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Abstract
Societal biases encoded in real-world data can contaminate algorithmic decisions, 
perpetuating preexisting inequalities in domains such as employment and education. 
In the fair ranking literature, following the doctrine of affirmative action, fairness 
is enforced by means of a group-fairness constraint requiring “enough” individuals 
from protected groups in the top-k positions, for a ranking to be considered valid. 
However, which are the groups that need to be protected? And how much represen-
tation is “enough”? As the biases affecting the process may not always be directly 
observable nor measurable, these questions might be hard to answer in a principled 
way, especially when many different potentially discriminated subgroups exist. This 
paper addresses this issue by automatically identifying the disadvantaged groups in 
the data and mitigating their disparate representation in the final ranking. Our pro-
posal leverages the notion of divergence to automatically identify which subgroups, 
defined as combination of sensitive attributes, show a statistically significant devia-
tion, in terms of ranking utility, compared to the overall population. Subgroups with 
negative divergence experience a disadvantage. We formulate the problem of re-
ranking instances to maximize the minimum subgroup divergence, while maintain-
ing the new ranking as close as possible to the original one. We develop a method 
which is based on identifying the divergent subgroups and applying a re-ranking 
procedure which is monotonic w.r.t. the goal of maximizing the minimum diver-
gence. Our experimental results show that our method effectively eliminates the 
existence of disadvantaged subgroups while producing rankings which are very 
close to the original ones.
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1 Introduction

Ranking is a fundamental primitive in many algorithmic decision-making contexts, 
such as health (e.g., solid organ transplantation priority list), education (e.g., uni-
versity admission), or employment (e.g., selection for a job). Typically, different 
information about an individual might be collected and processed by some machine 
learning model to produce a final score of “fitness” of a candidate, which then forms 
the basis of the final ranking. However, bias might be hiding in the underlying data, 
potentially interfering with the definition of the fitness score and ultimately lead-
ing to unfair ranking, which might substantially impact people’s lives. Of particular 
concern are historically disadvantaged groups, whose information in the underly-
ing data might correlate with lower fitness due to historical reasons and preexisting 
societal inequalities. The growing awareness of the risks associated with algorithmic 
decision-making has been attracting an increasing research effort toward devising 
fair ranking systems (Zehlike et  al. 2017; Yang and Stoyanovich 2017; Singh and 
Joachims 2018; Celis et al. 2018; Yang et al. 2019; Celis et al. 2020; García-Soriano 
and Bonchi 2021; Zehlike et al. 2022; Ekstrand et al. 2023). The bulk of this litera-
ture deals with fair ranking as a constrained optimization problem, where the fair-
ness constraint requires that a valid ranking must exhibit in the top-k positions, for 
any k, a certain fraction of individuals from some protected groups, defined on the 
basis of sensitive attributes such as ethnicity, gender, or age. A main limitation of 
this approach is that it needs someone to define the group-fairness constraint. This 
requires (i) to identify the potentially disadvantaged groups and (ii) to decide which 
is the minimum representation for each of these groups in the top-k positions. As 
the potential biases hiding in the underlying data may not always be directly observ-
able nor measurable, these questions might be hard to answer in a principled way, 
especially in the intersectional case, when many different potentially discriminated 
subgroups exist.

The notion of intersectionality  (Crenshaw 1990) refers to individuals belong-
ing to multiple protected groups who may experience a unique disadvantage. Inter-
sectionality is complex because guaranteeing a fair representation or treatment for 
every single attribute does not guarantee the fair representation of their intersection. 
As shown by Celis et al. (2018), when each of the elements to be ranked belongs to 
one and only one group, the constrained optimization problem can be solved exactly 
in polynomial time. Instead, when each element can belong to more than one group, 
the problem becomes hard.

To show such complexity, consider the law school admission LSAT data-
set  (Wightman 1998), containing information on law students, and suppose that 
we rank the students purely based on the LSAT scores. Table  1 reports, for vari-
ous subgroups, their support (fraction of the population), divergence Pastor et  al. 
(2021) (denoted Δ ) of the group from the overall population w.r.t. the ranking: a 
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negative value indicates discrimination, while a positive one indicates that the group 
is favored (formal definition will be provided later in Section 3). The group {gender 
= female, ethnicity = African-American} is so much discriminated ( Δ = −7.701 ), 
to make it look as if the whole group {gender = female} was discriminated when 
instead the subgroup {gender = female, ethnicity = Caucasian} is not discriminated 
( Δ > 0 ). By creating an affirmative action to support the whole group {gender = 
Female}, one produces a positive impact on all women, favoring white women who 
are not disadvantaged, while damaging already disadvantaged groups, e.g., {gender 
= male, ethnicity = African-American} ( Δ = −6.773).

In this paper, we tackle the intersectional fair ranking problem in which the indi-
viduals to rank have multiple sensitive attributes and thus can belong to one or more 
protected groups. Our proposal does not require predefining the group-fairness con-
straint, thus avoiding the complication of deciding, a-priori, which are the disadvan-
taged groups and how much representation each disadvantaged group should have 
in the top-k. Instead, it leverages the notion of divergence to automatically identify 
which subgroups, defined as a combination of known protected attributes, show a 
statistically significant deviation in ranking utility compared to the overall popula-
tion. We formulate our intersectional fair ranking problem as a bi-criteria optimiza-
tion problem. The first criterion aims at mitigating subgroup disparities, thereby pro-
moting equity: in particular, following Rawls’ theory of justice (Rawls 1971) which 
advocates arranging social and financial inequalities to the benefit of the worst-off, 
requires maximizing the utility of the subgroup with the worst negative and statisti-
cally significant divergence.

The second criterion requires that the final ranking is as close as possible to the 
original one. While improving group fairness is a primary objective, we want to 
preserve its similarity with the original ranking to maintain the performance of the 
utility and the consistency in decision-making processes. To solve this fair ranking 
problem, we develop a method that is based on identifying the divergent subgroups 
and applying a re-ranking procedure, which is monotonic with the goal of maxi-
mizing the minimum divergence. Our approach directly processes the outcome of a 
ranking process. Our post-processing method enhances the fairness of the ranking 
without the need to access or modify the original ranker or its generating function. 
Our experiments show that in all real-world datasets we consider, our approach can 
always eliminate the existence of all the disadvantaged groups while maintaining a 
ranking very similar to the original one.

Table 1  Subgroups from the 
LSAT dataset with support 
(fraction of the population), the 
divergence Δ from the overall 
average score, and its statistical 
significance (Welch’s t-test)

Subgroup description Sup Δ W-t

ethn = Afr-Am, gender = Female 0.04 − 7.701 37.8
ethn = Afr-Am, gender = Male 0.02 − 6.773 24.2
gender = Female 0.44 − 0.487 7.22
ethn = Caucasian, gender = Female 0.35 0.479 7.3
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2  Related work

Fair ranking. Assessing and ensuring fairness in rankings has recently attracted 
growing research attention [see recent surveys  (Zehlike et  al. 2022a, b; Patro 
et al. 2022; Pitoura et al. 2022)]. Research on fair machine learning can first be 
divided between two targets of fairness: individual and group fairness Mitch-
ell et  al. (2021). Individual fairness requires that similar individuals should be 
treated similarly by an algorithm process Dwork et  al. (2012). Group fairness 
ensures equal treatment across groups of individuals. With a few exceptions that 
look at individual and group fairness jointly  (García-Soriano and Bonchi 2021; 
Zehlike et al. 2020), the bulk of the literature on fair ranking focuses on group-
level fairness  (Asudeh et  al. 2019; Celis et  al. 2018; Singh and Joachims 2018; 
Yang et al. 2019; Yang and Stoyanovich 2017; Feldman et al. 2015). Group fair-
ness is assessed and addressed for groups that are protected from discrimination. 
The group definition is hence typically based on the knowledge of a set of sen-
sitive (or protected) attributes and corresponding protected values Zehlike et al. 
(2022a). The protected attributes can denote the membership of instances in 
demographic groups (e.g., female gender or African American ethnicity) that rep-
resent a minority or are historically disadvantaged.

Several works (Zehlike et al. 2017; Yang and Stoyanovich 2017; Feldman et al. 
2015) consider algorithm fairness for a single sensitive attribute. The work Feld-
man et al. (2015) aligns the probability distribution of the candidates of the pro-
tected group with the non-protected ones. Other researchers have approached fair 
ranking as a constrained optimization problem, in which the group fairness con-
straint requires that a minimum fraction of individuals from the protected group 
to be included among the top-k positions (Zehlike et al. 2017; Celis et al. 2018; 
Singh and Joachims 2018). We focus on ensuring fairness for multiple protected 
groups over the entire ranking, and we do not impose explicit group fairness 
constraints.

Intersectional fair ranking. Intersectionality  (Crenshaw 1990) refers to the 
discrimination that affects individuals who belong to multiple protected groups 
simultaneously. The fair-ranking survey (Zehlike et al. 2022a, b) notes that, in the 
presence of multiple protected attributes, we can distinguish approaches that han-
dle the attributes independently, i.e., detecting and mitigating the bias separately 
for each attribute  (Celis et  al. 2020, 2018; Yang et  al. 2019), and approaches 
that truly tackle the intersectional problem of dealing with multiple attributes 
together (Zehlike et al. 2020; Yang et al. 2021; Zehlike et al. 2022).

The Continuous Fairness Algorithm CFA� Zehlike et  al. (2020) aligning the 
score distributions with the Wasserstein barycenter of all group distributions. 
The setting handles multiple protected groups and protected attributes. Using the 
barycenter notion avoids imposing a privileged or majority group as opposed to 
protected or minority groups. As our approach, the method does not distinguish 
between (predefined) protected and not-protected groups but only between pro-
tected (or sensitive) and non-protected attributes. The target is an adequate treat-
ment for all groups defined by protected criteria. For CFA� , the fulfillment of 
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group fairness across all groups over multiple protected attributes entails con-
sidering a number of subgroups that grows exponentially with the number of 
attributes and values. We instead control the re-ranking mitigation process auto-
matically by (i) considering groups with a size above a user-chosen frequency 
threshold and (ii) directly focusing on problematic groups only.

Yang et al. (2021) study intersectional fairness in ranking by modeling the causal 
effects of sensitive attributes on other variables and removing these effects to induce 
fairer rankers. They use counterfactuals to model how the score would change if 
the sensitive attributes of a given instance were different. The study models each 
instance as belonging to one specific intersectional subgroup. In our work, each 
individual can belong to multiple (and overlapping) subgroups (e.g., women and 
African American women); we focus on identifying whether the subgroups face dis-
advantage and then implement measures to mitigate their specific disadvantages.

