
03 January 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exploiting Contextual Normalizations and Article Endorsement for News Recommendation / Alari, Andrea; Campana,
Lorenzo; Giuseppe Ciliberto, Federico; Maggese, Saverio; Sgaravatti, Carlo; Zanella, Francesco; Pisani, Andrea; Ferrari
Dacrema, Maurizio. - (2024), pp. 17-21. (Intervento presentato al convegno RecSys Challenge '24: ACM RecSys
Challenge 2024 tenutosi a Bari (IT) nel October 14 - 18, 2024) [10.1145/3687151.3687154].

Original

Exploiting Contextual Normalizations and Article Endorsement for News Recommendation

Publisher:

Published
DOI:10.1145/3687151.3687154

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2993487 since: 2024-10-16T16:38:45Z

Association for Computing Machinery

Exploiting Contextual Normalizations and Article Endorsement
for News Recommendation

Andrea Alari
Politecnico di Milano

Milano, Italy
andrea.alari@mail.polimi.it

Lorenzo Campana
Politecnico di Milano

Milano, Italy
lorenzo.campana@mail.polimi.it

Federico Giuseppe Ciliberto
Politecnico di Milano

Milano, Italy
federicogiuseppe.ciliberto@mail.polimi.it

Saverio Maggese
Politecnico di Milano

Milano, Italy
saverio.maggese@mail.polimi.it

Carlo Sgaravatti
Politecnico di Milano

Milano, Italy
carlo.sgaravatti@mail.polimi.it

Francesco Zanella
Politecnico di Milano

Milano, Italy
francesco2.zanella@mail.polimi.it

Andrea Pisani
Politecnico di Milano

Milano, Italy
Politecnico di Torino

Torino, Italy
andrea.pisani@polito.it

Maurizio Ferrari Dacrema
Politecnico di Milano

Milano, Italy
maurizio.ferrari@polimi.it

Abstract
We provide an overview of the approach used as team FeatureSalad
for the ACM RecSys Challenge 2024, organized by Ekstra Bladet.
The competition addressed the problem of News Recommendation,
where the goal is to predict which article a user will click on given
the list of articles that are shown to them. Our solution is based on
a stacking ensemble of consolidated algorithms, such as gradient
boosting for decision trees and neural networks. It relies on numer-
ous features, which model the interest of a user and the lifecycle
of an article. The proposed solution allowed our team to rank first
among the academic teams, and sixth overall.

CCS Concepts
• Computing methodologies → Learning to rank; Supervised
learning by classification; Classification and regression trees;
Natural language processing.

Keywords
ACM Recsys Challenge 2024, Gradient Boosting for Decision Trees,
Neural Networks, News Recommendation, Recommender Systems,
Stacking

ACM Reference Format:
Andrea Alari, Lorenzo Campana, Federico Giuseppe Ciliberto, Saverio
Maggese, Carlo Sgaravatti, Francesco Zanella, Andrea Pisani, and Maurizio
Ferrari Dacrema. 2024. Exploiting Contextual Normalizations and Article
Endorsement for News Recommendation. In ACM RecSys Challenge 2024

This work is licensed under a Creative Commons Attribution International
4.0 License.

RecSys Challenge ’24, October 14–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1127-5/24/10
https://doi.org/10.1145/3687151.3687154

(RecSys Challenge ’24), October 14–18, 2024, Bari, Italy. ACM, New York, NY,
USA, 5 pages. https://doi.org/10.1145/3687151.3687154

1 Introduction
Numerous online platforms make use of Recommendation Systems
to assist users in finding content that aligns to their preferences.
News platforms are no exception: accurate news recommendations
have a significant impact on user experience [21]. The ACM Rec-
Sys Challenge 20241, organized by Ekstra Bladet, aims to identify
the best approach to predict the likelihood of user clicks on news
articles within a given impression. This prediction task comes with
several hurdles, e.g. handling a large-scale dataset, and evaluating
accuracy with limited computational resources. We propose an
optimized stacked ensemble model, able to successfully leverage a
wide and diverse feature set. The proposed solution accurately pre-
dicts user behaviors, which allowed our team to lead the academic
leaderboard and place sixth overall. The source code of our final
model and its documentation are publicly available on GitHub 2.

