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Abstract: A general theory for solving electromagnetic diffraction problems by impenetrable / penetrable
wedges immersed in/made of an arbitrary linear (bianistropic) medium is presented. This novel
and general spectral theory handles complex scattering problems by using transverse equations
for layered planar and angular structures, characteristic Green’s function procedure, Wiener-Hopf
technique, and a new methodology to solve GWHEs. The technique has been proved effective for
the analysis of wedge problems immersed in isotropic media and, in this paper, we extend the
theory to more general cases providing all necessary mathematical tools with validation. We obtain
Generalized Wiener-Hopf equations (GWHEs) from spectral functional equations in angular regions
filled by arbitrary linear media. The equations can be interpreted with network formalism for a
systematic view. We recall that spectral methods (such as the Sommerfeld-Malyuzhinets (SM) method,
the Kontorovich-Lebedev (KL) transform method, and the Wiener-Hopf (WH) method) are well
consolidated fundamental and effective tools for the correct and precise analysis of electromagnetic
diffraction problems constituted of abrupt discontinuities immersed in media with one propagation
constant, although not immediately applicable to multiple propagation constant problems. According
to our opinion, for the first time, the proposed mathematical technique extends the possibilities of
spectral analysis of electromagnetic problems in presence of angular regions filled by complex arbi-
trary linear media providing novel mathematical tools. Validation through fundamental examples is
proposed.

Keywords: wave motion, diffraction, electromagnetism, arbitrary linear media, bianisotropic media,
layered media, applied mathematics, Green’s function, Wiener-Hopf method, integral equations,
Fredholm factorization.

1. Introduction

The theory of wave diffraction constitutes one of the fundamental problems in Mathe-
matical Physics. Apart from its direct relevance to Engineering and Physics, this subject
gives rise to significant methodologies in Applied Mathematics.

Spectral methods play a crucial role in the study of electromagnetic diffraction. No-
tably, the Sommerfeld-Malyuzhinets (SM) method, the Kontorovich-Lebedev (KL) trans-
form method, and the Wiener-Hopf (WH) method are fundamental and complementary in
studying diffraction problems in presence of sharp discontinuities. These methods have
been extensively and effectively applied for studying wedge diffraction in isotropic regions,
see references [1-6] for SM, [7-10] for KL, [11-16] for WH and references therein. Moreover,
using synergy among the three methods (WH, SM, KL) the authors obtained a complete
network representation of angular region in presence of isotropic media [17], that helps to
build a systematic methodology of analysis.

The main advantage of the aforementioned techniques (SM,KL) is also one limitation,
i.e. the utilization of the spectral complex angular plane derived from the Sommerfeld
integral theory [18], which has been effectively used also in WH framework for Fredholm
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factorization [12-16,19] and with the definition of rotating waves in isotropic angular region
[20],[15,16]. The definition of this complex plane is intricately connected to the physics
of the problem, as it specifically requires spectral transformations associated with the
propagation constant. Consequently, this methodology is applicable to problems involving
one single propagation constant, such as isotropic media in electromagnetic fields, as well as
other specific problem configurations with decoupling properties in propagation modalities.
Different attempts were developed to extend the spectral analysis to diffraction problems in
more complex media as for example gyrotropic media and/or uniaxial media. For example,
we recall the analysis of scattering by perfect electrically conducting (PEC) half-plane
immersed in such anisotropic media, see [21-30]. However, to the best of our knowledge,
no spectral method has been developed for scattering problems by wedges in arbitrary
linear media (i.e. bianisotropic media [31-33]), characterized by multiple propagation
constants. One of the most important result obtained in presence of anisotropic media is the
exact solution obtained by Felsen in the case of the scattering by a PEC wedge immersed
in uniaxial medium illuminated by plane waves at normal incidence [23,24]. However
the method used for this problem is substantially that of the separation of variables after
transformations in physical domain and it does not present the powerful characteristics of
the spectral methods, such asymptotic evaluation of fields and physical interpretation of
field components in terms of structural and source spectral singularities. Other important
works examine the behavior of the field near the edge of a wedge immersed in complex
media [34] and the diffraction by wedge immersed in the special case of an isotropic chiral
medium with SM method [35].

