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Abstract
We study a fast–slow version of an SIRS epidemiological model on homogeneous
graphs, obtained through the application of themoment closure method.We use GSPT
to study themodel, taking into account that the infection period ismuch shorter than the
average duration of immunity. We show that the dynamics occurs through a sequence
of fast and slow flows, that can be described through 2-dimensional maps that, under
some assumptions, can be approximated as 1-dimensional maps. Using this method,
together with numerical bifurcation tools, we show that the model can give rise to
periodic solutions, differently from the corresponding model based on homogeneous
mixing.

Keywords Fast–slow system · Epidemic model · Non-standard form · Epidemics on
networks · Bifurcation analysis

Mathematics Subject Classification 34C23 · 34C60 · 34E13 · 34E15 · 37N25 · 92D30

1 Introduction

Mathematical epidemics modelling is, now more than ever, an important and urgent
field to explore. A deep understanding of how diseases evolve and spread can give,
and has given, us strategies to contain, treat and even prevent them. Over the years,
mathematicalmodellers havemade avariety of different assumptions, in order to obtain
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a tractable trade-off between simplicity, which allows for more in-depth analysis, and
realism, which allows to make more precise predictions.

In particular, compartment models build on the core idea that the population can,
at any time, be portioned into compartments characterized by a specific state with
respect to the ongoing epidemic. The first of such models divides the population
into Susceptible, Infected and Recovered individuals, from which the SIR acronym is
used. A Susceptible can become Infected (S → I ) by making contact with an already
infected individual, and can then either Recover (I → R) or die, if we assume the
disease to be characterized by permanent immunity after a first infection. If we do
not make such an assumption, and allow recovered individuals to become susceptible
again (R → S), we obtain a so called SIRS model. Many more models, with different
compartments, have been proposed and analysed in the past, see e.g. Dafilis et al.
(2012) and Hethcote (2000).

Classical compartmental models are based on the homogeneous mixing assump-
tion, i.e. the assumption that any individual in a populationmay have contacts with any
other. Such an assumption, however, is quite unrealistic for many situations in which
the observed population is large, and possibly divided in classes, families or generally
sub-populations. One possible extension is to subdivide the population into groups,
assuming homogeneous mixing within each group, but representing inter-group inter-
actions through a contact matrix (Mossong et al. 2008). Another possible approach is
to take into account the network structure of contacts. Often, epidemic dynamics on
a network is analysed only through simulations (López-García 2016; Smilkov et al.
2014; Zhang et al. 2013; Castellano and Pastor-Satorras 2010; Volz 2008; Ganesh et al.
2005). The method of pair approximations, introduced in epidemiology by Satō et al.
(1994) and Keeling et al. (1997), allows to build a system of differential equations that
retains some aspects of the network structure. The ideas and some applications of the
methods are presented in detail in the monograph by Kiss et al. (2017). However, not
much analytical progress has been made in the study of the resulting systems, possibly
because they are generally rather complex.

This paper aims at introducing methods from Geometric Singular Perturbation
Theory (GSPT) to analyse these systems, building on the ideas introduced in Jardón-
Kojakhmetov et al. (2021). The difference in time-scales between epidemic spread and
demographic turnover, which can be observed in many diseases, is the motivation for
the use of techniques from GSPT. We refer to Jardón-Kojakhmetov et al. (2021) for a
brief introductionof the techniquesweuse, or to the references therein, and inparticular
to Jones (1995) and Kuehn (2015), for a more detailed explanation. In particular,
we will exploit the entry–exit function (De Maesschalck 2008; De Maesschalck and
Schecter 2016) to analyse the behaviour of the system on its critical manifold, which
is characterized by a change in stability over a hyperplane.

In this work, we assume homogeneity of the network, in order to obtain analytical
results, before validating them numerically. Even with such an assumption, the addi-
tional complexity brought by the network structure must be treated properly. In fact,
in order to completely describe the evolution of a network in time, one needs to have
an equation for each possible state of its nodes, one for each possible state of its edges
(along which the epidemic spreads), one for each possible state of triples, i.e. three
nodes connected by two edges, and so on. This procedure, however, would generate
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very large system of ODEs, which would once again be hardly treatable with analyt-
ical tools. In order to overcome this difficulty, one can apply the so-called moment
closure (Kiss et al. 2017; Kuehn 2016), i.e. approximation formulas which allow us
to truncate the dimension of the objects we want to analyse. If we truncate at the node
level, we lose the network structure, and we recover a homogeneously mixing system.
Instead, we truncate at the edge level, using the pair approximation discussed above,
and analyse the system which derives from this choice.

To our knowledge, there are relatively few articles in which GSPT has been applied
rigorously to epidemics models (Rocha et al. 2016; Jardón-Kojakhmetov et al. 2021;
Heesterbeek and Metz 1993; Zhang et al. 2009; Brauer 2019; Wang et al. 2014).
However, for most infectious diseases, the presence of different time scales is natural.
Moreover, though a SIR model on networks has been studied with moment closure
already (Bidari et al. 2016; Kiss et al. 2017), the SIRS extension has not. Likewise, a
thorough bifurcation analysis on compartment models such as the one we analyse in
this paper is not present in the literature. The additional feature of the network structure,
even in its most simplified version, i.e. homogeneous network, unravels new dynamics
for the SIRS system we study. Indeed, we show that there exists a set in the parameter
space which allows the system to exhibit a stable limit cycle, a situation that does
not arise in the classical compartmental SIRS model. To complement the bifurcation
analysis, we extend the geometrical argument from Jardón-Kojakhmetov et al. (2021)
to the higher dimensional system we study, providing additional justification for the
existence of stable limit cycles. It is worth noticing that the model we study is not
globally in fast–slow standard form; as in Jardón-Kojakhmetov et al. (2021); Kuehn
and Szmolyan (2015); Kosiuk and Szmolyan (2016), the fast–slow dynamics are only
evident in specific regions of the phase space, in which a local change of coordinates
brings the system to a standard two time scales form. In particular, we refer to the
very recent monograph (Wechselberger 2020), in which the properties of singularly
perturbed systems in non-standard form are thoroughly analysed.

This article builds on the analysis on a homogeneousmixing SIRSmodel we carried
out in Jardón-Kojakhmetov et al. (2021), generalizing it to amore complex setting. The
main novelty we introduce is the network structure, which increases both the dimen-
sionality and the complexity of the ODE system we study. This additional feature,
which increases the realism of the model, allows us to unveil additional dynamics,
namely stable limit cycles. Lastly, a further challenge is posed by the fact that the
rescaled system close to the critical manifold is characterized by multiple fast vari-
ables, as compared to a single fast variable which characterized all the systems studied
in Jardón-Kojakhmetov et al. (2021).

The paper is structured as follows: in Sect. 2, we recall the derivation of the model,
and introduce the moment closure technique. In Sect. 3, we obtain analytical results
on the model, in particular on the fast and slow limit systems and on the application
of the entry–exit function. In Sect. 4, we perform a bifurcation analysis and numerical
exploration of the model. Finally, in Sect. 5, we conclude with a summary of the
results, and with possible research outlooks.
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2 Formulation of the SIRSmodel on a network

In this section we describe and propose an SIRS model for epidemics on graphs,
building on the model proposed in Kiss et al. (2017, Sec. 4.2.2). We are interested in
the graph generalization of the model studied in Jardón-Kojakhmetov et al. (2021), in
order to drop the homogeneous-mixing hypothesis, under which we assumed that each
individual in the population could have contacts with any other. We then assume loss
of immunity to be slower, compared to the other rates (this is the case e.g. for pertussis
(Dafilis et al. 2012; Lavine et al. 2011), and it could potentially be true for the recent
SARS-CoV-2 (Kissler et al. 2020; Randolph and Barreiro 2020)); this assumption
brings the model to a non-standard singularly perturbed system of ODEs, which we
study with techniques from GSPT.

2.1 Themodel

The construction of the model is essentially what is presented in detail in Kiss et al.
(2017, Ch. 4), extended to the SIRS case. For ease of reading, we briefly repeat the
whole method.

We consider a network of N nodes, with N large, representing the individuals of
a population, and we assume this network to be homogeneous, meaning that each
node has fixed degree n ∈ N≥2, representing the number of direct neighbours each
individual has. We assume the network to be undirected and completely connected,
meaning that, given any two nodes in the network, there is a finite sequence of edges (or
an undirected path) which starts in the first and ends in the second. Each node can be in
one of either three states, namely S (susceptible), I (infected) or R (recovered).Wewill
indicate the number of each state at time t with [·](t); we stress the distinction between
the notation X , indicating a state, and [X ], indicating the number of individuals in the
state X . We indicate the number of edges connecting a node in state X to one in state
Y at time t with [XY ](t) for all t ≥ 0. We distinguish between an edge XY , counted
starting from a node in state X , and the same edge counted starting from the other
node in state Y , for a reason of conserved quantities, namely (7a), (7b) and (7c) to
be defined below. For example, we count the number of edges SI by “visiting” each
node in state S, and counting all its neighbours in state I , then summing over all the
nodes in state S; this implies that, at all times, by definition, [SI ] = [I S]. The edges
connecting a node with another in the same state, such as SS, hence, will always be
counted twice.

Infection can only spread if a node in state S is connected to a node in state I
through an edge SI ; we denote the infection rate with β ≥ 0. Nodes in state I recover,
independently from their neighbours, at a rate γ > 0; and nodes in state R lose
their immunity, again independently from their neighbours, at a slow rate ε, with
0 < ε � β, γ . Based upon these modelling assumptions, it is then straightforward to
prove using the master equation of the epidemic model, that one obtains the following
system of ODEs:

123



A geometric analysis of the SIRS epidemiological model… Page 5 of 38    37 

Fig. 1 Example of the role of
triples. The rightmost edge (of
the triple on the left) turns from
SI to I I because the infection
spreads to the central node; the
leftmost edge turns from SS to
SI because it belongs to a triple
SSI

S

S

I

SS SI
β

S

I

I

SI II

[S]′ = − β[SI ] + ε[R],
[I ]′ = β[SI ] − γ [I ],
[R]′ = γ [I ] − ε[R].

