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Abstract: While it is essential to increase agricultural production to meet the needs of a growing global
population, this task is becoming increasingly difficult due to the environmental challenges faced
in recent decades. A promising solution to enhance the efficiency and sustainability of agricultural
production is the integration of Industry 4.0 technologies, such as IoT, UAVs, AI, and Blockchain.
However, despite their potential, there is a lack of comprehensive bibliometric analyses that cover
the full range of these technologies in agriculture. This gap limits understanding of their integration
and impact. This study aims to provide a holistic bibliometric analysis of the integration of Industry
4.0 technologies in agriculture, identifying key research trends and gaps. We analyzed relevant
literature using the Scopus database and VOSviewer software (version 1.6.20, Centre for Science and
Technology Studies, Leiden University, The Netherlands)and identified five major thematic clusters
within Agriculture 4.0. These clusters were examined to understand the included technologies and
their roles in promoting sustainable agricultural practices. The study also identified unexplored
technologies that present opportunities for future research. This paper offers a comprehensive
overview of the current research landscape in Agriculture 4.0, highlighting areas for innovation and
development, and serves as a valuable resource for enhancing sustainable agricultural practices
through technological integration.

Keywords: agriculture; industry 4.0; IoT; robotics; blockchain; digital twin; machine learning

1. Introduction

The global population is projected to reach 10.3 billion by the mid-2080s, necessitating
a substantial increase in food production [1]. However, this task is complicated by climate
change, which raises temperatures and adversely affects crop growth [2,3]. Climate change
significantly impacts soil characteristics, including microbial populations, salinity, and
nutrient content [4–6]. Moreover, current agricultural practices exacerbate environmental
problems by contributing to CO2 emissions and polluting water and air through the use
of fertilizers and pesticides [7,8]. To address these challenges, it is crucial to enhance
agricultural efficiency. One promising solution is integrating Industry 4.0 technologies
into agricultural processes. These technologies can improve efficiency and sustainability
by enabling advanced monitoring and control of production and resources [9]. Thus, this
integration has the potential to mitigate negative environmental impacts and promote
sustainable agricultural practices.

The integration of Industry 4.0 paradigm is significantly transforming agriculture
through advanced technologies like the Internet of Things (IoT), Unmanned Aerial Vehicles
(UAVs), Artificial Intelligence (AI), and Blockchain. IoT enables real-time monitoring and
management of environmental conditions and agricultural resources, such as irrigation and
soil quality, using intelligent sensors and wireless networks [10,11]. UAVs enhance field
mapping, crop monitoring, and the targeted application of pesticides and fertilizers [12].
AI, particularly through deep learning techniques, improves crop yield prediction, plant
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disease, weed detection, and crop classification by analyzing extensive data from satellite
imagery and sensors [13–16]. Finally, big data and blockchain enhance traceability and
sustainability within the agricultural supply chain [17,18]. This technological integration
has the potential to increase efficiency and sustainability in agricultural production while
facilitating more precise resource management.

In recent years, the integration of Industry 4.0 technologies into the agricultural
sector has attracted increasing academic interest. This has led to the emergence of various
types of literature reviews, such as systematic literature reviews (SLRs). Their primary
focus is on summarizing and synthesizing existing research findings through a predefined
and methodologically rigorous process. SLRs are particularly valuable for providing a
comprehensive overview of research themes and assessing the effectiveness of different
technological applications. For instance, in [11], the authors provide an in-depth analysis of
emerging technologies for IoT-based smart agriculture, covering unmanned aerial vehicles,
wireless technologies, open-source IoT platforms, SDN and NFV technologies, cloud/edge
computing, and middleware platforms. Similarly, [19] contrasts new technologies and
supply chain methods and examines how Industry 4.0 trends are addressing challenges
in the agri-food supply chain. Other works, such as [20] focus on identifying barriers to
Industry 4.0 and circular economy adoption in India’s agriculture supply chain, using an
integrated ISM-ANP approach to model and prioritize these barriers. Furthermore, the
role of machine learning and AI in precision agriculture is examined in [21] where the
authors discuss how ML and deep learning have been used to detect plant diseases and
automate pre-harvesting processes. Remote sensing technologies are also gaining attention,
as explored in [22] which reviews how these technologies can enhance the resilience of
agricultural systems. Additionally, [23] emphasizes the role of IoT in managing resources
in greenhouse environments, with a focus on challenges and future prospects, particularly
for developing countries.

However, due to the structured nature of SLRs, they can generally be applied to
analyze only a limited amount of literature. As a result, the scope of these reviews tends to
be more focused compared to other approaches that utilize quantitative methods to analyze
large volumes of academic publications, such as bibliometric analyses. Indeed, given the
large amount of research published in the last years on Industry 4.0 and its applications
in agriculture, a bibliometric analysis enables a comprehensive examination of current
research trends and topics [24]. This method is suitable to systematically identify key areas
of focus, prominent themes, and emerging trends within the literature, providing valuable
insights into the current state of research in this increasingly important field.

