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Abstract—Nowadays, mobile manipulators can support hu-
mans in daily life tasks while sharing the same workspace. These
robots are usually requested to perform pick-and-place actions
that involve objects that must be handled with care, since they
may hurt the human operators. To optimize their utility as smart
assistants, they require autonomous grasping pose generation,
object recognition, and pose estimation capabilities. In addition,
since they work in dynamic environments, adaptability is es-
sential, hence predefined starting positions for grasping actions
should be avoided. These demands are even more challenging for
robots with limited computational capabilities.

In this paper, we propose an approach that demonstrates how
to improve the capabilities of a low-resource mobile manipulator.
First, an easy way to model the robot as a unique system
for holistic motion planning is developed. Then, we propose a
lightweight approach to generate the grasping point to pick a
requested item that relies only on the available CPU. Finally,
a simple yet flexible solution that involves human feedback is
adopted to let the robot handle potentially dangerous objects,
while ensuring the operator’s safety.

The proposed solution has been developed in ROS1 and
experimentally tested on the LoCoBot mobile manipulator in
a laboratory environment.

Index Terms—Mobile manipulation, autonomous pick and
place, ROS1, human-robot collaboration

I. INTRODUCTION

During the last two decades, robots have become more
widespread and increasingly used in various fields, ranging
from industries and production chains to public places and
houses. Lots of changes have occurred since robots are no
longer confined in safety cages and they can interact with
humans. The developments in the field of Human-Robot
Interaction (HRI) allowed to evolve from a simple coexistence
between humans and robots, to cooperation between them,
letting them share (at least partially) the same workspace at
the same time while working to fulfil the same goal, and finally
to their full collaboration, which involves intentional contact
and exchange of information [1], [2].

There exist different robot types to be used to meet the
application’s requirements. Mobile manipulators are systems
that combine a mobile base and a manipulator, so they have
the motion capabilities of mobile robots, coupled with the
dexterity and agility of manipulators [3]. This results in high
versatility and efficiency, making them ideal for tasks such as
pick-and-place and material handling in large working spaces.
By integrating the advantages of both robot categories, mobile
manipulators serve as versatile service robots suitable for per-

sonal and professional applications. The main benefits behind
such systems are risk reduction, since mobile manipulators can
be deployed to perform dangerous tasks, hence reducing the
risk of injuries for human workers. More importantly, they give
the possibility of enhancing the productivity and efficiency of
human operators, allowing them to focus on those tasks where
their expertise cannot be substituted, but also improving their
comfort and wellbeing in Industry 4.0 [4]-[7].

Mobile manipulators also come with challenges, since to let
them correctly deal with objects it is necessary to coordinate
the motion of the base and the robotic arm. Depending on how
the mobile manipulator is treated, it is possible to group the
planning algorithms into two classes: (i) separate-subsystems
planners, where the mobile base and the arm are considered
independent, and hence two distinct planners are used for
them, and (ii) holistic planners, where the entire robot is
modelled as a single system, and hence planning is performed
considering both the arm and the base [8].

Another crucial task for this type of robot is how to interact
with an object to correctly handle it. There are several ways
to address this task, depending on the level of autonomy
given to the robot. Thanks to the recent advances made in
the Artificial Intelligence (AI) and Machine Learning (ML)
fields, more intelligent robots can generate the best grasping
pose to use, depending on the particular object, its current pose
and other aspects that may influence the way the robot has to
handle the requested item. Although the high performance and
high degree of autonomy obtained using these approaches, the
computational resources they usually need is a crucial aspect
that must be taken into account.

This paper aims at providing an easy-to-use holistic planner
for a generic mobile manipulator, along with a description of a
simple and lightweight method to generate the grasping poses,
as well as a flexible solution to correct them, using the human
feedback to properly handle potentially dangerous objects. In
this way, the risks for humans present in the workspace can be
reduced. The proposed solution is developed for low-resource
mobile agents using a distributed setting and takes inspiration
from recent works, as discussed in Section II. After such an
overview, the proposed approach is described in Section III,
while Section IV illustrates the experimental setup and reports
the results of the carried out tests. Finally, Section V draws
some conclusions and open issues for possible future works.
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II. RELATED WORKS
A. Motion planning for mobile manipulators

Separately planning the motion for the mobile base and the
manipulator may be convenient from a computational point
of view, but employing two independent planners generally
results in a sub-optimal plan. To overcome this issue, it is
convenient to model the mobile manipulator as a single high
degree of freedom (DOF) system. This strategy allows the
robot to simultaneously reach the desired mobile base’s pose
and the manipulator’s goal, i.e., the end-effector (EE) pose, as
illustrated in Figure 1.