(1)

From our assumptions, the sum of [S] + [I ] + [R] ≡ N is conserved at all times;
we normalize by dividing both nodes and edges by N , and we do not rename the new
variables, which now indicate the density of nodes, and a rescaled fraction of edges,
in each state. Now [S] + [I ] + [R] ≡ 1, so we can reduce the dimension of system
(1) by removing [R], obtaining the system

[S]′ = − β[SI ] + ε(1 − [S] − [I ]),
[I ]′ = β[SI ] − γ [I ]. (2)

In order to fully describe the dynamics of the system, we need an ODE for [SI ] as
well. To understand how the number of edges [SI ] evolve in time, we need to consider
the role of triples, as exemplified in Fig. 1. A triple is a path of length 2 through a
central node in state Y , connected to two nodes in state X and Z , respectively; we
indicate such a triple with XY Z . The positions of X and Z are interchangeable, and
the most important node is the central one, as we will explain shortly.

The only change of the system which depends on the presence of a specific edge is
the contagion which brings SI → I I . Direct neighbours of a node in the state S which
get infected, i.e. the node X in a triple X SI , see their edge X S change to X I due to
their belonging to the triple. The two other possible changes in the system, namely
the recovery (a node in state I becoming R, which happens at a rate γ ) and the loss
of immunity (a node in state R becoming S, which happens at a rate ε) only happen
at a node level, so the only nodes which see this change are the direct neighbours of
the node changing state, and we do not need to consider their belonging to a triple.

For clarity, we fix a lexicographic order S ≺ I ≺ R for nodes and edges, and
write the explicit equations for the edges which follow this order only. If we take into
account all the triples with a central node in state S and at least one node I , which
could infect the central one (as described in Fig. 2), we obtain the following system
of ODEs, which describes the evolution in time of nodes and edges:

[S]′ = − β[SI ] + ε(1 − [S] − [I ]),
[I ]′ = β[SI ] − γ [I ],

[SS]′ = 2ε[S R] − 2β[SSI ],
[SI ]′ = − (γ + β)[SI ] + ε[I R] + β[SSI ] − β[I S I ],
[S R]′ = γ [SI ] − ε[S R] + ε[R R] − β[I S R],
[I I ]′ = 2β[SI ] − 2γ [I I ] + 2β[I S I ],
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[SS]

[II]

[SI] [IS
]

[SR]
[RS]

[RI][IR
]

[RR]

β[S
SI]

γ[S
I]

γ[I
I]

β[I
S]

β[I
SI]

β[R
SI]

γ[R
I]

[IR] [RI]

[RR] [RR]

[RS][SR] β[ISS]

γ[IS]
β[SI]β[ISI]

β[ISR]

γ[IR]

γ[II]

Fig. 2 Complete description of the edges dynamics considering edges and triples. Straight lines: infections;
wobbly lines: recovery; dashed lines: loss of immunity. The base diagram is the same which appears in Kiss
et al. (2017), to visually describe their SIR model; the new, slow dynamics in our model are the dashed blue
arrows, symbolizing loss of immunity

[I R]′ = γ [I I ] − (γ + ε)[I R] + β[I S R],
[R R]′ = 2γ [I R] − 2ε[R R]. (3)

Notice the 2 which multiplies the right hand sides of edges connecting nodes in the
same state: as we mentioned above, they are always counted twice, whether they are
created or lost. To fully describe the system, we would then need to have ODEs for
triples, quadruples, etc. Instead, we proceed as in Kiss et al. (2017), and apply moment
closures.

2.2 Moment closures

Moment closuremethods are approximationmethods used inmanycontexts, in order to
reduce large (or infinite) dimensional systemsof equations to a smaller finite dimension
(Kuehn 2016). Proceeding as in Kiss et al. (2017, Sec. 4.2), one can approximate the
edges as functions of the nodes, or triples as functions of nodes and edges. If we
choose the first option, assuming independence between the state of nodes, we can
approximate all edges as follows:

[XY ] ≈ n[X ][Y ]. (4)

This implies thatwe lose the network structure and, up to rescaling the infection param-
eter by β̃ = nβ, we recover the SIRS system already studied in Jardón-Kojakhmetov
et al. (2021).

Lemma 1 Consider (2). Applying approximation (4) and rescaling β̃ = nβ, one
recovers the SIRS system studied in Jardón-Kojakhmetov et al. (2021), which is char-
acterized by an asymptotic stability of the endemic equilibrium for orbits starting in

the set
{
(S, I , R) ∈ R

3≥0 | S + I + R ≤ 1, I > 0
}

.
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Instead, in this work we choose to apply the second order approximation, and hence
we approximate each triple with the formula given in equation (4.6) of Kiss et al.
(2017), namely

[XY Z ] ≈ n − 1

n

[XY ][Y Z ]
[Y ] . (5)

This approximation is based on the conditional independence between the states of
neighbors of a node, using a counting argument, which for clarity we recall from Kiss
et al. (2017). The total number of edges starting from a node in state Y is n[Y ], while
the total number of edges in state XY is [XY ]; this means that a fraction [XY ]/(n[Y ])
of edges starting from a node in state Y reach a node in state X . With the same
procedure, we obtain a fraction [Y Z ]/(n[Y ]) of edges which connect a node in state
Y , from which we start, with one in state Z . Hence, selecting a node in state Y and two
of his direct neighbours u and v, and using the conditional independence of u and v,
the probability of them forming a triple XY Z is [XY ][Y Z ]/(n2[Y ]2). Combinatorics
tell us there are n(n−1)ways of picking u and v, and [Y ] nodes in state Y ; multiplying
n(n − 1) · [Y ] · [XY ][Y Z ]/(n2[Y ]2), we obtain formula (5).

3 Analysis of themodel

In this sectionwepresent the pair approximationSIRSmodel, andgive ourmain analyt-
ical results. First, we are going to reduce the dimension of the system, exploiting three
conserved quantities. Secondly, we introduce a formulation for the basic reproduction
number for the system, and we describe the behaviour of the fast limit system. Next,
we are going to derive the equilibria of the system in the biologically relevant region,
and we show that the slow manifold of our perturbed system is exponentially close to
the critical manifold. Lastly, we rescale the system in an O(ε)-neighbourhood of the
critical manifold, with a scaling similar to the one proposed in Jardón-Kojakhmetov
et al. (2021), and we apply the entry–exit formulation.

Throughout the analysis, we notice that the parabola [SS] = n[S]2, i.e. approxi-
mation (4) applied to the edges in state [SS], on the critical manifold is of particular
importance for the dynamics.

3.1 Fast–slowmodel

In this section, we derive the system we will study for the remainder of the article,
applying moment closure to (3) and reducing its dimension.

Applying approximation (5) to every triple in system (3), we obtain the following
singularly perturbed autonomous system in non-standard form:

[S]′ = − β[SI ] + ε(1 − [S] − [I ]),
[I ]′ = β[SI ] − γ [I ],
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[SS]′ = 2ε[S R] − 2β
n − 1

n

[SS][SI ]
[S] ,

[SI ]′ = − (γ + β)[SI ] + ε[I R] + β
n − 1

n
[SI ]

( [SS]
[S] − [SI ]

[S]
)

,

[S R]′ = γ [SI ] − ε[S R] + ε[R R] − β
n − 1

n

[SI ][S R]
[S] ,

[I I ]′ = 2β[SI ] − 2γ [I I ] + 2β
n − 1

n

[SI ]2
[S] ,

[I R]′ = γ [I I ] − (γ + ε)[I R] + β
n − 1

n

[SI ][S R]
[S] ,

[R R]′ = 2γ [I R] − 2ε[R R], (6)

in which, as from our assumptions, the processes of infection and recovery are fast,
and the process of loss of immunity is slow. By construction, the sum of all the edges
starting from a node in the state [S] (or [I ] or [R], respectively) is equal to

[SS] + [SI ] + [S R] = n[S], (7a)

[SI ] + [I I ] + [I R] = n[I ], (7b)

[S R] + [I R] + [R R] = n[R], (7c)

which allows us to remove the equation governing [S R] (and [I R] and [R R], respec-
tively). This can be checked by carefully computing the difference of the derivatives
of the right hand side(s) and the left hand side(s) of (7). By doing so, we reduce the
dimension of the system, obtaining

[S]′ = − β[SI ] + ε(1 − [S] − [I ]), (8a)

[I ]′ = β[SI ] − γ [I ], (8b)

[SS]′ = 2ε(n[S] − [SS] − [SI ]) − 2β
n − 1

n

[SS][SI ]
[S] , (8c)

[SI ]′ = − (γ + β)[SI ] + ε(n[I ] − [SI ] − [I I ]) + β
n − 1

n
[SI ]

( [SS]
[S] − [SI ]

[S]
)

,

(8d)

[I I ]′ = 2β[SI ] − 2γ [I I ] + 2β
n − 1

n

[SI ]2
[S] . (8e)

The basic reproduction number R0 can be obtained (Kiss et al. (2017, p. 140)) for the
limit as ε → 0 of system (8) as

R0 = β(n − 2)

γ
. (9)

We notice that, for (9) to be well-defined and dependent on the parameters of the
system, we need n > 2. The equality n = 2 describes the very special case of a ring

123



A geometric analysis of the SIRS epidemiological model… Page 9 of 38    37 

network, i.e., a connected network in which all nodes have exactly two neighbours. In
the remainder of the paper we assume R0 > 1 and n > 2.

Remark 1 We notice that the threshold R0 ≶ 1 in (9) is equivalent to

R1 := β(n − 1)

β + γ
≶ 1 ⇐⇒ R2 := βn

2β + γ
≶ 1, (10)

since they all correspond to β(n − 2) ≶ γ . A formula corresponding to R1 is given in
Kiss et al. (2017), shortly after the definition of R0.

