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A B S T R A C T

We propose a novel slow–fast SIRS compartmental model with demography, by coupling a slow disease
spreading model and a fast information and misinformation spreading model. Beside the classes of susceptible,
infected and recovered individuals of a common SIRS model, here we define three new classes related to
the information spreading model, e.g. unaware individuals, misinformed individuals and individuals who are
skeptical to disease-related misinformation. Under our assumptions, the system evolves on two time scales. We
completely characterize its asymptotic behavior with techniques of Geometric Singular Perturbation Theory
(GSPT). We exploit the time scale separation to analyze two lower dimensional subsystem separately. First, we
focus on the analysis of the fast dynamics and we find three equilibrium point which are feasible and stable
under specific conditions. We perform a theoretical bifurcation analysis of the fast system to understand the
relations between these three equilibria when varying specific parameters of the fast system. Secondly, we
focus on the evolution of the slow variables and we identify three branches of the critical manifold, which
are described by the three equilibria of the fast system. We fully characterize the slow dynamics on each
branch. Moreover, we show how the inclusion of (mis)information spread may negatively or positively affect
the evolution of the epidemic, depending on whether the slow dynamics evolves on the second branch of the
critical manifold, related to the skeptical-free equilibrium or on the third one, related to misinformed-free
equilibrium, respectively. We conclude with numerical simulations which showcase our analytical results.

1. Introduction

In the era of social networks, when information travels fast between continents, it is of paramount importance to understand how the evolution
of a disease can be affected by human behavioral dynamics influenced by information diffusion, [1–3]. For decades, from the early 20th century,
the evolution of epidemics are modeled and studied via ordinary differential equations (ODEs) systems. The compartmental models are important
tools for a better understanding of infectious diseases and they have been introduce in 1927 by Kermack and McKendrick [4], in fact they can be
used to predict how the disease spread, or obtain information on the duration of an epidemic, the number of infected individuals, etc., but also to
identify optimal strategies for control the disease.

In particular, mathematicians working on epidemic modeling have recently started focusing on the inclusion of awareness (with respect to the
infectious disease under study) in the population [5–9]. Individuals aware of the disease might be more cautious towards risky behaviors or, on
the other hand, be skeptical of mainstream information and ignore precautions. The inclusion of distinct information based behaviors allows for
more complex dynamics to be described, analyzed and simulated, [10,11] and it is especially relevant in recent years, in which public opinion on
COVID-19 and the corresponding containment measures reflected on the evolution of the pandemic, [12–14].

In [15], a review concerning nonlinear coupling between disease dynamics and human behavioral dynamics, one of the results shows that
emergent self-protective behavior can dampen an epidemic. What can one say about the surviving of a virus in an epidemic due to human behavioral
dynamics related to misinformation about the real evolution of the disease? To the best of our knowledge, in the literature (e.g. [10,11,16]), the
models that consider both human behavioral and disease dynamics, respectively, have maintained the simple structure of an ODEs system. They
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are models with all the variables characterized by one time scale, without considering the fact that the disease might spread slower than opinions
and different time scales could render the model more realistic.

In this paper, we focus on the interplay between fast information spreading and slow(er) disease spreading using techniques from Geometric
Singular Perturbation Theory (GSPT). Since the pioneering papers written by N. Fenichel [17], GSPT has proven extremely suitable to describe
systems evolving on multiple time scales, and analyze their transient and asymptotic behaviors. A thorough description of the fundamentals of
GSPT, and hence of the techniques we use in this paper, can be found in [18–20]; furthermore, for a more concise introduction, we refer the
interested reader to the introductory sections of [21].

The presence of widely different time scales is ubiquitous in natural phenomena [18–20,22,23], as well as in mechanical modeling (e.g. of
circuits) [24–26], and in particular in epidemic spreading. The latter has been the topic of various recent papers concerning the various facets of
mathematical modeling of infectious diseases, particularly through the use of GSPT [21,27–31].

In such a setting, separation of time scales might occur in various ways. Consider, for example, models which include both disease and
demographic dynamics: typically, infectious periods have a much shorter duration than the average lifespan of the individuals in the population
(weeks vs. years) [21,29,32]. A similar separation may occur between the infectiousness window of a communicable disease and the corresponding
duration of natural or vaccine induced immunity [33,34]. Individual behavior, including but not limited to (mis)information spreading and
changes in the strategy towards an ongoing epidemic, may also evolve much faster than epidemics; several papers focus on this, both in
continuous [16,35–37] and discrete time [38,39].

The main goal of this paper is to introduce and study a novel SIRS compartmental model with demography and fast information and
misinformation spreading in the population. Considering the speed at which information spreads in the age of social media, we let our system evolve
on two time scales, a fast one, corresponding to the information ‘‘layer’’ and a slow one, corresponding to the epidemic ‘‘layer’’. We completely
characterize the possible asymptotic behaviors of the system we propose with techniques of GSPT. In particular, we emphasize how the inclusion
of (mis)information spreading can radically alter the asymptotic behavior of the epidemic, depending on whether a non-negligible part of the
population is misinformed or skeptical to misinformation. Indeed, from the numerical simulations we observe that the (mis)information spread can
positively or negatively affect the evolution of the epidemic. In the first case, the output of the model can change from an endemic scenario to the
extinction of the disease one, while in the second case, more interestingly, the misinformation spread can transform an infectious disease expected
to die out into an endemic one. To the best of the authors’ knowledge, this is the first work dedicated to a model with two interacting spreading
phenomena in the same population, with such an assumption on the separation of timescales in the mechanisms involved. We remark on the
potential of our approach in Section 7, highlighting multiple possible outlook for future work based on the analysis contained in this manuscript.

The paper is structured as follows: in Section 2, we propose the coupled information-infection spreading model as a singularly perturbed system
of ODEs in standard form. In Section 3, we completely characterize the fast dynamics of our model, providing a comprehensive list of equilibria and
the corresponding local and global stability conditions. In Section 4, we analyze the behavior of the system on each branch of the critical manifold
(i.e. equilibria of the fast system). In Section 5, we briefly recall the definition of the entry–exit function, and we exploit it to deduce information
on the possible delayed loss of stability in our system. In Section 6, we perform an extensive numerical exploration of our model, illustrating our
analytical results with carefully selected examples. We conclude in Section 7.

2. The coupled info-epidemic model

In this section, we introduce a novel mathematical model by coupling two systems of ordinary differential equations, infodemic and epidemic
systems, respectively. We assume that the aforementioned systems evolve on two widely different time scales, a fast one and a slow one, respectively.
This assumption will shortly lead to a coupled fast–slow system. The Ordinary Differential Equations (ODEs) model describes the evolution of the
considered compartments in time. We will denote the population in each compartment with a capital letter.

We first introduce a UMZ (Unaware-Misinformed-Skeptical) mathematical model, which describes the spread of (mis)information about an
infectious disease through a compartmental SI1I2-like (Susceptible – Infected with disease 1, representing misinformation – Infected with disease
2, representing skepticism towards fake news) model.

The three classes of the infodemic model are

• 𝑈 : unaware individuals about the infectious disease related topics;
• 𝑀 : misinformed individuals, inclined to underestimate the efficiency of the measures put in place to reduce the number of contagions such

as non-pharmaceutical measures (NPI), vaccines, etc., or even refuse these measures entirely;
• 𝑍: individuals skeptical to the disease related misinformation and inclined to take the proper measures in order to avoid the infection.

We assume that the unaware individuals, 𝑈 , once they ‘‘receive’’ the misinformation can either agree and become misinformed, or become skeptical,
therefore moving to the 𝑀 class at a rate 𝑏1 or to the 𝑍 class at a variable rate 𝑏̄2, which depends on the infected individuals 𝐼 , introduced below,
respectively. In this model, we also consider the parameter 𝜇1, that is the loss of opinion (or interest in the ongoing epidemic) rate of the population.
The total population is 𝑁(𝑡) = 𝑈 (𝑡) +𝑀(𝑡) +𝑍(𝑡) for all 𝑡 ≥ 0.

The infodemic model (fast system in the fast time variable 𝑡) reads
d𝑈
d𝑡 = 𝜇1𝑁 − 𝑏1

𝑈𝑀
𝑁

− 𝑏2(𝐼)
𝑈𝑍
𝑁

−𝜇1𝑈, (1a)

d𝑀
d𝑡 = 𝑏1

𝑈𝑀
𝑁

− 𝜇1𝑀, (1b)

d𝑍
d𝑡 = 𝑏2(𝐼)

𝑈𝑍
𝑁

− 𝜇1𝑍, (1c)

with the first coupling term between the two subsystems

𝑏2(𝐼) ∶=
𝑏2

1 −𝐾𝐼
nd 𝐾 ∈ [0, 1). The positive feedback function 𝑏2 is an increasing function of 𝐼 with maximal rate 𝑏2. This feedback function reproduces the average

perception of the disease severity, similarly to the strategy adopted in [10,11], where the authors have used a Michaelis–Menten expression to
2
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mimic the societal response to the recent COVID-19 pandemic. Notice that the total population 𝑁 in system (1) remains constant, as can be seen
by observing 𝑁 ′(𝑡) = 0, and we can assume, without loss of generality, that 𝑁(0) = 1 so that 𝑁(𝑡) = 1 for all 𝑡 ≥ 0.

Secondly, we introduce a modified version of the classical SIRS (Susceptible–Infected–Recovered–Susceptible) model to describe the infection
ynamics, and taking into account that the infection rate can change in time, e.g. increase when the number of misinformed individuals 𝑀 increase

and decrease when the number of skeptical individuals 𝑍 increase, respectively. Here we denote by 𝑆 the class of susceptible individuals, with 𝐼
he class of infected individuals and with 𝑅 of recovered, respectively. We denote with 𝜀 ≪ 1 a small parameter that describes the ratio of the two

time scales, meaning that the slow dynamics (epidemic spreading, recovery etc.) happens at a much slower rate than the information spreading
(fast system (1)). By introducing the slow time scale 𝜏 = 𝜀𝑡, the epidemic model (slow system in the slow time variable 𝜏) reads:

d𝑆
d𝜏 = 𝜇2𝑁 − 𝛽(𝑀,𝑍)𝑆𝐼

𝑁
+ 𝜂𝑅 − 𝜇2𝑆, (2a)

d𝐼
d𝜏 = 𝛽(𝑀,𝑍)𝑆𝐼

𝑁
− 𝛾𝐼 − 𝜇2𝐼, (2b)

d𝑅
d𝜏 = 𝛾𝐼 − 𝜂𝑅 − 𝜇2𝑅, (2c)

with the second coupling term between the two subsystems

𝛽(𝑀,𝑍) ∶= 𝛽 1 +𝑀
1 +𝑍

.

he total population in system (2) is 𝑁(𝜏) = 𝑆(𝜏) + 𝐼(𝜏) +𝑅(𝜏) and 𝑁 ′(𝜏) = 0 for all 𝜏 ≥ 0. Assuming that the total population at time 𝜏 = 0 satisfies
𝑁(0) = 𝑆(0) + 𝐼(0) + 𝑅(0) = 1, then 𝑁(𝜏) ≡ 1 for all 𝜏 ≥ 0.

All the parameters we describe in the following are given with respect to the slow time scale 𝜏; hence, all these parameters are (𝜀) small
ompared to the ones we introduced for system (1). The first equation of (2) describes the evolution in time of susceptible individuals. We assume
o have a birth/immigration term 𝜇2; susceptible individuals can get infected at a variable rate 𝛽(𝑀,𝑍), which is assumed to be increasing in the
umber of misinformed individuals and decreasing in the number of skeptical individuals, respectively. Moreover, once a susceptible individual
ecovers they can lose their immunity at a rate 𝜂. In each compartment, they can die or emigrate at a constant rate 𝜇2; for the infected individual
his means that, at this stage of the disease spreading, the disease induced mortality is negligible when compared to the natural birth/death rate
2. The second equation of (2) describes the evolution of the infected individuals, which recover at a rate 𝛾.

