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Abstract—Object manipulation in unstructured environments
is important for many industrial applications where the items
vary in shape, size, and material. This paper introduces a
two-step pipeline for object picking, which combines instance
segmentation with a heuristic based grasp point selection. The
grasping points are determined using the 2D segmentation masks
and depth images. A voxel-downsampling procedure reduces the
depth noise, and the Theil-Sen algorithm ensures a robust linear
regression for the grasping attitude determination. Unlike other
methods, our approach does not require extensive training, as
well as a fine labelled dataset for picking, and hence it is also
independent of object shapes. Using SAM’s ViT-h version and a
binary object detector trained on a large dataset, our method
is robust and class agnostic. The experiments, made using a
RealSense D435i camera and a Racer 3 manipulator, show that
our pipeline has a good success rate in simple and moderately
complex scenarios, balancing computational efficiency and accu-
racy.

Index Terms—Object picking, multi-object scenes, segmenta-
tion, grasp point selection.

I. INTRODUCTION

The object manipulation task in unstructured environments
has become important in many industrial fields and logistics
applications, where objects vary in shapes, dimensions and
material, and are often highly cluttered. This problem en-
compasses several areas, such as object recognition, object
localization, grasp determination and motion planning, and it
has challenged researchers over the years to develop compu-
tationally efficient and robust approaches, nowadays predomi-
nantly based on Deep Learning. Among the picking solutions,
two categories arise: single-step and multi-step methods. The
former directly provide the grasp’s pose based on some quality
metric, such as Dex-Net 2.0, 3.0, and 4.0 [1]–[3], thus being
computationally efficient. However, the source of errors can
be hardly identified, because the action is performed in only
one step; in addition, they require the datasets to be well and
densely annotated, which can be hard to find. Thus, multi-step
pipelines split the problem by combining the segmentation of
the single instances with various grasping pose determination
solutions.
Since these approaches can be seen as the stack of object
localization, pose estimation and grasp determination, various
methods commonly employed to tackle the three sub-tasks
have been proposed in literature. In [4], [5] instance segmen-
tation and grasp determination are combined in an end-to-end
fashion, by providing as output the segmentation mask of the
first object to be picked together with the grasping pose. This

is done by using the predicted grasps as point proposals for the
instance segmentation. However, they require the training of
both the segmentation and the grasping networks, which can
be hard and time consuming. On the contrary, some solutions
(e.g., [6]) employ a foundation object detector model based on
DINO [7], specifically tuned on the dataset of interest, to be
used as input prompt to a foundation class agnostic segmenta-
tion model as SAM [8], prior to the grasp determination net-
work. These segmentation models provide only the difference
between objects and background, which is not sufficient for
some applications. A possible strategy is to exploit semantic
segmentation models, which however require to be trained on
large scale datasets to become category robust. As a result,
other approaches make use of few shot semantic segmentation
architectures, which provide both the segmentation masks and
the category information, just by training on a few images per
category, as in [9]. Another challenging problem concerns the
random nature of the objects, which prevents the picking of
every item with a single gripper. Some methods (e.g., [10])
have been developed to use a grasping module that accounts
for different grippers (vacuum, two finger, magnetic). The
module proposes several candidates for each gripper: the one
with the highest confidence score is chosen. However, all the
cited methods require a trained grasping pose determination
model as part of the pipeline, so that it is difficult to extend
their application to unseen shapes.
This paper proposes an approach based on a two-step pipeline,
taking inspiration from [11]. Splitting the task into segmen-
tation and picking can be beneficial, since the former is a
well studied problem with many available datasets. Picking is
performed on a heuristic basis that does not require training
on a specific dataset, and it is improved with experimental
considerations. The segmentation employs SAM, which boosts
its robustness, together with a binary object detector trained
on a large scale dataset that makes it robust to unseen objects
and class agnostic; in addition, the choice of the grasping point
accounts for the randomness of the shapes. The developed
pipeline is implemented in the case of a manipulator equipped
with a suction effect gripper to evaluate its effectiveness
in practice. The carried out tests show that the proposed
sequence has a good success rate in some simple to moderately
complex scenarios, and that it can be a good trade-off between
computational complexity and accuracy for some practical
applications.
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Fig. 1: Sketch of the pipeline. The figure on the left shows that starting from the segmentation masks the grasping points
are determined for every object. According to the desired metric, the first object is picked and its point cloud is extracted, as
shown in the right figure; then it undergoes the described process to calculate the picking attitude.