We notice that R1 has a much more intuitive biological interpretation than R0. Con-
sider a network with all the nodes in susceptible state S, except one in state I . Consider
one of the n edges in state I S: this could either transition to RS, at a rate γ , and the
epidemics would die out immediately, or spread the infection to the node in state S,
at a rate β, and become an edge I I . If the latter happens, with probability β/(β + γ ),
(n − 1) new edges move to state SI ; hence, R1 can be interpreted in the classical
meaning of “the number of edges infections caused by one infected edge in an other-
wise susceptible population”. Recall that the disease spreads only through edges SI
(or I S, equivalently), so their number should be the quantity we measure in order to
quantify the contagiousness of the disease; an edge I I can not be used to spread the
disease.

Now we compute the basic reproduction number R1 for system (8) and ε > 0
sufficiently small.

Proposition 1 The basic reproduction number R1 for system (8) is given by

R1 = β(n − 1)(γ + ε)

γ (γ + β + ε)
. (11)

Proof We use the method first introduced in Diekmann et al. (1990), and then gener-
alized in Van den Driessche and Watmough (2002) (see also Diekmann et al. (2010)).
We linearize system (6) at the disease free equilibrium

([S], [I ], [SS], [SI ], [S R], [I I ], [I R], [R R]) = (1, 0, n, 0, 0, 0, 0, 0)

focusing on the infected compartments. In this case we choose as variables describing
the infected compartments [SI ], [I I ]/2 and [I R] obtaining

⎛
⎝

[SI ]
[I I ]/2
[I R]

⎞
⎠

′
= A

⎛
⎝

[SI ]
[I I ]/2
[I R]

⎞
⎠ ,

with the matrix A given by

A =
⎛
⎝

β(n − 2) − γ 0 ε

β −2γ 0
0 2γ −(γ + ε)

⎞
⎠ .
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We split A = M − V , with V invertible, M and V −1 having non-negative entries.
There are clearly many ways of doing that, but the preferred splitting is such that
M and V can be interpreted as the transmission (i.e. relative to new infections) and
transition matrix (i.e. relative to any other change of state), respectively. Then, we
compute

R1 = ρ(MV −1),

where ρ indicates the spectral radius of a matrix. The choice for the two matrices is

M =
⎛
⎝

β(n − 1) 0 0
0 0 0
0 0 0

⎞
⎠ , V =

⎛
⎝

γ + β 0 −ε

−β 2γ 0
0 −2γ γ + ε

⎞
⎠ .

It can easily be checked, then, that V −1 has non-negative entries, and that, since MV −1

has two rows of zeros,

ρ(MV −1) = (MV −1)1,1 = R1 := β(n − 1)(γ + ε)

γ (γ + β + ε)
. (12)

This finishes the proof. �
Remark 2 The perturbed R1 given in (11) has a similar biological interpretation for the
perturbed system to the one given for the corresponding R1 (10) of the limit system
as ε → 0. We need to compute R1, which corresponds to the average number of SI
edges produced by an SI edge in a totally susceptible population. As in the previous
case, an edge SI will become an edge I I with probability β/(β + γ ), producing in
this case n − 1 edges SI . However, the original edge I I , after having become I R can
become again an I S edge with probability ε/(ε + γ ). After having returned to the
state SI , the edge will produce other R1 SI edges, since the pairwise model does not
consider higher order correlation and does not “remember” that the neighbours of S
had already been infected once. Hence

R1 = β

β + γ

(
n − 1 + ε

ε + γ
R1

)
,

from which one obtains (12). Through this argument, we see that threshold for the
SIRS model is different from the one for the SIR model, while in the homogeneous
mixing case the two coincide.

Lemma 2 System (8) is well-posed in the convex set

� =
{
([S], [I ], [SS], [SI ], [I I ]) ∈ R

5≥0|
0 ≤ [S] + [I ] ≤ 1} ∩

{
0 ≤ [SS] + [SI ] ≤ n[S], 0 ≤ [SI ] + [I I ] ≤ n[I ]

}
.

(13)
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The set is forward invariant under the flow of (8), for ε ≥ 0, so that solutions of (8)
are global in time.

Proof Apparently the right-hand side of (8) has a singularity at [S] = 0; however, in
the set �, the terms [SI ]/[S] and [SS]/[S] are both bounded by n, so that the right-
hand side is indeed Lipschitz. Hence, system (8) has a local solution. Furthermore, it
can be easily checked that the system is forward invariant by showing that the flow is
pointing inwards on the boundary of �. Hence, solutions of system (8) are global in
time. �

3.2 Fast limit

In this section, we study the fast subsystem (or layer equations) corresponding to the
limit of system (8) as ε → 0 on the fast time scale. Hence, taking the limit ε → 0 in
system (8), we obtain

[S]′ = − β[SI ], (14a)

[I ]′ = β[SI ] − γ [I ], (14b)

[SS]′ = − 2β
n − 1

n

[SS][SI ]
[S] , (14c)

[SI ]′ = − (γ + β)[SI ] + β
n − 1

n
[SI ]

( [SS]
[S] − [SI ]

[S]
)

, (14d)

[I I ]′ = 2β[SI ] − 2γ [I I ] + 2β
n − 1

n

[SI ]2
[S] . (14e)

For ease of notation, we introduce

[·]0 = [·](0),
[·]∞ = lim

t→+∞[·](t).

In the fast dynamics, the susceptible population can only decrease, and eventually the
infected population will not have any more susceptibles to “recruit” and will decrease
as well. In particular, we prove the following:

Proposition 2 Consider system (14); the states [S] and [SS] are decreasing for all t ≥
0, and they tend asymptotically to positive constants [S]∞ and [SS]∞. The variables
[I ], [SI ], [I I ] and [I R] all have the limit [I ]∞ = [SI ]∞ = [I I ]∞ = [I R]∞ = 0.

Proof We proceed to show the claims of the proposition: for [SS] (and implicitly for
[S R], referring to (7a)), we give the limit value as a function of [S]∞, [S]0 and [SS]0.
We introduce the auxiliary variables u := [SI ]

[S] and v := [SS]
[S] . From (14a) and (14d)

we see that

u′ = −(γ + β)u + βu

(
n − 1

n
v + 1

n
u

)
,
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while from (14a) and (14c) we see that

v′ = −β
n − 2

n
uv. (15)

From our analysis, for any initial point we have 0 ≤ [SS] + [SI ] ≤ n[S] and
[SS], [SI ] ≥ 0. This implies that, for all times

u ≥ 0, v ≥ 0, u + v ≤ n.

Note that from (15) v is clearly decreasing for n > 2, and we see that

u′ + v′ = −γ u − βu

(
1 − u + v

n

)
< 0. (16)

Recall Lemma 2, which implies v ≥ 0; if v = 0, then [SS] = 0, and from Eq. (14c) we
observe that [SS] will not change, so 0 is its corresponding limit value. Assume then
v > 0: since v′ < 0, v → v∞ monotonically as t → ∞, and since 0 ≤ u + v ≤ n,
this implies that u → u∞ as t → ∞ as well. Then we notice that

0 < −
∫ ∞

0
(u′(z) + v′(z)) dz = u0 + v0 − u∞ − v∞ < ∞. (17)

We notice that we can rewrite (17) using (16) and obtain

∞ > −
∫ +∞

0
(u′(z) + v′(z))dz =

∫ +∞

0

(
γ u(z) + βu(z)

(
1 − 1

n
(u(z) + v(z))

))
dz

(18)

> γ

∫ +∞

0
u(z) dz. (19)

This means that

∫ +∞

0
u(z)dz < +∞ �⇒ u∞ = 0, (20)

which implies, recalling that [SI ] = u[S] and [S]∞ < ∞, that [SI ]∞ = 0. We can
now rewrite (14a) as

[S]′ = −βu[S],

which implies

[S]∞ = [S]0 exp
(

−β

∫ +∞

0
u(z)dz

)
> 0. (21)
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Similarly, using (15), we can show that

v∞ = v0 exp

(
−β

n − 2

n

∫ +∞

0
u(z)dz

)
> 0, (22)

which implies, using (20) and (21), and recalling that [SS] = v[S], that [SS]∞ > 0.
In particular, combining (21) and (22), we can write

[SS]∞ = [SS]0
( [S]∞

[S]0
) 2n−2

n

. (23)

We notice, from (7a), that this implies that [S R] converges to a non-negative limit as
well. Combining (14a) and (14b) as above, we show that [I ] vanishes as t → ∞ as
well:

[S]′ + [I ]′ = −γ [I ] < 0.

Since [S] → [S]∞ as t → +∞, also [I ] → [I ]∞. Proceeding as in (19), it can be
shown that [I ]∞ = 0. This yields, by (7b), that [I I ]∞ = 0 and [I R]∞ = 0. �
Remark 3 A relation between [SS](t) and [S](t) for system (14) analogous to (23)
holds for all t . Indeed, noticing that

V (t) = ln([SS](t)) − 2
n − 1

n
ln([S](t)),

is a constant of motion for system (14), we observe that for any t ≥ 0 the relation

[SS](t) = [SS]0
( [S](t)

[S]0
) 2n−2

n

, (24)

holds.

The equilibria of the limit system are all of the form [S] = S∗ ∈ [0, 1], [I ] = 0,
[R] = 1 − S∗; [SS] = SS∗ ≥ 0, [SI ] = 0, [S R] = S R∗ ≥ 0, [I I ] = 0, [I R] = 0,
[R R] = R R∗ ≥ 0 with SS∗ + S R∗ = nS∗ and S R∗ + R R∗ = n(1 − S∗); i.e., they
lie on the critical manifold (25).

The eigenvalues of the linearization of system (8) on the critical manifold

C0 :=
{
([S], [I ], [SS], [SI ], [I I ]) ∈ R

5≥0|[I ] = [SI ] = [I I ] = 0
}

, (25)

are

λ1 = λ2 = 0,
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corresponding to the slow variables [S] and [SS],

λ3 = λ4

2
= −γ < 0,

and

λ5 = β
(n − 1)[SS]

n[S] − (γ + β). (26)

In particular, λ5 changes sign on the hyperplane defined by β(n − 1)[SS] − n(γ +
β)[S] = 0. We notice that β(n − 1) > 0, since we assume n > 2. Considering (26),
we define the loss of hyperbolicity line on the critical manifold C0 as

[SS] = n(β + γ )

β(n − 1)
[S] =: L[S]. (27)

We now give a closed formula for the value of [S]∞.

