
19 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluating Large Language Models in Exercises of UML Class Diagram Modeling / De Bari, Daniele; Garaccione,
Giacomo; Coppola, Riccardo; Torchiano, Marco; Ardito, Luca. - ELETTRONICO. - (2024), pp. 393-399. (Intervento
presentato al convegno ESEM '24:18th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement tenutosi a Barcelona (ES) nel October 24 - 25, 2024) [10.1145/3674805.3690741].

Original

Evaluating Large Language Models in Exercises of UML Class Diagram Modeling

Publisher:

Published
DOI:10.1145/3674805.3690741

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2993437 since: 2024-10-16T08:35:18Z

Association for Computing Machinery

Evaluating Large Language Models in Exercises of UML Class
Diagram Modeling

Daniele De Bari, Giacomo Garaccione, Riccardo Coppola, Luca Ardito, Marco Torchiano
first.last@polito.it

Politecnico di Torino
Torino, Italy

Abstract
Large Language Models (LLM) have rapidly affirmed in the latest
years as a means to support or substitute human actors in a variety
of tasks. LLM agents can generate valid software models, because of
their inherent ability in evaluating textual requirements provided
to them in the form of prompts.

The goal of this work is to evaluate the capability of LLM agents
to correctly generate UML class diagrams in activities of Require-
ments Modeling in the field of Software Engineering. Our aim is to
evaluate LLMs in an educational setting, i.e., understanding how
valuable are the results of LLMs when compared to results made by
human actors, and how valuable can LLM be to generate sample
solutions to provide to students.

For that purpose, we collected 20 exercises from a diverse set of
web sources and compared themodels generated by a human and an
LLM solver in terms of syntactic, semantic, pragmatic correctness,
and distance from a provided reference solution.

Our results show that the solutions generated by an LLM solver
typically present a significantly higher number of errors in terms of
semantic quality and textual difference against the provided refer-
ence solution, while no significant difference is found in syntactic
and pragmatic quality.

We can therefore conclude that, with a limited amount of errors
mostly related to the textual content of the solution, UML diagrams
generated by LLM agents have the same level of understandability
as those generated by humans, and exhibit the same frequency in
violating rules of UML Class Diagrams.

CCS Concepts
• Software and its engineering → Requirements analysis; •
Computing methodologies→ Natural language processing.

Keywords
Software Modeling, Class Diagrams, Large Language Models, Arti-
ficial Intelligence

ACM Reference Format:
Daniele De Bari, GiacomoGaraccione, Riccardo Coppola, LucaArdito,Marco
Torchiano. 2024. Evaluating Large Language Models in Exercises of UML
Class Diagram Modeling. In Proceedings of the 18th ACM / IEEE International

This work is licensed under a Creative Commons Attribution International
4.0 License.

ESEM ’24, October 24–25, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1047-6/24/10
https://doi.org/10.1145/3674805.3690741

Symposium on Empirical Software Engineering and Measurement (ESEM ’24),
October 24–25, 2024, Barcelona, Spain. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3674805.3690741

1 Introduction
In the ever-evolving landscape of Software Engineering, the design
phase of the software process is still one of the most crucial to
ensure the quality of the final product [7]. In such a phase, in fact,
the foundation of the software product is conceptualized, designed,
and documented, setting the foundation for the subsequent develop-
ment process. Among the most utilized instruments for this phase
is the Unified Modeling Language (UML), a standardized visual
language that has been largely adopted to make clear and con-
cise documentation of software design activities. More specifically,
UML class diagrams are a vital tool in defining the structure of the
software system, offering a visual representation of classes, their
attributes, methods, and the relationship between them. However,
the realization of accurate and comprehensive class diagrams is
a challenging task, especially during the requirement-gathering
stages, due to the complexity of translating abstract requirements
into detailed visual models which demands a deep understanding
of the system’s domain and a good knowledge of UML’s syntax and
semantics.