Multi-FAIR Zehlike et al. (2022) extends the top-k algorithm of FA*IR Zehlike 
et al. (2017) to handle multiple protected groups. The approach ensures that the pro-
portion of protected candidates at any point of the top-k ranking is statistically above 
a minimum percentage for each protected group, defined via fairness constraints. 
The statistical test is based on a multinomial distribution. This approach differs sub-
stantially from our proposal, as we do not require protected groups to be pre-defined, 
instead, we focus on detecting subgroups that are disadvantaged by analyzing dispar-
ities across the entire ranking, and not only in the top-k positions. Nevertheless, as 
we show in the experiments in Appendix 1.5, we can adapt our method to deal with 
top-k settings by suitably tailoring the utility ranking function (i.e., giving a null 
utility to positions beyond k). Our experiments show that our approach, although not 
specifically designed for the top-k problem, it is able to address fairness concerns 
within the top-k subset by enhancing group representation in these top positions.

Anomalous subgroup identification. Fairness assessment and mitigation algo-
rithms typically assume the knowledge of the protected group or set of protected 
groups (Zehlike et  al. 2022; Feldman et  al. 2015) to address or generalize to all 
subgroups over protected attributes. Recently, several works have been proposed 
to automatically identify the data subgroups associated with a biased behavior in 
the context of classification (Pastor et al. 2021, 2023; Sagadeeva et al. 2021; Chung 
et  al. 2019) and rankings  (Pastor et  al. 2021; Li et  al. 2023). Both  Pastor et  al. 
(2021), Li et al. (2023) focus on identifying groups with a biased representation in 
the rankings and propose efficient exploration strategies to avoid the exponential 
enumeration of all subgroups. The approach proposed by Li et al. (2023) automati-
cally detects groups with biased representation in the top-k positions of the ranking 
using search algorithms based on fairness measures, bounding the global or pro-
portional representation of groups in the ranking by imposing fairness constraints. 
The work Pastor et al. (2021) is an adaptation of Pastor et al. (2021) for rankings. 
The approach explores all subgroups that occur sufficiently frequently in the data-
set based on a frequency threshold leveraging frequent pattern mining techniques. It 
identifies overlapping subgroups whose rankings differ, both in terms of advantaged 
or disadvantaged representation in the ranking. Both approaches Pastor et al. (2021), 
Li et al. (2023) are limited to detecting groups with a biased representation. Instead, 
we focus on mitigating the biased representation via method (Pastor et al. 2021) and 
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propose a re-ranking algorithm to mitigate the disadvantage rather than just identify 
it. Existing intersectional fair-ranking approaches do not inherently support the miti-
gation of these identified disadvantaged subgroups as they do not directly accom-
modate overlapping subgroups. As we explain in Sect.  4.4, we adapt the method 
in Pastor et al. (2021) to our context for automatically identifying the subgroups that 
have an adequate representation, are disadvantaged in the ranking, and thus require 
a mitigation process. Our solution mitigates such disparities without the need to 
impose fairness constraints; instead, it automatically quantifies the necessary degree 
of mitigation for each disadvantaged group.

3  Preliminaries

We next provide the basic definitions, introduce the notion of utility divergence, and 
present the problem statement.

Candidates and attributes. We are given a set of candidates C = {c1,… , cn} 
and for each candidate we have a set of attributes X = {X1,… ,Xm} . We assume that 
every attribute Xi ∈ X can be mapped to a discrete,1 finite set of values VXi

 , and we 
denote with c(Xi) the value of the attribute Xi for the candidate c. Without loss of 
generality, X are protected attributes (e.g., gender, ethnicity, age). If other non-sen-
sitive attributes exist, they are simply disregarded since they are not relevant to our 
problem. We are also given a relevance function S ∶ C → ℝ that assigns a relevance 
score to each candidate: this could be, e.g., a fitness score computed by a machine 
learning algorithm or the result of an aptitude test.

Groups description. Any pair of attribute-value, [Xi = v] , where v ∈ VXi
 

(e.g., [gender = female] ), uniquely identifies a group g(C) of candidates: i.e., 
if g ∶= [Xi = v] then g(C) = {c ∈ C|c(Xi) = v}. Similarly, any conjunction of 
attribute-value pairs uniquely identifies the subgroup of candidates having all the 
required features. More formally, let G denote the set of all possible attribute-
value pairs, and let � = 2G denote the set of all possible subsets of G. An element 
{g1,… gk} ∈ � uniquely identifies the group of candidates that have all the attrib-
ute-value pairs in g1,… gk , i.e., {g1,… gk}(C) =

⋂k

i=1
gi(C) . For instance, consider 

g1 ∶= [gender = female] and g2 ∶= [ethnicity = Black] , then:

In the rest of this paper we will call subgroup description any element of G or � , 
and denote it with gi ; while we call subgroup gi(C) ⊆ C the set of candidates that 
satisfy the description.

{g1, g2}(C) = {c ∈ C|c(gender) = female ∧ c(ethnicity) = Black}.

1 Using numerical values for the subgroup identification may result in subgroups that are too fine-
grained. Statistical analyses over small subgroups are prone to fluctuations and may lack statistical sig-
nificance. To avoid such issues, we map to a discrete set of values for the subgroup identification and the 
subsequent group-aware re-ranking. Nevertheless, the ranker model or the general function generating 
rankings operates on the original values.



2192 E. Pastor, F. Bonchi

1 3

Adequately represented subgroups. Borrowing from the frequent-pattern ter-
minology, given a subgroup description gi ∈ � we call support the fraction of the 
overall population belonging to the group: sup(gi) = |gi(C)|∕n . We can also use a 
minimum support threshold s ∈ [0, 1] to disregard subgroups that are not adequately 
represented in C. Given such a threshold s we denote the set of adequately repre-
sented subgroups as �s = {gi ∈ �|sup(gi) ≥ s}.

Ranking and utility. A ranking r is a permutation of C. In a ranking r each can-
didate c ∈ C has a rank r(c) ∈ [n] , where 1 is the top rank.2 Given a ranking r, the 
utility function � ∶ C → ℝ represents the utility of ranking candidate c at position 
r(c). In general, different utility functions can be adopted. For instance, in the fair-
ranking literature, to take into account position bias, the individual utility is typi-
cally combined with a decreasing function of the position in the ranking as in the 
discounted cumulative gain �(c) = S(c)∕ log2(r(c) + 1) . Another possibility is to use 
the ranking position itself, with �(c) = r(c) , or of the position in the top-k ranking, 
i.e., �(c) = r(c) if r(c) ≤ k or 0 otherwise. In our setting, as we do not have a fairness 
constraint, we will always consider only the ranking by decreasing relevance S as 
natural ranking, and our framework will focus on “adjusting” such relevance func-
tion. Thus, for the sake of simplicity of presentation, in defining utility we can drop 
the ranking and simply define �(c) = S(c).

The utility function �(gi(C)) of a subgroup of candidates gi(C) is the average 
utility for the group described by gi , i.e., �(gi(C)) =

1

�gi(C)�
∑

c∈gi(C)
�(c) . When C is 

obvious from the context, we drop it and use the simpler notation �(gi).
Divergent subgroups. As we do not have any additional information besides 

each candidate relevance and attributes, and we know that the relevance score might 
be biased, the assumption at the basis of our approach is that relevance is distrib-
uted uniformly among the population, i.e., no subgroup over protected attributes is 
deemed a-priori to be more or less skilled. Therefore, we would expect that the rel-
evance score for each subgroup does not deviate substantially from that of the over-
all population. Still, due to pre-existing societal inequalities and historical biases, we 
might observe a disparate ranking relevance in subgroups over protected attributes.

We define the divergence of a subgroup described by gi as a measure of how it 
deviates from the behavior of the entire population C with respect to the utility func-
tion � , following (Pastor et al. 2021):

The divergence Δ� (gi) represents how the average value is higher or lower compared 
with the general population: if it is positive, we say that the subgroup described by gi 
is advantaged; if it is negative we say it is disadvantaged. We then measure the statis-
tical significance of the divergence of a subgroup by means of Welch’s t-test (Welch 
1947).3 We test the hypothesis that the subgroup and overall population have equal 
means, computed as follows.

(1)Δ� (gi) = �(gi) − �(C)

2 Our approach accounts for ties in the ranking as we consider the utility for the mitigation process.
3 While there may be some level of dependency between �(gi) and �(C) , we assume it is not substantial, 
given that gi is a smaller subset of C. Hence, we expect the results to remain robust to this moderate 
dependency violation.
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where �2 is the variance. The W-t statistic is then compared to a critical value t to 
determine if the hypothesis should be accepted. When the null hypothesis is rejected, 
we say the subgroup has a statistically significant divergence.

We denote with �s,t
𝛾
⊆ �s the set of descriptions of statistically significant dis-

advantaged subgroups, with Δ(gi) < 0 and W-t(gi) > t for each gi ∈ �s,t
�

 . Con-
versely, we denote with �s,t

𝛾
⊆ �s the set of descriptions of advantaged subgroups, 

with positive and statistically significant Δ� (gi) . Our analysis ignores the sub-
groups with divergences that are not statistically significant. Adopting a common 
rule of thumb (Siegel 2012), if Welch’s t-statistic for a subgroup described by gi 
is larger in absolute value than 2, we reject the null hypothesis, and we identify 
the divergence of gi as statistically significant. The values s and t are primary and 
fixed thresholds of our problem. Without loss of generality, we use � , �� and �� 
when thresholds s and t are clear from the context.

Problem statement. We are now ready to define the objective of our work. 
We are given as input the set of candidates C = {c1,… , cn} , with their attrib-
utes X = {X1,… ,Xm} , the relevance function S ∶ C → ℝ , the utility function 
� ∶ C → ℝ , the two thresholds for minimum support s and statistical significance 
t, as discussed above.

Let r denote the optimal ranking w.r.t. � : when we assume �(c) = S(c) as we do 
in the rest of the paper, r is simply the ranking by decreasing relevance, without 
any group fair representation consideration.

We want to identify a utility score �∗ such that it optimizes two criteria: 

1. max min
gi∈𝔻ℽ∗

Δ�∗ (gi);

2. min dist(r∗, r).

where r∗ is the ranking induced by �∗ . The first criterion, following Rawls’ 
theory of justice (Rawls 1971) (which advocates arranging social and financial 
inequalities to the benefit of the worst-off), requires maximizing the utility of 
the subgroup with the worst negative and statistically significant divergence. 
The second criterion, requires that the final ranking is as close as possible to the 
original one. A proper optimization problem can be obtained by optimizing one 
of the two criteria, while using the other as a constraint. In the method introduced 
in the next section, we just focus on the first criteria, aiming at having as few 
disadvantaged groups as possible while using dist(r∗, r) as a measure of quality. 
In fact, in our experiments in Sect. 5, we show that, in all real-world datasets we 
consider, we can always eliminate all the disadvantaged groups (i.e., producing 
𝔻ℽ∗ = � ) while maintaining a ranking very similar to the original one (high 
Kendall’s � similarity).

(2)W-t(gi) =
�(gi) − �(C)√

�2
�(gi(C))

∕|gi(C)| + �2
�(C)

∕|C|
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4  Ranking divergence mitigation

We next introduce the notion of divergence mitigation for disadvantaged subgroups. 
Recall that our goal is to modify � ∶ C → ℝ into �∗ to maximize the minimum diver-
gence across all disadvantaged groups. Intuitively, we want to reduce, in absolute 
terms, the (negative) divergence of the disadvantaged groups to the extent that their 
divergence is no longer statistically significant. In the following, we first specify the 
desired properties of the mitigation step; then, we provide an intuitive transforma-
tion of � satisfying them. Finally, we present an iterative approach for divergence 
mitigation for fair ranking.

