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Abstract: A general theory for solving electromagnetic diffraction problems by impenetrable/penetrable 1

wedges immersed in/made of an arbitrary linear (bianistropic) medium is presented. This novel 2

and general spectral theory handles complex scattering problems by using transverse equations 3

for layered planar and angular structures, characteristic Green’s function procedure, Wiener-Hopf 4

technique, and a new methodology to solve GWHEs. The technique has been proved effective for 5

the analysis of wedge problems immersed in isotropic media and, in this paper, we extend the 6

theory to more general cases providing all necessary mathematical tools with validation. We obtain 7

Generalized Wiener-Hopf equations (GWHEs) from spectral functional equations in angular regions 8

filled by arbitrary linear media. The equations can be interpreted with network formalism for a 9

systematic view. We recall that spectral methods (such as the Sommerfeld-Malyuzhinets (SM) method, 10

the Kontorovich-Lebedev (KL) transform method, and the Wiener-Hopf (WH) method) are well 11

consolidated fundamental and effective tools for the correct and precise analysis of electromagnetic 12

diffraction problems constituted of abrupt discontinuities immersed in media with one propagation 13

constant, although not immediately applicable to multiple propagation constant problems. According 14

to our opinion, for the first time, the proposed mathematical technique extends the possibilities of 15

spectral analysis of electromagnetic problems in presence of angular regions filled by complex arbi- 16

trary linear media providing novel mathematical tools. Validation through fundamental examples is 17

proposed. 18

Keywords: wave motion, diffraction, electromagnetism, arbitrary linear media, bianisotropic media, 19

layered media, applied mathematics, Green’s function, Wiener-Hopf method, integral equations, 20

Fredholm factorization. 21

1. Introduction 22

The theory of wave diffraction constitutes one of the fundamental problems in Mathe- 23

matical Physics. Apart from its direct relevance to Engineering and Physics, this subject 24

gives rise to significant methodologies in Applied Mathematics. 25

Spectral methods play a crucial role in the study of electromagnetic diffraction. No- 26

tably, the Sommerfeld-Malyuzhinets (SM) method, the Kontorovich-Lebedev (KL) trans- 27

form method, and the Wiener-Hopf (WH) method are fundamental and complementary in 28

studying diffraction problems in presence of sharp discontinuities. These methods have 29

been extensively and effectively applied for studying wedge diffraction in isotropic regions, 30

see references [1–6] for SM, [7–10] for KL, [11–16] for WH and references therein. Moreover, 31

using synergy among the three methods (WH, SM, KL) the authors obtained a complete 32

network representation of angular region in presence of isotropic media [17], that helps to 33

build a systematic methodology of analysis. 34

The main advantage of the aforementioned techniques (SM,KL) is also one limitation, 35

i.e. the utilization of the spectral complex angular plane derived from the Sommerfeld 36

integral theory [18], which has been effectively used also in WH framework for Fredholm 37
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factorization [12–16,19] and with the definition of rotating waves in isotropic angular region 38

[20],[15,16]. The definition of this complex plane is intricately connected to the physics 39

of the problem, as it specifically requires spectral transformations associated with the 40

propagation constant. Consequently, this methodology is applicable to problems involving 41

one single propagation constant, such as isotropic media in electromagnetic fields, as well as 42

other specific problem configurations with decoupling properties in propagation modalities. 43

Different attempts were developed to extend the spectral analysis to diffraction problems in 44

more complex media as for example gyrotropic media and/or uniaxial media. For example, 45

we recall the analysis of scattering by perfect electrically conducting (PEC) half-plane 46

immersed in such anisotropic media, see [21–30]. However, to the best of our knowledge, 47

no spectral method has been developed for scattering problems by wedges in arbitrary 48

linear media (i.e. bianisotropic media [31–33]), characterized by multiple propagation 49

constants. One of the most important result obtained in presence of anisotropic media is the 50

exact solution obtained by Felsen in the case of the scattering by a PEC wedge immersed 51

in uniaxial medium illuminated by plane waves at normal incidence [23,24]. However 52

the method used for this problem is substantially that of the separation of variables after 53

transformations in physical domain and it does not present the powerful characteristics of 54

the spectral methods, such asymptotic evaluation of fields and physical interpretation of 55

field components in terms of structural and source spectral singularities. Other important 56

works examine the behavior of the field near the edge of a wedge immersed in complex 57

media [34] and the diffraction by wedge immersed in the special case of an isotropic chiral 58

medium with SM method [35]. 59

Given our experience in the spectral analysis of complex electromagnetic scattering 60

problems in isotropic media [15,16,36–38], and with the help of the theory proposed in 61

[39,40] for the analysis of structures embedded in layered media, in this work we develop 62

a new theory in spectral domain with proper mathematical tools that allows to represent 63

scattering problems immersed in arbitrary linear media of angular shape. In particular 64

these new formulations are in spectral domain (Laplace domain) without introducing 65

angular complex planes thus not limited to one-propagation-constant problems. In [41], we 66

have developed the general theory in abstract form to model angular regions filled by 67

arbitrary linear media and we have reported its implementation for isotropic media. 68

With the present work, we propose a complete theoretical package for solving diffrac- 69

tion problems by impenetrable wedges immersed in an arbitrary linear medium, extendable 70

to multiple penetrable angular regions. The proposed method exploits the combination 71

and the extension of powerful mathematical tools developed in different contexts. The first 72

tool is the Bresler-Marcuvitz (BM) Transverse Equation Theory for layered media [40,42], 73

the second is the characteristic Green’s function procedure [43,44], the third one is the 74

Wiener-Hopf Technique [40,45] in its generalized form [15,16] and the fourth one (which 75

is a completely novel contribution) is the direct application of Fredholm factorization to 76

Generalized Wiener-Hopf equations (GWHEs). 77

The method starts with an extension of transverse equation theory for layered arbitrary 78

linear media to stratification of angular shape with the help of BM abstract notation. We 79

then apply characteristic Green’s function procedure to get solution of equation in angular 80

shaped geometries. The solutions defined at the faces of the angular region are spectral 81

functional equations that relates continuous (tangential) field components of the two faces 82

delimiting an homogeneous angular region. The application of boundary conditions yields 83

system of Generalized Wiener-Hopf equations (GWHEs) where generalized means that the 84

definition of the field components of each face are defined into different complex planes 85

but related together. The GWHEs preserve the characteristic form of Classical Wiener-Hopf 86

equations (CWHEs) where the system of equations presents a kernel, plus and minus 87

unknowns; but the plus and minus unknowns are defined into different complex planes 88

(related together). The functional equations and GWHEs of angular regions can be suitably 89

interpreted with network formalism as commonly done in classical layered regions using 90

transmission line theory. This circuit/network modeling representation of angular regions 91
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allows to describe the technique with systematic steps avoiding redundancy. This capability 92

is particular useful when dealing with complex scattering problems where we break down 93

the complexity of the geometry into subdomains of canonical shape. These subdomains 94

are modelled via spectral functional equations or related integral representations that can 95

be interpreted through network approach (obtained once and for all) and are capable to 96

model the entire complex problem by composition of circuital relationships, see for instance 97

[36–38]. 98

In presence of isotropic medium (and further special cases of more general media), 99

a suitable mapping reduces the GWHEs to CWHEs amenable in some cases of exact 100

solutions, alternatively we can resort to the semi-analytical/approximate general-purpose 101

factorization method: the Fredholm Factorization. This technique has been presented in 102

[19] for CWHEs and it has been effectively applied in complex scattering isotropic problems 103

[15,16,36–38]. 104

The main constraint in the present work resides in the complexity of the media that 105

does not allow mappings between complex planes of GWHEs for their transformation 106

into CWHEs. Consequently, in particular when dealing with arbitrary linear media, we 107

propose to rely on a novel version of the versatile approximate method known as Fredholm 108

factorization. Here we apply for the first time the Fredholm factorization method directly 109

to GWHEs as a regularization tool. This regularized method can be derived also before 110

the imposition of boundary conditions, i.e directly on spectral functional equations thus 111

before obtaining the GWHEs of the problem, by reversing the classical order of imposing 112

boundary conditions and then apply Fredholm regularization obtain same effectiveness in 113

the method. We call this new methodology Direct Fredholm Factorization. 114

We observe that the impossibility to map GWHEs to CWHEs in arbitrary linear media 115

is similar to the impossibility to define an unique angular complex plane for SM, KL, and 116

also WH methods, but the new WH methodology proposed in this paper overcomes this 117

obstacle resorting to direct Fredholm factorization applied to GWHEs. 118

From the solution of the GWHEs inherent to the angular region problem we obtain 119

the spectral representation of field components along the faces delimiting homogeneous 120

angular regions. The complete spectral analysis of the diffraction problems is then obtained 121

resorting again to spectral functional equation written for an arbitrary azimuthal direction. 122

Finally, spectral inversion yields field components in physical domain for any point in 123

the angular regions. An alternative method to get the field is also proposed and it is 124

based on the use of superposition (because of linearity) on spectral representations before 125

spectral inversion, identifying spectral contributions of the faces of the angular regions 126

using equivalence theorem. 127

All the theoretical properties of the mathematical statements are fully described in 128

the text, although sometimes complete rigorous mathematical proofs are limited. On 129

the other hand, validation-through-examples of the proposed novel theoretical package 130

is reported, starting from demonstrating effectiveness of direct Fredholm factorization 131

applied to GWHEs in the scattering from a PEC wedge immersed in an isotropic medium 132

and, ending with validation of functional equations of angular regions in arbitrary linear 133

media with the analysis of a PEC half-plane immersed in particular anisotropic media. 134

While implementing the method, we observe that the main difficulty resides in the 135

correct estimation of kernel functions in the GWHEs and the corresponding FIE formu- 136

lations for the presence of multivalued functions that need particular attention in their 137

definition and calculation. The following Sections highlight all multivalued functions and 138

their correct estimation and assumption. 139

In summary, we highlight in brief the main novelties of this work with respect to the 140

state of the art reported in the Introduction: 141

• the development of a first spectral method capable to handle scattering in arbitrary 142

linear media with multiple propagation constants, 143

• the introduction of a novel solution procedure of GWHEs in particular with multiple 144

propagation constants: the Direct Fredholm Factorization, 145
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• the description in terms of the network interpretation of spectral functional equations 146

and related integral representations for angular regions filled by arbitrary linear media, 147

• the computation of the field at each point within the angular region resorting to the 148

equivalence theorem and using Kirchhoff representations in the spectral domain, 149

• the improvement of quality of approximate spectral solutions re-imposing GWHEs 150

(named iteration). 151

It is important to highlight that the applicability of the proposed WH technique to arbitrary 152

linear media resides on its formulation directly in the Laplace domain avoiding other com- 153

plex planes, while techniques, such as SM, use complex angular plane based on Sommerfeld 154

representations that are applicable only to isotropic media or special cases of anisotropic 155

media. Moreover, although also SM uses Fredholm integral equations in complex angular 156

plane for approximate solutions [2,6] but limited to isotropic media, again the proposed 157

WH method is extended to arbitrary linear media with Direct Fredholm Factorization 158

because directly formulated in Laplace domain. Furthermore, another important result is 159

that, while Sommerfeld-Malyuzhinets solutions combined to asymptotic methods require 160

analytical extension of the spectral solutions in the improper sheet to compute far field, the 161

proposed application of equivalence theorem in the context of the proposed method can be 162

directly applied to approximate WH spectral solutions in Laplace domain. This result is 163

due to the fact that the direct solution of the GWHE equations provide also the complete 164

spectra of the field on the two faces of an angular region useful for asymptotic estimations. 165

This article is organized into seven Sections and one Appendix. In Section 1, we 166

introduce the motivation and the scope of the present work and report on the state of the 167

art related to the spectral analysis of diffraction in complex media. Section 2 presents the 168

main mathematical steps to get spectral functional equations in angular region filled by an 169

arbitrary linear media and with arbitrary boundary conditions starting from BM abstract 170

notation for transverse equation in layered planar regions and by extending this theory 171

to layered angular regions filled by arbitrary linear media. Section 3 develops the theory 172

starting from spectral functional equation to get regularize integral representations for 173

angular regions in arbitrary linear media with direct application of Fredholm factorization 174

method. If boundary conditions are applied the representations are GWHEs. Section 4 175

presents the route to get asymptotic estimation of far field inside the angular region once 176

the face spectra on the two limiting faces is obtained. To demonstrate the efficacy of the 177

proposed methodology, in particular the direct Fredholm factorization, Section 5 reports 178

validation in the simple case of a PEC wedge immersed in an isotropic medium. To further 179

validate the method in arbitrary linear media, Section 6 presents an example of application 180

of functional equations in arbitrary linear media: PEC half-plane immersed in a gyrotropic 181

medium, then we have conclusions. Section 7 contains conclusions and the Appendix 182

reports the full explicit formulas and equations when abstract notation is used in the main 183

text with the dual purpose of enhancing readability and ensuring completeness. 184