The rapid diffusion in the past years of Large Language Mod-
els (LLMs) in several domains hints at a possible solution to this
challenge. LLMs, thanks to their deep learning algorithms and big
training datasets, have shown proficiency in understanding and
generating human-like text, opening the possibilities for automa-
tion in tasks that traditionally needed human expertise. In Software
Engineering, the potential of LLMs to automate the generation
of UML class diagrams is particularly intriguing, because it could
enhance efficiency, and reduce errors in the design process, freeing
human designers that, in this way, can focus on more strategic
aspects of system development [9]. However, in the current state of
the art, the application of LLMs in generating UML class diagrams
has not been thoroughly explored, leaving a gap in the understand-
ing of their effectiveness, especially if compared to traditionally
human-driven methods.

The work described in this paper aims to assess the applicability
of LLMs in generating UML class diagrams, aiming to evaluate
whether LLMs can support or potentially enhance the traditional
manual practices of UML diagram generation. The investigation
is structured around seeking to compare the syntactic, semantic,

393

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3674805.3690741
https://doi.org/10.1145/3674805.3690741
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3674805.3690741&domain=pdf&date_stamp=2024-10-24

ESEM ’24, October 24–25, 2024, Barcelona, Spain De Bari et al.

and pragmatic qualities of LLM-generated diagrams with those pro-
duced by humans, and to assess LLM’s ability to replicate domain-
specific knowledge within these diagrams. To that extent, we com-
pared several quality aspects of UML diagrams generated by LLM
agents and by human practitioners.

The experiment has been conducted with an educational conno-
tation, i.e., the considered natural language requirements are part
of educational programs for Software Engineering courses. The
rationale for this decision is two-fold: first, to conduct a smaller-
scale exploration in educational settings instead of assessing LLM
agents directly on real-world large-scale software artefacts; second,
to evaluate the capability of LLM agents to aid docents of Software
Engineering and modeling courses, in providing sample diagrams
and assist students with reference examples for software modeling.

The remainder of the paper is structured as follows: Section
2 contains a discussion regarding the state-of-the-art about the
utilization of Large Language Models in software modeling; Section
3 describes the methodology applied in the current work; Section
4 describes the results of the experimentation; Section 5 discusses
the results, along with the threats to the validity of the current
research; Section 6 concludes the paper and provides future research
direction.

2 Background and Related Work
Utilizing Large Language Models for requirement gathering in
software engineering is an area which is being extensively explored
in recent literature.

As highlighted by Belzner et al. [1], LLMs possess the ability to
recognize and outline the fundamental components within a system.
These fundamental components, known as core entities, constitute
the primary elements that form the system. Understanding these
entities and their interactions is pivotal for the efficient design and
advancement of software systems.

Utilizing LLMs to identify and define core entities involves lever-
aging their capacity to comprehend and interpret natural language
descriptions of a system. By providing a comprehensive description
of the system’s attributes, functionalities, and behaviours, an LLM
could potentially highlight the central entities based on factors like
their frequency of mention, contextual relevance, and significance
in achieving the system’s functionalities.

Moreover, LLMs can generate relational data models from contex-
tual descriptions, which can be represented visually using domain-
specific languages such as mermaid.js. Additionally, LLMs are capa-
ble of accommodating various levels of abstraction in data models,
similar to those observed in ELT or ETL pipelines.

In their literature review from 2023 [3], Fan et al. analyze the
principal application areas of Large Language Models in the Soft-
ware Engineering discipline. Among the main areas for LLM use in
SE, the authors highlight the existence and feasibility of design dia-
grams through automated generation by LLM-based agents, whilst
identifying code generation, code documentation and software test-
ing as the main areas for LLM application. The authors highlight
as a result of their investigation the need for the definition of hy-
brid techniques, involving traditional human-based SE aided by
LLM-based agents, to ensure reliability in software engineering
tasks.