Recently, some authors have started exploring the integration of Industry 4.0 technolo-
gies into agriculture through a bibliometric analysis. This is the example of [25], where the
authors examined the current academic literature on the applications of wireless sensor
networks (WSNs) in agriculture, highlighting their roles and impacts in the field. The
study analyzed 2444 publications from the Scopus database to examine the research trends,
most productive journals, influential studies, and prominent keywords related to WSNs
in agriculture. Key findings highlight the significant growth of WSN research in recent
years, the integration of WSNs with technologies like the IoT, cloud computing, artificial
intelligence, and UAVs, and their role in supporting precision agriculture practices such
as smart irrigation and soil management. An exclusive focus on AI was instead held
by [26]. Specifically, they employed a bibliometric analysis to assess the current state and
emerging trends in the integration of AI within the agri-food sector. The study employed a
bibliometric analysis to assess current research trends, highlighting three growth phases in
AI applications within agriculture. The authors identified key AI strategies such as deep
learning and machine learning that are commonly used in agriculture for tasks like disease
detection, yield prediction, and precision farming. An exclusive focus on AI, more specifi-
cally on machine learning, was also held by [27]. Particularly, they provided insights from
the literature on the relationships between machine learning and food security, emphasizing
their contributions to agricultural planning. The study employed a bibliometric analysis to
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explore the interconnections between machine learning and food security, demonstrating
the significant role these technologies play in predicting crop yields, managing agricultural
resources, and supporting sustainable agricultural practices. The findings emphasize the
importance of these digital tools in developing effective agricultural policies and planning
strategies to mitigate food security risks in various global contexts, including African
countries where food security challenges are particularly severe.

Broader bibliometric analyses that encompass a larger set of Industry 4.0 technologies
applied in agriculture were also recently presented in some studies. For example, [28]
investigated the integration of digital technologies in agriculture, referred to as the Digital
Agricultural Revolution (DAR). The study used bibliometric tools to analyze 4995 articles
from the Web of Science database to explore key themes, influential works, and emerging
trends within this field. Key research streams identified include Climate-Smart Agriculture,
Site-Specific Management, Remote Sensing, the Internet of Things, and Artificial Intelli-
gence. The review discussed the evolution and impact of these technologies in improving
agricultural productivity, adapting to climate change, and reducing greenhouse gas emis-
sions, positioning them as essential tools for sustainable farming and global food security.
Similarly, [29] presented a bibliometric analysis of the literature related to digital agricul-
ture. The study analyzed 4694 documents from the Web of Science database using SciMAT
software (version 1.6.20, Centre for Science and Technology Studies, Leiden University,
The Netherlands), aiming to map the adoption of precision techniques and breakthrough
technologies in agriculture, such as IoT and UAVs. Additionally, the article proposed
by [30] provides an overview of the research landscape surrounding the digitalization
of agriculture, commonly referred to as Agriculture 4.0. The study used a combination
of performance analysis and science mapping to examine the literature on this topic. It
analyzed 2334 papers from the Scopus database to identify key trends, thematic clusters,
and the evolution of research over time.

Despite the valuable contributions of these works, they present certain limitations.
Studies focused on individual technologies (e.g., AI, machine learning, WSNs) often over-
look the interconnected nature of Industry 4.0 technologies, while broader analyses fail to
delve into the specifics of how each technology contributes to agricultural advancement.
This fragmented focus limits the current understanding of the synergistic effects of different
technologies within the I4.0 paradigm and their collective impact on smart and sustainable
agricultural practices.

Addressing these gaps, this study adopts a more integrative approach by conducting a
comprehensive bibliometric analysis that encompasses the full spectrum of I4.0 technologies
in agriculture. Unlike previous works, this study aims to analyze the interconnections and
synergies between various technologies, providing a holistic view of how these tools work
together to drive innovation in the agricultural sector. Specifically, the study addresses the
following research questions:

RQ1. What have been the trends in research on Industry 4.0 technologies and Agriculture, and
what are the recent research streams?

RQ2. What research streams related to Industry 4.0 technologies and Agriculture have been
developed in the scientific landscape?

To achieve this, a quantitative approach was developed, integrating traditional content-
based systematic literature reviews with bibliometric techniques such as keyword co-
occurrence networks and burst detection analysis. The combined use of co-occurrence
networks and burst detection has been already employed successfully in other studies;
for instance, [31] applied this method to identify trends in project management research,
while [32] used it to conduct a literature review on the ‘Smart Factory’ concept. These
applications demonstrate the effectiveness of combining co-occurrence networks and burst
detection for uncovering the evolutionary trajectory and key issues of a topic in a more
objective manner than traditional descriptive reviews [32,33].
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Building on this approach, our study not only conducts a bibliometric analysis but
also offers a content analysis of the key research clusters identified. By providing a deeper
examination of these themes, this study goes beyond identifying trends and offers rich
insights into the context and significance of the most prominent areas within the field. This
dual focus enhances the understanding of how each research stream contributes to the
broader landscape of I4.0 technologies in agriculture, offering a more comprehensive per-
spective than previous studies. Moreover, by including all I4.0 technologies in the analysis,
this study not only identifies current research trends and key themes but also uncovers
interactions among these technologies. The holistic perspective provided by this study
represents a significant advancement over previous reviews, offering a more advanced
understanding of how I4.0 technologies can collectively transform agricultural practice.

Overall, the research article is structured as follows: a description of the methodologi-
cal framework adopted is presented in Section 2. The results of the bibliometric analysis
are presented in Section 3, while the content analysis of the key research clusters found is
presented in Section 4. Section 5 identifies current research gaps and Section 6 concludes
the paper.