2. Spectral Functional Equations in Angular Region Filled by Arbitrary Linear Media 185

Spectral functional equations in angular regions filled by arbitrary linear media are 186

obtained by exploiting the combination and the extension of powerful mathematical tools 187

developed in different contexts: the Bresler-Marcuvitz (BM) Transverse Equation Theory 188

for layered media [40,42] and the characteristic Green’s function procedure [43,44]. In this 189

section, following [41], we first briefly revisit the BM theory for layered planar arbitrary 190

linear media as a fundamental step to analyze layered angular regions. We then apply 191

the characteristic Green’s function procedure to get solutions of the obtained system of 192

differential equations. Finally, we provide the spectral functional equations by evaluating 193

the solution at the faces of the angular region. In particular the functional equations relates 194

continuous (tangential) spectral field components defined at the two faces of the angular 195

region. 196
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We start from the application of BM theory to Maxwell’s equations in layered arbi- 197

trary non-dispersive homogeneous linear media with tensorial constitutive relations (i.e. 198

bianisotropic media [31–33]) 199

D = ε · E + ξ · H
B = ζ · E + µ · H (1)

where the electric and magnetic fields (E, H) are related to the electric and magnetic fluxes 200

(D, B) and, the tensors (ε, µ, ξ, ζ) are respectively the electric permittivity, the magnetic 201

permeability, the two magneto-electric coupling parameters. 202

By assuming 203

a) Cartesian coordinates (z, x, y) 204

b) e+jωt time harmonic field dependence 205

c) invariant geometry along z and stratification along y 206

d) sources constituted of plane waves having z−dependence e−jαoz where αo depends 207

on skewness angle with respect to z (αo = 0 at normal incidence on z) 208

we obtain the transverse differential equations in matrix form for layered planar media 209

− ∂

∂y
ψy(x, y) = My(−jαo,

∂

∂x
) · ψy(x, y) (2)

where the four dimension column vector1
210

ψy = |Et
t, Ht

t |t, with Et = |Ez, Ex|t, Ht = |Hz, Hx|t (3)

Based on the nature of Maxwell’s equations, My(−jαo, ∂
∂x ) is a second order four dimension 211

matrix differential operator of the form: 212

My(−jαo,
∂

∂x
) = Myo + My1

∂

∂x
+ My2

∂2

∂x2 (4)

where the explicit forms of the matrices Myo, My1, My2 for an arbitrarily linear media (1) 213

are reported in the Appendix A at (A2)-(A9). The application of Fourier transform along x 214

reduces (2) to 215

− d
dy

ψy(η, y) = My(−jαo,−jη) · ψy(η, y) (5)

where ψy(x, y) .
= 1

2π

∞∫
−∞

ψy(η, y)e−jηxdη and 216

My(−jαo,−jη) = Myo − jηMy1 − η2My2 (6)

We introduce here the analysis of the operator My(−jαo,−jη) of the layered planar arbi- 217

trarily linear media necessary to get the solution of (2) in terms of eigenvalues, eigenvectors 218

with the characteristic Green’s function procedure and boundary conditions. The same 219

study is needed to obtain solution for layered angular arbitrarily linear media. Suppos- 220

ing for the general case (removing exceptions) that My is semi-simple, we compute its 221

eigenvalues λi and eigenvectors ui 222

Myui = λiui (7)

i.e. 223

My = Uy JyU−1
y (8)

1 Throughout the paper we assume notation | | for vectors not for modulus of a vector
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where Jy = diag{λ1, λ2, λ3, λ4} and Uy = (u1, u2, u3, u4) (dependence on η and αo is 224

omitted). The computation of eigenvalues is obtained from the zeros of characteristic 225

equation of order four (9) whose coefficients can be written using Bocher’s formula [46]: 226

det[My − λi I] = λ4
i + aλ3

i + bλ2
i + cλi + d = 0 (9)

227

a = −tr(My), b = −
a tr(My) + tr(M2

y)

2
, c = −

b tr(My) + a tr(M2
y) + tr(M3

y)

3
, d = det[My](10)

It yields the four eigenvalues: 228

λ1 = − a
4
+

√
T +

√
Ma + Q

2
, λ2 = − a

4
+

√
T −

√
Ma + Q

2
, (11)

λ3 = − a
4
−

√
T +

√
Ma − Q

2
, λ4 = − a

4
−

√
T −

√
Ma − Q

2
(12)

where 229

T =
a2

4
+

−3ac + b2 + 12d
3 3
√

u
+

3
√

u − 2b
3

, Q = − a3 − 4ab + 8c
4
√

T
, Ma =

3a2

4
− 2b − T (13)

with 230

u =

√
s + v
2

, v = 9
(

3a2d − abc − 8bd + 3c2
)
+ 2b3, s = v2 − 4

(
−3ac + b2 + 12d

)3
. (14)

We note that the column vectors ui=1,2,3,4 of Uy provide a basis in the space C4 where we 231

define the transverse electromagnetic field ψy, while the column vectors vi=1,2,3,4 of 232

Vy = U−1
y (15)

in the reciprocal space will be fundamental to obtain functional equations through the 233

characteristic Green’s function procedure. Each couple (ui, vi) is related to a single λi 234

whose explicit forms are in general the cumbersome expressions reported in (11),(12) and 235

depend on η. In the most simple case, i.e. the isotropic medium (ε = εI, µ = µI, ξ = ζ = 0), 236

λi assume the forms 237

λ1 = λ2 = −λ3 = −λ4 =
√
(α2

o + η2)− k2 = j
√
(k2 − α2

o)− η2 = jξiso, k = ω
√

εµ (16)

where in presence of losses (k = kr − jki; kr, ki > 0) we have Re[λ1,2] > 0 and Re[λ3,4] < 0, 238

i.e. respectively related to progressive (i = 1, 2) and regressive (i = 3, 4) waves with 239

respect to y of the form e−jηxe−λiye−jαoz. In this framework we associate the direction of 240

propagation to attenuation phenomena, while we let free of constraint the phase variation 241

to model also left-handed materials. In a general arbitrary (even small) lossy linear medium 242

we have always two eigenvalues, say i = 1, 2, with positive real part λi = +jξi representing 243

progressive waves and two, say i = 3, 4, with negative real part λi = −jξi representing 244

regressive waves, yielding all four y longitudinal propagation constants with Im[ξi] < 02
245

(progressive/regressive e∓jξiy). 246

We affirm here the importance of keeping the generality of the medium, since, while 247

investigating scattering of objects immersed in arbitrary linear media, the scatterer can 248

be arbitrary oriented with respect to the principal axis of the (crystal) medium. However, 249

when the problem allows the definition of a coordinate system which coincides with the 250

principal axes of the crystal medium, we get tensorial constitutive relations with diagonal 251

tensors (1). These media are called biaxial, uniaxial, isotropic while the three terms in 252

2 Assuming time-harmonic dependence e+jωt we have a x,y,z progressive waves e−jηxe−jξiye−jαo z respectively
with Im[η, ξi , αo ] < 0
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the diagonal are respectively all different, one different, all equal. Other special cases 253

are gyrotropic media that represents medium where the tensorial constitutive relations 254

with respect to the coordinate system are hermitian of the following type (in (17) we limit 255

description to the permittivity, i.e. gyroelectric medium) 256

ε =

 ε +jεg 0
−jεg ε 0

0 0 εa

 (17)

Figure 1. Angular regions and oblique Cartesian coordinates. (a) The figure reports the z, x, y
Cartesian coordinates and the oblique Cartesian coordinate system z, u ≡ x, v with reference to the
angular region 1 of aperture γ (0 < φ < γ) with 0 < γ < π and delimited by faces a and o. In the
figure, a second region is identified (−π + γ < φ < 0) delimited by faces b and o. The figure reports
also the local-to-face Cartesian coordinate systems Z1 ≡ z, X1, Y1 and Z2 ≡ z, X2, Y2 respectively for
face a of region 1 and face b of region 2. The local-to-face Cartesian coordinate systems are obtained
from z, x, y Cartesian coordinate system by rotation, respectively for a positive γ and a negative π − γ.
(b) The figure shows the new framework of the space divided into two angular regions useful for
the study of wedge structures. The figure reports both the z, x, y Cartesian coordinates the oblique
Cartesian coordinate system z, u ≡ x, v where γ is the aperture angle of region 2. The figure reports
also the local-to-face-b Cartesian coordinate system of region 2 Z2′ ≡ z, X2′ , Y2′ that is obtained from
z, x, y Cartesian coordinate system by rotation of an angle −γ. Finally in both figures we use also
cylindrical coordinates (z, ρ, φ).

Starting from planar layered regions, we extend the theory to angular shaped regions 257

of aperture γ as reported at Section 3 of [41] from isotropic to arbitrary linear media. With 258

reference to region 1 of Fig. 1.(a), we derive from (2) the oblique transverse equations (19) 259

using an oblique system of Cartesian axes (z, u ≡ x, v): 260

x = u + v cos γ, y = v sin γ (18)
261

− ∂

∂v
ψy(u, v) = Mγ(−jαo,

∂

∂u
) · ψy(u, v) (19)

The application of Fourier transform along u = x reduces (19) to 262

− d
dv

ψy(η, v) = Mγ(−jαo,−jη) · ψy(η, v) (20)

where ψy(u, v) .
= 1

2π

∞∫
−∞

ψy(η, v)e−jηudη and 263

Mγ(−jαo,−jη) = Mγo − jηMγ1 − η2Mγ2 (21)
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Mγo = Myo sin γ, Mγ1 = My1 sin γ − It cos γ, Mγ2 = My2 sin γ (22)

Based on the link between Mγ and My, we have that Mγ has same eigenvectors ui of My, 264

and the following relationship between the eigenvalues λγi(γ) and λi 265

λγi(γ) = jη cos γ + λi sin γ , i = 1..4 (23)

resulting into the following “oblique” v−longitudinal propagation constants 266

mi(γ) = −jλγi(γ) = +η cos γ + ξi sin γ , i = 1, 2 (24)

mi(γ) = +jλγi(γ) = −η cos γ + ξi sin γ , i = 3, 4 (25)

in agreement with the relationship between λi and ξi, and with correlated progressive 267

and regressive propagating interpretation along the longitudinal direction y and along 268

the oblique “longitudinal” direction v (progressive/regressive e∓jmiv). We note that the 269

quantities Mγ(−jαo,−jη), λγi(γ) and mi(γ) depend on the geometrical parameter γ and 270

on the spectral variable η. 271

With reference to region 1 of Fig. 1.(a) we obtain the functional equations with circuital 272

interpretation as mathematical manipulation of the solution of the differential equation (19) 273

using Laplace domain ψ̃y(η, v) .
=

∞∫
0

ejη uψy(u, v)du : 274

− d
dv

ψ̃y(η, v) = Mγ(−jαo,−jη) · ψ̃y(η, v) + ψsa(v), v > 0 (26)

275

ψsa(v) = −Mγ1 · ψy(0+, v) + jη Mγ2 · ψy(0+, v)− Mγ2 ·
∂

∂u
ψy(u, v)

∣∣∣∣
u=0+

(27)

The benefit of using Laplace transform is correlated to incorporation of boundary conditions 276

through initial conditions with the term ψsa(v). In (26)-(27) the condition u = 0+, v > 0 im- 277

poses boundary conditions on the fields along face a of Fig.1.(a). The solution is performed 278

by using the characteristic Green’s function procedure [41] in terms of homogeneous and 279

particular solutions yielding the representation 280

ψ̃y(η, v) =
4

∑
i=1

Cie−λγi(γ) vui −
2

∑
i=1

uivi ·
v∫

0

e−λγi(γ)(v− v′)ψsa(v′)dv′+
4

∑
i=3

uivi ·
∞∫

v

e−λγi(γ)(v− v′)ψsa(v′)dv′

(28)
Now, considering asymptotic behavior of exponential functions in v for v → +∞ of (28), 281

we need to have C3 = C4 = 0 and at the same times the first couple of integrals are null 282

(since Re[λ1,2] > 0, Re[λ3,4] < 0, respectively related to progressive and regressive waves). 283

For this reason setting v = 0 we get the spectral field representation along face o 284

ψ̃o+(η)
.
= ψ̃y(η, 0) = C1u1 + C2u2 +

4

∑
i=3

uivi ·
∞∫

0

e−λγi(γ)(v− v′)ψsa(v′)dv′ (29)

By weighting (29) with the reciprocal vectors v3, v4 of Mγ, we get the functional equations 285

vi · ψ̃o+(η) = vi · ψ̃sa+(−mi(γ)), i = 3, 4 (30)

where we have used the definition of Laplace transform 286

ψ̃sa+(−mi(γ))
.
=

∞∫
0

e−jmi(γ)vψsa(v)dv =

∞∫
0

e−jmi(γ)ρψsa(ρ)dρ (31)
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With reference to Fig.1.(a) and its caption, analyzing and expanding ψ̃sa+(−mi(γ)) in (30) 287

using Maxwell’s equations, we rephrase the functional equations for region 1 into 288

vi · ψ̃o+(η) = vi · T(γ) · ψ̃a+(−mi(γ), γ), i = 3, 4 (32)

where ψ̃o+(η) is the η Laplace transform of tangent-to-face-o field components (i.e. at 289