Given our experience in the spectral analysis of complex electromagnetic scattering
problems in isotropic media [15,16,36-38], and with the help of the theory proposed in
[39,40] for the analysis of structures embedded in layered media, in this work we develop
a new theory in spectral domain with proper mathematical tools that allows to represent
scattering problems immersed in arbitrary linear media of angular shape. In particular
these new formulations are in spectral domain (Laplace domain) without introducing
angular complex planes thus not limited to one-propagation-constant problems. In [41], we
have developed the general theory in abstract form to model angular regions filled by
arbitrary linear media and we have reported its implementation for isotropic media.

With the present work, we propose a complete theoretical package for solving diffrac-
tion problems by impenetrable wedges immersed in an arbitrary linear medium, extendable
to multiple penetrable angular regions. The proposed method exploits the combination
and the extension of powerful mathematical tools developed in different contexts. The first
tool is the Bresler-Marcuvitz (BM) Transverse Equation Theory for layered media [40,42],
the second is the characteristic Green’s function procedure [43,44], the third one is the
Wiener-Hopf Technique [40,45] in its generalized form [15,16] and the fourth one (which
is a completely novel contribution) is the direct application of Fredholm factorization to
Generalized Wiener-Hopf equations (GWHEs).

The method starts with an extension of transverse equation theory for layered arbitrary
linear media to stratification of angular shape with the help of BM abstract notation. We
then apply characteristic Green’s function procedure to get solution of equation in angular
shaped geometries. The solutions defined at the faces of the angular region are spectral
functional equations that relates continuous (tangential) field components of the two faces
delimiting an homogeneous angular region. The application of boundary conditions yields
system of Generalized Wiener-Hopf equations (GWHEs) where generalized means that the
definition of the field components of each face are defined into different complex planes
but related together. The GWHEs preserve the characteristic form of Classical Wiener-Hopf
equations (CWHESs) where the system of equations presents a kernel, plus and minus
unknowns; but the plus and minus unknowns are defined into different complex planes
(related together). The functional equations and GWHEs of angular regions can be suitably
interpreted with network formalism as commonly done in classical layered regions using
transmission line theory. This circuit/network modeling representation of angular regions
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allows to describe the technique with systematic steps avoiding redundancy. This capability
is particular useful when dealing with complex scattering problems where we break down
the complexity of the geometry into subdomains of canonical shape. These subdomains
are modelled via spectral functional equations or related integral representations that can
be interpreted through network approach (obtained once and for all) and are capable to
model the entire complex problem by composition of circuital relationships, see for instance
[36-38].

In presence of isotropic medium (and further special cases of more general media),
a suitable mapping reduces the GWHEs to CWHEs amenable in some cases of exact
solutions, alternatively we can resort to the semi-analytical /approximate general-purpose
factorization method: the Fredholm Factorization. This technique has been presented in
[19] for CWHEs and it has been effectively applied in complex scattering isotropic problems
[15,16,36-38].

The main constraint in the present work resides in the complexity of the media that
does not allow mappings between complex planes of GWHEs for their transformation
into CWHEs. Consequently, in particular when dealing with arbitrary linear media, we
propose to rely on a novel version of the versatile approximate method known as Fredholm
factorization. Here we apply for the first time the Fredholm factorization method directly
to GWHEs as a regularization tool. This regularized method can be derived also before
the imposition of boundary conditions, i.e directly on spectral functional equations thus
before obtaining the GWHEs of the problem, by reversing the classical order of imposing
boundary conditions and then apply Fredholm regularization obtain same effectiveness in
the method. We call this new methodology Direct Fredholm Factorization.

We observe that the impossibility to map GWHESs to CWHEs in arbitrary linear media
is similar to the impossibility to define an unique angular complex plane for SM, KL, and
also WH methods, but the new WH methodology proposed in this paper overcomes this
obstacle resorting to direct Fredholm factorization applied to GWHEs.