Proposition 3 Consider a generic initial condition ([S]0, [SS]0) in the repelling region
of C0, i.e. satisfying [SS]0 > L[S]0, and initial conditions for [SI ](0) = O(ε). The
limit value under the fast flow [S]∞ is O(ε) close to the unique zero smaller than [S]0
of the function

H(x) = n
β + γ

β

(
x

1
n − [S]

1
n
0

)
− [SS]0

(
[S]

2
n −2
0 x1−

1
n − [S]

1
n −1
0

)
. (28)

Proof We proceed as in (Bidari et al. 2016, Sec. 3). From our assumptions, [SI ](0) =
O(ε). Combining (14a), (14d) and (24), we obtain

[SI ]′ − n − 1

n

[SI ]
[S] [S]′ = β + γ

β
[S]′ − n − 1

n
[SS]0[S]

2
n −2
0 [S] n−2

n [S]′.

Multiplying both sides by the integrating factor [S] 1−n
n we get

d

dt

(
[SI ][S] 1−n

n

)
= β + γ

β
[S] 1−n

n [S]′ − n − 1

n
[SS]0[S]

2
n −2
0 [S]− 1

n [S]′. (29)

Integrating (29) from t = 0 to t = +∞, and recalling that, by Proposition 2, [SI ]∞ =
0, we obtain

− [SI ](0)[S]
1−n

n
0 = n

β + γ

β
[S] 1

n

∣∣∣∣
+∞

t=0
− [SS]0[S]

2
n −2
0 [S] n−1

n

∣∣∣∣
+∞

t=0
. (30)

Since, by assumption, the left-hand side of (30) isO(ε), we ignore it, and we consider
the right-hand side only. Hence, we find [S]∞ by solving

n
β + γ

β
[S] 1

n

∣∣∣∣
+∞

t=0
= [SS]0[S]

2
n −2
0 [S] n−1

n

∣∣∣∣
+∞

t=0
,
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from which we immediately obtain that [S]∞ is given as a zero of the function H(x)

defined in (28). Next, we prove that such a zero is unique.
Recall that [SS]0[S]0 ≤ n. Therefore, we have

H(0) = [S]
1
n
0

(
−n

β + γ

β
+ [SS]0

[S]0
)

< 0, H([S]0) = 0.

Moreover,

H ′(x) = γ + β

β
x

1
n −1 − n − 1

n
[SS]0[S]

2
n −2
0 x− 1

n

= x
1
n −1

(
γ + β

β
− n − 1

n
[SS]0[S]

2
n −2
0 x1−

2
n

)
.

From (27) we see that H ′(x) > 0 for

x <

(
L[S]0
[SS]0

) n
n−2 [S]0 =: [S]∗ ([S]0, [SS]0) .

Clearly, [S]∗ = [S]∗([S]0, [SS]0) < [S]0, since we assumed [SS]0 > L[S]0. Lastly,

H ′([S]0) = [S]
1
n −1
0

(
γ + β

β
− n − 1

n

[SS]0
[S]0

)
< 0 if [SS]0 > L[S]0.

Hence, H(x) increases on the interval [0, [S]∗), has a positive maximum in x = [S]∗,
and then decreases towards 0; in particular, it has a unique zero on the interval [0, [S]∗),
and hence in the interval [0, [S]0). �

Remark 4 Recall (27) and Proposition 2. Given a pair ([S]0, [SS]0) in the repelling
region CR

0 above the line [SS] = L[S] (i.e., where λ5 > 0), its image under the fast
flow (14), approximated up to O(ε) by formulas (28) and (23), is in the attracting
region CA

0 below the line [SS] = L[S] (i.e., where λ5 < 0); refer to Fig. 3 for a
visualization.

Remark 5 Recall (9), and that we assume R1 > 1. Then L = n(β+γ )
β(n−1) = n

R1
< n.

Hence, the purple line [SS] = L[S] in Fig. 3 is always below the line [SS] = n[S].

Remark 6 The loss of hyperbolicity line can be rewritten as R1[SS]/(n[S]) = 1,
meaning there is a minimum ratio of susceptible edges to susceptible nodes for the
epidemic to “explode”. In this form, the line can more straightforwardly be related to
the threshold R0S = 1 in the classic SI R model. Moreover, since by (7a) we derive
the constraint [SS] ≤ n[S], if R1 < 1 the epidemic can never start, as the loss of
hyperbolicity in that case lies in an unreachable region of the critical manifold.

123



   37 Page 16 of 38 H. Jardón-Kojakhmetov et al.

Fig. 3 Red curve: evolution of
the point ([S]0, [SS]0) under the
fast flow. Blue curve: evolution
of the point ([S]∞, [SS]∞)

under the slow flow. Green
curve: curve [SS] = α([S])
defined in (39). Purple line: line
of loss of hyperbolicity
[SS] = L[S] of the critical
manifold of system (8), which
divides the attracting region CA

0
and the repelling one CR

0 (color
figure online)

3.3 Equilibria of the perturbed system

The following proposition discusses the equilibria of system (8).

Proposition 4 For ε > 0 sufficiently small and R0 > 1, system (8) has 2 equilibria in
the relevant region of R5.
Disease free equilibrium:

[S] = 1, [I ] = 0, [SS] = n, [SI ] = 0, [I I ] = 0.

Endemic equilibrium: to their first order on ε the components are given by:

[S] = (n − 1)(γ + β)(
n2 − n − 1

)
β − γ

+ O(ε),

[I ] = ε
n((n − 2)β − γ )

γ
((

n2 − n − 1
)
β − γ

) + O(ε2),

[SS] = n(γ + β)2

β(
(
n2 − n − 1

)
β − γ )

+ O(ε),

[SI ] = ε
n((n − 2)β − γ )

β
((

n2 − n − 1
)
β − γ

) + O(ε2),

[I I ] = ε
n((n − 2)β − γ )

γ
((

n2 − n − 1
)
β − γ

) + O(ε2). (31)

Proof The disease free equilibrium is trivial. The endemic equilibrium is computed by
expanding the variables in power series of ε, e.g. [S] = S0+εS1+O(ε2), substituting
them in system (8), equating the right-hand sides to 0 and matching powers of ε. �

Remark 7 Since we assume R0 = β(n−2)
γ

> 1, recall Remark 1 and (11), the numera-
tors of [I ], [SI ] and [I I ] of (31), as well as all the denominators, are strictly positive
for ε > 0 small enough.
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We notice that the disease free equilibrium belongs to C0 defined in (25), and by
computing the corresponding λ5 = β(n − 2)− γ = γ (R0 − 1)−O(ε) > 0, we show
that it is unstable. Moreover, we notice that the endemic equilibrium is O(ε) close
to the line [SS] = L[S] defined in (27); hence, it approaches it as ε → 0. See also
Lemma 5 below.

3.4 Slowmanifold

In this section we provide a multiple time scale description of the disease-free, or near
disease-free states.

Proposition 5 The slow manifold of system (8) is exponentially close in ε to the critical
manifold C0 given by (25).

Proof The invariant manifold C0 is an invariant manifold also for system (8) with
ε > 0: by direct substitution, we have that [I ]′, [SI ]′ and [I I ]′ are zero on C0. Hence,
C0 is invariant and satisfies all the conclusions of Fenichel’s theorem, and so it is one
possible slow manifold. By Fenichel’s theorem, all slow manifolds are exponentially
close to each other in the normally hyperbolic region; invariance allows us to extend
at least one slow manifold across the line where we do not have normal hyperbolicity,
namely C0. �
We provide an explicit computation of the slow manifold, expanding it in orders of ε,
in Appendix A.

The slow dynamics on the slow manifold [I ] = [SI ] = [I I ] = 0 are given by:

[S]′ = ε(1 − [S]),
[SS]′ = 2ε(n[S] − [SS]),

which, rescaling the system to the slow time variable τ = εt , becomes

˙[S] = 1 − [S],
˙[SS] = 2(n[S] − [SS]). (32)

Recall that [S]∞ and [SS]∞ are the initial conditions for the slow flow. Solving (32)
explicitly yields

[S](τ ) = ([S]∞ − 1)e−τ + 1,

[SS](τ ) = 2([S]∞ − 1)ne−2τ (eτ − 1) + ([SS]∞ − n)e−2τ + n,
(33)

meaning that [S] → 1, [SS] → n exponentially fast, as we would expect, since in
the slow dynamics, on the node level, the variable [R] can only decrease, and [S] can
only increase.

For its importance in the dynamics, we introduce the following notation


 := {([S], [SS]) ∈ [0, 1] × [0, n]|[SS] = n[S]2}. (34)
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Lemma 3 The parabola 
, given by (34), is uniformly attracting for the slow reduced
subsystem (32).

Proof Recall (33). The distance between a solution curve of (33) and 
 can be
parametrized by the slow time τ . With this in mind, let d(τ ) denote such distance, we
then have

d(τ ) = |[SS](τ ) − n[S]2(τ )|
= |2n ([S]∞ − 1) e−τ − 2n ([S]∞ − 1) e−2τ + ([SS]∞ − n) e−2τ

+ n − n ([S]∞ − 1)2 e−2τ − n − 2n ([S]∞ − 1) e−τ |
= |e−2τ

(
[SS]∞ − n[S]2∞

)
|

= e−2τ d(0),

which means that an orbit starting in any point ([S]∞, [SS]∞) ∈ (0, 1) × (0, n)

approaches exponentially fast the parabola 
 (34). �
Lemma 4 Consider an orbit starting (i.e. exiting the slow manifold) O(δ2), where
0 < δ2 � 1, away from the parabola [SS] = n[S]2, in a point with [S](0) = [S]0 in
the repelling region of C0, i.e. satisfying [SS]0 > L[S]0. Its limit value under the fast
flow [S]∞ is O(δ2) close to the unique zero smaller than [S]0 of

G(x) = β + γ

β

(
x

1
n − [S]

1
n
0

)
− [S]

2
n
0 x1−

1
n + [S]1+

1
n

0 . (35)

Proof Notice that, considering Lemma 3, the assumption of starting close to the
parabola is not restrictive. The derivation of G(x) is analogous to the derivation of
H(x) of Proposition 3, using

[SS](t) = n[S]
2
n
0 ([S](t)) 2n−2

n

instead of (24), sincewe assume [SS]0 = n[S]20. The uniqueness of the zero is obtained
applying Proposition 3 to this specific initial condition. �
In Fig. 4 we compare formula (35) and direct integration of the layer system (14)
starting with a small fraction of infected nodes.

