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Robust design of turbine blades with friction contacts in the presence of 
multiple response levels 
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Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca Degli Abruzzi 24, 10129, Turin, Italy   
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A B S T R A C T   

Dry friction damping is a widely used solution to mitigate vibrations of turbine blades. At design stage, the 
computation of the forced response of assemblies of bodies in contact (whose relative motion could result in dry 
friction damping) could give non-unique solutions due to the possibility of having different static equilibria. 
Infinite possible vibratory levels in a range are hence possible. A desirable condition for designers is to deal with 
systems whose response boundaries are not far from each other, i.e. with a low scatter in the response. For 
systems with multiple vibration levels, the notion of robustness (a robust system has a small response scatter, and 
viceversa), is particularly important. 

A robust design is hence needed for such assemblies. Once a design parameter is identified, two possible 
approaches are possible to accomplish this task. 

The so-called manual approach explores a certain number of values of the design parameter belonging to a 
certain interval, and chooses the most robust configuration among those calculated. This computation could 
result in a huge effort if the number of considered values of the design parameter is high. 

To overcome this issue, a second approach is here proposed. It is based on a Nested Optimization Algorithm 
(NOA), which consists in two levels of optimization in order to directly find the most robust configuration in the 
considered range for the design parameter. 

In this paper, NOA is applied to a particular test case consisting in a lumped-parameter system simulating three 
blades with two UPDs interposed among them. Such a system provides the necessary coupling between different 
contact interfaces necessary to obtain multiple response levels. In addition, it is useful to investigate the mutual 
interaction among different UPDs. 

Results of NOA are presented together with the results of the manual approach in order to give a validation of 
the double optimization. Dependence of the response scatter from the contact states of the interfaces is also 
investigated.   

1. Introduction 

Preventing high cycle fatigue failures caused by vibrations [1] rep-
resents a priority task in the field of turbomachinery. Since a full 
detuning of the natural frequencies of the system with respect to the 
frequency of the excitation is not always possible, several solutions have 
been developed over the years to mitigate the vibration amplitude of the 
blades. In the case of turbine components, intentional implementation of 
dry friction damping has been successfully performed in order to achieve 
this goal. 

Different solutions include the use of Under-Platform Dampers 
(UPDs) ([2–4]), ring dampers ([5,6]), mid-span dampers ([7,8]) or the 

use of shrouds ([9,10]) or blade-root contacts ([11]). UPDs, in partic-
ular, are secondary structures in a bladed disk which indirectly couple 
adjacent blades and take advantage of their relative motion in order to 
dissipate energy by friction. 

Modelling the effect of friction damping on the forced response of 
bladed disks requires nonlinear solvers with embedded contact models, 
to model the interaction between adjacent bodies. A very simple and 
widely used contact model is the Coulomb friction one, where only 1D 
motion between the two bodies in contact is considered [12,13]. More 
elaborated models, which ensure a more accurate response, take into 
account 1D motion with varying normal load [9], 2D [14,15] and 3D 
[16] motions. 
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The most popular method to compute the forced response of systems 
with contact interfaces is the uncoupled approach ([17]), where static 
and dynamic equilibria of the system are solved separately. According to 
this approach, a static analysis is first carried on to compute the static 
equilibrium of the system before applying the dynamic excitation. Static 
normal loads on joint interfaces are used as inputs for the dynamic part 
of the vibratory response problem. The uncoupled approach is widely 
used because the computation usually converges in a reasonable time. 

However, a more recent approach, involving the solution of the static 
and dynamic equations together, the so-called coupled approach, 
proved to give more accurate results [18,19]. The increased accuracy of 
the coupled approach comes with a drawback, in terms of convergence, 
since multiple dynamic equilibria of the system exist when some of the 
contacts are in full-stick condition. This is in agreement with Yang et al. 
[20,21], who, more than twenty years ago, highlighted the uncertainty 
of contact forces in wedge UPDs when one damper side was fully stuck 
during vibration. This uncertainty led to multiple forced response levels, 
associated to the same set of input parameters. 

Previous studies on this type of uncertainty have been performed 
within the contact mechanics community by Klarbring [22]. By 
analyzing a simple frictional rate problem (i.e. contact states changing 
due to a change of the external loads), he showed that a critical 
parameter exists, such that the mechanical behavior of the system 
changes when the critical parameter changes sign. The influence of this 
parameter demonstrated that the non-uniqueness of the response is 
influenced by the friction coefficient and the relative stiffness coupling 
between normal and tangential dofs. 

A coupling between normal and tangential dofs, which can lead to 
non-uniqueness of the response, may arise also by getting bodies of 
different materials in contact: this is the typical setting investigated in 
the contact mechanics community [23–26]. This type of coupling may 
also arise in case of multiple contact surfaces with different orientation. 