Table 1: GQM Template for the study

Object of study Usage of LLM agents

Purpose Comparing
Focus Effectiveness and correctness
Context Definition of UML Class Diagrams
Stakeholders Software Modeling Instructors

Hirtreiter et al. [5] document the application of Large Language
Models in the process of piping and instrumentation diagrams
(P&IDs), using Language Models to implement control structures
into Process Flow Diagrams (PFDs). With the use of a pre-trained
model, they measure an accuracy of 89.2% over 100,000 generated
PFDs, thereby confirming the potential of AI-assisted process engi-
neering.

LLMs have also been evaluated by related literature in the field of
education, and have been investigated in terms of the opportunities
and challenges provided in that field [6]. One application in which
ChatGPT has been evaluated is, as an example, the possibility to
generate natural language assignments for students, as investigated
by Xiao et al. for reading exercises in high school [13] and by Sarsa
et al. for programming exercises [10]. To the best of our knowledge,
no previous studies are available in the literature to evaluate the
capability of LLM agents to solve existing exercises in compatibility
with reference solutions, in the field of Software Modeling.

3 Experimental design
We designed an experiment to evaluate the feasibility of LLM-based
construction of UML Class Diagrams starting from Natural Lan-
guage requirements.

3.1 Experiment goal
We report the design, goal, research question and procedure by
following the GQM template as summarized in Table 1. The goal
of the experiment can be described as: Analyze the usage of LLM
agents for the purpose of comparing the quality and correctness of
generated UML Class Diagrams from natural language requirements,
from the point of view of instructors of Software Modeling.

3.2 Research Questions and Metrics
We define the following set of research questions to frame the
experiment design:

• RQ1: Does the use of LLM agents have an impact on the
quality and correctness of UML Class Diagrams generated
from natural language requirements?

• RQ2: What aspects of the natural language requirements
have an impact on the quality of generated UML Class Dia-
grams?

To measure the quality of generated class diagrams, we focus on
the quality aspects defined by Bolloju et al. [2]:

• Syntactic Quality: assess if the class diagrams follow the
syntactic structure of UMLClass Diagrams. The rules verified
for syntactic quality are:
– Missing cardinality details;
– Inappropriate naming of classes and associations;

394

Evaluating Large Language Models in Exercises of UML Class Diagram Modeling ESEM ’24, October 24–25, 2024, Barcelona, Spain

– Incorrect use of UML symbols.
• Semantic Quality: evaluate the accuracy and completeness of
the diagrams in representing the intended domain. It is mea-
sured in terms of: (i) Validity: all elements and relationships
in the diagrams should accurately represent the domain; (ii)
Completeness: the diagrams should include all necessary
elements and relationships. The rules verified for semantic
quality are:
– Incorrect Cardinality;
– Aggregation in place of association;
– Wrong location of attributes or operations;
– Operations cannot be realized using existing attributes
and relationships.

• Pragmatic Quality: focus on the understandability of the
diagrams from the perspective of stakeholders. The rules
verified for pragmatic quality are:
– Redundant attributes and associations;
– Specialization with no distinction among subclasses;
– Inconsistency in styling and conventions.

It is worth underlining that the three metrics described above
are intrinsic for any Class Diagram, i.e. they are not evaluated in
comparison with a reference solution but are computed against a
set of general rules applicable to every diagram. For each of the
three dimensions, we count the number of errors in each produced
or generated diagram.

To measure the correctness of the generated diagrams against the
natural language requirements provided, we focus on a compari-
son of the semantic content of elements and relationships in the
diagrams. The elements that are analyzed to this end are classes
and interfaces, class attributes, methods, and relationships between
elements.

To this end, we adopt the approach defined by Nikiforova et al.
for the comparison of class diagrams based on semantical features
of their elements [8]. The semantical distance defined by Nikiforova
et al. is based on the computation of the length of four distinct dis-
tance vectors, analyzing the differences between the diagram under
analysis and a reference (solution) diagram based on four main
aspects: classes and interfaces, class attributes, methods, relations
between elements. The highest the resulting distance, the more dis-
tant is the proposed solution from the reference solution; a distance
equal to 0 indicates a diagram that is equal to the reference solution.

