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Dynamical properties of two coupled quantum cavities with single-mode amplification

V. Penna and F. A. Raffa
Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy

(Received 15 May 2024; accepted 19 September 2024; published 18 October 2024)

Coupled optical cavities provide one of the simplest possible schemes to engineer the interaction of bosonic
modes. This paper investigates a two-mode model where, in addition to the usual mode coupling, the presence
of an amplification term associated to one of the modes triggers an unexpectedly rich dynamical scenario. The
resulting nontrivial model is diagonalized by implementing the dynamical-algebra method, a group-theoretic
approach which allows one to determine the stability diagram of the model Hamiltonian in terms of the
two mode frequencies for given values of the interaction and amplification parameters. The mode interaction
significantly modifies the simple amplification effect of the noninteracting model causing the separation of the
unstable domain (where the amplification takes place) into two subdomains, one of which is stable, features no
amplification effect, and exhibits an extension controlled by the interaction parameter. The analysis of stability
properties is corroborated by the fully analytic study of the energy spectrum which exhibits the transition from
a discrete to a continuous structure whenever the system undergoes the transition from a stable region to an
unstable region where the amplification effect occurs. This scenario is further confirmed by the calculation of
the time evolution of the mode populations.

DOI: 10.1103/PhysRevE.110.044126

I. INTRODUCTION

The study of coupled optical cavities has received in-
creasing attention in the last two decades due to a rich
phenomenology which involves different fields of physics
and gives one the opportunity to explore a variety of critical
phenomena within a fully quantum environment. Manifold
realizations of coupled optical cavities have been designed
and realized at the experimental level. For example, in pho-
ton Josephson junctions [1,2], cavities consist of microwave
resonators which, in addition to the exchange of photons
caused by the intercavity tunneling, feature the coupling with
superconducting qubits. On the other hand, laser-driven cavi-
ties containing a nonlinear crystal feature the coupling of the
fundamental and second-harmonic modes of each cavity [3],
while two-photon cavities (see [4–6], among many others),
represented within the Bose-Hubbard (BH) picture [7], de-
scribe the interplay between the effect of Kerr nonlinearity
and intercavity tunneling. Furthermore, it is worth mentioning
optomechanical devices where, in addition to the coupling of
the optical modes of two resonators, the control of phonon
lasing takes into account the effect of the interaction with a
mechanical mode supported by one of the resonators [8,9].

With respect to the previous mode-coupling schemes, the
present paper investigates a minimal model of two interacting
bosonic modes focusing on the nontrivial role played by the
quadratic amplification of one of such modes. The relevant
Hamiltonian, in units h̄ = 1, reads

H = wa†a + vb†b + g(a†b + ab†) + σ (a2 + a†2), (1)

where a (a†) and b (b†) are the annihilation (creation) opera-
tors relevant to frequencies w and v, obeying the commutation
relations [a, a†] = 1, [b, b†] = 1. Parameter g describes the
interaction between the modes a and b associated to two opti-
cal cavities, while σ adds the quadratic-amplification effect of

one of the two modes. The mode frequencies w and v, together
with g and σ , span the four-dimensional parameter space of
the system.

Interestingly, other classes of systems can be mentioned
which, when introducing an amplification term, essentially
reduce to model (1). For example, within quantum optics,
a representative system is the Tavis-Cummings (TC) model
[10,11] of N two-level atoms sharing the same level splitting
v and interacting with the single bosonic mode a through
an atom-radiation coupling of intensity g. The corresponding
Hamiltonian

HTC = wa†a + vJz + g√
N

(aJ+ + a†J−)

exhibits collective operators Jz, J−, and J+ that result from
the addition of the spin operators of each two-level atom
and satisfy the commutators [Jz, J±] = ±J±, [J+, J−] = 2Jz

of the algebra su(2). This model, apart from the amplification
term, easily reduces to a Hamiltonian contained in model (1)
thanks to the Holstein-Primakoff realization [12] of su(2).
The latter allows one to represent the collective operators
with a new bosonic mode b such that, in the thermody-
namic limit of N → ∞, J+ � b†

√
N , J− = J†

+, and Jz =
b†b − N/2. This interpretation in quantum-optical terms can
be extended to the more general Dicke model, whose re-
alizations are extensively utilized in the analysis of cavity
quantum electrodynamics systems and of quantum phase tran-
sitions [13–18]. Further examples are provided by the model
Hamiltonian describing a binary boson mixture trapped in
two potential wells which in the superfluid regime exhibits
interaction-dependent amplification terms [19], and the ring-
ladder Hamiltonian describing the coupling of two BH circuits
[20] which feature amplification terms when implementing
the Bogoliubov-approximation approach. Lastly, it is worth
mentioning the anisotropic Hopfield model, closely related
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to Hamiltonian (1), whose analytical solution is derived in
Ref. [21] leading to a thorough analysis of the spectral and
thermometric properties of this model.

This paper investigates the dynamical properties of model
(1) as determined by the interplay of the four parameters
w, v, g, and σ . One should recall that, for g = 0, model
(1) reduces to the well-known Hamiltonian describing the
degenerate-parametric down conversion (PDC) [22] whose
mode population, in addition to a stable oscillatory regime,
is characterized by an unstable regime, controlled by σ , trig-
gering the amplification effect (see, e.g., [23]). Note that mode
b is, in this case, an independent feature. On the other hand,
for σ = 0, model (1) reduces to two coupled bosonic modes
whose realization is discussed, for example, in Refs. [2,3]
(coupled cavities) and [24,25] (atomtronic devices). The com-
bined action of the amplification effect in one of the two
modes with the coupling with a second mode leads to a more
structured model whose diagonalization is far from trivial and
suggests the possibility to observe a richer phenomenology.

To this end, after showing that model (1) belongs to the
symplectic Lie algebra sp(4), the dynamical-algebra method
is applied which allows one to take the relevant Hamiltonian
into a diagonal form and to recognize the stable and unstable
regimes that the model features. This, in turn, leads to the
construction of the stability diagram D, namely, the domain of
stable and unstable regions in the parameter space described
by w and v at given g and σ . The study of spectral properties
of the model and the derivation of the time evolution of the
average boson population of each mode provide an effective
characterization of stable and unstable regimes which validate
the structure of D. Interestingly, the stability diagram, which
for g = 0 exhibits a stable region and an unstable amplifica-
tion region controlled by σ , for g �= 0, is shown to feature
an unexpected splitting of the amplification region into two
subregions, one of which exhibits a stable character and no
amplification effect.