Recall that 𝑁(𝑡) ≡ 1 for all 𝑡 ≥ 0. Then, the coupled model (1)–(2) in the fast time scale can be written as

d𝑈
d𝑡 = 𝜇1 − 𝑏1𝑈𝑀 − 𝑏2(𝐼)𝑈𝑍−𝜇1𝑈, (3a)

d𝑀
d𝑡 = 𝑏1𝑈𝑀 − 𝜇1𝑀, (3b)

d𝑍
d𝑡 = 𝑏2(𝐼)𝑈𝑍 − 𝜇1𝑍, (3c)

d𝑆
d𝑡 = 𝜀

(

𝜇2 − 𝛽(𝑀,𝑍)𝑆𝐼 + 𝜂𝑅 − 𝜇2𝑆
)

, (3d)

d𝐼
d𝑡 = 𝜀

(

𝛽(𝑀,𝑍)𝑆𝐼 − 𝛾𝐼 − 𝜇2𝐼
)

, (3e)

d𝑅
d𝑡 = 𝜀

(

𝛾𝐼 − 𝜂𝑅 − 𝜇2𝑅
)

(3f)

If 𝜀 = 0 in system (3), populations 𝑆, 𝐼 and 𝑅 remain constant, and we recover the fast system (1). Equilibria of system (1) form the so-called
critical manifold in the full 6 dimensional space. Due to their biological interpretation, we assume that all the parameters are non-negative.

Moreover, it is easy to check that

d𝑋
d𝑡 |𝑋=0 ≥ 0,

for 𝑋 = 𝑈,𝑀,𝑍, 𝑆, 𝐼, 𝑅, so that no population can ever become negative.

Remark 1. Notice that for 𝐾 = 0, 𝑏2 ≡ 𝑏2, meaning that the evolution of the info-epidemic model does not depend on the number of infected
individuals. However, the epidemic model depends on the number of misinformed and skeptical individuals, respectively, as they both have an
impact on the infection rate. In this particular case, the misinformed individuals can change their mind depending only on the news received on
the social media or other communication channels, or on their beliefs, and not based on the real-time evolution of the epidemic.

In Fig. 1, a flow diagram for the coupled system (3) illustrates the mutual relationships among the two layers, i.e. (mis)information and disease
spreading, considered in the population. The solid lines represent movement of individuals between compartments, while the dashed lines represent
influences between information and epidemic spreading. Outgoing arrows denote losses due to deaths.

System (3) could be reduced from 6 to 4 ODEs by exploiting twice the constant of motion 𝑁 . However, doing so does not significantly simplify
the analytical analysis. Moreover, not considering two of the variables of the model impairs a clear exposition of the results. Moreover, we are able
to fully characterize the asymptotic behavior of both systems (1) and (2); hence, we remark that such a dimensionality reduction is viable but not
necessary in this particular case.

3. Fast system: equilibria and stability

In this section, we focus on local and global stability of the equilibria of system (3), depending on the parameters involved. In particular, we
3

remark that, when 𝜀 = 0, the slow variables 𝑆, 𝐼 and 𝑅 do not evolve, and can (and will) be considered as parameters for the layer equations.
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Fig. 1. Flow diagram for system (3). Solid lines represent movement of individuals between compartments, dashed lines represent influences between information and epidemic
spreading. Notice that the only double arrow connects 𝑍 and 𝐼 , which is the only mutual influence between the information and epidemic layers. Red: fast variables; blue: slow
ariables, where a multiplication by 𝜀 is implicit on all arrows, for ease of notation. (For interpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

.1. Misinformed-Skeptical-Free equilibrium

We consider the fast system (3) fixing 𝜀 = 0 and we compute the Basic Reproduction Number 0 using the next generation matrix method,
see [40]. The Misinformed-Skeptical-Free Equilibrium (MSFE) of (3a)–(3c), i.e. the equilibrium in which 𝑀 = 𝑍 = 0, can be computed as

𝐸̃0 = (𝑈0,𝑀0, 𝑍0) = (1, 0, 0) (4)

from easy calculations. We remark that both 𝑀 and 𝑍 ‘‘recruit’’ individuals from the information-susceptible compartment 𝑈 ; hence, we consider
both for the derivation of 𝑓

0 .

Lemma 1. The Basic Reproduction Number of system (3a)–(3c) is

f
0 = max

{

𝑏1
𝜇1
,

𝑏2
𝜇1(1 −𝐾𝐼)

}

.

roof. The ‘‘disease’’ (information) compartments of the model are
d𝑀
d𝑡 = 𝑏1𝑈𝑀 − 𝜇1𝑀, (5a)

d𝑍
d𝑡 =

𝑏2
1 −𝐾𝐼

𝑈𝑍 − 𝜇1𝑍, (5b)

here 𝐼 ∈ [0, 1] is a parameter indicating the initial fraction of infected individuals in the population. We define

1(𝑈,𝑀,𝑍) ∶= 𝑏1𝑈𝑀, 1(𝑈,𝑀,𝑍) ∶= 𝜇1𝑀,

2(𝑈,𝑀,𝑍) ∶=
𝑏2

1 −𝐾𝐼
𝑈𝑍, 2(𝑈,𝑀,𝑍) ∶= 𝜇1𝑍.

We then obtain

𝐹 =

⎛

⎜

⎜

⎜

⎝

𝜕1
𝜕𝑀

(𝐸̃0)
𝜕1
𝜕𝑍

(𝐸̃0)

𝜕2
𝜕𝑀

(𝐸̃0)
𝜕2
𝜕𝑍

(𝐸̃0)

⎞

⎟

⎟

⎟

⎠

=

(

𝑏1 0

0
𝑏2

1 −𝐾𝐼

)

and 𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜕1
𝜕𝑀

(𝐸̃0)
𝜕1
𝜕𝑍

(𝐸̃0)

𝜕2
𝜕𝑀

(𝐸̃0)
𝜕2
𝜕𝑍

(𝐸̃0)

⎞

⎟

⎟

⎟

⎟

⎠

=
(

𝜇1 0
0 𝜇1

)

.

Therefore, the next generation matrix, defined as 𝑊 ∶= 𝐹𝑉 −1, is

𝑊 =

(

𝑏1 0

0
𝑏2

1 −𝐾𝐼

)⎛

⎜

⎜

⎜

⎝

1
𝜇1

0

0 1
𝜇1

⎞

⎟

⎟

⎟

⎠

⟹ f
0 ∶= 𝜌(𝑊 ) = max

{

𝑏1
𝜇1
,

𝑏2
𝜇1(1 −𝐾𝐼)

}

,

here 𝜌(⋅) denotes the spectral radius of a matrix. □

We now prove two results on the local and global stability of the MSFE (4), respectively.

emma 2 (Local Stability of the MSFE). The MSFE is locally asymptotically stable for the subsystem (3a)–(3c) if f
0 < 1, and unstable if f

0 > 1.

roof. The Jacobian matrix of (3a)–(3c) computed at the MSFE 𝐸̃0 is

𝐽
|𝐸̃0

=

⎛

⎜

⎜

⎜

⎜

−𝜇1 −𝑏1 −
𝑏2

1 −𝐾𝐼
0 𝑏1 − 𝜇1 0

0 0
𝑏2 − 𝜇

⎞

⎟

⎟

⎟

⎟

.

4

⎝ 1 −𝐾𝐼 1
⎠
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The eigenvalues of 𝐽
|𝐸̃0

can be easily computed as

𝜆1 = −𝜇1, 𝜆2 = 𝑏1 − 𝜇1, 𝜆3 =
𝑏2

1 −𝐾𝐼
− 𝜇1.

Thus, if f
0 < 1 all the eigenvalues are negative and the MSFE is locally asymptotically stable. If, instead, f

0 > 1, one (or both) of 𝜆2 or 𝜆3 is
positive, and the MSFE loses local stability. □

Proposition 3. Assume f
0 < 1. Then, the MSFE is exponentially stable for the subsystem (3a)–(3c).

Proof. The proof of Proposition 3 can be found in Appendix B. □

3.2. Skeptical-Free and Misinformed-Free Equilibria

We now discuss the existence of other equilibria of system (3a)–(3c), i.e. the equilibria in which 𝑀 ≠ 0 and/or 𝑍 ≠ 0.

Theorem 4. Assume f
0 > 1. We distinguish the following cases.

• If
𝑏1
𝜇1

> 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
< 1 then system (3a)–(3c) has a unique positive equilibrium

𝐸̃1 =
(

𝜇1
𝑏1
,
𝑏1 − 𝜇1
𝑏1

, 0
)

, (6)

called Skeptical-Free Equilibrium (SFE).
• If

𝑏1
𝜇1

< 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
> 1 then system (3a)–(3c) has a unique positive equilibrium

𝐸̃2 =
(

𝜇1(1 −𝐾𝐼)
𝑏2

, 0,
𝑏2 − 𝜇1(1 −𝐾𝐼)

𝑏2

)

, (7)

called Misinformed-Free Equilibrium (MFE).
• If

𝑏1
𝜇1

> 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
> 1 then (3a)–(3c) admits two positive equilibria, namely the SFE and the MFE defined above.

Proof. In order to compute the equilibria of system (3a)–(3c) we need to solve the following system of equations

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜇1 −
(

𝑏1𝑀 +
𝑏2

1 −𝐾𝐼
𝑍 + 𝜇1

)

𝑈 = 0, (a)

(𝑏1𝑈 − 𝜇1)𝑀 = 0, (b)
(

𝑏2
1 −𝐾𝐼

𝑈 − 𝜇1

)

𝑍 = 0. (c)

(8)

From (8)(b) and (8)(c) we obtain
{

𝑈 =
𝜇1
𝑏1

or 𝑀 = 0
}

and
{

𝑈 =
𝜇1(1 −𝐾𝐼)

𝑏2
or 𝑍 = 0

}

. (9)

ince 𝑈 can assume either of the two values, we distinguish between the following two cases.

• 𝑈 =
𝜇1
𝑏1

and 𝑍 = 0. Substituting in (8)(a) we obtain

𝜇1 −
(

𝑏1𝑀 + 𝜇1
) 𝜇1
𝑏1

= 0 ⟹ 𝑀 =
𝑏1 − 𝜇1
𝑏1

,

which is feasible if and only if 𝑏1 − 𝜇1 > 0.
• 𝑈 =

𝜇1(1 −𝐾𝐼)
𝑏2

and 𝑀 = 0. Substituting in (8)(a) we obtain

𝜇1 −
(

𝑏2
𝜇1(1 −𝐾𝐼)

𝑍 + 𝜇1

)

𝜇1(1 −𝐾𝐼)
𝑏2

= 0 ⟹ 𝑍 =
𝑏2 − 𝜇1(1 −𝐾𝐼)

𝑏2
,

which is feasible if and only if 𝑏2 − 𝜇1(1 −𝐾𝐼) > 0.

Thus we have obtained the following two equilibria:

𝐸̃1 ∶= (𝑈1,𝑀1, 𝑍1) =
(

𝜇1
𝑏1
,
𝑏1 − 𝜇1
𝑏1

, 0
)

, which exists if 𝑏1 > 𝜇1,

𝐸̃2 ∶= (𝑈2,𝑀2, 𝑍2) =
(

𝜇1(1 −𝐾𝐼)
𝑏2

, 0,
𝑏2 − 𝜇1(1 −𝐾𝐼)

𝑏2

)

, which exists if 𝑏2 > 𝜇1(1 −𝐾𝐼).

Recall the expression of the Basic Reproduction Number

f
0 = max

{

𝑏1
𝜇1
,

𝑏2
𝜇1(1 −𝐾𝐼)

}

,

f ̃ ̃
5

e obtain that if 0 > 1 either only one between 𝐸1 and 𝐸2 exists, or both of them exist. □
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We now investigate the local stability of the positive equilibria, studying the eigenvalues of the Jacobian matrix of system (3a)–(3c) evaluated
at each point.