φ = 0) in Cartesian (z, x, y) and cylindrical coordinates (z, ρ, φ) (omitting z coordinate for 290

invariance) 291

ψ̃o+(η) =
∞∫
0
|Ez(x, 0), Ex(x, 0), Hz(x, 0), Hx(x, 0)|tejηxdx

=
∞∫
0
|Ez(ρ, 0), Eρ(ρ, 0), Hz(ρ, 0), Hρ(ρ, 0)|tejηρdρ

, (33)

ψ̃a+(−mi(γ), γ) is the −mi(γ) Laplace transform of tangent-to-face-a field components 292

(i.e. at φ = γ) in local-to-face-a Cartesian (z, X1, Y1) coordinates and global cylindrical 293

coordinates (z, ρ, φ) (located at φ = +γ) 294

ψ̃a+(−mi(γ), γ) =
∞∫
0
|Ez(X1, 0), EX1(X1, 0), Hz(X1, 0), HX1(X1, 0)|te−jmi(γ)X1 dx

=
∞∫
0
|Ez(ρ, γ), Eρ(ρ, γ), Hz(ρ, γ), Hρ(ρ, γ)|te−jmi(γ)ρdρ

(34)

and 295

T(γ) =



sin(γ)(αoξyy+ζxyξyyω−µxyωϵyy)

ω(µyyϵyy−ζyyξyy)
+ cos(γ) 0 sin(γ)(αoµyy+ζxyµyyω−ζyyµxyω)

ω(µyyϵyy−ζyyξyy)
0

sin(γ)(−ζzyξyyω+ηξyy+µzyωϵyy)

ω(µyyϵyy−ζyyξyy)
1 sin(γ)(ζyyµzyω−ζzyµyyω+ηµyy)

ω(µyyϵyy−ζyyξyy)
0

sin(γ)(−αoϵyy−ξyyωϵxy+ξxyωϵyy)

ω(µyyϵyy−ζyyξyy)
0 cos(γ)− sin(γ)(αoζyy−ζyyξxyω+µyyωϵxy)

ω(µyyϵyy−ζyyξyy)
0

sin(γ)(ξyyωϵzy−ϵyy(η+ξzyω))

ω(µyyϵyy−ζyyξyy)
0 sin(γ)(µyyωϵzy−ζyy(η+ξzyω))

ω(µyyϵyy−ζyyξyy)
1


(35)

Note that (32) are functional equations that relate the Laplace transforms of combinations 296

of field components on the boundaries of the angular region 1 of Fig.1.(a) , i.e. face o 297

u > 0, v = 0 (φ = 0) and face a u = 0, v > 0 (φ = γ). Furthermore, we observe that the 298

angle γ is essential in determining the impact of anisotropies through T(γ). 299

Repeating the same procedure for region 2 of Fig. 1.(a), we obtain the functional 300

equations as the solution of the differential equation (19) in Laplace domain using the left 301

Laplace transform ψ̃y(η, v) .
=

0∫
−∞

ejη uψy(u, v)du: 302

− d
dv

ψ̃y(η, v) = Mγ(−jαo,−jη) · ψ̃y(η, v) + ψsb(v), v < 0 (36)

where ψsb(v) has the same expression of ψsa(v) (27) but with different support v < 0 303

and it allows the incorporation of boundary conditions along face b (u = 0+, v < 0). The 304

application of characteristic Green’s function procedure yields for region 2 of Fig. 1.(a) the 305

expression (28), which is identical to the one of region 1 except for Ci and the source term 306

ψsb(v) that depend on local constitutive parameters and boundary conditions of region 2. 307

Now, considering asymptotic behavior of exponential function in v for v → −∞, we need 308

to have C1 = C2 = 0 and at the same times the second couple of integrals are null. For this 309

reason setting v = 0 we get 310

ψ̃o+(η)
.
= ψ̃y(η, 0) = C3u3 + C4u4 −

2

∑
i=1

uivi ·
∞∫

0

e−λi(γ)(v− v′)ψsb(v′)dv′ (37)
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By weighting (37) with the reciprocal vectors v1, v2 of Mγ we get the functional equations 311

vi · ψ̃o+(η) = −vi · ψ̃sb+(−mi(γ)), i = 1, 2 (38)

where we have used the definition of v left Laplace transform 312

ψ̃sb+(−mi(γ))
.
=

0∫
−∞

e−jmi(γ)vψsb(v)dv =

∞∫
0

e−jmi(γ)ρψsb(−ρ)dρ (39)

Note the differences and similarities between Laplace transformations (31) and (39) that 313

yields same definition of −mi(γ) Laplace transform in ρ but applied to different quantities. 314

Furthermore, the regularity properties of −mi(γ) Laplace transform are inherited from ξi 315

(Im[ξi] < 0) according to (24)-(25). 316

With reference to Fig.1.(a) and its caption, analyzing and expanding ψ̃sb+(−mi(γ)) in 317

(38), we rephrase the functional equations into 318

vi · ψ̃o+(η) = −vi · T(γ) · P · ψ̃b+(−mi(γ),−π + γ), i = 1, 2 (40)

In (40), T(γ) is the one reported at (35) for region 1, P = diag{1,−1, 1,−1} is needed for 319

v = −X2 in region 2 with respect to v = X1 in region 1 , ψ̃o+(η) is the η Laplace transform 320

of tangent-to-face-o field components reported in (33) and ψ̃b+(−mi(γ),−π + γ) is the 321

−mi(γ) Laplace transform of tangent-to-face-b field components (i.e. at φ = −π + γ) in 322

local-to-face-b Cartesian (z, X2, Y2) coordinates and global cylindrical coordinates (z, ρ, φ) 323

of Fig. 1.(a) 324

ψ̃b+(−mi(γ),−π + γ) =
∞∫
0
|Ez(X2, 0), EX2(X2, 0), Hz(X2, 0), HX2(X2, 0)|te−jmi(γ)X2 dx

=
∞∫
0
|Ez(ρ,−π + γ), Eρ(ρ,−π + γ), Hz(ρ,−π + γ), Hρ(ρ,−π + γ)|te−jmi(γ)ρdρ

(41)

While considering wedge scattering problem with symmetry with respect to x axis, 325

in combination with region 1 of Fig.1.(a), we need to consider region 2’ of Fig.1.(b) where 326

γ → π − γ with respect to region 2 of Fig.1.(a), i.e. for the same face a at φ = γ we change 327

orientation of face b from φ = −π + γ to φ = −γ. The functional equations of region 2’ 328

becomes 329

vi · ψ̃o+(η) = −vi · T(π − γ) · P · ψ̃b+(−mi(π − γ),−γ), i = 1, 2 (42)

where 330

ψ̃b+(−mi(π − γ),−γ) =
∞∫
0
|Ez(X2, 0), EX2(X2, 0), Hz(X2, 0), HX2(X2, 0)|te−jmi(π−γ)X2 dx

=
∞∫
0
|Ez(ρ,−γ), Eρ(ρ,−γ), Hz(ρ,−γ), Hρ(ρ,−γ)|te−jmi(π−γ)ρdρ

(43)
which is the −mi(π − γ) Laplace transform of tangent-to-face-b field components (i.e. now 331

at φ = −γ) in local-to-face-b Cartesian (z, X2, Y2) coordinates and global cylindrical coordi- 332

nates (z, ρ, φ) of Fig. 1.(b). Note that in (42) we have assumed: region 2’ is homogeneous 333

to region 1 yielding same ui, vi otherwise specific vectors would be needed. Eqs. (42) are 334

functional equations that relate the Laplace transforms of combinations of field components 335

on the boundaries of the angular region 2’ of Fig.1.(b) , i.e. face o u > 0, v = 0 (φ = 0) 336

and face b u = 0, v < 0 (φ = −γ). In (42), note the new dependence of T(·) (35) on π − γ, 337

due to the effect of anisotropies while changing orientation of face b from −π + γ to −γ. 338

Furthermore, in case of symmetric media (λ1,2 = −λ3,4) we have m3,4(γ) = m1,2(π − γ), 339

see (24)-(25). 340
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In general, the system of functional equations (32), (42) allow the analysis of angular 341

regions symmetric with respect to x axis that are at the base of the analysis of scattering 342

problems constituted by impenetrable and penetrable wedges surrounded/made by arbi- 343

trary linear media. In the following, to investigate practical scattering problem, we impose 344

boundary conditions at the faces of each angular region to the functional equations (32), 345

(42), yielding a system of GWHEs. 346

3. From Functional Equations to GWHEs and their Regularized Integral Representations 347

with Network Interpretation 348

Network representations of angular regions in isotropic media for electromagnetic 349

scattering have been extensively studied in multiple spectral domains in [17] using algebraic 350

and integral formalism. The proposed equations are effectively applied in several works 351

to practical wedge scattering problems, see [15,16] and references therein. Furthermore 352

network formalism has been effectively applied for complex canonical problems containing 353

angular and layers regions in isotropic media, see for instance double wedge [37], flanged 354

dielectric loaded waveguide [38], wedge over dielectric layer [36]. 355

In arbitrary linear media, the system of functional equations (32), (42) 356

vi · ψ̃o+(η) = vi · T(γ) · ψ̃a+(−mi(γ), γ), i = 3, 4
vi · ψ̃o+(η) = −vi · T(π − γ) · P · ψ̃b+(−mi(π − γ),−γ), i = 1, 2

(44)

constitutes two system of network relations that links respectively spectral field components 357

in region 1 and region 2’ (Fig.1) via a sort of two port transmission relations in algebraic 358

form. Looking at the first system in (44), we have two combinations of ψ̃o+(η) components 359

(33) related to two combinations of ψ̃a+(−mi(γ), γ) components (34), i.e., with reference 360

to Fig. 1.(a), tangential field components of face o related to tangential field components 361

of face a. A similar interpretation can be repeated for the second system in (44) about 362

region 2 with field components defined at face o and b, respectively in ψ̃o+(η) (33) and 363

ψ̃b+(−mi(π − γ),−γ) (43). 364

We further note that in equations (44) the components of the face o and the face a, b 365

are respectively functions of the spectral variables η and −mi(·) that are related together 366

via (24)-(25). We can reverse the role of the variables η and −mi(·) in the arguments of 367

the components of these faces. By this way we double the equations of the region 1, first 368

line of (44) reported also in (45), with the equations of the second line (45) that relate the 369

components of the face a (functions of the variable η) with the components of the face o 370

(functions of −mi(·)). The second line of (45) is obtained defining region 1 as region 2’ 371

(Fig. 1) after a clockwise rotation of an angle +γ, yielding the following complete set of 372

equations for region 1: 373

vi · ψ̃o+(η) = vi · T(γ) · ψ̃a+(−mi(γ), γ), i = 3, 4
viY1 · ψ̃a+(η) = −viY1 · TY1(π − γ) · P · ψ̃o+(−miY1(π − γ),−γ), i = 1, 2

(45)

In the second couple of the equations (45) we have used subscript Y1 to make reference to a 374

rotated coordinated system (z, X1, Y1) with respect to (z, x, y), see region 1 in Fig. 2.(a) and 375

related region 2’ in Fig. 2.(b). We note that the second couple of the equations in (45) are 376

easily derived from studying a classical region 2’, see the second couple of the equations 377

in (44), but with modified definitions of the quantities viY1 ,TY1(γ), miY1(γ) (from λiY1(γ)) 378

because of their dependence on constitutive tensorial parameters (ε, µ, ξ, ζ) of region 1 379

redefined in (z, X1, Y1) reference coordinate system, i.e. (εY1
, µ

Y1
, ξ

Y1
, ζ

Y1
), see for example 380

εY1
= R−1

Y1
· ε · RY1

, RY1
=

 cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 (46)
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Figure 2. (a) Angular region 1 of aperture γ and delimited by faces a and o with original reference
Cartesian coordinate system z, x, y. The figure reports also the local-to-face-a Cartesian coordinate
systems Z1 ≡ z, X1, Y1. (b) Angular region 1 after a clockwise rotation of an angle γ becomes a region
2’. The figure shows the reference systems of region 1 after rotation. (c) Angular region 2 of aperture
γ and delimited by faces b and o with original reference Cartesian coordinate system z, x, y. The
figure reports also the local-to-face-b Cartesian coordinate systems Z2 ≡ z, X2, Y2. (d) Angular region
2 after a clockwise rotation of an angle γ becomes a region 1’. The figure shows the reference systems
of region 2 after rotation.

due to a rotation of +γ. 381

The same rationale is applied to region 2 to double the equations of that region (second 382

line of (44), reported also in (47)) by obtaining: 383

viY2 · ψ̃b+(η) = viY2 · TY2(γ) · ψ̃o+(−miY2(γ), γ), i = 3, 4
vi · ψ̃o+(η) = −vi · T(π − γ) · P · ψ̃b+(−mi(π − γ),−γ), i = 1, 2

(47)

In the first couple of the equations (47) we have used subscript Y2 to make reference to a 384

rotated coordinated system (z, X2, Y2) with respect to (z, x, y), see region 2 Fig. 2.(c) and 385

related region 1’ in Fig. 2.(d). We note that the first couple of the equations in (47) are 386

easily derived from studying a classical region 1, see the first couple of the equations in 387

(44), but with modified definitions of viY2 ,TY2(γ), miY2(γ) because of their dependence on 388

constitutive parameters (ε, µ, ξ, ζ) redefined in (z, X2, Y2) reference coordinate system, i.e. 389

(εY2
, µ

Y2
, ξ

Y2
, ζ

Y2
), see for example 390

εY2
= R−1

Y2
· ε · RY2

, RY2
=

 cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1

 (48)
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due to a rotation of −γ. 391

The sets of equations (45) and (47) constitute a complete set of functional equations 392

that describe respectively region 1 and 2 of Fig. 3 where in case of symmetric media (i.e. 393

λ1,2 = −λ3,4) we have m3,4(γ) = m1,2(π − γ), see (24)-(25).