2 Problem Formulation
The dataset for the ACM RecSys Challenge 2024, named EB-NeRD,
is a large-scale Danish dataset created by Ekstra Bladet to support
advancements and benchmarking in News Recommendation re-
search. EB-NeRD includes data from over 2.3 million users and
more than 380 million impression logs collected from Ekstra Bladet.
It was compiled by recording behavior logs from active users dur-
ing a six-week period from April 27 to June 8, 2023. This specific
timeframe was chosen to avoid major events, such as holidays
or elections, that could result in atypical user behavior on Ekstra
Bladet. To protect user privacy, the logs were anonymized using
one-time salt mapping. In addition to user interaction data, the
dataset includes news articles published by Ekstra Bladet, enriched

1http://www.recsyschallenge.com/2024/
2https://github.com/recsyspolimi/recsys-challenge-2024-ekstrabladet

17

https://orcid.org/0009-0001-4590-085X
https://orcid.org/0009-0007-3726-1182
https://orcid.org/0009-0000-9098-8187
https://orcid.org/0009-0002-5357-1328
https://orcid.org/0009-0001-4962-5365
https://orcid.org/0009-0003-7960-0366
https://orcid.org/0009-0001-9736-522X
https://orcid.org/0000-0001-7103-2788
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3687151.3687154
https://doi.org/10.1145/3687151.3687154
http://www.recsyschallenge.com/2024/
https://github.com/recsyspolimi/recsys-challenge-2024-ekstrabladet
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3687151.3687154&domain=pdf&date_stamp=2024-10-14

RecSys Challenge ’24, October 14–18, 2024, Bari, Italy Ferrari Dacrema et al.

with textual content features such as titles, abstracts, bodies, and
categories. Moreover, the dataset provides features generated by
proprietary models, including topics, named entity recognition
(NER), and article embeddings. The Challenge’s objective is to esti-
mate the likelihood of a user clicking on any candidate article by
evaluating the compatibility between the article’s content and the
user’s preferences. The articles are ranked based on these likelihood
estimations, and the accuracy of these rankings is measured against
the actual selections made by users. Solutions are evaluated using
the Area Under the receiver operating characteristic Curve (AUC).

3 Data Analysis
Three versions of the dataset, demo, small, and large, were provided,
each split into self-contained training and validation sets. Every
set included behavior logs and history logs. Behavior logs contained
records of user impressions collected during a seven-day period.
An impression consists of the randomly shuffled list of articles a
given user was shown, called inview list, and a list of the ones they
clicked on. The inview lists contain a minimum of 5 and a maximum
of 100 articles. History logs provide a list of the articles a given
user has clicked on over the 21 days prior to the recording of their
behavior logs. Many user profiling features such as age, gender,
and postcode had missing values. The impressions in the dataset
exhibit both weekly and daily seasonality, i.e. the distribution of
impressions depends on the considered day of the week and the
time of day. For instance, we have found the majority of impressions
to happen around 6 a.m. Regarding the articles, a strong preference
is noticeable for those pertaining to the "Kendt" (celebrities) topic.

4 Feature Engineering
In the following Section, we describe the most relevant features we
devised for our solution.

4.1 Temporal and Contextual Features
Temporal and contextual features aim to model how the timing
and popularity of an article or topic are connected to a user’s click
probability.