2. Materials and Methods

To achieve the objectives of this study, we adopted a methodological framework—
depicted in Figure 1—consisting of three main steps: (i) data collection, (ii) data analysis,
and (iii) content analysis.
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The first step (data collection) involved the PRISMA methodology, a widely used
protocol for systematic literature review [34]. To gather relevant articles, we utilized the
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Scopus database due to its extensive coverage of journals across management, engineering,
and environmental sciences [35], as well as its reputation for being the largest and most
comprehensive citation and abstract database available [36,37]. Our search strategy in-
volved a two-group keyword structure. The first group (Group A) comprised general terms
associated with the agricultural sector, while the second group (Group B) included both
broad terms related to Industry 4.0 technologies, such as “Fourth Industrial Revolution”,
and specific keywords like “Big Data”, “Digital Twin”, “Simulation”, and others. These
specific keywords were intentionally added to address the gaps identified in previous
literature, ensuring a more comprehensive coverage of Industry 4.0 technologies in the
bibliometric analysis. These keywords are listed in Table 1.

Table 1. Query Keywords.

Group A Group B

agriculture industry 4.0
agronomy Fourth industrial revolution

farm * 4th industrial revolution
crop * Digital transformation

alternative agriculture Cyber-physical system
Cloud

Cloud computing
Internet of things

big data
robots

digitalization
digitization

Autonomous robot
Autonomous mobile robot

Collaborative robot
Cobot

Automated guided vehicles
simulation

Digital Twin
Horizontal integration

Vertical integration
rfid

sensor
Smart bin

Additive manufacturing
3D Print *

Augmented reality
Virtual reality

Artificial intelligence
Machine learning

blockchain
5g

deep learning
data analytics

The search was constructed using the logical operators ‘AND’ and ‘OR’ to combine
keywords from both groups within the ‘Title, Abstract, and Keywords’ fields (e.g., ‘[Group
A keywords OR another Group A keywords] AND [Group B keywords OR another Group
B keywords]’). Moreover, the Scopus search engine allows to perform either an exact or
flexible search. We have adopted a flexible search that includes more items by using the
special character *. For example, searching for “farm *” will return results like “farm”,
“farms”, “farming”, and so on. Finally, we screened the obtained records based on the
following inclusion criteria:



Sustainability 2024, 16, 8948 6 of 20

• Journal Articles: Only journal articles (original research or reviews) were included, while
conference papers, book chapters, technical reports, and other formats were excluded.

• Subject Area: Articles were considered only if they were published in the subject areas
of “Computer Science”, “Engineering”, “Business, Management and Accounting”, or
“Economics, Econometrics and Finance”.

• Language: Only articles published in English were included.
• Time Frame: We considered only articles published from the beginning of 2011 (coin-

ciding with the inception of the Industry 4.0 concept) through the end of 2023.

Applying these inclusion criteria resulted in the exclusion of 18,765 records. For the
remaining 4456 articles, the availability of full bibliographic information was checked.

The second step of the methodological framework (data analysis) employed biblio-
metric tools to manage and analyze the large volume of retrieved articles. Specifically,
VOSViewer software was utilized for keyword co-occurrence network analysis [38]. This
software applies the VOS method, based on modularity-based clustering, to identify and
map clusters of frequently co-occurring keywords, reflecting common thematic areas. This
method is advantageous for its objective approach, contrasting with traditional literature
reviews that rely on qualitative content analysis [39]. The efficacy of this bibliometric tool
has been demonstrated in recent studies [25,27], particularly in defining prominent themes
in extensive literature domains, as exemplified in this study. For clustering, all author
keywords with a minimum co-occurrence of 25 were included, as already done in other
works available in the literature [40]. The cluster resolution was set to 1, which is the default
setting recommended by the software. Each cluster was given a descriptive label based on
its content to identify the common thematic areas inside the analyzed topic.

Finally, the third step of the methodological framework was applied (content analysis)
in order to deeply analyze and describe the clusters obtained from the bibliometric analysis.
In this way, this study connects the specific Industry 4.0 technologies with agricultural
production, highlighting how these technologies can support and enhance sustainable
agriculture. Figure 1 reports the schematic representation of the methodology adopted.

Overall, RQ1 was addressed by applying Kleinberg’s burst detection algorithm [33] to
the authors’ keywords related to I4.0 technologies and Agriculture. This approach identifies
keywords that have experienced a sudden rise in popularity, reflecting emerging tools,
practices, issues, and industries highlighted by authors. The detected bursts, spanning
from 2014 to 2023, reveal research trends, confirming the emergence of new areas of interest
and providing insights into their development over time. Subsequently, using VOSviewer
software, the main research themes were identified by studying clusters built by frequently
co-occurring keywords. Finally, each cluster was described by means of a content analysis
to address RQ2 [33].

The results of the application of such a methodological framework are presented in
the following sections.

3. Results and Discussion

In the first part of the Results section, we present the preliminary analysis conducted
after extracting relevant articles from the Scopus database (Section 3.1). In the second
part, we introduce and describe the cluster map developed using VOSviewer software
(Section 3.2). Finally, the burst detection analysis is presented and discussed to address RQ1
(Section 3.3). For convenience, throughout this section, the concept of integrating Industry
4.0 technologies with the agricultural sector is referred to as Agriculture 4.0.

3.1. Preliminary Analysis

Figure 2 illustrates the number of articles published annually from 2011 to 2023.
Initially, the number of articles remained relatively stable and low, with slight fluctuations
between 2011 and 2017. A noticeable increase began in 2018, marking the start of a steady
upward trend. From 2019 onwards, the growth accelerates significantly, culminating in a
peak of over 1000 articles in 2023. This trend indicates a growing interest and expanding
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research activity in Agriculture 4.0 over the past decade, with a particularly sharp rise in
the last few years.
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Figure 2. Annual scientific production from 2011 to 2023.

