
25 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Exact solutions for a Solow-Swan model with non-constant returns to scale / Cangiotti, N.; Sensi, M.. - In: INDIAN
JOURNAL OF PURE & APPLIED MATHEMATICS. - ISSN 0019-5588. - 54:4(2023), pp. 1278-1285. [10.1007/s13226-
022-00341-7]

Original

Exact solutions for a Solow-Swan model with non-constant returns to scale

Springer postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1007/s13226-022-00341-7

Terms of use:

Publisher copyright

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to
Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s13226-022-00341-7

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2993449 since: 2024-10-17T14:15:50Z

Springer Nature



Exact solutions for a Solow-Swan model with non-constant
returns to scale

Nicolò Cangiotti1 & Mattia Sensi2

1University of Pavia, Department of Mathematics, via Ferrata 5,
27100 Pavia (PV), Italy. Email: nicolo.cangiotti@unipv.it

2University of Trento, Department of Mathematics, via Sommarive 14,
38123 Trento (TN), Italy. Email: mattia.sensi@unitn.it

Abstract

The Solow-Swan model is shortly reviewed from a mathematical point of view. By
considering non-constant returns to scale, we obtain a general solution strategy.
We then compute the exact solution for the Cobb-Douglas production function, for
both the classical model and the von Bertalanffy model. Numerical simulations are
provided.
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Bertalanffy model.
JEL Classification Codes: C60, C65, C67.

1. Introduction

The Solow-Swan model plays an important role in neoclassical economics. Even
though more than 60 years have passed since it was developed, independently, by
Robert Solow [19] and Trevor Swan [20] in 1956, the model is still being analyzed and
generalized, as evidenced by a large literature, which involves many fields of studies
[1, 6, 7, 9, 10, 12, 15, 17].

This work is devoted to the deepening of the mathematical point of view of
the model. In particular, we are interested in investigating a model with weaker
conditions on the returns to scale than the usual ones (see, e.g., [10]). In fact, we
are going to relax the hypothesis of constant returns to scale, which in the classical
model allows to rewrite the production function as a function of the output per
effective unit of labour; instead, we let the production function to have increasing
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or decreasing returns to scale. We obtain a non-autonomous first order differential
equation, for which we provide the exact solution.

The paper is organized as follows. In Section 2, we present the Solow-Swan
model, with a focus on the Cobb-Douglas production function; moreover, we study
the non-constant returns to scale case, obtaining the exact solution for the model.
In Section 3, we explore a different model, namely the von Bertalanffy model, by
using the same techniques. Section 4 is devoted to numerical analysis, to better
understand the behaviour of such solutions. Finally, in Section 5 we shall suggest
some perspectives for future research.

2. The classical model

As highlighted in the introduction, Solow-Swan models have a key role in neo-
classical growth theory. Let us denote by C2(R2) the class of twice continuously
differentiable functions F : R2 → R. We actually can restrict the study to R2

+, i.e.
the first quadrant, the only economically relevant subset in this setting. The mathe-
matics of the model is based on the hypothesis that a production function F (x1, x2)
satisfies the following conditions:

∂F

∂xi
> 0,

∂2F

∂xi∂xj
< 0, lim

xi→0+

∂F

∂xi
= +∞, lim

xi→∞

∂F

∂xi
= 0, (1)

for i, j = 1, 2. In literature, conditions (1), which are aimed at ensuring the existence
of an unique stable steady state in a neoclassical growth model, are called Inada
condtions. For further details and properties about the Inada conditions, we refer to
[2, 13, 16, 21, 22].

Classically, the variables x1 and x2 are denoted with K and L, respectively. We
switch to this notation for the remainder of the article.

Moreover, the quite stringent assumption that F has constant returns to scale is
rather frequent in many studies. In fact, thanks to such a hypothesis, it is not hard
to obtain an exact solution for the ODE describing the model, at least in its most
famous autonomous form.
Since it is a useful step towards our more general construction, we briefly recall this
strategy. Let us suppose that the rate of change of K is proportional to F , and
the labor force grows exponentially; such a setting can be described by the following
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system:

dK
dt

= sF (K,L),

dL
dt

= γL,

with s, λ > 0 constants. Thus, since the equation for L is autonomous and easily
solved, we focus our attention on the ODE describing the evolution in time of K,
which is, explicitly:

dK
dt

= sF (K,L). (2)

We notice that the constant return to scale hypothesis implies that

F (λK, λL) = λF (K,L). (3)

Dividing both sides of (2) by L, the equation becomes

1

L

dK
dt

= sF

(
K

L
, 1

)
. (4)

Let us now consider the following derivative:

d
dt

(
K

L

)
=

1

L

dK
dt
−K dL

dt
1

L2
=

1

L

dK
dt
− γK

L
. (5)