Figure 3. Two angular regions symmetric with respect to x axis of aperture angle γ that represent
wedge problems immersed in arbitrary linear media, modeled by the complete sets of equations (45)
and (47).

394

In isotropic media, it is always possible to introduce the angular complex plane w and 395

the KL transform method [17] where functional equations become two port admittance 396

relations of Norton type respectively in integral and algebraic form using a unique complex 397

plane. In arbitrary linear media, the definition of such complex planes is not possible, 398

however a novel method the resorts to the following Cauchy decomposition formula in 399

−m(η) plane is introduced. This is a fundamental tool that allows description of angular 400

region problems in arbitrary linear media without introducing further complex planes 401

except the initial Laplace transforms. In particular to get regularized integral equations from 402

GWHEs, it is not necessary to map the GWHEs into CWHEs with suitable transformations 403

before the application of Fredholm factorization (originally ideated and valid only for 404

the CWHE). This revisited novel version of regularization procedure can be called direct 405

Fredholm factorization method. 406

At the origin of this method we introduce the following generalized form of Cauchy 407

decomposition formula in −m(η) plane (i.e. one of mi(·) that all depends on η and now 408

we highlight the dependence on η for clarity) applied to an arbitrary F+(−m(η)) as a 409

generalization of standard Cauchy decomposition formula (i.e. the standard form is 410

obtained by replacing −m(η) simply with η): 411

F+(−m(η)) =
1

2π j

∞∫
−∞

F+(η′)

η′ + m(η)
dη′ + Fn.s.

+ (−m(η)), η ∈ R (49)

where Fn.s.
+ (−m(η)) is the non standard contribution of F+(−m(η)) in −m(η) plane. We 412

observe that, in general assuming lossy media, −m(η) is with positive imaginary part 413

for η ∈ R, i.e. located in the upper half-plane of complex plane η, thus the application 414

of (49) on plus functions is justified (see for example Fig. 4 where we have assumed 415

k = 1 − 0.1j,γ = 0.7π that yields a −m(t) for t ∈ R path from right to left because of 416

γ > π/2, on the contrary for γ < π/2 we get a similar path located in the upper half 417

plane but with opposite versus). We anticipate that the application of (49) to GWHEs 418

with multiple propagation constants, i.e. multiple mi(η), is fundamental for developing a 419

solution in η plane, as (49) transforms the GWHEs into integral equations in the unique 420

complex plane η. 421
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The complete sets of equations (45) for region 1 can be represented in the form 422

AE
11(η)Eoz(η) + AE

12(η)Eoρ(η) + A11(η)Hoz(η) + A12(η)Hoρ(η) = BE
11(η)Eaz(−m3) + BE

12(η)Eaρ(−m3) + B11(η)Haz(−m3) + B12(η)Haρ(−m3)

AE
21(η)Eoz(η) + AE

22(η)Eoρ(η) + A21(η)Hoz(η) + A22(η)Hoρ(η) = BE
21(η)Eaz(−m4) + BE

22(η)Eaρ(−m4) + B21(η)Haz(−m4) + B22(η)Haρ(−m4)

AE
31(η)Eaz(η) + AE

32(η)Eaρ(η) + A31(η)Haz(η) + A32(η)Haρ(η) = BE
31(η)Eoz(−m1) + BE

32(η)Eoρ(−m1) + B31(η)Hoz(−m1) + B32(η)Hoρ(−m1)

AE
41(η)Eaz(η) + AE

42(η)Eaρ(η) + A41(η)Haz(η) + A42(η)Haρ(η) = BE
41(η)Eoz(−m2) + BE

42(η)Eoρ(−m2) + B41(η)Hoz(−m2) + B42(η)Hoρ(−m2)
(50)

where face o and face a spectral field components are related together3.Moreover, the 423

complete set of equations for region 2 (47) has a similar representation. The imposition of 424

boundary conditions make these equations a well posed mathematical problem resulting 425

in a GWHE system. In particular if the region is surrounded by something modeled by 426

impenetrable impedance boundary conditions we establish relations among field compo- 427

nents on the boundary faces. On the contrary, if the region is surrounded by penetrable 428

regions, we establish continuity through tangent components to neighboring regions that 429

provide further functional equations (coupled together). In any case the type of completed 430

functional equations and constraints with boundary conditions remain always of the same 431

form and are a well posed mathematical problem of GWHE type. 432

As a simple example to illustrate the procedure, let us consider a problem constituted 433

by only region 1 with PEC boundary conditions filled by arbitrary linear media. In this 434

case we get 435

A11(η)Hoz(η) + A12(η)Hoρ(η) = B11(η)Haz(−m3) + B12(η)Haρ(−m3)

A21(η)Hoz(η) + A22(η)Hoρ(η) = B21(η)Haz(−m4) + B22(η)Haρ(−m4)

A31(η)Haz(η) + A32(η)Haρ(η) = B31(η)Hoz(−m1) + B32(η)Hoρ(−m1)

A41(η)Haz(η) + A42(η)Haρ(η) = B41(η)Hoz(−m2) + B42(η)Hoρ(−m2)

(51)

where in the LHS we have plus field unknowns in η and in the RHS we have minus 436

field unknowns in mi(). The apparent redundancy in (51) after imposition of boundary 437

condition is exploited to get integral representations only in terms of the field components 438

Hoz(η), Hoρ(η), Haz(η), Haρ(η) in the unique complex plane η using (49). Furthermore the 439

application of the novel version of Fredholm factorization method allows to get regularized 440

integral equations. We assert that this procedure is applicable in general to GWHEs, not 441

only for the specific problem represented in this simple example. The application of (49) to 442

RHS of (51) yields 443

A11(η)Hoz(η) + A12(η)Hoρ(η) =
B11(η)

2π j

∞∫
−∞

Haz(η′)
η′+m3

dη′ + B12(η)
2π j

∞∫
−∞

Haρ(η′)
η′+m3

dη′ + Hn.s
az (−m3) + Hn.s

aρ (−m3)

A21(η)Hoz(η) + A22(η)Hoρ(η) =
B21(η)

2π j

∞∫
−∞

Haz(η′)
η′+m4

dη′ + B22(η)
2π j

∞∫
−∞

Haρ(η′)
η′+m4

dη′ + Hn.s
az (−m4) + Hn.s

aρ (−m4)

A31(η)Haz(η) + A32(η)Haρ(η) =
B31(η)

2π j

∞∫
−∞

Hoz(η′)
η′+m1

dη′ + B32(η)
2π j

∞∫
−∞

Hoρ(η′)
η′+m1

dη′ + Hn.s
oz (−m1) + Hn.s

oρ (−m1)

A41(η)Haz(η) + A42(η)Haρ(η) =
B41(η)

2π j

∞∫
−∞

Haz(η′)
η′+m2

dη′ + B42(η)
2π j

∞∫
−∞

Haρ(η′)
η′+m2

dη′ + Hn.s
oz (−m2) + Hn.s

oρ (−m2)

(52)
recalling that all occurrences of mi are functions of η, i.e. mi(η). Integral equations (52) 444

are of singular type, for this reason we resort to Fredholm factorization method to get 445

regularized expressions. The procedure consists on γ1t Cauchy smile contour integration 446

[19],[15] on both side of each equation and consequent mathematical elaboration. Focusing 447

3 Throughout the paper we assume in spectral equations the notation with two subscripts for the spectral field:
the first subscript is related to the considered face (o, a, b) and the second to the field component (z, x, y).
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the attention on the LHS for each term of each equation (52) we have, using dummy 448

subscripts, the regularized expression 449

1
2π j

∫
γ1t

A(t)H+(t)
t−η dt = 1

2π j
∫

γ1t

(A(t)−A(η))H+(t)
t−η dt + A(η)

2π j
∫

γ1t

H+(t)
t−η dt

= 1
2π j

∞∫
−∞

(A(t)−A(η))H+(t)
t−η dt + A(η)H+(η)− A(η)Hn.s

+ (η)
(53)

Focusing the attention on the RHS for each term of each equation (52) we have, using 450

dummy subscripts and going back also to representation (51), the regularized expression 451

1
2π j

∫
γ1t

B(t)H+(−m(t))
t−η dt = 1

2π j
∫

γ1t

(B(t)−B(η))H+(−m(t))
t−η dt + B(η)

2π j
∫

γ1t

H+(−m(t))
t−η dt

= 1
(2π j)2

∞∫
−∞

∞∫
−∞

(B(t)−B(η))H+(η′)
(t−η)(η′+m(t)) dt dη′ + B(η)

(2π j)2

∞∫
−∞

∫
γ1t

1
(t−η)(η′+m(t))dtH+(η′)dη′ + n.s. terms

(54)
Given the expressions of mi(η) (24)-(25) with Im[mi(t)] < 0 in lossy media (Fig. 4.), (54) 452

requires the computation of 453

Me(η, η′) =
∫

γ1t

1
(t − η)(η′ + m(t))

dt (55)

that can be performed either numerically or analytically paying attention to the branch cuts 454

of m(t). Furthermore in (54) we also need to consider n.s. singularities related to the field. 455

The validity of the estimation of Me(η, η′) extends to complex values of η′ as long as 456

η′ does not cross the singularity line determined by −m(t) for t ∈ R, as shown in Fig. 4. 457
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Figure 4. Cauchy smile contour integration line γ1t and example of −m(t) line for t ∈ R, k =

1 − 0.1j,γ = 0.7π (If γ < π/2 the behavior of −m(t) is with similar direction but opposite versus. To
intuitively understand this property in isotropic medium, use m definition in w plane and apply the
formula for aperture angle that are supplementary.)

The expressions (53), (54) are regularized integral terms since their kernels are compact, 458

moreover, they respectively include n.s. terms of field components in η and −mi. The 459

detailed proof of this assertion is to be performed for specific problems. However, while 460

numerically implementing the method, we observe that one of the main difficulties resides 461

in the correct estimation of kernel functions A(η), B(η) for the presence of multivalued 462

functions that need particular attention in their definition and calculation. 463
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For simplicity and compactness of discussion we will examine the properties of in- 464

tegral equations in the simple case of a PEC wedge immersed in an isotropic medium 465

in following section 5.2. Eq. (51) yields a 4x4 system of Fredholm integral equations 466

of second kind by utilizing (52), (53), and (54). This system is expressed in terms of 467

Hoz(η), Hoρ(η), Haz(η), Haρ(η). It is important to highlight that the system only depends 468

on the spectral variable η, ensuring that functions do not rely on mi outside of the integra- 469

tion sign. This property is fundamental to avoid analysis of unknowns defined in different 470

complex planes (η and multiple mi) that are correlated through cumbersome improper 471

sheet properties. 472

4. Asymptotic Estimation of Field in the Angular Region 473

Once the spectra at the faces of the angular region is obtained we can estimate the 474

asymptotic behaviour of far field inside the angular region. 475

Going back to the solution of (26) in Section 2 for region 1 reported at (28), we have 476

ψ̃y(η, v) =
2

∑
i=1

Cie−λγi(γ) vui +
4

∑
i=3

uivi ·
∞∫

v

e−λγi(γ)(v− v′)ψsa(v′)dv′, v > 0 (56)

From the homogeneous portion of solution in (56) we get the definitions of arbitrary 477

coefficient in terms of field components at v = 0 (face o): 478

vi · ψ̃y(η, 0) = Ci, i = 1, 2 (57)

The particular integrals in (56) are terms related to face a via ψsa(v). Due to linearity of 479

the problem we apply superposition principle and we can interpret (56) as the result of an 480

equivalent theorem where ψ̃y(η, v) is represented through equivalent sources at face o and 481

a. Similarly the spectral field in region 1 can be considered as result of the analysis of a 482

rotated region 2’, Fig. 2.(b) in Section 3, yielding 483

− d
dv

ψ̃Y1(η, v) = Mπ−γ(−jαo,−jη) · ψ̃Y1(η, v) + ψso(v), v < 0 (58)

where we note γ → π − γ that it will impact on all terms of the solution as already reported 484

in in Section 3: uiY1 , viY1 , λiY1 , miY1 and field components. The solution takes the form 485