To evaluate the aspects of the natural language requirements
that may have an influence on the generated solutions, we take
into consideration three different aspects:

• Size: the size of the reference solution, in terms of the number
of classes, attributes and methods, and associations;

• Estimated Difficulty: an estimation of the difficulty of the
exercises expressed in a Likert Scale (1-5). The evaluation
of the difficulty of the exercises was made by three authors
of this paper independently and then averaged, before any
attempt at generating the corresponding UML diagram.

• Readability: the readability of the natural language exercise
description was measured by computing the Flesch-Kincaid
Ease Score [11], a readability metric used to determine how

Table 2: Details about the selected exercises

Exercise Classes Attr+Ops Assoc AVG ED FK

1 6 17 7 2.33 45.9
2 6 35 5 1.33 55.2
3 7 12 8 4.67 67.5
4 6 31 7 3.33 41.1
5 8 18 11 2.33 48.4
6 9 12 12 3.67 66.4
7 6 5 7 1.00 58.6
8 7 11 8 2.00 49.4
9 9 13 10 2.67 54.7
10 7 15 7 2.67 59.1
11 6 11 9 3.33 55.4
12 6 11 5 2.33 53.8
13 8 19 8 1.67 58.0
14 5 12 5 2.67 59.6
15 8 6 8 4.33 74.5
16 11 13 13 3.00 60.0
17 8 5 8 2.33 53.1
18 6 10 6 1.67 60.9
19 9 20 9 4.00 54.5
20 10 28 10 4.67 60.8

difficult a text is to understand based on the length of words
and sentences in the text. We resorted on an online tool to
measure this metric for each exercise1.

3.3 Collection of experimental material
For the analysis conducted in this paper, 20 exercises were collected
from several online sources. The exercises are natural language de-
scriptions of different domains, with the purpose of giving different
representations of the challenges that can be encountered in the
realization of UML class diagrams.

The exercises were collected by one author of this paper from
various educational online sources, by applying the following in-
clusion criteria: (i) the exercises were in a language understandable
by the author (English or Italian); (ii) the exercises were provided
with a reference solution.

The details about the 20 exercises are reported in Table 2. The
interested reader can find all the natural language descriptions of
the exercises in an online appendix2.

3.4 Experiment Conduction
To conduct the experiment, it was required to obtain for each natu-
ral language description of a problem (i.e., an exercise) a human-
generated solution and an LLM-generated solution.

All the natural language description of systems were translated
into UML Class Diagrams by one of the authors of this paper, a
master’s student, during the work towards his master’s thesis. The
diagrams were made by using the Microsoft Visio tool.

The following rules were followed while drawing the UML Class
Diagrams:

• Time limitation: the time given to complete a UML class
diagram is 30 minutes. This is necessary to evaluate the
ability to work under time pressure and to avoid prolonged
deliberation.

• No access to external sources: to ensure that the diagram is
made only with personal knowledge, access to the internet,

1https://goodcalculators.com/flesch-kincaid-calculator/
2http://doi.org/10.6084/m9.figshare.25434550

395

https://goodcalculators.com/flesch-kincaid-calculator/
http://doi.org/10.6084/m9.figshare.25434550

ESEM ’24, October 24–25, 2024, Barcelona, Spain De Bari et al.

Table 3: Maximum, Minimum, Average metrics for human
and LLM actors

Human LLM
Min Max Mean (SD) Min Max Mean (SD)

Sem. Errors 0 7 1.75 (1.80) 0 14 4.85 (3.28)
Syn. Errors 0 4 0.5 (1.14) 0 2 0.9 (0.79)
Prag. Errors 0 4 1.1 (1.12) 0 3 1.6 (0.94)
Distance 0.87 10.20 5.01 (2.36) 2.24 11.54 7.25 (2.86)

notes, textbooks, or any other external sources was prohib-
ited during the execution of the exercise.

• No interaction with others: the exercises were completed
individually, without help from other people.

