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Abstract: The detection of bolt looseness is crucial to ensure the integrity and safety of bolted
connection structures. Percussion-based bolt looseness detection provides a simple and cost-effective
approach. However, this method has some inherent shortcomings that limit its application. For
example, it highly depends on the inspector’s hearing and experience and is more easily affected by
ambient noise. In this article, a whole set of signal processing procedures are proposed and a new
kind of damage index vector is constructed to strengthen the reliability and robustness of this method.
Firstly, a series of audio signal preprocessing algorithms including denoising, segmenting, and smooth
filtering are performed in the raw audio signal. Then, the cumulative energy entropy (CEE) and mel
frequency cepstrum coefficients (MFCCs) are utilized to extract damage index vectors, which are used
as input vectors for generative and discriminative classifier models (Gaussian discriminant analysis
and support vector machine), respectively. Finally, multiple repeated experiments are conducted to
verify the effectiveness of the proposed method and its ability to detect the bolt looseness in terms of
audio signal. The testing accuracy of the trained model approaches 90% and 96.7% under different
combinations of torque levels, respectively.

Keywords: bolt loosening; mel frequency cepstrum coefficients (MFCCs); cumulative energy entropy
(CEE); gaussian discriminant analysis (GDA); support vector machine (SVM)

1. Introduction

As one of the key components of common building blocks, bolt joints are ubiquitously
used in multiple industries, such as mechanical engineering, aerospace engineering, and
civil engineering. There is an impending need for the periodic inspection and continuous
monitoring of bolt looseness, which not only damages the integrity and durability of joints,
but also leads to catastrophic consequences [1]. Avoiding bolt self-looseness seems to be
almost impossible from both theory and practice, because the actual status of the bolted
connections is always associated with the specific service environment, which is recognized
as a complex nonlinear system due to various sources of unavoidable uncertainty [2,3].
Hence, it is necessary to explore types of methods to inspect and monitor bolt looseness in
a timely manner.

The past few decades have witnessed the development of a number of bolt loosening
detecting or monitoring approaches [4,5], including the vibration-based method [6,7], the
electro-mechanical impedance (EMI) method [8], the machine vision method [9,10], the
ultrasonic-based method, etc. [11,12]. All of them can be divided into various groups in
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terms of different perspectives, for example, there are active methods and passive meth-
ods [13], direct methods and indirect methods [14], offline methods and online methods [15],
global methods and local methods [16]. Although these methods have showed remarkable
progress on the problem of bolt loosening detection, there are still some existing problems
holding back their practical applications. For example, the vibration-based method has
proven insensitive to local defects like minor cracks or bolt loosening [6]. The electro-
mechanical impedance method is easily affected by environmental factors like temperature
fluctuations, which are normally impossible to avoid in practical application [8]. In compar-
ison, the ultrasonic-based method shows great potential in the field of non-damage testing
(NDT) [17]. In particular, Wang and Song et al. [12,18,19] achieve encouraging results by
using piezoceramic transducers combined with the time-reversion technique. However,
ultrasonic instruments are normally high-priced and this kind of method requires the
installation of transducers and place circuits, which may lead to a risk of deterioration and
violate the user’s original intention to use bolted joints due to their low costs and easy
disassembly [20].