ψ̃Y1(η, v) =
4

∑
i=3

Cie
−λγiY1

(π−γ) vuiY1 −
2

∑
i=1

uiY1 viY1 ·
∞∫

v

e−λγiY1
(π−γ)(v− v′)ψso(v′)dv′, v < 0

(59)
where now v = −x of Fig. 2.(b) different from v = X1 of Fig. 2.(a). From the homogeneous 486

portion of solution in (59) we get the definitions of arbitrary coefficient in terms of field 487

components at v = 0 (face a): 488

viY1 · ψ̃Y1(η, 0) = Ci, i = 3, 4 (60)

The particular integrals in (59) are terms related to face o via ψso(v). Due to linearity of the 489

problem we again apply superposition principle and we can interpret (59) as the result of 490

an equivalent theorem where ψ̃Y1(η, v) is represented through equivalent sources at face a 491

and o. 492

Using superposition principle and considering only homogeneous portions of (56) and 493

(59) we can represent the complete field without the particular integrals. Each contribution 494

originated from (56) and (59) is a spectral component that can be Fourier/Laplace inversely 495

transformed in the physical domain (u, v) and they represent respectively the fields from 496

equivalent currents distributed in half-planes (respectively face o and face a). The applica- 497

tion of asymptotic representation of fields for each component in a unique global system 498

of cylindrical coordinate provides the estimation of field in terms of classical GTD for the 499
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angular region 1 but as superposition of GTD for two half-planes (face o and face a), like 500

in Kirchhoff representations. This procedure will be detailed examined in the practical 501

examples reported in the following sections and it is a fundamental tool to estimate GTD 502

directly in Fourier/Laplace domain for angular region filled by arbitrarily linear media 503

where GTD in w plane is not available (as commonly done in isotropic angular region). 504

Indeed the computation of GTD for an angular region filled by arbitrarily linear media is 505

here proposed by resorting to the computation of GTD in two half-plane problems. 506

An alternative way to obtain far field is based on the computation of spectral field 507

for any azimuthal direction φ, by splitting the angular region into two subregions at any 508

observation angle φ (subregion A 0 < φ′ < φ and subregion B φ < φ′ < γ). Once obtained 509

face spectra at φ = 0, γ for the entire angular region as proposed in the previous sections, 510

we then relate the spectra at φ to the ones of the two faces by using the functional equations 511

of the two subregions. These φ-parametric spectral representations of field spectra allow 512

asymptotic evaluation of far field at any φ. We observe that the functional equations are 513

written in terms of continuous field components at the boundary faces of the angular region, 514

see section 4. This property can be interpreted as a novel and original form of electromagnetic 515

equivalence theorem in spectral domain in the context of angular region problems filled by an 516

arbitrary linear medium. 517

5. Validation of the Novel Regularization Procedure with a Simple Example: Direct 518

Fredholm Factorization applied to the PEC Wedge in Isotropic Region 519

In order to validate the procedure from a mathematical point of view, let us first 520

demonstrate efficacy for the simple case of a PEC angular region 1 (Fig. 2.(a),(b)) filled by 521

an isotropic medium where closed form WH solution is available. We have for region 1 522

from 523

m = mi(π − γ) = mi+2(γ) = −η cos γ + ξ sin γ , i = 1, 2; ξ =
√

k2 − α2
o − η2 (61)

524

u1 =

∣∣∣∣∣∣∣∣∣
τ2

o
ω ε ξ

− αoη
ω ε ξ

0
1

∣∣∣∣∣∣∣∣∣, u2 =

∣∣∣∣∣∣∣∣∣
αoη
ω ε ξ

− (ξ 2+α2
o)

ω ε ξ

1
0

∣∣∣∣∣∣∣∣∣, u3 =

∣∣∣∣∣∣∣∣∣
− τ2

o
ω ε ξ

αoη
ω ε ξ

0
1

∣∣∣∣∣∣∣∣∣, u4 =

∣∣∣∣∣∣∣∣∣
− αoη

ω ε ξ
(ξ 2+α2

o)
ω ε ξ

1
0

∣∣∣∣∣∣∣∣∣ (62)

525

v1 =
∣∣∣ ξ2+α2

o
2ω µ ξ

α0η
2ω µ ξ 0 1

2

∣∣∣, v2 =
∣∣∣ − α0η

2ω µ ξ − k2−α2
o

2ω µ ξ
1
2 0

∣∣∣
v3 =

∣∣∣− ξ2+α2
o

2ω µ ξ − α0η
2ω µ ξ 0 1

2

∣∣∣, v4 =
∣∣∣ α0η

2ω µ ξ
k2

o−α2
o

2ω µ ξ
1
2 0

∣∣∣ (63)

the following functional equations [41] (first two equations in (45)): 526

−αoηEoρ(η) + (η2 − k2)Eoz(η) + kξZo Hoρ(η)

= −αoηEaρ(−m)− [ηξ sin(γ) + cos(γ)(k2 − η2)]Eaz(−m)

+kξZo Haρ(−m)− sin(γ)αokZo Haz(−m)

(64)

(k2 − α2
o)Eoρ(η) + αoηEoz(η) + kξZo Hoz(η)

= (k2 − α2
o)Eaρ(−m) + αo[cos(γ)η − sin(γ)ξ]Eaz(−m)

+kZo[sin(γ)η + cos(γ)ξ]Haz(−m)

(65)

At normal incidence (αo = 0) we get 527

−ξEoz(η) + kZo Hoρ(η) = −[η sin(γ) + ξ cos(γ)]Eaz(−m) + kZo Haρ(−m) (66)
528

kEoρ(η) + ξZo Hoz(η) = kEaρ(−m) + Zo[η sin(γ) + ξ cos(γ)]Haz(−m) (67)



Version August 19, 2024 submitted to Journal Not Specified 18 of 36

where we notice decoupling of equations (66)-(67) respectively for Ez and Hz polarization. 529

The imposition of PEC boundary on functional equations (66)-(67) condition yields the 530

GWHEs 531

Hoρ(η) = Haρ(−m) (68)
532

ξHoz(η) = [η sin(γ) + ξ cos(γ)]Haz(−m) (69)

with plus/minus filed unknowns respectively in η, m. We notice that the regularity proper- 533

ties of the problem depends on the multi-valued function ξ =
√

k2 − η2 (due to physical 534

reason) [15] that defines proper and improper sheets of η plane. 535

5.1. Classical Solution of the GWHEs of the problem in Different Complex Planes 536

In order to illustrate and validate in the following subsection the new direct Fredholm 537

factorization procedure of Section 3, in this subsection we present the classical WH solution 538

of (68) and (69) obtained in closed form [15] with the help of: a specialized mapping, the 539

factorization and the decomposition with the extraction of source terms such as Geometrical 540

Optics (GO) fields for plane wave illumination. We also clarify in this subsection important 541

properties related to different complex planes (including angular complex plane w) where 542

the problem and the solutions are represented. 543

The specialized mapping is 544

η = −k cos
(

γ

π
arccos

(
− η̄

k

))
(70)

introduced for the first time in [11] and extensively used in isotropic wedge scattering 545

problems as reported in [15]-[16]. The mapping transforms plus unknowns in η plane and 546

minus unknowns in m plane (61) into respectively plus and minus unknowns in η̄ plane, 547

yielding Classical Wiener-Hopf Equations in the new complex plane η̄: 548

Hoρ+(η̄) = Haρ+(−η̄) (71)
549

ξHoz+(η̄) = [η sin(γ) + ξ cos(γ)]Haz+(−η̄) (72)

where ξ and η becomes functions of η̄ and 550

m = k cos
(

γ

π
arccos

(
− η̄

k

)
+ γ

)
(73)

From this point, the solution proceeds as for CWHEs thus with factorization, decomposition 551

and application fo Liouville’s Theorem, considering plane wave illumination at Ez and Hz 552

polarization respectively with incident waves: 553

Ei
z(ρ, φ) = Eoejk ρ cos(φ−φo), Hi

ρ(ρ, φ) = − 1
jωµρ

∂Ei
z(ρ, φ)

∂φ
=

k
ω µ

sin(φ− φo)ejkρ cos(φ−φo)Eo

(74) 554

Hi
z(ρ, φ) = Hoejk ρ cos(φ−φo), Ei

ρ(ρ, φ) =
1

jωερ

∂Hi
z(ρ, φ)

∂φ
= − k

ωε
sin(φ− φo)ejkρ cos(φ−φo)Ho

(75)
Due to PEC boundary conditions, we obtain the following GO source terms tangential 555

respectively to face a and o of angular region 1 556

HGO
x (ρ, 0) = −2

Eo

Zo
sin φoejkρ cos φo , HGO

ρ (ρ, γ) = 2
Eo

Zo
sin(γ − φo)ejkρ cos(γ−φo) (76)

557

HGO
z (ρ, 0) = 2Hoejk ρ cos(φo), HGO

z (ρ, γ) = 2Hoejk ρ cos(γ−φo) (77)
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that in spectral domain, according to Laplace transforms (33) and (34), become 558

HGO
oρ (η) =

−2jEo sin φo

Zo(η − ηo)
, HGO

aρ (−m) =
−2jEo sin(γ − φo)

Zo(m − mo)
(78)

559

HGO
oz (η) =

2jHo

η − ηo
, HGO

az (−m) =
−2jHo

m − mo
(79)

with ηo = −k cos φo, mo = k cos(γ − φo). In η̄ plane (70), the pole ηo is mapped into 560

η̄o = −k cos(−π
γ φo). In the following, we assume φo < γ/2 to locate η̄o in the upper 561

half-plane of complex plane η̄ yileding non-standard plus unknowns; generalization is 562

straightforward yielding an η̄o in the η̄-lower half-plane while γ/2 < φo < γ. 563

Focusing the attention on Ez polarization, due to the simplicity of equation (71), we 564

observe the absence of need of factorization, thus we perform decomposition to highlight 565

non-standard contribution in the plus unknown Hoρ+(η̄) constituted of HGO
oρ (η) = R/(η − 566

ηo) (78) to be mapped into η̄ plane (70) yielding HGO
oρ (η̄) = T/(η − ηo). We obtain: 567

Hoρ+(η̄)−
T

η̄ − η̄o
= Haρ+(−η̄)− T

η̄ − η̄o
(80)

with 568

T = R
dη̄

dη

∣∣∣∣
ηo

= −2j
π

γ

Eo

Zo
sin

π

γ
φo, R =

−2jEo sin φo

Zo
,

dη̄

dη

∣∣∣∣
ηo

=
π

γ

sin π
γ φo

sin φo
(81)

Due to regularity and asymptotic behavior of LHS and RHS of (80), applying Liouville’s 569

Theorem, (80) is equal to zero, thus we get simple closed form solutions: 570

Hoρ+(η̄) =
T

η̄ − η̄o
, Haρ+(η̄) = − T

η̄ + η̄o
(82)

Solutions (82) can be mapped into η plane using the inverse mapping of (70) 571

η̄ = −k cos
(

π

γ
arccos

(
−η

k

))
(83)

We recall that the regularity properties of the problem (68)-(69) in η plane depends on the 572

multi-valued function ξ =
√

k2 − η2 (due to physical reason) and now, after the application 573

of the mapping (70), on the multi-valued function κ =
√

k2 − η̄2 in η̄ plane through log 574

representation of arccos(−η̄/k), see section 3.4 of [15]. Contrary to (70), the transformation 575

(83) requires particular attention since it maps η̄ into η for 0 < γ < π without covering the 576

entire proper sheet of η plane defined by ξ function. For this reason, portion of η proper 577

sheet falls into improper sheet of η̄ plane and, since the closed form solution is obtained in 578

η̄ plane, this solution must be considered correct (not offending) only in the proper sheet of 579

η̄ also after applying the transformation (83). To easily control proper/improper sheets of 580

η and η̄ plane we can resort to their visualization in complex plane w (η = −k cos w, thus 581

η̄ = −k cos
(

π
γ w

)
and m = k cos(w + γ)). The w plane shows the proper sheets of both 582

planes (η, η̄) in a unique plane. In particular, for real w the proper segments originated from 583

η and η̄ (respectively related to ξ and κ) are −π < w < 0 and −γ < w < 0, see section 3.4 584

of [15]. This means that the closed form solution obtained in the proper sheet of η̄ is not 585

valid in the entire proper sheet of η plane but only in a portion due to the properties of (83). 586

Let us now consider the CWHE of Hz polarization (72): 587

G(η̄)Hoz+(η̄) = Haz+(−η̄), G(η̄) = ξ/n (84)
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with n = −η sin(γ)− ξ cos(γ) =
√

k2 − m2. According to [40], we have the factorization 588

G−(η̄) =
G(η̄)

G+(η̄)
, G+(η̄) =

ξ

ξ−n+
, ξ− =

√
k − η̄, n+ =

√
k + η̄ (85)