The outline of the work is as follows. In Sec. II, using the
dynamical-algebra method, Hamiltonian (1) is taken into a
diagonal form, and the stability and instability domains are
identified. With k = w − 2σ , such analysis is carried out for
various ranges of the system parameters. The analytical calcu-
lations include both the case k > 0, with the further distinction
between weak (g2 < kv) and strong (g2 > kv) coupling, and
the case k < 0. Section III is devoted to highlight the changes
of the energy spectrum of Hamiltonian (1) as the system
crosses the boundaries between stable and unstable domains.
In Sec. IV, the dynamics of the system is analyzed in terms
of the expectation values of the number operators a†a and
b†b which make visible the effect of the amplification. The
structure of the stability diagram is discussed in Sec. V. Final
remarks are contained in Sec. VI. Appendices A–D contain
supplemental material concerning the mathematical calcula-
tions of the diagonalization process and the time evolution of
the two modes.

II. SOLUTION OF THE TWO-CAVITY MODEL

The solution of the model, namely, the identification of the
spectrum of Hamiltonian H and of the relevant energy eigen-
states, can be found by implementing the dynamical-algebra

method [26–28]. Such procedure can be applied whenever
the Hamiltonian belongs to a Lie algebra A (the dynamical
algebra) and thus can be represented as a linear combination
H = ∑

k hkEk , hk ∈ R of the algebra generators Ek . The lat-
ter satisfy commutators [Ek, En] = fknmEm which univocally
define the properties of A through the structure constants
fknm. Within the Lie-group theory [29], the knowledge of A
allows one to construct the group G of unitary transforma-
tions U whose distinctive property is that, if H ∈ A, then
the action of U , UHU + = H ′ ∈ A, always generates an el-
ement of the algebra. The crucial point in the solution process
consists in determining the transformation U for which H ′
takes a diagonal form, and in defining a suitable disentangled
form U = U1U2...UN whose factors Ui ∈ G are the elementary
transformations which optimize the derivation of H ′ [30,31].
To apply this method it is convenient rewriting H in terms of
momenta p and P and position variables x and X implicitly
defined by

a = x + ip√
2

, b = X + iP√
2

, (2)

with commutators [x, p] = [X, P] = 1. Up to a constant term,
the Hamiltonian takes the form

H = 1

2
(ux2 + kp2) + v

2
(P2 + X 2) + g(xX + pP), (3)

where k = w − 2σ , u = w + 2σ . The quantities x2 ± p2,
P2 + X 2, xX + pP are recognized to be four of the ten gen-
erators of the algebra A = sp(4). Then the diagonalization
process involves the transformations of the symplectic group
G = Sp(4). This group, the relevant algebra, and its com-
mutators are reviewed in [30]. A similar approach, based on
algebra su(2), was used in [32] to diagonalize a non-Hermitian
effective decay model.

A. Regime k > 0, g2 < kv

The inequality g2 < kv, which emerges in the diagonaliza-
tion process, can be seen as the condition implicitly defining
the weak-interaction regime since g2 is smaller than the prod-
uct of the mode frequencies kv � wv if σ is small enough.
This implies as well k > 0, a condition that, unless otherwise
stated, is assumed throughout the subsequent discussion. The
form (3) of H suggests that the transformation which diago-
nalizes H features a three-step process and thus can be written
as U = RμDαRφ where

Rφ = eiφ(xP−X p), Dα = eiα(xp−XP)

represent a standard rotation and a squeezing transforma-
tion, respectively, generated by the algebra elements xP −
X p and xp − XP. A second rotation Rμ is included which
is parametrized by a different angle μ. Their action is
defined by

RφxR†
φ = cφx + sφX, Rφ pR†

φ = cφ p + sφP, (4)

RφXR†
φ = cφX − sφx, RφPR†

φ = cφP − sφ p, (5)

DαxD†
α = xeα, Dα pD†

α = pe−α, (6)

DαXD†
α = Xe−α, DαPD†

α = Peα, (7)
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where the shorthand notation cφ = cos φ, sφ = sin φ has been
used. The first step leads to the Hamiltonian

H1 = RφHR†
φ = (k + v + ρ)

p2

4
+ (k + v − ρ)

P2

4
+V (x, X ),

V (x, X ) =
(

u + v

4
+ ξ

)
x2 +

(
u + v

4
− ξ

)
X 2

+ (k − u)g

ρ
xX

with

ρ =
√

(k − v)2 + 4g2, ξ = (u − v)(k − v) + 4g2

4ρ
.

This transformation shows how the term pP can be removed
from H by imposing the condition

tan2φ = − 2g

k − v
.

In H1 the kinetic energy term is positive since k + v − ρ >

0 is ensured by g2 < kv. This circumstance suggests that if
we succeed in reducing the kinetic energy to p2 + P2, then,
by exploiting its invariance under the rotation action, a final
rotation Rμ is sufficient to remove the interaction term xX in
the potential of H1 thereby generating a diagonal Hamiltonian.
To achieve this goal, the second step thus consists in utilizing
transformation Dα which gives

H2 = DαH1D†
α = γ

4
(p2 + P2) + μ

4
(x2 + X 2)

+ A(x2 − X 2) + DxX

4ργ
, (8)

where

γ =
√

(k + v)2 − ρ2 ≡ 2
√

kv − g2, D = 4γ g(k − u),

A = (u + v)ρ2 + (k + v)(ρ2 + (u − k)(k − v)),

and

μ = (u + v)(k + v) + ρ2 + (u − k)(k − v)

γ
.

The condition on parameter α in Dα

e2α =
√

k + v + ρ

k + v − ρ
(9)

must be imposed to obtain p2 and P2 with the same coefficient.
This leads to the third final step where rotation Rμ enables us
to obtain a diagonal Hamiltonian describing two independent
harmonic oscillators

H3 = RμH2R†
μ = γ

4
(p2 + P2) + σ+

4γ
x2 + σ−

4γ
X 2, (10)

where

σ± = � ±
√

D2 + 4A2

2ρ
, (11)

and � = ρ2 + (u − k)(k − v) + (k + v)(u + v). Note that
γ > 0 is always valid, while � > 0 can be shown to be
satisfied if

√
2σ < g meaning that the amplification parameter

must be sufficiently small. Additionally, the unknown param-
eter μ defined through the condition

tan2μ = − D

2A

allows one to remove the coupling term xX from RμH2R†
μ.

