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Abstract
In this survey, we propose an overview on Lyapunov functions for a variety of compartmental
models in epidemiology. We exhibit the most widely employed functions, and provide a
commentary on their use. Our aim is to provide a comprehensive starting point to readers
who are attempting to prove global stability of systems ofODEs. The focus is onmathematical
epidemiology, however some of the functions and strategies presented in this paper can be
adapted to a wider variety of models, such as prey–predator or rumor spreading.

Keywords Epidemic models · Lyapunov functions · Compartmental models · Global
stability · Ordinary differential equations · Disease free and endemic equilibria

Mathematics Subject Classification 34D20 · 34D23 · 37N25 · 92D30

1 Introduction

Stemming from the pioneering work of Kermack and McKendrick [1], the mathematical
modelling of infectious diseases has developed, over the last century, in various directions.
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An abundance of approaches and mathematical techniques have been employed to capture
the many facets and details which describe the spread of an infectious disease in a population.

In particular, compartmental models remain one of themost widely employed approaches.
In thesemodels, a population is partitioned into compartments, characterizing each individual
with respect to its current state in the epidemic. One can then write a system of Ordinary
Differential Equations (from here onwards, ODEs) to study the evolution in time of the
disease.

These models usually take their names from the compartments they consider, the most
renowned one being the Susceptible-Infected-Recovered (SIR) model. The SIR models can
be extended to SIRS models by considering the acquired immunity to be temporary rather
than permanent, allowing Recovered individuals to become Susceptible again. Various com-
partments can be added, depending on the characteristic of the specific disease under study:
Asymptomatic, Exposed, individuals going though a phase of Waning immunity and many
others.

A remarkably useful tool for the study of this kind of models are Lyapunov functions,
which ensure global (or, in some cases, local) asymptotic convergence towards one of the
equilibria of the system.

Given a system of n ODEs X ′ = f (X) and an equilibrium point X∗, we call a scalar
function V ∈ C1(Rn,R) a Lyapunov function if the following hold:

1. V attains its minimum at X = X∗;
2. V ′ = ∇V · f < 0 for X �= X∗.
The classical definition of Lyapunov function requires also the conditions

3. X∗ = 0 and V (X∗) = 0;

however, these amount to a change of coordinates in R
n and a vertical translation of V , so

we will accept the more general definition. The existence of such a function guarantees the
global stability of the equilibrium X∗, as orbits of the systems naturally evolve towards the
minimum power level of V .

The Basic Reproduction Number R0 is a well-known threshold in epidemics models.
Usually, R0 < 1 suggests Global Asymptotic Stability (from here onwards, GAS) of the
Disease Free Equilibrium (from here onwards, DFE), whereasR0 > 1 suggests GAS of the
Endemic Equilibrium (fromhere onwards, EE). Inmore complexmodels, the aforementioned
conditions on R0 might not be sufficient to prove the GAS of either equilibria, especially
in cases in which the EE is not unique. Lyapunov functions often explicitly involve R0 to
guarantee the extinction of the disease or its endemicity over time.

Unfortunately, given a generic system of ODEs, there is no universal way of deriving a
Lyapunov function, nor to rule out the existence of one. Moreover, the higher the dimension
of the system of ODEs is, the harder it usually is to construct a Lyapunov function. However,
there exist a fewLyapunov functionswhich have proven quite effective in a variety of different
models.

In this survey, we collect some of the most relevant functions available in the literature, to
provide the reader with a series of options to apply to the model of their interest, depending
on its formulation. We include an extensive bibliography to complement the essential infor-
mation of each model we present. This will provide the reader with a convenient starting
point to investigate the availability of a known Lyapunov function to analytically prove the
asymptotic behaviour of their system of ODEs. For the sake of brevity, we do not repeat most
of the proofs to show that the functions we present are, indeed, Lyapunov functions for the
respective system of ODEs. The missing proofs can be found in the papers we cite when
introducing each model.
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Consider a model with compartments X1, X2, . . . , Xn . Then, the DFE has coordinates
Xi = 0 for all i ∈ I, where I is the set of the indexes of infectious compartments, and
the EE, which we indicate with (X∗

1, X
∗
2, . . . , X

∗
n), has all positive entries. It is important to

remark that, in order to use the Lyapunov functions for the EE given below, one only need to
know that the EE is unique; an exact formula for each entry X∗

i is not necessarily required.
A vast majority of Lyapunov functions in epidemic modelling fall into one of the categories
listed below.