Figure 3 illustrates the top 20 countries with the highest number of publications on the
topic of Industry 4.0 technologies in agriculture. The color gradient indicates the volume of
publications, with darker shades representing a higher number of publications and lighter
shades indicating fewer publications. China, India, and the United States are leading in the
number of publications, with India having the highest count at 959 publications between
2011 and 2023. Other countries with substantial publication counts include Spain, Italy, and
the United Kingdom. Those countries have between 200 and 230 publications in the field.
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Figure 3. Top 20 countries in Agriculture 4.0 publications.

Figure 4 represents the distribution of academic publications on Agriculture 4.0 across
various scientific disciplines. The largest segment of the chart, at 26%, is attributed to
Computer Science, indicating a significant focus on the computational and data-driven as-
pects of integrating advanced technologies into agriculture. Following closely, Engineering
accounts for 25% of the publications, emphasizing the importance of engineering solutions
and innovations in this field. Agricultural and Biological Sciences make up 8% of the
publications, reflecting research specifically targeted at agricultural practices and biological
processes. The other 13 fields with smaller contributions indicate the broad and multidisci-
plinary interest in advancing agricultural practices through technological integration.
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Figure 5 illustrates the top seven journals with the highest number of publications on
Agriculture 4.0. The journal “Computers and Electronics in Agriculture” (ISSN-01681699)
leads with the highest number of articles, totaling over 400. “Sensors (Switzerland)”
(ISSN-14248220) follows with approximately 300 articles. Other journals with significant
contributions include “IEEE Access” (ISSN-21693536), “Applied Sciences (Switzerland)”
(ISSN-20763417), and “Sustainability (Switzerland)” (ISSN-20711050), each publishing
around 100 articles. Additionally, “Biosystems Engineering” (ISSN-15375110) and “Smart
Agricultural Technology” (ISSN-27723755) contributed to the literature with a smaller yet
notable number of articles.
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3.2. Research Clusters Map

Using VOSviewer software, a keyword co-occurrence network composed of 76 nodes
was obtained (Figure 6). Key research networks and collaboration patterns can be high-
lighted from the keyword co-occurrence network. Specifically, it revealed five different
research clusters.
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specific color.

The green cluster, centered around Precision Agriculture and Deep Learning, involves
research that focuses on applying artificial intelligence techniques. Topics like image
processing, weed detection, and transfer learning are highly connected here. More in detail,
keywords like “image processing”, “weed detection”, and “unmanned aerial vehicles”
(UAVs) suggest that this cluster is heavily involved in computer vision applications and
AI-driven automation in farming. The mention of UAVs and agricultural robots suggests
that researchers in the green cluster are working on integrating autonomous systems with
AI. Collaboration patterns here involve developing technologies that allow UAVs or robots
to operate autonomously.

From Figure 6, it is possible to observe that the green cluster is strictly related to the
purple one, centered around Machine Learning (ML). It highlights the importance of ML
algorithms, like random forest, for crop yield predictions. The centrality of ML denotes that
researchers are collaborating to apply ML models across various agricultural domains. This
collaboration likely involves AI researchers and agricultural scientists working together
to improve the predictive power of farming systems. ML is central to creating predictive
models that help optimize resource use, improve crop yields, and manage risks. The
collaboration patterns here involve integrating ML algorithms with agricultural data (from
sensors, satellites, and other devices) to provide insights that farmers can use for better
decision-making. Indeed, the research clusters linked with the collection and management
of agricultural data are respectively the red one and the blue one.

The former, i.e., the red cluster, centered around Agriculture and the Internet of Things
(IoT), seems to represent core topics related to IoT applications in agriculture. It can be
associated with research focused on technological integrations in agriculture. In fact, IoT
serves as the backbone for collecting data across agricultural systems, which can then
be analyzed using big data (blue cluster) and machine learning tools (purple cluster) to
improve crop yields, monitor soil health, and automate various farming tasks.

The blue cluster, instead, is centered around Big Data and Blockchain, which are
essential for optimizing agricultural practices. Blockchain, for instance, provides a secure,
decentralized method of recording and verifying transactions or data across the agricultural
supply chain. Keywords like “big data”, “blockchain”, and “cloud computing” suggest that
this cluster represents the research focused on data management, traceability, and security
within agriculture. Blockchain, in particular, is likely being explored for supply chain
transparency and food safety applications. The blue cluster shows connections between
researchers focused on data-driven agriculture and secure transaction management using
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blockchain. Collaboration between data scientists and agricultural researchers is evident in
this area, with blockchain researchers providing solutions for data integrity and traceability.

Finally, the yellow research cluster is centered around simulation and digital twin
technologies. The latter are virtual replicas of physical systems, and their increasing use
in agriculture suggests efforts to model and simulate agricultural environments for bet-
ter decision-making. Keywords like “optimization”, “digital twin”, “greenhouse”, and
“climate change” indicate that this cluster focuses on the virtual modeling of agricultural
systems to optimize processes, enhance efficiency, and assess the impact of various environ-
mental factors. The use of simulation and optimization models bridges the gap between
environmental science, digital innovation, and agricultural management. This cluster likely
represents a collaboration between computer scientists (developing simulation tools and
models) and agricultural experts (providing domain knowledge and practical applications).

Table 2 lists the keywords within these five clusters, with the co-occurrence of each
keyword indicated in square brackets. The theme of artificial intelligence is the most
frequently cited, with deep learning and machine learning having co-occurrence values
of 670 and 622, respectively. The Internet of Things (IoT) follows as the second most cited
theme, with a co-occurrence of 452. Big data, blockchain, and simulation exhibit similar
co-occurrence values around 100. In contrast, the least cited technologies are UAVs and
robotics, each with a co-occurrence of approximately 35, while digital twins have a co-
occurrence of only 27. Furthermore, the query in Table 2 reveals that augmented reality
and additive manufacturing are not addressed within the context of Agriculture 4.0.