As one of the oldest nondestructive testing techniques, the tapping and listening
method has been applied in many fields for centuries due to its simple and effective
features. It is a low-frequency (less than 1 kHz) elastic wave method based on the transient
response of a member to mechanical impact. The surface of the testing workpiece is struck
with a metal object such as a steel ball, a hammer, or a heavy chain, which would generate
transient waves and set up vibration resonances. The generated wave motion of the surface
generates acoustic waves that “leak” into the surrounding air (i.e., acoustic waves) and
could be detected by contact sensors mounted on the surface or air-coupled sensors like
microphones. The sound produced when a structure is tapped is mainly at the frequencies
of the major structural modes of vibration. These modes are structural properties which
are related to the local stiffness and damping of the workpiece, so that defects beneath
the surface could be detected in this way [21]. Though the names of this method may
differ across different fields, the basic principles are identical in nature. For instance, this
method is similar to the impact–echo (IE) method for concrete applications and the coin-tap
method for composite inspection. Cawley et al. explained the principles of the coin-tap
method by using spring theory [22] and Gibson et al. investigated the principles of the
impact–echo method based on Lamb wave analysis [23]. It should be stressed that this
kind of method is different from the aforementioned vibration method and the wheel-tap
method in the railway industry due to their local characteristics. As of now, this kind of
method still plays an important role in NDT fields, but some inherent drawbacks should
not be overlooked [24–26]: (1) it is highly dependent upon the inspector’s hearing and
experience; (2) the results are easily subject to interference from background noises; (3) this
technique is normally incapable of providing objective data and quantitative information
for users; (4) the manual process has weak repeatability and is time-consuming; (5) this
technique is limited to some structures with simple geometry. To circumvent the drawbacks
above, the human auditory system can be replaced by some portable devices such as
smartphones and recorders, which normally have a better response frequency range and
sensitivity. These portable devices can also save relatively objective data for later review
and analysis [14,27–29]. Furthermore, the sound sensing method has been strengthened
greatly with pattern recognition techniques and advanced signal processing methods,
which could make it possible to provide quantified information for customers and can
avoid the interference of background noises to some extent [14,27,29,30]. Researchers and
companies have invented some electronic tapping devices, which facilitate the process of
detection and promote repeatability [24]. The development of contact mechanics and finite
element simulation makes it possible to extend the method to complex structures such as
bolted connections [8,26,31–33].

Based on precursor investigations, the authors propose a new tapping sound signal
processing method, which fuses the time domain and frequency domain together so that
it can achieve more promising results. Additionally, we have developed a set of practi-
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cal sound signal preprocessing algorithms, including denoising, end-point detection and
smooth filtering, which can provide relatively standardized signal templates and overcome
the effect of ambient noise at a certain level, thus also enhancing the robustness and superi-
ority of the proposed algorithm. The rest of this article is organized as follows. Section 2
introduces the methodologies for audio signal preprocessing and feature extraction from
the time and frequency domains, along with a brief description of the generative and
discriminative classifier models. Section 3 describes the proposed sound sensing method
for bolt loosening detection. Section 4 shows the experimental apparatus and procedures.
Section 5 gives the experimental results and analysis. Section 6 concludes the main findings
of this paper along with some necessary discussions.

2. Methodology
2.1. Audio Signal Preprocessing
2.1.1. Denoising

The audio signal recorded by smart devices is normally mixed with a certain level of
noise, which will impede the final diagnosis of bolt looseness. Therefore, it is necessary
to eliminate or control this kind of influence in order to analyze the signal characteristics.
In addition, end-point detection and smooth filtering are also key steps for audio signal
processing. For the former, valid samples that could reflect the propagation characteristics
of the audio signal are required to be separated from the whole recording by smart devices.
For the latter, we expect that the effective samples are continuous and smooth to provide
convenience for processing the latter.

As of now, there are several signal denoising methods, such as wavelet denoising,
empirical mode decompose (EMD) denoising, and minimum entropy deconvolution
(MED) [34]. In this article, a parallel threshold method is adopted. For the signal se-
ries x[n], n = 1, · · · , N, the threshold h can be set in terms of the level of noise in the
original signal series, and then the denoising process can be described in Equation (1).

x̂[n] =
{

x[n] |x[n]|−h > 0
0 |x[n]|−h ≤ 0

(1)

where h indicates the threshold, which can take 0.2 to 0.3 variance in light of the signal–noise
ratio (SNR) of the raw signal series (in this paper, we take the threshold as 0.3 variance and
the SNR as about 40 dB). The time series Flag(n) can be defined as |x[n]|−h .