Lemma 5 (Local Stability of the SFE). Assume that
𝑏1
𝜇1

> 1. The SFE (6) is locally asymptotically stable for the subsystem (3a)–(3c) if 𝑏1 >
𝑏2

1 −𝐾𝐼
, and

unstable if 𝑏1 <
𝑏2

1 −𝐾𝐼
.

roof. The Jacobian matrix of (3a)–(3c) computed at the SFE 𝐸̃1 is

𝐽
|𝐸̃1

=

⎛

⎜

⎜

⎜

⎜

⎝

−𝑏1 −𝜇1 −
𝜇1𝑏2

𝑏1(1 −𝐾𝐼)
𝑏1 − 𝜇1 0 0

0 0 𝜇1

(

𝑏2
𝑏1(1 −𝐾𝐼)

− 1
)

⎞

⎟

⎟

⎟

⎟

⎠

The eigenvalues of 𝐽
|𝐸̃1

can be easily computed as

𝜆1 = −𝜇1, 𝜆2 = −𝑏1 + 𝜇1, 𝜆3 = 𝜇1

(

𝑏2
𝑏1(1 −𝐾𝐼)

− 1
)

.

ecall that
𝑏1
𝜇1

> 1, which implies 𝜆2 < 0. Moreover, if 𝑏1 >
𝑏2

1 −𝐾𝐼
all the eigenvalues are negative and thus the SFE is locally asymptotically

table. If, instead, 𝑏1 <
𝑏2

1 −𝐾𝐼
then 𝜆3 > 0 and the SFE loses local stability. □

Lemma 6 (Local Stability of the MFE). Assume that
𝑏2

𝜇1(1 −𝐾𝐼)
> 1. The MFE (7) is locally asymptotically stable for the subsystem (3a)–(3c)

f 𝑏1 <
𝑏2

1 −𝐾𝐼
, and unstable if 𝑏1 >

𝑏2
1 −𝐾𝐼

.

Proof. The Jacobian matrix of (3a)–(3c) computed at the MFE 𝐸̃2 is

𝐽
|𝐸̃2

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
𝑏2

1 −𝐾𝐼
−
𝜇1𝑏1(1 −𝐾𝐼)

𝑏2
−𝜇1

0
𝑏1𝜇1(1 −𝐾𝐼)

𝑏2
− 𝜇1 0

𝑏2 − 𝜇1(1 −𝐾𝐼)
1 −𝐾𝐼

0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

he eigenvalues of 𝐽
|𝐸̃2

can be easily computed as

𝜆1 = −𝜇1, 𝜆2 =
𝜇1(1 −𝐾𝐼) − 𝑏2

1 −𝐾𝐼
, 𝜆3 = 𝜇1

(

𝑏1(1 −𝐾𝐼)
𝑏2

− 1
)

.

Recall that
𝑏2

𝜇1(1 −𝐾𝐼)
> 1, which implies 𝜆2 < 0. Moreover, if 𝑏1 <

𝑏2
1 −𝐾𝐼

all the eigenvalues are negative and thus the SFE is locally

asymptotically stable. If, instead, 𝑏1 >
𝑏2

1 −𝐾𝐼
then 𝜆3 > 0 and the MFE loses local stability. □

Remark 2. Notice that if only 𝐸̃1 lies in the biologically relevant region and 𝐸̃2 does not, i.e.
𝑏1
𝜇1

> 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
< 1 then the condition for

local asymptotically stability is always satisfied. Indeed,

𝑏1 > 𝜇1 >
𝑏2

1 −𝐾𝐼
.

urthermore, we can conclude that if only 𝐸̃1 exists it is always locally asymptotically stable. Similarly, when only 𝐸̃2 exists, it is locally
asymptotically stable.

From Remark 2, we know that if only one of the two equilibria exists, then it is always locally asymptotically stable. We now provide results
on the global stability of (6) and (7), assuming the other equilibrium does not lie in the biologically relevant region. Although a result on global
stability is stronger than the one on local stability, the exact formulation of the eigenvalues given in our local stability results will prove useful in
the slow–fast analysis of the whole system (3). The proofs of Propositions 7–10, introduced below, are give in the Appendix B. We make extensive
use of the classic Goh–Lotka–Volterra Lyapunov function [41] in all cases.

Proposition 7 (Global Stability of the SFE). Assume that
𝑏1
𝜇1

> 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
< 1. Then, the SFE (6) is Globally Asymptotically Stable (GAS) for the

ubsystem (3a)–(3c).

roof. The proof of Proposition 7 can be found in Appendix B. □

roposition 8 (Global Stability of the MFE). Assume that
𝑏1
𝜇1

< 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
> 1. Then, the MFE (7) is GAS for the subsystem (3a)–(3c).

roof. The proof of Proposition 8 can be found in Appendix B. □
6
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Remark 3. If both the positive equilibria exists, i.e. 𝑏1 > 𝜇1 and 𝑏2 > 𝜇1(1 − 𝐾𝐼), then Lemmas 5 and 6 ensure that the system cannot exhibit
istability. Indeed, if 𝑏1 <

𝑏2
1 −𝐾𝐼

then the SFE is unstable and if 𝑏1 >
𝑏2

1 −𝐾𝐼
then the MFE is unstable.

In the following, we provide conditions for the global asymptotical stability of the positive equilibria also in the case in which both lie in the
iologically relevant region, under the same hypothesis of Lemmas 5 and 6.

roposition 9 (Global Stability of the SFE). Assume that
𝑏1
𝜇1

> 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
> 1. Then, the SFE (6) is GAS for the subsystem (3a)–(3c) if 𝑏1 >

𝑏2
1 −𝐾𝐼

.

roof. The proof of Proposition 9 can be found in Appendix B. □

roposition 10 (Global Stability of the MFE). Assume that
𝑏1
𝜇1

> 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
> 1. Then, the MFE (7) is GAS for the subsystem (3a)–(3c) if

1 <
𝑏2

1 −𝐾𝐼
.

roof. The proof of Proposition 10 can be found in Appendix B. □

Remark 4. Considering the Skeptical-Free Equilibrium, 𝐸̃1, we observe that the eigenvalue 𝜆3 vanishes when

𝑏†1 =
𝑏2

1 −𝐾𝐼
e.g. when the rate of becoming misinformed is equal to the rate of becoming skeptical. Moreover, the stability of either the Skeptical-Free
Equilibrium (resp. Misinformed-Free Equilibrium) corresponds with the rate of the flow from 𝑈 to 𝑀 being smaller (resp. greater) than the rate
of the flow from 𝑈 to 𝑍, which is quite an intuitive result. In the following Section we analyze the behavior of the model under this condition.

.3. Threshold case

Note that in (9) we did not consider the case in which both 𝑀 ≠ 0 and 𝑍 ≠ 0. Indeed, in this case we need
𝜇1
𝑏1

=
𝜇1(1 −𝐾𝐼)

𝑏2
⟺ 𝑏1 =

𝑏2
1 −𝐾𝐼

,

which could be possible for a specific value of the slow variable 𝐼 , namely

𝐼 =
𝑏1 − 𝑏2
𝐾𝑏1

.

Notice that in this case the condition 𝑏1 =
𝑏2

1 −𝐾𝐼
is exactly the ‘‘critical’’ condition of Remark 4.

Defining 𝑏 ∶= 𝑏1 =
𝑏2

1 −𝐾𝐼
, Eqs. (3a)–(3c) become

d𝑈
d𝑡 = 𝜇1 − 𝑏𝑈 (𝑀 +𝑍) − 𝜇1𝑈, (10a)

d𝑀
d𝑡 = 𝑏𝑈𝑀 − 𝜇1𝑀, (10b)

d𝑍
d𝑡 = 𝑏𝑈𝑍 − 𝜇1𝑍. (10c)

The value of the Basic Reproduction Number is simply f
0 = 𝑏

𝜇1
and the MSFE 𝐸̃0 = (1, 0, 0) always exists and it is GAS if f

0 < 1. We remark
that, from system (10), we cannot find the explicit value of the positive equilibria; indeed, computing its expression (and recalling that, under our
simplifying assumption 𝑁 = 1, 𝑀 +𝑍 = 1 − 𝑈) we obtain

𝑈∗ = 1
f

0

and 𝑀∗ = 1 −𝑍∗ − 𝑈∗. (11)

We thus have a line of equilibria for the fast system (10), 𝐸̃3 = (𝑈∗,𝑀∗, 𝑍∗), which exists if f
0 > 1. On this line, there exists only one equilibrium

or the perturbed system (3), as we show in Appendix A. The eigenvalues on this one dimensional set of equilibria for the fast flow are

𝜆1 = 0, 𝜆2,3 =
−𝑏 − 𝜇1 ±

√

(𝑏 − 𝜇1)2 + 4𝜇12

2
.

he zero eigenvalues 𝜆1 corresponds to the direction spanned by this line of equilibria. Notice that 𝜆3 (− sign in front of the square root) it is
always negative, while 𝜆2 (+ sign) is negative if f

0 > 1 (which is a condition needed for the feasibility of this equilibrium), and positive otherwise.
It is convenient to introduce an auxiliary variable, taking into account the additional symmetry this scenario introduces in the model, system

10) can be rewritten, introducing for ease of notation 𝐿 ∶=𝑀 +𝑍, obtaining
d𝑈
d𝑡 = 𝜇1𝐿 − 𝑏𝑈𝐿, (12a)

d𝐿
d𝑡 = 𝑏𝑈𝐿 − 𝜇1𝐿. (12b)

The unique positive equilibrium of system (12) is given by 𝐸̃ =

(

1
f , 1 −

1
f

)

and it exists in the biologically feasible region when f
0 > 1.
7

0 0
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Table 1
Summary of the equilibria of the fast subsystem, (1), their feasibility and stability conditions.

Equilibria Feasibility Stability

𝐸̃0 = (1, 0, 0) Always feasible f
0 = max

{

𝑏1
𝜇1
,

𝑏2
𝜇1(1 −𝐾𝐼)

}

< 1

𝐸̃1 =
(

𝜇1
𝑏1
,
𝑏1 − 𝜇1
𝑏1

, 0
)

𝑏1
𝜇1

> 1 𝑏1 >
𝑏2

1 −𝐾𝐼

𝐸̃2 =
(

𝜇1(1 −𝐾𝐼)
𝑏2

, 0,
𝑏2 − 𝜇1(1 −𝐾𝐼)

𝑏2

)

𝑏2
𝜇1(1 −𝐾𝐼)

> 1 𝑏1 <
𝑏2

1 −𝐾𝐼

𝐸̃3 = (𝑈 ∗ ,𝑀∗ , 𝑍∗) 𝑏 ∶= 𝑏1 =
𝑏2

1 −𝐾𝐼
and f

0 > 1 Always when feasible

Proposition 11 (Global Stability of the Positive Equilibrium). Assume that f
0 > 1. Then, the positive equilibrium 𝐸̃ =

⎛

⎜

⎜

⎝

1
f

0

, 1 − 1
f

0

⎞

⎟

⎟

⎠

is globally

asymptotically stable for the subsystem (12).

Proof. The proof of Proposition 11 can be found in Appendix B. □

Remark 5. The set of equilibria (11) is not a branch of the critical manifold, since its existence depends on 𝐼 , one for the slow variables, assuming
a specific, fixed value. Hence, the slow flow cannot evolve on this set.

3.4. Bifurcation analysis

The fast system (1) admits four equilibrium points. We summarize the respective feasibility and stability conditions in Table 1. Next, we prove
the existence of three transcritical bifurcations between 𝐸̃0 and 𝐸̃1, 𝐸̃2 or 𝐸̃3, respectively.

Proposition 12. System (1) exhibits a transcritical bifurcation at 𝑏∗1 ∶= 𝑏1 = 𝜇1 between 𝐸̃0 and 𝐸̃1.

