxj and fxj |ykm , especially for the High region (i.e.,
the red one). Nevertheless, the sensitivity measures reported in Fig. 7 (c)
for each region, i.e., Eq. (11) and Eq. (12), do not show any clearly
dominant localized behaviour for the model, since there is no region
with the highest sensitivity measure for all the x (i.e., there is no subset
of the input domain that univocally drives the model response into one
specific k-th region).
Despite the SA for SMD reveals a weak dependency on ICs& BCs, the

input space segmentation (see Section 2.1.1) is performed to obtain the
xk sub-regions, and the sensitivity of θ is performed (see Section 2.1.2)
accounting for such segmentation. The outcomes of the analysis are
shown in Fig. 8, where the same colours of the Kmodels are used (k = 1
green, k = 2 yellow, k = 3 red): these highlight large δ and Sobol Indexes
for θ1 and θ2, and that δ and Sobol Indexes results are providing quali-
tatively the same results. The similarity and agreement between the
results obtained from a variance-based (i.e., Sobol Indexes) and a
distribution-based (i.e., Borgonovo Delta) sensitivity measure confirm
the correctness of the assumption of unimodality of the output PDFs fym

Fig. 6. Plot of the response surface of SMD as function of the ICs.

Fig. 5. TRACE nodalization of S-S N2 nozzle developed through SNAP.
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Fig. 7. SA results for SMD.
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Fig. 8. Sensitivity of θ for SMD.
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and fym |θi , when evaluated with fixed input x.

4.1.2. SMD: IUQ
In Fig. 9, the quantitative results of the traditional IUQ procedure are

presented (i.e., a not segmented input domain is adopted): Fig. 9 (a),(b)

show the prior P (θ) and the posterior J (θ̂) PDFs of θ (on the main di-
agonal of the plot are shown the marginal PDFs (summarized in Table 4)
while on the inner boxes the pairwise projections of the joint posterior
PDF are plotted, respectively); Fig. 9 (c) shows the outcomes of the IUQ

reference verification by forward propagation of the P (θ) and J (θ̂)
with respect to the Yobs (i.e., the red crosses). A violin plot (Hintze and
Nelson, 1998) is obtained by fitting a set of 103 model realizations
through kernel density estimation with a reflection boundary correction
(Silverman, 1986). In Table 4, the following statistics of the marginal-

ized joint posterior PDF J (θ̂) are presented: Mean, Variance, MAP and
the [Q(0.05) − Q(0.95) ] quantiles of the PDF. All the statistics are

calculated based on 103 samples of J (θ̂).
Similarly, in Fig. 10 and Table 5 the same results are summarized for

the local IUQ analysis with K = 3: the prior, posterior and the output
distributions after the IUQ are shown for each k-th region, respectively,
in (a), (b), (c) for the low region, (d), (e), (f) for the medium region, (g),
(h), (i) for the high region.
It can be seen that the results shown in Fig. 9 and Fig. 10 are similar

and both satisfactory (i.e., the estimated J (θ̂) reproduce the experi-
mental observations used for the IUQ quite well adopting both the
traditional (see Fig. 9 (c)) or the local IUQ approach (see Fig. 10 (c), (f),
(i), respectively), hence for SMD, the input space segmentation presents
no substantial benefit. Moreover the highly sensitive parameters θ1 and

Fig. 9. Results of traditional IUQ analysis for SMD.

Table 4
Posterior PDFs statistics estimated through the traditional IUQ for SMD.

Parameter Mean Variance MAP [Q(0.05)-Q(0.95)]

θ̂1 1.5650 0.0582 1.6511 [1.0305–1.9355]

θ̂2 1.2135 1.0211 10− 04 1.2132 [1.1935–1.2332]

θ̂3 2.3838 2.0666 4.6986 [0.1432–4.8692]

θ̂4 1.1925 0.5119 0.7670 [0.0588–2.4312]
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Fig. 10. Results of local IUQ analysis for SMD.
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Table 5
Posterior PDFs statistics estimated through the local IUQ for SMD.