1. Linear combination of infectious compartments. The Lyapunov function for the DFE
when R0 < 1 is of the form

V =
∑

i≥2

ci Xi ,

for some constants ci ≥ 0 to be determined [2–15]. To prove convergence of the system
to the DFE in this case it is often required the use of additional tools, such as LaSalle’s
invariance principle, which we briefly recall at the end of Sect. 2.1.

2. Goh–Lotka–Volterra. The Lyapunov function for the EE when R0 > 1 is of the form

V =
∑

i

ci (Xi − X∗
i ln Xi ),

for some constants ci ≥ 0 to be determined [6, 8, 10, 11, 13, 16–26]. These functions
are adapted from a first integral of the notorious Lotka–Volterra prey–predator system,
and were popularized by Bean-San Goh in a series of paper [27–29].

3. Quadratic. The Lyapunov function for the EE when R0 > 1 is of the common form

V =
∑

i

ci (Xi − X∗
i )

2,

for some constants ci ≥ 0 to be determined, or the composite form

V =
(

∑

i

Xi − X∗
i

)2

.

Some examples can be found in [17, 30–33].
4. Integral Lyapunov. Lyapunov functions given as integrals over the dynamics of the

model. The integration interval often start at some EE value X∗
i and ends at the same Xi ;

this construction is very convenient if uniqueness of the EE is guaranteed, but the exact
values of the EE are hard (or impossible) to determine analytically. Integral Lyapunov
functions are particularly useful when the model includes multiple stages of infection,
and consequently the infectious period changes from an exponential distribution to a
gamma distribution [12, 34–38]. Integral Lyapunov functions, albeit in different forms,
are widely used in models, which incorporate explicit delay, such as systems of Delay
Differential Equations (from here onwards, DDEs), and age-structuredmodels. However,
these fall beyond the scope of this paper, and we will briefly comment on them in Sect. 3.

5. Hybrid. A linear combination of the above,which often includes theGoh–Lotka–Volterra
in at least a few of the compartments of the system [14, 22, 23, 25, 39–42].

For some high-dimensional models, proving convergence to the EE might require addi-
tional tools, such as the geometric approach used in [2, 23].

Lastly, we must notice that not all compartmental models only exhibit convergence to
equilibrium. Some systems of autonomous ODEs may present stable or unstable limit cycles
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[43–45], homoclinic orbits [43] or even chaos [46]. In such cases, clearly, no global Lyapunov
function may exist.

In the remainder of this survey, we will present various models and the corresponding
Lyapunov functions, covering all the cases listed above.

2 Epidemic models

In this section, we present various compartmental epidemic models with the corresponding
Lyapunov function(s). We present the models from the smallest to the largest, in terms of
number of compartments. We refer to [47, 48] for a basic introduction on compartmental
epidemicmodels, and to [49] for a detailed exemplification of Lyapunov theory in this setting.

We provide a schematic representation of the flows in most of the systems we present.
Flow diagrams can be useful to provide a visual, intuitive interpretation of the parameters
involved in each system. Arrows between compartments indicate a change in the current
state of individuals with respect to the ongoing epidemics, whereas arrows inward/outward
the union of the compartments represent birth rate and death rate in the population. Often,
these last two rates are considered to be equal, as this assumption allows the population to
either remain constant or converge to a constant value, reducing the dimensionality of the
system and (hopefully) its analytical complexity. However, some models include additional
disease-induced mortality, to increase realism when modelling severe infectious diseases.
We uniform the notation throughout the various models we present in this survey as much
as possible, and provide a brief description of each parameter the first time it is encountered.
We remark that each variable is assumed to be non-negative, since it represents a fraction of
the population, but the biologically relevant region varies depending on the specific model
we are describing.

Moreover, we illustrate the corresponding Lyapunov functions for 2Dmodels, showcasing
a selection of their power levels. The same procedure can be easily adapted to 3D models,
but the corresponding visualizations can be hard to interpret in a static image.

2.1 SIS

The SIS model is characterized by the total absence of immunity after infection, i.e. the
recovery from infection is followed by an instantaneous return to the susceptible class. The
ODEs system, which describes this situation is

dS

dt
= γ I − β

SI

N
,

dI

dt
= β

SI

N
− γ I ,

S I
β SI

N

γ I

(1)

where β is the transmission rate and γ is the recovery rate.
Notice that the population N = S + I is constant, thus we can normalize it to N = 1.