Table 2. Clusters Keywords with co-occurrence values in brackets.

Sensors and IoT Robotics, UAV, and
Computer Vision

Blockchain and Big
Data

Digital Twin and
Simulation Machine Learning

Agriculture (662) precision agriculture
(674) smart farming (262) Simulation (115) machine learning (622)

internet of things (454) deep learning (670) artificial intelligence
(233) wind farm (75) remote sensing (110)

smart agriculture (363) computer vision (125) internet of things (iot)
(159) smart farm (39) Classification (66)

Iot (210) precision farming (106) big data (126) climate change (36) random forest (53)

Sensors (174) convolutional neural
network (92) Blockchain (112) Crops (34) crop yield (37)

wireless sensor
networks (118) image processing (88) cloud computing (81) edge computing (34) data mining (36)

wireless sensor
network (103)

convolutional neural
networks (55) agriculture 4.0 (64) Optimization (33) data analytics (32)

precision livestock
farming (77) Cnn (48) digital agriculture (52) smart irrigation (29) support vector machine

(31)

Sensor object detection (45) Sustainability (52) digital twin (27) crop yield prediction
(30)

Irrigation (53) transfer learning (45) industry 4.0 (44) Greenhouse (26) feature selection (26)

Automation (44) Uav (38) Digitalization (40) intelligent agriculture
(25) neural network (26)

Clustering (34) agricultural robot (32) food security (35) Monte Carlo simulation
(25) Prediction (26)

soil moisture (33) machine vision (28) Robotics (32) wind farms (25) neural networks (25)

Wsn (33) semantic segmentation
(27)

sustainable agriculture
(32)

Lora (31) image classification (26) Security (27)

Farming (29) unmanned aerial
vehicles (26)

energy efficiency (28) weed detection (26)
Rfid (27)
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3.3. Burst Detection Analysis

For the burst detection (Figure 7), the Pareto principle was applied to the keywords
selected from the keyword co-occurrence analysis (Table 2). Specifically, only the keywords
that accounted for 80% of total citations in 2023 were selected. This approach allows us
to highlight the most impactful and frequently cited terms, which have gained significant
attention in recent years.
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The burst detection analysis represented in Figure 7 illustrates the evolution of various
keywords related to Industry 4.0 technologies and agriculture from 2014 to 2023. The
thickness of the bars indicates periods when specific keywords experienced a significant
surge in popularity, reflecting heightened research interest in those areas.

During the period from 2014 to 2019, early bursts are observed in keywords such as
“wireless sensor network”, “simulation”, and “sensor”. These keywords suggest an initial
focus on applying digital tools for data collection, monitoring, and modeling in agricultural
settings, aiming to enhance the efficiency and precision of farming practices. This period
marked the early efforts to integrate technology with agriculture, setting the foundation
for the development of “precision agriculture”. The focus on simulation and sensor-based
technologies during these years highlights the importance of accurate data collection and
analysis for optimizing agricultural productivity.

From 2019 onwards, a shift in research priorities is evident, with a noticeable rise
in interest in keywords like “machine learning” and “IoT”. These terms have become
more prominent, particularly in the last 5 years, reflecting the expanding role of “artificial
intelligence” (surge increase from 2022) and interconnected devices in the agricultural sector.
Additionally, terms such as “artificial intelligence”, “deep learning”, and “smart farming”
show strong upward trends, underscoring an increased emphasis on these areas within
agricultural research. The rise of “artificial intelligence” and “deep learning” highlights the
adoption of more complex algorithms and models, capable of handling large datasets and
offering sophisticated insights into agricultural processes, especially about “classification”
tasks. The emergence of “smart farming” implies a shift towards integrating these advanced
technologies into farming practices to automate processes, reduce human intervention, and
enhance productivity through precision techniques.

Overall, the burst detection analysis illustrates a clear transition in research priorities
toward more advanced technologies like AI, deep learning, and IoT. These have become
dominant themes in the field, emphasizing the agricultural sector’s move towards digital
transformation. This trend reflects a growing emphasis on precision, automation, and data-
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driven solutions, as researchers and practitioners seek to optimize farming practices and
address challenges such as resource scarcity, climate change, and the need for sustainable
agricultural production. The analysis thus highlights the evolving landscape of agricultural
innovation, characterized by the increasing importance of digital tools in shaping the future
of farming.

From these keywords, titles were generated for each cluster, which are detailed in
Section 4 with a content analysis, explaining why certain Industry 4.0 technologies were
grouped together.

4. Content Analysis of Research Clusters

In examining the thematic clusters identified through our bibliometric analysis, it
becomes evident that Industry 4.0 technologies in agriculture often do not operate in
isolation but rather in synergy. Each cluster reveals how various technologies interlink to
enhance agricultural practices.

For instance, the clusters show that technologies like IoT, UAVs, and robotics frequently
intersect. IoT systems, which enable real-time monitoring and data collection, are often
integrated with UAVs for precise field mapping and data gathering. Similarly, robotics
benefit from the data provided by both IoT sensors and UAVs to automate tasks such
as planting, weeding, and harvesting more effectively. Moreover, artificial intelligence
and machine learning, while highlighted in their own cluster, are commonly applied
across other clusters. These technologies analyze data from IoT devices, UAVs, and even
digital twins to optimize operations and improve decision-making in agriculture. This
cross-application of technologies underscores the holistic approach that defines modern
Agriculture 4.0.