From the solution of the GWHEs inherent to the angular region problem we obtain
the spectral representation of field components along the faces delimiting homogeneous
angular regions. The complete spectral analysis of the diffraction problems is then obtained
resorting again to spectral functional equation written for an arbitrary azimuthal direction.
Finally, spectral inversion yields field components in physical domain for any point in
the angular regions. An alternative method to get the field is also proposed and it is
based on the use of superposition (because of linearity) on spectral representations before
spectral inversion, identifying spectral contributions of the faces of the angular regions
using equivalence theorem.

All the theoretical properties of the mathematical statements are fully described in
the text, although sometimes complete rigorous mathematical proofs are limited. On
the other hand, validation-through-examples of the proposed novel theoretical package
is reported, starting from demonstrating effectiveness of direct Fredholm factorization
applied to GWHEs in the scattering from a PEC wedge immersed in an isotropic medium
and, ending with validation of functional equations of angular regions in arbitrary linear
media with the analysis of a PEC half-plane immersed in particular anisotropic media.

While implementing the method, we observe that the main difficulty resides in the
correct estimation of kernel functions in the GWHEs and the corresponding FIE formu-
lations for the presence of multivalued functions that need particular attention in their
definition and calculation. The following Sections highlight all multivalued functions and
their correct estimation and assumption.

In summary, we highlight in brief the main novelties of this work with respect to the
state of the art reported in the Introduction:

* the development of a first spectral method capable to handle scattering in arbitrary
linear media with multiple propagation constants,

* the introduction of a novel solution procedure of GWHE:s in particular with multiple
propagation constants: the Direct Fredholm Factorization,
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® the description in terms of the network interpretation of spectral functional equations
and related integral representations for angular regions filled by arbitrary linear media,

e the computation of the field at each point within the angular region resorting to the
equivalence theorem and using Kirchhoff representations in the spectral domain,

e the improvement of quality of approximate spectral solutions re-imposing GWHEs
(named iteration).

It is important to highlight that the applicability of the proposed WH technique to arbitrary
linear media resides on its formulation directly in the Laplace domain avoiding other com-
plex planes, while techniques, such as SM, use complex angular plane based on Sommerfeld
representations that are applicable only to isotropic media or special cases of anisotropic
media. Moreover, although also SM uses Fredholm integral equations in complex angular
plane for approximate solutions [2,6] but limited to isotropic media, again the proposed
WH method is extended to arbitrary linear media with Direct Fredholm Factorization
because directly formulated in Laplace domain. Furthermore, another important result is
that, while Sommerfeld-Malyuzhinets solutions combined to asymptotic methods require
analytical extension of the spectral solutions in the improper sheet to compute far field, the
proposed application of equivalence theorem in the context of the proposed method can be
directly applied to approximate WH spectral solutions in Laplace domain. This result is
due to the fact that the direct solution of the GWHE equations provide also the complete
spectra of the field on the two faces of an angular region useful for asymptotic estimations.

This article is organized into seven Sections and one Appendix. In Section 1, we
introduce the motivation and the scope of the present work and report on the state of the
art related to the spectral analysis of diffraction in complex media. Section 2 presents the
main mathematical steps to get spectral functional equations in angular region filled by an
arbitrary linear media and with arbitrary boundary conditions starting from BM abstract
notation for transverse equation in layered planar regions and by extending this theory
to layered angular regions filled by arbitrary linear media. Section 3 develops the theory
starting from spectral functional equation to get regularize integral representations for
angular regions in arbitrary linear media with direct application of Fredholm factorization
method. If boundary conditions are applied the representations are GWHESs. Section 4
presents the route to get asymptotic estimation of far field inside the angular region once
the face spectra on the two limiting faces is obtained. To demonstrate the efficacy of the
proposed methodology, in particular the direct Fredholm factorization, Section 5 reports
validation in the simple case of a PEC wedge immersed in an isotropic medium. To further
validate the method in arbitrary linear media, Section 6 presents an example of application
of functional equations in arbitrary linear media: PEC half-plane immersed in a gyrotropic
medium, then we have conclusions. Section 7 contains conclusions and the Appendix
reports the full explicit formulas and equations when abstract notation is used in the main
text with the dual purpose of enhancing readability and ensuring completeness.