Moreover, since S + I = 1, we can reduce the system to one ODE, which involves only
infectious individuals

dI

dt
= (β(1 − I ) − γ )I .
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System (2.1) always admits the DFE, i.e. E0 = (1, 0), and the EE, i.e. E∗ =
(

γ

β
,
β − γ

β

)
,

which exists if and only if β > γ (or equivalently ifR0 = β/γ > 1). Notice that, ifR0 < 1,
then I is always decreasing in the biologically relevant interval [0, 1].

A variation of model (2.1) can be obtained by adding demography to the system. This is
the example of [17], in which the authors consider a birth/immigration rate different from
the natural death rate; moreover, they include an additional disease-induced death rate from
infectious class. Thus, the population is not constant and the system of ODEs, which describe
the model is

dS

dt
= � + γ I − β

SI

N
− μS,

dI

dt
= β

SI

N
− (δ + γ + μ)I ,

S I
β SI

N

γ I

�

μS (δ + μ)I

(2)

where � represents the birth/immigration rate, μ the natural death rate and δ the disease-

inducedmortality rate. System (2) always admits theDFE, namely E0 = (S0, 0) :=
(

�

μ
, 0

)
,

and the EE, namely E∗ = (S∗, I ∗), where I ∗ > 0 if and only if R0 = �β

μ(μ + δ + γ )
> 1.

In [17], a Lyapunov function for the DFE is defined as

V (S, I ) := 1

2
(S − S0 + I )2 + 2μ + δ

β
I . (3)

For simplicity, we show that V (S, I ) is a Lyapunov function only in the case � = μ and
δ = 0 (i.e., there is no additional disease mortality). In this case, assuming N (0) = 1,
N (t) ≡ 1 for all t ≥ 0, and then differentiating (3) with respect to time, we obtain

V ′(S, I ) = (S − S0 + I )
d(S + I )

dt
+ 2μ

β

dI

dt

= (S − S0 + I ) (� − μ(S + I )) + 2μ

β
(βSI − (μ + γ )I )

= (S − S0 + I ) (μS0 − μ(S + I )) + 2μ

β
(βSI − (μ + γ )I )

= −μ(S − S0)
2 − μI 2 − 2μ(S − S0)I + 2μSI − 2μ(μ + γ )

β
I

≤ 2μS0 I − 2μ(μ + γ )

β
I

S0=1= 2μ(μ + γ )

β
(R0 − 1)I ,

from which V ′(S, I ) < 0 if R0 < 1.
Instead, the Lyapunov function for the EE is built using a combination of the quadratic

and logarithmic functions

V (S, I ) := 1

2

(
S − S∗ + I − I ∗)2 + 2μ + δ

β

(
I − I ∗ − I ∗ ln

(
I

I ∗

))
. (4)
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Again, considering � = μ and δ = 0 and differentiating (4) with respect to time, we obtain

V ′(S, I ) = (S − S∗ + I − I ∗)d(S + I )

dt
+ 2μ

β

I − I ∗

I

dI

dt

= (S − S∗ + I − I ∗)(� − μ(S + I )) + 2μ

β

I − I ∗

I
(βSI − (μ + γ )I ) .

From N ′ = 0, we know that � = μ(S∗ + I ∗). Moreover, from I ′ = 0 at the EE, we observe
that βS∗ = μ + γ . Combining these two equalities, we can write

V ′(S, I ) = (S − S∗ + I − I ∗)(−μ(S − S∗ + I − I ∗)) + 2μ(I − I ∗)(S − S∗)
= −μ(S − S∗)2 − μ(I − I ∗)2 < 0,

for (S, I ) �= (S∗, I ∗).
The authors provide two more examples of Lyapunov functions for the EE, namely

V (S, I ) := 1

2
(S − S∗)2 + μ + δ

β

(
I − I ∗ − I ∗ ln

(
I

I ∗

))
, (5)

and

V (S, I ) := 1

2

(
S − S∗ + I − I ∗)2 + S∗(δ + 2μ)

2γ

(
S − S∗ − S∗ ln

(
S

S∗

))

+ S∗(δ + 2μ)

γ

(
I − I ∗ − I ∗ ln

(
I

I ∗

))
. (6)

Power levels of the functions (3), (4), (5) and (6) are visualized if Fig. 1. By definition of
a Lyapunov functions, orbits of the corresponding system (2) evolve on decreasing power
levels, and they tend to the corresponding equilibrium as t → +∞.