Remark 8 Recall (23). Since we showed that the parabola 
 (34) is attracting for
the slow flow, we can assume that, after the first slow piece of any orbit, [SS]0 =
n[S]20 + O(δ1), where 0 < δ1 � 1. We can then rewrite (23) as

[SS]∞ = [SS]0
( [S]∞

[S]0
) 2n−2

n ≈ n[S]20
( [S]∞

[S]0
) 2n−2

n = n[S]2∞
( [S]∞

[S]0
)− 2

n

,

where the ≈ symbol indicates an O(δ1) error. For n large enough, the last factor is
close to 1, and the entry point for the slow flow is approximately on the parabola.
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(a) (b) (c)

Fig. 4 Comparison of the limit value of [S] as t → ∞ of system (14) (red) and formula (35) (blue). We
set [I ]0 = [SI ]0 = [I I ]0 = 0.001, γ = 1. With the values of the parameters of (a) (respectively, (b) and
(c)), 1/R1 ≈ 0.833 (resp., 0.417 and 0.034), and we only consider values of [S]0 ≥ 1/R1, for which the
epidemics can start (color figure online)

3.5 Rescaling

From now on, we are going to assume n = O(1). As we showed in Sect. 3.2, under the
fast flow eventually [I ], [SI ] and [I I ]will beO(ε); recall (7b), fromwhichwe see that
[I ] = O(ε) implies [SI ], [I I ], [I R] = O(ε). Proceeding as in Jardón-Kojakhmetov
et al. (2021), we rescale [I ] = ε[v]. This implies, using (7b), that

[SI ] = ε[Sv], [I I ] = ε[vv].

This rescaling brings the model, after rearranging the variables, to a singularly
perturbed system of ODEs, namely

[S]′ = − εβ[Sv] + ε(1 − [S] − ε[v]),
[SS]′ = 2ε(n[S] − [SS] − ε[Sv]) − 2εβ

n − 1

n

[SS][Sv]
[S] ,

ε[v]′ = εβ[Sv] − εγ [v],
ε[Sv]′ = − ε(γ + β)[Sv] + ε2(n[v] − [Sv] − [vv])

+ εβ
n − 1

n
[Sv]

( [SS]
[S] − ε

[Sv]
[S]

)
,

ε[vv]′ = 2εβ[Sv] − 2εγ [vv] + ε2β
n − 1

n

[Sv]2
[S] ,

(36)

which can be rewritten in a standard form, and rescaled to the slow time scale, denoting
now the time derivative with respect to the slow time parameter with an overdot, giving
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˙[S] = − β[Sv] + (1 − [S] − ε[v]),
˙[SS] = 2(n[S] − [SS] − ε[Sv]) − 2β

n − 1

n

[SS][Sv]
[S] ,

ε ˙[v] = β[Sv] − γ [v],
ε ˙[Sv] = − (γ + β)[Sv] + ε(n[v] − [Sv] − [vv]) + β

n − 1

n
[Sv]

( [SS]
[S] − ε

[Sv]
[S]

)
,

ε ˙[vv] = 2β[Sv] − 2γ [vv] + εβ
n − 1

n

[Sv]2
[S] .

(37)

Takingnow the limε→0 of (37),weobtain the systemof algebraic-differential equations

˙[S] = − β[Sv] + (1 − [S]),
˙[SS] = 2(n[S] − [SS]) − 2β

n − 1

n

[SS][Sv]
[S] ,

0 = β[Sv] − γ [v],
0 = − (γ + β)[Sv] + β

n − 1

n

[Sv][SS]
[S] ,

0 = 2β[Sv] − 2γ [vv].

(38)

The last three equations of (38) are satisfied for [v] = [Sv] = [vv] = 0. This is exactly
the critical manifold of (8), on which the dynamics is described by (32). Using (32),
we can show how λ5 changes in time, in the slow flow, by deriving its formulation
(26) with respect to time, obtaining

λ̇5 = β
n − 1

n

2n[S]2 − [SS]([S] + 1)

[S]2 .

This implies that λ5 is increasing if [SS] < α([S]), where the function α is defined
by

α(x) = 2nx2

x + 1
. (39)

In Fig. 5 we visualize the behaviour of two orbits in the slow dynamics. We note
that, even if an orbit enters the slow flow in a point below the purple line but above
the green curve, i.e. in the region where λ̇5 < 0, it eventually has to cross the green
line before crossing the purple curve, since they represent respectively λ̇5 = 0 and
λ5 = 0. Hence, any orbit will eventually evolve in the region λ̇5 > 0. We prove the
following:

Proposition 6 The subset {([S], [SS]) ∈ (0, 1) × (0, n)|λ̇5 > 0} is forward invariant
for system (32).
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Fig. 5 Sign of the derivative in
time of λ5 under the slow flow.
Blue: sketch of orbits starting
above/below the green curve
[SS] = α([S]). Purple: loss of
hyperbolicity line [SS] = L[S]
(27). Black: the attracting
parabola 
 (34). We remark that
fast orbits always land below the
purple line, which is the region
of the rectangle in which the
critical manifold is attracting
(color figure online)

[S]

1

[SS]
n

(1, n)

λ̇5 < 0

λ̇5 > 0

Proof The normal vector to the curve α([S]) is given by ν = (−α̇([S]), 1), with

α̇([S]) = 2n[S]([S] + 2)

([S] + 1)2
.

If we take the scalar product of ν with the vector field F given by (32), we obtain

ν · F = 2

(
n

(
2[S]3 + 3[S]2 − [S])

([S] + 1)2
− [SS]

)
< 2(α([S]) − [SS]),

meaning that on the curve [SS] = α([S]), this scalar product is negative, hence orbits
approaching the curve from below will not cross it. �
Remark 9 By comparing (34) and (39), we notice that the curve α is always above the
parabola 
; hence, by invariance of 
 and Proposition 6, an orbit starting above the
parabola will eventually be “squeezed” between α and 
.

The following Lemma is also insightful:

Lemma 5 Let ([S]∗, [SS]∗) denote the intersection point between the curve {[SS] =
α ([S])} and the line {[SS] = L[S]}. The endemic equilibrium point converges to
([S]∗, [SS]∗) as ε → 0 and n → ∞.

Proof Let [S]∗ denote the solution of L[S] = α([S]). It follows that [S]∗ = β+γ
2βn +

O
(

1
n2

)
. On the other hand, expanding [S] in (31) leads to [S] = β+γ

βn +O
(

1
n2

)
+O(ε).

Therefore [S] − [S]∗ = β+γ
2βn + O

(
1

n2

)
+ O(ε), from which the result follows by

taking the limits n → ∞ and ε → 0. �
The previous Lemma qualitatively tells us that for sufficiently small ε and large

enough n one expects the endemic equilibrium to be near the intersection point
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([S]∗, [SS]∗). In this case, if the endemic equilibrium is stable, then ([S]∗, [SS]∗)
is a good approximation of such an equilibrium, while if there are limit cycles then
these are roughly “centered” at ([S]∗, [SS]∗). Notice that, in the latter case, limit cycles
do not have to be “centered” at ([S]∗, [SS]∗) if n is not large enough. See more details
in the forthcoming sections.

3.6 Entry–exit function

Dividing the last three equations of system (36) by ε on both sides, we obtain

[S]′ = ε(−β[Sv] + (1 − [S] − ε[v])),
[SS]′ = ε

(
2(n[S] − [SS] − ε[Sv]) − 2β

n − 1

n

[SS][Sv]
[S]

)
,

[v]′ = β[Sv] − γ [v],
[Sv]′ = − (γ + β)[Sv] + ε(n[v] − [Sv] − [vv]) + β

n − 1

n
[Sv]

( [SS]
[S] − ε

[Sv]
[S]

)
,

[vv]′ = 2β[Sv] − 2γ [vv] + εβ
n − 1

n

[Sv]2
[S] .

(40)

System (40) can be rewritten as

x ′ = ε f (x, z) + ε2m(z, w),

z′ = zg(x, z) + εh(x, z, w),

w′ = − Dw + Az + εl(x, z),

(41)

where we denote x := ( [S]
[SS]

)
, z := [Sv], and w := ( [v]

[vv]
)
. The critical manifold

C0 = {z = 0, w = (0
0

)} is invariant for system (41) both when ε > 0 and ε = 0.
Recall (26); it is clear that g(x, 0) = λ5 ≶ 0 when x ∈ CA

0 or x ∈ CR
0 , respectively.

To control the relation between the starting point of the slow dynamics and the
transition point back to the fast dynamics, we are going to employ the entry–exit
function (De Maesschalck and Schecter 2016; Liu 2000; Schecter 2008). We cannot
apply (Liu 2000, Theorem 2.5), as was done in Jardón-Kojakhmetov et al. (2021),
since that requires that the fast dynamics is one-dimensional, while (41) has three fast
variables. Instead, we can apply Theorem 4.7 of Liu (2000); see also Schecter (2008,
Theorem 2.4), noting that the map0 was defined at p. 417. We remark, however, that
one of the hypotheses necessary for the application of such formula is the separation
of the negative eigenvalues from the eigenvalue which causes the loss of stability. To
be more precise, let us recall that the non-trivial eigenvalues of the layer equation on
C0 are λ3 = −2γ , λ4 = −γ and λ5, see (26). Therefore, the exchange lemma of
Theorem 4.7 of Liu (2000) can be applied only to trajectories contained in the portion
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of C0 in which λ5 > −γ . Recalling (26), we have that λ5 > −γ if and only if

[SS] >
n

n − 1
[S]. (42)

Thus, let us now assume that a solution of (32) satisfies (42) for all τ ≥ 0. Then,
denoting with x0 := ([S]∞, [SS]∞) and letting x(τ ; x0) denote the solution of

ẋ = f (x, 0, 0), x(0) = x0, (43)

we can implicitly compute the exit time TE of an orbit on the slow manifold through
the integral

∫ TE

0
g (x(τ ; x0), 0) dτ = 0, (44)

which is simply a rewriting of the entry–exit integral (Liu 2000). Figure 12a, b show
two trajectories satisfying (42) for which formula (44) provides a good approximation
of the exit time from the slow dynamics.