Robot starting pose

Mobile base’s goal

Fig. 1: Visualization of the robot’s motion obtained using a
holistic planner.

Solutions where the mobile manipulator is considered as
two distinct sub-systems, are anyway available in literature,
generally using well-known motion planners for mobile robots
and manipulators. In [9], the authors used Dijkstra’s algorithm
to find a suitable path for the mobile platform, while the
manipulator motion was planned using the Open Motion
Planning Library (OMPL). The solution proposed in [10]
makes use of the A* and the Timed-Elastic Band (TEB)
algorithms as global and local planners, respectively, for the
mobile base, whereby the manipulator’s motion planning relies
on the RRT* planner. Castaman et al. proposed in [11] a
new method for Task and Motion Planning (TAMP), called
Receding Horizon TAMP (RH-TAMP). Such an approach has
been tested using a mobile manipulator, leveraging Dijkstra’s
algorithm as a planner for the mobile base, while the RRT-
Connect algorithm was in charge of the manipulator motion
planning. RRT-Connect was also used in [12] for both the
mobile base and the manipulator, but the planning was carried
out separately. Tests were conducted in a simulated kitchen
using a double-arm mobile manipulator. For the pick-and-place
operations, the objective for the mobile base was predeter-
mined, while the manipulator’s goal configuration was chosen
from pre-calculated end-effector poses to avoid collisions.
Such a strict use of pre-computed mobile base’s poses and
arm trajectories can seriously compromise the efficiency of
the robot, especially if the items to pick are moved within
the environment. A slightly more flexible approach has been
proposed in [13], where the authors used the A* algorithm
for the mobile base planning and RRT for the manipulator’s
motion, while picking and unloading objects. A set of possible
locations from where it is possible to grasp and unload objects

was pre-recorded, and the best one was selected considering
the Euclidean distance from the current robot’s position.

Using independent planners offers the advantage of easy de-
bugging and issue investigation for each sub-module, although
it leads to a slower and unnatural movement that is generally
sub-optimal for the entire robot. Additionally, the desired EE
pose belonging to the manipulator’s reachability space strongly
depends on the final base pose. To overcome all these issues,
as demonstrated in [14], holistic planners can be adopted,
resulting in an optimal and more harmonious movement, that
also removes the need of fixing a mobile base’s pose from
where to start the grasping action.

In [15], the authors explicitly calculated the free space
within which the robot operates, and subsequently, through
sampling, they determined the desired goal pose for the mobile
manipulator. The explicit representation and computation of
free space is burdensome, and it would require recalculating
it from scratches for any change in the environment.

In [16], Corke et al. proposed a holistic motion planner based
on the solution of a Quadratic Problem (QP). The results
demonstrated the effectiveness of holistic planners, obtaining
a faster, smoother and more natural motion of the entire
robot. The main drawback of this solution is that obstacles
are not considered as constraints of the optimization problem,
hence they are not taken into consideration during the motion
planning. Moreover, the QP used to obtain the trajectory makes
use of information that strongly depends on the type of robot
that is being used, including the extended Jacobian matrix of
the high-DOF system in use and its joint constraints. For these
reasons, the proposed solution cannot be considered an easy-
to-use solution to solve the holistic motion planning problem,
and it cannot be employed in dynamic environments.

In [17], the application of deep reinforcement learning tech-
niques to mobile manipulation tasks is discussed, addressing
the challenges of coordinating a mobile base and a manipulator
in unstructured environments. Although its effectiveness, the
use of deep reinforcement learning requires lots of com-
putational resources and effort to find optimal policies for
the design of the correct interaction between the robot and
the environment. Moreover, the training process is strictly
dependent on the robot used, requiring to start from scratches
each time a different one is considered.