Confirming the same assumption φo < γ/2 for simplicity, η̄o is located in the η̄ upper 589

half-plane, yielding a non standard plus unknown Hoz+(η̄) constituted by the source non 590

standard component HGO
oz (η) = RH/(η − ηo) (79) that in η̄ plane becomes: 591

HGO
oz (η̄) =

TH
η̄ − η̄o

, TH = RH
dη̄

dη

∣∣∣∣
ηo

= 2jHo
π

γ

sin π
γ φo

sin φo
, RH = 2jHo (86)

Applying factorization and decomposition to (84) we get 592

G+(η̄)Hoz+(η̄)− G+(η̄o)HGO
oz (η̄) = G−1

− (η̄)Haz+(−η̄)− G+(η̄o)HGO
oz (η̄) (87)

Due to regularity and asymptotic behavior of LHS and RHS of (87), applying Liouville’s 593

Theorem, (87) is equal to zero, thus we get simple closed form solutions: 594

Hoz+(η̄) = G−1
+ (η̄)G+(η̄o)HGO

oz (η̄), Haz+(−η̄) = G−(η̄)G+(η̄o)HGO
oz (η̄) (88)

Again the closed form solutions (88) at Hz polarization obtained in the proper sheet of η̄ 595

plane can be mapped into η plane using the inverse mapping (83), but we need to consider 596

these solutions valid only for η values belonging to the proper sheet of η̄ plane. Moreover 597

this property can be ascertained by checking that (68)-(69) (provided the solutions in η̄) are 598

enforced only for η values belonging to the proper sheet of η̄ plane. 599

In order to obtain solutions valid in the entire proper sheet of η plane or beyond (i.e. 600

also in the improper sheet) we need to resort to analytical continuation technique that, in 601

case of unique propagation constant as in isotropic media problem, can be implemented via 602

representation of GWHEs (e.g (68)-(69)) into the w complex plane as difference equations, 603

see examples in [15]-[16]. Another option is to describe the problem with unique propa- 604

gation constant directly in w plane where the concept of proper and improper sheets of η 605

and η̄ planes are expanded periodically into w plane with an alternative vision of Riemann 606

sheets. In this case the closed form solutions corresponding to (88) are (89) are valid in the 607

entire w plane as opposed to approximate solutions obtained with line numerical integra- 608

tion located in a particular sheet in either η̄ or w plane. In this last case, which take origins 609

from classical implementation of Fredholm factorization [16], again we need to resort to 610

difference equations for analytical continuation. 611

Hoz+(w) =
2jHoπ csc w sin πw

γ

−kγ cos πw
γ + kγ cos πφo

γ

, Haz+(w) = −
2jHoπ csc w sin πw

γ

kγ cos πw
γ + kγ cos πφo

γ

(89)

5.2. Regularized Integral Equation Method for the Direct Solution of the GWHEs in Angular 612

Regions (Direct Fredholm Factorization) 613

Following the procedure of Section 3, that are simplified because of isotropic medium, 614

we duplicate the equations. For Ez polarization we have 615

Hoρ(η) = Haρ(−m)
Haρ(η) = Hoρ(−m)

(90)

while for Hz polarization we have 616

ξHoz(η) = [η sin(γ) + ξ cos(γ)]Haz(−m)
ξHaz(η) = [η sin(γ) + ξ cos(γ)]Hoz(−m)

(91)
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with m = m(η) defined in (61). Notice that, applying (70) to each of (90)-(91), the duplicated 617

equations assumes same CWHE forms, with just a replacement of η̄ with −η̄. 618

Both systems of equations can be considered a particular case of 619

G(η)F+(η) = H(η)X+(−m)
Ga(η)X+(η) = Ha(η)F+(−m)

(92)

that are suitable to describe more general cases. To describe the procedure, for simplicity, 620

let us assume that F+(η) is a non-standard plus η unknown while X+(−m) is a standard 621

minus m unknown; generalization is possible with a little effort. 622

Applying the Cauchy decomposition formula (49) to the unknowns defined in −m(η) 623

F+(−m) = 1
2π j

∞∫
−∞

F+(η′)
η′+m dη′ + Fn.s.

+ (−m), η ∈ R

X+(−m) = 1
2π j

∞∫
−∞

X+(η′)
η′+m dη′, η ∈ R

(93)

from (92) we obtain a system of integral equations 624

G(η)F+(η) = 1
2π j H(η)

∞∫
−∞

X+(η′)
η′+m(η)

dη′

Ga(η)X+(η) =
1

2π j Ha(η)
∞∫

−∞

F+(η′)
η′+m(η)

dη′ + Ha(η)Fn.s.
+ (−m(η))

(94)

that are not a system of Fredholm integral equations of second kind (non-compact kernel). 625

To regularize (94) we follow the procedure presented in section 3. Performing a smile 626

integration of (94), after mathematical manipulation, we have on the LHSs respectively 627

1
2π j

∫
γ1t

G(t)F+(t)
t−η dt = G(η)F+(η) + 1

2π j

∞∫
−∞

(G(t)−G(η))F+(t)
t−η dt − G(η)Fns

+ (η)

1
2π j

∫
γ1t

Ga(t)X+(t)
t−η dt = Ga(η)X+(η) +

1
2π j

∞∫
−∞

(Ga(t)−Ga(η))X+(t)
t−η dt

(95)

and on the RHSs respectively 628

1
2π j

∫
γ1t

1
2π j

H(t)
t − η

∞∫
−∞

X+(η′)

η′ + m(t)
dη′dt =

1

(2π j)2

∞∫
−∞

M(η, η′)X+(η
′)dη′ (96)

and 629

1
2π j

∫
γ1t

1
2π j

Ha(t)
t−η

∞∫
−∞

F+(η′)
η′+m(t)dη′dt = 1

(2π j)2

∞∫
−∞

Ma(η, η′)F+(η′)dη′

1
2π j

∫
γ1t

Ha(t)
t−η Fns

+ (−m(t))dt = 1
2π j

∞∫
−∞

[Ha(t)−Ha(η)]Fns
+ (−m(t))

t−η dt + Ha(η)
2π j

∫
γ1t

Fns
+ (−m(t))

t−η dt
(97)

where 630

M(η, η′) =
∫

γ1t

H(t)
(t−η)(η′+m(t))dt =

∞∫
−∞

H(t)−H(η)
(t−η)(η′+m(t))dt + H(η)

∫
γ1t

1
(t−η)(η′+m(t))dt

Ma(η, η′) =
∫

γ1t

Ha(t)
(t−η)(η′+m(t))dt =

∞∫
−∞

Ha(t)−Ha(η)
(t−η)(η′+m(t))dt + Ha(η)

∫
γ1η

1
(t−η)(η′+m(t))dt

(98)
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Figure 5. Vertical branch cuts Γ1,2 of m(t) originated in branch point ±k assuming lossy medium (for
visibility k = 1 − j), and smile contour integration line γ1t and frown contour integration line γ2t with
corresponding warped contours λ1 and λ2 wrapped around the vertical branch cuts Γ1 and Γ2. Note
that γ1t and γ2t assume in the figure different observation points for indentation.

Merging (95) and (96)-(98) we get FIEs 631

G(η)F+(η)+
1

2π j

∞∫
−∞

(G(t)− G(η))F+(t)
t − η

dt =
1

(2π j)2

∞∫
−∞

M(η, η′)X+(η
′)dη′+G(η))Fns

+ (η)

(99) 632

Ga(η)X+(η) +
1

2π j

∞∫
−∞

(Ga(t)−Ga(η))X+(t)
t−η dt

= 1
(2π j)2

∞∫
−∞

Ma(η, η′)F+(η′)dη′ + 1
2π j

∞∫
−∞

(Ha(t)−Ha(η))Fns
+ (−m(t))

t−η dt + Ha(η)
2π j

∫
γ1t

Fns
+ (−m(t))

t−η dt

(100)
We observe that from a computational point of view, the regularized FIEs (99) and 633

(100) are particular efficient due to the presence of compact kernels integrated along the 634

real axis except for the smile integration included in (98) 635

Me(η, η′) =
∫

γ1t

1
(t − η)(η′ + m(t))

dt (101)

The evaluation of integral (101) can be effectively performed by warping the smile contour 636

γ1t in the lower half complex plane t into the integration path λ1 wrapped around the 637

vertical branch cut Γ1 of m(t) (61) originated in branch point +k, see Fig. 5. By collapsing 638

the λ1 onto Γ1 we get 639

Me(η, η′) =
∫

Γ1

∆(
1

(t − η)(η′ + m(t)
)dt (102)

where 640

∆(
1

(t − η)(η′ + m(t)
) = − 4

√
(k − t)(k + t) sin(γ)

(t − η)[−k2 + 2(t2 + η′2)− 4tη′ cos(γ) + k2 cos(2γ)]
(103)

Assuming t = k − jv (v > 0) the representation (102) is quickly numerically conver- 641

gent. A closed form expression of (102) is obtainable after considering: 642
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1. selection of branch cut Γ1 as the line t = ku (with real u > 1) with consequent change 643

of λ1 and use of mapping t = ku under integration sign, 644

2. expansion of (103) with minimal denominator, 645

3. careful mathematical manipulation of multivalued functions. 646

We get 647

Me(η, η′) = −2 sin(γ)
(

F∞(u1(η))

(u1(η)− u2(η′))(u1(η)− u3(η′))
− F∞(u2(η

′))
(u1(η)− u2(η′))(u2(η′)− u3(η′))

+
F∞(u3(η

′))
(u1(η)− u3(η′))(u2(η′)− u3(η′))

)
(104)

with 648

F∞(u) = ju log(2)−
√

1 − u2 log(−u + j
√

1 − u2) (105)

and the poles 649

u1(η) = η/k, u2(η
′) =

η′ cos γ −
√

k2 − η′2 sin γ

k
, u3(η

′) =
η′ cos γ +

√
k2 − η′2 sin γ

k
(106)

Let us now go back to particular cases and consider equations for Hz polarization (91) 650

for a PEC angular region 1 written in the form (92) with the following definitions 651

F+(η) = Hoz(η), X+(η) = Haz(η), G(η) = Ga(η) =
ξ

η sin(γ) + ξ cos(γ)
, H(η) = Ha(η) = 1

(107)
The set of FIEs (99)-(100) simplifies: in particular M(η, η′) = Ma(η, η′) = Me(η, η′) 652

and reduces to (102). Eq. (99)-(100) respectively becomes the system of FIEs 653

G(η)Hoz(η) +
1

2π j

∞∫
−∞

(G(t)− G(η))Hoz(t)
t − η

dt =
1

(2π j)2

∞∫
−∞

Me(η, η′)Haz(η
′)dη′ + s1(η) (108)

and 654

G(η)Haz(η) +
1

2π j

∞∫
−∞

(G(t)− G(η))Haz(t)
t − η

dt =
1

(2π j)2

∞∫
−∞

Me(η, η′)Hoz(η
′)dη′ + s2(η) (109)

with 655

s1(η) = G(η)Hns
oz (η), s2(η) =

1
2π j

∫
γ1t

Hns
oz (−m(t))

t − η
dt (110)

Let us focus the attention on the source term (110) and, for simplicity, assume that only 656

F+(η) = Hoz(η) is non-standard: 657

Fns
+ (η) = Hns

oz (η) =
2jHo

η − ηo
(111)

with ηo = −k cos(φo), 0 < φo < π/2 and k with small losses (k = kr − jki, ki << kr). From 658

(111), according to −m(η) properties, see also Fig. 4, Hns
oz (−m(η)) shows in the proper 659

lower half complex plane η poles originated by the zeros of m(η) + ηo (in m plane we have 660

the pole mo = −ηo). The poles can be related to GO waves, i.e. connected to the last couple 661

of reflections from faces a and o that create shadow boundaries, for instance see [14]. For 662

example if φo < π − γ, we have one reflection from face a and one reflection from face 663

o reflected again by face a. In fact, from a mathematical point of view, in this case we 664

have that the pole mo is related to the poles ηra = −k cos(γ − φo) (reflection from face a) 665

and ηraro = −k cos(γ + φo) (reflection from a after o) associated to incoming azimuthal 666

directions γ ∓ φo with respect to reference face a, i.e. incoming directions 2γ ∓ φo with 667

respect to face o. However, we also need to note that residues of poles in the selected test 668

problems are related always only to incident field. It means that the primary spectra of 669

Hns
oz (−m(η)) in (110) is more similar to a replica of incident spectrum for ηra, ηraro, similarly 670

to what has been described in [17] in w plane. 671



Version August 19, 2024 submitted to Journal Not Specified 24 of 36

Indeed, the integrand of source term (110) also exhibits the branch cut of −m(η) thus 672

we estimate (110) by warping γ1t into λ1 673

s2(η) =
1

2π j

∫
λ1

Hns
oz (−m(t))

t − η
dt +

Ra

η − ηra
+

Rao

η − ηraro
(112)

where Ra and Ro are respectively the residues of Hoz(−m(η)) in ηra and ηraro: 674