This uncertainty phenomenon was more recently numerically 
investigated in Refs. [27,28], confirming the existence of a variability 
range in the response, associated to the non-uniqueness of the mean 
(static) component of tangential force in fully stuck contacts, extending 
the range of applications from wedge UPDs to other friction damping 
devices ([27]). 

Determination of the boundaries of multiple responses is crucial in 
the design phase of blade arrays with multiple friction contact surfaces, 
since the blades should be designed with respect to the maximum vi-
bration amplitude obtained at resonance for different levels of 
excitation. 

The systematic computation of dynamic response boundaries, due to 
non-uniqueness of the mean (static) tangential force in fully stuck con-
tacts, was performed for the first time by two of the authors of this paper 
(Ferhatoglu and Zucca) in Ref. [29], by means of an optimization al-
gorithm. This algorithm solves a non-linear constrained optimization 
problem, where the non-linear constraint is given by the equilibrium 
equations of the system obtained by means of the Harmonic Balance 
Method [30], where periodical quantities are approximated as a Fourier 
series ([31]). Optimization is carried on by minimizing or maximizing 
an objective function ([32]), which permits to choose, among infinite 
dynamic solutions for the non-linear constraint, the two solutions of 
interest (maximum and minimum amplitude of the forced response). 
The advantage of this approach is the possibility to get a systematic and 
deterministic computation of the response bounds of mechanical sys-
tems with friction contacts, even with a large number of contact points. 
Ferhatoglu and Zucca [29] demonstrated the method on realistic turbine 
blades with shrouds contacts and blade-disk interfaces. They success-
fully captured the forced response boundaries on several case studies - 
characterized by cyclic symmetry - by using two orthogonal 1D contact 
models with varying normal load. 

A system with multiple response levels is not so appreciated by the 
designer since it is not very predictable, it is not “robust”. With this logic 
a dynamic design of the system is here defined “robust” when, in case of 

multiple response, the difference between the maximum and the mini-
mum dynamic response is the smallest possible. A possible way to 
perform a robust design is to explore the space of the design parameter 
of interest in a manual way, by computing the response for all the 
possible values of the parameter, searching for the value that gives the 
maximum robustness. The main issue is that this manual search could 
result in a huge computation time. To overcome this issue, a Nested 
Optimization Algorithm (NOA) is here proposed to automatically search 
for the design parameter value that better matches the design require-
ment of robustness. NOA consists in two levels of optimization: 1) the 
inner optimization computes the boundaries of the considered dynamic 
system through the same method proposed in Ref. [30], 2) the outer 
optimization exploits the boundaries obtained by the inner optimization 
and the chosen design parameter in order to obtain the configuration 
with the maximum possible robustness. 

The NOA is here tested on a test case with three blades and two 
interposed UPDs. This system is particularly interesting and meaningful 
for the presence of different inclined contact surfaces that give the 
coupling necessary to have multiple response levels with possible 
mutual effects between dampers. To the best of the authors’ knowledge, 
the possible interaction between different UPDs has never been inves-
tigated in the existing literature. 

Once the design parameters for the UPDs were defined, the robust-
ness of the test case is computed by exploring first manually the design 
space and then by finding directly the optimal solution by NOA. 

The paper is organized as follows. In Section 2 the background of the 
computation of response boundaries for systems with multiple vibratory 
levels is recapped since it is a relatively new approach in the literature. 
In Section 3, the general NOA methodology applicable to systems with 
friction contact interfaces is presented. In Section 4 NOA is applied to a 
test case and the result of the manual search of the most robust solution, 
together with the NOA predictions, is presented by putting in evidence 
how the existence of multiple response levels is correlated to the contact 
state in the interfaces. 

2. Background 

In this section, the original optimization algorithm developed in 
Ref. [29] is described for two reasons.  

- The systematic computation of the variability range of the response 
of mechanical systems with friction contacts, is a relatively new 
approach in literature and it is worth to describe it in detail.  

- It represents the starting point of the Nested Optimization Algorithm 
developed to support the robust design of mechanical systems with 
friction contacts. 

2.1. Governing equations 

The time-domain equilibrium equations of a mechanical system with 
contact interfaces can be written as 

M q̈(t)+C q̇(t)+K q(t)+FC(q, q̇, t)= Fexc(t) (1)  

where t is time, M, C and K represent the linear system mass, damping 
and stiffness matrices respectively. q(t) is the vector of generalized co-
ordinates. FC(q, q̇, t) and Fexc(t) are the vectors of non-linear contact 
forces due to the contacts and the external excitation. In case of an as-
sembly made of multiple bodies, the M, C and K matrices are block- 
diagonal, with each block corresponding to one body, while q and F 
vectors contain degrees of freedom (dofs) and forces of the entire as-
sembly. Using the Harmonic Balance Method (HBM), it is possible to 
switch to frequency domain 
(
− (hω)2M+ ihωC+K

)
q̂h + F̂

h
C − F̂

h
exc =0 h=(0,…,Nh) (2) 
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where q̂h, F̂
h
C, F̂

h
exc are the Fourier coefficients of the response, contact 

and external forces respectively. Equilibrium equations are coupled by 

means of the contact forces F̂
h
C = F̂

h
C
(
q̂0,…, q̂Nh

)
. In order to compute 

the Fourier coefficients of contact forces F̂
h
C in Eq. (2), a contact model is 

necessary. In this paper the 1D contact model with varying normal load, 
depicted in Fig. 1 is used. 