4.1.1 Trendiness at 𝑛. Each article 𝑎 in the inview list was scored
according to how trendy its topics T (𝑎) were when the impression
happened. This is computed as the sum over all its topics of the
times that an article with that topic has been published in the 𝑛
days preceding the impression time. The goal was to measure the
extent to which an impression aligns with the most discussed topics
of the moment. We also compare Trendiness across multiple periods,
by calculating the ratio between Trendiness scores with different
values of 𝑛 (e.g. 1 and 3). Furthermore, we exploit history logs to
compute the Mean Topic Trendiness, i.e. the mean Trendiness score
over all topics of article 𝑎:

𝑀𝑇𝑇 (𝑎) = 1
|T (𝑎) |

∑︁
𝑡 ∈T (𝑎)

1
|𝐼 (𝑡) |

∑︁
𝑖∈𝐼 (𝑡)

𝑇 (𝑎𝑖). (1)

Note that 𝐼 (𝑡) is the set of interactions in the history with ar-
ticles containing topic 𝑡 , 𝑎𝑖 is the article that was clicked within
impression 𝑖 , and 𝑇 (𝑎𝑖) is its Trendiness.

4.1.2 Endorsement. We define Endorsement as the number of ap-
pearances of article 𝑎 in the inview list of any user, in the last m
hours before the considered impression timestamp. We also define
Endorsement Article-User as a count of how many times article 𝑎
appeared in the same user’s inview list in previous impressions in
the last l hours.

4.1.3 Article Delay. To represent how recent an article is, we cal-
culate the distance in days and hours between the considered im-
pression’s timestamp and the article’s publication time. We also use
history logs to compute Mean Topic Delay, as described in equation
1 – substituting Article Delay to the Trendiness operator 𝑇 .

4.1.4 Leaking Features. Recently published articles produce poorly
significant results for features such as Endorsement and Trendiness.
To accurately score them, knowing future trends and behaviors is
essential. Following this reasoning, we compute a version of said
features that accounts for future impressions. Furthermore, we also
classify as Leaking Features some of those present in the raw dataset,
such as Total Pageviews, which account for future behaviors with
respect to the considered impression. In Section 6.2 we evaluate
the impact of Leaking Features.

4.2 User History Features
4.2.1 Article Topics Jaccard Similarity. It is possible to compute a
topics-based similarity between two articles as the Jaccard Similar-
ity between their topic sets. Given a user’s history ℎ and an article
𝑎 in their inview list, we compute such similarity between 𝑎 and all
the news in ℎ. Various aggregations (mean, max, std, min, . . .) are
finally computed over this list of similarities and used as features.

4.2.2 Topics TF-IDF Cosine Similarity. An alternative formulation
for the similarity between a user’s history and a given article 𝑎. A
TF-IDF vectorizer is fit on the topics of all the dataset’s articles. Such
vectorizer allows to embed 𝑎’s list of topics in a vector. The user’s
history can be similarly embedded by concatenating all the topics
in all its articles and processing it through the TF-IDF vectorizer.
Finally, the cosine similarity between the two embedding vectors
is computed and used as a feature.

4.2.3 Latent Dirichlet Allocation. A third similarity formulation
to compare a candidate article to a given user’s history. We fit
a 5-dimensional Latent Dirichlet Allocation (LDA) model on the
articles’ titles. This model is then used to embed user histories
and candidate articles, and compare them using cosine similarity.
The similarities are then aggregated as in 4.2.1. Additionally, we
compute the mean LDA embedding for each user’s history and treat
it as 5 features.

4.2.4 Mean User Trendiness. Users tend to show different levels
of interest in topics that are currently popular. We model such
behavior by averaging the Trendiness of the interactions in the
users’ history.

4.2.5 Mean User Delay. The mean, computed over all the articles
in a user’s history, of the time distance between the click timestamp
and the article’s publication time.

4.2.6 User Behavior Statistics. We computed aggregations over
user histories regarding the contained articles’ reading time and

18

Exploiting Contextual Normalizations and Article Endorsement for News Recommendation RecSys Challenge ’24, October 14–18, 2024, Bari, Italy

scroll percentage features. Additionally, User Behavior Statistics in-
clude the frequency of each article category in a user’s history.
Notably, we found said frequency to be relevant only for a few
categories (e.g. “Sport”).