Hns
oz (−m(η)) = − 2jHo

m(−η) + ηo
=

Tmo

m(−η) + ηo
, Tmo = −2jHo (113)

675

Ra,ao = Tmo

dη

dm

∣∣∣∣
ηra ,ηraro

=
2jHo

cos γ + η sin γ√
k2−η2

∣∣∣∣∣∣∣
ηra ,ηraro

(114)

Using the same passage that in (102) for (101) to (112), we get 676

1
2π j

∫
λ1

Hns
oz (−m(t))

t − η
dt =

Ho

π

∫
λ1

1
(t − η)(−m(t)− ηo)

dt = −Ho

π
Me(η, ηo) (115)

thus 677

s2(η) = −Ho

π
Me(η, ηo) +

Ra

η − ηra
+

Rao

η − ηraro
(116)

The final set of FIEs for Hz polarization when illuminated by a plane wave with 0 < 678

φo < π/2 are then (108)-(109) (a specialization of (99)-(100)) with sources s1,2(η) defined 679

and calculated in (110), (111), (116). Note that s1(η) and s2(η) are respectively a spectral 680

component defined in η plane of Hoz(η) and Haz(η), i.e. with the reference coordinate 681

system of face o and face a. 682

Let us now examine the convergence properties of FIEs (108)-(109) to get accurate 683

numerical results [47]. According to classical Fredholm factorization method [19], the 684

regularization procedure provides compact kernels of the type reported in LHS of (108)- 685

(109), i.e. square integrable. The further integral operator reported on the RHS of (108)-(109) 686

in terms of Me(η, η′) is related to coupling term between the spectra of delimiting faces. This 687

kernel is again compact because (101) shows that Me(η, η′) is never singular as η ̸= t and 688

η′ ̸= m(t) and, (104) shows that Me(η, η′) is square integrable according to its asymptotic 689

behavior in terms of (106). Similar considerations can be repeated to more complex and 690

general cases of angular region immersed in/made of arbitrary linear media. 691

5.3. Implementation of Numerical Example and Validation of Direct Fredholm Factorization 692

Let us consider region 1 of Fig. 1 of aperture angle π/2 < γ < π, filled by a 693

homogeneous isotropic medium with propagation constant k (k = kr − jki, ki << kr) 694

and terminated by PEC boundary condition. The angular region is illuminated by a Hz 695

polarized plane wave with incoming direction φo (0 < φo < π − γ) and intensity Ho. The 696

spectral solution (Hoz(η), Haz(η)) can be provided by the system of FIEs (108)-(109). Due 697

to the convergence properties of the kernel [47], simple sample and hold approximation 698

is enforced with truncation of integration intervals at ±A and integration step h, such 699

that A/h ∈ N. We tested our novel direct FIE solution against the classical exact closed 700

form solution provided in subsection 5.1 in η and w planes respectively (88) and (89). 701

Furthermore we compared asymptotic results in terms of GTD coefficients. We examine 702

in detail the case where γ = 0.7π, k = 1 − j0.1, Ho = 1A/m, φo = 0.1π. Since we have 703

0 < φo < π − γ, GO field is constituted by incident, face a reflected and double reflected 704

(from face o and then from face a) waves and only the plus spectral unknown along face 705

o, i.e. Hoz(η), is non standard in the WH formulation (91), as reported in the example of 706

previous subsection. To enhance the convergence of the approximate FIE solution given 707
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by (108)-(109), we warp the integration line constituted by the real axis into a straight line 708

located in the 1st and 3rd quadrant of the complex plane at an angle θ with respect to 709

the real axis (the singularities of the kernel and the sources are located in the 2nd and 4th 710

quadrant, see §5.3, §5.4 of [16]): 711

αt(t) = t expjθ , t ∈ R, 0 < θ < π/2 (117)

According to the physical parameters of the test problem we have ηra = 0.309017 − 712

0.0309017j, ηraro = 0.809017 − 0.0809017j, both located in the lower half plane, thus consid- 713

ered in (116). The discretization of (108)-(109) by sample and hold with A, h yields a linear 714

system of equation of dimensions 2(2(A/h) + 1) 715∣∣∣∣∣ dG + KG −Me
−Me dG + KG

∣∣∣∣∣
∣∣∣∣ Hoz

Haz

∣∣∣∣ = ∣∣∣∣ s1
s2

∣∣∣∣ (118)

where the diagonal matrix dG, the matrix KG and the matrix Me contain respectively 716

sample of G(η), G(t)−G(η)
t−η and Me(η, η′), while the vectors Hoz, Haz, s1, s2 contain samples 717

respectability Hoz(η), Haz(η), s1(η), s2(η). Note that Me is the coupling matrix that is much 718

weaker than the remaining terms. The sampled solution allow to build a representation of 719

Hoz(η), Haz(η) substituting them into the integral part of (108)-(109): 720

Hoz,az(η) = − h
2π j

A/h

∑
−A/h

[G−1(η)G(αt(hi))− 1]Hoz,az(αt(hi))
αt(hi)− η

+
hG−1(η)

(2π j)2

A/h

∑
−A/h

Me(η, αt(hi))Haz,oz(αt(hi))+G−1(η)s1,2(η)

(119)
These approximate expressions of Hoz(η), Haz(η) are valid for analytic continuation 721

in the proper sheet of η plane useful to correctly estimate fields in physical domain through 722

asymptotics of half-planes as discussed in Section 4. This property limits the requirement 723

to know the spectra only in the proper sheet as acquired in the procedure, that is a novelty 724

and a progress with respect to classical Fredholm factorization combined with spectral 725

mapping in GWHE wedge problems. 726

To highlight the performance of the method, we compare the spectra along the real 727

axis of η plane and the segment of η plane useful for asymptotics according to Steepest 728

Descent Path (SDP) method that in isotropic medium corresponds to η = −k cos w with 729

−π < w < 0, i.e the segment that connect −k with k. 730

To study convergence of the method we have selected physical parameters of region 731

1 with an aperture angle γ = 0.7π and plane wave illumination at Hz polarization with 732

Ho = 1A/m, φo = 0.1π, k = 1 − j0.1. We selected quadrature parameters 5 ≤ A ≤ 733

40, 0.2 ≤ h ≤ 0.25, θ = 0.1 such that A/h ∈ N. Numerical results are provided in Fig. 6 734

along the segment for asymptotic estimation. From the figure we notice that along the 735

segment we have a degradation of spectral solution near w = −π, 0 which correspond 736

to η = k,−k. We recall that the solution of FIEs have been obtained by simple sample 737

and hold quadrature and estimation of Me(η, η′) that saturate precision in particular near 738

η = k,−k (the branch point η = −k is a local offending singularity for the plus spectra 739

that should not appear while η = k is related to physical structural properties of the 740

problem). Improvement would be obtained with specialized quadrature (and method of 741

moments) capable of taking into account non algebraic behavior such as branch points 742

[48,49]. However, the scope of the present method is to get very simple, fast and convergent 743

solution that cannot incorporate sophisticated quadratures. Furthermore, we observe that 744

the lack on precision near η = k,−k is mitigated while computing asymptotics since plus 745

spectral unknowns are multiplied by sin w providing locally smoothing errors. However, 746

while the offending η = −k is a very local perturbation, the physical η = k is more present 747

as it is physical. 748

To recover the quality of solution near w = −π, 0 (η = k,−k) we resort to spectral 749

considerations based on the properties of the original GWHEs formulation (91). Eqs. 750

(91) can be applied to the approximate solutions obtained from the FIEs to get a new 751
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Figure 6. On top, plots of absolute value of the spectral solutions |Hoz(−k cos w)| and |Haz(−k cos w)|
obtained as exact solution and with the FIE approximation for different A, h. On bottom correspond-
ing relative errors between the exact solution and the FIE solutions for different A, h in log10 scale.
We observe a degradation of spectral solution near w = −π, 0 which correspond to η = k,−k. The
branch point η = −k is an offending singularity for the plus spectra while η = k is related to physical
structural properties of the problem.

representations of plus spectra from the FIE approximated spectra. This application allows 752

to obtain spectra near w = −π, 0 (η = k,−k) that takes origin from other portion of η plane 753

according to m(η). This procedure is particularly effective and valid because m(η) with η 754

in the proper sheet is a portion of the proper sheet of η plane. To demonstrate this property 755

is particular effective to rewrite (in this simplified isotropic problem) (91) in w plane: 756

Hoz(−k cos w) = −n(−k cos w)
ξ(−k cos w)

Haz(−k cos(w + γ))

Haz(−k cos w) = −n(−k cos w)
ξ(−k cos w)

Hoz(−k cos(w + γ))
(120)

with ξ(−k cos w) = −k sin w, −n = −k sin(w + γ). We notice that −π < w < 0 on the 757

LHS corresponds to −π + γ < w < γ on the RHS due to (m = k cos(w + γ)), where 758

the unknowns are correctly computed. This methodology (named iteration) re-imposes 759

GWHEs on the initial FIE approximate spectra and it shifts the lack of precision to a region 760

where the spectral solution is good yielding an homogenization of the error level, see Fig. 761

7. In the figure we have reported the exact solution and approximate solutions obtained 762

from the quadrature of FIE with A = 40, h = 0.025, from the quadrature of FIE with 763

A = 40, h = 0.025 plus the application of (91), and from the application of (91) to the 764

sources sources of FIE ignoring integrals terms, i.e. using Hoz,az(η) = +G−1(η)s1,2(η). 765

Note that, considering (91), the map in (120) is only limited, thus we cannot interpret 766

this procedure as a first iteration on the application of contraction theorem. In fact from our 767

studies, successive iterations do not yield any benefit in the convergence of the solution. 768

This is also justified by the fact in w plane the multiple applications of (120) correspond to 769

recursive equations/difference equations that further shift spectra in w plane, navigating 770
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replica of proper and improper sheet, see [17], [15]. Moreover, we exclude also that the map 771

can compensate all physical behavior of the problem starting from roughly approximate 772

solutions. In Fig. 7 we show the importance of the quality of starting spectra originated 773

from the solution of FIE before the application of (120). We finally observe that while the
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Figure 7. On top, plots of absolute value of the spectral solutions | sin w Hoz(−k cos w)| and
| sin w Haz(−k cos w)| obtained as exact solution and with 1) the FIE with A = 40, h = 0.025, 2)
the FIE plus the application of on iteration of (91) (FIE+iter), 3) the application of (91) to the source
terms of the FIE (GO+iter). On bottom corresponding relative errors between the exact solution and
the approximated solutions. We observe an improvement of solution near w = −π, 0 once we apply
an iteration of (91) to the approximate solution from FIE yielding an homogenization of error.

774

FIE provide good spectra except near the branch cuts, the iteration (91) enforce the correct 775

modeling of structural spectral properties such as the branch cuts. 776

To further compare the solutions and validate the proposed procedure we compute 777

the GTD diffraction coefficients as outlined in Section 4 by asymptoptics. Using superposi- 778

tion we can compute the diffraction by applying asymptotics individually to the spectral 779

solutions at faces o and a considering only homogeneous terms in (56), (59) taking care of 780

the different reference coordinates (see discussion at Sections 3- 4 while considering region 781

1 characterized by γ as a region 2’ characterized by π − γ, see Fig. 2, (45), (59)): 782

ψ̃ho
y (η, v) =

2

∑
i=1

vi · ψ̃y(η, 0)e−λγi(γ) vui, v > 0 (121)

783

ψ̃ho
Y1(η, v) =

4

∑
i=3

viY1 · ψ̃Y1(η, 0)e−λγiY1
(π−γ) vuiY1 , v < 0 (122)

Let us start from the inversion of face o contribution (121): 784

ψho
y (u, v) =

1
2π

∫
Br

ψ̃ho
y (η, v)e−jηudη (123)
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According to coordinate mapping (18), from (16) and (23), we have 785

−λγi(γ) v− jηu = −jη cos γ v− jξi sin γv− jη(x− v cos γ) = −j(ηx+ ξiy), i = 1, 2 (124)

with ξi = ξ, i = 1, 2 thus 786

ψho
y (x, y) =

1
2π

∫
Br

2

∑
i=1

vi · ψ̃y(η, 0)uie−j(ηx+ξy)dη (125)

with Br the Bromwich contour (over all singularities) whose asymptotic estimation at far 787

field is composed of GO terms (captured poles) and GTD diffracted component (due to 788

saddle point with the application of SDP method) in global cylindrical coordinate: 789

ψ
ho,gtd
y (ρ, φ) =

√
k

2πρ
e−j(kρ−π/4)

2

∑
i=1

vi · ψ̃y(k cos φ, 0)ui sin |φ| (126)

that for our test problem (region 1 with PEC faces at Hz polarization) reduces to the third 790

component 791

ψ
ho,gtd
y (ρ, φ)[3] = Hgtd

oz (ρ, φ) =

√
k

2πρ
e−j(kρ−π/4) Hoz(k cos φ)