Proof. Using Sotomayor’s theorem [42, Ch. 4, Thm. 1,], we can prove that there is a transcritical bifurcation for which 𝐸̃1 emanates from 𝐸̃0
as soon as 𝑏1 increases past 𝜇1. Focusing on 𝐸̃0 and the parameter 𝑏1, we can observe that the first and the third eigenvalues of (3.1) are always
negative, while the second one vanishes if 𝑏∗1 ∶= 𝑏1 = 𝜇1. In this case, right and left eigenvectors corresponding to the zero eigenvalue are given
by 𝑣 = [1,−1, 0] and 𝑤 = [0, 1, 0].

We denote with 𝐹 (𝑈,𝑀,𝑍) =
[

𝐹 1, 𝐹 2, 𝐹 3]𝑇 system’s (1) right-hand side. Since

𝐹𝑏1 = [−𝑈𝑀,𝑈𝑀, 0]𝑇 and 𝐷𝐹𝑏1 =
⎡

⎢

⎢

⎣

−𝑀 −𝑈 0
𝑀 𝑈 0
0 0 0

⎤

⎥

⎥

⎦

,

where 𝐹𝑏1 indicates the derivative of 𝐹 with respect to 𝑏1, and 𝐷𝐹𝑏1 the Jacobian matrix of this derivative, it follows that

𝑤𝑇𝐹𝑏1 (𝐸̃0, 𝑏
∗
1) = 0 and 𝑤𝑇

[

𝐷𝐹𝑏1 (𝐸̃0, 𝑏
∗
1) 𝑣

]

= −1 ≠ 0.

Thus, the first two sufficient conditions of Sotomayor’s theorem to ensure the existence of a transcritical bifurcation from 𝐸̃0 at 𝑏1 = 𝑏∗1 are verified.
We observe that the second partial derivatives of 𝐹 2 are 𝐹 2

𝑈𝑈 = 𝐹 2
𝑀𝑀 = 𝐹 2

𝑍𝑍 = 𝐹 2
𝑈𝑍 = 𝐹 2

𝑀𝑍 = 0 and 𝐹 2
𝑈𝑀 = 𝑏1 and thus at this equilibrium all

second derivatives vanish, except for 𝐹 2
𝑈𝑀 . In summary, we find

𝑤𝑇
[

𝐷2𝐹 (𝐸̃0, 𝑏
∗
1)(𝑣, 𝑣)

]

= 𝐷2𝐹 2(𝐸̃0, 𝑏
∗
1)(𝑣, 𝑣) = −𝜇1 ≠ 0

so that also the third condition of Sotomayor’s theorem for the occurrence of a transcritical bifurcation is satisfied. □

Proposition 13. System (1) exhibits a transcritical bifurcation at 𝑏∗2 ∶= 𝑏2 = 𝜇1(1 − 𝐼𝐾) between 𝐸̃0 and 𝐸̃2.

Proof. Using Sotomayor’s theorem once again, we prove that there is a transcritical bifurcation for which 𝐸̃2 emanates from 𝐸̃0 as soon as 𝑏2
increases past 𝜇1(1 − 𝐾𝐼). Focusing on 𝐸̃0 and the parameter 𝑏2, we can observe that the first and the second eigenvalues of (3.1) are always
negative, while the third one vanishes if 𝑏∗2 ∶= 𝑏2 = 𝜇1(1 − 𝐾𝐼). In this case, right and left eigenvectors corresponding to the zero eigenvalue are
given by 𝑣 = [1, 0,−1] and 𝑤 = [0, 0, 1].

We denote by 𝐹 (𝑈,𝑀,𝑍) =
[

𝐹 1, 𝐹 2, 𝐹 3]𝑇 the system’s (1) right-hand side. Since

𝐹𝑏2 =
[

− 𝑈𝑍
1 −𝐾𝐼

, 0, 𝑈𝑍
1 −𝐾𝐼

]𝑇
and 𝐷𝐹𝑏2 =

⎡

⎢

⎢

⎢

⎢

⎣

− 𝑍
1 −𝐾𝐼

0 − 𝑈
1 −𝐾𝐼

0 0 0
𝑍

1 −𝐾𝐼
0 𝑈

1 −𝐾𝐼

⎤

⎥

⎥

⎥

⎥

⎦

,

here 𝐹𝑏2 indicates the derivative of 𝐹 with respect to 𝑏2, and 𝐷𝐹𝑏2 the Jacobian matrix of this derivative, it follows that

𝑤𝑇𝐹𝑏2 (𝐸̃0, 𝑏
∗
2) = 0 and 𝑤𝑇

[

𝐷𝐹𝑏2 (𝐸̃0, 𝑏
∗
2) 𝑣

]

= − 1
1 −𝐾𝐼

≠ 0.

hus, the first two sufficient conditions of Sotomayor’s theorem to ensure the existence of a transcritical bifurcation from 𝐸̃0 at 𝑏2 = 𝑏∗2 are verified.
We observe that the second partial derivatives of 𝐹 3 are 𝐹 3

𝑈𝑈 = 𝐹 3
𝑀𝑀 = 𝐹 3

𝑍𝑍 = 𝐹 3
𝑈𝑀 = 𝐹 3

𝑀𝑍 = 0 and

𝐹 3 =
𝑏2 ,
8

𝑈𝑍 1 −𝐾𝐼
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and thus at this equilibrium all vanish, except for 𝐹 3
𝑈𝑍 . In summary, we find

𝑤𝑇
[

𝐷2𝐹 (𝐸̃0, 𝑏
∗
2)(𝑣, 𝑣)

]

= 𝐷2𝐹 3(𝐸̃0, 𝑏
∗
2)(𝑣, 𝑣) = −𝜇1 ≠ 0

o that also the third condition of Sotomayor’s theorem for the occurrence of a transcritical bifurcation is satisfied. □

Proposition 14. Let 𝑏 ∶= 𝑏1 =
𝑏2

𝜇1(1 −𝐾𝐼)
hold. Then, system (1) exhibits a transcritical bifurcation at 𝑏∗ = 𝜇1 between 𝐸̃0 and 𝐸̃3.

Proof. The claim follows as a particular case of Propositions 12 and 13. □

4. Slow systems: equilibria and stability

In singularly perturbed system of ODEs in standard form, such as system (3), the set of equilibria for the fast variable plays a fundamental role
in the dynamics. Such set is called the critical manifold.

As a consequence of Theorem 4, the critical manifold of system (3) is given by the union of the following three sets, which exists in the
biologically relevant region according to the conditions outlined in Theorem 4:

0 = 0
0 ∪ 1

0 ∪ 2
0 ∶={(𝑈,𝑀,𝑍, 𝑆, 𝐼, 𝑅) ∈ R6 ∣ (𝑈,𝑀,𝑍) = 𝐸̃0, 𝑆, 𝐼, 𝑅 ≥ 0, 𝑆 + 𝐼 + 𝑅 = 1} ∪

{(𝑈,𝑀,𝑍, 𝑆, 𝐼, 𝑅) ∈ R6 ∣ (𝑈,𝑀,𝑍) = 𝐸̃1, 𝑆, 𝐼, 𝑅 ≥ 0, 𝑆 + 𝐼 + 𝑅 = 1} ∪

{(𝑈,𝑀,𝑍, 𝑆, 𝐼, 𝑅) ∈ R6 ∣ (𝑈,𝑀,𝑍) = 𝐸̃2(𝐼), 𝑆, 𝐼, 𝑅 ≥ 0, 𝑆 + 𝐼 + 𝑅 = 1}.

(13)

In this section, we study the behavior of the slow system (2) on each of the three branches of the critical manifold. Recall that the exact
formulation of each equilibrium is given as 𝐸̃0 (4), 𝐸̃1 (6) and 𝐸̃2 (7) in the previous section. It is natural to study the evolution of the systems
presented in this section in the slow time scale 𝜏. The results obtained in this section, when combined with the ones obtained in Section 3, provide
insight on the global behavior of the perturbed system (3) for 0 < 𝜀 ≪ 1.

4.1. The first branch of the critical manifold, 𝐸̃0

On this branch, we have

𝛽(𝑀,𝑍) = 𝛽(0, 0) = 𝛽 1 + 0
1 + 0

= 𝛽.

ence, the slow system on 0
0 evolves according to the following system of ODEs:

d𝑆
d𝜏 = 𝜇2 − 𝛽𝑆𝐼 + 𝜂𝑅 − 𝜇2𝑆, (14a)

d𝐼
d𝜏 = 𝛽𝑆𝐼 − 𝛾𝐼 − 𝜇2𝐼, (14b)

d𝑅
d𝜏 = 𝛾𝐼 − 𝜂𝑅 − 𝜇2𝑅, (14c)

which is a classical SIRS model with demography and constant population. The corresponding Basic Reproduction Number is

𝑠,0
0 =

𝛽
𝛾 + 𝜇2

. (15)

It is well known [43] that if 𝑠,0
0 < 1 the system (14) converges to its Disease Free Equilibrium (𝑆, 𝐼, 𝑅) = (1, 0, 0), whereas if 𝑠,0

0 > 1, there exists
nly a unique Endemic Equilibrium 𝐸∗,0 = (𝑆∗,0, 𝐼∗,0, 𝑅∗,0)

𝑆∗,0 =
𝛾 + 𝜇2
𝛽

, 𝐼∗,0 =
(𝛽 − 𝛾 − 𝜇2)(𝜂 + 𝜇2)

𝛽(𝛾 + 𝜂 + 𝜇2)
, 𝑅∗,0 =

𝛾𝐼∗,0

𝜂 + 𝜇2
, (16)

which is globally stable for system (14).

4.2. The second branch of the critical manifold, 𝐸̃1

On this branch, we have

𝛽(𝑀,𝑍) = 𝛽
(

𝑏1 − 𝜇1
𝑏1

, 0
)

= 𝛽
1 +

𝑏1 − 𝜇1
𝑏1

1 + 0
= 𝛽

2𝑏1 − 𝜇1
𝑏1

. (17)

Notice that, by the assumption on existence of 𝐸̃1, 𝜇1 < 𝑏1, hence 𝛽(𝑀,𝑍) > 𝛽. From a biological point of view, this means that the absence of
keptical individuals increases the spread of the disease.

Then, the slow system on 1
0 evolves according to the following system of ODEs:

d𝑆
d𝜏 = 𝜇2 − 𝛽

2𝑏1 − 𝜇1
𝑏1

𝑆𝐼 + 𝜂𝑅 − 𝜇2𝑆, (18a)

d𝐼
d𝜏 = 𝛽

2𝑏1 − 𝜇1
𝑏1

𝑆𝐼 − 𝛾𝐼 − 𝜇2𝐼, (18b)

d𝑅 = 𝛾𝐼 − 𝜂𝑅 − 𝜇 𝑅, (18c)
9
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which is again a classical SIRS model with demography and constant population. The corresponding Basic Reproduction Number is

𝑠,1
0 =

𝛽
𝛾 + 𝜇2

⋅
2𝑏1 − 𝜇1

𝑏1
. (19)

Furthermore, compared to the dynamics described in Section 4.1, due to the influence of misinformation spreading, represented by the parameter
𝑏1, the Basic Reproduction Number is larger. In particular, one could imagine a situation in which 𝑠,0

0 (15) is smaller than 1, while 𝑠,1
0 (19) is

larger than 1. This means that a disease which would naturally become extinct is ‘‘kept alive’’ by misinformed individual making it endemic, as
illustrated in Fig. 6.

Similarly to the previous scenario, it is well known [43] that if 𝑠,1
0 < 1 the system (18) converges to its Disease Free Equilibrium (𝑆, 𝐼, 𝑅) =

1, 0, 0), whereas if 𝑠,1
0 > 1, there exists a unique Endemic Equilibrium 𝐸∗,1 = (𝑆∗,1, 𝐼∗,1, 𝑅∗,1)

𝑆∗,1 =
(𝛾 + 𝜇2)𝑏1
𝛽(2𝑏1 − 𝜇1)

, 𝐼∗,1 =
(𝛽(2𝑏1 − 𝜇1) − 𝑏1(𝛾 + 𝜇2))(𝜂 + 𝜇2)

𝛽(2𝑏1 − 𝜇1)(𝛾 + 𝜂 + 𝜇2)
, 𝑅∗,1 =

𝛾𝐼∗,1

𝜂 + 𝜇2
, (20)

which is globally asymptotically stable for system (18).