II. THE PROPOSED METHOD

A. Pipeline

The proposed picking method consists of a two-step
pipeline: instance segmentation followed by a heuristic choice
of the grasping point. The instance segmentation is performed
with the Mask R-CNN [12] implementation of the Torchvision
library. The segmentation core is further improved with ViT-
h version of SAM by using the found bounding boxes as
prompts. The grasping point is chosen on the basis of the
2D segmentation masks and the depth image. The former’s
center of gravity is calculated and is then projected onto
its skeleton, computed according to [13]. In fact, while the
center of gravity can be properly used to pick up a convex
object, since it is certainly located within the object itself,
in the case of a non-convex object it may fall outside its
contour, and hence its subsequent projection allows to select
the closest internal point. The incompleteness of the depth
information is accounted for by superimposing it with the
masks when calculating the skeleton. To determine the proper
gripper orientation for picking, the extracted point cloud is
first down-sampled using a voxel-downsampling procedure.
The algorithm divides the space into bins of equal dimensions,
and considers the center of gravity of all the points inside
each bin as its representative point. This way, the noise of the
acquired point cloud is reduced, while keeping its meaningful
information regarding the object shape; such optimization has
been revealed important for the determination of the grasping
orientation, especially for planar surfaces. A KNN is then
performed to find the K-closest point to the chosen one
to subsequently apply the Theil-Sen algorithm, which is an
outlier robust estimator for linear regression, thus finding the
approaching attitude. The object that is first picked is the
one with the highest coordinate in the base frame, since it
is thought to be the less occluded, hence the easiest to extract.
Further filters are also implemented to account for the real
working conditions: pose out of range errors and picking of
the bin. Figure 1 shows a sketch of the pipeline.

B. Base Network Training

The dataset used for the training and testing of Mask R-
CNN is the combination of Suctionnet [14] and ARMBench
[15]. The large variety of objects shapes, colors and materials
made the base network robust to unseen items. At first, two

separate models were trained on the distinct datasets. These
were then evaluated on the reciprocal test’s subsets, and the
best one was chosen to initialize the combined training. The
resulted network performance was first checked on the com-
bined test dataset. Table I provides the results of the models
trained on Suctionnet, ARMBench and their combination when
inferred on the union of the test of ARMBench and Test Novel
of Suctionnet. The latter contains object categories that are
very dissimilar from the ones of its training subset.

Dataset AP75 AP
Suctionnet 0.29 0.27

ARMBench 0.36 0.34
Combined 0.59 0.53

TABLE I: Average Precision (AP ) of Mask R-CNN calculated
on the segmentation masks. AP refers to the mean of the AP
from thresholds 50 to 95 % with 1% step size. AP75 is the
AP calculated with threshold 75%.

It is noticeable that the combined training improves the
performances of the network; the corresponding model was
then chosen for the experimental tests.

III. EXPERIMENTS

A. Physical Setup

The experimental tests were carried out on a subset of the
YCB dataset [16] and relied on a RealSense D435i camera,
which captures both the RGB and depth images using stereo
vision. The setup includes a COMAU Racer-3 manipulator and
a computer equipped with Intel Core i7-1165G7 and NVIDIA
RTX-A5000.

B. Results

The experiments have been carried out by manually group-
ing the objects into four clusters that were strongly influenced
by the physical properties of the objects. The four clusters can
be classified as easy, medium, hard and transparent/translucent.
For each category two scenarios have been investigated: single
object and cluttered objects. The former included items sepa-
rated from each other, and it was used to test the capability of
the network to detect and pick the single object. The latter
scenes were made up of many objects but in a cluttered
context, which is the typical working condition, in order to



determine the success rate of the pipeline. Each scene has
been evaluated also with SAM; for a matter of repeatability,
the SAM’s scenes were made as close as possible to the Mask
R-CNN ones, however small differences, that had negligible
impact, were present.

1) Easy: The easy category contains objects of regular
convex shape and large sizes (e.g., containers, boxes), hence
it was not problematic to detect and pick them. From the
detection and segmentation results, no critical aspects arose.
Regarding the picking quality outcomes, the grasping points
were often valid, except for some of the scenes where the
high inclination of the corresponding item was responsible for
making the grasping point fall on the object’s edge. Figure 2
shows an example of the objects tested and the capability of
the pipeline to empty the box.