Combining (4) and (5), and introducing the variable k := K
L
, i.e. the capital-labor

ratio, and the notation f(k) := F (k, 1), we are finally ready to write the classic
Solow-Swan model:

dk
dt

= sf(k)− γk. (6)

However, in this paper we shall present a different approach to the Solow-Swan
model compared to the one given in [10], which is

k̇ = sf(k)− (δ + γ(t))k, (7)

where k is the capital-labor ratio, s is the fraction of output which is saved, δ is the
depreciation rate, f is a production function and γ(t) is the ratio L̇/L; k̇ indicates
the derivative of k with respect to the time variable t, i.e. d

dtk(t). In fact, in [10],
the author assumed f to have constant return to scale (as in the original model),
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and γ to be variable in time. Conversely, we assume γ to be constant, from which
we obtain

L̇

L
= γ =⇒ L(t) = L0e

γt. (8)

However, we do not assume our production function f to have constant return to
scale. Instead, we choose a generic homogeneous production function, namely

F (λK, λL) = λnF (K,L). (9)
This means that, if n = 1, the function has constant return to scale, if n < 1 (n > 1)
the function has decreasing (increasing) returns to scale. In particular, we notice
that

F (K/L, 1) = F (L−1K,L−1L) = L−nF (K,L). (10)
Starting from the usual equations

K̇ =sF (K,L), (11a)

L̇ =γL, (11b)

we can derive a non-autonomous equation for the capital-labor (K/L) ratio k, as
stated in the following proposition.

Proposition 1. The ratio k evolves in time obeying the ODE

k̇ = sLn−1(t)f(k)− γk, (12)

where f(k) := F (k, 1) and L(t) = L0e
γt; recall (8) and (11b).

Proof. By direct computation, we notice that
d
dt
K

L
=

1

L

dK
dt
− K

L2

dL
dt

=
1

L

dK
dt
− γK

L
.

Now, combining (11a) and (10), we notice that

1

L

dK
dt

= sLn−1F (K/L, 1).

Recalling the definitions of k = K/L and f(k) := F (k, 1), we conclude the proof.

Remark 1. There are many standard properties of the following Cauchy problem:{
k̇ = sLn−1(t)f(k)− γk,
k(0) = k0,

(13)

that one can easily obtain by simple observations or by using to use the so-called
Comparison theorems (for results in that direction see [10, Sec. 3] and [8]).
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Remark 2. The results obtained so far are valid for a wide class of production
functions; however, in order to proceed with the analysis of the Cauchy problem (13)
one needs to specify a production function.

Our investigation now proceeds with a very natural choice for the production
function f(k), i.e. the Cobb-Douglas production function [5]. For the standard Cobb-
Douglas production function (in which we fixed, without loss of generality, the total-
factor productivity coefficient equal to 1)

F (K,L) = KαLβ, 0 < α ≤ 1, 0 < β ≤ 1, α+ β = n,

it is easy to compute the law of the capital-labor ratio k(t):

k̇ = sLn−10 e(n−1)γtkα − γk. (14)

The following theorem provides the exact solution for (14).

Theorem 1. Let k(t) be a solution of (14). Then if n 6= 1 and α 6= 1

k(t) =

(
e(α−1)γt

[
s(1− α)Ln−10

(eγβt − 1)

γβ
+ k1−α0

]) 1
1−α

, (15)

where we denote k0 := k(0).

Proof. Consider (14), which is clearly a Bernoulli differential equation [11]. We divide
both sides by kα, and apply the substitution v = k1−α. Then, after some algebraic
steps, (14) becomes

1

1− α
v̇ + γv = sLn−10 e(n−1)γt,

We multiply both sides by (1− α), which brings the equation to a standard form

v̇ + (1− α)γv = sLn−10 (1− α)e(n−1)γt.

Recalling β = n−α, we apply the well-known formula to solve this first order linear
ODE, obtaining (15).

Remark 3. If n = α+ β = 1, i.e. if the Cobb-Douglas function has constant return
to scale, we recover Thm. 10 of [10].

Remark 4. It is clear that for α = 1 Eq. (14) is a linear differential equation. The
solution of such equation is computable by standard methods and, for k(0) = k0, we
have

k(t) = k0 exp

(
sLn−10

(
e(n−1)t − 1

)
n− 1

− γt

)
.
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3. The von Bertalanffy model

In this section, we propose a different model, in which the labor force follows a
von Bertalanffy law [23]: {

L̇ = r (L∞ − L) ,
L(0) = 0,

(16)

where
L∞ = lim

t→∞
L(t), (17)

is a theoretical maximum asymptote size of the labor force, and r > 0 determines the
speed at which the labor force approaches the asymptote. The model was exhaus-
tively studied by Brida and Limas in [3], where the authors present many important
results for the constant returns to scale case. As in Sect. 2, we are going to relax
this hypothesis, considering also increasing (and decreasing) returns to scale, and we
present the exact solution for the model.