The subsequent sections of this paper delve deeper into these clusters, demonstrating
how the combined use of technologies from different clusters fosters a more integrated
and efficient approach to agricultural management. This interconnectedness enhances
the resilience and sustainability of agricultural practices, ultimately contributing to more
precise and intelligent farming solutions.

4.1. Sensors and IoT

The Internet of Things (IoT) has introduced transformative applications in agriculture,
significantly enhancing the efficiency and sustainability of farming practices. By integrating
advanced sensors and connected technologies, these applications optimize various aspects
of agricultural management, from irrigation operations to environmental monitoring and
nutrient management [10,12]. One of the primary applications of IoT in agriculture is
intelligent irrigation systems. These systems utilize sensors to monitor soil moisture and
nutrients in real time. IoT-connected sensors measure soil moisture and provide data
that is used to automatically adjust irrigation. Thus, those systems apply water and
nutrients precisely to plants based on data from moisture sensors and soil analysis [41,42].
Additionally, these systems can detect anomalies such as moisture deficiencies, temperature
increases, or high CO2 concentrations, enabling timely and targeted interventions [43].
Water and soil quality monitoring is another area of IoT applications. Specialized IoT
devices analyze water and soil in real time to detect critical parameters such as nutrient
content and contaminants [44]. This ensures that crops receive high-quality water and the
right nutrients. pH and electrical conductivity sensors are employed to monitor nutrient
levels in soil and water. Those parameters are crucial for seed germination and crop growth,
enhancing productivity.

Monitoring environmental conditions is essential for improving agricultural productiv-
ity and is facilitated through IoT systems that collect data from climatic sensors. Humidity
sensors can measure both air and soil moisture, while temperature sensors monitor temper-
ature variations in the environment and soil [45,46]. These data are essential for optimizing
growing conditions. Gas sensors, such as those for CO2 detect gasses and monitor gasses
that impact plant health [43]. Light sensors measure light radiation, which affects plant
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growth and quality. Wind speed and motion sensors provide useful data for agricultural
operations such as spraying [45].

Moreover, IoT plays a pivotal role in the development of image acquisition tech-
nologies for detecting both biotic and abiotic stresses in crops. By integrating IoT with
advanced imaging technologies, such as multispectral and hyperspectral cameras, farmers
can remotely monitor crop health and identify stress factors like diseases, pests, water
stress, or nutrient deficiencies. These imaging systems, connected through IoT networks,
provide real-time data that allows for early detection and precision interventions, helping
to mitigate yield loss and improve crop management strategies [47].

Tracking and traceability of agricultural operations are optimized through technologies
like RFID and GPS. These tools enable the monitoring and tracking of environmental
conditions and agricultural activities, improving management and communication [48].

4.2. Robotics, UAV, and Computer Vision

Agricultural robotics has made significant steps with the deployment of autonomous
and semi-autonomous robots across a wide range of tasks, from soil preparation to harvest-
ing, irrigation, and pruning. These robots utilize advanced sensors and AI algorithms to
perform complex operations with high precision. For instance, transplanting robots can
collect, punch, and plant seedlings without damaging the roots [49], while weeding robots
employ mechanical, chemical, or thermal methods to remove weeds, reducing the need for
labor-intensive manual interventions [50].

Another key application of robotics in agriculture is the use of fruit-picking and
harvesting robots. These robots are equipped with advanced sensors and machine learning
algorithms to identify, assess ripeness, and precisely pick delicate crops like strawberries,
tomatoes, and apples. By employing specialized grippers and cameras, they can harvest
fruits without causing damage, increasing productivity and reducing labor costs. As these
robots operate autonomously, they offer consistent performance even in adverse weather
conditions or during peak harvesting periods, addressing key challenges in labor shortages
during harvest times [51].

Simultaneously, drones have become increasingly important in precision agriculture,
thanks to their ability to collect high-resolution temporal and spatial data. Drones are used
for crop classification and monitoring [52], targeted fertilizer application, drought control,
and biomass and yield estimation [53]. Additionally, they play a crucial role in detecting
pests, diseases, and weeds [54], thereby improving crop management through timely and
accurate interventions. The ability of drones to cover large areas and access hard-to-reach
locations makes them ideal tools for integrated crop management.

Computer vision, combined with deep learning techniques, has revolutionized var-
ious aspects of agriculture. Key applications include seed quality analysis, soil analysis,
irrigation management, and yield estimation [55]. For example, computer vision automates
seed quality analysis, enhancing efficiency and reducing dependence on specialized labor.
Moreover, by analyzing soil and plant images, these technologies allow for the monitoring
of crop health, enabling early interventions to prevent significant production losses [56].

The synergies between these technologies are particularly evident in integrated crop
management. For instance, drones equipped with computer vision systems can moni-
tor crop health, detecting early signs of water stress, nutrient deficiencies, and infesta-
tions [57,58]. The data collected can then be used to optimize the operations of agricultural
robots, such as irrigation and weeding, ensuring more efficient resource use and reducing
environmental impact.

4.3. Blockchain and Big Data

Blockchain and big data are revolutionizing agriculture by enhancing transparency,
efficiency, and sustainability across the industry. Blockchain technology is mainly employed
to enhance supply chain traceability, ensuring that every stage, from the farm to the
consumer, is recorded in a permanent and transparent way. This feature is essential for
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maintaining food safety, as it enables the swift identification of contamination sources and
guarantees the authenticity of products [59–61].