While the xp oscillator is always stable because γ > 0 and
the coefficient of x2 can be shown to be always positive, the
XP oscillator is stable only in a restricted region D1 of the
w-v plane, identified by

� −
√

D2 + 4A2

2ρ
> 0 ⇔ v > F−(w) = g2

w − 2σ
, (12)

together with k � 0. One should recall that the latter inequal-
ity is equivalent to the condition kv > g2. Its violation leads
one to explore the instability regime of H .

B. Regime k > 0, g2 > kv

The new condition g2 > kv, defining the strong interaction
regime, significantly modifies the structure of Hamiltonian H1

found in Sec. II A. In particular, the coefficient of term P2

becomes negative since g2 > kv entails k + v − ρ < 0. The
reduction of the Hamiltonian H1 (and thus of H) to a diagonal
form then begins with

H1 = RφHR†
φ = (k + v + ρ)

p2

4
− (ρ − k − v)

P2

4
+V (x, X ),

where the presence of the negative coefficient of P2 affects
the entire diagonalization process. Unlike the case g2 < kv,
this involves the new transformation U = SθDαRφ which, in
addition to a rotation and a squeezing transformation, now
includes the hyperbolic transformation Sθ = eiθ (xP+X p). Its ac-
tion is defined by

Sθ xS†
θ = cθ x + sθX, Sθ pS†

θ = cθ p − sθP,

SθXS†
θ = cθ X + sθx, SθPS†

θ = cθP − sθ p,

with cθ = coshθ and sθ = sinhθ . The inclusion in U of this
transformation is due to the fact that p2 − P2 is invariant under
the action of Sθ . In light of this, it is advantageous to reduce
H1 to a form in which p2 and P2 exhibit the same coefficient.
To this end, we assume that the parameter α in Dα is defined
by

e2α =
√

k + v + ρ

ρ − k − v
, (13)

where ρ − k − v > 0 is ensured by kv < g2. The subsequent
action of Sθ [see Eq. (B3)] leads to the final (diagonal) Hamil-
tonian

H3 = UHU † = η

4
p2 + τ+

4η
x2 − η

4
P2 − τ−

4η
X 2, (14)

where η =
√

ρ2 − (k + v)2 = 2
√

g2 − kv and

τ± = χ ±
√

B, χ = uk + v2 + 2g2,

with

B = 4g2(k + v)(u + v) + (uk − v2)2.

This Hamiltonian features a stable character if, in addition to
g2 > kv, the inequality

√
B < χ is satisfied. Such conditions
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FIG. 1. Representation of curves (17), written in terms of dimen-
sionless variables V = v/g, W = w/g, 
 = σ/g for σ = 0.5 and
g = 1.0. The resulting curves are V = F±(W ) = 1/(W ± 2
). The
red (upper) curve V = F−(W ) and the blue (lower) curve V = F+(W )
separate stable domains D1 and D2, respectively, from the interme-
diate unstable domain D3.

are expressed by

v < f−(w) = g2

w − 2σ
, v < f+(w) = g2

w + 2σ
, (15)

respectively. Note that, in the infinite portion w � 2σ of the
w-v plane representing the stability diagram D, the second in-
equality implicitly validates the first one and defines a second
stability domain D2. In this case, H3 is the linear combination
of two harmonic-oscillator Hamiltonians exhibiting the cus-
tomary discrete spectrum and a well-defined set of eigenstates.

On the other hand, the region intercalating the two stability
domains in D, where v < f−(w) and v > f+(w), implicitly
identifies an instability domain D3. In this case, Hamiltonian

FIG. 2. Time evolution of the mode-a population N described by
Eq. (26). The model parameters, referred to in Fig. 1, are w = 2.0,
and v = 4.0 with σ = 0.5, and g = 1.0. This choice corresponds
to a point in the stable domain D1. For α = β = 1, the population
exhibits (red upper line) oscillations depending on two frequencies
[see Eq. (25)]. The blue lower line corresponds to the vacuum-state
oscillations.

FIG. 3. Dimensionless representation of boundaries (17) for σ =
0.1 and g = 1.0 with W = w/g, 
 = σ/g, and V = v/g related to
curves V = F±(W ) as in Fig. 1. The comparison with Fig. 1 shows
how decreasing 
 entails that the extension of D3 reduces accord-
ingly. For 
 → 0 the asymptote tends to the vertical axis while the
blue lower curve tends to the red upper one, namely, V = F+(W ) →
V = F−(W ) = 1/W . D1 and D2 merge in a unique domain while the
instability domain D3 vanishes.

(14) becomes

H3 = η

4
p2 + τ+

4η
x2 −

(
η

4
P2 − τ−

4η
X 2

)
, (16)

where τ± = |√B ± χ |, and the condition
√

B − χ > 0 im-
plies that, in addition to an xp harmonic oscillator, H3 features
a XP inverted oscillator [33–36]. Interestingly, while the xp
oscillator corresponds to an element of the compact subalge-
bra su(2) of the dynamical algebra A, the inverted oscillator
essentially represents a noncompact generator of the subalge-
bra su(1,1) of A. These features can be shown to determine
completely different dynamical behaviors in the two cases.

FIG. 4. Time evolution of the mode-a population N described by
Eq. (30). The model parameters, referred to in Fig. 1, are w = 1.5,
and v = 1.0 with σ = 0.5, and g = 1.0. This choice corresponds to
a point in the unstable domain D2. For α = β = 1, the population
exhibits (red upper line) a diverging behavior controlled by parameter√

τ− [see Eq. (29)]. The blue lower line corresponds to the vacuum-
state evolution.

044126-4



DYNAMICAL PROPERTIES OF TWO COUPLED QUANTUM … PHYSICAL REVIEW E 110, 044126 (2024)

FIG. 5. Curves V ′ = G±(W ′) = �2/(W ′ ± 2), representing
boundaries (17), for σ = 1.0 and g = 5.0, in terms of dimensionless
variables V ′ = v/σ , W ′ = w/σ , and � = g/σ . The red (upper)
curve and the blue (lower) curve separate stable and unstable
domains.

Figures 1, 3, 5, and 6 illustrate the two curves

v = f−(w) = g2

w − 2σ
, v = f+(w) = g2

w + 2σ
, (17)

bounding for w > 2σ the stability domains D1 and D2 from
below (red curve) and from above (blue curve), respectively,
and implicitly show the unstable domain D3 in between. As
discussed below, domains D2 and D3 shown in these figures
can be prolongated to the interval w < 2σ .