Such drawbacks are quite common among holistic planners,
since they are platform-dependent, meaning that a proposed
solution is designed to work on a specific robot. Also, due to
the intrinsic redundancy of a mobile manipulator, they require
high computational resources and time to find a motion plan.

In order to exploit the advantages of holistic solutions, in
this paper we propose an approach to obtain an easy-to-use
yet effective holistic planner, trying to overcome the platform-
dependency problem, and making it feasible also for low-
resource mobile manipulators.

B. Generation of the Grasping Pose

Grasp pose generation is a crucial task in robotics, particularly
in applications where a robot needs to manipulate objects using
one or more arms. The primary objective is to determine a



suitable pose for the robot’s end-effector to successfully grasp
an item. Various methods have been proposed in literature to
address this challenge; the most recent approaches use Neural
Networks (NNs) to generate optimal grasping poses.

In [18], the authors proposed to modify an AlexNet Con-
volutional Neural Network (CNN) model pre-trained on Ima-
geNet, by adding 18 million new parameters in the fully con-
nected layers for the task of predicting grasp location. The high
number of parameters requires high-performing hardware to
compute predictions, making this method not suitable for low-
resource robots. In [19], the authors developed a customized
CNN, called Generative Grasping CNN (GG-CNN), to address
this task. This network directly generates optimal grasping
poses from images captured by an RGB-D camera. Notably,
GG-CNN is relatively small, and the entire grasping pipeline
takes only 16 ms to execute a grasping action, although the
desired pose involves picking the item from the top, a working
condition that is not always feasible for mobile manipulators.
In [20], a novel grasping pose generation algorithm is intro-
duced, focusing on the interaction between object picking and
placing in cluttered scenes. Using an RGB-D camera on the
robotic arm’s wrist, a 3D render of the placement scene is
constructed through 3D convolutional layers. A single-depth
image of the object is collected to reconstruct its 3D model.
Cross-correlating this information produces an affordance
placement map. Despite its high accuracy, the method is time-
consuming, due to the extensive depth image collection needed
for scene reconstruction before each grasping task. In [21],
the authors developed a technique to generate the grasping
pose depending on the action that must be carried out, thus
dealing with the Robotic Object Affordance issue. The method
implements an NN that incorporates both 2D images and 3D
object models. The images depict a human engaging with the
object, each labeled to specify the task being performed. The
network’s training phase aims at replicating a form of learning
by demonstration, leveraging the images as the representation
from which the robot learns.

The solution that we propose in this paper can be applied
to mobile manipulators with diverse computation capabilities,
and it allows to pick items from different heights compatible
with the robot’s characteristics. The key idea behind this
solution is to adapt a CNN usually exploited to complete the
object recognition problem, merging the information coming
from a depth sensor like an RGB-D camera.

III. PROPOSED APPROACH

The approach proposed in this paper aims at improving the
motion capabilities of a mobile manipulator by planning and
following a collision-free trajectory, which is unique for both
the mobile base and the arm. Furthermore, the developed
scheme allows the mobile manipulator to recognize known
objects and generate the best grasping point to handle also
those that are potentially dangerous. Even though the steps
followed to design the proposed solution can be applied to
different robots, the implementation is based on a LoCoBot
mobile manipulator [22], providing a working case study for
the research community. Some preliminary results have been

developed in [23], whose code is available at [24]. Details
about the LoCoBot model and sensors/hardware setup can be
found in Section IV-A.

This section is divided into two parts: the first one describes
the main steps to obtain an easy-to-use motion planner able to
find a trajectory for the high-DOF system, while the second
one unfolds all implementation aspects to make the robot able
to recognize known objects and to generate a suitable grasping
point.

A. Problem scenario

The deployment of mobile manipulators in pick-and-place
operations offers exceptional flexibility in environments such
as plants and warehouses. This allows humans to instruct the
robot to search, pick and place specific products, so as to build
a more versatile and efficient operational setup.

A typical example of a working environment for a mobile
manipulator is a warehouse, in which it is necessary to grasp
stored items and release them in a depot. This environment
includes static obstacles like shelves and walls, as well as dy-
namic obstacles with different levels of predictability, ranging
from other mobile agents to humans. Also, the objects that the
mobile manipulator should handle may have different shapes
and characteristics, which make them potentially dangerous
when the robot interacts with humans, if they are not correctly
handled. For instance, those items with sharp or pointy edges
must be grasped and moved adequately and more carefully.