4.3 Embeddings and ICM Features
Four artefacts containing article embeddings were provided. They
were obtained using four different models, having each article’s
title, subtitle, and body as input. We computed new embeddings
of article titles and subtitles, using DistilBERT [17] and a Danish
version of MiniLM [19], both available on the HuggingFace hub.
They were created to give more relevance to titles and subtitles,
considering that users only see those elements from the user in-
terface. Each embedding set was used to build an Item Content
Matrix (ICM), having the articles’ IDs as rows and a column for
each dimension of the embedding. Each ICM was then paired with
the implicit User Rating Matrix (URM) and used as input for an
ItemKNN model [8], exploiting the artefacts to improve its accu-
racy w.r.t pure Collaborative Filtering. The scores produced by the
ItemKNNs were then used as features.

4.4 Feature Normalizations and Aggregations
To enable a clear comparison of some feature values for articles
contained in the same inview list, we construct an additional set
of derived features, consisting of a series of normalizations. Each
selected feature is grouped in three different ways (by impression ID,
by user ID, and by article ID) before being normalized, thus generat-
ing three new features per applied normalization. This process also
helps in mitigating the great variance that unnormalized features
may show.

4.4.1 Max Normalization. Each feature’s value is normalized by
the maximum over the selected group of rows, aiming at having
comparable feature ranges among different groups. If the features
are positive, this corresponds to a 𝑙∞ normalization.

4.4.2 Median Subtraction. To represent how much a feature value
for an article differs from other articles in the selected row group,
we subtract the median group value from the feature’s raw value.
We use the median since it is more robust to outliers than the mean.

4.4.3 Ranking. We rank each article based on the value of the
considered feature in descending or ascending order, based on
which order is more relevant (e.g. descending for Endorsement and
ascending for Article Delay).

4.4.4 Feature Aggregations. We provided other contextual infor-
mation to our models by computing aggregations of feature values
over their impression ID, such as the standard deviation, skew, kur-
tosis and entropy. The aim of said aggregations is to provide a
representation of the feature value distribution inside the impres-
sion’s inview list. Furthermore, to exploit the temporal properties
of the Endorsement feature, we have processed it in the following
ways:

Temporal Sum Normalization: we divide by the sum of the
Endorsement of all the articles on the same 𝑚-hour time
period. The resulting feature, which is an 𝑙1 normalization,
can be interpreted as the percentage of user 𝑢’s impressions

in the last𝑚 hours which contained article 𝑎 in the inview
list.

Temporal Quantile Normalization: we divide by the𝛼-quantile
of the Endorsement value distribution over the articles on the
same time period, having 𝛼 = 0.8. We use the 80th percentile
instead of the maximum to remove outlier values.

Rolling Average Subtraction: given an article 𝑎’s Endorse-
ment, we subtract its rolling average over a time window
of length 𝑤1, to capture temporal trends. Similarly, we in-
clude an additional feature, using another rolling average of
window𝑤2 > 𝑤1 in place of the raw Endorsement value.

4.5 Feature Selection
Our complete dataset originally had 392 features. Given its size, it
was beneficial to create a streamlined version by retaining only the
features that significantly impacted the model’s AUC. To achieve
this, we performed feature selection using the null importances
method [2], resulting in the removal of 136 features. The reduced
dataset thus obtainedwas employed for training particularly resource-
intensive models and for the second Tier of the stacking model.

5 Models
We have experimented with two different classes of models: Gradi-
ent Boosting Trees (GBTs) and Neural Networks. We modeled the
problem both as a classification task, predicting the click probability
of a candidate article, and as a ranking task, predicting the article’s
relevance inside the inview list.