The result of a simple comparison between the original signal with white noise and
signal after denoising by the parallel threshold method is shown in Figure 1.
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2.1.2. Segmenting

In general, the whole recording is to be divided into different frames, which only
contain one decay waveform that can be used for feature extraction. An algorithm for audio
signal end-point detection is necessary for us, shown in Figure 2. Accurate endpoint detec-
tion leads to efficient computation and results in good alignment for template comparison.
There are several endpoint detection methods, such as short-time energy (STE), short-
time zero crossing rate (ZCR), energy entropy feature, etc. Here, the following steps are
implemented to get a relatively satisfying result based on the previous denoising process.
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A detection window with a length of L is previously determined and then the speech
or silence parts can be identified when the window slides through the whole time series.
As for Section 2.1.1, |x[n]|−h is expressed as Flag(n) and then the detection index D(T) is
defined as Equation (2):

D(T) =
L

∑
i=1

Flag(i) (2)

Here, T = 1, 2, · · · , N/L and L indicates the number of samples in the window. When
the window slides through the whole series, there are four different cases that indicate
the status of the speech signal: Case I: D(T) = 0 and D(T + 1) = 0, which indicates the
noise part; Case II: D(T) = 0 but D(T + 1) ̸= 0, which represents the starting part and
the x(n) corresponding to Flag(L · T) indicates the start point; Case III: D(T) ̸= 0 and
D(T + 1) ̸= 0, which shows the speech part; Case IV: D(T) ̸= 0 but D(T + 1) = 0,
which indicates the end part and the x(n) corresponding to Flag(T) indicates the end point.
Significantly, the key parameter L needs to meet the condition: d1 < L < d2; d1 indicates
the minimum interval of silence and d2 indicates the maximum interval between the two
effective parts.

2.1.3. Smooth Filtering

After the processing of reducing noise and segmenting, raw signals are often dis-
continuous, which can be solved by smooth filtering. The goal of smooth filtering is to
mathematically model the original signal with different fitting curves and enhance its
intrinsic characteristics. Similar to blurring in image processing, we can use a quadratic
B-spline curve to achieve this goal, which has proven to be simple and effective according
to final results. Assuming there are three isolated points P0, P1 and P2, the matrix form of
the parametric equation of the quadratic B-spline curve can be expressed in Equation (3):

P(t) =
1
2
[
t2 t 1

] 1 2 1
−2 2 0
1 1 0

P0
P1
P2

 (3)

where t is the parameter of the parametric equation (0 ≤ t ≤ 1). Furthermore, a stepwise
approach is employed to address the problem of multi-point fitting, i.e., the first quadratic
B spline curve is formed by P0, P1 and P2, the second quadratic B-spline curve is formed by
P1, P2 and P3 · · · and so on. It is relevant to note that boundary processing is to add two
extra points Ps and Pe to the original points, which are required to satisfy the conditions of Ps
on the extension line where PsP0 = P0P1 and Pe on the extension line where Pn−1Pn = PnPe.
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2.2. Cumulative Energy Entropy and MFCCs
2.2.1. Cumulative Energy Entropy

It is widely acknowledged that the energy of an audio signal in the time domain can
reflect the damage condition of the detection object [35]. However, it has been proven that
using a signal energy-based method directly may face some problems, like the damage
index (DI) based on energy remaining the same under identical cases [36]. To tackle
this problem, the paper proposes a new loosening index based on cumulative energy
entropy, which has proven an effective method to tackle the disadvantages mentioned
above. Cumulative energy entropy (CEE) can be obtained by the following steps: Firstly,
for a given signal that is trimmed by preprocessing: Vt(n), n = 1, · · · , N. The energy of a
signal can be expressed as shown [29] in Equation (4):

E(n) = V2
t (n) (4)

Secondly, the weight of cumulative energy can be computed by Equation (5):

W(n) = ∑n
i=1 E(i)

∑N
i=1 E(i)