C. Extension of the stability diagram to k < 0

So far the parameter region D was explored where k > 0,
which is constituted by domains D1, D2, and D3. Domain

FIG. 6. Curves V ′ = �2/(W ′ ± 2) representing boundaries (17)
for σ = 1.0 and g = 2.0, in terms of dimensionless variables V ′ =
v/σ , W ′ = w/σ , and � = g/σ . The comparison with Fig. 5 shows
how reducing g implies that the lower blue boundary tends to a hor-
izontal axis with the collapse of the stability domain D2. In parallel,
the upper red boundary approaches the asymptote W ′ = 2. As a con-
sequence, D3, the unstable domain, reduces to a vertical rectangular
region with basis 0 < W ′ < 2 while D1, the stable domain, becomes
the region with 2 < W ′ < ∞, V ′ > 0.

D can be extended to include the region k = w − 2σ < 0.
This circumstance implies a structural change of the initial
Hamiltonian (3) which takes the form

H = v

2
P2 − |k|

2
p2 + u

2
x2 + v

2
X 2 + g(xX + pP), (18)

where the change of the k sign causes a negative kinetic-
energy-like contribution. By implementing the diagonal-
ization process based on transformation U = SθDαRφ , the
diagonal Hamiltonian is found to be

H3 = q

4
(P2 − p2) + ν−

4q
x2 + ν+

4q
X 2, (19)

whose parameters can be shown to have the form

q=2
√

g2 + v|k|, ν±=
√

G ± δ, δ=2(v2 − u|k| + 2g2),

and

G = 2[(v2 + u|k|)2 + 4g2(v + u)(v − |k|)].
The process leading to the diagonal form (19) is discussed in
Appendix D. Hamiltonian (19) exhibits an inverted harmonic
oscillator for

ν− > 0 → v > f+(w) = g2

w + 2σ
,

a condition showing how the same curve characterizing the
(blue) lower boundary of the instability regime associated
with the domain D3 can be extended to the interval 0 < w <

2σ . The presence of the asymptote at w = 2σ , shows how
the infinite stripe corresponding to f+(w) < v < ∞ based
on the interval 0 < w < 2σ constitutes the extension of D3.
On the other hand, the violation of inequality v > f+(w)
implies that ν− < 0 so that in Hamiltonian (19) the inverted
harmonic oscillator becomes a harmonic oscillator. Then, be-
low curve f+(w) a stability region is found which represents
the prolongation of the stability domain D2. This extension is
well visible in Figures 1, 3, 5, and 6.

III. SPECTRAL PROPERTIES

The changes in the energy-spectrum structure of H in the
transition from D1 or D2 to D3 are the hallmark of the onset
of an unstable behavior. In D1, the spectrum of H is obtained
from that of Hamiltonian (10), as they are unitarily equivalent.
The spectrum is formed by two contributions related to the
oscillator sub-Hamiltonians Hxp and HXP (depending on x, p
and X , P, respectively) such that H3 = Hxp + HXP. Then, the
relevant eigenvalues have the form

E (n, m) = �+n + �−m, n, m ∈ N0 (20)

(N0 the set of positive integers including zero) where the
frequencies

�± = 1

2

√
� ± 1

2ρ

√
D2 + 4A2

depend on the model parameters through the quantities ρ, A,
D, and �. By approaching the lower boundary v = g2/(w −
2σ ) of D1 from above one finds that

� → 1

2ρ

√
D2 + 4A2 ⇒ �− → 0+,

044126-5
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showing how the variation of quantum number n is asso-
ciated to the large-scale energy changes while m describes
the fine structure of the spectrum since �− implies a van-
ishingly small interlevel separation. This behavior represents
the spectral collapse [30] corresponding, at the classical level,
to the transition to an unstable dynamical regime. Quantum
mechanically, it preludes the occurrence of a continuous spec-
trum which will be associated with the domain D3. Within
this domain Hamiltonian (16) is equipped with the XP sub-
Hamiltonian

HXP = η

4
P2 − τ−

4η
X 2, τ− =

√
B − χ > 0,

which is unitarily equivalent, up to a constant factor, to P2 −
X 2. The latter, one of the noncompact generators of su(1,1),
is known to exhibit a continuous spectrum whose eigenstates
are the Lindblad-Nagel states [37,38]. The energy spectrum of
Hamiltonian (16) is thus given by

E ′(n,�) = ω+n + ω−�, ω± = 1
2

√√
B ± χ,

exhibiting a discrete part parametrized by n ∈ N0, and a con-
tinuous part parametrized by � ∈ R. Such spectral properties
are easily extended to Hamiltonian (19) due to its similarity
with Hamiltonian (16). Crossing the lower boundary v =
g2/(w + 2σ ) of D3 one reaches the stable domain D2 where
H3 is formed by two harmonic oscillators since in this region
of D one has χ ± √

B > 0. The resulting spectrum

E ′(n, m) = W+n + W−m, W± = 1
2

√
χ ±

√
B

is discrete and features the expected transition to a continuous
distribution of energy levels when W− → 0. This collapse
takes place for

√
B → χ , a limit case causing the approach

from below to the upper boundary v = g2/(w + 2σ ) of do-
main D2.

IV. TIME EVOLUTION AND AVERAGE POPULATION
OF MODES a AND b

The time evolution of the expectation values of number
operators a†a and b†b provides a second way to charac-
terize stable and unstable regimes. We then calculate these
quantities by using well-known semiclassical states, the Weyl-
Heisenberg (or Glauber) coherent states (see, e.g., Ref. [39]).
These are defined by

a|α〉 = α|α〉 → |α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉, (21)

where |n〉 are number states satisfying a†a|n〉 = n|n〉 and α ∈
C. Likewise, coherent states |β〉 can be defined for mode b
which satisfy equation b|β〉 = β|β〉 with β ∈ C. The time
evolution of 〈a†a〉t is described by

〈a†a〉t = 〈β, α|P†
t a†aPt |α, β〉, Pt = e−itH/h̄, (22)

where Pt |α, β〉 are solutions to the Schrödinger equation and
the initial state is a product coherent state |α, β〉 = |α〉|β〉. To
highlight the different dynamical behavior that characterizes
the three domains Di, i = 1, 2, 3 of the stability diagram,
we adopt the Heisenberg-picture viewpoint and calculate the
operator evolution P†

t a†aPt and P†
t b†bPt .