GBTs are the state-of-the-art [10] solutions for tabular datasets
in terms of performance and training time [3, 5, 7, 9, 12]. In our
experiments, we tested Catboost [16] and LightGBM [14], using
both their ranking and classification versions. Both classification
versions were trained using the logloss function, while the rankers
followed different algorithms (YetiRank [11] and LambdaRank [4],
respectively).

The neural networks were trained for classification, using the
binary cross-entropy loss function. For all of them, we preprocess
the feature distributions using the Yeo-Johnson transformation
[22]. We implemented a Multi-Layer Perceptron [15], a GANDALF
network [13], a Deep&Cross network [18], and aWide&Deep one
[6]. The code for each of said implementations is provided on our
public GitHub repository.

5.1 Ensemble
We merge all the previously described models into a 2-tier stacking
ensemble [20]. The training phase works as follows: all Tier 1 mod-
els are trained on the training set and used in inference mode over
the validation set; the obtainied predictions are normalized with
respect to impression, article, and user ID; some relevant metrics
such as the rank position per impression are also extracted. These
new features are combined with the selected features described
in Section 4.5 in order to build the dataset for the Tier 2 model.
For Tier 2, a LightGBM classifier and a Catboost classifier were
experimented, with Catboost being the one chosen for our best
submission. After tuning the hyperparameters, Tier 1 models are
finally retrained on the concatenation of train and validation set.

19

RecSys Challenge ’24, October 14–18, 2024, Bari, Italy Ferrari Dacrema et al.

Table 1: Performance of our models on the test set.

Model AUC MRR

Catboost Ranker 0.8422 0.6522
Catboost Classifier 0.8362 0.6401
LightGBM Ranker 0.8356 0.6385
LightGBM Classifier 0.8346 0.6414
MLP 0.8287 0.6295
GANDALF 0.8249 0.6232
Deep&Cross 0.8265 0.6228
Wide&Deep 0.8212 0.6168

Catboost Classifier L2 0.8513 0.6658
LightGBM Classifier L2 0.8498 0.6635

The obtained predictions are used as previously described to build
the dataset for Tier 2.

5.2 Hyperparameter Tuning
We performed hyperparameter tuning for all our models on the
small dataset due to limited computational resources. We deemed
this not to be a problem due to the strong correlation between our
test outcomes on the small and large datasets. AUC was chosen
as target metric to optimize. We exploit Bayesian Optimization for
all our models, using the Optuna framework [1]. Tier 1 models are
tuned using the provided splits. The ItemKNN models described
in Section 4.3 were also tuned as Tier 1 models during the data
preprocessing stage. Tier 2 models are tuned using an additional
split of the training set’s behavior logs: the optimized Tier 1 models
were trained over the first 3.5 days to compute predictions over the
remaining days, which were then used to optimize Tier 2.

6 Results
Table 1 shows the AUC and Mean Reciprocal Rank (MRR) results
achieved by all our models on the official test set. Catboost is the
best performing Tier 1 model. We can argue its leading position is
due to the presence of mixed features in our dataset, many of which
categorical. In general, GBT models provide better accuracies than
neural networks. Nonetheless, the neural network models were still
important in our final ensemble model, as they provided diverse
recommendations with respect to the GBTs. The final ensemble
model brought to a 1.08% increase in the AUC score, proving the
effectiveness of combining the predictions of our models. Our best
AUC score was 0.8513.

6.1 Feature Importance
Figure 1 shows the importance of our features for the Tier 1 Cat-
boost Classifier model. Endorsement and Endorsement Article-User
were the most important features; furthermore, it is interesting to
notice how normalized Endorsement versions were more important
than the actual raw value, validating the reasoning described in
Section 4.4. Moreover, Article Delay was important for our models,
ranking very high in its various forms. The ratio between Leaking
Features such as Total Pageviews and Total Inviews was the sev-
enth most important feature. Finally, the features based on content,

Figure 1: The importance of the top-40 features for the Tier
1 Catboost Classifier model.