4.3. The third branch of the critical manifold, 𝐸̃2

On this branch, we have

𝛽(𝑀,𝑍) = 𝛽
(

0,
𝑏2 − 𝜇1(1 −𝐾𝐼)

𝑏2

)

= 𝛽 1 + 0

1 +
𝑏2 − 𝜇1(1 −𝐾𝐼)

𝑏2

= 𝛽
𝑏2

2𝑏2 − 𝜇1(1 −𝐾𝐼)
.

otice that, by the feasibility assumption of 𝐸̃2, 𝑏2 > 𝜇1(1 − 𝐾𝐼), hence 𝛽(𝑀,𝑍) < 𝛽. From a biological viewpoint, this means that the absence
f misinformed individuals and the presence of skeptical individuals decrease the infection rate. This can be explained by the fact that aware
ndividuals directly decrease the spread of the disease.

Hence, the slow system on 2
0 evolves according to the following system of ODEs:

d𝑆
d𝜏 = 𝜇2 − 𝛽

𝑏2
2𝑏2 − 𝜇1(1 −𝐾𝐼)

𝑆𝐼 + 𝜂𝑅 − 𝜇2𝑆, (21a)

d𝐼
d𝜏 = 𝛽

𝑏2
2𝑏2 − 𝜇1(1 −𝐾𝐼)

𝑆𝐼 − 𝛾𝐼 − 𝜇2𝐼, (21b)

d𝑅
d𝜏 = 𝛾𝐼 − 𝜂𝑅 − 𝜇2𝑅. (21c)

Moreover, compared to the systems described in Sections 4.1 and 4.2, the infected population plays a non-trivial role in the infection parameter.
System (21) always admits a Disease Free Equilibrium (𝑆, 𝐼, 𝑅) = (1, 0, 0). The disease compartment is 𝐼 , thus we consider

d𝐼
d𝜏 = 𝛽

𝑏2
2𝑏2 − 𝜇1(1 −𝐾𝐼)

𝑆𝐼 − 𝛾𝐼 − 𝜇2𝐼,

where we define

 ∶= 𝛽
𝑏2

2𝑏2 − 𝜇1(1 −𝐾𝐼)
𝑆𝐼 and  ∶= (𝛾 + 𝜇2)𝐼.

We thus obtain

𝐹 = 𝜕
𝜕𝐼

|

|

|

|(𝑆,𝐼,𝑅)=(1,0,0)
=

𝛽𝑏2
2𝑏2 − 𝜇1

and 𝑉 = 𝛾 + 𝜇2,

from which

𝑠,2
0 =

𝛽
𝛾 + 𝜇2

⋅
𝑏2

2𝑏2 − 𝜇1
. (22)

For system (21) we can use the results from [44] to ensure convergence to the DFE when 𝑠,2
0 < 1, and when 𝑠,2

0 > 1 there exists a unique Endemic
Equilibrium 𝐸∗,2 = (𝑆∗,2, 𝐼∗,2, 𝑅∗,2)

𝑆∗,2 =
(𝛾 + 𝜇2)(2𝑏2 − 𝜇1(1 −𝐾𝐼∗,2))

𝛽𝑏2
, 𝐼∗,2 =

(𝛾 + 𝜇2)(𝛽𝑏2 − (𝛾 + 𝜇2)(2𝑏2 − 𝜇1))
𝛽𝑏2(𝜂 + 𝜇2 + 𝛾) + 𝜇1𝐾(𝜂 + 𝜇2)(𝛾 + 𝜇2)

, 𝑅∗,2 =
𝛾𝐼∗,2

𝜂 + 𝜇2
, (23)

which is globally asymptotically stable for system (21). Notice that 𝑠,2
0 > 1 if and only if 𝐼∗,2 > 0; moreover, after some calculations, one may

check that 1 − 𝑆∗,2 = 𝐼∗,2 + 𝑅∗,2. Indeed, given 𝑆∗,2 and 𝑅∗,2 from Eqs. (21b) and (21c), Eq. (21a) becomes

𝜇2(1 − 𝑆∗,2) − (𝛾 + 𝜇2)𝐼∗,2 +
𝜂𝛾𝐼∗,2

𝜂 + 𝜇2
= 0,

and substituting 1 − 𝑆∗,2 = 𝐼∗,2 + 𝑅∗,2 we obtain

𝜇2

(

𝐼∗,2 +
𝛾𝐼∗,2

𝜂 + 𝜇2

)

− (𝛾 + 𝜇2)𝐼∗,2 +
𝜂𝛾𝐼∗,2

𝜂 + 𝜇2
= 0,

rom which

𝜇2(𝜂 + 𝜇2) + 𝜇2𝛾 − (𝛾 + 𝜇2)(𝜂 + 𝜇2) + 𝜂𝛾 = 0,

hich is a tautology.
10
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Fig. 2. Visualization of the entry–exit map on the line 𝑥 = 𝑥0. The point (𝑦, 𝑥) = (0, 0) is non-hyperbolic.

To clarify the use of [44, Thm. 3.1], compared to their notation we have: 𝑏 = 𝜇2 (birth rate equal to mortality rate), 𝑝 = 0 (no vaccination rate),
𝑐 = 0 (no additional disease mortality),

𝜓(𝐼) =
2𝑏2 − 𝜇1(1 −𝐾𝐼)

2𝑏2 − 𝜇1
and 𝛽 =

𝛽𝑏2
2𝑏2 − 𝜇1

.

All the hypotheses needed to use [44, Thm. 3.1] are then satisfied, and we can conclude global stability of the DFE or of the EE depending on
𝑠,2

0 ≶ 1.
Mirroring the remark in Section 4.2, we notice here that a disease characterized by parameters for which 𝑠,0

0 > 1 might be brought to extinction,
meaning 𝑠,2

0 < 1, if enough individuals are skeptical of disease-related misinformation. We illustrate this example in Fig. 7.

5. Delayed loss of stability: the entry–exit function

Depending on specific relations between parameters of the fast systems (1) and parameters of the slow system (2), evolving on the three branches
of the critical manifold (13) as detailed in Section 4, two scenarios can happen in the perturbed system (3). In this section, we explore these two
possibilities.

Recall Lemmas 2, 5, 6 and Table 1. Due to the corresponding existence constraints, each branch of the critical manifold has exactly one
eigenvalue which potentially changes sign under the slow flow, namely 𝜆3.

Assume that the fast flow brought the dynamics in the neighborhood of a stable branch (i.e. the corresponding 𝜆3 < 0) of the critical manifold.
If the branch of the critical manifold which the fast system approaches does not lose stability under the slow flow (the first possible scenario), the
system simply exhibits convergence towards the unique stable equilibrium on that branch. In particular, this is always the case when the value
𝑠,𝑖

0 < 1, which implies monotone convergence of 𝐼 → 0, maintaining the corresponding eigenvalue negative.
Hence, we are particularly interested in the cases in which 𝑠,𝑖

0 > 1, and for which the value of the infected population at the endemic equilibrium
𝐼∗,𝑖 potentially makes the corresponding 𝜆3 > 0 (the second possible scenario). We refer to Section 6 for numerical simulations of various interesting
scenarios.

Since one of the eigenvalues potentially changes its sign during the slow flow, the critical manifold is not uniformly hyperbolic, and thus standard
GSPT theory cannot be applied. Indeed, one of the original assumptions of classical Fenichel’s theory [17–20] was that of uniform hyperbolicity of
the critical manifold, meaning that the eigenvalues corresponding to the fast variables on the critical manifold should be uniformly bounded away
from the imaginary axis of the complex plane, to ensure either local stability or instability. However, it is quite common in epidemic modeling
that the eigenvalues driving the slow part of the dynamics change sign, necessarily vanishing in the process, and this is actually the mechanisms
behind long dormant stages of the epidemic between consequent waves [21,29,36,45,46].

Systems of this kind may exhibit a delayed loss of stability; meaning, orbits of the corresponding system remain close to a repelling branch of
the critical manifold for a long time, before finally leaving a neighborhood of said manifold. In order to measure this permanence, a very useful
tool is the so-called entry–exit function [47,48].

More specifically, in its lowest dimensional formulation, the entry–exit function applies to planar systems of the form

𝑥′ = 𝑓 (𝑥, 𝑦, 𝜀)𝑥,

𝑦′ = 𝜀𝑔(𝑥, 𝑦, 𝜀),
(24)

with (𝑥, 𝑦) ∈ R2, 𝑔(0, 𝑦, 0) > 0 and sign(𝑓 (0, 𝑦, 0)) = sign(𝑦). Note that for 𝜀 = 0, the 𝑦-axis consists of normally attracting/repelling equilibria if 𝑦 is
negative/positive, respectively.

Consider a horizontal line {𝑥 = 𝑥0}, close enough to the 𝑦-axis to obey the attraction/repulsion assumed above. An orbit of (24) that intersects
such a line at 𝑦 = 𝑦0 < 0 (entry) re-intersects it again (exit) at 𝑦 = 𝑝𝜀(𝑦0), as sketched in Fig. 2.

As 𝜀 → 0, the image of the return map 𝑝𝜀(𝑦0) to the horizontal line 𝑥 = 𝑥0 approaches 𝑝0(𝑦0) given implicitly by

∫

𝑝0(𝑦0)

𝑦0

𝑓 (0, 𝑦, 0)
𝑔(0, 𝑦, 0)

d𝑦 = 0. (25)

This construction can be generalized to higher dimensional systems, such as the one we are studying in this paper. For a more precise description
of the planar case, we refer to [47,48] or the preliminaries of [21]. For more general theorems, we refer the interested reader to [49–53].

This tool has proven to be remarkably useful in particular in epidemic modeling evolving on multiple time scales, as it provides a measure of
the dormant phase between subsequent waves of an epidemic [21,29,36,45,46].

Unfortunately, the classical entry–exit formulas fundamentally rely on two additional assumptions, one of which is not satisfied in our case.
The first one is the monotonicity of the eigenvalue which causes the delayed loss of stability. This is related to the assumption 𝑔(0, 𝑦, 0) > 0 in the
planar case (24). Indeed, as a consequence of our analysis in Section 4, when the corresponding slow Basic Reproduction Number 𝑠,𝑖

0 > 1, the
slow system approaches its unique endemic equilibrium through damped oscillations. Since the eigenvalues we are interested in are functions of
𝐼 , they are not monotone. A particularly pathological case is the one in which the interplay between the (mis)information spreading parameters
and the epidemic spreading parameters is such that the value of 𝐼 at the endemic equilibrium (i.e. 𝐼∗,𝑖) coincides with 𝜆 = 0. In that case, indeed,
11
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the eigenvalue 𝜆3 would potentially change sign multiple times throughout the slow flow, rendering analytical results about the permanence of
rbits close to a specific branch of the critical manifold impossible to achieve with the currently available theory on entry–exit functions. We do
ot explicitly derive the conditions on the parameters for which this scenario happens, as the calculations are remarkably cumbersome and do
ot contribute to the overall understanding of the dynamics. Indeed, to check whether this is possible or not, one would need to use the endemic
quilibrium values of 𝐼∗,𝑖, namely (16), (20) and (23), and impose that they lie in the unstable region of the corresponding branch of the critical
anifold; recall (13).

The second classical assumption of the entry–exit function is the separation of eigenvalues. Namely, under the slow flow, the eigenvalues which
rovides (delayed) loss of stability should never intersect the remaining ones. A first result towards a generalization in this direction was recently
btained in [49]. However, the computations to check separation in our case are quite involved, and considering that another hypothesis is not
atisfied, we do not include them.