2. Spectral Functional Equations in Angular Region Filled by Arbitrary Linear Media

Spectral functional equations in angular regions filled by arbitrary linear media are
obtained by exploiting the combination and the extension of powerful mathematical tools
developed in different contexts: the Bresler-Marcuvitz (BM) Transverse Equation Theory
for layered media [40,42] and the characteristic Green’s function procedure [43,44]. In this
section, following [41], we first briefly revisit the BM theory for layered planar arbitrary
linear media as a fundamental step to analyze layered angular regions. We then apply
the characteristic Green’s function procedure to get solutions of the obtained system of
differential equations. Finally, we provide the spectral functional equations by evaluating
the solution at the faces of the angular region. In particular the functional equations relates
continuous (tangential) spectral field components defined at the two faces of the angular
region.
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We start from the application of BM theory to Maxwell’s equations in layered arbi-
trary non-dispersive homogeneous linear media with tensorial constitutive relations (i.e.
bianisotropic media [31-33])

+u-H M

where the electric and magnetic fields (E, H) are related to the electric and magnetic fluxes
(D, B) and, the tensors (g, 1, &, {) are respectively the electric permittivity, the magnetic
permeability, the two magneto-electric coupling parameters.

By assuming

a)  Cartesian coordinates (z, x,y)
b)  eT/%! time harmonic field dependence
) invariant geometry along z and stratification along y

d)  sources constituted of plane waves having z—dependence e /%Z where &, depends
on skewness angle with respect to z (&, = 0 at normal incidence on z)

we obtain the transverse differential equations in matrix form for layered planar media

0
a ‘Py(x y) = My(— ]"‘o/*)‘tﬁy(xr?/) (2)

where the four dimension column vector!
¢y = |E, Hi|', with Ey = |E., Ex|', H; = |Hz, H|' (3)

Based on the nature of Maxwell’s equations, My( —ja, aa—x) is a second order four dimension
matrix differential operator of the form:

d 02
- +Myp 2 4)

.9
My(_]“m* ox

ax) - Myo + Myl

where the explicit forms of the matrices M,,, M1, My, for an arbitrarily linear media (1)
are reported in the Appendix A at (A2)-(A9). The application of Fourier transform along x
reduces (2) to

o d .
tpy(n y) = My(—jao, —jn) - ¥y (11, ) (5)

where 9, (x,y) = 5 f y (1, y)e 71%dny and

My(—jao, —jn) = Myo — My — 772My2 (6)

We introduce here the analysis of the operator My (—ja,, —jn) of the layered planar arbi-
trarily linear media necessary to get the solution of (2) in terms of eigenvalues, eigenvectors
with the characteristic Green’s function procedure and boundary conditions. The same
study is needed to obtain solution for layered angular arbitrarily linear media. Suppos-
ing for the general case (removing exceptions) that My, is semi-simple, we compute its
eigenvalues A; and eigenvectors u;

Myui = )\iu,- (7)

ie.
M, = U,J,u,’ (8)

1 Throughout the paper we assume notation | | for vectors not for modulus of a vector
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= —tr(My), b=

where J, = diag{A1,A2,A3,A4} and U, = (u1,uz2,u3,ug) (dependence on 7 and «, is
omitted). The computation of eigenvalues is obtained from the zeros of characteristic
equation of order four (9) whose coefficients can be written using Bocher’s formula [46]:

det[My, — MI) = A} 4+ aA? + bA? +cA;+d =0 9)

atr(My) + tr(Mj)
- 2
It yields the four eigenvalues:

btr(M,) + atr(M2) + tr(M>
D) o O O

;€=

Al:_g_ﬁ_\/T+\/MQ+Q’A2:_E+\/T_VMH+Q’ (11)
4 2 2
o a VT+VMiQ  a VT-JM,—Q ,
e A i S — 12
where
a®>  —Bac+b>+12d Ju-—2b a® — 4ab + 8c 3a?
T=— , Q=——+— M,=——-2b—T (13
T 39u T3 Q 4T T4 (13)
with
3
u= @, v= 9(3a2d — abc — 8bd +3C2) + 203, s = v? — 4(—3ac +b* + 12d) . (14)