Example 1 (Running example—part 1) To illustrate the divergence mitigation pro-
cess of disadvantaged groups, we use a running example for the LSAT dataset. The 
dataset contains information on 21,791 law students. We consider their ethnicity and 
gender as protected attributes and the LSAT score as the target utility � for the rank-
ing. The ranking defined via � induces 11 disadvantaged subgroups 𝔻ℽ according 
to our definition in Sect. 3 (i.e., groups with a negative and statistically significant 
divergence), and 4 advantaged subgroups 𝔸ℽ . In Table 2 we report the disadvantaged 
and advantaged groups with their divergence scores Δ� and the statistical signifi-
cance of the divergence. Disadvantaged subgroups have an average utility that is sta-
tistically significantly different from the one of the entire ranking. This divergence in 
the average utility indicates that candidates of these subgroups tend to occupy lower 
positions in the ranking. For instance, the subgroup characterized by {ethnicity = 

Table 2  Disadvantaged (top) and advantaged (bottom) subgroups for LSAT dataset

We report the divergence Δ and the statistical significance of divergence W-t for (a) the original utility 
scores, (b) after one iteration step of Div-Rank  and (c) after the full mitigation process

Subgroup description sup Original 1 iteration Mitigation

Δ W-t Δ W-t Δ W-t

ethn = Afr-Am, gender = Female 0.04 − 7.70 37.8 0.00 0.0 0.15 0.7
ethn = Afr-Am 0.06 − 7.35 43.9 − 2.66 13.8 0.02 0.1
ethn = Afr-Am, gender = Male 0.02 − 6.77 24.2 − 7.07 25.2 − 0.19 0.7
ethn = Mexican 0.02 − 3.84 13.6 − 4.13 14.6 − 0.16 0.6
ethn = Mexican, gender = Male 0.01 − 3.68 9.5 − 3.98 10.2 − 0.13 0.3
ethn = Hisp, gender = Male 0.01 − 3.13 8.7 − 3.43 9.5 − 0.24 0.7
ethn = Hisp 0.02 − 2.97 11.0 − 3.27 12.1 − 0.09 0.3
ethn = Hisp, gender = Female 0.01 − 2.80 6.9 − 3.09 7.6 0.07 0.2
ethn = Other 0.01 − 1.11 3.1 − 1.40 4.0 − 0.06 0.2
gender = Female 0.44 − 0.49 7.2 − 0.11 1.7 − 0.09 1.5
ethn = Asian 0.04 − 0.41 2.1 − 0.70 3.6 − 0.01 0.1
ethn = Cauc, gender = Male 0.49 0.96 15.8 0.67 11.2 0.15 2.5
ethn = Cauc 0.84 0.76 14.7 0.46 9.2 0.06 1.2
ethn = Cauc, gender = Female 0.35 0.48 7.3 0.19 2.8 -0.06 1.0
gender = Male 0.56 0.38 6.2 0.09 1.4 0.07 1.2
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African-American, gender = Female} has a divergence Δ� equal to −7.7 , i.e., their 
utility score is by −7.7 lower than the average. In the rest of this section, we will 
refer again to this running example while describing the process to mitigate the dis-
advantage of groups 𝔻ℽ.

4.1  Desired properties of the mitigation process

We refer to the term mitigation of the divergence of a disadvantaged subgroup as the 
process that reduces, in absolute terms, its divergence, bringing it close to 0. Con-
sider a disadvantaged subgroup described by gi ∈ 𝔻ℽ . We seek a mitigation process 
of gi(C) that turns �(c) to � �(c) for each c ∈ C , with � � ∶ C → ℝ be the utility scores 
after the mitigation step of subgroup gi(C) is applied. We require the mitigation pro-
cess of a disadvantaged subgroup gi(C) to satisfy some properties.

The first, obvious, property states that the mitigation action should reduce the 
negative divergence of the disadvantaged subgroup described by gi ∈ 𝔻ℽ.

Property 4.1 (Mitigate the divergence of a subgroup) We say that we mitigate sub-
group described by gi ∈ �� if Δ𝛾 � (gi) > Δ𝛾 (gi)

4, with Δ� � (gi) being the divergence of 
gi for scores � ′ . We say that we fully mitigate a subgroup gi if gi ∈ 𝔻ℽ and gi ∉ 𝔻ℽ� , 
i.e., the divergence of gi becomes either non-negative or not statistically significant.

The second property requires that the mitigation action should increase the mini-
mum divergence among all subgroups. This is to avoid that, e.g., by mitigating the 
divergence of a subgroup, we worsen the condition of another disadvantaged sub-
group. In other terms, we want the mitigation process to be monotonic in improving 
the minimum divergence.

Property 4.2 (Monotonicity of the mitigation process) We mitigate the divergence 
monotonically if, for all subgroup descriptions g ∈ �s , the mitigated � ′ has a greater 
minimum divergence min

g∈�
Δ𝛾 � (g) > min

g∈�
Δ𝛾 (g).

The third property requires that the overall ranking utility is maintained in the 
population. Given that divergence is assessed with respect to �(C) , our goal is to 
prevent changes in its value.

Property 4.3 (Constant average overall behavior) The average behavior of the over-
all population C after mitigation is preserved, i.e., �(C) = � �(C).

4 Since gi ∈ �� is a disadvantaged groups, we have Δ𝛾 (gi) < 0 . Therefore, in the mitigation process, the 
goal is to increase its divergence, intending to counteract its disadvantage. We opted for this formulation 
as it makes the definition of Property 4.2 more general for all subgroups � and it is not restricted to � . 
We note that, in absolute terms, the mitigation process consists of reducing the divergence of the disad-
vantaged subgroup, bringing it closer to 0. Hence, another way for assessing the mitigation of a subgroup 
described by gi is if |Δ𝛾 � (gi)| < |Δ𝛾 (gi)|.
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4.2  Mitigation step

Intuitively, we can mitigate the divergence of a disadvantaged subgroup described 
by gi ∈ 𝔻ℽ by increasing the utility scores of the candidates in gi(C) . In this way, 
however, we would vary the properties of the dataset: the average ranking utility of 
the overall population changes, i.e., �(C) ≠ � �(C) . Hence, the property of constant 
overall behavior would not be satisfied. We can address this issue by correspond-
ingly decreasing the utility scores of other candidates. To avoid introducing a dis-
parate treatment, we decrease the score of all candidates in C⧵gi(C) . The follow-
ing mitigation function satisfies both this intuition and the desired properties. Let 
𝜏 ∈ ℝ>0 and let gi ∈ � describe a subgroup whose divergence we want to mitigate. 
We derive � �(c) that mitigates gi by tweaking the scores �(c) as follows.

The term �⋅|gi(C)|
|C|−|gi(C)| distributes the reduction in score equally among all candidates in 

C⧵gi(C) to counterbalance the � given to the candidates in gi(C) . Equation 3 thus 
satisfies by definition Property 4.3. It is also straightforward that, if 𝜏 > 0 , we have 
Δ𝛾 � (gi) > Δ𝛾 (gi) (thus satisfying Property  4.1). Finally, if � = −Δ� (gi) , after the 
mitigation step we have that Δ� � (gi) = 0 (fully mitigated).

Example 2 (Running example—part 2) Consider our example for the LSaT dataset. 
The subgroup with the highest disadvantage (i.e., highest negative divergence) is 
described by gi = {ethnicity = African-American, gender = Female} with 
Δ(gi) = −7.7 (first row in Table  2). Fully mitigating the disadvantage of this 
subgroup entails increasing the score � of each member of gi by � = 7.7 . Then, to 
satisfy Property 4.3 and preserve the average behavior of the overall population, we 
decrease the score of all candidates not satisfying gi by �⋅|gi(C)|

|C|−|gi(C)| . Decreasing by an 
equal amount ensures that the mitigation process avoids unfairly disadvantaging any 
specific group.

Unfortunately, the score tweaking of Eq.  3 is not enough to guarantee the 
monotonicity property, as the corresponding mitigation of the divergence of gi 
impacts the divergence Δ� � (gj) of other gj ∈ � as follows.

We can rewrite Eq.  4 dividing it in three cases as in Eq.  5. The first case never 
decreases the divergence of gj since 𝜏 ∈ ℝ>0.

(3)� �(c) =

{
�(c) + � c ∈ gi

�(c) −
�⋅|gi(C)|

|C|−|gi(C)| c ∉ gi

(4)

Δ� � (gj) =Δ� (gj) + � ⋅
|{gi, gj}(C)|

|gj(C)|
−

� ⋅ |gi(C)|
|C| − |gi(C)| ⋅

|gj(C)| − |{gi, gj}(C)|
|gj(C)|
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Also the second case cannot decrease the divergence: with a minor rewriting, we can 
check that the divergence of gj would decrease only when |C| < |gj(C)| , which can-
not happen in this case as |C| ≥ |gi(C)| > |gj(C)| . However, the divergence of gj can 
decrease for the last case when:

which can be rewritten as:

We next discuss how we avoid this case of non-monotonicity.

4.3  Ensuring monotonicity

To ensure the monotonicity of the mitigation process, we want to avoid that, by miti-
gating the divergence of a subgroup gi , we decrease the divergence of another sub-
group gj ≠ gi such that Δ𝛾 � (gj) < min

g∈�
Δ𝛾 (g) . We presented above the case in which 

the mitigation step of Eq. 3 can decrease the divergence of some other subgroups. 
We now study the impact of subgroup mitigation on the minimum divergence. Spe-
cifically, we define the maximum � we can apply to mitigate a subgroup gi such that 
the mitigation satisfies the monotonicity property.

Let gi ∈ �� be a subgroup whose divergence we want to mitigate via Eq. 3. Let 
a� = min

gj∈�
Δ� (gj) be the minimum divergence. The maximum 𝜏 ∈ ℝ>0 for a subgroup 

gj ∈ � ensuring Δ𝛾 � (gj) > a𝛾 when mitigating gi is computed as follows.

For 𝜏 < 𝜏cap , we ensure that the divergence of gj for � ′ is greater than a�.
Recall that we could break the monotonicity constraint only for the last case of 

Eq. 5, the only case for which we could decrease divergence. The definition of the 
maximum threshold �cap directly derives from imposing Δ� � (gj) as equal to a�.