According to the proposed model, the contact force is divided in a 
tangential component T(t) and a normal component N(t) with respect to 
the contact surface. The model includes a Coulomb slider in tangential 
direction and two linear springs in both normal and tangential direction 
(which stiffnesses are kn and kt, respectively). The variable w(t) de-
scribes the slider position and together with the normal v(t) and 
tangential u(t) displacement, determines the entity of normal and 
tangential force for every time instant. 

N(t)=max(knv(t), 0) T(t)=

⎧
⎨

⎩

kt [u(t) − w(t)]
μN(t)sign(ẇ(t))

0

stick state
slip state

lift − off state
(3) 

Computation of the tangential force T(t) is not possible in a direct 
way, since the slider position w(t) is not known in advance. Hence, 
computing tangential force is performed by a predictor-corrector algo-
rithm, whose steps are detailed in Ref. [10]. 

The solution of the nonlinear balance equations (Eq. 2) is here per-
formed with the iterative Newton-Raphson method. At each iteration, a 
vector q̂h(h= 0,…,Nh) of unknowns is provided and Fourier coefficients 
of relative displacements are computed. Then, at each contact the 
Alternating Frequency/Time (AFT) method ([33]) is used (Fig. 2). In 
detail, time domain relative displacements u(t) and v(t) are computed by 
means of Inverse Fast Fourier Transform (IFFT), periodic contact forces 
T(t) and N(t) are computed by means of the contact model and finally 
Fourier coefficients of contact forces are computed through a Fast 

Fourier Transform (FFT). Eventually, the vector F̂
h
C is assembled and 

used in Eq. (2). 
Within the AFT scheme, the calculation of the periodic contact forces 

in time domain by means of Eq. (3), requires that the initial value of the 
tangential contact force T(0) is guessed by the user. In the present work 
the following expression is used: 

T(0)=αμN(0) (4)  

where the value T(0) is defined as proportional to the Coulomb limit 

μN(0), where the coefficient α⊂[ − 1, 1] simulates possible different 
initial conditions. 

2.2. Non-unique contact forces and multiple responses 

When the contact model is used, within the Newton-Raphson itera-
tive solution process, to compute the periodic contact forces T(t) and 
N(t), one of the possible contact configurations is the so-called full-stick 
state, characterized by a perfectly elastic behavior of the contact both in 
tangential and normal direction. 

In the full-stick state, the periodic tangential force T(t) is bounded by 
the upper and lower Coulomb limits and, as shown in Fig. 3, for a given 
contact kinematics, multiple T(t) curves, characterized by different 
mean values, can respect the Coulomb inequalities −

μN(t) ≤ T(t) ≤ μN(t). The maximum 
(
T0

max
)

and the minimum 
(
T0

min
)

admissible mean values correspond to the tangent curves, at given time 
t, to the upper Coulomb limit curve and to the lower Coulomb limit 
respectively. All the possible T(t) curves are admissible and each of them 
is characterized by a specific value of the α coefficient, that determines 
the corresponding initial condition (Eq. (4)). 

In detail, within the AFT process described in Section 2.1, for a given 
set of periodic relative displacements u(t) and v(t), that result in a full- 
stick state of the contact, it is possible to obtain any of the admissible 
T(t) curves, by selecting different initial conditions T(0). Each initial 
condition corresponds to a value of the α coefficient, defined in Eq. (4). 

A clear example of the effect of different values of the α coefficient is 
provided in Fig. 4, where the four plots correspond to four possible 
periodic contact forces due to the same periodic relative displacements 
u(t) and v(t). In all the four cases, the AFT process is performed over two 
periods, in order to reach a periodic solution (full lines) also when the 
initial condition does not belong to the periodic curve. 

In case (a), the value of the α coefficient (α1 = 0.3143) allows to 
obtain the maximum periodic tangential force Tmax(t) associated to the 
maximum T0 value (T0

max in Fig. 3). Since the initial condition already 
belongs to the final periodic curve, the periodic solution with the AFT 
process is already obtained during the first period. 

In case (b), the value of the α coefficient is larger (α2 = 0.75) than in 
the previous case and, after a partial saturation of the tangential force 
during the first period (T(t) = μN(t)), the steady-state periodic force 
T(t), established during the second period, is equal to case (a), showing 
that the Tmax(t) curve will be obtained with any α ∈ [α1,1]. 

