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Abstract
Weintroduce anopen-access tool capable of automatically extracting the timingof gait events during unconstrained locomotion
across different neuromotor impairments. The gait analysis interactive tool is conceived as an assistant for gait assessment
studies, both in healthy participants or in people with motor impairments affecting gait symmetry, regularity, or balance,
as usually encountered in patients with neurological disorders. Our open-access pipeline makes it possible to automatically
identify the timeof keygait events (heel strike, toe off) froma single gyroscope axis (lateralmid-axis), simplifying experimental
protocols, and can easily be used in everyday life conditions. The code is user-friendly and interactive.At each stage of analysis,
it allows for possible adjustments andmanual corrections of undetected ormismatched events. To implement, test, and validate
our algorithm, we used three different databases of gait recordings that span from healthy subjects to patients affected by
Parkinson’s disease. The pipeline consists of three main sections that allow us to segment, identify, and eventually correct
the events within the gait cycle. The algorithm achieved an average accuracy of 99.23% over healthy participants, either with
average weight or overweight, and a performance of 94.84% over patients with Parkinson’s disease. Even if gait analysis
is a widely studied problem, so far, no open-source algorithm is available. The present work provides an easy tool capable
of working with a minimum set of sensors and without any expensive platform or camera-based system. Employing three
databases widely different for the environment, and for the subjects’ age and motor impairments highlights the versatility of
our approach.
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1 Introduction

Gait Analysis refers to the study of human locomotion during
walking. It plays an essential role in detecting abnormali-
ties in human walking style [1]. The gold standard systems
for monitoring human gait, in terms of higher accuracy,
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are camera-based 3D motion capture systems and instru-
mented walkways. However, these systems are expensive,
require ample room to operate, and demand trained profes-
sionals to run them [2]. Therefore, they are suitable only
for hospitals or hospital-like settings, such as specialized
gait analysis clinics or research centers. These characteris-
tics make the systems rare and inaccessible to most patients
and cannot be used in an ecological environment. As a
result, in recent years, pervasive gait assessment systems
emerged that could be easily deployed in non-hospital set-
tings (such as homes or small private clinics). Indeed, there
are plenty of wearable devices based on 3D Inertial Mea-
surement Units (IMUs) [3, 4] and foot pressure sensors [5],
which are generally used to measure various characteristics
of human gait and monitoring motor deficits in post-surgery
[6], fall detection [7], athletes’performance evaluations [8],
self-detection of elderly’s daily activities [9], or in neurode-
generative diseases [10–12]. Many are also the algorithms
devoted to determining gait-specific characteristics: zero
velocity detection, Kalman filters or the combination of
both [2], the use of different machine learning techniques
[13, 14] or simple peak detection methods [15]. However,
in all the works cited above, data analysis was performed
individually by single groups and tuned to the specific
data collection. In particular, there was no general-purpose
tool that could support researchers in identifying with very
high accuracy key gait events both in healthy subjects and
patients with different motor impairments from the simple
data acquired by IMU. Here, we present a graphical open-
access tool http://github.com/matteonocilli/GAIT-tool that
automatically identifies heel strikes (HS) and toe-off (TO)
events during gait acquired with two IMUs positioned on
the foot of the subject under evaluation. We implemented
the algorithm based on the signal gathered from a single
gyroscope axis (lateral mid-axis), which has been validated
on healthy normal-weight and overweight patients, with an
average accuracy of 99.23%, and tested on patients with
Parkinson’s Disease (PD) with an averaged accuracy of
94.84%. The tool allows the user to interact quickly and intu-
itively to adjust event timing in case of possible mismatch.
Moreover, it is possible to combine the inertial signals with
EMG sensors as an additional aid for determining the gait
cycle timing in patients severely affected.

2 Data

To implement, test, and validate our algorithm, we used
three different databases of gait recordings (MeDiTech, BIO-
LAB,.NR) that span fromhealthy subjects to patients affected
by Parkinson’s disease. Overall, data comes from 41 subjects
(17 normal-weight, 10 overweight, and 14 with Parkinson’s
disease, Table 1). Each participant gave written informed
consent prior to the experiment, according to the declara-
tion of Helsinki. The MeDiTech has been used to implement
the algorithm. The BIOLAB, which comprises data from
healthy and obese subjects, was used as the gold standard
for validating the algorithm. Finally, to verify the algorithm’s
robustness, we tested it with the.NR database, which is based
on Parkinson’s disease patients. Indeed, Parkinson’s disease
significantly affects themotor abilities of the patients altering
their gait pattern [16–18], which translates into morphologi-
cal differences in the signal comparedwith a nonpathological
one (Fig. 1).