Remark 5. The von Bertalanffy equation was widely studied by many authors from
different fields. See, for instance, [4, 14, 18].

The first step is to compute the law of the ratio k.

Proposition 2. The ratio k evolves in time obeying the ODE

k̇ = sLn−1(t)f(k)− rk(L∞ − L(t)), (18)

where f(k) := F (k, 1) and, from (16), L(t) = L∞ − (L∞ − L0)e
−rt.

Proof. The proof is analogous to the proof of Prop. 1.

We consider the Cobb-Douglas production function to proceed with our investi-
gation, thus obtaining the following Cauchy problem:{

k̇ = s(L∞ − (L∞ − L0)e
−rt)n−1kα − r(L∞ − L0)e

−rtk,

k(0) = k0.
(19)

The solution of the Cauchy problem (19) is given by the following theorem.

Theorem 2. Let k(t) be a solution of (19). Then if n 6= 1 and α 6= 1

k(t) =

(
e−(α−1)(L∞−L0)e−rt

(
k1−α0 e(α−1)(L∞−L0) − (α− 1)

∫ t

0

L(τ) dτ

)) 1
1−α

, (20)
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where

L(τ) := s (L∞ − (L∞ − L0) e
−rτ )

n · exp [rτ + (α− 1)(L∞ − L0)e
−rτ ]

L∞ (erτ − 1) + L0

.

Proof. The proof is analogous to the proof of Thm. 1. In fact, by the same substi-
tution v = k1−α, we get the following linear differential equation:

v̇ = (1− α)s
(
L∞ − (L∞ − L0)e

−rt)n−1 + (1− α)r(L∞ − L0)e
−rtv.

Thus, applying the classical formula, we compute the solution.

Remark 6. A comment analogous to Rmk. 4 can be made. For α = 1, we have the
following solution (which involves hypergeometric functions 2F1), where we introduce,
for ease of notation, L∗ := L∞ − L0:

k(t) = k0 · exp

(e−rt − 1
)
L∗ +

sLn−10

(
−L0

L∗

)1−n
2F1

(
1− n, 1− n; 2− n; L∞

L∗

)
(n− 1)r

−

s
(
L∞ert

−L∗ + 1
)1−n

(−L∗e−rt + L∞)
n−1

2F1

(
1− n, 1− n; 2− n; ertL∞

L∗

)
(n− 1)r

.
For further details on the use of the hypergeometric function in this context see, for
instance, [18].

4. Numerical simulations

In this section we propose some numerical simulations for both the classical and
the von Bertalanffy model, for the specific choice of Cobb-Douglas for our produc-
tion function f(k). The results of the classical case agree with the expectations,
consistently with neoclassical growth theory with a convergence toward the initial
conditions for the decreasing returns to scale and an exponential growth for increas-
ing returns to scale (Figure 1). A very interesting output comes from the study of the
von Bertalanffy model, as dysplayed in Figure 2. The latter seems to level out the
differences between the two cases, namely increasing returns to scale and decreasing
returns to scale. The following graphs show the behaviour of the capital-labor ratio.
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(a) For n < 1, we observe a rapid growth, fol-
lowed by a convergence towards the initial con-
ditions k0 = 1, 1.5, 2.

(b) For n > 1, we observe an exponential
growth, independent on the initial conditions
k0 = 1, 5, 10.

Figure 1: Numerical simulations of (15) for (a) n < 1 (b) n > 1. The value of α is displayed in the
titles of each figure. The other values of the parameters are β = n− α, γ = 0.7, s = 0.4, L0 = 1.

(a) For n < 1, we observe a rapid and short
decrease, dependent on initial conditions, fol-
lowed by a exponential growth starting for all
initial conditions k0 = 1, 5, 10, 20.

(b) For n > 1, we observe a dependence on ini-
tial condition for the first part of the dynam-
ics, followed by exponential growth, with initial
conditions k0 = 1, 20, 50, 100.

Figure 2: Numerical simulations of (20) for (a) n < 1 (b) n > 1. The value of α is displayed in the
titles of each figure. The other values of the parameters are L0 = 1, L∞ = 5, s = 0.4, r = 0.9.

5. Conclusions

The analysis of the Solow-Swan type models presents several stimulating mathe-
matical challenges, which might be explored. In this work, we dwell on the case of

8



non-constant returns to scale, providing an exact solution for the model that arise
for the Cobb-Douglas production function. A more complicated case, namely the
von Bertalanffy model, is also studied with similar results. Numerical simulations
support the economical idea under the behaviour of the capital-labor ratio. Many
issues remain open. One of this is, for instance, the study of the model for the CES
production function (which does not satisfy the Inada conditions) with non-constant
returns to scale or trying other, more exotic, production functions. We plan to
explore these possibilities in the near future.
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This research did not receive any specific grant from funding agencies in the public, com-
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