Finally, in case (c), a value of α3 = 0, allows obtaining a periodic 
tangential force T(t) different from those computed in the previous two 
cases and characterized by a lower value of the average tangential force 
T0. 

In analogy with case (a), there is a negative value of α = α4 < α3, 
that implies negative saturation of the tangential force during the first 
period (T(t) = − μN(t)), so that the Tmin(t) curve will be obtained with 
any α ∈ [ − 1,α4]. Such a situation is represented by case (d), where α4 is 
equal to − 0.8377. 

The existence, in stick condition, of possible different average values 
of the tangential force suggests that, in a more complex system with 
multiple contacts, there might be different static equilibria of the sys-
tem, which are all admissible. 

Systems with multiple contacts can be classified as.  

a) Systems with no full stick contacts  
b) Systems with at least one full stick contact 

In type a) systems, every contact has a well-defined hysteresis cycle, 
this leads to a unique static and dynamic balance conditions. 

Systems with at least one full stick contacts are furtherly classified in.  

b1) Systems with all full stick contacts 

Fig. 1. 1D contact model with varying normal load.  
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b2) Systems with at least a contact that alternates stick-slip or stick- 
slip-separation 

Type b1) systems are structures where infinite static equilibria are 
possible, but the dynamic response is unique. 

Type b2) systems are the key focus of the paper. Multiple mean 
values of the static tangential contact force for stick contacts implies 
different static equilibrium of the assembly. 

If the static equilibrium of the assembly is not unique, even the static 
normal force on contacts alternating stick and slip (and separation) can 
assume multiple values. For stick/slip contacts, the hysteresis cycle and 
hence the energy dissipated depends on the static normal load. Different 
levels of energy dissipated by the system, result in multiple vibratory 
levels. 

By following the procedure described in Section 2.1, response 
computation of a generic structure with Ncont contact interfaces needs an 
array of coefficients as input. 

α= [α1,…, αNcont ] (5) 

These coefficients are additional inputs of the system, since their 
value can affect the system response. Specifically, response of type a) 
systems is not affected by the values of α. In type b1) structures, each 
static configuration is described by a specific vector α, even if a unique 
dynamic solution exists. On the contrary, in case of type b2) structures, 
multiple α vectors, imply multiple static and dynamic equilibria. 

2.3. Response boundaries and optimization algorithm 

In Section 2.2 it was established that, under specific hybrid condi-
tions (some contacts are in full-stick, while other contacts alternate 
stick-slip) multiple dynamic equilibrium conditions exist. From the en-
gineering point of view, the most relevant configurations among the 
admissible ones are those leading to the maximum and the minimum 
response on the system (i.e. the response boundaries). 

Ferhatoglu and Zucca [29] developed an optimization algorithm, 
which found the response boundaries of the system, by maximizing or 
minimizing the loss factor of the system. The algorithm is briefly 
described below, since it is used also for the analyses performed in 

Section 3. 
In general, in case of periodic vibration of systems with friction 

contacts, the loss factor ([34]) is defined as follows 

η=ΔWdiss

2πUpot
(6)  

ΔWdiss is composed by a linear term ΔWvisc (which represents the energy 
dissipated by viscous damping) and a term due to contact ΔWfric (energy 
loss due to the contact). 

ΔWdiss =ΔWvisc +ΔWfric ∝ (hω)q̂HC q̂ + ω I
(
q̂H F̂C

)
(7)  

Upot is the potential energy of the system, that is the sum of the potential 
energy of the linear system and the potential energy of the contacts 

Upot =Ulin +Ucont ∝ q̂HK q̂ + R
(
q̂H F̂C

)
(8) 

As in Ref. [29], maximum and minimum response of a vibrating 
structure can be systematically computed, by respectively minimizing or 
maximizing the loss factor. In this way, two different non-linear con-
strained optimization problems are defined in Table 1. 

Where R is the residual of the equilibrium equations 

R=
(
− (hω)2M+ ihωC+K

)
q̂h + F̂

h
C − F̂

h
exc (h=0, 1,…,H) (9) 

Both problems in Table 1 correspond to the solution of an extended 
version of the canonical dynamic system whose unknowns are only the 
generalized coordinates. In this case the additional unknowns are the 
previously described α coefficients (Eq. (5)). The solution of the two 
problems described in Table 1 is performed by the standard Matlab 
function fmincon for optimization problems; in particular the maximum 
response was obtained by minimizing η and the minimum response by 
minimizing –η. 

In the present work the response of the system is computed by 
considering only the 0-th and the 1-st harmonics, although, in the case 
where higher harmonics are not negligible - e.g. systems where sepa-
ration occurs - the procedure could be extended to a higher harmonic 
number. 

If a system has not multiple solution (system named a) and b1) in the 
previous section), the two optimization problems of Table 1 solved with 
fmincon give the same solution. 