Parameter Mean Variance MAP [Q(0.05)-Q(0.95)]

θ̂
Low
1

1.1530 0.2231 0.6830 [0.5519–1.9758]

θ̂
Low
2

1.2627 6.2150 10− 04 1.2562 [1.2140–1.3150]

θ̂
Low
3

2.5776 2.1252 4.8953 [0.1401–4.8664]

θ̂
Low
4

1.1441 0.5163 1.5656 [0.0708–2.4301]

θ̂
Medium
1

1.1422 0.0759 1.1753 [1.0601–1.9441]

θ̂
Medium
2

1.2627 1.7478 10− 04 1.1806 [1.1582–1.2095]

θ̂
Medium
3

2.5776 1.8805 4.5731 [0.1912–4.8960]

θ̂
Medium
4

1.1441 0.5378 1.4065 [0.0671–2.4634]

θ̂
High
1

1.5115 0.1676 1.9809 [0.6077–1.9674]

θ̂
High
2

1.1577 0.0010 1.2815 [1.2092–1.3376]

θ̂
High
3

2.3707 2.0782 4.0843 [0.1316–4.8219]

θ̂
High
4

1.2962 0.5101 2.4730 [0.0804–2.4368]

Fig. 11. Comparison of validation results of the traditional and the local IUQ for SMD.

Fig. 12. Reference calculation results of S-S model before the IUQ analysis.
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Fig. 13. SA results for S-S.
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θ2 show substantially different posterior PDFs with respect to their prior.
Whereas, as expected by (Wu et al., 2019), θ3 and θ4 are basically left
unchanged due to their low sensitivity (i.e., they are not identifiable).

4.1.3. SMD: Validation
In Fig. 11, the results of the validation procedure for the traditional

IUQ (a) and the local IUQ (b) are presented. The bisector of the first
quadrant is plotted in red with a σobs = ±2% (i.e., the dotted line) and
represents the condition ym = yval (i.e., perfect calibration). Then, for
each validation point, the model responses with θ fixed at the default
prior values θ* (i.e., the blue dots) are compared with the two sided 95%

TI of the model responses when sampling from the estimated J (θ̂) and

centered on the model response at the θ̂
MAP

(i.e., the purple asterisk).
From a visual comparison, the results of the two approaches are quite

similar, because the overall trend of the responses obtained with the
different posterior PDFs is the same. In both cases, few points are
enveloped within the TI: it can be justified as the side effect of the fact
that the validation is performed on data referring to different nozzle
shapes (i.e., SMD Exp) from those used for the IUQ analysis (i.e., SMD
Div). To measure the differences between the two approaches we have
employed the metric of Eq. (16) to quantify the MRAE between the point
estimates of the two approaches (i.e., the purple asterisks). Since the
error is just around 2 − 5% in every region we can claim that there are
not substantial differences between the two methods. The only major
dissimilarity is the width of the estimated TI, indeed, the input space
segmentation shrinks the extension of experimental datasets (e.g.,
Fig. 11 (b) red region). Thus, the resulting posterior distributions esti-
mated with the local IUQ are affected by a greater uncertainty due to the
lower available evidence. This behaviour is clearly linked to the
epistemic component of the θ uncertainty, which is reduced by
increasing the number of observations (Higdon et al., 2008).

4.2. S-S

In Fig. 12, it is plotted the response of the S-S model (before IUQ)
with respect to the experimental data Yobs(x). In this case, due to the
dimensionality x = [P0,T0,X0, h0, L/D]T it is not possible to give an im-
mediate graphical representation of the model response surface as a
function of the whole x domain. Nevertheless, the difference in terms of
L/D for the nozzle N2 is highlighted using different markers. It is worth
mentioning that, in order to evaluate the model at physically consistent
ICs & BCs, for subcooled ICs the couple [P0,ΔTsub]T has been imposed,
while for two-phase ICs [P0,X0]T have been used. Nevertheless, T0 and h0
are still employed as additional inputs just for obtaining additional in-
formation (also to be consistent with the experimental observations ICs
& BCs domain). Whereas, regarding L/D, the different configurations
have been obtained by varying the corresponding nodalization from
case to case.

4.2.1. S-S: SA
The results of the clustering analysis for S-S are presented in Fig. 13

and the related quantitative sensitivity measures can be found in Fig. 14.
As shown by the aforementioned figures, in this case and unlike SMD,
there is a clear and strong dependence of the model response by x.
Indeed, the sensitivity measures (see Fig. 14) highlight a clearly domi-
nant region in terms of sensitivity, i.e., the high (k = 3) response one.
We could explain the presence of this peaked ICs & BCs dependent
behaviour by resorting to physical considerations. In fact S-S is char-
acterized by the presence of both multiphase and subcooled inlet con-
ditions which are related to the inlet quality x3 = X0, defined in terms
of saturated liquid and gas density as:

X0 =
(1/ρ) −

(
1
/

ρl,sat
)