A. Time evolution of the mode populations
in the stability regimes

Here, one considers the stability regime relevant to domain
D1 defined by Eq. (12). After observing that H = U †H3U ,
this amounts to implementing the transformation

P†
t aPt = e−itH ae−itH = U †e−itH3UaU †e−itH3U

= 1√
2

U †e−itH3U (x + ip)U †e−itH3U . (23)

In the domain D1 the diagonal Hamiltonian H3 is given by
formula (10) and U = RμDαRφ . Because of their complexity,
the intermediate steps of the calculation of at = P†

t aPt are
reported in Appendix A. The derivation of (23) provides a
linear combination of x, p, X , and P which, expressed in terms
of operators a, a†, b, and b†, reads

at = 1
2 ( f −

13a + f +
13a† + f −

24b + f +
24b†). (24)

The time-dependent coefficients f ±
13 and f ±

24 have the form

f ±
13 = f1 ± i f3 = (1 ∓ 1)(A1A2C

+
t + A3A4C

−
t )

− i

(
A2

2

r+
∓ r+A2

1

)
S+

t − i

(
A2

4

r−
∓ r−A2

3

)
S−

t ,

f ±
24 = f2 ± i f4 = (A1A3 ∓ A2A4)(C−

t − C+
t )

+ i

(
A2A3

r+
∓ r+A1A4

)
S+

t − i

(
A4A1

r−
∓ r−A3A2

)
S−

t ,

where

C±
t = cos

(
t

2
√

σ±

)
, S±

t = sin

(
t

2
√

σ±

)
, (25)

and coefficients f1, f2, f3, and f4 are derived in Appendix A.
The effect of transformation U is incorporated in Ai, i =
1, 2, 3, 4 [see formulas (A3) and (A4)]. By recalling that
the coherent-state definitions (21) entails 〈α|a|α〉 = α and
〈α|a†a|α〉 = |α|2 (similar formulas hold for b and b† by using
state |β〉), then the expectation value (22) of the number oper-
ator a†a provided by the time-evolved state Pt |α, β〉 is found
to be

〈a†a〉t = 〈β, α|a†
t at |α, β〉

= C0 + 1
4 | f −

13α + f +
13α

∗ + f −
24β + f +

24β
∗|2 (26)

with C0 = (| f +
13|2 + | f +

24|2)/4. The dependence on time caused
by the trigonometric functions S±

t and C±
t shows how, de-

spite the complexity of parameters f ±
13 and f ±

24, in this regime
the time-dependent average population (26) exhibits periodic
oscillations. This behavior is illustrated in Fig. 2. The same
conclusion is found when calculating 〈b†b〉t , its evolution
being dependent on time-periodic parameters (25).

Appendix B provides the derivation of the expectation
value 〈a†a〉t (and, implicitly, of 〈b†b〉t ) in the stability regime
relevant to domain D2 defined by Eq. (15). These are
shown to exhibit the same regular oscillations characterizing
domain D1.
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B. Time evolution of the mode populations
in the instability regime

A significant change in the evolution of populations 〈a†a〉t

and 〈b†b〉t crops up in the instability regime relevant to D3.
The condition

√
B − χ > 0 characterizing this regime dra-

matically affects the time behavior of

at = P†
t aPt = U †e−itH3UaU †e−itH3U, (27)

since Hamiltonian (14) takes the form

H3 = η

4
p2 + τ+

4η
x2 −

(
η

4
P2 − τ−

4η
X 2

)
, (28)

with τ± = |√B ± χ | and η = 2
√

g2 − kv [see Eq. (14)],
showing the presence of an inverted harmonic oscillator. The
resulting time-dependent transformations

Vt xV †
t = xC+

t + pR+S+
t , Vt pV †

t = pC+
t − x

R+
S+

t ,

Vt XV †
t = XC−

t − PR−S−
t , Vt PV †

t = PC−
t + X

R−
S−

t ,

where

Vt = eitH3 , R± =
√

η2/τ±

involve time-dependent periodic functions

C+
t = cos

(
t

2
√

τ+

)
, S+

t = sin

(
t

2
√

τ+

)
,

but also time-dependent hyperbolic functions

C−
t = cosh

(
t

2
√

τ−

)
, S−

t = sinh

(
t

2
√

τ−

)
, (29)

caused by the inverted oscillator contained in H3. This term,
including a noncompact generator of algebra Sp(4), triggers
diverging behaviors in the evolution of the expectation values
〈a†a〉t and 〈b†b〉t . The derivation of the time-evolved mode
at = P†

t aPt , discussed in Appendix C, gives the evolution of
the relevant mode population

〈a†a〉t = 〈β, α|P†
t a†aPt |α, β〉 = 〈β, α|a†

t at |α, β〉
= C0(t ) + 1

4 |G−
13α + G+

13α
∗ + G−

24β + G+
24β

∗|2 (30)

with C0(t ) = 1
4 (|G+

13|2 + |G+
24|2) and

G±
13 = G1 ± iG3 = (1 ∓ 1)(B1B2C

+
t + B3B4C−

t )

− i

(
B2

2

R+
∓ R+B2

1

)
S+

t − i

(
B2

4

R−
∓ R−B2

3

)
S−

t ,

G±
24 = G2 ± iG4 = (B1B3 ∓ B2B4)(C−

t − C+
t )

+ i

(
B2B3

R+
∓ R+B1B4

)
S+

t − i

(
B4B1

R−
∓ R−B3B2

)
S−

t ,

where G1, G2, G3, and G4 are defined in Appendix C, and
coefficients Bi, i = 1, 2, 3, 4, describe the effect of transfor-
mation U = SθDαRφ on x, p, X , and P [see Eqs. (B1) and
(B2)]. Formula (30) shows that, for any α, β �= 0, one finds
〈a†a〉t = |α|2 at t = 0. For large t , G±

13 and G±
24 are dominated

by e
√

τ−t describing the amplification effect one naturally as-
sociates to the unstable regime. This behavior is illustrated
in Fig. 4. Interestingly, when the initial mode populations are

assumed to be zero, meaning that 〈a†a〉0 = C0(0) = 0 due to
α = 0 and β = 0, for t large enough,

〈a†a〉t = C0(t ) = const × e
√

τ− t

showing how the term C0 is sufficient to trigger the amplifi-
cation effect. Similar behaviors can be shown to characterize
the second-mode population 〈b†b〉t for t = 0 and sufficiently
large t .