(5)

Thirdly, W(n) can be seen as the probability of Shannon entropy [37], and the series of
cumulative energy entropy can be expressed by Equation (6):

CEE(n) = −W(n)log2 (W(n)) (6)

It is noteworthy that the cumulative energy entropy is equal to zero when n is equal
to zero and the shape of the CEE curve (CEE versus n) is normally divided into three
parts (linear, nonlinear and horizontal segments). The characteristics of the curve can
be described by two parameters: the cumulative energy entropy modulus (CEEM) and
cumulative energy entropy (CEE) in Equation (7).{

CEE = W(N)

CEEM = W(k)
k

(7)

where: e indicates a natural number with a value of about 2.714; W(k) indicates the value
of cumulative energy entropy corresponding to CEE equal to (1 − 1/e) CEE; and k is equal
to the number of sampling points here.

2.2.2. Mel Frequency Cepstrum Coefficients

Mel frequency cepstrum coefficients (MFCCs) are the most popular parametric rep-
resentations for acoustic signals. In the MFCC computation process, the speech signal
passes through several triangular filters that are spaced linearly in a perceptual mel scale,
and the mel filter bank log energy (MFLE) of each filter is calculated. Finally, the cepstral
coefficients are computed by using a discrete cosine transformation of MFLE. The specific
computing procedure is referred to in the literature [38].

In order to extract the most important features of MFCCs rather than using feature sets
with great redundancy, the authors propose a new feature extraction algorithm based on the
information gain ratio (IGR) [39]. This algorithm makes an effort to search for the minimum
entropy for whole feature sets, which can decrease the order of feature sets obtained from
MFCCs and save computational costs with relatively high computational accuracy. The
algorithm is divided into two stages: (1) computing the entropy of the original feature sets
and the contribution of the information gain ratio for each feature vector; (2) deleting or
keeping the feature vector as determined by the IGR.
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2.3. Machine Learning Techniques: GDA and SVM
2.3.1. Gaussian Discriminant Analysis

Machine learning is the process of creating a set of rules from training data that can
then be generalized to the test data [40]. Normally, these techniques can be categorized
into supervised learning approaches and unsupervised learning approaches, in light of
whether or not the training data are labeled. Furthermore, supervised learning approaches
can be specifically divided into discriminative learning algorithms and generative learning
algorithms. For the former, these algorithms are trying to learn p(y|x) (the conditional
distribution of y given x) directly or to learn mappings directly from the space of inputs x
to the labels 0, 1 (such as logistic regression and support vector machines). For the latter,
i.e., generative learning algorithms, they are trying to model p(y|x) and p(y) instead.

As one of the generative learning algorithms, Gaussian discriminant analysis (GDA)
models the data labels as a Bernoulli distribution and conditional probabilities of the feature
vectors as Gaussian distribution [41] as in Equation (8):

y ∼ Bernoulli(ϕ)
x|y = 0 ∼ N(µ0, Σ)
x|y = 1 ∼ N(µ1, Σ)

(8)

Here, the parameters of the model are ϕ, Σ,µ0 and µ1. It is worth noting that though
there are two different mean vectors µ0 and µ1, this model is usually applied using only one
covariance matrix Σ. These parameters are given by the maximum log-likelihood estimates
in Equation (9):

↕(ϕ, µ0, µ1, Σ) = logΠm
i+1 p

(
x(i), y(i); ϕ, µ0, µ1, Σ

)
= logΠm

i+1 p
(

x(i)
∣∣∣ y(i); ϕ, µ0, µ1, Σ

)
×p

(
y(i); ϕ

) (9)

By maximizing ↕ with respect to the parameters, the unknown distribution parameters
can be obtained with Equation (10):

ϕ = 1
m

m
∑

i=1
I
{

y(i) = 1
}

µ0 =

m
∑

i=1
I{y(i)=0}x(i)

m
∑

i=1
I{y(i)=0}

µ1 =

m
∑

i=1
I{y(i)=1}x(i)

m
∑

i=1
I{y(i)=1}

Σ = 1
m

m
∑

i=1

(
x(i) − µy(i)