2.1 MeDiTech database

We recorded data from 5 subjects in our lab, considering
them as a control group. The experiments were performed
in an internal hallway of the MeDiTech institute at the
University ofAppliedSciences andArts of SouthernSwitzer-

Fig. 1 Gyroscopic acquisition from the x-axis of a healthy subject
belonging to the MediTech database and from a patient with severe
motor impairments belonging to the.NR database

Table 1 Demographics of
MeDiTech, BIOLAB and .NR
databases

MeDiTech (N=5) BIOLAB (N=22) .NR (N=14)

Age (years) 26.8±1.8 25.9±1.9 64.4±6.0

Height (cm) 180±11.2 177.85±8.2 –

UPDRS (ptlll) – – 38.5±20.1

Sex (M/F) 4/1 22/0 8/6

TTO total toe-off, DTO detected toe-off, THS total heel-strike, DHS detected heel-strike
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Fig. 2 a Picture of the placement of the IMU sensor for subjects of
MediTech database; b picture of the placement of the IMU sensor for
subjects of BIOLAB database; c picture of the placement of the IMU
sensor for subjects of.NR database; d averaged stride template used for
the gait segmentation phase

land (SUPSI). One IMU (Shimmer3 IMU Unit, Shimmer
Research Ltd, Ireland) was placed at each tip of the sub-
ject’s feet (Fig. 2a). The sensors were programmed to sample
at 51.2Hz. Subjects were instructed to stand for approxi-
mately 3 s before initiating a sustained bout of walking at
their comfortable speed (ten steps). When arriving at the end
of the bout, patients were instructed to stop and stand still for
another 3 s before performing a U-turn and starting again for
the last ten steps.

2.2 BIOLAB database

Data were collected in a previous study at the BIOLAB of the
Department of Electronics and Telecommunications of the
Polytechnic of Turin [5, 19]. The study involved twenty-two
male volunteers, comprising twelve individuals with normal
weight and ten individuals who were either overweight or
obese. Data were acquired using two IMUs (TSDN121, ATR
Promotions, Kyoto, Japan), attached to the lateral malleolus
(Fig. 2b). In addition, three footswitches (10× 10× 0.5mm,
activation force: 3N) were positioned under the rear portion
of the heel and the first and fifth metatarsal heads. Exper-
iments were conducted indoor in a well-lit room and the
participants walked at a self-comfort speed over a straight
path of 14m.

2.3 .NR database

Gait disorders are commonly observed in people with
advanced Parkinson’s disease (PD), who develop asymmet-

rical and disjoined gait caused by symptoms such as tremor,
bradykinesia, postural rigidity, and freezing of gait [16–18,
20]. From a spatiotemporal point of view, the most impor-
tant feature of PD gait is the reduction in stride length, often
accompanied by a decrease in gait speed and an increase
in double support duration [21, 22]. They also have lim-
ited hip flexion, inadequate knee extension, or absent heel
strike. Fourteen patients affected by Parkinson’s diseasewere
recruited in a different study at the Department of Clinical
Neurosciences, Lausanne University Hospital (CHUV). All
patients received bilateral deep brain stimulation (DBS) leads
(Medtronic 3389, Medtronic, USA) and were recorded in the
five days after their surgery. All experiments were approved
by the Ethical Committee of theCanton deVaud, Switzerland
(Reference PB 2017-00064). Recordings were performed in
the gait lab using an optoelectronic motion capture system
(Vicon, UK) that measured the 3D positions of key body
joints. Kinematic data were complemented by bilateral tri-
axial inertial measurement unit (IMU) sensors (Delsys, MA,
USA) attached to the patient’s shoes (Fig. 2c), recording raw
gyroscope signals from the right and left feet (sampling fre-
quency: 148Hz). All patients were in OFF medication and
OFF stimulation conditions. Patients were instructed to stand
for about 3 s before initiating a sustained bout of walking on
a straight line of around 15ms at their comfortable speed.
When arriving at the end of the bout, patients were instructed
to stop and stand for another 3 s before doing a U-turn and
starting again [11].

3 Methods

The algorithm was developed in MATLAB® R2022a and
allows extracting the TO and HS succession during walking
from the angular velocity recorded by the gyroscope around
the mid-lateral axis, which detects plantar and dorsi-flection
movements of the ankle. The position of the inertial sen-
sor on the foot does not significantly affect the morphology
of the signal, except for changes in amplitude. Indeed, in the
three databases used for the algorithm’s implementation, val-
idation, and testing, the sensors are placed at three distinct
locations on foot, on the toe, in the instep, and on the malle-
olus, respectively. The tool can be divided into four sections:
data loading, gait segmentation, main events detection, and
manual correction phase.