3. Robust design methodology 

The methodology described below exploits and expands the algo-
rithm presented in the previous section for a "robust" design of systems 
with friction contacts. In this frame, a design can be considered “robust” 
when, in case of multiple response, the difference between the maximum 
and minimum response is the smallest possible. The proposed method-
ology consists in defining the quantity "robustness" and searching the 
value of design parameters that maximize the robustness in an optimized 
way by avoiding repeated computations as the design parameters 
change. 

3.1. Robustness definition 

A mechanical system with friction contacts, whose nonlinear 
response is characterized by multiple response levels, is considered. If 
the optimization algorithm described in Section 2 is used to compute the 
system response, a plot similar to Fig. 5 is obtained, where the maximum 
and the minimum responses of the system are shown. 

Fig. 2. Alternating frequency/time approach.  

Fig. 3. Time histories of contact forces for a full stick cycle.  
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The response scatter δ (Fig. 5) between the response bounds at the 
resonance frequency represents a metric of the uncertainty of the 
nonlinear forced response. As a consequence, in this paper robustness is 
defined as 

R=1 −
δ

ymax
(10) 

As a result, R = 0 when the scatter is maximum (δ = ymax), and R = 1 

when the response is unique (δ = 0). 
Obtaining a robust system (large value of R) is a desirable condition, 

since it implies a small response scatter δ corresponding to a more 
predictable system. 

3.2. A nested optimization algorithm for robust design 

In general, a design process implies that (at least) one of the pa-
rameters of the system is selected as the design parameter p and that the 
design value, that better matches the design requirements, is searched 
within a given interval. 

The search for the design value can be performed in a manual way, 
actually exploring the parameters space. If this approach is applied to 
maximize the robustness of a mechanical system with friction contacts, 
the optimization process described in Section 2 should be performed at 
many values of p, within the selected interval. In this way, the response 
scatter δ and the robustness R could be derived from the maximum and 
minimum responses computed at each value of p, allowing the designer 
to eventually select the design value. 

To overcome the bottleneck represented by the large amount of 

Fig. 4. Contact Forces Time Histories for a full-stick contact (a) α1 = 0.3143, (b) α2 = 0.75, (c) α3 = 0, (d) α4 = − 0.8377.  

Table 1 
Non-linear constrained optimization problems.  

Minimum Response  

Maximize η 
With respect to [q̂,α]
Subject to R = 0  

Maximum Response  

Minimize η 
With respect to [q̂,α]
Subject to R = 0  
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calculations and memory that the manual approach implies, a Nested 
Optimization Algorithm (NOA) is here proposed to automatically search 
for the design value of p, that matches the design requirements. 

The proposed method is a two-level algorithm, depicted in Fig. 6 for 
the generic design parameter p. It assumes that a reference frequency is 
selected by the user and that the optimization process is performed at 
that frequency. Given the nature of the dynamic problems under anal-
ysis, a reasonable choice would be a frequency ω = ω ref around 
resonance. 

In the NOA, two configurations are defined.  

- Configuration #1: maximum response and minimum loss factor (η1)

at ω = ω ref.  
- Configuration #2: minimum response and maximum loss factor (η2)

at ω = ω ref. 

Configuration #1 is characterized by a set of parameters [q̂1,α1], that 
respect the balance equation of the system R(q̂1,α1) = 0. Configuration 
#2 is characterized by a set of parameters [q̂2, α2], that respect the 

balance equation of the system R(q̂2,α2) = 0. 
In the optimization algorithm described in Section 2, the objective 

function is the loss factor η, therefore, by using the strategy described in 
Table 1, the minimum (η1) and maximum (η2) loss factors can be 
independently computed for a given value of the design parameter p. 

In the proposed NOA, the two above mentioned optimization pro-
cesses, that search for configurations #1 and #2, are considered as inner 
optimization problems nested inside an outer optimization procedure, 
that searches the set of parameters [q̂1,α1, q̂2,α2, p] that minimize the 
difference η2 − η1 and simultaneously respect the balance equations 
R(q̂1,α1) = 0 and R(q̂2,α2) = 0. 

At the nth iteration the NOA receives as an input a vector of pa-
rameters [q̂1,α1, q̂2,α2, p]n and provides as an output a vector of pa-
rameters [q̂1,α1, q̂2,α2, p]n+1, that satisfy the inner optimization 
problems. The optimization loop ends when the minimum value of 
(η2 − η1) is reached. 

4. Numerical test case 

The NOA is applied to a test case consisting of 3 blades with 2 
interposed UPDs for the following reasons.  

- UPDs are common damping devices in turbomachinery blades  
- UPDs provide the geometric coupling necessary to have the multiple 

response levels  
- The presence of 2 UPDs in the model allows for investigating their 

mutual effect on the dynamic response of the system 

Both blades and UPDs are modeled as vibrating masses, connected 
together by springs. The baseline configuration of this system is 
described in Section 4.1, the design parameters are introduced in Section 
4.2 and numerical results are given in Sections 4.3-4.5. 