The constraints for the UML class diagram exercise were care-
fully chosen to create a challenging yet fair environment that mim-
ics real-world conditions.

To realize the UML class diagrams the Large Language Model
chosen was ChatGPT-4, which is the latest version of OpenAI’s
generative pre-trained transformer series.

For this research, the prompt used is the same for all the exercises
and it is "Create a UML Class Diagram of the given exercise and give
me the PlantUML code", followed by the text of the exercise to solve.
This prompt was selected because in a simple way it ensures that the
LLM agent understands the specific task (creating a UML diagram),
the context (the provided exercise), and the expected output format
(PlantUML code).

After the generation of the PlantUML code by the LLM agent,
the online tool PlantText.com is used to generate UML diagrams
starting from a PlantUML textual description.

Once the diagrams were generated and visualized with Plant-
Text.com, they were manually inspected and compared with the
reference solutions, to compute the quality and correctness metrics
previously defined. The human and LLM-generated diagrams, as
well as the related quality and correctness measures, are reported
in full as an online-only appendix of this manuscript3.

3.5 Analysis Method
To answer RQ1, we resorted on applying an ANOVA statistical test
on the pairs of results (human produced vs. LLM-generated) for
each diagram. We considered as independent variable the fact that
the diagram was generated by a human actor or by a LLM-agent,
and as dependent variables the semantic, syntactic and pragmatic
quality of the diagram, as well as as correctness measured against
the provided reference solution. The null hypotheses for the sta-
tistical test are reported later in the results section (Table 4). Since
conducting multiple univariate ANOVAs may increase the chance
of Type I error (false positives), we adjusted the significance level
using Bonferroni correction to account for multiple comparisons.

Based on the results of RQ1, we aim to check – in case of sig-
nificantly different qualities of the diagram – whether the size and
readability characteristics of the exercises have an influence on the
dependent variable. To do so, we first apply a covariance check
between the independent size and difficulty variables, and we ex-
clude one variable for each covariant pair. Then we apply a linear
3http://doi.org/10.6084/m9.figshare.25434550

regression between all independent size and difficulty factors and
dependent quality and correctness factors. For this analysis we
are mostly interested in the effect sizes and not on the resulting
p-values because of the low statistical power of the prompt. We
however perform an analysis of the p-value obtained by applying
the linear regression, and apply also in this case the Bonferroni
Correction to cope with the increased chance of Type I error.

4 Results
In Table 3 we report the maximum, minimum, and average number
of errors and distance over the 20 produced exercises for both
human and LLM agents. The distributions of such variables are
reported graphically in the violin/box plots in Fig. 1.

We can notice that LLM agents committed on average a higher
number of errors for all categories (with a maximum amount of
errors equal to 14 for Semantic Errors).

The highest difference can be noticed for Semantic Quality (4.85
errors on average against 1.75 made by the human solver), whereas
the smallest difference is measured for Syntactic Quality (0.9 errors
against 0.5). Regarding Syntactic and Pragmatic quality, it is worth
underlying that – while having a higher average number of errors
– the LLM agent performed at most, respectively, 2 and 3 errors,
against a maximum number of errors equal to 4 for both qualities
for the human agent.

The distance against the text-based vectors of the solution was
higher for the LLM solver against the human solver (7.25 against
5.01). While the human-generated solutions had a minimum dis-
tance from the reference solution of 0.87, the LLM-generated solu-
tions had a minimum distance that was three times higher (2.24).
The difference in the maximum distance from the reference solu-
tion was smaller (10.20 for the human agent, and 11.54 for the LLM
agent). We can thereby conclude that the LLM solver performed
worse in any quality aspect with respect to the human solver.

In Table 4 we report the results of the ANOVA test for the de-
pendent variables used to answer RQ1. By analyzing the p-values
we can reject the hypotheses 𝐻0𝑠𝑒𝑚 and 𝐻0𝑐𝑜𝑟𝑟 , meaning that we
observe a statistically significant difference in Semantic Quality and
Distance with respect to the exercise solution. We cannot instead
reject the hypotheses related to Syntactic and Pragmatic quality,
underlining thereby that the difference between human and LLM
solvers is limited – in the setting of this experiment – for these
aspects.