2
sin |φ| (127)

according to definition of ψ̃y(η, v) (3) and ui, vi reported at (62)-(63). We get the GTD 792

diffraction coefficient component due to face o 793

Dgtd
Hoz(φ) =

kHoz(k cos φ) sin |φ|
j2Ho

(128)

Now we repeat the procedure starting from the inversion of face a contribution (122) 794

using notation of Fig. 2.(b): 795

ψho
Y1(u, v) =

1
2π

∫
Br

ψ̃ho
Y1(η, v)e−jηudη (129)

According to coordinate mapping 796

X1 = u + v cos(π − γ), Y1 = v sin(π − γ) (130)

we have from (16) and (23) 797

−λγiY1(π − γ) v− jηu = +jη cos γ v+ jξi sin γv− jη(X1 + v cos γ) = −jηX1 + jξiY1, i = 3, 4
(131)

with ξi = ξ, i = 3, 4 thus 798

ψho
Y1(X1, Y1) =

1
2π

∫
Br

4

∑
i=3

viY1 · ψ̃Y1(η, 0)uiY1 e−jηX1+jξY1 dη (132)

with Br the Bromwich contour whose asymptotic estimation at far field is composed of GO 799

terms and GTD diffracted component in global cylindrical coordinate: 800

ψ
ho,gtd
Y1 (ρ, φ) =

√
k

2πρ
e−j(kρ−π/4)

4

∑
i=3

viY1 · ψ̃Y1(k cos(φ − γ), 0)uiY1 sin |φ − γ| (133)
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Figure 8. GTD diffraction coefficient (absolute value and phase) for the test problem under consid-
eration: γ = 0.7π and plane wave illumination at Hz polarization with Ho = 1A/m, φo = 0.1π,
k = 1 − j0.1. In the figure we have reported the exact GTD together with the ones obtained following
the FIE approximate estimation of the spectra without and with the application of an iteration, and
selecting A = 20, h = 0.05, θ = 0.1.

that for our test problem (region 1 with PEC faces at Hz polarization) reduces to the third 801

component 802

ψ
ho,gtd
Y1 (ρ, φ)[3] = Hgtd

az (ρ, φ) =

√
k

2πρ
e−j(kρ−π/4) Haz(k cos(φ − γ))

2
sin |φ − γ| (134)

according to definition of ψ̃y(η, v) (3) and uiY1 = ui, viY1 = vi reported at (62)-(63). Note 803

the invariance of uiY1 = ui, viY1 = vi in the rotation of reference system that is allowable 804

only in isotropic regions otherwise for arbitrary linear media more complex procedure is 805

required for their definitions, see Section 2. 806

Finally, we get the GTD diffraction coefficient component due to face a 807

Dgtd
Haz(φ) =

kHaz(k cos(φ − γ)) sin |φ − γ|
j2Ho

(135)

The complete GTD coefficient is just the sum for superposition of (128) and (135): 808

Dgtd
Hz (φ) = Dgtd

Hoz(φ) + Dgtd
Haz(φ) (136)

Fig. 8 shows GTD diffraction coefficient for the test problem under consideration: γ = 0.7π 809

and plane wave illumination at Hz polarization with Ho = 1A/m, φo = 0.1π, k = 1 − j0.1. 810

In the figure we have reported the exact GTD coefficient in term of absolute value and phase 811

together with the ones obtained following the FIE approximate estimation of the spectra 812

without and with the application of an iteration, and selecting A = 20, h = 0.05, θ = 0.1. 813

Fig. 9 shows the corresponding relative error on the GTD diffraction coefficient in log10 814

scale. We note, as expected, that the solution with the iteration is correct while the one 815

without the iteration lacks in estimation near the faces of the angular regions, i.e. face o 816

for φ = 0 and face a for φ = γ because related respectively to the spectra of Hoz(η) near 817

η = k (128) and of Haz(η) near η = k (135) (η = k correspond to w = −π and it is a 818

physical branch cut). Note also that the spectra of Hoz(η), Haz(η) near η = −k (w = 0) is 819

not used for GTD computation, thus the lack of possible precision in the offending branch 820

point does not impact on the solution. Moreover, the change of slope and level of the 821

relative error in Fig. 9 is obtained by the reported algorithm to improve the quality of the 822

approximate solution given by the direct application of Fredholm factorization. In fact 823

FIE+iteration implements the computation of GTD diffraction coefficient (136) via (128) and 824

(135) where the spectra Hoz(−k cos w) and Haz(−k cos w) are obtained by enforcing (120) 825
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Figure 9. Relative error on GTD diffraction coefficient in log10 scale corresponding to results of Fig. 8.

on the approximate spectra obtained by the direct application of Fredholm factorization. 826

This procedure mixes spectral resolution properties of the two faces, improving the quality 827

of the spectra in particular recovering the degradation of spectral resolution near w = π, 0, 828

i.e. η = k,−k. 829

Finally, we comment that the direct implementation of FIE in w plane yields high 830

precision results in isotropic angular region problem [16] that exceeds the precision of the 831

current procedure in terms of spectra; however we recall that the scope of the present work 832

is to present an effective procedure to compute diffraction implementable in problems 833

where w plane cannot be defined as in arbitrarily linear media. 834

6. An Example of Application of the Functional Equations in Complex Media: 835

Scattering from a PEC Half-Plane in Gyrotropic Medium 836

The scattering of a plane electromagnetic wave at normal incidence by a perfectly 837

conducting semi-infinite screen embedded in a homogeneous gyrotropic medium (such as 838

plasma) is presented in this section with the scope to validate the proposed method, the 839

functional equations and WH equations in non isotropic media. Since our formulation is 840

in terms of field components we have selected as comparative studies [21,22,26,27] with 841

respect to other works that employ definitions in terms of potentials. We have selected in 842

particular the work [21] where the distinguished axis of the electric gyrotropic medium is 843

parallel to the edge of the halfplane, i.e. as in plasma with uniform magnetic field impressed 844

along the edge direction. This medium enforces in our reference system of coordinates 845

(z, x, y) a tensorial electric permittivity 846

ε =

 ε3 0 0
0 ε1 +jε2
0 −jε2 ε1

 (137)

with z as distinguished axis and µ = µo I, ξ = ζ = 0. As reported in [21] this vector 847

problem is separable into two equivalent scalar problems for Ez (H-mode) and Hz (E-mode) 848

polarizations. 849

By applying the procedure described in previous Section 2 and with simplified def- 850

initions of the quantities reported in Appendix A we obtain (progressive, regressive) 851

eigenvalues 852

λ1,3 = ±
√

η2 − k2
1 = ±jξ1, λ2,4 = ±

√
η2 − k2

2 = ±jξ2 (138)

with k2
1 = ω2µoε/ε1 = k2

oε/ε1, k2
2 = ω2µoε3 = k2

oεr3, εri = εi/εo, ε = ε2
1 − ε2

2, ko = ω
√

εoµo. 853



Version August 19, 2024 submitted to Journal Not Specified 31 of 36

The corresponding eigenvectors ui, from which we easily compute also the reciprocal 854

vectors vi by inversion, are 855

u1 =

∣∣∣∣∣∣∣∣
0

j(−ε2η+ε1 jξ1)
εω
1
0

∣∣∣∣∣∣∣∣, u2 =

∣∣∣∣∣∣∣∣
µoω
ε2
0
0
1

∣∣∣∣∣∣∣∣, u3 =

∣∣∣∣∣∣∣∣
0

− j(ε2η+ε1 jξ1)
εω
1
0

∣∣∣∣∣∣∣∣, u4 =

∣∣∣∣∣∣∣∣
− µoω

ε2
0
0
1

∣∣∣∣∣∣∣∣ (139)

The problem shows simplification because of γ = π, see for instance the impact of the 856

anisotropies on (35) or 857

m = mi(π − γ) = mi+2(γ) = η; i = 1, 2 (140)

However, we keep the procedure as general as possible, extendable to wedge problems, 858

obtaining from (27) and (31) 859

ψ̃sa+(−mi(γ)) =
∣∣∣ Eaz cos(γ), Eaρ +

ηHaz sin(γ)
ωε1

, Haz cos(γ)− jHazε2 sin(γ)
ε1

, Haρ − Eazη sin(γ)
µoω

∣∣∣t
(141)

From here on we omit the spectral dependence in field components for compactness of 860

formulae. Applying (32) we get in explicit form the following two functional equations for 861

region 1: 862

Eoxωε + Hozξ1ε1 + jηHozε2 = Haz[sin(γ)(ηε1 − jξ1ε2) + cos(γ)(ξ1ε1 + jηε2)] + Eaρεω
(142) 863

Hoxµoω − Eozξ2 = Haρµoω (143)

Similarly the procedure can be repeated for region 2. The complete set of equations high- 864

lights the decoupling of Ez from Hz polarization. Applying the PEC boundary conditions 865

on the faces we get respectively for Ez na Hz polarizations after some manipulations: 866{
Hox =

Haρ

2 +
Hbρ

2

− Eozξ2
µoω =

Haρ

2 − Hbρ

2

(144)

867{
Eoxωε + Hozξ1ε1 + jηHozε2 = Haz[sin(γ)(ηε1 − jξ1ε2) + cos(γ)(ξ1ε1 + jηε2)]
−Eoxωε + Hozξ1ε1 − jηHozε2 = Hbz[sin(γ)(ηε1 + jξ1ε2) + cos(γ)(ξ1ε1 − jηε2)]

(145)
Now we impose γ = π, i.e. the angular regions are defined for the half-plane problem. 868

From (144) we notice that Ez polarization behaves as half-plane problems immersed in 869

classical isotropic regions [40] but with propagation constant k2
2 = ω2µoε3 = k2

oεr3, i.e. 870

network represetation with characteristic impedance ZEz = ωµo/ξ2, confirming [21]. 871

With further mathematical manipulating of (145) we get 872 −2Hoz +
2iEoxηωεε2
ξ2

1ε2
1+η2ε2

2
= Haz + Hbz

− 2Eoxξ1ωεε1
ξ2

1ε2
1+η2ε2

2
= Haz − Hbz

(146)

The second equation of (146) shows the same WH kernel of eq. (25) in [21] 873

G−1
Hz

= −
ξ2

1ε2
1 + η2ε2

2
2ξ1ωεε1

= −
(k2

1 − η2)ε2
1 + η2ε2

2

2
√

k2
1 − η2ωεε1

= −
k2

1ε2
1/ε − η2

2
√

k2
1 − η2ωε1

(147)

except for multiplication by a scalar. Moreover it is easily recognizable from the numerator 874

the characteristic pole of surface wave phenomenon identified also in [21]. Solutions of the 875

problem can be achieved with approximate techniques validated in previous sections or 876

via classical procedure as in [21] but this item goes beyond the scope of this paper. 877
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7. Conclusions 878

Spectral methods (such as SM,KL,WH) are well consolidated fundamental and effec- 879

tive tools for the correct and precise analysis of electromagnetic diffraction problems with 880

one propagation constant, although not immediately applicable to multiple propagation 881

constant problems. 882

In this paper we propose a comprehensive theoretical package in spectral domain 883

with all necessary mathematical tools that, for the first time, extends the possibilities of 884

spectral analysis to electromagnetic problems involving wedges immersed in an arbitrary 885

linear medium, extendable to multiple penetrable angular regions. The theory is presented 886

in an exhaustive way showing theoretical background, implementation and validation. 887

The methodology is based on transverse equations for layered angular structures, the 888

characteristic Green’s function procedure, the Wiener-Hopf technique and the novel direct 889

Fredholm factorization method that reduces GWHEs with multiple propagation constants 890

to integral representations in a unique complex plane. Validation-through-examples is 891

applied, starting from demonstrating effectiveness of direct Fredholm factorization applied 892

to GWHEs in the scattering from a PEC wedge immersed in an isotropic medium and, 893

ending with validation of functional equations of angular regions in arbitrary linear media 894

with the analysis of a PEC half-plane immersed in particular anisotropic media. While 895

numerically implementing the method, we observe that one of the main difficulties resides 896

in the correct estimation of kernel functions for the presence of multivalued functions that 897

need particular attention in their definition and calculation. 898

The proposed equations are interpreted using network formalism, providing a sys- 899

tematic perspective in particular for the analysis of complex scattering problems where the 900

complexity of the geometry is broken into subdomains of canonical shape among which 901

the angular regions immersed in/made of arbitrarily linear media. 902

The work presents significant advancements in the spectral analysis of electromagnetic 903

problems from different mathematical, physical and engineering aspects: a first spectral 904

method capable to handle scattering in arbitrary linear media with multiple propagation 905

constants, a novel solution procedure of GWHEs in particular with multiple propagation 906

constants (the Direct Fredholm Factorization), the network interpretation of spectral func- 907

tional equations and related integral representations for angular regions filled by arbitrary 908

linear media, the computation of the field at each point within the angular region avoiding 909

spectral analytical extension and, the improvement of quality of approximate spectral 910

solutions re-imposing GWHEs (named iteration). 911

The theoretical package is validated and ready for future applications. 912
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