B. Holistic motion planning for a mobile manipulator

From the analysis of the related works, it is evident the
need to quickly develop a framework capable of (i) solving
the holistic planning problem, and (ii) exploiting the main
planning algorithms available in literature.

The solution proposed in this paper is based on the frame-
work Movelt! [25], which is one of the most used ROS pack-
ages for motion planning. It is an open-source planning frame-
work that provides several planners, and it constitutes a flexible
way to generate a complete motion plan considering different
constraints. Starting from the Universal Robot Description
File (URDF), which contains all the information about the
physical properties and constraints of the robot, it is possible
to create a customized version of the Movelt! package. The
Movelt! setup assistant is in charge of loading the URDF file,
extracting all important information and creating the entire
package, following the requests provided by the user through
a convenient graphical interface. The information extracted
from the URDF makes possible the self-collision checking,
the definition of some planning groups, and the choice of the
motion planning algorithm, taking into account the selected
EE.

Movelt! gives also the possibility to change the robot
description by adding virtual joints, representing additional
DOFs beyond the actuated physical ones of a robotic system.
The main aspect of virtual joints is that a single one is
able to provide more than one DOF, depending on its type;
e.g., the planar virtual joint provides 3 additional DOFs,
while the floating one adds 6 of them. They are crucial for



handling various planning scenarios and enabling more flexible
manipulation tasks. In particular, they are used in the proposed
approach just to represent the manipulator and the mobile base
as a single system.

In this way, virtual joints could be used to enhance the
motion planning abilities of a mobile manipulator. Indeed, by
adding a planar virtual joint at the bottom of the mobile base,
it is possible to make any planner in the customized Movelt!
package aware that the entire robot can be relocated to obtain
a collision-free trajectory and reach a desired EE’s pose.

Since a mobile manipulator’s base is expected to move in a
2D environment, a planar virtual joint could be simply added
while configuring the package. Considering a reference frame
located at the robot base, as depicted in Figure 2, a planar
virtual joint, without specifying any other constraint, would
give the robot the possibility of translating along the X and
Y directions and rotating about the Z-axis. However, even if a
planar virtual joint can be added to the current configuration in
the planning framework, it is converted to a fixed one before
planning, giving no effective contribution to this task.

Fig. 2: Visualization of the reference frame R centered with
the robot.

To overcome this problem, it is possible to create a cus-
tomized virtual joint that effectively extends the robot’s motion
abilities by modifying the robot’s URDF. Each customized
joint defined in such a file adds 1 DOF, hence, in order to
recreate the planar virtual joint defined by Movelt!, three
auxiliary joints have been added at the base of the mobile
manipulator, and directly linked to the root frame of the robotic
arm: (i) a prismatic joint allowing motion along the X-axis,
(ii) a second prismatic joint attached at the end of the first one
moving along the Y -axis, and (iii) a revolute joint able to rotate
about the Z-axis. Using this modified URDF to generate the
Movelt! package, it is possible to request a path planning for
the holistic system using the planning functionalities provided
by the framework. Moreover, thanks to the explicit use of
three joints to build a virtual planar one, it is possible to use
their constraints to limit the movement of the robot within the
workspace.

Using this approach, it is possible to easily adapt the
planning framework to obtain an easy-to-use holistic planner
that allows to employ the different planning algorithms. In
addition, it leads to more harmonious and natural movements

of the entire robot, if compared with the ones obtained
from the combination of the plans coming from independent
planners governing the mobile base and the arm.

C. Grasping pose generation

In Section II-B, we described the most common approaches
concerning the grasping pose generation problem. Most of
them make use of data coming from an RGB-D camera to feed
NN, hence they generate the optimal grasping point directly
from what the robot can see. However, these algorithms
usually require dedicated hardware (e.g., GPUs), which is not
always available in the robots’ onboard computers. To face this
challenge, we designed a lightweight approach to generate the
optimal grasping pose, that can be also used by low-resource
robots. Our solution employs a YOLOvS CNN [26], allowing
not only to understand whether an object is visible or not in the
current scene, but also to compute an estimation of its position
with respect to the image frame. This latter information is
provided as a bounding box (BB), uniquely characterized by
the center, the height, and the width. This network has been
chosen because it offers various architectures with different
sizes and parameter counts; this flexibility allows users to
select and employ the one that aligns better with their specific
requirements.