)(
x(i) − µy(i)

)T

(10)

where m indicates the number of samples and I(·) represents a logical judgment with a
true output of 1, otherwise outputting 0. By applying Bayes’ rule, it can classify a new
data point by computing the conditional probability of a class (y = 0 or 1) given the new
feature values x(h). Then, the one with the highest probability will be the predicted class,
as in Equation (11):

y|x(h) =

0 i f p
(

y = 0
∣∣∣x(h)) > p

(
y = 1

∣∣∣x(h))
1 i f p

(
y = 0

∣∣∣x(h)) < p
(

y = 1
∣∣∣x(h)) (11)
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2.3.2. Support Vector Machine

Compared with generative learning approaches, discriminative learning approaches
tend to find the optimal classification surface between different categories and to reflect
differences between heterogeneous data. Generally, this kind of model outperforms genera-
tive learning models because it does not require any assumptions about the datasets. The
support vector machine (SVM) algorithm was selected as the audio classification detection
algorithm in this article due to its great performance in many fields. A support vector
machine can achieve its classification effect by using a hyperplane. As depicted in Figure 3a,
a hyperplane w·x + b = 0 (represented by the red full line) can separate the data into
two classes (negative objects and positive objects), and the margin ∥ 2/w ∥ between the
two boundary lines (i.e., w · x + b = ±1, represented by the black dotted lines) should
be maximized to ensure the best classification accuracy. Similarly, as shown in Figure 3b,
we can apply a linear SVM to solve nonlinear classification problems by using a nonlin-
ear mapping function Φ (popular models of kernel include linear, Gaussian, polynomial,
etc.). The more specific computing process can be obtained from several articles related to
machine learning [30,36] and the authors intend not to repeat them in this paper.
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3. The Proposed Sound Sensing Method for Bolt Loosening Detection Using GDA
and SVM

A schematic view of the proposed sound sensing method for bolt loosening detection
is shown in Figure 4. When a hammer strikes bolt connection structures, the sound
emission will be transferred to smart devices via microphones, and then the sound file
will be analyzed relying on our devised MATLAB 2022b program. In this study, CEE
and MFCCs were selected as the damage indexes, and considering the environmental
influence in practice, machine learning methods (GDA, SVM) are proposed to conduct
deeper classification. After signal preprocessing and feature extraction, the feature vectors,
including the time domain (i.e., CEEM and CEE) and frequency domain (i.e., MFCCs) will
be classified by GDA and SVM, respectively. Finally, a simple majority vote is utilized for
the final judgment of the classifiers. It is worth noting that the audio files that we acquire
from smart devices will be divided into two types of datasets: training datasets and test
datasets. The GDA and SVM classifier models are constructed using the training datasets,
and the test datasets are used to test the performance of the classifier models. To find a
method for a cure-all method of loose bolt detection, the experiment was carried out in the
laboratory of the Experimental Center of Civil Engineering, with a noise level very close to
the real conditions of a construction site.
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4. Experimental Apparatus and Procedures