A natural question concerns conditions that guarantee that (42) holds for all τ .
Recalling that for the slow flowwe denote the initial conditions by ([S](0), [SS](0)) =
([S]∞, [SS]∞), and using (24), we find that (42) holds for τ = 0 if and only if

[S]∞ >
(n − 1)

n
[S]

2(n−1)
n

0 [SS]−1
0 ≈ (n − 1)

n2 [S]−
2
n

0

where the last (approximate) equality is obtained as in Remark 8. It is possible that
(42) does not hold for some τ > 0 even if holds at τ = 0, but following similar
steps as we have just described, one can show that this also happens only if [S]∞
is sufficiently close to 0. Hence (42) holds for all τ ≥ 0 whenever [S]∞ is large
enough. We recall that [S]∞ can be computed as zero of the function H(x) given in
Proposition 3. Accordingly, let us recall from Proposition 3 that

H(x) = n
β + γ

β

(
x

1
n − [S]

1
n
0

)
− [SS]0

(
[S]

2
n −2
0 x1−

1
n − [S]

1
n −1
0

)
.

Thus, we see that for x < [S]0, H changes proportionally to β. Then, because H
increases as β also increases, we can use the implicit function theorem to argue that
[S]∞ is a decreasing function of β, for any fixed [S]0 ∈ (0, 1). The previous fact can
also be seen from (21). Hence, from the arguments described above, and recalling that
β >

γ
n−2 so that R1 > 0, we conclude that there exists β∗ such that (42) is satisfied for

all τ if γ
(n−2) < β < β∗. On the other hand, (42) would not hold if β is large enough.

In that case, the formula (44) does not provide good approximations for the exit point,
see more details in Appendix B. From now on we shall assume that (42) holds.
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In order to find TE from (44), we use (33), introducing, for ease of notation, A :=
[S]∞ − 1 < 0 and B := [SS]∞ − n < 0. Then, (44) becomes

∫ TE

0
λ5(τ )dτ =

∫ TE

0

(
−(γ + β) + β

n − 1

n

[SS](τ )

[S](τ )

)
dτ =

∫ TE

0

(
−(γ + β) + β

n − 1

n

2Ane−2τ (eτ − 1) + Be−2τ + n

Ae−τ + 1

)
dτ = 0,

(45)

which gives the following implicit equation for TE

− (γ + β)TE + β
n − 1

n
( Ae−TE (2An − B) − TE (B − 2A(A + 1)n) + (B − A(A + 2)n) ln

(
A+eTE

A+1

)

A2

− 2An − B

A

)
= 0.

(46)

Clearly, TE = 0 is a solution of (46); the integrand of (45), i.e. λ5, along the slow
flow, is eventually always increasing, recall Proposition 6.

Lemma 6 The exit time TE is finite for any initial point ([S]∞, [SS]∞) ∈ CA
0 .

Proof Recall (45). For small positive values of τ , λ5(τ ) < 0, since the slow dynamics
begins in the attracting region CA

0 . Hence, for small values of τ ≥ 0 the integral

∫ τ

0
λ5(σ )dσ < 0.

From (46), we observe that

lim
TE →+∞

∫ TE

0
λ5(σ )dσ = +∞,

hence there exists at least onefinite TE which satisfies (44). Fromour previous analysis,
we know that λ5(τ ) = 0 only once during the slow flow, and it remains positive
afterwards; hence, such TE is unique. �

3.7 Application of the entry–exit formula to the parabola

Aswe have remarked so far, the parabola (34) is of particular interest for the dynamics,
evenmore so for large values of n. Hence, we are interested in understanding the entry–
exit relation on this specific invariant set. We now consider the evolution, under the

123



A geometric analysis of the SIRS epidemiological model… Page 25 of 38    37 

slow flow, of the point ([S]∞, [SS]∞) = (0, 0); with these initial conditions, (33)
becomes

[S](τ ) = 1 − e−τ ,

[SS](τ ) = n + ne−2τ − 2ne−τ = n[S]2(τ ).
(47)

Being able to write [SS] as a function of [S] allows us to compute the exit point for
the origin, which in general is not possible, since λ5 depends on both slow variables.
Combining (47) and (45) we obtain

∫ [S]1

0

(−(γ + β) + β(n − 1)x

1 − x

)
dx = 0

�⇒ β(n − 1) (1 − [S]1) + (γ − (n − 2)β) ln (1 − [S]1) − β(n − 1) = 0,

�⇒ −β(n − 1)[S]1 + (γ − (n − 2)β) ln(1 − [S]1) = 0,

(48)

where [S]1 indicates the exit point of the orbit which starts at the origin. It can be
shown, by direct substitution, that orbits with initial conditions ([S]∞, [SS]∞) =
([S]∞, n[S]2∞) evolve, under the slow flow (33), along the curve [SS] = n[S]2;
moreover, this follows from Lemma 3. The exit point of such an orbit can be computed
implicitly, with the same procedure as (48).

Lemma 7 Orbits entering the slow flow in a point of the form ([S]∞, [SS]∞) =
([S]∞, n[S]2∞) exit at a point of the form ([S]1, n[S]21), with [S]1 given by

−β(n − 1)[S]1 + (γ − (n − 2)β) ln(1 − [S]1)
= −β(n − 1)[S]∞ + (γ − (n − 2)β) ln (1 − [S]∞) , (49)

which can be equivalently rewritten, introducing for ease of notation C := ((n −
2)β − γ )/(β(n − 1)), as

(1 − [S]1)C e[S]1 = (1 − [S]∞)C e[S]∞ . (50)

Proof Straightforward computation from the integral in (48), where we substitute the
lower bound of integration 0 with a generic [S]∞. �
Lemma 8 If two entry points on the parabola satisfy [S]∞,1 < [S]∞,2, then the cor-
responding exit points satisfy [S]1,1 > [S]1,2.

Proof Recall that the parabola is invariant under the slow flow. The entry–exit relation
(50) implicitly defines a function

h(x) := (1 − x)C ex ,
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Fig. 6 Sketch of the function
h(x) used in the proof of
Lemma 8

x

1

h([S]∞,2)
h([S]∞,1)

1

[S]1,1[S]1,21
R1

[S]∞,2[S]∞,1

h(x)

meaning that the entry–exit relation can be written as h([S]∞) = h([S]1) (see Fig. 6
for a sketch of the function h, and a visualization of the argument of this proof). We
observe that h(0) = 1 and h(1) = 0. Deriving h(x), we see that

h′(x) = (1 − x)C−1(1 − C − x)ex > 0 ⇐⇒ x < 1 − C = γ + β

(n − 1)β
= 1

R1
.

Hence, h(x) is increasing before x = 1/R1, decreasing afterwards. This implies that
if [S]∞,1 < [S]∞,2 we have that h([S]∞,1) < h([S]∞,2), and the corresponding exit
points satisfy [S]1,1 > [S]1,2 > 1/R1. �

The study of the asymptotic behaviour of system (8) is then reduced to two
2-dimensional maps, from C0 to itself; specifically, we define 1([S]0, [SS]0) =
([S]∞, [SS]∞) and 2([S]∞, [SS]∞) = ([S]1, [SS]1). We now explain the rationale
behind introducing the one-dimensional maps 


1 and 

2 obtained by restricting the

domain and approximating the range of 1 and 2 to the parabola 
 (see Fig. 7).
Indeed, Remark 8 and Lemma 3 show that the parabola 
 is close to being invariant
for the map 2 ◦1 and it is well known that the occurrence of near one-dimensional
return maps is an important theme in multiple time scale systems (Bold et al. 2003;
Guckenheimer et al. 2006; Kuehn 2011; Medvedev 2005).

Next, consider a point with [S] coordinate [S]0, O(ε) away from the parabola 


(34), in the repelling part of the critical manifold. Its image [S]∞ under the fast flow,
which defines the map 1 sketched in Fig. 7, is given by (35). We notice that this
value depends on both β and γ , as well as on n. For n large enough, the entry point
in the slow flow will be close to the parabola, as argued in Remark 8; hence, we will
be able to compute its exit point [S]1 using (49), which again depends explicitly on
all the parameters of the system in a highly non-trivial way. This is different from
the SIRWS model studied in Jardón-Kojakhmetov et al. (2021), in which there was a
clear separation between fast parameters, which dictated the fast dynamics, and had
no influence on the slow one, and slow parameters, which characterised the viceversa.
The map 2 in Fig. 7 sketches the relation between the entry point [S]∞ and its
corresponding exit point [S]1, i.e. (50).

Depending on the relative position of [S]0 and [S]1, we might be able to deduce
the asymptotic behaviour of the system. However, the high dimensionality of the layer
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Fig. 7 Sketch of the map which
relates [S]0 to [S]∞ (red) and
[S]∞ to [S]1 (blue). The green
dot represents the value 1/R1:
the epidemics can only start for
values of [S]0 > 1/R1 (color
figure online)

10 [S]

ΠΓ
2

ΠΓ
1

[S]0

[S]1

[S]∞

1/R1

equation and the complex implicit relation between [S]0 and [S]∞ (recall (35)) hinders
the analysis of the system with non-numerical tools.

We proceed now to a bifurcation analysis of system (8), and finally, with a technique
similar to the one detailed Jardón-Kojakhmetov et al. (2021, Sec. 3.4.1), to numerically
investigate the existence of periodic orbits by concatenation of fast and slow pieces.
We stress the versatility of the numerical argument we present, which is similar to the
one we used in Jardón-Kojakhmetov et al. (2021), applied now to a higher dimensional
system.