The BB information of an object is further processed to
approximate the center of mass (CoM) of the object, assumed
to be equivalent to the BB’s center; the actual mass distribution
details are neglected, as incorporating them would involve
coding for each specific object or training another network.
The CoM computed is considered as the grasping point from
which the object can be picked.

Using only the BB prediction, it is possible to obtain the
computation of the grasping point in a 2D reference frame
aligned with the image frame. To acquire its coordinates in the
3D world, integration with additional data from the camera is
essential. This involves leveraging the depth image provided
by the camera, which is processed to transform it into a 2D
matrix. This latter data structure is accessed using the CoM’s
coordinates computed before to retrieve its corresponding
depth value. As it is evident in Figure 3, the result of this
operation is not only a grasping point for the robot’s EE, but
also an approximation of the object’s 3D pose as a translation
of the actual depth camera’s pose.

D. Dangerous objects handling

In order to reduce the risk for humans collaborating with
the mobile manipulator, it is important to correctly identify
the most dangerous part of an item, and possibly modify the
grasping point to adequately pick it. Grasping the object just
from the part including its dangerous elements reduces the
risk for humans to be hurt, since such unsafe elements are
indirectly hidden. However, letting a robot to autonomously
understand which is the most dangerous part of an object is a
challenge that has proved very hard to face. To overcome this
problem, we designed a flexible yet effective interface through
which the robot exploits the collaboration with the human
operator to individuate the dangerous part and to correct the



Fig. 3: Visualization of the estimated object’s pose. The axis
with subscript ”c” indicates the reference frame of the depth
camera, while those with subscript ’obj” indicate the object’s
pose.

grasping point. Following an approach similar to what is done
in Interactive Machine Learning (IML) [27], if the requested
object to pick may hurt people, the grasping point is corrected
by asking the human operator to indicate the most dangerous
part of the item, by clicking on the image representing the last
frame captured by the robot’s camera. Using this feedback,
the grasping point is modified, and the object is picked out
directly from its most dangerous part, thus reducing the risks
for the human operator. An example of the described interface
is provided and discussed in Section IV-D.

IV. EXPERIMENTAL VALIDATION

A. Hardware and software setup

The LoCoBot WX250 mobile manipulator [22] was used to
validate the proposed approach. It is composed of a Kobuki
mobile platform with differential wheels, and a WidowX250 6-
DOF manipulator with a parallel gripper. The robot senses the
surrounding environment thanks to an RPLIDAR A2M8 (360°
2D LIDAR) and an Intel RealSense D435 (Stereo RGB-D),
used for both manipulation and navigation tasks. The robot’s
PC has reduced computational capabilities (it has only 8 GB
RAM), so all the computational and data processing tasks are
assigned to the available Intel i3-CPU (8th Gen). Also, the
lack of a dedicated GPU prevents the use of large NNs.

The proposed solution has been developed using ROS1, in
particular ROS Noetic and its packages, to accommodate the
real robot’s compatibility requirements. Some of the packages
used are the customized Movelt! package described in Section
III-B, the RTAB-Map and SlamToolbox packages for solving
the SLAM problem, and the move_base package to control
the mobile base.

B. Environment description

Mobile manipulators are usually intended to work in indoor
environments shared with humans, in which objects are stored
on shelves, drawers, and cabinets. An example of such a con-
text, scaled to a single large room, is the Robotic Laboratory
at Politecnico di Torino. It is an indoor and semi-structured
environment, where robots and people work together, hence,

there are both static and dynamic obstacles. The dimensions
of the shelves and the items to be picked are compatible with
the LoCoBot WX250 mechanical structural characteristics. To
address the obstacle avoidance problem, the solution involves
the utilization of an occupancy map generated using Octomap
[28]. Notably, the occupancy map is not permanently stored,
but it is reset at the beginning of each new run. This dynamic
approach enables the system to adapt to new static obstacles
that may emerge when the robot is in motion, ensuring
effective obstacle detection and navigation. Moreover, the
occupancy grid is also necessary while picking an item from
a cabinet: this latter space is closed and may be cluttered,
so having a precise description of the available free space is
crucial to generate a suitable collision-free trajectory.