It is worth mentioning that this diverging behavior is well
known within quantum optics, where the degenerate PDC is
associated to the amplification effect, namely, the increas-
ing of the mode photon number. Its physical interpretation
is related to the presence of an intense pump mode which
can be treated semiclassically [22]. The experimental detec-
tion of this effect can be done through photodetectors which
measure the output radiation intensity. As for boson models
described in the BH picture, one readily recognizes that the
role of the pump mode is played by the macroscopically
occupied ground-state mode which becomes a semiclassical
observable [28].

V. DISCUSSION

Figures 1, 3, 5, and 6 describe the stability diagram D of
model (1) as a funtion of frequencies v and w for different
choices of the interaction parameter g and of the amplification
parameter σ . In all cases an instability domain D3, featuring
the amplification effect, appears which separates the stability
domains D1 and D2 where the expectation values of modes’
populations exhibit an oscillatory behavior. The discussion in
Sec. II C shows how D can be extended to the entire quadrant
w, v > 0.

In general, all figures clearly show the role played by
the interaction g. To highlight this effect, with reference, for
example, to Fig. 1 and to v = f−(w) [see formulas (17)], one
can consider a horizontal line associated with a given value v.
Moving along this line, one easily recognizes a semi-infinite
stability interval w > w̄, with w̄ = 2σ + g2/v (the intersec-
tion point of the v = const line with the red boundary), and
a finite interval 0 < w < w̄ where the amplification effect
takes place. Note that this interval is larger than that of the
g = 0 case, being 2σ < w̄. This is the first effect caused by
the interaction. A second, more surprising effect due to g �= 0
appears when v < f+(0) = g2/(2σ ) which corresponds to the
emergence of the stable region D2. In this case, the am-
plification interval along a horizontal line with v = const,
becomes w∗ < w < w̄ where w∗ = g2/(v − 2σ ) is obtained
from v = f+(w) [see formulas (17)] and represents the inter-
section point of the v = const line with the blue boundary. For
0 < w < w∗ a new stability interval crops up which becomes
more and more extended by decreasing v and for 0 < v <

f+(0) generates the infinite domain D2 bounded from above
by v = f+(w).

The effect of reducing the amplification parameter is
shown in Figs. 1 and 3 where the boundaries (17), separating
D1 and D2 from D3, are illustrated for σ = 0.5 and σ = 0.1,
respectively, and with a fixed interaction parameter g = 1.0.
Curves V = F±(W ) = 1/(W ± 2
), representing boundaries
(17), are expressed in terms of dimensionless variables V =
v/g, W = w/g, and 
 = σ/g. The comparison of Fig. 1 with
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Fig. 3, in which 
 = σ/g is reduced, highlights the collapse
of the instability domain D3 for 
 → 0 caused by the ap-
proaching of the asymptote at W = 2 to the vertical axis
with the simultaneous extension of D1 and D2. These end up
merging in a unique stable domain since the upper boundary
V = F+(W ) of D2 tends to the lower boundary V = F−(W ) of
D1. Accordingly, in this limit, Hamiltonian (1) reduces to an
elementary system involving two coupled modes whose stable
character is ensured for any choice of parameters w, v, and g.
For σ → 0, rotation Rφ [see formulas (4) and (5)] is sufficient
to take Hamiltonian H1 of Secs. II A (regime g2 < kv) and
II B (regime g2 > kv) into a diagonal form. In both cases, in
fact, potential V (x, X ) in H1 loses the coupling term xX since
condition σ = 0 implies u = k.

The effect of increasing g is illustrated in Figs. 5 and 6.
These describe the behavior of the curves V ′ = G±(W ′) =
�2/(W ′ ± 2) representing boundaries (17), for σ = 1.0, g =
5.0, and g = 2.0, respectively, in terms of dimensionless vari-
ables V ′ = v/σ , W ′ = w/σ , and � = g/σ . Comparing Fig. 5
with Fig. 6 (note that the latter features a smaller g) highlights
the collapse of the stabilty domain D2 whose upper (blue)
boundary V ′ = G+(W ′) tends to the horizontal axis. In the
same limit, one observes that the D1 boundary V ′ = G−(W ′)
approaches the asymptote W ′ = 2 while for W ′ > 2 it tends
to the horizontal axis. Then the unstable domain D3 occupies
the vertical rectangular region whose basis is the interval 0 <

W ′ < 2. This scenario well describes the simplified stability
diagram associated to Hamiltonian (3) for g = 0, where the
XP sub-Hamiltonian is always stable while the emergence of
the amplification effect is caused by the xp sub-Hamiltonian
for w < 2σ , namely, for W ′ < 2 in Fig. 6. Summarizing, in
the limit case g = 0 the stability diagram simplifies its struc-
ture exhibiting only two regions, an (unstable) amplification
region and a stability region characterized by the intervals 0 <

w < 2σ and σ < w < ∞, respectively, and by 0 < v < ∞.

VI. CONCLUSIONS

This paper investigates the stability diagram of a two-mode
Hamiltonian characterized by the coupling of modes where
one of the two modes undergoes the effect of a quadratic
amplification. The stability diagram reveals a novel structure
determined by the reciprocal influence of the interaction and
amplification parameters g and σ .

In Sec. II, the dynamical-algebra method is implemented
to reduce the model Hamiltonian into a diagonal form. This
allows one to recognize the stable and unstable regions as-
sociated to the presence of standard and inverted harmonic
oscillators, respectively, in the diagonal Hamiltonian. This
analysis leads to the definition of the stability diagram de-
scribed in Figs. 1–6.

The changes in spectral structure of the model Hamil-
tonian, discussed in Sec. III, when crossing the borders
separating stable and unstable regions represent a significant
signature of the transition from a stable (discrete spectrum)
to an unstable (continuous spectrum) behavior. Section IV
supplies a further independent confirmation of the information
encoded in the stability diagram. In particular, the expectation
value of the number operators of both modes (describing the
average mode populations) exhibit oscillatory time evolution

in stable regimes while unstable regimes feature an exponen-
tially diverging behavior when the interplay between g and σ

allows the amplification effect to crop up.
Section V highlights the role played by parameters g and

σ in the stability diagram. More specifically, Figs. 1 and 3
show how reducing σ determines the collapse of the unstable
domain D3 with the parallel merging of domains D1 and D2 in
a unique stable region. On the other hand, Figs. 5 and 6 show
the collapse of D2 reproducing the simpler stability diagram
of two independent modes (g = 0). In particular, the resulting
stability diagram, which for g = 0 exhibits a stable region and
an unstable amplification region controlled by σ , for g �= 0,
features an unexpected splitting of the unstable amplification
region into two subregions, one of which exhibits a stable
character and an extension controlled by the interaction g.