4.1. Baseline system 

The model under investigation (Fig. 7) has 10 dofs, since each of the 
five bodies can move along both x and y axis. The blade masses m are one 
order of magnitude larger than the damper masses mD. Each mass m is 
constrained to the ground with stiffnesses k and viscous dampers c (for 
simplicity of drawing, viscous dampers are not shown in the picture) in 

Fig. 5. Typical response scatter of a dynamic system with friction contacts.  

Fig. 6. Definition of the nested optimization algorithm (NOA).  
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order to model the coupling between the blades and the disk. UPDs are 
wedge dampers, modeled as free rigid bodies; in order to avoid nu-
merical problems, a very low negligible stiffness kD (not depicted in 
figure) has been added to constrain the two masses mD to the ground. 
Each blade is coupled to the adjacent blades through a stiffness kC. The 
vectors of the displacements and the forces are 

q={ x1 y1 x2 y2 x3 y3 xD1 yD1 xD2 yD2 }
T  

Fexc =
{

Fx1 Fy1 Fx2 Fy2 Fx3 Fy3 0 0 0 0
}T 

The values of the lumped parameters are listed in Table 2. 
A close-up of the dampers is shown in Fig. 8, where tangential and 

normal forces are highlighted (left) as well as relative tangential and 
normal displacements (right) used as inputs of the corresponding con-
tact elements. 

The geometry of the UPD is fully defined by the basis angles θn. In the 
baseline configuration all the θn(n= 1,2, 3,4) are equal to π /4 rad. The 
only external force acting on each damper is a static vertical preload 
which simulates the centrifugal force, that keeps the damper in contact 
with the blade platforms during the disk rotation. 

The contact parameters of the contact elements, that couple each 
damper side to the adjacent blade, are: kt = 3× 105 N/m, kn = 3×

105 N/m, μ = 0.5. 

4.1.1. Linear response 
Before performing the non-linear analysis, two different linear sys-

tems are considered. They represent limit conditions of the contacts, and 
therefore two limit conditions for the response. The first system is the so- 
called free system, without the dampers. The second system is the full- 
stick system, where all the blade-damper contacts are in full-stick con-
dition, due to the presence of linearized contact elements (no slip, no 
separation) between the blades and the dampers. 

The natural frequencies of the free and full-stick system are shown in 
Table 3. Due to the symmetry of both systems, pairs of identical natural 
frequencies are found. 

Due to the presence of the dampers, the full-stick system is generally 
stiffer than the free system, resulting in higher values of its natural 
frequencies. A very slight softening effect due to the mass of the dampers 
is only observed in the first 2 natural frequencies, corresponding to in- 
phase vibration of the 3 blades, since no relative displacement occurs 
between adjacent masses. 

As shown in Table 3, the natural frequencies of modes #5 and #6, 
corresponding to the out-of-phase vibration of blades #1 and #3, are 
those more affected by the introduction of the damper, making them the 
suitable target for the nonlinear forced response analysis. 

It was then chosen to impose a vector of periodic external forces that 
highly excite that specific mode shapes, as shown in Table 4. 

4.1.2. Non-linear response 
The nonlinear forced response of the baseline system is then per-

formed assuming evenly distributed static forces on the dampers (F0
C,1 =

F0
C,2 = F0

C,ref = 150 N). 
The maximum and the minimum responses of the system are 

computed with the optimization algorithm described in Section 2. The 
vertical displacement y2 of blade 2 is shown in Fig. 9, together with the 
free and full-stick response as references. 

The nonlinear responses obtained by the analysis confirm that the 
values of pre-load and harmonic forces selected allow the damper to 
dissipate energy by friction, thus reducing the maximum vibration 
amplitude with respect to the full-stick case, without significant changes 
in the resonance frequency. Moreover, the optimization algorithm found 
the response bounds (i.e maximum and minimum responses), showing 
that a scatter δ in the response exists, making this test case suitable for a 
robust design analysis. 

In Fig. 10, the time histories of the contact forces are shown for both 
minimum and maximum response at a frequency near the full-stick 
resonance (267 Hz). 

In both cases, each damper has one interface in full-stick and the 
other alternating stick and slip. In particular inner contacts (2 and 3) are 
in full-stick, while outer contacts (1 and 4) alternate stick-slip. Each 
damper is a b2)-like structure as defined in Section 2.2, since they both 
have one full stick side and the other one alternating stick and slip. This 

Fig. 7. Case Study lumped parameter System.  

Table 2 
Lumped parameters values.  

Parameter Value Parameter Value 

m 1 kg k 3× 105 Nm− 1 

mD 1× 10− 1 kg kC 7× 105 Nm− 1 

c 20 Nsm− 1 kD 3× 103 Nm− 1  
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damper configuration is from now on defined as mixed configuration. 
This mixed configuration determines the existence of multiple 
responses. 