Fig. 2: Picking timeline with SAM for the Easy scenario. An
infinity cycle was performed during which the pipeline was
shown to empty the box several times. The red dots represent
the picking points.

2) Medium: This bin was made up of smaller objects
with more irregular shapes (e.g., round elements, plastic bags,
scissors); as a result, picking was more difficult. In fact, despite
a good scene segmentation, some of the objects had to be
removed by the user. This was due to either the small surface
area for the suction cup (e.g., scissors, cutlery) or to the suction
effect that did not work on the material under investigation
(plastic, textile). Figure 3 shows the pipeline execution.

3) Hard: This category included objects of high irregular
shapes, making it the one with the highest failure rate. In par-
ticular, given the complex shapes and colors of some objects,
the over-detection led to parts segmentation problems, hence
to multiple grasping choices. Moreover, in some situations
certain objects were not detected at all. However, the use of
SAM turned out to be a good choice, improving the quality of
the segmentation, which was more evident than in the other
cases. But the shape of many objects made the heuristic fail
in most cases. Figure 4 provides some examples of the errors
described.

4) Transparent/Translucent: For this category it was no-
ticed how the light effects may strongly influence the detection
and segmentation part, and whenever the object was detected
its depth information was either missing or noisy due to the
camera, thus preventing in any case the completion of the
picking action. This can be seen in Figure 5.
A qualitative example of improvements provided by SAM on
the final picking can be found in Figure 6.

Fig. 3: Picking timeline with SAM for the Medium scenario.
The pipeline capability was tested with an infinity cycle,
however, with respect to the easy scenario, some of the objects
remained untakeable.

Fig. 4: Errors in the Hard scenario with SAM. The figures
above show how the irregular shape caused the choice of the
grasping point based on the 2D mask to be erroneous. The
figures below display the part segmentation errors due to the
multiple colors. The empty areas on the segmentation represent
the missing depth.

Tables II and III report quantitative results of the carried
out experiments, in terms of success rate for Mask R-CNN
and SAM pipeline, respectively. The Hard and Transparent
categories are not present due to their high failure rate. The
numerical values reported reflect the previous analysis.
It can be seen that the pipeline performs well in the Easy
scenario, with minor difficulties in the Medium one that are
not caused by the method itself, but mainly due to the gripper,
which cannot pick objects with a small surface area or made
of certain materials.

Fig. 5: Scene segmentation for transparent objects.



Fig. 6: SAM vs Mask R-CNN. The figure above shows the
segmentation masks of Mask R-CNN, while the one below is
obtained with SAM by using as input prompts the bounding
boxes that Mask R-CNN provides together with its own masks.
Mask R-CNN segments the edge of object a) and considers
it the first to be picked, thus preventing its picking since the
grasping point would fall on the edge. Instead SAM is capable
of distinguishing the object below, b), hence leading to the
successful picking of c).

Scene N°pickings SR (%) tCPU [s] tGPU [s]
Easy 46 82.6 5.5 0.46

Medium 78 60.3

TABLE II: Success rate per category with Mask R-CNN
prediction and computational times.

Scene N°pickings SR (%) tCPU [s] tGPU [s]
Easy 42 92.8 43.2 0.50

Medium 57 78.9

TABLE III: Success rate per category with SAM prediction
and computational times.

IV. CONCLUSIONS

In this work, a two-step picking pipeline is presented. It is
based on a heuristic grasping pose determination algorithm,
with some experimental improvement, which does not re-
quire training, hence heavily annotated grasping datasets. The
segmentation core can either use the SAM refinement, with
great improvements, or the base Mask R-CNN, which was
binary trained on a moderately large dataset, making it robust
to unseen shapes and category agnostic. The Mask R-CNN
based method has been shown to be a good trade-off between
accuracy and computational costs in a simple to medium
scenario, however both the object detection and the grasping
algorithm showed problems when moving to high complex
setups. In fact, the choice of the grasping point based on the 2D
segmentation suffered from the irregular shapes of the objects.
Furthermore, the multiple colors, light contrasts accompanied
with unseen shapes caused segmentation errors, such as missed
detection and part segmentation, especially in highly cluttered
scenarios. Thus, more robust object detectors as well as grasp
determination method should be further explored.
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