Equation 6 defines the mitigation threshold for gi with respect to a single sub-
group gj . We now define the maximum mitigation we can adopt to ensure the mono-
tonicity of the process across all subgroups � . Let �l ⊂ � be the set of gj ∈ � such 

(5)

Δ𝛾 � (gj) =

⎧
⎪⎨⎪⎩

Δ𝛾 (gj) + 𝜏 if gj(C) ⊇ gi(C)

Δ𝛾 (gj) + 𝜏 ⋅
�gi(C)�
�gj(C)� −

𝜏⋅�gi(C)�
�C�−�gi(C)� ⋅

�gj(C)�−�gi(C)�
�gj(C)� if gj(C) ⊂ gi(C)

Δ𝛾 (gj) + 𝜏 ⋅
�{gi,gj}(C)�
�gj(C)� −

𝜏⋅�gi(C)�
�C�−�gi(C)� ⋅

�gj(C)�−�{gi,gj}(C)�
�gj(C)� otherwise

Δ𝛾 (gj) >(
Δ𝛾 (gj) + 𝜏 ⋅

|{gi, gj}(C)|
|gj(C)| −

𝜏 ⋅ |gi(C)|
|C| − |gi(C)| ⋅

|gj(C)| − |{gi, gj}(C)|
|gj(C)|

)

|gi(C)| ⋅ |gj(C)| > |{gi, gj}(C)| ⋅ |C|

(6)�cap(gi, gj, a� ) =
(a� − Δ� (gj))

|{gi,gj}(C)|
|gi(C)| −

|gi(C)|
|C|−|gi(C)|

|gj(C)|−|{gi,gj}(C)|
|gj(C)|
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that gj(C) ⊉ gi(C) and gj(C) ⊄ gi(C) (last case of Eq.  5). The maximum 𝜏 ∈ ℝ>0 
across all subgroups when mitigating gi is defined as follows.

For 𝜏 < 𝜏cap(gi, a𝛾 ) , we ensure the monotonicity of the minimum divergence of the 
mitigation process.

Example 3 (Running example—part 3) In our running example, when we miti-
gate gi = {ethnicity = African-American, gender = Female}, we have that 
𝜏 = Δ(gi) = 7.7 < 𝜏cap(gi, a𝛾 ) = 24.1. Hence, we can fully mitigate the disadvantage 
of gi while satisfying the monotonicity property.

4.4  An iterative mitigation approach

We next introduce Div-Rank, an iterative approach to mitigate the divergence of dis-
advantaged subgroups. Div-Rank mitigation process involves iteratively applying 
the mitigation step discussed above. The algorithm (whose pseudocode is outlined 
in Algorithm 1) iteratively selects the subgroup with the highest disadvantage and 
mitigates its divergence. Div-Rank ensures that the monotonicity property is sat-
isfied by applying a mitigation lower than the maximum admitted one, defined by 
Eq. 7.
Algorithm 1  Div-Rank mitigation approach

The algorithm requires as input the set of candidates C, the protected attrib-
utes X, the utility score � , the minimum support s, and critical value t for the 

(7)�cap(gi, a� ) = min
g∈�l

�cap(gi, gj, a� )
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divergence significance. After initializing the output utility score � ′ (Line  1), 
the first step is the extraction of the adequately represented subgroups and their 
divergence.

To perform this step, we adopt the subgroup identification algorithm DivEx-
pLoRER  (Pastor et al. 2021) (Line 2). We opt for DivExpLoRER for two main rea-
sons. First, it leverages frequent pattern mining techniques for the exploration. 
The approach extracts all subgroups with support greater than the frequency s 
(we use the FP Growth (Han et al. 2000) frequent pattern mining algorithm in the 
experiments). This ensures that the subgroups we consider are well-represented in 
the data and that their average utility scores are statistically significant. Second, it 
directly defines and integrates the notion of divergence, which is fundamental to 
our notion of disadvantaged groups. Specifically, it efficiently computes the sub-
group divergence and its statistical significance during the subgroup extraction 
process. Other subgroup discovery approaches (Herrera et al. 2011) could also be 
considered. We will explore alternative methodologies in future work.

Next, we compute the disadvantaged subgroups as the set of subgroups with 
negative and statistically significant divergence with respect to the critical value t 
(Line  3). The minimum divergence across all subgroups is then computed 
(Line 4). Div-Rank iteratively selects the subgroup gi ∈ �

s,t

� �
 with the highest neg-

ative divergence from the set of disadvantaged groups (Line  5). In the case of 
ties, it selects the one with the highest statistical significance.

A disadvantaged subgroup gi diverges from the overall behavior by −Δ� � (gi) , 
i.e., � �(gi) − � �(C) = E{� �(c) | c ∈ gi} − E{� �(c) | c ∈ C} = −Δ� � (gi) . Setting 
� = −Δ� � (gi) ensure the full mitigation of gi divergence. On the other hand (Line 
6), the maximum mitigation a ranking can handle while satisfying the monotonic-
ity constraint is �cap , defined in Eq. 7. To allow the maximum mitigation while 
ensuring monotonicity, we set � as the minimum value among −Δ(gi) and �cap 
(Line 7). In the case of a positive � , we can proceed with the mitigation by apply-
ing Eq. 3 (Line 9). We then update the divergence scores (Line 10) and the set 
of disadvantaged subgroups given the updated scores � ′ (Line 11). In Line  12, 
we update the minimum divergence value. The process stops when there are no 
disadvantaged subgroups with statistically significant divergence ( � = ∅ ) or no 
disadvantaged subgroup could be mitigated without breaking the monotonicity 
constraint (i.e., � ≤ 0 for all currently disadvantaged subgroups).

Example 4 (Running example—part 4) Considering our running example, we 
start by mitigating the highest disadvantage, which corresponds to the sub-
group described by gi = {ethnicity = African-American, gender = Female} . 
As detailed in Sect. 4.3, we can fully mitigate its disadvantage by applying Eq. 3 
with � = Δ(gi) . Subsequently, we update the divergence scores. We can observe 
the impact of the first iteration of Div-Rank in Table  2. The divergence of gi 
{ethnicity = African-American, gender = Female} is 0 as we fully mitigate its disad-
vantage. The mitigation step on gi also reduces the disadvantages of its components, 
i.e., {ethnicity = African-American} and {gender = Female} . Specifically, the disad-
vantage for the group of African-American candidates reduces from −7.35 to −2.66 
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while the disadvantage for the group of female candidates is mitigated, as the t-value 
is lower than 2, with Δ from −0.49 to −0.11.

We then proceed by mitigating the new highest disadvantage subgroup. The itera-
tive process continues until � = � , hence it successfully mitigates all disadvantages.

5  Experiments

We assess Div-Rank w.r.t. its capability of mitigating divergence of disadvantaged 
groups while producing a ranking as close as possible to the original one. We do this 
on real-world and synthetic datasets, comparing against baselines in the literature.

The source code of Div-Rank and all the conducted experiments are available at 
https:// github. com/ elian ap/ divra nk.

5.1  Experimental setup

Datasets. We use five real-world datasets commonly adopted in the fairness lit-
erature: COMPAS  (Angwin et  al. 2016), LSAT  (Wightman 1998), German 
credit (Lichman 2013), IIT-JEE (Technology IIO 2009), and folktables (Ding et al. 
2021). We also leverage a synthetic dataset to further benchmark our approach. 
Table 3 provides, for each dataset, the protected attributes and their values and the 
target score used for the ranking. We report a detailed description of the five real-
world datasets and the target scores in the “Appendix”.

Table 3  Dataset score, number of instances ( D  ), protected attributes and their values

Full details on their preprocessing are available in our repository

Dataset Score D Protected
attributes

Values

LSAT LSAT score 21,791 gender Female, male
ethnicity Afric-Am., Amerind., Asian,

Cauc., Hisp., Mex., Other, Puert
COMPAS Inverse recidivism score 6172 age <25, 25–45, ≥45

ethnicity Cauc., non Cauc
gender Female, male

German
credit

Credit score 999 age young, adult, elder
gender Female, male

IIT-
JEE

Test scores 384,970 gender female, male
birth category GE, ON, OC, SC, ST, OB

folktables Income 195,665 gender Female, male
ethnicity Afric-Am., Alask., Amerind.,

Amerind./Alask., Asian,
Cauc., Two+, Other

Synthetic Custom 10,000 a, b, c, d, e 0, 1

https://github.com/elianap/divrank
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Synthetic is a dataset created to have more protected attributes than what can be 
found in the adopted real-world ones. It has 10,000 instances with 5 attributes with 
domain {0, 1} and relevance score in [0, 100]. We create the score by randomly 
setting it and then injecting a controlled bias. Specifically, we decrease the score of 
all instances with a = b = 1 or c = 1 with an original score higher than 70. We use 
the perturbed score as the target score for the ranking. As a result, instances with 
a = b = 1 or c = 1 will be associated with lower positions in the ranking. The dataset 
and the code to generate it are available in our repository.

Evaluation measures. For the evaluation, we adopt divergence-based subgroup 
measures and ranking performance measures. The former assesses the divergence in 
the ranking. We consider the minimum and maximum divergence across all sub-
groups, defined as minΔ� = min

g∈�s
Δ� (g) and maxΔ� = max

g∈�s
Δ� (g) respectively. We 

also compute the number of disadvantaged subgroups |�s,t| and advantaged ones 
|�s,t| . In addition, we consider the Gini index as a measure of inequality (Gini 1921). 
It quantifies the extent of score distribution among the members of a population. 
The index ranges from 0 to 1, where 0 represents perfect equality, and 1 represents 
perfect inequality. The closer the Gini index is to 0, the more equal the distribution 
of the candidates’ scores is.

The ranking performance indexes measure the quality of the derived ranking 
compared to the original, which maximizes utility and imposes no fairness con-
straints. In the following, we refer to the ranking based on the original scores as 
original ranking. We consider Kendall’s � and the Normalized Discounted Cumula-
tive Gain loss indexes. Kendall’s � measures the similarity between the mitigated 
ranking and the original one. The closer the value to 1, the stronger the similarity 
between the two rankings is. The Normalized Discounted Cumulative Gain (ndcg) is 
a standard measure of ranking quality. It is the weighted summation of candidates’ 
scores in the ranking using a logarithmic discount in the ranking position as weights, 
normalized to obtain a score between 0 and 1. We compute the loss of ndcg (ndc-
gLoss) between the top-K = 300 of the original and mitigated ranking. The lower the 
ndcgLoss, the lower the loss when considering the mitigated ranking.

Baselines. Our method automatically detects the disadvantaged groups, with a 
statistically significant deviation, before applying the needed mitigation. To the best 
of our knowledge, there is no other method in the literature that approaches intersec-
tional fair ranking without receiving in input the subgroups that need attention. Nev-
ertheless, for the sake of comparison, we adopt three methods from the literature: it 
is worth stressing again that these methods need in input the protected groups, while 
our method automatically identifies the disadvantaged groups to address.

The technique in Feldman et al. (2015) was not originally proposed for intersec-
tional fair ranking: we use it by taking one protected subgroup for each experiment 
and the rest of the dataset as non-protected. The method aligns the probability dis-
tribution of candidates belonging to a protected group with that of the non-protected 
group. The approach substitutes the score of a candidate belonging to a protected 
group with one of a non-protected candidate whose score is in the same quantile, 
considering protected and non-protected distributions separately. We consider as 
protected subgroups the ones analyzed in Zehlike et al. (2022). We note that these 
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also generally align with the ones derived by our automatic identification. We 
include the detailed list in the “Appendix”.