Table 2: Impact of leaking features on the small validation
set.

Model AUC (w/ leaks) AUC (w/o leaks)

Catboost Classifier 0.8165 0.7949
Catboost Ranker 0.8182 0.8020
LightGBM Classifier 0.8166 0.7946
LightGBM Ranker 0.8233 0.8010
MLP 0.8074 0.7846
GANDALF 0.8056 0.7826
Wide&Deep 0.8092 0.7868
Deep&Cross 0.7934 0.7745

such as the Article Topics Jaccard Similarity and the ICM features,
respectively at positions 13 and 34, show relative importance as
well. Overall, the Median Subtraction and the Max Normalization
were the most effective normalizations, together with the standard
deviation aggregations.

6.2 Ablation Studies
Leaking Features in our dataset account for information about future
impressions, so they would not be available in a live setup. To assess
the quality of our solution in a live setup, Leaking Features have
been obscured and several experiments have been conducted, using
the small dataset. The results are shown in Table 2. We can conclude
that the Leaking Features increased AUC by an average of 2.68%.

We performed an additional ablation study on the Tier 1 Catboost
Classifier model to assess the impact of several components of our
project. We tested a baseline model on the small dataset, then added
the feature normalizations discussed in Section 4.4, then performed
a final test over the full large dataset, i.e., the combined training
set and validation set. Said study showed that integrating feature
normalizations to our initial raw features on the official test set

20

Exploiting Contextual Normalizations and Article Endorsement for News Recommendation RecSys Challenge ’24, October 14–18, 2024, Bari, Italy

amounted to an AUC increase of 0.0809 (+11.02%), and training on
the full dataset has brought an additional AUC improvement of
0.0209 (+2.56%).

7 Conclusions
The ACM RecSys Challenge 2024 aimed at predicting the proba-
bility of clicking candidate articles within a given impression in a
News Recommendation scenario. Our solution combines informa-
tion captured by the features we extract from the dataset regarding
articles, histories, and behaviors. Said features allow us to model
the users’ behavior and article trends within various time scopes. It
integrates predictions from different Gradient Boosting Trees (GBT)
and neural network models. A boost in performance was given by
using as features the scores of hybrid recommenders that exploited
article embeddings as content. Normalizing features over the im-
pressions played an important role in reaching our best results, as
we found that contextual information was fundamental in predict-
ing the next clicked article. The stacking ensemble technique we
used provided an improvement with respect to the performance of
the single models in both local and leaderboard evaluations, hence
we were capable of reaching the first position among academic
teams at the end of the competition, and the sixth position in the
overall standings.

Acknowledgments
We would like to thank Prof. Paolo Cremonesi for his support.

References
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.

[2] André Altmann, Laura Tolosi, Oliver Sander, and Thomas Lengauer. 2010. Per-
mutation importance: a corrected feature importance measure. Bioinform. 26, 10
(2010), 1340–1347. https://doi.org/10.1093/BIOINFORMATICS/BTQ134

[3] Paolo Basso, Arturo Benedetti, Nicola Cecere, Alessandro Maranelli, Salvatore
Marragony, Samuele Peri, Andrea Riboni, Alessandro Verosimile, Davide Zanutto,
and Maurizio Ferrari Dacrema. 2023. Pessimistic Rescaling and Distribution Shift
of Boosting Models for Impression-Aware Online Advertising Recommendation.
In ACM RecSys Challenge 2023, Singapore, 19 September 2023. ACM, 33–38. https:
//doi.org/10.1145/3626221.3627288

[4] Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. 2006. Learning
to Rank with Nonsmooth Cost Functions. In Advances in Neural Information
Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neu-
ral Information Processing Systems, Vancouver, British Columbia, Canada, De-
cember 4-7, 2006, Bernhard Schölkopf, John C. Platt, and Thomas Hofmann
(Eds.). MIT Press, 193–200. https://proceedings.neurips.cc/paper/2006/hash/
af44c4c56f385c43f2529f9b1b018f6a-Abstract.html