In the dumbbell plot reported in Fig. 2 we compare the distances
against the reference solution for the results generated by the hu-
man and the LLM solvers. With this comparison, we notice that the
LLM solver performed better than the human solver only in two
occasions (Exercise 11 and Exercise 17) while obtaining an equal
distance in a third case (Exercise 7). The exercises share no similar-
ity in terms of average estimated difficulty and Flesh-Kinkaid ease
score, whilst being among those with the smallest-sized reference
solutions.

Once noticing a statistically significant difference in Semantic
Quality and Correctness between solutions made by a human or
by an LLM agent, we perform a linear regression on a series of

396

http://doi.org/10.6084/m9.figshare.25434550

Evaluating Large Language Models in Exercises of UML Class Diagram Modeling ESEM ’24, October 24–25, 2024, Barcelona, Spain

0

5

10

Syntactic Errors Semantic Errors Pragmatic Errors Distance
Metric

V
al

ue

Actor

Human

LLM

Figure 1: Violin plots for Quality metrics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

3 6 9 12
Distance

E
xe

rc
is

e

Human LLM

Figure 2: Distances from the reference solution for Human-
and LLM-generated solutions

independent variables to understand the impact that they may have
on such aspects, considered as dependent variables.

Based on the correlation matrix computed between the indepen-
dent variables, we exclude the number of Associations from our
set of independent size variables since it is highly correlated with
the Classes independent variable (correlation coefficient of 0.85),
suggesting that they share a strong linear relationship.

The results of the linear regression performed between each
couple of independent and dependent variables are reported in
Table 5: we report for each pair the estimate, the standard deviation
and the p-value (in bold if below the significance threshold).

Table 4: Null hypotheses for RQ1 and p-values of the applied
ANOVA univariate tests (alpha = 0.0125)

Hypothesis Description p-value

H0_syn The human or LLM-based genera-
tion of UML diagrams has no impact
on the resulting syntactic quality

0.206 accept

H0_sem The human or LLM-based genera-
tion of UML diagrams has no impact
on the resulting semantic quality

6.7e-4 reject

H0_prag The human or LLM-based genera-
tion of UML diagrams has no impact
on the resulting pragmatic quality

0.134 accept

H0_corr The human or LLM-based genera-
tion of UML diagrams has no impact
on the correctness of the diagram

0.0102 reject

Both the semantic errors and distance variables have a positive
correlation with the four independent variables, with the exception
of human semantic errors and distance against the number of at-
tributes and operations, and the LLM agent distance against the
Flesch-Kincaid score.

Regarding the estimates of the impact of each independent vari-
able, we see that the number of classes in the reference solution
has an impact on all four dependent variables, albeit not significant
in size. This aspect may suggest that the size in terms of classes
increases the frequency of errors only slightly, suggesting that both
the human and LLM agents are good at capturing the main ele-
ments of a concept model even when the number of such elements
increases.

The number of attributes and operations (methods) of the refer-
ence solution instead has a negative correlation with the number
of semantic errors and the distance from the solution for human
agents. Our interpretation of this result is two-fold: first, the human
agents may have a tendency to capture many attributes from textual
documentation; second, the reference solutions can be sketched by
reducing the number of attributes inside classes. The combination
of these two attitudes leads inevitably to an increase in the distance
from the reference solution.

It is worth underlining that the average estimated difficulty (com-
puted as a manual investigation by the authors of the paper) was a
decent predictor of the semantic error and distance for both human

397

ESEM ’24, October 24–25, 2024, Barcelona, Spain De Bari et al.