4.2. Robust design analysis 

Since a response scatter δ exists in the baseline configuration (Fig. 9), 
a robust design analysis is here performed. Since a change in the blade 
geometry is an expensive process that might require multi-disciplinary 
investigations, the following design parameters are selected.  

- Damper mass  
- Damper geometry 

and their effect of the robustness R of the system is analyzed 
separately. 

4.2.1. Effect of damper mass 
It is well known from the literature that the damper mass mD strongly 

affects the response levels of turbine blades. In particular, the damper 
mass affects the amount of energy dissipated by friction, since it affects 
the value of centrifugal force 

F0
C =mDrDΩ2  

that keeps the damper in contact with the blade platforms, where Ω is 
the rotational speed of the system and rD the radial distance of the 
damper from the rotation axis. 

In this analysis, the effect of a non-symmetric distribution of damper 
masses on the robustness of the system is investigated. In particular, the 
centrifugal forces that act on the two dampers are defined as 
⎧
⎨

⎩

F0
C,1 = F0

C.ref (1 − γ)

F0
C,2 = F0

C.ref (1 + γ)
, (11)  

where the design parameter γ is used to break the symmetry of the 
baseline system (γ = 0 → baseline system, γ ∕= 0 different mass for the 
two UPDs). 

First a manual search of the robust design is performed. The mini-
mum and maximum responses are computed with the optimization al-
gorithm described in Section 2 at different values of γ in the range [0, 
0.43] and robustness is computed (Fig. 11) at each value of γ. It is 
observed that the robustness of the system grows with γ in a monotonic 
way, up to R = 1 at γ = 0.43. 

In order to correlate the robustness of the system to the contact states 
on the dampers sides, the periodic contact forces at resonance are 
plotted for γ = 0.3 and γ = 0.43. 

For γ = 0.3 (Fig. 12), both sides of the damper #1 (contacts #1 and 
#2) always alternate stick-slip states. This implies that the existence of 
multiple responses (R< 1) does not depend on the damper #1. 

On the contrary, a mixed configuration of the damper #2 still exists 
at the minimum response, showing that the existence of a mixed 
configuration on one damper is enough to establish multiple balance 
conditions and thus multiple response levels, although with an increase 
of robustness with respect to the baseline system (γ = 0). 

For γ = 0.43 (Fig. 13), R = 1, in both cases, damper #1 alternate 

Fig. 8. View of the damper 1 with contact forces and the damper 2 with local relative displacements.  

Table 3 
Free and Full stick systems – Natural Frequencies.  

Mode # Natural frequencies [Hz] Mode shape 

Free Full stick 

1 87.17 84.58 System mode 
2 87.17 84.58 System mode 
3 159.15 168.19 System mode 
4 159.15 168.19 System mode 
5 246.56 266.89 System mode 
6 246.56 266.89 System mode 
7  396.71 Damper mode 
8  396.71 Damper mode 
9  406.88 Damper mode 
10  406.88 Damper mode  

Table 4 
Excitation forces for forced response analysis.  

Parameter Value Parameter Value 

Fx,1 5 cos(ωt) N Fy,1 20 cos(ωt) N 
Fx,2 0 Fy,2 0 
Fx,3 − 5 cos(ωt) N Fy,3 20 cos(ωt) N  

Fig. 9. Normalized response boundaries of blade 2.  
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stick-slip on both sides, while both sides of damper #2 are in full-stick. 
In particular, the periodic forces on damper #2 (full-stick) are charac-
terized by different static values T0, that do not affect the dynamic 

balance of damper #1, that dissipates the same amount of energy in both 
cases, resulting in a unique response (R = 1). This observation suggests 
that the blades uncouple the dampers, preventing the mutual in-
teractions between adjacent dampers, that could lead to multiple 
responses. 

Again, as in the previously analyzed cases, results confirm that the 
mixed configuration of one or more dampers is the requirement for 
multiple responses. 

The NOA is eventually applied to the system with p = γ, determining, 
as the most robust configuration, the value of γNOA = 0.354 (Fig. 11), 
corresponding to a robustness Rγ,NOA = 0.974. 

Although the configuration associated to the maximum robustness 
(R= 1 @ γ = 0.43) is not found by the NOA, the difference is less than 
3% and this result is considered excellent. Further analyses performed 
by using a different initial guess for the solution and/or using a different 
type of optimization strategy other than the gradient-based one, are not 
deemed necessary. 

4.2.2. Effect of damper geometry 
As shown in Fig. 8, damper geometry is defined by the basis angles 

θn. In the baseline configuration, symmetric dampers are used. Here the 
effect of the damper asymmetry on the robustness of the system is 
investigated. The design parameter is β and it is used to modify the basis 
angles in the following way: 

Fig. 10. a) Dampers view and contact states for baseline configuration near resonance - b) Contact forces time history near resonance for minimum response - c) 
Contact forces time history near resonance for maximum response. 

Fig. 11. γ − R plot.  
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Fig. 12. γ = 0.3 – Contact Forces Time History near resonance for a) Minimum response and b) Maximum response.  