We note that the column vectors u;_1 5 3 4 of Uy provide a basis in the space C* where we
define the transverse electromagnetic field ¢, while the column vectors v;_1 53 4 of

v, =u," (15)

in the reciprocal space will be fundamental to obtain functional equations through the
characteristic Green’s function procedure. Each couple (u;, v;) is related to a single A;
whose explicit forms are in general the cumbersome expressions reported in (11),(12) and
depend on 7. In the most simple case, i.e. the isotropic medium (e = el p = ul,§ = 7 = 0),
A; assume the forms B o

M= =-A3=—Ag=\/(ad+7?) =k = j\/ (K2 —af) —? = jCis0, k = w\/ep (16)

where in presence of losses (k = k, — jk;; kr, k; > 0) we have Re[A1 ] > 0 and Re[A34] <0,
i.e. respectively related to progressive (i = 1,2) and regressive (i = 3,4) waves with
respect to y of the form e~/1¥e~*¥¢~i%Z In this framework we associate the direction of
propagation to attenuation phenomena, while we let free of constraint the phase variation
to model also left-handed materials. In a general arbitrary (even small) lossy linear medium
we have always two eigenvalues, say i = 1,2, with positive real part A; = +j¢; representing
progressive waves and two, say i = 3,4, with negative real part A; = —j¢; representing
regressive waves, yielding all four y longitudinal propagation constants with Im[¢&;] < 07
(progressive/regressive eT/¢Y).

We affirm here the importance of keeping the generality of the medium, since, while
investigating scattering of objects immersed in arbitrary linear media, the scatterer can
be arbitrary oriented with respect to the principal axis of the (crystal) medium. However,
when the problem allows the definition of a coordinate system which coincides with the
principal axes of the crystal medium, we get tensorial constitutive relations with diagonal
tensors (1). These media are called biaxial, uniaxial, isotropic while the three terms in

2 Assuming time-harmonic dependence e*/“* we have a x,y,z progressive waves ¢~ /1¥e~/%i¥ ¢=j%Z regpectively
with Im[y, &;, a0] <0
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the diagonal are respectively all different, one different, all equal. Other special cases
are gyrotropic media that represents medium where the tensorial constitutive relations
with respect to the coordinate system are hermitian of the following type (in (17) we limit
description to the permittivity, i.e. gyroelectric medium)

e +jeg O
e=| —jeg 3 0 (17)
0 0 £,
y
VX0 YZ@ Oy ®Z
4 a
Y
A
0 > [0)
®
v @ o
Y
X2 X2

(a) (b)

Figure 1. Angular regions and oblique Cartesian coordinates. (a) The figure reports the z,x,y
Cartesian coordinates and the oblique Cartesian coordinate system z, u = x, v with reference to the
angular region 1 of aperture 7y (0 < ¢ < ) with 0 < ¢ < 7 and delimited by faces a and o. In the
figure, a second region is identified (—7r + v < ¢ < 0) delimited by faces b and o. The figure reports
also the local-to-face Cartesian coordinate systems Z; = z, X1, Y7 and Z; = z, Xp, Y, respectively for
face a of region 1 and face b of region 2. The local-to-face Cartesian coordinate systems are obtained
from z, x, y Cartesian coordinate system by rotation, respectively for a positive y and a negative 7w — 7.
(b) The figure shows the new framework of the space divided into two angular regions useful for
the study of wedge structures. The figure reports both the z, x, y Cartesian coordinates the oblique
Cartesian coordinate system z, u = x, v where 7 is the aperture angle of region 2. The figure reports
also the local-to-face-b Cartesian coordinate system of region 2 Z» = z, Xy, Yy that is obtained from
z, x,y Cartesian coordinate system by rotation of an angle —v. Finally in both figures we use also
cylindrical coordinates (z, p, ¢).