Table 5: Results of the linear regression between size and complexity variables and semantic correctness and distance from the
reference solution

Classes Attr./Ops Avg. ED FK
estimate SD p-value estimate sd p-value estimate sd p-value estimate sd p-value

Human Semantic errors 0.37 0.25 0.16 -0.08 0.05 0.14 0.83 0.35 0.03 0.13 0.05 0.01
Distance 0.49 0.33 0.15 -0.03 0.058 0.72 1.67 0.34 1.0e-4 0.13 0.07 0.06

LLM Semantic errors 0.33 0.48 0.50 0.03 0.09 0.78 1.58 0.59 0.01 0.12 0.10 0.23
Distance 0.63 0.39 0.13 0.13 0.08 0.08 1.84 0.46 8.1e-4 -8.0e-4 0.09 0.99

and LLM solvers. More specifically, we measured a significant cor-
relation (p-value < 0.003125 after Bonferroni Correction) between
the Human-agent distance, the LLM agent distance and the average
estimated difficulty for the exercises. Even though the sample is
limited in size and therefore the p-value is not dependable, the
estimate provided by the linear regression is much higher than
that measured for the number of classes. On the other hand, the
Flesch-Kincaid ease score had hardly any influence on the depen-
dent variables. We, therefore, conclude that the evaluation of the
difficulty of modeling exercises cannot be performed by using stan-
dard textual ease scores, while the evaluation performed by domain
experts proves to be dependable.

5 Threats to Validity
We discuss in this section the potential threats to the validity of the
study according to the four categories defined by Wohlin et al. [12].

Threats to Internal Validity concern internal factors that may
affect a dependent variable that the study did not consider. The inter-
nal validity of the study is limited by the solutions provided by the
sources of exercises, which are regarded as the primary benchmark
for correctness. The reference solutions have inherent potential
limitations, e.g. being incomplete, overly simplistic or overly de-
tailed, thus influencing all the correctness metrics measured for
the solutions provided by human and LLM solvers. The internal
validity of the study is also threatened by the specific prompts used
to solve the exercises with the LLM agents, since there is a chance
that other prompts would have provided better results in terms of
correctness, by favoring specific correctness metrics over others.
Potential bias and unreliability of LLM can be an additional factor
impacting the results in generating UML Class Diagrams. Finally,
all the exercises were solved by a single author of this manuscript,
introducing a bias in the correctness of the exercises.

Threats to External Validity concern whether the results of
the study can be generalized rather than be applicable only to
the specific sample of participants involved. The described study
was focused on a sample of UML modeling exercises gathered
from online literature and books. Albeit effort was spent to ensure
a certain variation of the semantic content and difficulty of the
exercises considered, the limited sample of selected artefacts does
not ensure that the results are generalisable to any UML modeling
exercise.

Threats to Construct Validity concern the extent to which
the measures selected for the study actually represent the observed
construct. Regarding the constructs used in this study, we resorted
to using a set of inherent correctness metrics that are reported in

related literature [2][8]. It is indeed possible that such measures
are not the optimal choices in evaluating UML diagrams, especially
since they are defined based on human solvers and are not tailored
for LLM agents.

Threats to Conclusion Validity concern the ability to con-
clude from the results of the study. The biggest conclusion validity
threat of this study is related to the limited size of the sample (only
20 exercises considered). Therefore the conclusions drawn in the
present research should be validated with a more extensive set of
artefacts.

6 Conclusion and Future Work
In this manuscript, we evaluated the capability of LLM-based agents
to solve exercises for the generation of UML diagrams when pro-
vided with natural language descriptions of software characteristics
in different domains.

The results of this paper highlight that LLM agents still achieve
worse results overall in generating UML diagrams from require-
ments against human solvers. The difference is however limited
for several quality and correctness aspects that were evaluated,
therefore hinting at a possible utilization of LLM agents for the
generation of sample solutions for students or preliminary sketches
of diagrams to accompany requirements in software projects. All
the results in this study were gathered after a single-pass inter-
action with LLM agents, therefore there is important room for
improvement of the results provided by such agents.