In [32] the author found a simpler Lyapunov function for the DFE when R0 < 1, i.e.

V (I ) = 1

2
I 2. (7)

However, this last Lyapunov function (7) only ensures that I → 0 as t → +∞. To complete
the proof of the convergence of the system to the DFE, one needs in addiction to invoke
LaSalle’s theorem [50] (see also [51, Thm. 3.4]), as is indeed done in [32].

Considering the importance of this theorem, especially when combined with the use of
Lyapunov functions, we include its statement here.

Theorem 1 (LaSalle’s invariance principle) Let X ′ = f (X) be a system of n ODEs defined
on a positively invariant set� ⊂ R

n. Assume the existence of a function V ∈ C1(�,R) such
that V ′(X) ≤ 0 for all X ∈ �. Let MV be the set of stationary points for V , i.e. V ′(X) = 0
for all X ∈ MV , and let N be the largest invariant set of MV . Then, every solution, which
starts in � approaches N as t → +∞.

In particular, this theorem implies that, if we can prove the approach of the disease to the
manifold describing absence of infection and the uniqueness of the DFE, then the DFE is
GAS.
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(a) (b)

(c) (d)

Fig. 1 Power levels of Lyapunov functions (3) (a), (4) (b), (5) (c), and (6) (d). Values of the parameters are
� = 0.8, μ = 1, δ = 1, γ = 1 in all the figures, β = 1 in a, so that R0 = 4/15 < 1, and β = 4 in b,
c and d, so that R0 = 16/15 > 1. We represent V (S, I ) = k, with k ∈ {0.1, 0.25, 0.5, 1, 1.5, 2, 2.5} in a,
k ∈ {0.001, 0.01, 0.025, 0.05, 0.1, 0.2} in b and c, and k ∈ {0.01, 0.025, 0.05, 0.1, 0.2, 0.5} in d. Black dots
represent the globally stable equilibrium the system converges to, and correspond to V (S, I ) = 0

2.2 SIR/SIRS

The SIR model is characterized by the total immunity after the infections, i.e. recovered
individuals can not become susceptible again.A classical example for this scenario ismeasles.
The ODEs system, which describes this situation is

dS

dt
= −β

SI

N
,

dI

dt
= β

SI

N
− γ I ,

dR

dt
= γ I ,

S I

R

β SI
N

γ I (8)

where β is the transmission rate and γ is the recovery rate.
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If we assume that recovered individuals eventually lose their immunity, we obtain the
SIRS model. Denoting by α the immunity loss rate, we obtain the following ODEs system

dS

dt
= −β

SI

N
+ αR,

dI

dt
= β

SI

N
− γ I ,

dR

dt
= γ I − αR.

S I

R

β SI
N

γ IαR

(9)

It is clear that, if α = 0, system (9) coincides with system (8).
These models admit only the DFE; in order to have an EE, we need to add the demography

to model (8) or (9).
In [17], the authors consider the following ODEs system

dS

dt
= � − β

SI

N
− μS + αR,

dI

dt
= β

SI

N
− (γ + δ + μ)I ,

dR

dt
= γ I − (α + μ)R.

S I

R

β SI
N

γ IαR

�

μS

μR

(δ + μ)I

(10)

System (10) admits the DFE, E0 = (S0, 0, 0), and the EE, E∗ = (S∗, I ∗, R∗), which exists
if and only if R0 = β�

μ(μ + γ + δ)
> 1. In [17], the Lyapunov function for the DFE is

defined as follows

V (S, I , R) := 1

2
(S − S0 + I + R)2 + 2μ + δ

β
I + 2μ + δ

2γ
R2,

whereas the Lyapunov function for the EE is the combination of the composite quadratic,
common quadratic and logarithmic functions as follows

V (S, I , R) := 1

2

(
S − S∗ + I − I ∗ + R − R∗)2

+2μ + δ

β

(
I − I ∗ − I ∗ ln

(
I

I ∗

))
+ 2μ + δ

2γ
(R − R∗)2.