Starting from planar layered regions, we extend the theory to angular shaped regions
of aperture 7 as reported at Section 3 of [41] from isotropic to arbitrary linear media. With
reference to region 1 of Fig. 1.(a), we derive from (2) the oblique transverse equations (19)
using an oblique system of Cartesian axes (z, u = x,v):

X=u-+vcosy, y=ovsiny (18)
d .0
_%4@(”/ v) = My (—jao, @) iy (u,0) (19)
The application of Fourier transform along u = x reduces (19) to
d . .
= 7o ¥y (1,0) = My (=joo, —ji1) - 9y (7, 0) (20)
where ¢, (1,0) = 2 [ 3y (n,0)e /1"dyy and
My (=jato, jif) = Myo = jiMyy = 1My (21)
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Py (n,0)

Myo = Myosiny, My = Mysiny — Itcosy, Myz = Myzsiny (22)

Based on the link between M, and My, we have that M, has same eigenvectors u; of M,;,
and the following relationship between the eigenvalues A,;(y) and A;

Ayi(y) = jycosy+Ajsiny, i =1.4 (23)
resulting into the following “oblique” v—longitudinal propagation constants

mi(y) = —jA,i(y) = +ncosy +&isiny, i =1,2 (24)
mi(y) = +jAqi(y) = —ncosy +isiny , i = 3,4 (25)

in agreement with the relationship between A; and ¢;, and with correlated progressive
and regressive propagating interpretation along the longitudinal direction y and along
the oblique “longitudinal” direction v (progressive/regressive eT/"i?). We note that the
quantities M., (—jao, —j1), A4i(7y) and m;(y) depend on the geometrical parameter -y and
on the spectral variable 7.

With reference to region 1 of Fig. 1.(a) we obtain the functional equations with circuital
interpretation as mathematical manipulation of the solution of the differential equation (19)

using Laplace domain (17, v f el vy (u,v)du :
d . . . -
_%ij(’?rv) = My (—jao, —jn) - Py(11,0) + $sa(v), v >0 (26)
. 0
Psa(v) = — - ¢y(0+10) + 1 My - ‘I’y(0+/v) — M- @’l’y(”rv) (27)

u=04
The benefit of using Laplace transform is correlated to incorporation of boundary conditions
through initial conditions with the term s, (v). In (26)-(27) the condition u = 04,v > 0 im-
poses boundary conditions on the fields along face a of Fig.1.(a). The solution is performed
by using the characteristic Green’s function procedure [41] in terms of homogeneous and
particular solutions yielding the representation

% o)

4 4

2 oMM vy _ Z 0;0; - / e M= g (0)do' + Y ;- / e MiME=) g o

i=1 i=1 0 i=3 o

(28)

Now, considering asymptotic behavior of exponential functions in v for v — 4-c0 of (28),
we need to have C3 = C4 = 0 and at the same times the first couple of integrals are null
(since Re[A17] > 0, Re[A3 4] < O, respectively related to progressive and regressive waves).
For this reason setting v = 0 we get the spectral field representation along face o

o)

4
Po+ (1) = Py(1,0) = Cruz + Coup + ) u;v; - / e M=) g (o) do! (29)
i=3 0
By weighting (29) with the reciprocal vectors v3, v4 of M,,, we get the functional equations

Vi - Yo+ (1) = Vi - Psat- (—mi(y)), =34 (30)

where we have used the definition of Laplace transform

Psat(— ]oe M0 q (v 7e (P g (p)dp (31)
0 0
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With reference to Fig.1.(a) and its caption, analyzing and expanding $sa+ (—n;(y)) in (30)
using Maxwell’s equations, we rephrase the functional equations for region 1 into