CFA� (Zehlike et al. 2020) aligns the score distribution with the Wasserstein bar-
ycenter of all group distributions, with the parameter � controlling the alignment. 
We set � = 1 in all the experiments, which corresponds to enforcing group fairness 
and imposing equal distribution of scores among the groups. This setting is closer to 
ours, in which we aim to mitigate disparities in subgroups compared to the overall 
population. The approach can handle multiple protected groups. We evaluate two 
configurations. In the former, we consider the same groups specified for the previous 
baseline, but in this case, the multiple groups are approached simultaneously. The 
latter considers all groups for a given set of protected attributes (e.g., all ethnicities). 
Note that it entails enumerating the cartesian product of the values of all protected 
attributes.

Multi-FAIR (Zehlike et al. 2022) is a top-K fair-ranking approach able to handle 
multiple protected groups. The approach ensures the proportion of protected candi-
dates of the top-k ranking to be statistically above a minimum percentage for each 
protected group, defined via fairness constraints. We consider a fairness constraint 
equal to the minimum proportion for each protected group since it is close to our set-
ting. It requires the protected groups to address, and we specify the same as before. 
Unlike Div-Rank   which focuses on disparities in the entire ranking, Multi-FAIR 
targets the top-K. Moreover, Multi-FAIR re-ranks the candidates, while Div-Rank 
adjusts the utility scores that define the ranking. To compare the results, we set K 
equal to the number of instances. With this configuration, Multi-FAIR struggles to 
terminate within a reasonable time. For this reason, we cannot report the results 
for this configuration. To still enable a comparison, we consider a setting with a 
lower K and explore how we can define the utility function � for Div-Rank to sup-
port a top-k fair ranking scenario. We analyze this setting and compare the results in 
Appendix 1.5.

Parameters. We consider s = 0.01 to identify and mitigate disadvantaged groups 
represented at least 1% in the dataset. We set the critical value t for the statistical 
significance of divergence to 2 (Siegel 2012).

5.2  Divergence mitigation

This section provides anecdotal and qualitative analysis to illustrate the behaviour 
of Div-Rank in mitigating the divergence of disadvantaged subgroups. We focus the 
analysis on the LSAT dataset, where the utility function � is the LSAT score of each 
individual. Table 4 (top) reports the top-10 candidates with the highest utility.

As noted in Sect.  4, the original ranking defined via � induces 11 disadvan-
taged subgroups (Table 2, top block). We observe that African-American students 
are associated with lower positions in the ranking. This is accentuated for women. 
We can quantify their relative contribution to the subgroup disadvantage using the 
notion of Shapley value (Shapley 1952) from game theory, as adopted in Pastor 
et al. (2021) for analyzing divergence. Figure 1 (left) shows the Shapley value for 
the subgroup with the highest disadvantaged. Indeed the highest contribution is of 
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the African-American ethnicity, followed by the female gender. Candidates of the 11 
disadvantaged subgroups would experience a disadvantage if the ranking is adopted, 
for example, to decide who can access an internship program. While this example is 
purely illustrative, it raises concerns about the use of ranking without fairness constr
aints.

Table 4  Top-10 positions of 
the original (top) and mitigated 
(bottom) rankings

LSAT dataset. We report the original and mitigated rank positions

Ethnicity Gender Original rank Mitigated 
rank

Original ranking
Cauc Male 1 209
Cauc Male 2 210
Cauc Male 3 211
Asian Male 4 70
Cauc Female 5 105
Cauc Male 6 212
Cauc Male 7 213
Cauc Male 8 214
Cauc Female 9 106
Cauc Male 10 215
Mitigated ranking
Afr-Am Female 777 1
Afr-Am Male 402 2
Afr-Am Male 501 3
Afr-Am Female 1470 4
Afr-Am Male 798 5
Afr-Am Male 808 6
Afr-Am Female 1759 7
Afr-Am Female 1848 8
Afr-Am Female 2189 9
Mexican Male 94 10

Fig. 1  Shapley value of the highest disadvantaged before (left) and after (right) mitigation. LSAT dataset
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Figure 2 (left) reports the disparate impact of groups on the ranking of individuals 
in terms of Global Shapley Value (GSV)  (Pastor et  al. 2021), which measures 
how much each attribute value contributes to the divergence across all explored 
subgroups. The lower the value, the more the attribute and its value are associated 
with lower scores and lower positions in the ranking. Women and all ethnicities 
other than Caucasian are associated with a lower-than-average score. The highest 
discrepancy is observed for African-American students.

We apply the Div-Rank algorithm to reduce the disadvantage of the ranking. The 
results are reported in the last block of Table 6. Div-Rank successfully allows miti-
gating the bias. After mitigation, we have no disadvantaged subgroups ( |�| = 0). 
We note that also the number of advantaged subgroups ( |�| ) reduces from 4 to 1. 
The minimum subgroup divergence increases from −7.7 to −0.24. The mitigation 
process, by mitigating the divergence of disadvantaged groups, as a by-product also 
reduces the advantage of some groups. Indeed, the divergence of the subgroup with 
the highest advantage decreases substantially: from 0.96 to 0.15. These mitigation 
results are obtained by producing a re-ranking that is still quite close to the origi-
nal one (Kendall’s � = 0.88). Table 4 (bottom) reports the top-10 candidates after 
the mitigation. The first candidate in the mitigated ranking is an African-American 
female candidate, originally at position 777. This position marked the first occur-
rence of a candidate of African-American ethnicity and female gender in the origi-
nal ranking. Similar observations apply to other candidates. For example, the sec-
ond and third positions are two candidates of African-American ethnicity and male 
gender, whose original first occurrence was in positions 402 and 501. The top-10 
includes in the tenth position a candidate of Mexican ethnicity and male gender, 
originally in position 94. Therefore, Div-Rank raised the position in the ranking of 
candidates who belong to disadvantaged groups in the original ranking.

We further analyze the impact of the mitigation process on ranking positions 
in Table 5. The table details each disadvantaged and advantaged group, including 
the minimum, 25th percentile, 50th percentile, and maximum ranking positions, 

Fig. 2  Global Shapley value before (left) and after (right) mitigation. LSAT dataset
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before and after mitigation. In the original ranking, candidates from disadvantaged 
groups typically held much lower positions than those from advantaged groups. For 
instance, in the original ranking, the first female African-American candidate occu-
pied position 777, the first male African-American candidate held position 402, and 
the first Mexican candidate was in position 94. In contrast, the top position was held 
by a Caucasian male, with the first Caucasian female candidate ranking at position 
5. This discrepancy is particularly evident at the 25th and 50th percentiles. Specifi-
cally, for African American candidates, the 25th percentile rankings ranged from 
approximately 16,000 positions for males to 17,000 for females, with 50th percentile 
rankings around 19,500 and 20,000, respectively. In contrast, Caucasian candidates 
had rankings ranging from 4500 to 5000 for the 25th percentile and approximately 
10,000 for the 50th percentile, indicating significant disparities. Following mitiga-
tion, the 25th and 50th percentiles for both disadvantaged and advantaged groups 
fall within the range of 5000 and 10,000–11,000 positions, indicating a more equita-
ble distribution across the ranking.

Table  5 also includes each group’s representation in the top-K positions [with 
K = 300, in line with the value adopted in Zehlike et al. (2022)]. Before the miti-
gation, most of the candidates belonged to a single ethnicity (94% Caucasians and 
60.67% male Caucasians), and none were African Americans. After the mitigation, 
we have a representation of all ethnicities in the top 300.

We further analyze qualitatively the impact of the mitigation for specific sub-
groups and overall across subgroups. Consider the subgroup with the highest dis-
advantage for the original ranking. The divergence goes from −7.7 (first in Table 2) 
to zero (0.1); the contribution of the two terms after mitigation is reported in Fig. 1 
(right). Figure 2 (right) shows the impact on the Global Shapley value of Div-Rank 
mitigation. The GSV reduces for all terms to negligible values. Hence, no term is 
highly associated with divergence.

Further insights in the mitigation process. The mitigation algorithm stops 
when either no statistically significant disadvantaged subgroups remain in the rank-
ing or further mitigation would violate the monotonicity constraint. In all experi-
ments on the four datasets, we met the first condition. Hence, we obtain a ranking in 
which no subgroups face a statistically significant disadvantage. In this section, we 
analyze the iterative mitigation process, still for the LSAT dataset, but similar con-
siderations apply to the others.

Figure  3 (left) shows the minimum subgroup disadvantage and Kendall’s � 
during the iteration of the mitigation process. Figure  3 (right) shows the number 
of disadvantaged and advantaged subgroups. The minimum divergence monotoni-
cally increases (Fig. 3 (left)). At iteration 12, the minimum divergence is −0.24, and 
no subgroup is statistically significantly disadvantaged. As expected, Kendall’s � 
decreases while we proceed with the mitigation. The more we adjust the utility of 
the candidates to mitigate the divergence of subgroup disparities, the more the miti-
gated ranking deviates from the original one. Still, users can easily control and bind 
the dissimilarity to the original ranking while reducing the disadvantage in the itera-
tive process by imposing a threshold on ranking quality indexes as a further stopping 
condition.
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5.3  Comparison with baselines

We evaluate Div-Rank on the four datasets. We compare ranking results with (i) the 
original (score-based) ranking, (ii) ranking produced for Feldman et al.’s technique 
(Feldman et al. 2015), and (iii) CFA�  (Zehlike et al. 2020) and we experimentally 
evaluate (iv) Multi-FAIR  (Zehlike et  al. 2022). As explained before, a direct and 
fair comparison is not possible. The method by Feldman et al. (2015) considers a 
disadvantaged group at a time, while CFA� (Zehlike et al. 2020) can handle multiple 
subgroups at once; Multi-FAIR (Zehlike et al. 2022) can handle multiple groups as 
well, but it is designed explicitly for fair top-K ranking. For all these methods, how-
ever, we need to specify the protected groups as part of the input. Instead, Div-Rank 
automatically identifies the disadvantaged groups (i.e., groups with a negative and 
statistically significant divergence) to mitigate.

Tables 6, 7, 8, 9, 10, and 11 in the appendix compare the results for the LSAT, 
Synthetic, COMPAS, German credit, IIT-JEE and folktables datasets. We first 
remark that, for all experiments, Div-Rank is able to mitigate the disadvantage of all 
disadvantaged subgroups.

As mentioned, Multi-FAIR (Zehlike et al. 2022) addresses top-K fair ranking. To 
enable the comparison, we set K equal to the number of instances of the dataset. 
With this configuration, however, the algorithm did not terminate in a practical time 
compared to our and the other approaches (we interrupted its execution after two 
days of computation). The unfeasibility of the computation can be traced back to 
the time complexity which increases exponentially with the number K. Instead, our 
approach mitigates the disadvantage of all groups in at most 20 s (further details in 
the following performance analysis). We explore a setting with K ≪ |C| in Appen-
dix 1.5.