To verify the effectiveness of the proposed methods in this paper, a set of repeated
experiments were conducted on two steel beams (size: 250 mm × 70 mm × 5 mm, material:
Q235) connected with a M8 bolt (class: 8.8, recommended torque: 44 to 58 Nm), as shown
in Figure 5. Fixed–fixed boundary conditions were simulated by securing each end of the
beam assembly to two screw columns (fastened by double nuts). In light of a previous
investigation [42], the results under free–free boundary conditions were similar to those
presented here and are not included in this article. Since the proposed methods are based
on the tapping and listening method, the experimental setup consists of a contact-type
sensor, impact source, and data acquisition/processing/storage system. In this study, a
dynamic microphone, which is normally used for music and voice recording, was chosen
as the sensor to measure the sound pressure within the near field of the single lap bolt. It
should be noted that the distance between the microphone and impact source has a certain
influence due to the huge (five orders of magnitude) acoustic mismatch between the steel
and air [43,44]. Therefore, this distance was set to approximately 8 cm to account for the
size of the workpiece. The response frequency range of the microphone is 20–25,000 Hz
and the sensitivity is 103 dB/mW. An ordinary wrench was used to apply an impact to
the bolt head and pristine audio signals were recorded and stored in an iPad with internal
recording software (sampling rate: 44,100 Hz). In addition, a digital torque wrench and
ordinary wrench were utilized for applying axial preloads to the bolt with an interval of
30 Nm. In any case, the levels of ambient noise were about 35 to 45 dB.
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In this paper, for convenience, the bolt had three different looseness conditions: fully
loosened (0 Nm), partially loosened (30 Nm), and fully tightened (60 Nm). Each condition
had 10 datasets and each dataset contained 10 hammer impacts with an interval of about
1 s. Thus, there were 3 × 10 × 10 audio files in total.

5. Experimental Research

At each bolt looseness condition, 10 percussions were manually performed using a
hammer. The samples of percussion audio signals recorded on a smart device (i.e., iPad)
are shown in Figure 6a. The 10 peaks in each plot denote the 10 hammer percussions under
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each bolt looseness condition. The amplitudes of all peaks are nonuniform because the
percussions were manually controlled. As shown in Figure 6b, raw signals in the time
domain are typically a decay waveform and the amplitude decreases as the torque applied
to the bolt increases. The results are similar to previous studies, where this phenomenon
has been interpreted as indicating that more energy is transmitted from the impact source
to the microphone, rather than dissipating through bolt structures when the bolt has higher
torque [32,45,46].
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Figure 6. (a) Ten impact-induced sound signals for the three bolt looseness conditions; (b) raw signals
for different torque levels.

It is noteworthy that this relationship is not monotonic, because the amplitudes are
affected by both the operators and ambient noise, which makes it seem incapable of giving
a quantifiable result to denote states of bolt loosening [36]. However, entropy has the
characteristics of measuring the complexity and statistical quantification of time series, and
thus can tackle the problem mentioned above. Subsequently, signal processing procedures
were performed on the raw audio signals. The parameters of the preprocessing algorithms
are listed in Table 1 and the classifier results are shown in Figure 7 and Table 2, respectively.

Table 1. Preprocessing parameters.

Stage Parameter Value

Denoising Threshold (h) 0.3
Framing Length of window (L) 34 ms
Smooth filtering Order 2

Number of interpolated points (t) 10

Sensors 2024, 24, x FOR PEER REVIEW 9 of 15 
 

 

 
(a) (b) 

Figure 6. (a) Ten impact-induced sound signals for the three bolt looseness conditions; (b) raw sig-
nals for different torque levels. 

It is noteworthy that this relationship is not monotonic, because the amplitudes are 
affected by both the operators and ambient noise, which makes it seem incapable of giving 
a quantifiable result to denote states of bolt loosening [36]. However, entropy has the char-
acteristics of measuring the complexity and statistical quantification of time series, and 
thus can tackle the problem mentioned above. Subsequently, signal processing proce-
dures were performed on the raw audio signals. The parameters of the preprocessing al-
gorithms are listed in Table 1 and the classifier results are shown in Figure 7 and Table 2, 
respectively. 

 
Figure 7. Curves of CEE. 

Table 1. Preprocessing parameters. 