The authors also present other Lyapunov functions for SIR/SIRS models; in particular, they
also cite [52, 53], in which some variations of system (10) are showed. Other Lyapunov
functions for SIR/SIRS epidemic models are in [49], in which the authors use a graph-
theoretic approach.

In [32], the author proved that the quadratic Lyapunov function (7) of the SIS model
applies to the SIR and the SIRS, as well.
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2.3 SEIR/SEIS/SEIRS

In [6], the authors study both SEIR and SEIS models. Many real world examples present
a phase of exposition to the disease, between susceptibility and infectiousness. The models
presented thus far, albeit simpler to study, are unable to replicate this mechanism.

The authorsfirst analyze aSEIRmodelwith demographyandconstant population, inwhich
the disease is transmitted both horizontally and vertically. Individuals infected vertically pass
first in the exposed compartment. The ODEs system, which describe the model is

dS

dt
= μ − βSI − pμI − qμE − μS,

dE

dt
= βSI + pμI − θE − μE + qμE,

dI

dt
= θE − (δ + μ)I ,

S E

I

βSI

θE

μ(1 − pI − qE)

μS

μ(pI + qE)

μE
(δ + μ)I

(11)

and R = 1 − S − E − I . The vertical transmission of the disease is represented by the
probabilities p and q of being born directly in the Exposed compartment, rather than in the
Susceptible one, and is represented by the inward arrow in compartment E.

The authors first provide an equivalent system, performing the substitution (S, E, I ) −→
(P, E, I ), where P := S + p

μ

β
. They then proceed to prove the GAS of the EE, using the

following Lyapunov function

V (P, E, I ) := (P − P∗ ln P) + θ + μ

θ + μ − qμ
(E − E∗ ln E)

+ θ + μ

θ + μ − qμ
(I − I ∗ ln I ).

Later, the authors analyze a situation, in which the recovery does not provide immunity,
namely the SEIS model. They also assume that a fraction r of offspring of the infective
hosts is born directly into the infective compartment. In this case, the ODEs system, which
describes the model is

dS

dt
= μ − βSI + (δ − pμ − rμ)I − qμE − μS,

dE

dt
= βSI + pμI − (θ + μ − qμ)E,

dI

dt
= θE − (δ + μ − μr)I , (12)

and S + E + I = 1. Notice that, due to the population remaining constant in system (12),
one could in principle reduce its dimensionality and consider it as a planar system.

The authors prove the GAS of the EE using the following Lyapunov function

V (S, E, I ) := (S − S∗ ln S) + μ
1 − S∗

β I ∗S∗ (E − E∗ ln E)
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+μ
1 − S∗

θE∗

(
1 + pρ0

μ

β

)
(I − I ∗ ln I ).

A natural extension to these models is the SEIRS [2, 54], in which one can combine the
existence of an immune compartment and the loss of immunity. It is described by the following
system of ODEs

dS

dt
= −βg(I )S + μ − μS + αR,

dE

dt
= βg(I )S − (θ + μ)E,

dI

dt
= θE − (γ + μ)I ,

dR

dt
= γ I − (α + μ)R,

S E

IR

βg(I )S

γ I

αR θE

μE

μ

μS

μR μI

(13)

where g ∈ C3(0, 1], g(0) = 0 (meaning, in absence of infectious individuals, the disease
does not spread) and g(I ) > 0 for I > 0. The classical choice is g(I ) = I , as in systems
(11) and (12). Assuming moreover

lim
I→0+

g(I )

I
= c ∈ [0,+∞),

the authors of [54] derive R0 = cβθ

(θ + μ)(γ + μ)
. They then prove GAS of the DFE of

system (13) through the use of the following linear Lyapunov function

V (E, I ) = E + θ + μ

θ
I ,

whereas the GAS of the EE is proved with a more complex geometrical method in [2].

2.4 SAIR/SAIRS

One of the main challenges of the Covid-19 pandemic was the presence of asymptomatic
individuals spreading the disease. Such individuals must clearly be somehow distinguished
from symptomatic infectious individuals, as they are likely to behave like a susceptible
individual. Even though their viral load, and hence infectiousness, might be smaller, they are
more likely to get in close contact with susceptible individuals.