Consider Table 6 and the LSAT dataset. As also revealed by our analysis in Fig. 2 
(left), women are associated with lower positions in the ranking. Hence, we first 
compare feldman and CFA� ’s ability to mitigate the disparate impact on the female 
gender with Div-Rank. In the latter case, we just provide gender as a sensitive 

Fig. 3  Kendall’s � and minimum divergence (left) and number of advantaged and disadvantaged sub-
groups (right) over the steps of the mitigation process. LSAT dataset
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Table 6  Original and re-ranking results for Div-Rank, CFA� , and feldman 

LSAT dataset. Each block specifies the considered set of protected attributes (prot. attr.). The subgroups 
column indicates the considered subgroups (prot. groups). The subgroup {other} indicates the remainder 
group. We specify with ‘–’ for Div-Rank since no subgroup specification is required

Method Prot. attr Prot. groups ∣ � ∣ ∣ � ∣ min
Δ

max
Δ

gini Kendall’s
�

ndcg
Loss

Original gender 1 1 − 0.49 0.38 0.12 1.00 0.00
Div-Rank – 0 0 − 0.00 0.00 0.12 0.98 0.00
CFA� {female}, {male} 0 0 − 0.02 0.02 0.09 0.98 0.00
feldman {female} 0 0 − 0.05 0.06 0.12 0.97 0.00
original ethn 1 5 − 7.35 0.76 0.12 1.00 0.00
Div-Rank – 0 0 − 0.22 0.07 0.13 0.89 0.03
CFA� {Afr-Am}, {other} 1 5 − 4.75 0.35 0.09 0.93 0.00
CFA� {e}, ∀ e ∈ ethn 0 1 − 0.35 0.04 0.09 0.88 0.00
feldman {Afr-Am} 1 4 − 4.30 0.30 0.11 0.92 0.00
feldman {≠Cauc} 3 1 − 2.52 2.74 0.13 0.89 0.00
Original ethn,gender 4 11 − 7.70 0.96 0.12 1.00 0.00
Div-Rank – 1 0 − 0.24 0.15 0.13 0.88 0.03
CFA� {Afr-Am, female}, 

{other}
3 12 − 7.68 0.74 0.09 0.95 0.00

CFA� {e, Female} ∀ e ∈ 
ethn, {other}

2 8 − 7.79 0.61 0.09 0.93 0.00

CFA� {e, g} ∀ e ∈ ethn∀ 
g ∈ gender

0 1 − 0.37 0.05 0.09 0.87 0.00

feldman {Afr-Am, female} 3 11 − 7.07 0.67 0.11 0.95 0.00
feldman {≠Cauc, female} 5 8 − 7.19 3.21 0.11 0.93 0.00

Table 7  Original and re-ranking results

Synthetic dataset. For feldman, we test two configurations: (i) a = 1, b = 1, and c = 1 as protected 
subgroup, regardless of d and e values (i.e., {1,1,1,*,*}) and (ii) all values equal to 1 as protected (i.e., 
{1,1,1,1,1})

Method Prot. attr Prot. groups ∣ � ∣ ∣ � ∣ min
Δ

max
Δ

gini Kendall’s
�

ndcg
Loss

original a,b,c,d,e 66 97 − 5.58 8.40 0.31 1.00 0.00
Div-Rank - 11 0 − 1.80 4.76 0.28 0.93 0.00
CFA� {va , vb , vc , vd , ve},

∀va ∈ [0,1], ∀vb ∈ [0,1],
∀vc ∈ [0,1], ∀vd ∈ [0,1],
∀ve ∈ [0,1]

0 0 − 0.46 0.44 0.3 0.91 0.07

feldman {1,1,1,*,*} 53 77 − 5.36 7.91 0.31 0.98 0.02
feldman {1,1,1,1,1} 61 93 − 5.05 8.22 0.31 0.99 0.01
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attribute (i.e., without directly indicating ‘female’ as protected). They all mitigate 
the divergence of the subgroups, ( |�| = 0 ) with Div-Rank achieving slightly bet-
ter results in terms of Kendall’s � compared to feldman, while feldman achieves the 
lowest Gini index.

The second block reports the results when considering only the ethnicity attrib-
ute. For feldman, we consider two configurations. The first considers only ‘African-
American’ candidates as protected. feldman mitigates this subgroup, while other 
ethnicities still experience a disadvantage ( |�| from 5 to 4). The second configura-
tion groups all ethnicities except ‘Caucasian’ into a single protected group. feldman 
mitigates 4 out of 5 disadvantaged subgroups. Yet, African-American candidates 
still are associated with lower positions. Moreover, the number of advantaged sub-
groups rises from 1 to 3. We then apply CFA� considering all ethnicities as input 
groups. The number of disadvantaged subgroups drops to 1 and the advantaged ones 
drops to 0. Div-Rank eliminates the presence of both disadvantaged and advantaged 
subgroups related to the ethnicity attribute with a high Kendall’s �.

We then apply the mitigation for the intersection of both ethnicity and gender. For 
feldman, we consider as protected subgroups African-American women (which we 
previously observed to be the most divergent one) and non-Caucasian women. For 
the latter group, the number of disadvantaged subgroups drops from 11 to 8. For 
CFA� , we consider three configurations. The first considers only the subgroup of 
African-American women as protected. The approach is not effective in this case. 
The second considers the intersection of all ethnicities in the dataset (8 in total) and 
the female gender. The approach reduces the number of disadvantaged subgroups � 
from 11 to 8. The third considers all subgroups at the intersection of ethnicity and 
gender values (16 in total). The number of disadvantaged groups drops to 1. Div-
Rank mitigates all disadvantaged subgroups. The mitigation results has still high 
Kendall’s � , but a slightly higher Gini index.

Similar results and considerations apply also for COMPAS (Table 8), German 
credit  (Lichman 2013) (Table 9), IIT-JEE  (Technology IIO 2009) (Table 10), and 
folktables  (Ding et  al. 2021) (Table  11) datasets reported in the appendix. In all 
cases, Div-Rank reduces to 0 the number of disadvantaged subgroups. For COM-
PAS and German credit datasets, also CFA� mitigates disadvantage when all 
subgroups at the intersection of multiple attributes are considered. Still, Div-Rank 
results have higher Kendall’s � (0.68 vs. 0.66 for COMPAS, 0.96 vs. 0.92 for Ger-
man credit) and generally lower execution time (as we discuss in the following). 
The experimental results show the ability of Div-Rank to mitigate divergence and 
remove disadvantaged subgroups without specifying the protected subgroups of 
interest.

Div-Rank identifies the subgroups to mitigate automatically. This ability is par-
ticularly relevant when the number of protected attributes increases. Applying the 
mitigation process of CFA� for all possible subgroups becomes computationally 
expensive. Conversely, Div-Rank considers only adequately represented subgroups 
and iteratively mitigates the disadvantaged ones. We demonstrate this by consid-
ering the Synthetic dataset and all its five attributes as protected. Table  7 shows 
the mitigation results. Given that the dataset is synthetic, we know that instances 
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with a = b = 1 or c = 1 are located in lower positions in the ranking. We leverage 
this knowledge for selecting the protected values for feldman mitigation. In a real-
case scenario, we should conduct preliminary analyses of the ranking. Yet, feldman 
mitigation still yields numerous disadvantaged subgroups. This again highlights the 
need to mitigate multiple subgroups simultaneously. Div-Rank and CFA� reduce to 
0 the number of disadvantaged subgroups. However, for CFA� , we need to enumer-
ate and consider all possible subgroups of the protected attributes. Addressing the 
complete enumeration makes the mitigation process computationally expensive, 
requiring 7.5 h. Div-Rank instead automatically identifies the subgroups to mitigate 
and efficiently mitigates all disadvantaged subgroups in 20 s. Moreover, it achieves 
higher Kendall’s � and lower Gini index. While we have a higher alignment with 
the original ranking, CFA� demonstrates greater improvement in reducing the sub-
group divergence (lower minimum and maximum divergence in absolute terms). 
We attribute this to CFA� considering all subgroups across protected attributes in 
this experiment, even those without statistically significant disadvantages. In con-
trast, our method focuses only on mitigating statistically significant disadvantages, 
thus reducing the alterations to the original ranking and maintaining a more targeted 
intervention.

To further illustrate the effectiveness of Div-Rank in handling an increased num-
ber of attributes, we conducted experiments considering all attributes of the three 
evaluated datasets, thus disregarding the distinction between protected and non-
protected ones. Note that this setting is for demonstration purposes, as our goal is 
fair ranking and reducing disparities among subgroups over protected attributes. We 
report the results and a detailed discussion in Sect. 1.4 of the Appendix. The find-
ings reveal that both feldman and CFA� fail to mitigate disparities for all disadvan-
taged groups. In contrast, Div-Rank demonstrates its effectiveness by reducing the 
number of disadvantaged groups to zero.

Computational performance analysis. We performed the experiments on a 
Ubuntu server with Intel Xeon CPU 12 cores, 32GB memory. Div-Rank required 
7 s, 11 s, 0.5s, 4.9 min, 3.05 min and 20 s for LSAT, COMPAS, German credit, 
IIT-JEE, folktables and Synthetic respectively, when considering all sensitive 
attributes. Execution time is also low for the feldman method: the maximum running 
time is 4.5s, 1.5s, 0.1s, 8.5 min, 4.4 min, and 1.5s, respectively. However, the results 
show that it is not effective in reducing the disadvantaged subgroups to zero. CFA� 
requires more time, especially when the number of protected groups increases. The 
maximum running time for LSAT, COMPAS, German credit, IIT-JEE, folktables 
and Synthetic is respectively 13.5 min, 2.2s, 13.7s, 5 s, 13.4 min and 7.5 h.

Sensitivity analysis. Div-Rank identifies and mitigates the disadvantaged sub-
groups represented at least s% in the dataset. We vary the minimum support s, con-
sidering values 0.001, 0.005, 0.01 (as in the previous experiments), 0.1, 0.2, and 0.3, 
and we study the impact on the mitigation process. The lower the value, the higher 
the number of frequent subgroups and disadvantaged ones we expect. For all values 
of s and all datasets, Div-Rank terminates while satisfying the monotonicity con-
straint and reduces the number of disadvantaged subgroups to 0.
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6  Conclusions

We propose a framework aimed at reducing inequalities in a ranking task for auto-
matically identified disadvantaged subgroups. The approach leverages the notion of 
divergence to automatically identify data subgroups that experience a disadvantage 
in terms of ranking utility compared to the overall population. We first outline the 
desired properties of the mitigation process of disadvantaged subgroups. We pro-
pose a mitigation step to mitigate the divergence of disadvantaged subgroups, ana-
lyzing its properties and its impact on subgroup divergence. We then propose the 
re-ranking algorithm Div-Rank which iteratively applies the mitigation step while 
satisfying the desired properties. The experimental results show the effectiveness of 
the proposed approach in removing the presence of all disadvantaged subgroups.

Our approach prioritizes group fairness over individual fairness when ranking 
candidates. Hence, we mitigate disparities in demographic groups, even if it results 
in individuals from originally advantaged groups being displaced by those from 
disadvantaged groups. This decision acknowledges systemic biases in decision-
making processes, aiming to promote equity. However, it entails trade-offs. While 
it addresses historical inequalities, it may disadvantage individuals who would have 
performed well under the original system. Practitioners must weigh these trade-
offs based on their context. While prioritizing group fairness may rectify systemic 
biases, a balanced approach may be necessary in contexts where individual perfor-
mance is critical.