(
1
/

ρg,sat
)
−
(
1
/

ρl,sat
) (17)

where ρl,sat , ρg,sat , ρ are saturated liquid, saturated vapour and the

Fig. 14. SA quantitative results for S-S.
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two-phase mixture densities, respectively. Then, by observing the
conditioned distributions of Fig. 13 (c) it is evident that the high
response region of the output is driven by the subset of the input domain
which corresponds to the subcooled initial conditions, since the support
of fx3 |yHighm

is negative. Hence, we can claim that for S-S a strong de-
pendency on the input x domain is observed.
In Fig. 15, the outcomes of the sensitivity analysis for θ are illus-

trated. As already pointed out by the SMD results, θ2 remains the clearly
dominant parameter using both sensitivity measures. Nevertheless, in
this case, there is also a localized peaked sensitivity for θ1 just in the high
response region. This behaviour could be easily linked to the previous
physical consideration because θ1 is a numerical coefficient directly

related to the subcooled flow conditions (see Table 3). From this analysis
we could expect a strong identifiability for θ2 in every region and some
relevant differences for θ1 from region to region. Whereas θ3 and θ4
should remain of difficult identifiability due to their low sensitivity.

4.2.2. S-S: IUQ
In Fig. 16, the results of the traditional IUQ analysis are shown. In

this case despite the overall outcomes of the procedure could be still
considered satisfactory, nevertheless, there are some points in which the
local behaviour of the calibrated model do not match the experimental
data, specifically for some points in the medium and high response re-
gion (Fig. 16 (c) data index > 55). In Table 6, a summary of the esti-

mated J (θ̂) can be found.
Then, in Fig. 17 and Table 7 the same information is provided for the

results of the local IUQ analysis. It is worth noting that posteriors of θ1
and θ2 vary greatly across the three different regions. Despite this, the
overall results of the reference verification procedure for both the low
and the medium region (Fig. 17 (c), (f)) are practically indiscernible
from the ones obtained through the traditional IUQ (Fig. 16 (c)).
Nevertheless, for the high region (Fig. 17 (i)), the accordance between
the experimental data and the posterior output distribution is clearly
improved with respect to the traditional approach (Fig. 16 (c)). We
could link this fact to the peaked sensitivity previously identified
through the SA (see Fig. 14).

4.2.3. S-S: Validation
In Fig. 18, the results of the validation procedure are presented. In

this case the overall trend of the model predictions is shifted downwards
with respect to the experimental observations for both approaches. This
behaviour can be considered as the side effect of some distortion be-
tween the configurations of nozzle N2 used for the IUQ (i.e., Yobs) and
those employed for the validation (i.e., Yval). To investigate the causes of
this effect, in Fig. 19, we have plotted in parallel coordinates the input
values x of the quantification dataset Yobs (blue continuous lines) and
those of the validation database Yval (red dashed lines). The input values
of Yobs cover homogeneously those of Yval, except for L/D, where the
largest and the lowest values are only represented in the Yval dataset,
whereas they are not in Yobs (as shown by the red shadowed circles in
Fig. 19) leading to a systematic bias in the estimation of ym. Neverthe-
less, these results are quite illustrative of the improvement obtained
through the application of the local IUQ procedure. Indeed, by
comparing Fig. 18 ((a) and (b)) it is visible how minor differences are
present for the low and medium regions (i.e., the low sensitivity ones)
with respect to the high one, which is also the most sensitive one. In fact,
for the high region the predictive accuracy of the model is greatly
enhanced, so this kind of analysis shows that through input space seg-
mentation it is possible to potentially increase the performances of
Bayesian IUQmethodologies when a high dependency of the model from
ICs & BCs is detected. In this case the evaluation of the mean squared
error between the predictions of the two approaches underlines a dif-
ference of one order of magnitude for the high region (~ 24 %) with
respect to the other two (~ 2 %).

4.3. Comparison between SMD and S-S

In Fig. 20, a comparison between SMD (a) and S-S (b) is presented in
terms of validation results. The metric of Eq. (16) is applied to the subset
of the validation domain corresponding to each response region. The
results show that the local IUQ procedure has been capable to improve
the model predictive performances for the High response region of S-S,
which was also the most sensitive one with respect to input x, whereas
no appreciable differences can be observed for SMD. It is worth noting

Fig. 15. Sensitivity of θ for S-S.
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Fig. 16. Results of traditional IUQ analysis for S-S.

Table 6
Posterior PDFs statistics estimated through the traditional IUQ for S-S.

Parameter Mean Variance MAP [Q(0.05)-Q(0.95)]

θ̂1 1.9568 3.2078 10− 04 1.9651 [1.9275–1.9959]

θ̂2 0.8996 1.4135 10− 05 0.9001 [0.8924–0.9071]

θ̂3 2.5178 1.9580 0.4644 [0.1241–4.8282]

θ̂4 1.4071 0.5118 2.4932 [0.0877–2.4586]
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Fig. 17. Results of local IUQ analysis for S-S.