On the theoretical side, the dynamical-algebra method
applied in this paper and the ensuing analysis leading to
the identification of stable and unstable regimes can be ap-
plied to many physical systems. For example, the Dicke
model of quantum optics and the two-mode models describ-
ing bosonic mixtures confined in two potential wells. On the
other hand, from the experimental point of view, a quantum-
optical system with two-mode coupling can be equipped with
a semiclassical pump mode resulting in the degenerate PDC in
which the amplification term of model (1) is embedded. Like-
wise, Bose-Hubbard-like systems, whose realization is well
known within ultracold atom physics [40], reveal amplifica-
tion terms when implementing the Bogoliubov approximation
[28]. Therefore, the results highlighted in this paper suggest
the exploration of a phenomenology which seems to be acces-
sible to the current experimental techniques.
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APPENDIX A: MODE-POPULATION EVOLUTION IN THE
STABILITY REGIME WITH g2 < kv

To determine the time evolution of the expectation value of
the mode-a population 〈a†a〉t in the parameter region corre-
sponding to domain D1 one must calculate Eq. (23), namely,

at = P†
t aPt = 1√

2
U †eitH3U (x + ip)U †e−itH3U,

where U = RμDαRφ ; we exploit Eqs. (4)–(7) finding

UxU † = A1x + A3X, U pU † = A2 p + A4P, (A1)

UXU † = A2X − A4x, UPU † = A1P − A3 p, (A2)

with

A1 = cCeα − sSe−α, A2 = cCe−α − sSeα, (A3)

A3 = cSeα + sCe−α, A4 = cSe−α + sCeα, (A4)

and c = cos φ, s = sin φ, C = cos μ, S = sin μ. Parameter
α is defined by Eq. (9). Due to the unitary character of U
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the equation A1A2 + A3A4 = 1 is satisfied. The corresponding
inverse transformations read

U †xU = A2x − A3X, U † pU = A1 p − A4P, (A5)

U †XU = A1X + A4x, U †PU = A2P + A3 p, (A6)

while the time-dependent transformation generated by H3

gives the time-evolved operators

Wt xW †
t = xC+

t + pr+S+
t , Wt pW †

t = pC+
t − x

r+
S+

t ,

Wt XW †
t = XC−

t + Pr−S−
t , Wt PW †

t = PC−
t − X

r−
S−

t ,

where Wt = eitH3 and the Hamiltonian (10) has been
rewritten as

H3 = γ

4
p2 + σ+

4γ
x2 + γ

4
P2 + σ−

4γ
X 2.

The time-dependent terms have the form

C±
t = cos

(
t

2
√

σ±

)
, S±

t = sin

(
t

2
√

σ±

)
,

and

r± =
√

γ 2/σ±, σ± = � ± 1

2ρ

√
D2 + 4A2.

By combining such formulas one finds the linear combination

at = P†
t aPt = 1√

2
( f1(t )x + f2(t )X + f3(t )p + f4(t )P),

where

f1(t ) = A1A2C
+
t + A3A4C

−
t − i

A2
2

r+
S+

t − i
A2

4

r−
S−

t ,

f2(t ) = A1A3(C−
t − C+

t ) + i
A2A3

r+
S+

t − i
A4A1

r−
S−

t ,

f3(t ) = A2
1r+S+

t + A2
3r−S−

t + iA1A2C
+
t + iA4A3C

−
t ,

f4(t ) = A3A2r−S−
t − A1A4r+S+

t + iA2A4(C−
t − C+

t ).

Formula (24) provides at in terms of operators a, a†, b, and
b† and of coefficients f ±

13 = f1 ± i f3 and f ±
24 = f2 ± i f4. The

same procedure allows us to evaluate the time evolution of the
expectation value 〈b†b〉t relevant to the population of mode b.
One finds

bt = 1
2 (F−

13 b + F+
13 b† + F−

24 a + F+
24 a†), (A7)

with time-dependent coefficients F±
13 and F±

24 given by

F±
13 = F1 ± iF3 = (1 ∓ 1)(A1A2C

−
t + A3A4C

+
t )

− i

(
A2

1

r−
± r−A2

2

)
S−

t − i

(
A2

3

r+
± r+A2

4

)
S+

t ,

F±
24 = F2 ± iF4 = (A2A4 ± A1A3)(C−

t − C+
t )

− i

(
A2A3

r+
∓ r+A1A4

)
S+

t − i

(
A1A4

r−
± r−A2A3

)
S−

t .

The similarity of formulas (24) and (A7) implies the expected
result that, in the stability domain D1, also the b-mode popu-
lation features regular oscillations.

APPENDIX B: MODE-POPULATION EVOLUTION IN THE
STABILITY REGIME WITH g2 > kv

We consider the expectation value 〈a†a〉t describing the
mode-a population relevant to the stability domain D2 where
Hamiltonian (14) satisfies the stability condition

√
B − χ <

0. Its time evolution is easily found by repeating the calcula-
tion scheme applied in Appendix A. To calculate

at = P†
t aPt = 1√

2
U †eitH3U (x + ip)U †e−itH3U

we exploit the transformation

UxU † = B1x + B3X, U pU † = B2 p + B4P,

UXU † = B2X − B4x, UPU † = B1P − B3 p,

with U = SθDαRφ ,

B1 = cCeα + sSe−α, B2 = cCe−α − sSeα, (B1)

B3 = cSeα + sCe−α, B4 = sCeα − cSe−α, (B2)

and c = cos φ, s = sin φ, C = coshθ , S = sinhθ . Parameter α

is defined by Eq. (13) while θ , given by

tanh(2θ ) = 8g|k − u|
√

g2 − kv

2ρ2(w + v) + (k2 − v2)(u − k)
, (B3)

allows one to remove the coupling term xX in Hamiltonian
(14). The unitary character of U entails that equation B1B2 +
B3B4 = 1 is satisfied. The corresponding inverse transforma-
tions U †QU with Q = x, p, X, P are easily found by means
of the substitutions Ai → Bi, i = 1, 2, 3, 4 in Eqs. (A5) and
(A6). In the current regime, where the condition