C. Experiments

The carried out experiments are focused on the pick-and-
place pipeline, to understand its real speed and the limitations
of the grasping actions. Before discussing the details of the
experiments, it is important to illustrate the role of the holistic
planner. The execution of the computed holistic plan would
be possible only if a unique controller for both the mobile
manipulator’s parts is available. Nevertheless, robot producers
usually provide two distinct controllers, specifically designed
and tuned for the arm’s servomotors and the mobile base. In
addition, the modified robot description, which includes the
three auxiliary joints needed to build a holistic planner, would
allow the mobile base to move instantaneously along the lateral
direction. This latter aspect would conflict with the differential
drive constraints, thus affecting the motion of the LoCoBot
used for the experiments. To overcome all these issues, the
holistic approach has been adopted only during planning, while
the motion of the two subsystems has been kept separate.
Hence, the final pose of the mobile base is extracted from
the trajectory obtained by the holistic planner and used by
the move_base package as the desired goal. In this way, the
whole robot is relocated, when it is necessary, to reach the
grasping pose, and the motion control of the two subsystems
is demanded to the robot’s controllers.

The entire sequence of actions executed by the LoCoBot
WX250 is depicted in Figure 4. The mobile manipulator
performs the searching phase (in red) trying to locate the
requested item inside the environment and to generate a
grasping pose, and, if such object belongs to those categories
of potentially dangerous items, the robot requires a feedback
from the human to correct the predicted grasping point (in
green). Then, the holistic motion planner is used to find a
trajectory for the arm and the base together (purple). If a
trajectory is found, the arm and the mobile base are moved
to reach the computed grasping point (pick pipeline); after
having successfully grasped the object, the place pipeline is
executed to release the desired object inside the depot. Figure
5 shows the highlights of the experiment conducted in the real
environment:

1) After receiving a request to pick an item and extracting
the list of possible places where the item usually is, the
first location is reached, and the object detection task
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Fig. 4: Diagram describing the sequence of actions executed by the robot.

starts (Figure 5a). It is worth noting that to correctly scan
the scene, the camera is moved in four different positions,
so the object detection task is performed four times.

2) If the requested object is available in the current scene,
the information about its BB is used to generate the
grasping point.

3) The holistic planner is requested to find a collision-free
trajectory to reach the EE’s pre-grasp pose, which is
located above the object (orthogonal to the plane where
the item is placed), with the gripper pointing towards it.

4) The final pose of the mobile base is extracted and as-
signed as the desired goal for the mobile base’s controller
(Figure 5b).

5) After the mobile base has reached the correct position,
the trajectory computed for the arm is executed and the
pre-grasp pose is reached (Figure 5c).

6) Then, the real grasp pose is reached by the mobile
manipulator and the gripper is closed (Figure 5d).

7) After having successfully grasped the desired item, the
manipulator is retracted to a predefined safe pose, used

(c) Arm moves to reach the pre-grasp pose.
B Wl

!

(a) The robot reaches a searching location.

§

A
J {

N . VN
(f) The object is placed inside the depot.

.

(d) The EE reaches the grasp-pose.

Fig. 5: Visualization of the pick-and-place pipeline.



to avoid any possible and undesired collision of the arm
with its surroundings (Figure Se).

8) In the final phase, the mobile manipulator arrives to the
designed place location and releases the item in a depot
(Figure 5f).

A brief demo video showcasing the experimental validation

is available at [29]. During the entire pipeline, two different
planners from the OMPL are used:

1) The RRT* planner [30] is used to obtain a complete
trajectory considering the mobile manipulator as a holistic
system. The number of attempts available was set to 5,
while the maximum planning time was set to 15 s;

2) The RRT-Connect algorithm [31] is instead used to find
suitable trajectories for the arm only to go from the pre-
grasp pose to the effective grasping one. In this case,
the total number of planning attempts was 5, while the
maximum time to find a solution was set to 10 s.