3.1 Data loading and smoothing

The first step in the pipeline involves loading the data, veri-
fying the sensor’s orientation, and selecting the IMU channel
for analysis. If an electromyogram signal is present, it can
also be loaded to assist during the inspection phase. To
enhance signal quality, amoving average filter can be applied
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Fig. 3 a Data smoothing step of
the pipeline. Different filters are
proposed to the user to improve
the quality of the shape of the
gyroscopic signal; b
segmentation phase, in case the
task requires pauses or changes
in direction the pipeline
proceeds with a segmentation; c
for each segment TOs and HSs
are detected

to reduce potential vibration or noisy peaks. Signals can
fluctuate due to various factors, including sensor sensitivity,
attachment method, foot vibrations during ground contact,
and suboptimal sensor placement. This technique smooths
data by averaging sequential points over a chosen window
size. The algorithm displays both raw and filtered signals for
user selection (Fig. 3a).

3.2 Gait segmentation

Due to the confined spaces in which signals are usually
recorded or the need to remain within ranges of the acqui-
sition system, several changes in direction occur during gait
that often consist of the alternating of walking and pauses
followed by rotations. To recognize and isolate the walk-
ing task, we use a pattern computed by averaging the signal
of a gait cycle (20 steps) gathered from a healthy subject
(Fig. 2d). Based on this pattern, the tool recognizes the dif-
ferent portions of the walking task inside the whole gait task
and presents them to the user, separated by markers identi-
fying the beginning and the end of each repetition (Fig. 3b).
During this phase, a gait cycle is identified through the cross-
correlation y(t) between the gyroscopic signal x(t) and the
aforementioned stride template z(t). The peaks of the cross-
correlation output above a threshold (Th = 2.5 ∗ σ) are
considered gait cycles. However, selecting peaks based only
on amplitude is insufficient for gait segmentation because

peaks can also occur when the patient turns to start a new
repetition. Therefore, it is essential to distinguish between
peaks related to walking and those related to turning. At the
end of each repetition, the patient briefly stops, turns around,
and stands still before starting the next repetition. To iden-
tify this pause, we calculate the mean distance between all
amplitude-detected peaks. When the distance between two
consecutive peaks exceeds twice the mean value, it indicates
a pause, thereby allowing for gait segmentation.

3.3 Detection of themain events

Successively, the tool proceeds with the TO and HS detec-
tion within the constraints imposed in Sect. 3.2 and returns
the timing related to these events. Detection is achieved by
identifying the broad peak that characterizes the swing phase.
For a healthy subject, it corresponds to the complete detach-
ment of the foot from the ground and it is between TO
and HS, which are the preceding and the following mini-
mum, respectively. A detailed examination reveals that the
amplitudes of swing peaks often differ from those of heel
strike and toe-off peaks. To accurately and consistently detect
swing peaks without mistakenly identifying other events, a
threshold Th was set at 2.5 times the value of the standard
deviations (Th = 2.5 ∗ σ). This threshold was established
through a combination of empirical analysis and simulations
top recisely identify swing peaks in the gyroscopic signal.
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Further detection of the zero-crossing points of the signal,
previously deprived of any off set, allows for determining
the position of the two local minima. This was done as a
second control to avoid the recognition of local minima, TO
and HS correspond to a change in the sign of the speed in the
gyroscopic signal (Fig. 3c).

3.4 Manual correction phase

This tool was conceived to provide automatic labeling of
main gait events, and it can be shared and adapted to various
acquisition protocols. Moreover, it is possible to accept or
manually modify the outputs of all processing stages. First, it
gives the chance to visualize the signal and, eventually, invert
its rotation axis to make the swing peak concurrent with the
positive direction. Then, the constraints identified in Sect. 3.2
can be relocated. Finally, the tool allows adding, deleting, or
modifying the TO and HS labels (accurate instructions are
provided in GitHub).

4 Results

Firstly, we tested our algorithm on the MeDiTech database,
considered as the control group. We used one subject as a
trial to calibrate the detection and the other four as a prelimi-
nary test, reaching an accuracy of 100%, according to careful
inspection by two experts. Then, it was validated using the
BIOLAB database as the gold standard since it includes both
IMU data and data from footswitches (ground truth) that
identify all gait events with their exact timing. We ran our
algorithm on the IMUs recordings, and the detected HS and
TO were compared with the ground truth. All erroneous or