Fig. 13. γ = 0.43 – Contact Forces Time History near resonance.  
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ1

θ2

θ3

θ4

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= θref

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − β

1 + β

1 + β

1 − β

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(12)  

where the case β = 0 corresponds to the baseline system, while β ∕= 0 
means non-symmetric dampers. 

Also in this case, first a manual search of the robust design is per-
formed. The minimum and maximum responses are computed with the 
optimization algorithm described in Section 2 at different values of β in 
the range [0, 0.2] and robustness is computed (Fig. 14) at each value of 
β. It is observed that the response is unique (R = 1) when 0.075 ≤ β ≤
0.15. 

Also in this case, to correlate the robustness of the system to the 
contact states on the dampers sides, the periodic contact forces at 
resonance are plotted for β = 0.1 are investigated (Fig. 15). It is 
observed that all damper sides alternate stick-slip, justifying the 
computed unique response. 

When β < 0.075 robustness of the system monotonically grows with 
β and the time histories of the periodic contact forces are similar to those 
of the baseline system (Fig. 10). 

When β > 0.15 robustness of the systems monotonically decreases 
with β. A set of representative time histories of periodic contact forces 
(β = 0.175) are shown in Fig. 16, where mixed configuration occurs 
again for both dampers, but differently from the baseline configuration, 
now inner contacts (2 and 3) alternate stick-slip, while outer contacts (1 
and 4) are in full-stick. 

Results suggest that a moderate asymmetry on the dampers increase 
robustness, while a large asymmetry leads again to multiple responses. 

Assuming as design parameter the damper angles (i.e. β), the NOA 
gives as a result β = βNOA = 0.0794, which is inside the range where the 
robustness is maximum (R = 1). In this case the NOA was able to exactly 
find one of the system configurations associated to the maximum 
robustness R. 

For both cases (mass parameter γ and geometric parameter β), NOA 
is proved to be a good tool in finding the parameter value that gives the 
maximum robustness, proving to be a sound alternative to a lengthy 
manual search. NOA is particularly effective in the case where the 
robustness (as a function of the chosen parameter) has a maximum and 
is not monotonic (as in the case of the β parameter). 

The obtained results give also an insight into the correlation between 
the response scatter and the contact states over the dampers sides. The 

results confirm that the presence of a mixed configuration is the 
necessary condition to have a response scatter. In particular, the pres-
ence of a mixed configuration on each damper (Figs. 10 and 16) de-
termines the presence of a response scatter δ ∕= 0, while a system-level 
mixed configuration, where some dampers are fully stuck while others 
alternate stick-slip (Fig. 12) is not enough, showing that the main 
structures (i.e. the blade) uncouple the dampers. 

5. Conclusion 

The paper is focused on the robustness of turbine blades with friction 
contacts, whose dynamics is known to be characterized by multiple 
forced response levels, associated to non-unique static equilibria. 

In this paper, the systematic approach originally used to determine 
the response boundaries ([29]) has been extended to search the most 
robust configuration of the system, corresponding to the minimum 
scatter between the maximum and the minimum response. 

In particular a Nested Optimization Algorithm (NOA) is proposed as 
an alternative to the more computationally expensive approach, where 
the design space is explored manually. 

The assembly of interest, in the present work, is a turbine blade array 
modeled as lumped masses with interposed UPDs. Despite the simplicity 
of this new test case, the authors believe that the analysis performed in 
the present work leads to useful observations that pave the way for 
calculations on more complex and realistic structures. 

A baseline configuration of the assembly is considered and a scatter 
in the response is observed. A particular configuration, here called 
"mixed configuration", is present on both dampers; the “mixed config-
uration” is the condition when the damper has one side in full-stick and 
the other alternating stick and slip. A robust design analysis is then 
performed selecting the damper mass and the damper geometry (i.e. 
damper angles) as design parameters. The following considerations can 
be drawn.  

1. When the damper mass is used as a design parameter:  
a. By introducing a progressive asymmetry in the mass of the two 

dampers, the robustness increased monotonically due to the 
progressive disappearance of the mixed configuration of both 
dampers. 

b. The NOA allowed to compute an almost optimum design config-
uration (R = 0.973).  

2. When the damper geometry is used as a design parameter:  
a. By introducing a progressive asymmetry in the angles of the 

damper basis, the robustness did not change monotonically and it 
showed a maximum in a given range of values of the design 
parameter.  

b. When R < 1, the scatter of the response is associated to the to 
mixed configuration of both dampers.  

c. The NOA allowed to compute the optimum design configuration 
(R = 1).  

3. In all the simulations, the scatter in the response is always associated 
to a mixed configuration of at least one of the two dampers. 

4. The blade in the middle of the assembly proved to be able to un-
couple the two dampers: any uncertainty in the static equilibrium of 
one damper does not influence the behavior of the other one. 
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