4 Bifurcation analysis and numerical simulations

In this section, we carry out a bifurcation analysis for the behaviour of system (8),
which will then be verified by numerical simulations and by a geometrical argument.
Bifurcation analysis is done on system (8), which for small values of ε is stiff (as
we showed in Proposition 5, the slow manifold is exponentially close to the critical
manifold), while the numerical simulation concerns a combination of systems (14)
and (32), which are both non-stiff.

It is important to notice that, even though the layer system (14) converges to the
critical manifold forwards in time, the slow flow (32) would converge to the point
([S], [SS]) = (1, n) if we let it evolve freely; the derivation of the exit time (46) is
fundamental, in this setting, to carry out a meaningful numerical exploration of the
model.

Without loss of generality, we set γ , which is the inverse of the average infection
interval, to 1; this simply amounts to an O(1) rescaling of time, and we rescale the
other parameters accordingly, keeping however the same symbols, for ease of notation.
System (8) then has only three parameters, namely ε, n and β.

Using MatCont (Dhooge et al. (2008)), we are able to completely characterize
system (8) through numerical bifurcation analysis. We only consider the first octant of
R
3, for the biological interpretation of the parameters. Numerical analysis shows the

existence of a Hopf surface�, whose “skeleton” is depicted in Fig. 8. For values of the
parameters between the plane ε = 0 and �, the system exhibits a stable limit cycle,
while for values above�, the system exhibits convergence to the endemic equilibrium
(31). Our bifurcation analysis suggests the existence of a value ε∗ ≈ 0.18 such that, for
ε > ε∗, the system only exhibits convergence to the endemic equilibrium, regardless
of the values of β and n. To make Fig. 8 more readable, we provide intersections of
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n

β

Σ

Fig. 8 A skeleton of the bifurcation surface �. Green (respectively, red and blue) curves correspond to
constant values of ε (respectively, β and n). We notice that, for values of n ≥ 6, system (8) converges to
the endemic equilibrium (31) regardless of the value of ε and β (color figure online)

β

4
3.5

3

2.5

2.125

(a) Intersections of the surface Σ with planesn = k.
The values of n are indicated near the correspond-
ing curves.

n

1

2.5

5

15

(b) Intersections of the surface Σ with planesβ = k.
The values of β are indicated near the correspond-
ing curves.

Fig. 9 A subset of the blue and red curves from Fig. 8 (color figure online)

the surface � with some planes n = k (Fig. 9a), β = k (Fig. 9b), and finally ε = k
(Fig. 10).

As in Jardón-Kojakhmetov et al. (2021), we see an expansion of the parameter
region which exhibits stable limit cycles as ε decreases, see Fig. 10. This means that,
as ε decreases, i.e. as the ratio between the average lengths of the infectious phase and
the immunity interval decreases, we are more likely to observe occurrence of stable
limit cycles in the disease dynamics. We do not observe, however, a divergence in
the n direction, as the limit as ε → 0 of the surface contained in the green curves of
Fig. 10 is still bounded.

In order to verify the accuracy of the surface �, we investigate the system via
a numerical implementation of the same geometrical argument used in Jardón-
Kojakhmetov et al. (2021, Sec. 3.4.1). There, we numerically showed the existence
of a candidate orbit by concatenating heteroclinic orbits of the layer equation, from
the critical manifold to itself, and orbits of the slow flow, truncating each at the cor-
responding exit time. The system studied in Jardón-Kojakhmetov et al. (2021) was
3-dimensional, but the slowflowevolved on a 2-dimensional plane inR3; aswe showed
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n

β

0.15

0.1
0.05

0.025

0.01

0.001

Fig. 10 Intersections of the surface�with planes ε = k. The values of ε are indicated near the corresponding
curves

thus far, system (8) is characterized by a 2-dimensional slow manifold, as well. We
now briefly recall the construction of the geometrical argument.

For this description, let us fix ε = 0, n = 3, and consider different values of β. A
candidate starting point [Ŝ] for a periodic orbit was found by iterating multiple times
the layer system (14) and the slow flow (32), which is integrated only for time equal to
the exit time (46). These are the maps1 and2, respectively, in Sect. 3.7, so in other
words we have ([Ŝ], [ŜS]) = m(([S]0, [SS]0)) where ([S]0, [SS]0) is an arbitrary
initial point,  = 2 ◦ 1 and m is large enough that further iterations do not yield
substantial changes.

Once we have obtained the candidate value [Ŝ], we define a small interval J1 in
the [SS] coordinate around [ŜS]. Next, the interval J2 is obtained as the evolution of
J1 under the layer equation, that is J2 = 1(J1). Analogously, we then obtain the
interval J3 as the evolution of J2 under the slow flow for a time precisely given by
TE , that is J3 = 2(J2). In Jardón-Kojakhmetov et al. (2021) we have shown that
if J3 intersects J1 transversally, then the perturbed system, for ε > 0 small enough,
exhibits a limit cycle. Furthermore, if the map  = 2 ◦ 1 is a contraction, then
the limit cycle is locally stable. Here we provide an additional numerical illustration
of our argument, see Fig. 11. The black solid and dashed lines depict, respectively,
a choice of J1 and the corresponding J3. We see that these two intervals intersect
transversally. This hints to the possibility of a singular cycle with exit point close to
the intersection point. To be more specific, when taking an interval J1 corresponding
to [S]0 smaller than [Ŝ] (green solid line), the interval J3 we obtain (green dashed line)
includes values of [S] larger than [S]0. Conversely, when J1 includes values [S]0 larger
than [Ŝ] (red solid line), the interval J3 we obtain (red dashed line) includes values of
[S] smaller than [S]0. In either of these two latter cases, the intervals do not intersect.
This behaviour provides numerical evidence that there exists a point p = ([S], [SS])
close to ([Ŝ], [ŜS]) such that (p) = p. That is, p is a fixed point of the map . In
this way, the concatenation of an orbit of the layer system that is backward asymptotic
to p and an orbit of the slow subsystem with exit point at p is what we call a singular
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Fig. 11 Representation of three J1s (solid lines) and the respective J3s (dashed) after a concatenation of
a fast loop and a slow flow stopped at the exit time (46). The intersection of the black lines represent the
approximate exit point of the candidate limit cycle. For J1 corresponding to a smaller [S]0 (green), the
exit segment yields greater values of [S]1. Viceversa, for J1 corresponding to a larger [S]0 (red), the exit
segment yields smaller values of [S]1. The interpretation is that only in the case of transversal intersection
(black lines) we have a candidate singular limit cycle (color figure online)

cycle. Regarding stability, since we have shown that the slow flow is a contraction, and
that the flow of the layer system is not expanding, we can conclude that the singular
cycle is attracting.

Figure 12a, b depict the numerical realization of the two limit systems for a choice
of (n, β) for which we do expect limit cycles: indeed, J1 and J3 intersect transversely,
and bifurcation analysis confirms that, for this choice of the parameters, there is a
stable limit cycle for ε > 0 sufficiently small. Figure 12c, is the projection on the
([S], [I ])-plane of an orbit of system (8), starting from a random initial condition.
As we expected, for ε sufficiently small, the perturbed system exhibits a stable limit
cycle, as argued from the limiting situation depicted in Fig. 12 a, b.

Moreover,we remark on the necessity of ε being “small enough”,with this condition
being represented by the surface �, for the above argument to hold. In particular,
in Fig. 13, we show how increasing ε from 0.01 to 0.02 destroys the limit cycle
at corresponds, instead, to convergence to the endemic equilibrium. Hence, for this
specific realization, ε = 0.01 is small enough, whereas ε = 0.02 is already too
large. The threshold for ε is given by the intersection of the surface � and the line
{n = 3, β = 1.2} in the (n, β, ε)-space represented in Fig. 8.

5 Discussion and outlook

We have analysed the behaviour of an SIRSmodel for epidemics on networks, exploit-
ing Geometric Singular Perturbation Theory (GSPT), similarly to what performed in

123



A geometric analysis of the SIRS epidemiological model… Page 31 of 38    37 

(a) (b)

(c)

Fig. 12 Numerical illustration of the geometrical argument used to show existence of a limit cycle. a
Evolution under the layer equation (red) of a small interval J1. The corresponding image defines the entry
interval J2 on the critical manifold. The evolution of each point of J2 under the slow flow, and stopped at
its exit time, is shown in blue and defines the exit interval J3. Notice that the blue curves lie on the [S], [SS]
plane, while the red curves represent a fast excursion in the region [I ], [SI ], [I I ] > 0. The black line
represents the border of (44). b Zoom on the positions of J1 (red) and J3 (blue) on the critical manifold. c
Projection on the ([S], [I ]) plane of a numerical simulation of system (8) from a random initial condition,
exhibiting convergence to a stable limit cycle predicted by our geometrical argument (color figure online)

Jardón-Kojakhmetov et al. (2021), in a way appropriate to a system in a nonstandard
singularly perturbed form.

From the point of view of applications, the main result found, through bifurcation
analysis and geometric numerical arguments, is that, for a significant open subset of the
parameter space, the network model exhibits stable limit cycles. This result is in sharp
contrast to the global convergence to equilibrium of solutions to the standard (random
mixing) SIRS model (Hethcote 1976; O’Regan et al. 2010; Jardón-Kojakhmetov et al.
2021).