Instead, we conjecture that, away from pathological scenarios in which the damped convergence towards the endemic equilibrium corresponds to
ultiple sign changes of the eigenvalue we focus on, similar entry–exit relations are to be expected, and we showcase some concordant simulations

n the next section.

. Numerical simulations

In this section, we provide various simulations of system (3), highlighting noteworthy transient and asymptotic dynamics depending on the
elected values of the parameters in the system. Recall (13) for the three branches of the critical manifold.

The parameters used in each simulation are specified in the corresponding caption. We remark that our choice of the parameters was dictated
y the conditions needed to clearly visualize each scenario, rather than an attempt to closely match to real-world values of each quantity. The
stimation of such parameters is outside the scope of the present work; moreover, it is extremely case-sensitive, and for the information layer, quite
ifficult to deduce. Hence, we renounce realism in favor of an increased clarity of the figures.

In Fig. 3, the system exhibits two entry–exit phenomena. First, the orbit approaches 1
0 (representing an absence of skeptical individuals in the

population). After the peak of infection, the orbit ‘‘jumps’’ from 1
0 to 2

0 (representing an absence of misinformed individuals in the population).
Around 𝑡 ≈ 150, the orbit ‘‘jumps’’ again, eventually settling on 1

0 , with a corresponding high asymptotic value of infected individuals in the
population. In Fig. 4 instead, the orbit approaches first the branch 1

0 and later settles on 2
0 .

In Fig. 5, we observe again the same two entry–exit phenomena, although the slow passage close to 𝑀 = 0 is much longer than the one in
Fig. 3. Recall Section 3.3, in which we identified a line of equilibria for the fast system. In the full system, only one equilibrium is present on this
line, and we provide its formulation in Appendix A. The system then converges towards this equilibrium, leaving the critical manifold without ever
approaching any of its branches again.

The next two numerical simulations showcase how the (mis)information spread may negatively or positively affect the evolution of the epidemic,
depending on whether the slow dynamics evolves on the second or on the third branch of the critical manifold; recall (13).

In Fig. 6, we illustrate an example of how the presence of misinformed individuals and the absence of skeptical individuals can negatively
affect the evolution of the epidemic, making an infectious disease which would naturally die out become endemic; we refer to Section 4.2 for more
context.

In Fig. 7, instead, we illustrate an example of how the presence of skeptical individuals and the absence of misinformed individuals can
positively affect the evolution of the epidemic, making an infectious disease which would naturally be endemic evolve towards extinction; we
refer to Section 4.3 for more context.

Finally, as illustrated in Fig. 8, during our numerical exploration we found numerous parameter sets for which the system ‘‘jumps’’ between
1
0 and 2

0 multiple times before finally converging to an equilibrium. We remark that our theoretical analysis of system (3) did not exclude the
possibility of a GSPT-specific class of periodic orbits, namely Mixed Mode Oscillations (MMOs) [54]. Indeed, the global stability analysis of the fast
subsystem (1) was performed assuming 𝐼 fixed. A situation in which an orbit keeps ‘‘jumping’’ between 1

0 and 2
0 , for example, might exist. In

fact, once near any of the branches, if the corresponding 𝑠,𝑖
0 > 1, the solution will approach the EE of the slow flow. If such EE is in the repelling

part of the critical manifold, the orbit would eventually leave its vicinity (we refer to Section 5 for a deeper explanation of this phenomenon), only
to approach the other branch, and this cycle would repeat forever. However, we were not able to find parameter values for which we achieve this
scenario in system (3).

7. Discussion and conclusions

In this paper, we introduced a six dimensional nonlinear info-epidemic coupled model, in which the first three equations describe the fast
dynamics (infodemic layer) while the last three the slow one (epidemic layer). First, we analyzed the infodemic model, which describes the
dynamics in time of the Unaware, Misinformed and Skeptical populations. The reduced system has four different equilibrium points feasible
and stable under certain conditions. Moreover, we proved that the system can exhibit three different transcritical bifurcations between the
Misinformed-Skeptical-Free equilibrium and the remaining three ones (Skeptical-Free, Misinformed-Free and coexistence equilibria).

The set of the first three equilibria of the fast model plays a crucial role in the dynamics of the coupled info-epidemic model, since these equilibria
provide the formulation of the three branches of the critical manifold of the complete system. Subsequently, we studied the behavior of the slow
system on each of the three branches of the critical manifold. The first branch is the Misinformed-Skeptical-Free one, while the second and the third
ones are the Skeptical-Free and the Misinformed-Free equilibria, respectively. Interestingly, we noticed that the slow system behaves as a classical
SIRS model on the first branch of the critical manifold, corresponding to the Misinformed-Skeptical-Free equilibrium. Secondly, for the second
branch of the critical manifold, corresponding to the Skeptical-Free equilibrium point, we found that the infection rate of the obtained slow SIRS
model is higher that the infection rate of a classical SIRS model; this confirm the fact that the absence of skeptical individuals increases the spread
of the disease. Since the two slow SIRS models have a basic reproduction number 𝑠,0

0 and 𝑠,1
0 , respectively, which determines when the system

converges to the Disease Free Equilibrium or there exist only a unique Endemic Equilibrium, as for a simple SIRS model. Assuming that the first
one is smaller than 1 and the second one bigger than 1 means that the disease persists (thus becoming endemic), rather than dying out, due to the
presence of misinformed individuals. Lastly, for the third branch of the critical manifold, related to the Misinformed-Free equilibrium, the obtained
12

slow SIRS model has an infection rate smaller than the infection rate of the simple SIRS model, meaning that the absence of misinformed individuals
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Fig. 3. Values of the parameters: 𝑏1 = 1.5, 𝑏2 = 0.9, 𝛽 = 6, 𝜀 = 1∕100, 𝜂 = 0.08, 𝜇1 = 𝜇2 = 1, 𝛾 = 0.8, 𝐾 = 0.9. Initial conditions: (𝑈,𝑀,𝑍, 𝑆, 𝐼, 𝑅) = (0.9, 0.15, 0.05, 0.8, 0.2, 0).
olid lines: corresponding orbit of system (3); dashed lines: branches of the critical manifold (13), except for 𝑀 = 0 and 𝑍 = 0 which are not shown for clarity. We observe two
ntry–exit phenomena, with the solution approaching 1

0 , then 2
0 , before the asymptotic convergence towards the EE on 1

0 .

Fig. 4. Values of the parameters: 𝑏1 = 1.1, 𝑏2 = 0.92, 𝛽 = 6, 𝜀 = 1∕100, 𝜂 = 0.7, 𝜇1 = 𝜇2 = 1, 𝛾 = 1.2, 𝐾 = 0.9. Initial conditions: (𝑈,𝑀,𝑍, 𝑆, 𝐼, 𝑅) = (0.8, 0.2, 0, 0.8, 0.2, 0). Solid lines:
orresponding orbit of system (3); dashed lines: branches of the critical manifold (13), except for 𝑀 = 0 and 𝑍 = 0 which are not shown for clarity. We observe one entry–exit
henomenon, with the solution approaching 1

0 before the asymptotic convergence towards the EE on 2
0 .

Fig. 5. Values of the parameters: 𝑏1 = 1.5, 𝑏2 = 0.9, 𝛽 = 7, 𝜀 = 1∕100, 𝜂 = 0.08, 𝜇1 = 𝜇2 = 1, 𝛾 = 0.8, 𝐾 = 0.9. Initial conditions: (𝑈,𝑀,𝑍, 𝑆, 𝐼, 𝑅) = (0.9, 0.15, 0.05, 0.8, 0.2, 0). Solid
ines: corresponding orbit of system (3); dashed lines: branches of the critical manifold (13), except for 𝑀 = 0 and 𝑍 = 0 which are not shown for clarity. We observe again two
ntry–exit phenomena, first close to 2

0 , then close to 1
0 , before the system converges towards the co-existence equilibrium.
13
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𝜀
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Fig. 6. Comparison between (a) the SIRS system (14) without information (i.e., evolving on 0
0 ), naturally converging to the corresponding DFE, and (b) the SIRS system (18)

evolving on the misinformation branch of the critical manifold (i.e., 1
0 ), converging to the corresponding EE. Values of the parameters: 𝑏1 = 6.7041, 𝑏2 = 5.9041, 𝛽 = 4.8429,

= 1∕50, 𝜂 = 0.1, 𝜇1 = 𝜇2 = 5.2143, 𝛾 = 0.1667, 𝐾 = 0.9. Initial conditions: (𝑆, 𝐼, 𝑅) = (0.8, 0.2, 0). We do not show the evolution in time of 𝑅, since it remains close to 0 for all
imes.

Fig. 7. Comparison between (a) the SIRS system (14) without information (i.e., evolving on 0
0 ), naturally converging to the corresponding EE, and (b) the SIRS system (21)

evolving on the skeptical branch of the critical manifold (i.e., 2
0 ), converging to the corresponding DFE. Values of the parameters: 𝑏1 = 5.9041, 𝑏2 = 6.7041, 𝛽 = 5.919, 𝜀 = 1∕50,

𝜂 = 0.1, 𝜇1 = 𝜇2 = 5.2143, 𝛾 = 0.1667, 𝐾 = 0.9. Initial conditions: (𝑆, 𝐼, 𝑅) = (0.8, 0.2, 0). We do not show the evolution in time of 𝑅, since it remains close to 0 for all times.

Fig. 8. Values of the parameters: 𝑏1 = 10.79, 𝑏2 = 10.44, 𝛽 = 1.0897, 𝜀 = 1∕100, 𝜂 = 0.4570, 𝜇1 = 𝜇2 = 0.87, 𝛾 = 0.0776, 𝐾 = 0.9. Initial conditions: (𝑈,𝑀,𝑍, 𝑆, 𝐼, 𝑅) =
0.5, 0.2, 0.3, 0.7, 0.3, 0). Solid lines: corresponding orbit of system (3); dashed lines: branches of the critical manifold (13), except for 𝑀 = 0 and 𝑍 = 0 which are not shown for
larity. We observe several entry–exit instances, before the system converges towards the co-existence equilibrium. We truncated the integration at 𝑡 = 20000 for clarity.
14
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and the presence of skeptical one decrease the disease infection rate. Moreover, the infection rate in this case directly depends on the number of the
infected individuals. Diametrically opposite conclusions, compared to the second case, can be obtained regarding the basic reproduction numbers
of the second and the third slow SIRs models respectively, i.e. the presence of enough skeptical individuals to the disease-related misinformation
might lead to the extinction of the disease.

Our analytical results are illustrated by the numerical simulations, which showcase various possible asymptotic behaviors of the system, with
orbits approaching different equilibria as 𝑡 → +∞, with remarkable transient behaviors. Moreover, we observe multiple instances of delayed loss
of stability, for systems which are not entirely covered by theoretical results on the matter.

The analysis we carried out in this work gave rise to various questions. We elaborate on four of them here, considering their potential for future
research projects.

Firstly, is it possible to obtain results similar to the ones contained in this paper, however for an unknown function 𝑏2, assumed only to be
decreasing in 𝐼? This function would still be ‘‘frozen’’ in the fast flow, since 𝐼 is one of the slow variables of system (3), so the additional difficulties
would only impact the slow flow. However, for SIR models, there are already known results in literature with minimal assumptions on the incidence,
recall [44].

Secondly, would our model exhibit interesting new dynamics giving us new biological insight about the epidemic and the infodemic, if we
complicated the information layer of the dynamics? For example, if we allowed misinformed individuals to become skeptical, and viceversa?
Moreover, we speculate that a different choice for the function 𝛽(𝑀,𝑍) might result in MMOs for a system of ODEs very similar to (3). However,
hanging 𝛽(𝑀,𝑍) would require to re-do most of the analysis we carried out, at the very least on the slow systems. Nevertheless, we believe that
his is an extremely promising outlook for a future work on similar compartmental models.