As our future work, we envision the possibility of evolving the
basic and static prompts used to generate the diagrams and consider
the possibilities of using an architecture of LLM agents cooperating
to improve a generated diagram iteratively. This type of architecture,
referred to as Cognitive Architecture, is being explored in Software
Engineering literature and applied to other fields of the discipline
like generation of test cases in web software testing [4].

Moreover, in the context of a separation of tasks and concerns
in an architecture of LLM-based agents, we plan to evaluate the
capability of agents to generate meaningful and consistent natu-
ral language exercises for learners of Software Modeling courses,
and the ability in evaluating solutions to existing exercises. In the
context of this paper, in fact, all the quality aspects were measured
manually by one of the authors; the creation of LLM-based systems
able to automatically and reliably evaluate the provided solution to
an exercise would be a significant aid for docents in an educational
setting.

398

Evaluating Large Language Models in Exercises of UML Class Diagram Modeling ESEM ’24, October 24–25, 2024, Barcelona, Spain

References
[1] Lenz Belzner, Thomas Gabor, and Martin Wirsing. 2023. Large language model

assisted software engineering: prospects, challenges, and a case study. In In-
ternational Conference on Bridging the Gap between AI and Reality. Springer,
355–374.

[2] Narasimha Bolloju and Felix SK Leung. 2006. Assisting novice analysts in de-
veloping quality conceptual models with UML. Commun. ACM 49, 7 (2006),
108–112.

[3] Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta,
Shin Yoo, and Jie M Zhang. 2023. Large language models for software engineering:
Survey and open problems. arXiv preprint arXiv:2310.03533 (2023).

[4] Robert Feldt, Sungmin Kang, Juyeon Yoon, and Shin Yoo. 2023. Towards au-
tonomous testing agents via conversational large language models. In 2023 38th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1688–1693.

[5] Edwin Hirtreiter, Lukas Schulze Balhorn, and Artur M Schweidtmann. 2024.
Toward automatic generation of control structures for process flow diagrams
with large language models. AIChE Journal 70, 1 (2024), e18259.

[6] Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, et al. 2023. ChatGPT for good? On opportunities and challenges
of large language models for education. Learning and individual differences 103
(2023), 102274.

[7] Mayuram S Krishnan, Charlie H Kriebel, Sunder Kekre, and Tridas Mukhopad-
hyay. 2000. An empirical analysis of productivity and quality in software products.
Management science 46, 6 (2000), 745–759.

[8] Oksana Nikiforova, Konstantins Gusarovs, Ludmila Kozacenko, Dace Ahilcenoka,
and Dainis Ungurs. 2015. An approach to compare UML class diagrams based on
semantical features of their elements. In The Tenth International Conference on
Software Engineering Advances. 147–152.

[9] Ipek Ozkaya. 2023. Application of large language models to software engineering
tasks: Opportunities, risks, and implications. IEEE Software 40, 3 (2023), 4–8.

[10] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
generation of programming exercises and code explanations using large language
models. In Proceedings of the 2022 ACM Conference on International Computing
Education Research-Volume 1. 27–43.

[11] Marina Solnyshkina, Radif Zamaletdinov, Ludmila Gorodetskaya, and Azat
Gabitov. 2017. Evaluating text complexity and Flesch-Kincaid grade level. Journal
of social studies education research 8, 3 (2017), 238–248.

[12] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[13] Changrong Xiao, Sean Xin Xu, Kunpeng Zhang, Yufang Wang, and Lei Xia. 2023.
Evaluating reading comprehension exercises generated by LLMs: A showcase
of ChatGPT in education applications. In Proceedings of the 18th Workshop on
Innovative Use of NLP for Building Educational Applications (BEA 2023). 610–625.

399

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Experimental design
	3.1 Experiment goal
	3.2 Research Questions and Metrics
	3.3 Collection of experimental material
	3.4 Experiment Conduction
	3.5 Analysis Method

	4 Results
	5 Threats to Validity
	6 Conclusion and Future Work
	References