Transparent communication is crucial in explaining and justifying this process to 
impacted individuals, adhering to trustworthy decision-making and AI principles. It 
is critical to inform that the goal is to address systemic biases and promote equity, 
rather than unfairly disadvantage individuals. Providing examples and illustrating 
the positive impact on historically disadvantaged groups can help individuals under-
stand the rationale behind the adjustments.

In future work, we plan to take into consideration the individual-level fairness 
aspects in the mitigation process and other subgroup discovery approaches for sub-
group identification.

Appendix 1: Additional experiments

This appendix presents additional experimental assessments. First, we provide a 
comprehensive description of the adopted datasets (Appendix 1.1), followed by an 
outline of the protected groups under consideration for the comparative baselines 
(Appendix 1.2). We then present the experimental comparison against the baselines 
on COMPAS, German credit, IIT-JEE and folktables datasets (Appendix  1.3). 
Then, we present an extended computational performance analysis, showcasing 
the efficacy of our approach by considering all attributes available in the datasets 
(Appendix 1.4). Lastly, we show how we can define the utility function � of Div-
Rank to support a top-k fair ranking scenario, and we experimentally compare our 
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approach with Multi-FAIR (Appendix 1.5). Bibliographic references correspond to 
the bibliography in the main body of the paper.

Appendix 1.1: Dataset description

We use five real-world datasets commonly adopted in the fairness literature.
COMPAS  (Angwin et  al. 2016) dataset contains demographic information and 

the criminal history of 6,172 defendants from the Broward County Sheriff’s Office 
in Florida in 2013 and 2014 collected by ProPublica. In the experiment, we consider 
the inverse of recidivism scores as target score, derived as in Zehlike et al. (2022). 
The higher the score, the less likely a defendant is considered as likely to recidivate. 
We consider age range, ethnicity, and gender as protected attributes.

LSAT  (Wightman 1998) dataset derived from a survey across 163 law schools 
in the United States in 1998 conducted by the Law School Admission Council. The 
dataset contains information on 21,791 law students, such as their entrance exam 
scores (LSAT), and their ethnicity and gender, which we considered as protected. 
We use the LSAT score as the target score for the ranking.

German credit (Lichman 2013) contains the financial information of 1,000 indi-
viduals. We consider as sensitive attributes gender and age, where age is categorized 
into young, adult, or elder as in Zehlike et al. (2022). The credit score used to rank 
individuals is a weighted sum of account status, credit duration, credit amount, and 
employment length (Zehlike et al. 2022).

ITT-JEE (Technology IIO 2009) (Indian Institutes of Technology - Joint Entrance 
Examination) consist of the engineering entrance assessment conducted for admis-
sion to engineering colleges in India for the year 2009. The dataset includes the 
gender and birth category [according to the traditional Indian socio-demographic 
groups, see  (Baswana et al. 2019)] of the students, we consider these two attributes 
as protected. We use the test scores as the target score for the ranking.

folktables (Ding et al. 2021) dataset contains US Census information. We use the 
Census data from the California state and the year 2018. We consider the ethnicity 
and the gender as protected attributes. We use the income of the individuals in the 
dataset as the target score for the ranking.

Appendix 1.2: Considered protected groups for the compared baselines

The baseline approaches require, as input, the protected groups to mitigate. We con-
sider as protected subgroups the ones analyzed in Zehlike et al. (2022). These also 
generally align with the ones derived by our automatic identification.

For the LSAT dataset, we consider female and non-Caucasian candidates as 
protected groups for the gender and ethnicity attributes. We also consider the 
intersection of the protected attributes: African-American women and non-
Caucasian women. For COMPAS, we consider female and non-Caucasian 
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candidates as protected and, iteratively, all values of the age attribute as pro-
tected (i.e., {<25}, {25–45}, and {>45} as protected). We also consider the 
intersection of the three protected attributes: (i) non-Caucasian women, (ii) Cau-
casian women, and (iii) non-Caucasian men, all with ages lower than 25 (i.e., 
(i) {<25, non Cauc, female}, {<25, Cauc, female}, {<25, non Cauc, male}) for 
attributes age, ethnicity, and gender respectively). For the German credit data-
set, we consider female, young, and elder as protected groups. At the intersec-
tion, we consider 5 groups: (i) young, (ii) adult and (iii) elder female candidates 
and (iv) adult and (v) elder males. For the IIT-JEEE dataset, we consider female 
candidates and candidates belonging to the SC and ST birth categories as pro-
tected [see Baswana et al. (2019)]. At the intersection, we consider 3 groups: (i) 
female candidates of the SC birth category, (ii) female candidates of the ST birth 
category, and (iii) female candidates of the SC or ST birth categories. For the 
folktables dataset, we consider 2 groups: (i) African-American female candi-
dates, and (ii) non-Caucasian female candidates.

Appendix 1.3: Comparison with baselines: COMPAS, German Credit, IIT–JEE 
and folktables datasets

Tables 8, 9, 10 and 11 compare the original ranking and re-ranking results of Div-
Rank, feldman and CFA� for the COMPAS, German credit, IIT-JEE and folkta-
bles datasets.

Across all cases, Div-Rank successfully eliminates the count of disadvan-
taged subgroups. feldman ranking struggles when multiple subgroups at the 
intersections of multiple protected attributes experience a disadvantage. Con-
sider COMPAS and all the three sensitive attributes, feldman mitigates at most 
one subgroup. For German credit and all the two sensitive attributes, feldman 
mitigates the disadvantage in only two out of the five cases. This again high-
lights the need for the automatic identification of the subgroups to mitigate and 
handle multiple subgroups. For IIT-JEE and folktables, feldman does not miti-
gate the disadvantage. CFA� , similarly to Div-Rank, handle multiple groups. It 
achieves disadvantage mitigation when considering the exhaustive enumeration 
of all the subgroups at the intersection of multiple attributes for the COMPAS 
and German credit datasets. However, Div-Rank exhibits superior Kendall’s � 
values (0.68 vs. 0.66 for COMPAS and 0.96 vs. 0.92 for German credit), along 
with generally reduced execution time. For the IIT-JEE and folktables, CFA� 
reduces the disadvantage, as the minimum divergence and the number of dis-
advantaged subgroups reduces, but it does not fully mitigate all disadvantages. 
After the mitigation, there are still some subgroups with a statistically signifi-
cant divergence. Div-Rank instead successfully reduces to 0 the number of dis-
advantaged subgroups.
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Table 8  Re-ranking results for Div-Rank, CFA� and feldman rankings. COMPAS dataset

Method Prot. attr Prot. groups ∣ � ∣ ∣ � ∣ min
Δ

max
Δ

gini Kendall’s
�

ndcg
Loss

original age 1 1 − 0.16 0.15 0.19 1.00 0.00
Div-Rank – 1 0 − 0.01 0.02 0.14 0.71 0.05
CFA� {<25}, 

{25–45}, { ≥
45}

0 0 − 0.01 0.01 0.17 0.71 0.03

feldman {<25} 1 1 − 0.04 0.10 0.17 0.80 0.03
feldman {25–45} 1 1 − 0.15 0.16 0.21 0.95 0.00
feldman {≥45} 1 1 − 0.06 0.02 0.10 0.81 0.00
original ethn 1 1 − 0.04 0.07 0.19 1.00 0.00
Div-Rank – 0 0 − 0.00 0.00 0.19 0.87 0.00
CFA� {non Cauc}, 

{Cauc}
0 0 − 0.00 0.00 0.18 0.87 0.00

feldman {non Cauc} 0 0 − 0.00 0.00 0.16 0.87 0.00
original gender 1 1 − 0.01 0.05 0.19 1.00 0.00
Div-Rank – 0 0 − 0.00 0.00 0.19 0.94 0.00
CFA� {female}, 

{male}
0 0 − 0.00 0.00 0.19 0.94 0.00

feldman {female} 0 0 − 0.00 0.00 0.20 0.95 0.00
original age,ethn,gender 19 14 − 0.18 0.21 0.19 1.00 0.00
Div-Rank – 8 0 − 0.01 0.08 0.14 0.68 0.03
CFA� {<25, non 

Cauc, 
female},

{<25, Cauc, 
female},

{<25, non 
Cauc, 
male},

{other}

19 11 − 0.15 0.17 0.17 0.84 0.02

CFA� {a, e, v}, ∀a ∈ 
age,

∀e ∈ ethn, 
∀v ∈ gen-
der

0 0 − 0.01 0.01 0.16 0.66 0.03

feldman {<25, non 
Cauc, 
female}

19 14 − 0.19 0.20 0.19 0.98 0.01

feldman {<25, Cauc, 
female}

19 13 − 0.19 0.21 0.19 0.99 0.00

feldman {<25, non 
Cauc, Male}

18 14 − 0.16 0.18 0.17 0.87 0.02
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Appendix 1.4: Computation performance analysis: mitigation for all 
the attributes

We assess the effectiveness of our approach in handling a growing number of attrib-
utes. To do so, we evaluate Div-Rank by considering all attributes, thus disregard-
ing the distinction between protected and non-protected ones. For this set of experi-
ments, we consider the LSAT, COMPAS and the German credit datasets.

Table  12 summarizes the characteristics of the adopted real-world datasets. 
Specifically, for LSAT, we also include the UGPA and normalized score ZFYA 
attributes. For COMPAS, we include the attributes c_charge_degree and length_
of_stay. Finally, for German credit, we include the following set: credit_history, 
purpose, savings_status, installment_commitment, other_parties, residence_since, 

Table 9  Re-ranking results for Div-Rank, CFA� and feldman rankings

German credit dataset

Method Prot. attr Prot. groups ∣ � ∣ ∣ � ∣ min
Δ

max
Δ

gini Kendall’s
�

ndcg
Loss

original age, gender 0 2 − 0.26 0.15 0.46 1.00 0.00
Div-Rank – 0 0 − 0.13 0.13 0.45 0.96 0.00
CFA� {a, v}, ∀a ∈ 

age, ∀v ∈ 
gender

0 0 − 0.02 0.01 0.45 0.92 0.02

feldman {young, female} 0 2 − 0.29 0.12 0.46 0.97 0.00
feldman {adult, female} 0 0 − 0.13 0.13 0.46 0.98 0.01
feldman {elder, female} 0 1 − 0.26 0.14 0.46 0.99 0.00
feldman {young, male} 0 0 − 0.16 0.24 0.48 0.93 0.01
feldman {elder, male} 0 2 − 0.25 0.07 0.45 0.99 0.00

Table 10  Re-ranking results for Div-Rank, CFA� and feldman rankings

IIT-JEE dataset

Method Prot. attr Prot. groups ∣ � ∣ ∣ � ∣ min
Δ

max
Δ

gini Kendall’s
�

ndcg
Loss

Original gender, 
birth 
cat.