Thirdly, on a more theoretical note, we pose the following challenging question: is it possible to generalize the entry–exit function to systems
ith non-monotone slow dynamics? A minimal model to test this could be a 2D slow–fast system, with the slow variable exhibiting (damped)
scillations on the critical manifold. Consider, for example, 𝑥̇ = sin 𝑥, or 𝑥̇ = sin 𝑥∕(𝑥2 + 1), on the corresponding critical manifold. However, such
question is far from the scope of this paper, and we leave it open for a more theoretical work in the future.

Lastly, from a biological point of view, one could imagine that the relative speeds of information spreading and disease spreading are different
t different stages of disease spreading. In the first phases of the introduction of a novel disease in a population, information concerning it would
carcely circulate among the general public. However, once the disease starts spreading more, involving a significant part of the population, both
overnments and private citizens would start discussing its effect and its containment more. In this first work, we did not consider the possibility
f differentiating the relative speed of information spreading and disease spreading, opting for a simpler assumption of constant ratio between the
wo time scales. However, differentiating this ratio depending on the current phase of the epidemic is a very promising lead for future research in
similar setting.
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Appendix A. The equilibrium analysis of the complete system

One of the strengths of GSPT is the ability to iteratively reduce the dimensionality of the system under study. In this paper, we started with
a 6D system, however we always considered at most 3 of those dimensions at a time, with a great advantage in terms of computational burden.
Nevertheless, it might be instructive to showcase what one can deduce on the local stability of the equilibria of the full 6D model.

We now list the equilibria of model (3), which are exactly the equilibria of the slow systems on the corresponding branches of the critical
manifold. For ease of notation, we maintain the order of the variables of system (3) and indicate with ∗ the position where the value is different
from 0 and 1.

We hence obtain the analytical expression of seven equilibrium points, namely

(i) Misinformation-disease free equilibrium (MDFE) 𝐸0 = (1, 0, 0, 1, 0, 0), which is always feasible. This corresponds to the Disease Free Equilibrium
on the first branch of the critical manifold 0

0 (13).
(ii) Misinformation free equilibrium (MFE) 𝐸1 = (1, 0, 0, ∗, ∗, ∗), with

𝑆∗,1 =
𝛾 + 𝜇2
𝛽

, 𝐼∗,1 =
(𝛽 − 𝛾 − 𝜇2)(𝜂 + 𝜇2)

𝛽(𝛾 + 𝜂 + 𝜇2)
, 𝑅∗,1 =

𝛾𝐼∗,1

𝜂 + 𝜇2
,

which is feasible if 𝛽 > 𝛾+𝜇2, meaning if 𝑠,0
0 > 1 (recall (15)). This corresponds to the Endemic Equilibrium on the first branch of the critical

manifold 0
0 (13).

(iii) Disease-skeptical individuals free equilibrium (DSIFE) 𝐸2 = (∗, ∗, 0, 1, 0, 0), with

𝑈∗,2 =
𝜇1
𝑏1
, 𝑀∗,2 =

𝑏1 − 𝜇1
𝑏1

,

which is feasible if 𝜇1 < 𝑏1. This corresponds to the Disease Free Equilibrium on the second branch of the critical manifold 1
0 (13).

(iv) Skeptical individuals free equilibrium (SIFE) 𝐸3 = (∗, ∗, 0, ∗, ∗, ∗), with

𝑈∗,3 =
𝜇1
𝑏1
, 𝑀∗,3 =

𝑏1 − 𝜇1
𝑏1

, 𝑆∗,3 =
𝛾 + 𝜇2
𝛽

, 𝐼∗,3 =
(𝛽 − 𝛾 − 𝜇2)(𝜂 + 𝜇2)

𝛽(𝛾 + 𝜂 + 𝜇2)
, 𝑅∗,3 =

𝛾𝐼∗,3

𝜂 + 𝜇2
with

𝛽 = 𝛽
2𝑏1 − 𝜇1

𝑏1
,

which is feasible if 𝜇1 < 𝑏1 and 𝛽 >
𝑏1(𝛾 + 𝜇2)
2𝑏1 − 𝜇1

, meaning if 𝑠,1
0 > 1 (recall (19)). This corresponds to the Endemic Equilibrium on the second

branch of the critical manifold 1
0 (13).

(v) Disease-misinformed individuals free equilibrium (DMIFE) 𝐸4 = (∗, 0, ∗, 1, 0, 0), with

𝑈∗,4 =
𝜇1
𝑏2
, 𝑍∗,4 =

𝑏2 − 𝜇1
𝑏2

,

which is feasible if 𝜇1 < 𝑏2. This corresponds to the Disease Free Equilibrium on the third branch of the critical manifold 2
0 (13).

(vi) Misinformed individual free equilibrium (MIFE) 𝐸5 = (∗, 0, ∗, ∗, ∗, ∗), with

𝑈∗,5 =
𝜇1(1 −𝐾𝐼∗,5)

𝑏2
, 𝑍∗,5 =

𝑏2 − 𝜇1(1 −𝐾𝐼∗,5)
𝑏2

, 𝑆∗,5 =
(𝛾 + 𝜇2)(2𝑏2 − 𝜇1(1 −𝐾𝐼∗,5))

𝛽𝑏2
,

𝐼∗,5 =
(𝛾 + 𝜇2)(𝛽𝑏2 − (𝛾 + 𝜇2)(2𝑏2 − 𝜇1))

𝛽𝑏2(𝜂 + 𝜇2 + 𝛾) + 𝜇1𝐾(𝜂 + 𝜇2)(𝛾 + 𝜇2)
, 𝑅∗,5 =

𝛾𝐼∗,5

𝜂 + 𝜇2
,

which is feasible if 𝑠,2
0 > 1 (recall (22)). This corresponds to the Endemic Equilibrium on the third branch of the critical manifold 2

0 (13).
(vii) Coexistence equilibrium 𝐸∗ = (∗, ∗, ∗, ∗, ∗, ∗), with

𝑈∗ =
𝜇1
𝑏1
, 𝑀∗ =

(𝛾 + 𝜇2)(1 +𝑍∗) − 𝛽𝑆∗

𝛽𝑆∗ , 𝑍∗ =
𝑏1(𝛾 + 𝜇2) + 𝛽𝑆∗

𝑏1(𝛾 + 𝜇2 − 𝛽𝑆∗)
, 𝑆∗ =

(𝜂 + 𝜇2) − (𝜂 + 𝜇2 + 𝛾)𝐼∗

(𝜂 + 𝜇2)
,

𝐼∗ =
𝑏1 − 𝑏2
𝐾𝑏1

, 𝑅 =
𝛾𝐼∗

𝜂 + 𝜇2
,

which is feasible if 𝑏1 > 𝑏2, (𝜂 + 𝜇2)(1 − 𝐼∗) > 𝛾𝐼∗, 𝛽𝑆∗ < 𝛾 + 𝜇2 and 𝑀∗ > 0.
This equilibrium does not lie on any branch of the critical manifold, and as such it was not identified through our analysis in the main body
of the paper; however it does lie on the line of equilibria described in Section 3.3.

he feasibility conditions were analyzed in the main body of this work; in what follows, we will focus our attention on the local stability of the
quilibrium points, assuming that they are indeed feasible. For ease of notation, every time 𝑈∗, 𝑀∗, 𝑍∗, 𝑆∗, 𝐼∗ and 𝑅∗ are mentioned, we refer to
he expressions they assume at the corresponding equilibrium.

(i) The misinformation-disease free equilibrium, 𝐸0, it is stable iff 𝜇1 > max
{

𝑏1, 𝑏2
}

holds. In fact the eigenvalues are 𝜆1 = −𝜇1, 𝜆2 = −𝜀𝜇2,
𝜆3 = 𝑏1 − 𝜇1, 𝜆4 = 𝑏2 − 𝜇1, 𝜆5 = −𝜀(𝜂 + 𝜇2), 𝜆6 = −𝜀(𝛽 + 𝛾 + 𝜇2).

(ii) The eigenvalues corresponding to the misinformation free equilibrium 𝐸1 are 𝜆1 = −𝜇1, 𝜆2 = −𝜀𝜇2, 𝜆3 = 𝑏1 − 𝜇1, 𝜆4 = −𝜇1 +
𝑏2

1 −𝐾𝐼∗
, while

𝜆5 and 𝜆6 are the roots of the second degree polynomial in 𝜆

𝜆2 + 𝜆(𝛽𝑝 + 1)(𝜇 + 𝜂)𝜀 + 𝑝 𝛽(𝜇 + 𝜂)(𝜇 + 𝛾 + 𝜂)𝜀2 = 0.
16
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Since the coefficients of the second degree polynomial introduced above are all positive, notice that if the roots are complex we have that the
real part of both 𝜆5 and 𝜆6 are negative, while if the roots are real for the Descartes’ rule of signs they are negative. Therefor the equilibrium
𝐸1 it is stable iff 𝜇1 > max

{

𝑏1,
𝑏2

1 −𝐾𝐼∗

}

(recall that the condition 𝜇1 < 𝑏1 is needed for the feasibility of 𝐸3).

(iii) The disease-skeptical individuals free equilibrium 𝐸2 it is stable iff 𝑏1−𝑏2 > 0 and 𝛽 <
𝑏1(𝛾 + 𝜇2)
2𝑏1 − 𝜇1

. The corresponding eigenvalues are 𝜆1 = −𝜀𝜇2,

𝜆2 = −𝜀(𝜂 + 𝜇2), 𝜆3 = −
𝜇1(𝑏1 − 𝑏2)

𝑏1
, 𝜆4 = −𝜇1, 𝜆5 = 𝜇1 − 𝑏1 and 𝜆6 = − 𝜀

𝑏1(𝛾 + 𝜇2) − 𝛽(2𝑏1 − 𝜇1)
𝑏1

.

(iv) The eigenvalues that corresponds to the skeptical individuals free equilibrium 𝐸3 are 𝜆1 = −𝜀𝜇2, 𝜆2 = 𝜇1 − 𝑏1, 𝜆3 = −𝜇1,

𝜆4 = −
𝜇1

[

𝑏21(𝜂 + 𝜇2)(𝛾 + 𝜇2) − 𝛽(2𝑏1 − 𝜇1)𝑝2
]

𝑏1
[

𝑝2 + 𝛽𝛾(2𝑏1 − 𝜇1) + 𝑏1(𝛾 + 𝜇22)
]

where 𝑝2 = 𝑏2(𝜂 + 𝛾 + 𝜇2) − 𝛾𝑏1, while 𝜆5 and 𝜆6 are the roots of the following second degree polynomial in 𝜆:

𝜆2 +
𝜀(𝜂 + 𝜇2)

[

𝜂𝑏1 + (2𝑏1 − 𝜇1)𝛽
]

𝑏1(𝛾 + 𝜂 + 𝜇2)
𝜆 +

𝜀2(𝜂 + 𝜇2)
[

𝛽(2𝑏1 − 𝜇1) − 𝑏1(𝜇2 + 𝛾)
]

𝑏1
= 0.

Notice that for the Routh–Hurwitz stability criterion for a system of second order, since all the coefficients of 𝑝(𝜆) are all positive its roots
have negative real parts. Thus for the stability of 𝐸5,

[

𝑏21(𝜂 + 𝜇2)(𝛾 + 𝜇2) − 𝛽(2𝑏1 − 𝜇1)𝑝2
]

> 0

must hold.
(v) The disease-misinformed individuals free equilibrium 𝐸4 it is stable iff 𝑏1 < 𝑏2 and 𝛽 <

(𝛾 + 𝜇2)(2𝑏2 − 𝜇1)
𝑏2

. The corresponding eigenvalues are

𝜆1 = −𝜀𝜇2, 𝜆2 = −𝜀(𝜂 + 𝜇2), 𝜆3 = −
𝜇1(𝑏2 − 𝑏1)

𝑏2
, 𝜆4 = −𝜇1, 𝜆5 = −𝑏2 + 𝜇1 and 𝜆6 = −𝜀

(2𝑏2 − 𝜇1)(𝛾 + 𝜇2) − 𝛽𝑏2
2𝑏2 − 𝜇1

.