[5] Luca Carminati, Giacomo Lodigiani, Pietro Maldini, Samuele Meta, Stiven Metaj,
Arcangelo Pisa, Alessandro Sanvito, Mattia Surricchio, Fernando Benjamín Pérez
Maurera, Cesare Bernardis, and Maurizio Ferrari Dacrema. 2021. Lightweight and
Scalable Model for Tweet Engagements Predictions in a Resource-constrained
Environment. In RecSys Challenge 2021: Proceedings of the Recommender Systems
Challenge 2021, Amsterdam, The Netherlands, 1 October 2021. ACM, 28–33. https:
//doi.org/10.1145/3487572.3487597

[6] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems, DLRS@RecSys 2016, Boston,
MA, USA, September 15, 2016, Alexandros Karatzoglou, Balázs Hidasi, Domonkos
Tikk, Oren Sar Shalom, Haggai Roitman, Bracha Shapira, and Lior Rokach (Eds.).
ACM, 7–10. https://doi.org/10.1145/2988450.2988454

[7] Nicola Della Volpe, Lorenzo Mainetti, Alessio Martignetti, Andrea Menta,
Riccardo Pala, Giacomo Polvanesi, Francesco Sammarco, Fernando Benjamin

Perez Maurera, Cesare Bernardis, and Maurizio Ferrari Dacrema. 2022. Light-
weight Model for Session-Based Recommender Systems with Seasonality Infor-
mation in the Fashion Domain. In Proceedings of the Recommender Systems Chal-
lenge 2022 (Seattle, WA, USA) (RecSysChallenge ’22). Association for Computing
Machinery, New York, NY, USA, 18–23. https://doi.org/10.1145/3556702.3556829

[8] Mukund Deshpande and George Karypis. 2004. Item-based top-N recommen-
dation algorithms. ACM Trans. Inf. Syst. 22, 1 (jan 2004), 143–177. https:
//doi.org/10.1145/963770.963776

[9] Nicolò Felicioni, Andrea Donati, Luca Conterio, Luca Bartoccioni, Davide Yi Xian
Hu, Cesare Bernardis, and Maurizio Ferrari Dacrema. 2020. Multi-Objective
Blended Ensemble For Highly Imbalanced Sequence Aware Tweet Engagement
Prediction. In Proceedings of the Recommender Systems Challenge 2020 (Virtual
Event, Brazil) (RecSysChallenge ’20). Association for Computing Machinery, New
York, NY, USA, 29–33. https://doi.org/10.1145/3415959.3415998

[10] Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. 2022. Why do tree-based
models still outperform deep learning on typical tabular data? Advances in neural
information processing systems 35 (2022), 507–520.

[11] Andrey Gulin, Igor Kuralenok, and Dmitry Pavlov. 2011. Winning The Transfer
Learning Track of Yahoo!’s Learning To Rank Challenge with YetiRank. In Pro-
ceedings of the Yahoo! Learning to Rank Challenge, held at ICML 2010, Haifa, Israel,
June 25, 2010 (JMLR Proceedings, Vol. 14), Olivier Chapelle, Yi Chang, and Tie-Yan
Liu (Eds.). JMLR.org, 63–76. http://proceedings.mlr.press/v14/gulin11a.html

[12] Dietmar Jannach, Gabriel de Souza P. Moreira, and Even Oldridge. 2020. Why
Are Deep Learning Models Not Consistently Winning Recommender Systems
Competitions Yet? A Position Paper. In Proceedings of the Recommender Systems
Challenge 2020 (Virtual Event, Brazil) (RecSysChallenge ’20). Association for
Computing Machinery, New York, NY, USA, 44–49. https://doi.org/10.1145/
3415959.3416001