Table 2 Matching performance on PD data

ID TTO DTO %DTO THS DHS %DHS

PD1 209 208 99.52 209 208 99.52

PD2 107 105 97.20 107 102 93.43

PD3 217 209 96.31 217 204 94.00

PD4 138 138 100.00 138 138 100.00

PD5 141 137 97.16 141 137 97.16

PD6 167 165 98.80 167 155 92.81

PD7 122 122 100.00 122 122 100.00

PD8 154 128 83.11 154 128 83.11

PD9 134 133 99.25 134 133 99.25

PD10 165 165 100.00 165 165 100.00

PD11 211 201 90.99 211 201 90.99

PD12 132 128 96.97 132 123 93.18

PD13 182 168 92.31 182 163 89.56

PD14 130 117 90.00 130 117 90.00

Fig. 4 Overall performance across the three databases: MeDiTech n =
200 (100 HS, 100 TO); BIOLAB n = 12,834 (6417 HS, 6417 TO);.NR
n = 4418 (2209 HS, 2209 TO)

undetected eventswere considered errors. As reported below,
we achieved an accuracy greater than 99% in both events for
both feet.

• Right Foot Heel-Strike: 99.52% ± 1.41
• Left Foot Heel-Strike: 99.07% ± 1.59
• Right Foot Toe-Off: 99.42% ± 1.63
• Left Foot Toe-Off: 98.92% ± 1.74

Also, in the case of the PD data, the results are very satis-
factory (see Table 2), although thematching rates are slightly
lower than those for patients without motor deficits. We
obtained an average matching rate for TOs of 95.68%±4.95
while the rate drops to 94.00%± 5.35 for HSs. In both vali-
dation and test phases, we dry-run the algorithm without any
further adjustment offered by the tool (Fig. 4).

5 Discussion

The results show that the algorithm can correctly detect
almost all events of interest based only on the gyroscopic
signal referred to the mid-lateral axes of the ankle joint.
Moreover, it is robust against the morphology of the sig-
nal, from healthy to PD subjects, and transparent to the
IMU placement on foot. Indeed, in the data collected in the
MeDiTech database, we used the same protocol and sensor
positions as in the .NR database. In both cases, we placed
two IMU sensors centrally on the instep. Although a dif-
ferent position was used in the BIOLAB database, it still
achieved a very high average accuracy. As seen from Table
2, the algorithm’s average performance is highly impacted
by PD8, which has a matching accuracy of 83.11% for both
events. In that patient, we encountered the highest num-
ber of undetected events due his severe gait impairments
when unmedicated. The analysis was more challenging than
in similar cases because the patient used a walking stick,
which interfered with the swing phase. Often, the patient
dragged his foot, complicating the gyroscope’s event detec-
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Fig. 5 Automatic event detection failure during the analysis of PD8

tion (Fig. 4). Considering all other patients, the average
accuracy increases to 96.81% ± 3.51 for TO and 95.38% ±
4.52 for HS. The tool follows a continuous flow from select-
ing the signal to be analyzed to the final results, offering a
sequence of graphical outputs summarizing the steps out-
lined in Sect. 3. It allows the user to intervene in case of
possible mismatches or errors determined by the automatic
event detection algorithm. There is always the possibility to
adjust the results through easy interactive steps. Moreover,
it outputs all timing data of each single gait phase. Further-
more, in the case of signal morphology hardly affected by the
subject’s disease, it is possible to visualize the EMG data,
if present, together with the gyroscopic mid-lateral axis to
select the events more accurately.

6 Conclusion and future work

In this work, an algorithm was developed to automatically
detectmajor gait cycle events only using inertial sensors. This
detection algorithm is embeddedwithin a pipeline that allows
the user to load the data, visually choose the smoothing of
the raw signal, and modify, if desired, the outputs manually.
Future works may include testing the pipeline on other motor
tasks such as overcoming obstacles, climbing stairs, walking
uphill or downhill, or at different speeds. Summing up, the
impact of this tool relies on its easy handling, open-access
availability, and the simplicity of the measurement setup,

only one gyroscopic signal, guaranteeing excellent perfor-
mance even with PD patients.

6.1 Freezing of gait episodes

Freezing of Gait (FoG) is one of the most debilitating motor
symptoms that can affect patientswithPDduring the progres-
sion of the disease [23]. When we tested the algorithm on the
.NR database, one patient exhibited severe FoG episodes if
unmedicated. During these episodes, defined by an expert,
the patient’s feet were glued to the ground. In Fig. 6a, we
report the segmentation results, and in Fig. 6b, the automatic
event detection. Even during FoG episodes, if the patients
managed to drag their feet, resulting in activity in the gyro-
scope, the tool was able to distinguish that activity from
normal walking. After inspecting the results, we can state
that movements related to shaking or turning are not recog-
nized as walking.
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Fig. 6 a Segmentation result and b Events detection during gait of the patient affected by FoG from .NR database. Inpink the episodes marked by
the neurologist
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