(vi) The eigenvalues of the misinformed individual free equilibrium 𝐸5 are 𝜆1 = −𝜀𝜇2, 𝜆2 = −𝜇1 + 𝑏1𝑈∗, 𝜆3 = −𝜇1, while the remaining three
eigenvalues are the roots of a third degree polynomial, to involved to be reported here. Numerical evidence, and our analysis in the main
body of this work, show that there exist sets of parameters for which 𝐸5 it is stable.

(vii) Computing the eigenvalues of the coexistence equilibrium 𝐸∗ we obtain 𝜆1 = −𝜀𝜇2, 𝜆2 = −𝜇1 while the remaining four ones are the roots of
a fourth degree polynomial in 𝜆, which we chose not to include here, since it does not provide useful information. We refer to Section 6 for
a choice of parameters for which the coexistence equilibrium is asymptotically (hence, locally) stable.

Appendix B. Global stability

Proposition 3. Assume f
0 < 1. Then, the MSFE is exponentially stable for the subsystem (3a)–(3c).

Proof. Summing the Eqs. (5), and recalling that 𝑈 ≤ 1, we obtain

d
d𝑡 (𝑀 +𝑍) =

(

𝑏1𝑀 +
𝑏2

1 −𝐾𝐼
𝑍
)

𝑈 − 𝜇1(𝑀 +𝑍)

≤
(

𝑏1𝑀 +
𝑏2

1 −𝐾𝐼
𝑍
)

− 𝜇1(𝑀 +𝑍)

≤
(

max
{

𝑏1,
𝑏2

1 −𝐾𝐼

}

− 𝜇1

)

(𝑀 +𝑍)

=𝜇1
(

f
0 − 1

)

(𝑀 +𝑍).

If f
0 < 1, then it follows that

lim
𝑡→+∞

(𝑀(𝑡) +𝑍(𝑡)) = 0 exponentially,

nd on the set {𝑀 = 𝑍 = 0}, 𝑈 → 1. We can conclude that the equilibrium 𝐸̃0 is globally exponentially stable if f
0 < 1. □

Proposition 7 (Global Stability of the SFE). Assume that
𝑏1
𝜇1

> 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
< 1. Then, the SFE (6) is Globally Asymptotically Stable (GAS) for the

ubsystem (3a)–(3c).

roof. It is easy to see that, when
𝑏2

𝜇1(1 −𝐾𝐼)
< 1, 𝑍 → 0 exponentially, with the same argument used in Proposition 3. Hence, we assume 𝑍 = 0,

and we prove global asymptotic stability of the SFE through the use of the classic Goh–Lotka–Volterra Lyapunov function [41]:

𝑉 (𝑈,𝑀) ∶= 𝑈 − 𝑈∗ ln𝑈 +𝑀 −𝑀∗ ln𝑀,

where we introduce 𝑈∗ and 𝑀∗ as the corresponding equilibrium values, for ease of notation. Then,

d
d𝑡 𝑉 (𝑈,𝑀) = d

d𝑡𝑈 − 𝑈∗

𝑈

(

d
d𝑡𝑈

)

+ d
d𝑡𝑀 − 𝑀∗

𝑀

(

d
d𝑡𝑀

)

= 𝜇1 − 𝑏1𝑈𝑀 − 𝜇1𝑈 − 𝑈∗
(𝜇1
𝑈

− 𝑏1𝑀 − 𝜇1
)

+𝑀(𝑏1𝑈 − 𝜇1) −𝑀∗(𝑏1𝑈 − 𝜇1)

= (𝑈 − 𝑈∗)
(𝜇1 − 𝑏 𝑀 − 𝜇

)

+ 𝑏 (𝑈 − 𝑈∗)(𝑀 −𝑀∗)
17
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= (𝑈 − 𝑈∗)
(𝜇1
𝑈

− 𝜇1 − 𝑏1𝑀∗
)

= (𝑈 − 𝑈∗)
(𝜇1
𝑈

− 𝜇1 − 𝑏1(1 − 𝑈∗)
)

.

Using the fact that 𝜇1 = 𝑏1𝑈∗, we obtain
d
d𝑡 𝑉 (𝑈,𝑀) =

(𝑈 − 𝑈∗)
𝑈

(𝑏1𝑈∗ − 𝑏1𝑈𝑈∗ − 𝑏1𝑈 + 𝑏1𝑈𝑈∗)

= −
𝑏1
𝑈

(𝑈 − 𝑈∗)2 < 0,

which concludes the proof. □

Proposition 8 (Global Stability of the MFE). Assume that
𝑏1
𝜇1

< 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
> 1. Then, the MFE (7) is GAS for the subsystem (3a)–(3c).

roof. It is easy to see that, when
𝑏1
𝜇1

< 1, 𝑀 → 0 exponentially, with the same argument used in Proposition 3. Hence, we assume 𝑀 = 0, and
e prove global asymptotic stability of the SFE through the use of the classic Goh–Lotka–Volterra Lyapunov function [41]:

𝑉 (𝑈,𝑍) ∶= 𝑈 − 𝑈∗ ln𝑈 +𝑍 −𝑍∗ ln𝑍,

here we introduce 𝑈∗ and 𝑍∗ as the corresponding equilibrium values, for ease of notation. The result follows from computations which are
lmost identical to the ones in Proposition 7; hence, we do not repeat them. □

Proposition 9 (Global Stability of the SFE). Assume that
𝑏1
𝜇1

> 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
> 1. Then, the SFE (6) is GAS for the subsystem (3a)–(3c) if 𝑏1 >

𝑏2
1 −𝐾𝐼

.

roof. To prove the global asymptotic stability of the SFE we use of the following Lyapunov function:

𝑉 (𝑈,𝑀,𝑍) ∶= 𝑈 − 𝑈∗ ln𝑈 +𝑀 −𝑀∗ ln𝑀 +𝑍,

here 𝑈∗ and 𝑀∗ are the corresponding equilibrium values, as in Proposition 7. Then

d
d𝑡 𝑉 (𝑈,𝑀) = d

d𝑡𝑈 − 𝑈∗

𝑈

(

d
d𝑡𝑈

)

+ d
d𝑡𝑀 − 𝑀∗

𝑀

(

d
d𝑡𝑀

)

+ d
d𝑡𝑍

= (𝑈 − 𝑈∗)
(

𝜇1
𝑈

− 𝑏1𝑀 −
𝑏1

1 −𝐾𝐼
𝑍 − 𝜇1

)

+ (𝑀 −𝑀∗)(𝑏1𝑈 − 𝜇1) +𝑍
(

𝑏2
1 −𝐾𝐼

𝑈 − 𝜇1

)

= (𝑈 − 𝑈∗)
(𝜇1
𝑈

− 𝜇1
)

+ 𝑈∗
(

𝑏1𝑀 +
𝑏2

1 −𝐾𝐼
𝑍
)

− 𝜇1(𝑀 +𝑍) −𝑀∗(𝑏1𝑈 − 𝜇1).

ince
𝑏2

1 −𝐾𝐼
< 𝑏1 we obtain

d
d𝑡 𝑉 (𝑈,𝑀) ≤ (𝑈 − 𝑈∗)

(𝜇1
𝑈

− 𝜇1
)

+ 𝑏1𝑈∗ (𝑀 +𝑍) − 𝜇1(𝑀 +𝑍) −𝑀∗(𝑏1𝑈 − 𝜇1),

rom which, using the fact that 𝑏1𝑈∗ = 𝜇1 and 𝑀∗ = 1 − 𝑈∗, we have
d
d𝑡 𝑉 (𝑈,𝑀) ≤ (𝑈 − 𝑈∗)

(𝜇1
𝑈

− 𝜇1
)

−𝑀∗(𝑏1𝑈 − 𝜇1)

= 𝜇1 − 𝜇1𝑈 −
𝜇1𝑈∗

𝑈
+ 𝜇1𝑈∗ − 𝑏1𝑈 + 𝜇1 + 𝑏1𝑈𝑈∗ − 𝑈∗

= 𝜇1

(

1 − 𝑈 − 𝑈∗

𝑈
+ 𝑈∗ − 𝑈

𝑈∗ + 1 + 𝑈 − 𝑈∗
)

= 𝜇1

(

2 − 𝑈∗

𝑈
− − 𝑈

𝑈∗

)

= −𝜇1
(𝑈 − 𝑈∗)2

𝑈𝑈∗ ≤ 0,

which concludes the proof. □

Proposition 10 (Global Stability of the MFE). Assume that
𝑏1
𝜇1

> 1 and
𝑏2

𝜇1(1 −𝐾𝐼)
> 1. Then, the MFE (7) is GAS for the subsystem (3a)–(3c) if

1 <
𝑏2

1 −𝐾𝐼
.

roof. To prove the global asymptotic stability of the MFE we use of the following Lyapunov function:

𝑉 (𝑈,𝑀,𝑍) ∶= 𝑈 − 𝑈∗ ln𝑈 +𝑀 +𝑍 −𝑍∗ ln𝑍,

where 𝑈∗ and 𝑍∗ are the corresponding equilibrium values, as in Proposition 9. The result follows from computations which are almost identical
o the ones in Proposition 9, using the hypothesis 𝑏1 <

𝑏2
1 −𝐾𝐼

; hence, we do not repeat them. □

roposition 11 (Global Stability of the Positive Equilibrium). Assume that f
0 > 1. Then, the positive equilibrium 𝐸̃ =

⎛

⎜

⎜

⎝

1
f

0

, 1 − 1
f

0

⎞

⎟

⎟

⎠

is globally

asymptotically stable for the subsystem (12).
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Proof. To prove the global asymptotic stability of the positive equilibrium 𝐸̃ we use of the following Lyapunov function:

𝑉 (𝑈,𝐿) ∶= 1
2
(𝑈 − 𝑈∗)2 + 𝐿 − 𝐿∗ ln𝐿,

where 𝑈∗ and 𝐿∗ are the corresponding equilibrium values of 𝐸̃. Then

d
d𝑡 𝑉 (𝑈,𝐿) = (𝑈 − 𝑈∗) d

d𝑡𝑈 + d
d𝑡𝐿 − 𝐿∗

𝐿

(

d
d𝑡𝐿

)

= (𝑈 − 𝑈∗)(𝜇1 − 𝑏𝑈𝐿 − 𝜇1𝑈 ) + 𝐿 − 𝐿∗

𝐿
(𝑏𝑈𝐿 − 𝜇1𝐿)

= (𝑈 − 𝑈∗)(𝜇1 − 𝑏𝑈𝐿 − 𝜇1𝑈 ) + (𝐿 − 𝐿∗)(𝑏𝑈 − 𝜇1),

from which, using the fact that 𝜇1 = (𝑏𝐿∗ + 𝜇1)𝑈∗ and 𝑏𝑈∗ = 𝜇1, we have
d
d𝑡 𝑉 (𝑈,𝐿) = (𝑈 − 𝑈∗)(𝑏𝐿∗𝑈∗ + 𝜇1𝑈∗ − 𝑏𝑈𝐿 − 𝜇1𝑈 ) + (𝐿 − 𝐿∗)(𝑏𝑈 − 𝑏𝑈∗)

= 𝑏(𝑈 − 𝑈∗)(𝐿∗𝑈∗ − 𝑈𝐿) − 𝜇1(𝑈 − 𝑈∗)2 − 𝜇1(𝐿 − 𝐿∗)(𝑈∗ − 𝑈 )

≤ (𝑈 − 𝑈∗)(𝑏(𝑈∗𝐿∗ − 𝑈𝐿) + 𝜇1(𝐿 − 𝐿∗))

= (𝑈 − 𝑈∗)(𝑏𝑈∗𝐿∗ − 𝑏𝑈𝐿 + 𝑏𝑈∗𝐿 − 𝑏𝑈∗𝐿∗)

= −𝑏𝐿(𝑈 − 𝑈∗)2 ≤ 0,

which concludes the proof. □
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