3 13 − 22.04 10.33 0.21 1.00 0.0

Div-Rank – 1 0 − 0.31 0.65 0.19 0.80 0.0
CFA� {a, v}, ∀a ∈ age,

∀v ∈ birth cat.
2 10 − 2.92 0.97 0.26 0.88 0.05

feldman {Female, SC} 3 12 − 22.15 9.87 0.21 0.99 0.01
feldman {Female, SC} 3 13 − 22.21 10.16 0.21 1.00 0.01
feldman {Female, SC or ST} 4 12 − 21.20 9.69 0.21 0.98 0.01
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Table 11  Re-ranking results for Div-Rank, CFA� and feldman rankings

folktables dataset

Method Prot. attr Prot. groups ∣ � ∣ ∣ � ∣ min
Δ

max
Δ

gini Kendall’s
�

ndcg
Loss

Original gender, 
ethnic-
ity

5 12 − 35,544 20,364 0.53 1.00 0.0

Div-Rank – 2 0 − 761 2110 0.42 0.73 0.0
CFA� {g, v}, ∀g ∈ gender,

∀v ∈ ethnicity
5 5 − 5996 2499 0.44 0.87 0.06

feldman {Afr-Am, Female} 5 11 − 35,945 19,963 0.53 1.00 0.01
feldman {non Cauc, Female} 6 10 − 28,672 19,940 0.53 0.95 0.01

Table 12  Dataset characteristics

∣ C ∣ indicates the number of candidates. X and X are the set of pro-
tected attributes, unprotected ones, while A is the entire set

Dataset C ∣ C ∣ ∣ X ∣ ∣ X ∣ ∣ A ∣

LSAT 21,791 2 2 4
COMPAS 6,172 3 2 5
German credit 1000 2 15 17

Table 13  Re-ranking results of Div-Rank, CFA� and feldman considering all attributes as input, LSAT 
dataset

Minimum subgroup size equal to 100

method prot. attr prot. groups ∣ � ∣ ∣ � ∣ min
Δ

max
Δ

gini Kendall’s
�

ndcg
Loss

Original X
1
…Xm 54 88 − 8.22 3.02 0.12 1.00 0.00

Div-Rank – 15 0 − 0.25 1.24 0.13 0.79 0.05
CFA� X

1
× X

2
×… × Xm 0 5 − 0.46 0.19 0.08 0.77 0.01

feldman top-10 disadvantaged groups 53 92 − 5.83 3.54 0.11 0.93 0.0
feldman Disadvantaged groups

composed of one attribute
62 38 − 1.43 1.54 0.13 0.79 0.0

Table 14  Re-ranking results of Div-Rank, CFA� and feldman considering all attributes as input, COM-
PAS dataset

Minimum subgroup size equal to 100

Method Prot. attr Prot. groups ∣ � ∣ ∣ � ∣ min
Δ

max
Δ

gini Kendall’s
�

ndcg
Loss

Original X
1
…Xm 126 109 − 0.24 0.23 0.19 1.0 0.00

Div-Rank – 56 0 − 0.01 0.10 0.14 0.62 0.06
CFA� X

1
× X

2
×… × Xm 0 5 − 0.02 0.02 0.16 0.6 0.02

feldman top-10 disadvantaged groups 126 109 − 0.24 0.23 0.19 1.0 0.0
feldman Disadvantaged groups

composed of one attribute
122 89 − 0.20 0.17 0.15 0.81 0.0
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property_magnitude, other_payment_plans, housing, existing_credits, job, num_
dependents, own_telephone, foreign_worker, civil_status.

In the case of continuous attributes, we discretize them into three ranges using 
frequent-based discretization to enable subgroup identification. We evaluate two set-
tings. We consider all groups represented by at least 100 instances in the dataset to 
ensure the mitigation of adequately represented groups. This corresponds to s equal 
to 0.05 for LSAT, 0.016 for Compas, and 0.1 for German credit. Using the support 
count to set the support threshold exemplifies how it is easy for practitioners to set 
the input threshold: the minimum size of the subgroups we want to mitigate.

Tables 13, 14 and 15 show the mitigation results for the LSAT, COMPAS and 
German Credit datasets. For CFA� , we consider all groups at the intersection 
of all attribute values, i.e., we consider the Cartesian product of attribute values 
as the set of all possible combinations of values from different attributes. Being 
X1,X2,… ,Xm the set of attributes, we refer to all groups over the m attributes 
with X1 × X2 ×… × Xm . For feldman setting, we note that we do not know the 
groups to protect over the entire set of attributes. So, we proceed by first identify-
ing the disadvantaged groups as described in Sect. 3. We then consider two set-
tings: (i) we iteratively mitigate the 10 groups with the highest disadvantage, and 
(ii) we iteratively mitigate disadvantaged subgroups composed of only one attrib-
ute (e.g., ‘sex = Female’). Note that these experiments serve also to test whether 
the identification of disadvantaged groups could be directly used by other mitiga-
tion techniques or novel solutions as our Div-Rank.

CFA� and Feldman do no mitigate all disadvantaged subgroups. For Feld-
man, we also note that mitigating the 10 most disadvantaged groups could even 
increase the number of disadvantaged ones. Hence, these results show the need 
for ad-hoc solutions as ours. Div-Rank successfully terminates and mitigates 
disparities among subgroups for the three datasets, albeit with some (expected) 
impact on ranking quality measures. We again remark that this experimental set is 
for demonstration purposes of Div-Rank effectiveness, as our goal is fair ranking 
and reducing disparities among subgroups over protected attributes.

Table 15  Re-ranking results of Div-Rank, CFA� and feldman considering all attributes as input, Ger-
man credit dataset

Minimum subgroup size equal to 100

Method Prot. attr Prot. groups ∣ � ∣ ∣ � ∣ min
Δ

max
Δ

gini Kendall’s
�

ndcg
Loss

Original X
1
…Xm 990 6188 − 0.59 0.83 0.46 1.00 0.0

Div-Rank - 223 0 − 0.09 0.38 0.30 0.52 0.1
CFA� X

1
× X

2
×… × Xm 1006 5913 − 0.24 0.32 0.21 0.98 0.00

feldman top-10 disadvantaged 
groups

990 6188 − 0.59 0.83 0.46 1.0 − 30.22

feldman Disadvantaged groups
composed of one 

attribute

305 2821 − 0.75 0.87 0.43 0.67 − 23.540
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Table 16 shows the execution time Div-Rank, CFA� and feldman when consid-
ering all attributes as input on the three datasets LSAT, COMPAS and German 
Credit. We note that Div-Rank execution time is lower or comparable to the other 
methods while it is the only one that mitigates all the disadvantages.

Appendix 1.5: Top‑k ranking and comparison with Multi‑FAIR

The computational limitations of Multi-FAIR make re-ranking the entire list (i.e., 
with K = |C| ) infeasible. In order to compare with Multi-FAIR we adapt our 
approach to deal with a top-K fair ranking scenario, with K ≪ |C| , as follows.

We use as a utility function for each candidate a function of its position in the 
top-K ranking. Specifically, we set the utility score as the candidate score itself for 
the candidates in the top-K positions, while we set it to 0 for the candidates not in 
the top-K. Our approach still considers the average utility across all candidates as 
the baseline for the divergence computation and adjusts the score for all candidates.

As a workaround for Multi-FAIR’s computational bottleneck, we retrieved pre-
computed re-ranking results from Multi-FAIR’s repository. The pre-computed re-
ranking results include the LSAT, COMPAS, and German credit datasets. For 
LSAT, the analysis involves four groups, defined by the protected attributes of 
gender and ethnicity (with values Caucasian and protected), and K set to 300. For 
COMPAS, the setting considers 4 groups: three pre-identified disadvantaged groups 
and the remainder group; K = 300. For German credit, the setting considers 6 
groups (5 as protected), defined by the protected attributes of gender and age (with 
values young, adult and elder), and K set to 50.

Recall that Multi-FAIR re-ranks only the top K, while ours readjusts the score 
of the entire ranking to generate the mitigated ranking. To make the results com-
parable, we assigned a utility score based on the position on the mitigated rank-
ing, from K to 1 for the candidates in the top-K position of the ranking and 0 for 
the others. We report the results in Tables  17 and 18 for LSAT and COMPAS 
respectively. We do not report the results for German since, with the used set-
ting and K = 50, we identified no disadvantaged group. For LSAT, our method 
reduces the number of disadvantaged groups from 3 to 0, while Multi-FAIR 

Table 16  Execution time of Div-Rank, CFA� and feldman considering all attributes as input, LSAT, 
COMPAS and German Credit datasets

Minimum subgroup size equal to 100

Dataset Div-Rank CFA� feldman - top-10
disadvantaged groups

feldman - 
disadvan-
taged groups
composed of 
one attribute

LSAT 1 min 21 s 1 h 45 min — 4.89 s      18.28 s     
COMPAS 28 s 23 s 0.41 s      1.49 s     
German credit 17 min — 16 min — 0.1 s      0.5 s     
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reduces them to 2. For the COMPAS dataset, our approach reduces the number 
of disadvantaged groups from 15 to 9, while Multi-FAIR reduces them to 13. The 
results from Multi-FAIR are based on a subset of subgroups (3) identified as pro-
tected, which explains the outcome when considering a broader range of groups. 
Div-Rank adjusts the utility scores considering the entire ranking. Hence, it is not 
specifically optimized for the top-K ranking scenario.

These experiments not only demonstrate the effectiveness of our approach 
compared to the Multi-FAIR but also demonstrate how we can set the utility func-
tion of Div-Rank to support a top-K re-ranking scenario.
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Table 17  Re-ranking results for Div-Rank and Multi-FAIR rankings

LSAT dataset. k = 300. For Div-Rank, we define the utility score as the score a candidate receives if they 
are in the top-k positions of the ranking; 0 otherwise

Method Prot. attr Prot. groups ∣ � ∣ ∣ � ∣ min
Δ

max
Δ

gini Kendall’s
�

ndcg
Loss

original gender, ethn 1 3 − 1.39 0.57 0.99 1.00 0.00
Div-Rank - 0 0 − 0.78 0.41 0.99 1.0 0.05
Multi-FAIR {g, v}, ∀g ∈ 

{female, 
male},

∀v ∈ {Cauc, 
prot.}

3 2 − 0.91 1.18 0.99 0.74 0.16

Table 18  Re-ranking results for Div-Rank and Multi-FAIR rankings

COMPAS dataset. k = 300. For Div-Rank, we define the utility score as the score a candidate receives if 
they are in the top-k positions of the ranking; 0 otherwise

Method Prot. attr Prot. groups ∣ � ∣ ∣ � ∣ min
Δ

max
Δ

gini Kendall’s
�

ndcg
Loss

original age, 
ethn, 
gender

12 15 − 7.32 27.99 0.97 1.00 0.00

DivRank – 6 9 − 7.32 7.56 0.97 0.98 0.07
Multi-FAIR {<25, prot., male},

{<25, prot., female},
{<25, Cauc., female},
{other}

11 13 − 7.32 24.51 0.97 0.87 0.02
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