In [23], the authors consider a SAIRS model. The main difference between this kind of
models and the SEIR is that both asymptomatic and symptomatic hostsmay infect susceptible
individuals. The immunity is not permanent, i.e. recovered individuals will become suscepti-
ble again after a certain period of time. Moreover, vaccination is included. The ODEs system,
which describe this model is
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dS

dt
= μ −

(
βA A + βI I

)
S − (μ + ν)S + γ R,

dA

dt
=

(
βA A + βI I

)
S − (α + δA + μ)A,

dI

dt
= αA − (δI + μ)I ,

dR

dt
= δA A + δI I + νS − (γ + μ)R,

S A

R I

μ μS

(βA A + βI I )S

δI I

γ R δA A

μA

αAνS

μIμR

The global stability analysis of the EE has been performed for two variations of the original
model, described in the following.

The first model analyzed is the SAIR model, i.e. the case, in which recovery from the
disease grants permanent immunity. In this case, the corresponding Lyapunov function is the
combination of the Lotka–Volterra Lyapunov functions for S, A and I

V (S, A, I ) := c1S
∗
(

S

S∗ − 1 − ln

(
S

S∗

))
+ c2A

∗
(

A

A∗ − 1 − ln

(
A

A∗

))

+I ∗
(

I

I ∗ − 1 − ln

(
I

I ∗

))
,

where c1, c2 > 0.
The second model is the SAIRS model, with homogeneous disease transmission and

recovery among A and I , i.e. βA = βI and δA = δI . In this case, it is possible to sum
equations for A and I , defining M := A + I , reducing the dimensionality of the system.
Thus, the Lyapunov function can be written as the combination of the square function and
the Lotka–Volterra as follows

V (S, M) := 1

2
(S − S∗)2 + w

(
M − M∗ − M∗ ln

(
M

M∗

))
,

where w > 0.
The global stability in the most general case is proved similarly to [2].

2.5 More exotic compartmental models

The aforementioned models are some of the most commonly used in literature. In order to
capture additional disease-specific nuances, these model can be modified or extended by
adding new compartments. In this section, in particular, we present a more complex model,
in order to showcase one example of the integral Lyapunov function.

Some diseases, for example, present different stages of infection. In this case, an infected
individual can progress between two or more stages before recovering. In [12], the authors
perform the global stability analysis via an integral Lyapunov function of a general class of
multistagemodels. In theirmodel, infectious individual canmove both forward and backward
on the chain of stages, in order to incorporate both a natural disease progression and the
amelioration due to the effects of treatments.
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The system of ODEs, which describes the model is

dS

dt
= θ(S) − f (N )

n∑

j=1

g j (S, I j ),

dI1
dt

= f (N )

n∑

j=1

g j (S, I j ) +
n∑

j=1

φ1, j (I j ) −
n+1∑

j=1

φ j,1(I1) − ζ1(I1),

dIi
dt

=
n∑

j=1

φi, j (I j ) −
n+1∑

j=1

φ j,i (Ii ) − ζi (Ii ), i = 2, 3, . . . , n,

where θ(S) is the growth function, f (N )
∑n

j=1 g j (S, I j ) is the incidence term, ζi (Ii ), 1 ≤
i ≤ n, denote the removal rates of the Ii compartment. Moreover, for any i, j = 1, . . . , n, the
functions φi, j (I j ) represent the rate of the disease progression if i > j and the amelioration
if i < j .

The corresponding Lyapunov function for the DFE is linear in the disease compartments,
i.e.

V (I1, . . . , In) =
n∑

i=1

ci Ii ,

where c1 = R0 and ci ≥ 0 for all i = 2, . . . , n. For the global stability of the EE the authors
made some assumptions on the aforementioned functions. In particular, they consider the
following integral Lyapunov function

V (S, I1, . . . , In) = τ

∫ S

S∗
�(ξ) − �(S∗)

�(ξ)
dξ +

n∑

i=1

τi

∫ Ii

I ∗
i

ψi (ξ) − ψi (I ∗
i )

ψi (ξ)
dξ,

where τ, τi > 0, for all i = 1, . . . , n. For a more in-depth explanation on the functions �(·)
and ψi (·) we refer to [12, Sect. 5].