F. Di Maio et al.



Annals of Nuclear Energy 208 (2024) 110791

20

Table 7
Posterior PDFs statistics estimated through the local IUQ for S-S.

Parameter Mean Variance MAP [Q(0.05)-Q(0.95)]

θ̂
Low
1

0.9926 0.1989 0.5009 [0.5036–1.7418]

θ̂
Low
2

0.8318 2.8422 10− 05 0.8322 [0.8211–0.8422]

θ̂
Low
3

2.8304 1.8819 1.6082 [0.2588–4.9125]

θ̂
Low
4

1.3907 0.5411 0.4705 [0.0899–2.4427]

θ̂
Medium
1

1.1530 0.2231 0.9554 [0.8783–1.0553]

θ̂
Medium
2

1.2627 6.2150 10− 04 0.9276 [0.9180–0.9372]

θ̂
Medium
3

2.5776 2.1252 3.0548 [0.1171–4.8520]

θ̂
Medium
4

1.1441 0.5163 2.3577 [0.0871–2.4552]

θ̂
High
1

1.5115 0.0633 1.5051 [1.0654–1.9510]

θ̂
High
2

1.1577 3.4527 10− 04 1.1698 [1.1186–1.1919]

θ̂
High
3

2.3707 2.0868 0.5602 [0.1307–4.8588]

θ̂
High
4

1.2962 0.5293 1.3443 [0.0762–2.4538]

Fig. 18. Comparison of validation results of the traditional and the local IUQ procedure for S-S.
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Fig. 19. Parallel coordinates representation of the input values x for the quantification database Yobs (blue continuous lines) and the validation database Yval (red
dashed lines) for S-S.

Fig. 20. Validation results comparison between SMD and S-S.

F. Di Maio et al.



Annals of Nuclear Energy 208 (2024) 110791

22

that the order of magnitude of the calculated discrepancies between
model predictions and experimental data is in the range ( 10 − 25%),
that is typically deemed acceptable for two-phase T-H models validation
according to (Jaeger et al., 2013).

5. Conclusions

In this paper, the development of an IUQ procedure based on input
space segmentation through SA is presented and tested with respect to
two SETs BE models, namely SMD and S-S. The rationale behind this
approach is highlighting and extending the role of SA during IUQ for
characterizing the model local behaviour and guiding a tailored IUQ
analysis on the data correlated with the subset of the input domain
which mostly affects the QoI response in the region of interest. The
approach is based on an input space segmentation performed through
distribution based global SA measures like the KL divergence and the H
distance and, then, on a localized IUQ. This novel methodology is in-
tegrated with the traditional IUQ procedure in a comprehensive
framework of analysis inspired by the SAPIUM project guidelines
(Baccou et al., 2020). The application of the developed approach to a
case study from the ATRIUM project shows that this kind of analysis
could improve the performance of the IUQ methodologies when the
response of the model is greatly affected by the variation of the input
domain (e.g., ICs & BCs). Further work is still needed to refine the
methodology and to test it on more complex applications like IETs to
verify the robustness of the approach. In principle, this framework
should express all its potential in the case of multiphysics applications,
which are typically characterized by a highly non linear behaviour and
an extensive dimensionality. Therefore, in these cases, there is not a
trivial procedure to partition the input space exact relying on an expert-
based assessment. Future developments will be focused on the elabo-
ration of a tailored “local” discrepancy term capable to properly char-
acterize the impact of model uncertainty on the analysis results (Arendt
et al., 2012; Wu et al., 2021): due to the lack of a consistent mathe-
matical formulation and of a consensus on the functional form for the
discrepancy term (which is supposedly strongly dependent on the
particular case study under analysis), the problem could be robustly
addressed by the generation of multiple (diverse, possibly empirical)
models and the selection (and/or merging) of the best ones through
validation and evaluation of the corresponding predictive capability
(Ling et al., 2014). Also, the scalability and extrapolation issue of the

estimated posterior distributions J (θ̂) of SETs for the applicability of
these results on the IET have to be addressed: in this view, the possibility
to merge the different posterior density functions by means of Bayesian
Model Averaging (Fragoso et al., 2018) or Frequentist Model Averaging
(Fu and Pan, 2018) could be explored, where the models predictive
capability and the datasets adequacy (Di Maio et al., 2024) may be used
as model weighting factors.
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