Stage Parameter Value 
Denoising Threshold (ℎ) 0.3 
Framing Length of window (𝐿) 34 ms 
Smooth filtering Order 2 
 Number of interpolated points (𝑡) 10 

It can be seen from Figure 7 that the CEE curves are basically the same under different 
conditions, and can be qualitatively divided into three stages: the rapid increase stage, the 
moderate increase stage and the saturation stage. The duration of the three stages shows 
an increasing trend. The following three stages can be discussed as follows: 

The rapid increase stage (stage I): the CEE has a linear increase approximately corre-
lated with time in this stage, and the growth rate is fast, which indicates that most of the 
signal energy has a linear decrease in a short time after the occurrence of striking. The 
moderate increase stage (stage II): the CEE moderately increases in this stage, which 

Figure 7. Curves of CEE.



Sensors 2024, 24, 6447 10 of 15

Table 2. Model evaluation index.

F1 PR RR AR ER

0 Nm 0.80 0.80 0.80
30 Nm 0.74 0.78 0.70 0.83 0.17
60 Nm 0.95 0.91 1.00

It can be seen from Figure 7 that the CEE curves are basically the same under different
conditions, and can be qualitatively divided into three stages: the rapid increase stage, the
moderate increase stage and the saturation stage. The duration of the three stages shows
an increasing trend. The following three stages can be discussed as follows:

The rapid increase stage (stage I): the CEE has a linear increase approximately cor-
related with time in this stage, and the growth rate is fast, which indicates that most of
the signal energy has a linear decrease in a short time after the occurrence of striking. The
moderate increase stage (stage II): the CEE moderately increases in this stage, which means
the energy attenuation rate of the received signal gradually decreases and indicates that the
signal energy attenuates to a lower level in this stage. The saturating stage (stage III): the
CEE reaches its ceiling, and the magnitude tends toward a certain value, which indicates
that the sound signal produced by tapping has been completely attenuated, and small
fluctuations may be caused by ambient noise.

Comparing the different bolt loosening conditions using their CEE growth curves, it
can be seen that the accumulation of entropy under the loosening conditions of 0 Nm and
30 Nm is greater than under the loosening condition of 60 Nm. The straight run of the
entropy curve slope can distinguish between the three different bolt looseness states: the
tighter the bolt, the steeper the straight segment, the greater the slope, and the CEE will
be smaller.

Based on the characteristics of CEE curves discussed above, CEE and CEEM are used
to identify the loosening states of bolts in our experiments. As mentioned above, the CEE
overall decreases with tighter bolts while the CEEM shows the reverse trend. After being
normalized to the whole dataset, this trend became more obvious, as shown in Figure 8.
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Figure 8. The results of CEE and CEEM under different torque levels for complete datasets
(after normalization).

However, we should admit that the overall differences among cases are not monotonic,
especially for partial loosening conditions (torque level: 30 Nm). Nevertheless, it was worth
noting that relatively large differences can be observed from the CEE and CEEM results
between the fastened conditions and fully loosened conditions, as shown in the Figure 9
(the data were given normalized treatment for ease of viewing).
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Figure 9. (a) CEE results at the torque levels of 0 Nm and 60 Nm; (b) CEEM results at the torque
levels of 0 Nm and 60 Nm.

This phenomenon may be explained through three main reasons: (1) when the bolt
was fully loosened, the hammer would cause severe nonlinearity in the received audio
signals, which added to fluctuation in the results; (2) the pretension force of the bolt was
applied manually and the digital torque wrench itself has a certain error (about ±2%).
Therefore, the real torque levels could be more or less than the nominal torque; (3) the
results are also limited by the small sample size. After feeding these feature vectors of CEE
and CEEM into GDA, the test results can be found in Figure 10.
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ilar to the decision tree method, we could apply an if-elseif structure to classify three dif-
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prediction accuracy reached 83.3% under these three different loosening conditions. More 
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Figure 10. The performance of the GDA model under different combinations of torque levels. (a) The
performance of the GDA models under the torque levels of 0 Nm and 30 Nm; (b) The performance
of the GDA models under the torque levels of 0 Nm and 60 Nm; (c) The performance of the GDA
models under the torque levels of 30 Nm and 60 Nm; (d) The performance of the GDA models under
the combinations of damaged bolts and undamaged bolts.
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It can be seen that the GDA model can achieve high training accuracy under different
combinations of torque levels. The test results showed that the accuracy rates were 85%,
100%, 95% and 96.7%, respectively, by using the remaining one for cross-validation. Similar
to the decision tree method, we could apply an if-elseif structure to classify three different
torque levels by two GDA models in series. As shown in Figure 11 and Table 2, the
prediction accuracy reached 83.3% under these three different loosening conditions. More
specifically, the testing accuracy and testing error, precision, recall values, and F1 measure
were also computed (the definitions of these evaluation indexes for the model can be found
in reference [41]) as given in Table 2.
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Figure 11. The confusion matrix of the test results.