[13] Manu Joseph and Harsh Raj. 2024. GANDALF: Gated Adaptive Network for Deep
Automated Learning of Features. arXiv:2207.08548 [cs.LG] https://arxiv.org/abs/
2207.08548

[14] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boost-
ing Decision Tree. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 3146–3154. https://proceedings.neurips.cc/paper/2017/hash/
6449f44a102fde848669bdd9eb6b76fa-Abstract.html

[15] Marvin Minsky and Seymour Papert. 1969. Perceptrons: An Introduction to Com-
putational Geometry. MIT Press, Cambridge, MA, USA.

[16] Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev,
Anna Veronika Dorogush, and Andrey Gulin. 2018. CatBoost: unbiased boost-
ing with categorical features. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett (Eds.). 6639–6649. https://proceedings.neurips.cc/paper/2018/hash/
14491b756b3a51daac41c24863285549-Abstract.html

[17] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Dis-
tilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv
abs/1910.01108 (2019).

[18] Ruoxi Wang, Bin Fu, Gang Fu, and MingliangWang. 2017. Deep & Cross Network
for Ad Click Predictions. CoRR abs/1708.05123 (2017). arXiv:1708.05123 http:
//arxiv.org/abs/1708.05123

[19] Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.
2020. MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression
of Pre-Trained Transformers. arXiv:2002.10957 [cs.CL]

[20] David H. Wolpert. 1992. Stacked generalization. Neural Networks 5, 2 (1992),
241–259. https://doi.org/10.1016/S0893-6080(05)80023-1

[21] Chuhan Wu, Fangzhao Wu, Yongfeng Huang, and Xing Xie. 2022. Personalized
News Recommendation: Methods and Challenges. arXiv:2106.08934 [cs.IR]
https://arxiv.org/abs/2106.08934

[22] In-Kwon Yeo and Richard A. Johnson. 2000. A New Family of Power Transfor-
mations to Improve Normality or Symmetry. Biometrika 87, 4 (2000), 954–959.
http://www.jstor.org/stable/2673623

21

https://doi.org/10.1093/BIOINFORMATICS/BTQ134
https://doi.org/10.1145/3626221.3627288
https://doi.org/10.1145/3626221.3627288
https://proceedings.neurips.cc/paper/2006/hash/af44c4c56f385c43f2529f9b1b018f6a-Abstract.html
https://proceedings.neurips.cc/paper/2006/hash/af44c4c56f385c43f2529f9b1b018f6a-Abstract.html
https://doi.org/10.1145/3487572.3487597
https://doi.org/10.1145/3487572.3487597
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.1145/3556702.3556829
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/3415959.3415998
http://proceedings.mlr.press/v14/gulin11a.html
https://doi.org/10.1145/3415959.3416001
https://doi.org/10.1145/3415959.3416001
https://arxiv.org/abs/2207.08548
https://arxiv.org/abs/2207.08548
https://arxiv.org/abs/2207.08548
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/14491b756b3a51daac41c24863285549-Abstract.html
https://arxiv.org/abs/1708.05123
http://arxiv.org/abs/1708.05123
http://arxiv.org/abs/1708.05123
https://arxiv.org/abs/2002.10957
https://doi.org/10.1016/S0893-6080(05)80023-1
https://arxiv.org/abs/2106.08934
https://arxiv.org/abs/2106.08934
http://www.jstor.org/stable/2673623

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Data Analysis
	4 Feature Engineering
	4.1 Temporal and Contextual Features
	4.2 User History Features
	4.3 Embeddings and ICM Features
	4.4 Feature Normalizations and Aggregations
	4.5 Feature Selection

	5 Models
	5.1 Ensemble
	5.2 Hyperparameter Tuning

	6 Results
	6.1 Feature Importance
	6.2 Ablation Studies

	7 Conclusions
	Acknowledgments
	References