Stable periodic cycles are found the value of n, the number of neighbours every
individual has, is between 3 and 5 included. It is not surprising that a small value of n
is needed, since for large n the model approximates a random mixing model, which,
as stated above, exhibits global convergence to equilibrium. On the other hand, n ≤ 5
may appear a strongly restrictive condition for actual contact networks; however,
it must be considered that in the model all contacts are assumed to have the same
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(a) (b)

(c) (d)

Fig. 13 Numerical illustration of the geometrical argument,with a particular focus on the effect of increasing
ε on the dynamics. a, b Correspond to the singular flows as in Fig. 12, here for the choice of parameters
β = 1.2 and n = 3. c, d The projections on the ([S], [I ]) plane of two numerical simulations of system
(8) starting from a random initial condition, for ε = 0.01 and ε = 0.02, respectively. Notice that since
the intervals J1 and J3 intersect transversely, we expect to find a stable limit cycle for ε > 0 sufficiently
small. This is indeed true for ε = 0.01, but no longer true for ε = 0.02. In other words, for this choice of
parameters, ε = 0.02 is not sufficiently small so that our geometric argument holds

strength, while in reality individuals may have a limited number of strict contacts (say,
three to five very close friends) plus a number of infrequent contacts. An interesting
questionwould bewhether the same result would hold with such a networkmodel with
weighted connections.Thus, it is clear that there is a strongmotivation to use techniques
from GSPT to investigation more complex network models, since the current analysis
unveiled asymptotic behaviours which are impossible in the corresponding system
under the random mixing assumption.

The results shown here were obtained for a deterministic system representing the
pair approximation (Kiss et al. 2017) of a stochastic network model. A natural ques-
tion is whether the periodic solutions, identified in the pair-approximation model,
correspond to a recognizable pattern in the network simulations as well. Preliminary
numerical explorations seem to suggest that indeed network simulations fluctuate
around a closed orbit when the deterministic model predicts an attracting periodic
solution. We plan to pursue further these investigations, that are however hampered,
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for ε particularly small, by the necessity of simulating a very large network to avoid
the infection dying out in the long time orbits spend near [I ] = 0.

This last observation raises a general issue concerning the applicability of themodel.
Our analysis (Lemma 6) shows that the slow flow takes a finite time (the time passing
between two consecutive outbreaks of the infection) in the slow scale, hence of the
order O(1/ε) in the fast time scale. During that period the value of I (representing
the fraction of infected nodes) is exponentially (in ε) close to 0; hence, in a more
realistic stochastic model, complete extinction of the infection would be likely, unless
population size N is very large or there exists the possibility of external reintroduction
of the infection. In the context of stochastic models, it would probably be interesting
considering joint limits in which ε → 0 while N → ∞, as in the discussion of critical
community size in Diekmann et al. (2013).

We stress the versatility of our geometric procedure, which gives us a numerical
intuition of the asymptotic behaviour of a stiff system, i.e. system (8) with 0 < ε � 1,
without having to actually integrate it, but through simple integration of the corre-
sponding two non-stiff limit systems, which we derived through the use of GSPT.
This is particularly important for the high(er) dimensionality of the system, which
hinders analytical results on the perturbed system. In particular, the same strategy is
likely to generalize to more complicated network-based ODE models derived from
moment closure.

Wemust acknowledge that one of the main tools used in the analysis, the entry–exit
map, requires an extra assumption (regarding the order of the negative eigenvalues of
the critical manifold) to ensure that the fast dynamics near the critical manifold can
be approximately one-dimensional. The assumption holds if the contact rate β is not
too large, but fails for large values of β. When this happens (see Appendix B), the
formula (44) to predict the exit point is no longer correct, but we see numerically that
periodic solutions still exist in that case too. This stresses the need to develop methods
to be able to deal with the case when the fast dynamics is not one-dimensional.

As mentioned above, we expect that for n → +∞ the system approaches the
simple epidemic model with random mizing; however, this has not been rigorously
established. One intermediate step between having two independent perturbation
parameters (i.e., ε → 0 and n → +∞) could be to couple n and ε, for example
taking n = O(1/εα), for some α > 0. However, this goes beyond the scope of this
project, and we leave this as a prompt for future research.
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Appendix A

Recall Proposition 5. In this section, we explicitly show that the slow manifold of
system (8) is exponentially close to the critical manifold C0 (25).
Proof First of all, we notice that [I ] = O(ε) implies [SI ], [I I ], [I R] = O(ε); recall
(7b). Proceeding as in Taghvafard et al. (2019), we propose the expansion

[I ] = f1([S], [SS])ε + O(ε2), (51a)

[SI ] = f2([S], [SS])ε + O(ε2), (51b)

[I I ] = f3([S], [SS])ε + O(ε2), (51c)

where the functions fi are as smooth as necessary. We use these expansions in the
respective equations for [I ]′, [SI ]′, [I I ]′ in system (8), and match the corresponding
powers of ε.

Here we show the details with [I ]. For ease of notation, we omit arguments of the
functions fi everywhere. We need to solve

[I ]′ =
(

∂ f1
∂[S] [S]′ + ∂ f1

∂[SS] [SS]′
)

ε + O
(
ε2

)
= β[SI ] − γ [I ],

which becomes

(
∂ f1
∂[S]

(
−β f2ε + ε (1 − [S] − f1ε) + O

(
ε2

))
+ ∂ f1

∂[SS] (2ε (n[S] − [SS] − f2ε)

−2β
n − 1

n

[SS] f2ε

[S]
))

ε + O(ε2) = β f2ε − γ f1ε + O
(
ε2

)
.

(52)

The LHS of (52) is O(ε2), while RHS of (52) is O(ε); this means that, at first order
in ε, we have to solve RHS = 0 at first order in ε, i.e. ignoring the contribution which
is O(ε2).

From the equation for [I ]′ we see that

0 = β f2ε − γ f1ε �⇒ f1 = β

γ
f2.

The same arguments can be applied for [SI ] and [I I ]. From the equation for [SI ]′ we
have

0 = −(γ + β) f2ε + ε2 (n f1 − f2 − f3)
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+n − 1

n
β f2ε

( [SS]
[S] − f2ε

[S]
)

�⇒ f2 = 0 �⇒ f1 = 0.

From the equation for [I I ]′

0 = 2βε f2 − 2γ ε f3 + 2ε2β
n − 1

n

f 22
[S] �⇒ f3 = 0.

This shows that, at first order in ε, f1 = f2 = f3 = 0. So, in the first order in ε, the
slow manifold is still [I ] = [SI ] = [I I ] = 0.

We now prove by induction that, for any k ∈ N, the slow manifold is exactly 0 in
the expansion up to εk . By assumption, we can write [I ] = g1([S], [SS], [S R])εk +
O(εk+1), [SI ] = g2([S], [SS], [S R])εk + O(εk+1), [I I ] = g3([S], [SS], [S R])εk +
O(εk+1).

Proceeding as above, all the LHSs will beO(εk+1), while the RHSs will beO(εk),
meaning we still have to solve RHS = 0.

From the equation for [I ]′ (omitting, once again, all the arguments of gi everywhere,
for ease of notation):

0 = βg2ε
k − γ g1ε

k �⇒ g1 = β

γ
g2.

From the equation for [SI ]′:

0 = −(γ + β)g2ε
k + εk+1 (ng1 − g2 − g3) + n − 1

n
βg2ε

k
( [SS]

[S] − g2εk

[S]
)

�⇒ g2 = 0 �⇒ g1 = 0.

From the equation for [I I ]′:

0 = 2βg2ε
k − 2γ g3ε

k + β
n − 1

n
ε2k g2

2

[S] �⇒ g3 = 0.

This shows that the slow manifold is exponentially close in ε to the critical manifold
[I ] = [SI ] = [I I ] = 0. �

Appendix B

Let us recall that our use of the entry–exit formula and our geometric argument to
find candidates for limit cycles require the assumption that [SS] > n

n−1 [S], as already
given in (42). This is because, in such a case, the non-trivial eigenvalues of the critical
manifold are arranged as −2γ < −γ < λ5. In this situation we can simply disregard
the contribution of the more negative eigenvalues. The situation is quite different if the
above ordering does not hold along orbits of the slow subsystem. In this Appendix,
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(a) (b)

Fig. 14 a Evolution under the layer system (red) of a small interval J1. Its image defines the entry interval
J2 on the critical manifold. The evolution of each point of J2 under the slow flow, stopped at the exit time
provided by formula (46), is shown in blue. The evolution of J2 defines the exit interval J3. The black line
represents the border of (42): notice that the blue orbits partially lie below that line. b Zoom on the relative
position of J1 and J3 on the critical manifold. Since these intervals intersect transversely, our geometrical
argument predicts a limit cycle with exit point O(ε) close to [S] ≈ 0.77

we provide numerical evidence that the formulas derived in Sect. 3.6 fail to reliably
predict the exit point whenever the above assumption does not hold.

We start by considering a pair of parameters (β = 16, n = 3) for which our
bifurcation analysis predicts that orbits converge to a stable limit cycle. In Fig. 14,
we depict the same procedure as in in Fig. 12, and we indicate with a black line the

set
{
[SS] = n

n−1 [S]
}
. Notice that J2, and part of the orbits corresponding to the slow

flow, lie in the region defined by [SS] < n
n−1 [S]. That is, for these orbits the important

above assumption does not hold. Therefore, the exit time presented in Sect. 3.6 may
not be correct, as we indeed show below.

We now compare the theoretical result we would obtain by applying the entry–exit
function to numerical simulations of the perturbed system (8), shown in Fig. 15. The
simulation confirms the presence of a stable limit cycle, but the exit point (the largest
[S] value in the cycle) is notO(ε) close to the one predicted by the entry–exit formula
([S] ≈ 0.77). These numerical simulations suggest that the straightforward application

of the entry–exit formula to orbits crossing the line
{
[SS] = n

n−1 [S]
}
provides wrong

numerical estimates of the exit point. This is likely due to the fact that the ordering of
the eigenvalues is not preserved along the orbits. Thus, we conjecture that the interplay
between the two attracting but constant fast directions and λ5 has a non-trivial role in
the entry–exit map.

A first step towards resolving the issue described in this Appendix would be to
understand how the ordering of the multiple non-trivial eigenvalues of the critical
manifold influences the dynamics and especially what the corresponding entry–exit
function would be.
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(a) (b) (c)

Fig. 15 Simulations of system (8) for n = 3, β = 16, random initial conditions, and decreasing values of
ε. In this case the exit point for the limit cycle is [S] ≈ 0.58, which is not close to the one predicted by our
entry–exit formulation, compare with Fig. 14
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