In fact, the test error was mainly caused by the fully loosened condition and the
partially loosened condition (for the reasons discussed above). Under the combination of
these two conditions, the performance of the generative classifier is poorer than under other
conditions. Therefore, we could first compute the MFCCs under these conditions. The
redundant features among MFCC vectors were deleted in the terms of the IGR algorithm
(we obtained MFCC vectors up to 12 orders, whereas only 10 orders of MFCCs were
eventually selected for the experiments, as shown in Figure 12).
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Finally, we applied SVM to classify them (70% of the data were used to train the
model while the rest were used to test). It is worth noting that all of the data were
normalized to avoid the influence of the signal amplitude. As shown in Figure 13, the
accuracy of our model approaches 100% when parameter γ of rbf (radial basis function
Φ(x, y) = e−γ∥x−y∥2

) is in the range of (0, 2.16). Therefore, a simple majority vote was
utilized by weighting the GDA and SVM according to their accuracy on the final judgment
of the classifiers in this case (i.e., the combination of full loosening and partial loosening);
theoretically, the final accuracy could be improved to 90%.
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6. Conclusions and Discussion

In this paper, a sound sensing method was developed to further the research on the
problem of bolt loosening detection. Firstly, a raw audio signal recorded by smart devices
(i.e., iPads) was preprocessed by a series of procedures. Then, new feature vectors were
defined in the time and frequency domains. Afterwards, different loosening conditions
of bolts were identified automatically by combining a generative learning model (GDA)
and a discriminative learning model (SVM). In particular, feature vectors consisting of mel
cepstrum frequency coefficients were inputted into SVM to distinguish the fully loosened
condition (0 Nm) and partially loosened condition (30 Nm). The experimental results
demonstrate that the proposed method could effectively identify bolt looseness (90% for
multiple bolt loosening conditions and 96.7% for a combination of a loosening condition and
the fully tightened condition). The main findings of this paper are summarized as follows:

(1) Specific preprocessing procedures for audio signals are presented in the paper includ-
ing denoising, segmenting and smooth filtering. This method enhances the perfor-
mance of the percussion-based method and can provide standard audio templates for
follow-up studies.

(2) The concepts of CEE and CEEM are proposed for the first time; they can be viewed
as a kind of modified signal energy index to reflect signal characteristics in the time
domain. The feature vectors of CEE and CEEM in the time domain and the feature
vectors of MFCCs in the frequency domain are recommended for the extraction of
bolt loosening indices. Furthermore, a novel feature selection method based on IGR is
introduced in this paper.

(3) Through the combination of two different supervised learning algorithms, i.e., GDA and
SVM, three different torque levels of the bolt were successfully identified and experi-
mental testing results validated the effectiveness and reliability of the proposed method.

The research work in this paper demonstrates the feasibility and superiority of the
proposed sound sensing method for bolt looseness detection, by identifying three bolt
looseness conditions (0 Nm, 30 Nm and 60 Nm). However, we admit that this work
still has some aspects to improve in the future. For example, the experimental results
are restrained to small sample sizes (though the GDA and SVM models need less data
than other ML models), and because there are multiple paths for sound transmission and
reflection; therefore, it is necessary to investigate the influence of different positions of
the microphone.
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