Big data analytics, on the other hand, plays a vital role in optimizing agricultural
operations. By analyzing vast datasets generated by IoT sensors, satellite imagery, and
climate models, farmers can make informed decisions about planting, irrigation, and har-
vesting [62]. This leads to improved crop yields, better land management, and enhanced
adaptation to climate change. Moreover, big data helps ensure food security by monitoring
production and market conditions, enabling timely responses to potential risks. It also sup-
ports financial services in agriculture by providing accurate risk assessments for insurance
and credit, helping farmers manage their operations more effectively [18].

The integration of blockchain and big data creates powerful synergies in agriculture.
While big data provides the analytical tools to process and interpret vast amounts of
information, blockchain ensures this data is securely recorded and accessible, enhancing
transparency and trust across the supply chain. For instance, data-driven insights into
crop conditions and market trends can be securely stored on a blockchain, enabling more
reliable and automated processes such as smart contracts for payments.

4.4. Digital Twin and Simulation

Digital Twins (DT) are increasingly being applied across various agricultural do-
mains to create virtual replicas of physical systems. In horticulture, DTs are transforming
greenhouse management by providing real-time monitoring and control of environmen-
tal conditions such as temperature, humidity, and light [63]. By integrating sensor data
with predictive models, DTs help manage uncertainties related to weather, pests, and
energy consumption, making greenhouse operations more efficient and less dependent on
human observation.

In agricultural machinery, DTs can emulate the performance of equipment such as
tractors before purchase, ensuring that farmers invest in the most suitable tools. They
also predict potential equipment failures and optimize maintenance schedules, reducing
downtime and operational costs [64].

In food supply chains and logistics, DTs offer benefits like cost savings, improved
product quality, and enhanced environmental sustainability [64]. By creating digital replicas
of supply chain processes, DTs enable better tracking and resource optimization, reducing
waste and ensuring efficient operations from farm to market.

In water management, DTs are applied to smart irrigation systems, connecting phys-
ical sensors with virtual models to monitor soil, weather, and crop data. This allows
farmers to simulate different irrigation strategies, optimizing water use and improving
sustainability [65].

Simulation models are playing an increasingly important role in enhancing crop pro-
duction and resource management in agriculture. These models, often powered by artificial
intelligence (AI) algorithms, allow for detailed analysis and prediction of agricultural
outcomes. For instance, in crop production, AI-driven models are used to estimate critical
crop parameters such as leaf area, providing cost-effective and non-destructive alterna-
tives to traditional measurement methods [66]. In greenhouse management, simulation
models are used to predict the effects of various environmental factors on crop growth,
helping growers optimize conditions for maximum yield and quality [67]. These models
can simulate future scenarios based on historical data, allowing for proactive adjustments
in cultivation strategies.

4.5. Machine Learning

Machine learning has revolutionized modern agriculture by enabling unprecedented
precision in various critical aspects of farming, promoting more sustainable and efficient
practices. A key application lies in monitoring seed and soil health. Advanced sensors and
data analytics allow farmers to assess real-time soil parameters such as moisture, pH levels,
and nutrient composition [16]. This data not only aids in selecting the most suitable seeds
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for the soil’s conditions but also helps maintain soil fertility over time. Healthy soil is the
foundation of productive farming, and through these technologies, farmers can ensure its
quality, reducing excessive fertilizer use and improving long-term yield. By integrating
soil moisture and climate data, smart irrigation systems optimize water usage, ensuring
crops receive the precise amount of water needed at the right time [68]. This is particularly
crucial in regions with limited water resources, where efficient water management can
make the difference between a successful harvest and a failed one.

Another significant area of application is in the detection and management of crop
diseases. With the integration of computer vision and machine learning, high-resolution
images captured by drones or ground-based sensors can be analyzed to detect diseases
at an early stage [57,69,70]. Early detection is key to preventing the spread of infections
across large areas, allowing for targeted interventions that can save crops and reduce losses.
Pesticide control systems now integrate sensor data with machine learning algorithms
to precisely apply chemicals only where needed, minimizing environmental impact and
reducing costs [71]. Weed detection technologies work in a similar manner, using computer
vision to identify and target weeds [72], which not only decreases the reliance on herbicides
but also promotes healthier crop growth.

Machine learning plays a pivotal role also in crop phenotyping technologies by lever-
aging multispectral imaging and sensors to analyze the physical and biochemical traits
of plants [73]. These AI-driven systems enable the identification of plant varieties with
desirable characteristics, such as drought resistance, enhanced nutritional value, or in-
creased productivity. This data-driven approach is crucial for optimizing plant selection
and breeding, addressing global food security challenges by promoting the cultivation of
crops that are more resilient and productive in varying environmental conditions.

Finally, crop yield prediction and management have become more accurate and reliable
with the help of machine learning. By analyzing a combination of historical data, real-
time environmental factors, and farming practices, these systems can forecast crop yields
with greater precision [14,74]. This enables farmers to plan better, allocate resources more
effectively, and make informed decisions that enhance productivity and profitability.

5. Research Gaps

Despite the progress noted in the integration of I4.0 technologies in agriculture, this
study reveals significant gaps in the current literature. While technologies like IoT, AI,
and machine learning have received considerable attention, other potentially impactful
technologies remain underexplored. Notably, certain I4.0 technologies, such as additive
manufacturing (AM) and augmented reality (AR), are not yet widely studied in the context
of agriculture. This gap could represent an untapped opportunity to further enhance the
efficiency and sustainability of agricultural practices through technological innovation.