Diseases which present multiple virus strains, due to the existence of different serotypes
of the virus or due to a mutation of the original disease, may need to be modelled differently.
Dengue, tuberculosis and various sexually transmitted diseases are caused by more than
one strain of a pathogen. Influenza type A viruses mutate constantly: an infection with one
of its strains gives permanent immunity against that specific strain. However, the so called
“antigenic drift” produces new virus strains, thus the hosts only acquire partial immunity, or
no immunity at all.Modelling these types of diseases requires the inclusion of cross-protective
effects, in which the immunity acquired towards one strain offers partial protection towards
another strain based on their antigenic similarity. In [13], the authors consider an n strain
model, both without immunity and with immunity for all the strains. Moreover, they analyze
an MSIR model, in which the M compartment represents the proportion of newborns who
possess temporary passive immunity due to protection from maternal antibodies. For all the
three models, the authors use a linear Lyapunov function to prove the global stability of the
DFE and a logarithmic Lyapunov function to prove the global stability of the EE.

Other compartmental models include e.g. control strategies. For new ongoing epidemics,
the most immediate strategy is including quarantine and isolation of infectious individuals.
For well-known epidemics, for which a vaccination is available, it is useful to incorporate a
vaccinated individuals compartment V to keep track of the two possible immunities, disease
and vaccine induced, respectively. Usually, vaccination does not confer permanent immu-
nity, and after a certain disease-dependent period individuals become susceptible again. An
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example can be found in [14], in which the authors analyze a SIRV epidemic model with
non-linear incidence rate. The global stability of the DFE is proved using as linear Lyapunov
function the infectious compartment I and the global stability of the EE, instead, using a
combination of a quadratic function in S and a logarithmic function in the compartments I
and V .

3 Conclusion

In this survey, we presented the most widely used Lyapunov functions in the field of epidemic
compartmental models. We focused on systems expressed as autonomous systems of ODEs.
These models allow for various interesting generalizations, of which we provide a non-
comprehensive list below.

One extension of the classic compartmental epidemic models is the so-called multi-group
approach, see e.g. [35, 55]. Thesemodels describe n communities, interactingwith each other,
and whose internal evolution follows a standard compartmental model. A first example of
such a model is presented in [56], in which the authors consider a n groups SIS model. In
order to prove the GAS of the EE, they use a results on Metzler matrices. In [49], the authors
consider a heterogeneous SIS disease model, for which they provide Lyapunov functions
both for the DFE and for the EE. For the latter, they use a complex graph-theoretic method,
for the details of which we refer to the original paper. Global stability of EE via Lyapunov
functions for multi-group generalization can be found also for the SIR [57], SIRS [58], SEIR
[59] and SAIR/SAIRS model [24]. Notice that, due to the complexity of the models, some
of them require additional technical assumptions to prove the global stability of the endemic
equilibrium.

Other classes of models include interactions between human and vector population, i.e.
animals, which transmit the disease to humans, or with the pathogens, such as viruses or
bacteria. In both cases, authors often include a compartmental structure for the non-human
population. Some examples of vector-host models are shown in [9, 10, 60]. Another example
can be found in [30], in which a SIR-B compartmental model is considered. Here the “B”
denotes the concentration of the pathogen in the environment.

All the models discussed thus far are described by only autonomous systems of ODEs.
However, in order to increase realism, it is possible to use non-autonomous systems to describe
the spread of an infectious disease. This is the case of systems, in which some parameters
change in time [61, 62], to describe seasonal changes, or in which the state variables depend
on the previous state, i.e. the model includes a time delay [63, 64]. In these cases, it is still
possible to find Lyapunov functions to prove the global stability of the equilibria using other
techniques, described for example in [50].

Another popular option is to explicitly include delay in the system, such as in [63, 65–69]
and [25]. In the latter the authors perform the global stability analysis of a SEIQR model,
in which Q denotes the quarantined individuals compartment. They explicitly include a
latent period for the infection, transforming two of the ODEs in DDEs. The corresponding
Lyapunov function includes the integration over an interval whose size is precisely the latent
period.

Lastly, a widely adopted strategy is to explicitly include the “time since infection” [70–74]
in age-structured models. This allows to explicitly take into account time heterogeneity in
the spread of an infectious disease in a population. Other modelling techniques for epidemics
not treated in this survey, which nevertheless allow for the existence of Lyapunov function,
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include fractional derivatives [75–78] and Stochastic Differential Equations (SDEs) [79–82].
These cases are outside of the scope of this project, andwe leave them as inspiration for future
works.

As a final remark, some recent results in a more theoretical approach to the topic are
worth mentioning. They focus on existence and characteristics of such functions rather than
on applications to epidemiological models. We refer the interested reader to [83–88] and the
references therein.
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