D. YOLOvS version and dataset

Finding a suitable trade-off between the model complexity
and the final performances, while considering the available
computational resources, had a crucial role in determining
the type of YOLOvS CNN to use. Thanks to its low num-
ber of parameters and swift computation, the small version,
YOLOVSs, has been chosen: the necessary predictions are
achieved in approximately 121 ms, ensuring a rapid and
lightweight object detection task, with an accuracy of the 93%.
To effectively train our network, a customized dataset compris-
ing images of objects commonly encountered in laboratories
has been created. It contains about 800 RGB images of objects
belonging to 15 different classes (Figure 6). Each image’s label
contains the expected BB in addition to the class label.

Fig. 6: Some examples of the detected bounding boxes and
the class associated with them: (a) screwdriver, (b) plier, (c)
whiteboard pen, (d) box.

E. Dangerous part identification feedback

After the object detection phase and before the grasp
action, if the requested item belongs to the hard-coded list
of dangerous ones, the robot requests a feedback from the
human operator using the approach described in Section III-D.
A visual representation of the last scene captured by the

LoCoBot is provided to the user. The image depicts the object
intended for grasping, identified by its BB, and the computed
grasping point is indicated by a red dot. This information is
communicated to the user, offering a clear visual reference for
the robotic interaction. After the image is displayed, the user
clicks on the point that represents the most dangerous one.
The system computes the mean point between the predicted
and user-indicated grasp points, using it as the actual grasping
point (Figure 7).

Using such a flexible interface, the robot can correctly pick
dangerous items from their most dangerous part, therefore,
reducing the risk for the human operator and increasing safety.
This can be very useful when the object must be given to the
operator, instead of being released in a depot.

Fig. 7: Visualization of the predicted grasping point (red), the
point clicked by the user (blue) and the resulting grasping
point that will be used (green).

FE Results

The entire pipeline shown in Figure 4 is executed in about 2.5
minutes in an environment of approximately 20 m?2. Most of
the time is spent on the robot’s navigation, while the object
detection task is quite quick, even if it is executed on a GPU-
free system, and it is requested twice to mitigate the effect of
the noise affecting the depth camera; the time required for this
task, considering also the delay introduced to reduce the noise
effect, is of about 10 s for 8§ predictions (considering 4 camera
positions, and requesting predictions twice). The RRT* has
been used as a holistic planner nearly all the time and requires
all the allowed 5 attempts of 15 s each to find a suitable
collision-free trajectory, while the RRT-Connect planner for
the robotic arm seldom uses all the attempts provided, and it
is often able to find a motion plan in less than 10 s.

The interface used to collect the human feedback about the
most dangerous part of an object resulted to be intuitive and
easy to use, allowing one to correctly handle all the items.

The gripper’s characteristics introduce challenges in grasp-
ing certain objects of the dataset. Long items, such as screw-
drivers, with a CoM near one end, are often difficult to grasp
successfully. Conversely, objects with a regular shape and a
CoM aligned with the actual grasping point are generally
picked correctly in most instances.



V. CONCLUSIONS AND FUTURE WORKS

The paper aims at enhancing a mobile manipulator’s capa-
bilities to serve as a safe smart assistant for humans, especially
when handling hazardous objects. It introduces an easy-to-
use holistic planner to optimize motion plans, expanding
the manipulator’s reachable space. This approach enables
dynamic base positioning for grasping tasks, eliminating the
need for predefined base poses from which it is possible
to perform the grasping task. Further advancements could
include the development of customized planners tailored for
mobile manipulators to optimize base positions for specific
end-effector poses. Noise affecting the depth data caused
some errors in the correct prediction of the grasping pose.
However, the proposed lightweight solution based on YOLOv5
CNN proved to be effective, giving more flexibility to the
robots with limited computational capabilities. Moreover, the
objects that the robot can pick are limited by its gripper,
since they have different shapes and mass distribution, but
the picking precision could be improved using point clouds
with 3D-CNN instead of images augmented using depth data.
Finally, regarding the dangerous parts handling, human-in-
the-loop interaction is a preliminary step towards training the
robot using IML algorithms. Following this fashion, using a
learning-from-experience approach can make the robot more
autonomous in this task, while reducing the effort needed to
train it.
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