The lack of research on AM and AR may indicate a genuine gap in understanding
how these technologies could be adapted and utilized in agricultural settings. For instance,
AM, also known as 3D printing, has demonstrated transformative potential in sectors such
as healthcare, aerospace, and automotive industries, where it is used for rapid prototyping,
custom part manufacturing, and the production of complex geometries. However, its
application within agriculture is still limited. This may be due to a lack of awareness
or understanding of its potential benefits, such as the ability to produce custom farming
tools, parts, or equipment directly on-site. By enabling the rapid production of specific
components, AM could significantly reduce the time and costs associated with supply
chain logistics, repairs, and equipment customization in agricultural operations, leading to
increased efficiency and resilience in farming practices.

Similarly, augmented reality (AR) holds promise for enhancing agricultural operations
through its capacity to overlay digital information onto the physical world. AR could
provide substantial benefits in various areas, including training and education for farmers,
where it can be used to deliver hands-on guidance on equipment usage and maintenance.
Moreover, AR could support precision agriculture practices by offering real-time visu-
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alization of data such as soil health, crop conditions, or pest infestations directly in the
field. This capability could allow farmers to make quicker, more informed decisions, thus
optimizing the use of resources like water, fertilizers, and pesticides. Additionally, AR
tools could facilitate better management of complex machinery by displaying interactive
manuals and diagnostic information, making it easier for farmers to operate and maintain
advanced agricultural equipment.

Yet, despite these potential advantages, this paper does not fully explore these possi-
bilities. This oversight suggests that AM and AR have yet to be fully recognized as viable
tools within the agricultural sector, pointing to a need for further investigation into how
these technologies could be tailored and applied to meet the specific needs of agricultural
operations. Exploring these areas could uncover new applications and adaptation strategies
that make these technologies more accessible and relevant to farming contexts.

Addressing these gaps and conducting more in-depth studies on the less-explored
I4.0 technologies will be essential for a more comprehensive understanding of their role in
agriculture. Such research could help bridge the divide between emerging technological
capabilities and practical agricultural needs. By demonstrating how AM and AR can be
applied effectively in real-world agricultural scenarios, researchers can provide valuable
insights into their potential contributions to sustainable and efficient farming practices.
This approach will help ensure that technological innovations are not only cutting-edge
but also practically applicable and advantageous for farmers across various agricultural
settings, thereby propelling the field towards more resilient, sustainable, and data-driven
agricultural practices.

6. Conclusions

This study provides a comprehensive bibliometric analysis of the literature on the
integration of Industry 4.0 (I4.0) technologies in agriculture, distinguishing itself from prior
research by covering the full range of these technologies. Unlike earlier studies that either
focused on specific technologies or adopted a broad approach without examining each
technology’s unique contributions in detail, this research offers a thorough analysis of all
relevant I4.0 technologies.

The analysis identifies five main thematic clusters that represent the key areas of focus
in the integration of I4.0 technologies in agriculture: (i) Sensors and IoT, which enable
real-time monitoring and data collection to optimize agricultural inputs; (ii) Robotics, UAVs,
and Computer Vision, which improve precision farming through automation and advanced
imaging; (iii) Blockchain and Big Data, which enhance traceability and decision-making
with secure data management and analytics; (iv) Digital Twins and Simulation, which allow
for virtual modeling of agricultural processes for better planning and optimization; and
(v) Machine Learning, which provides predictive insights and automation capabilities to
improve crop management and yield predictions.

These thematic clusters demonstrate the interconnectedness and synergies among var-
ious I4.0 technologies, showing their combined impact on advancing agricultural practices
and improving efficiency and sustainability. Theoretically, this study makes significant
contributions to the academic literature on the digital transformation of agriculture by
providing a comprehensive and integrative analysis of I4.0 technologies.

In addition to conducting a bibliometric analysis of the entire body of literature, this
article also performed a detailed content analysis of the key research clusters mentioned
above, offering deeper insights into the thematic areas that have emerged within the field.
Furthermore, the study includes an analysis of temporal trends, mapping the evolution
of research interests and identifying periods of increased focus on particular technologies
over time. This dual approach not only highlights the current state of research but also
reveals the dynamic nature of scholarly interest in different I4.0 technologies, providing a
robust foundation for understanding both the present landscape and future directions in
the integration of digital technologies within agriculture.
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From a practical standpoint, this study offers valuable insights for stakeholders in
the agricultural sector, including policymakers, agricultural managers, and technology
developers. For policymakers, the findings suggest the need for policies that encourage
the adoption of a broad spectrum of I4.0 technologies, focusing on their combined benefits
rather than isolated applications. Agricultural managers can use these insights to make
more informed decisions about technology investments, emphasizing integrated strategies
that boost efficiency, sustainability, and resilience. For technology developers and suppliers,
the study highlights the demand for interoperable solutions that seamlessly integrate
multiple I4.0 technologies, fostering innovation in smart agriculture. Thus, this research
not only enhances theoretical understanding of the role of Industry 4.0 technologies in
agriculture but also provides practical guidance for their application.

Finally, this study has identified several research gaps, particularly in the underex-
plored areas of certain I4.0 technologies like additive manufacturing (AM) and augmented
reality (AR). These gaps pose new opportunities for future research, guiding scholars
toward avenues that could further enhance the role of I4.0 technologies in agricultural
innovation. Addressing these gaps could contribute to a deeper understanding of how
these advanced technologies can be tailored to meet the specific needs of the agricultural
sector, fostering more sustainable and efficient farming practices in the future.
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