√
B − χ < 0

is satisfied, Hamiltonian (14) is written as

H3 = η

4
p2 + τ+

4η
x2 −

(
η

4
P2 + τ−

4η
X 2

)
,

with τ± = |√B ± χ |, and generates the time-dependent trans-
formations

Ut xU †
t = xC+

t + pR+S+
t , Ut pU †

t = pC+
t − x

R+
S+

t ,

Ut XU †
t = XC−

t − PR−S−
t , Ut PU †

t = PC−
t + X

R−
S−

t ,

where

Ut = eitH3 , R± =
√

η2/τ±,

and parameters

C±
t = cos

(
t

2
√

τ±

)
, S±

t = sin

(
t

2
√

τ±

)

take into account the dependence on time. As in the stability
regime corresponding to D1 with g2 < kv, these formulas
allow us to calculate the time-evolved operator at = (g1x +
g2X + g3 p + g4P)/

√
2, which, expressed in terms of a, a†, b,
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and b†, reads

at = 1
2 (g−

13a + g+
13a† + g−

24b + g+
24b†),

where

g±
13 = g1 ± ig3 = (1 ∓ 1)(B1B2C

+
t + B3B4C

−
t )

− i

(
B2

2

r+
∓ r+B2

1

)
S+

t + i

(
B2

4

r−
∓ r−B2

3

)
S−

t ,

g±
24 = g2 ± ig4 = (B1B3 ∓ B2B4)(C−

t − C+
t )

+ i

(
B2B3

r+
∓ r+B1B4

)
S+

t + i

(
B4B1

r−
∓ r−B3B2

)
S−

t .

The expectation value of the number operator 〈a†a〉t =
〈α, β|a†

t at |α, β〉 for an initial state corresponding to a product
coherent state |α, β〉 is easily found by repeating the calcula-
tions shown in Appendix A for the stability regime relevant
to D1. Not surprisingly, even in the present case (the stability
regime relevant to D2) the population of mode a features regu-
lar oscillatons since ξ±

13 and ξ±
24 are simple linear combinations

of C±
t and S±

t . These conclusions are easily extended to the
b-mode population 〈b†b〉t .

APPENDIX C: MODE EVOLUTION
IN THE INSTABILITY REGIME

The condition
√

B − χ > 0 characterizes the instability
regime in which Hamiltonian (28) includes an inverted har-
monic oscillator. The calculation of Vt xV †

t , Vt pV †
t , Vt XV †

t , and
Vt PV †

t where Vt = eitH3 (see Sec. IV B), allows one, in turn,
to calculate

at = P†
t aPt = 1√

2
U †eitH3U (x + ip)U †e−itH3U .

We find at = (G1x + G2X + G3 p + G4P)/
√

2 which de-
pends on time through the parameters

G1(t ) = B1B2C
+
t + B3B4C−

t − i
B2

2

R+
S+

t + i
B2

4

R−
S−

t ,

G2(t ) = B1B3(C−
t − C+

t ) + i
B2B3

R+
S+

t + i
B4B1

R−
S−

t ,

G3(t ) = B2
1R+S+

t − B2
3R−S−

t + iB1B2C
+
t + iB4B3C−

t ,

G4(t ) = −B3B2R−S−
t − B1B4R+S+

t + iB2B4(C−
t − C+

t ).

This enables one to derive in Sec. IV B the expectation value
〈a†a〉t expressed in terms of parameters G±

13 = G1 ± iG3 and
G±

24 = G2 ± iG4.

APPENDIX D: EXTENSION OF THE INSTABILITY
REGIME TO w < 2σ

This regime features k = w − 2σ < 0, a circumstance im-
plying that the initial Hamiltonian has the form

H = v

2
P2 − |k|

2
p2 + u

2
x2 + v

2
X 2 + g(xX + pP). (D1)

This reduces to

H3 = q

4
(P2 − p2) + ν−

4q
x2 + ν+

4q
X 2, (D2)

with

2q =
√

g2 + v|k|, ν± =
√

G ± δ, δ = 2(v2 − u|k| + 2g2),

and

G = 2[(v2 + u|k|)2 + 4g2(v + u)(v − |k|)],
by implementing the transformation U = SθDαRφ . The diag-
onal form H3 is achieved for φ, α, and θ by satisfying the
conditions

tan(2φ) = 2g

|k| + v
, e2α =

√
R + |k| − v

R + v − |k| , tanh(2θ )=−D

A
,

where

R =
√

(v + |k|)2 + 4g2, D = 8g(u + |k|)
√

v|k| + g2,

A = (2v + u − |k|)R2 − (v2 − |k|2)(u + |k|).
Hamiltonian (D2) exhibits an inverted harmonic oscillator for

ν− > 0 → v >
g2

w + 2σ
,

a condition showing how the unstable domain D3 can be
extended to the interval 0 < w < 2σ . When ν− > 0 is vi-
olated the inverted harmonic oscillator in Hamiltonian (D2)
reduces to the usual harmonic oscillator, and the transition to
a stability region takes place.

As in the previous cases, the calculation of the aver-
age mode population 〈a†a〉t is performed by exploiting the
Heisenberg picture. From

UxU † = C1x + C3X, U pU † = C2 p + C4P,

UXU † = C2X − C4x, UPU † = C1P − C3 p,

with U = SθDαRφ ,

C1 = cCeα + sSe−α, C2 = cCe−α − sSeα, (D3)

C3 = cSeα + sCe−α, C4 = sCeα − cSe−α, (D4)

and c = cos φ, s = sin φ, C = coshθ , S = sinhθ , and the
time-dependent transformations

Wt XW †
t = XC+

t + PR+S+
t , Wt PW †

t = PC+
t − X

R+
S+

t ,

Wt xW †
t = xC−

t − pR−S−
t , Wt PW †

t = pC−
t + x

R−
S−

t ,

where

Wt = eitH3 , R± =
√

q2/ν±,
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with parameters

C−
t = cosh

(
t

2
√

ν−

)
, S−

t = sinh

(
t

2
√

ν−

)
,

C+
t = cos

(
t

2
√

ν+

)
, S+

t = sin

(
t

2
√

ν+

)
,

one calculates

at = 1√
2

U †WtU (x + ip)U †W †
t U,

giving at = 1√
2
(E1x + E2X + E3 p + E4P) with

E1(t ) = C1C2C
−
t + C3C4C+

t + i
C2

2

R−
S−

t − i
C2

4

R+
S+

t ,

E2(t ) = C1C3(C+
t − C+

t ) − i
C2C3

R−
S−

t − i
C4C1

R+
S+

t ,

E3(t ) = C2
3 R+S+

t − C2
1 R−S−

t + iC1C2C
−
t + iC4C3C+

t ,

E4(t ) = C3C2R+S+
t + C1C4R−S−

t + iC2C4(C+
t − C−

t ).
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