0j - (I;(H—(T/) =0 T(,Y> ’ l/;u-l—(_mi(r)/)/ 7)/ i=34 (32)

where 1,4 (17) is the 7 Laplace transform of tangent-to-face-o field components (i.e. at
¢ = 0) in Cartesian (z, x, ) and cylindrical coordinates (z, p, ¢) (omitting z coordinate for
invariance)

Yot (1) = |E2(x,0), Ex(x,0), Hy(x,0), Hy(x,0)| e/ dx

o (33)
|Ez(p,0), Ep(p,0), Hz(p,0), Hp(p,0)|*e/Pdp

|

Pay (—m;(7y),7) is the —m;(7y) Laplace transform of tangent-to-face-a field components
(i.e. at ¢ = 7) in local-to-face-a Cartesian (z, X1, Y;) coordinates and global cylindrical
coordinates (z,p, ¢) (located at ¢ = +)

Pat (—mi(7),7) = [ |E2(X1,0), Ex, (X1,0), Hz(Xq,0), Hy, (X1,0)|fe /M0 X1dx
0

N (34)
= ['|E=(0,7), Eo(0,7), Hz(p, 7)., Hp(p, ) [fe™i(M)Pdp
0
and
Sin(’Y)(“af:yy+§xy§yyW—ﬂxyweyy) Sin('Y)(“aﬂyy""éxy}‘yy“’—éyyﬂxyw)
w (yy€yy—CyyCyy) +cos(y) 0 @ (yyeyy—CyySyy) 0
sin(y) (=Czy8yyw+n8yy +pzyweyy) 1 sin(y) (Qyy przyw —Cay pyyw+1pyy) 0
T(y) = w(pyyeyy—CyySyy) @ (pyyeyy—CyySyy)

sin(y) (—wo€yy —Cyywexy+Eryweyy) 0 COS(’)/) _ sin(y) (xoCyy —CyyGxyw+Hyywexy) 0

@ (pyyeyy—CyySyy) @ (yyeyy—CyySyy)
sin(7y) (Eyywezy —eyy (11+Ezyw)) 0 sin(7y) (pyywezy —Cyy (1+Ezyw)) 1
@ (pyyeyy—CyySyy) w(yyeyy—Cyylyy) 35)

Note that (32) are functional equations that relate the Laplace transforms of combinations
of field components on the boundaries of the angular region 1 of Fig.1.(a) , i.e. face o
u>0,v=0(p=0)and faceau =0, v > 0 (¢ = 7). Furthermore, we observe that the
angle vy is essential in determining the impact of anisotropies through T(y).

Repeating the same procedure for region 2 of Fig. 1.(a), we obtain the functional
equations as the solution of the differential equation (19) in Laplace domain using the left

O .
Laplace transform ¢y (17,v) = [ e/T"p, (u,v)du:
d . . ) ~
= 7o Py (11,0) = My (=joo, =jiy) -y (17,0) + s (v), © < 0 (36)

where 14, (v) has the same expression of $s,(v) (27) but with different support v < 0
and it allows the incorporation of boundary conditions along face b (1« = 04,v < 0). The
application of characteristic Green’s function procedure yields for region 2 of Fig. 1.(a) the
expression (28), which is identical to the one of region 1 except for C; and the source term
Psp(v) that depend on local constitutive parameters and boundary conditions of region 2.
Now, considering asymptotic behavior of exponential function in v for v — —oo, we need
to have C; = C; = 0 and at the same times the second couple of integrals are null. For this
reason setting v = 0 we get

oo

2
(I;0+(;7) = 1/;y(17/ 0) = Csuz + Cqug — Zuivi . /e*/\i('Y)(UfU )ll)sb (U’)di)/ (37)
i=1 0
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By weighting (37) with the reciprocal vectors vy, v2 of M, we get the functional equations

(2N 1I~’0+(77) = —0;- li’sb—f—(_mi(’)/))/ i= 1,2 (38)

where we have used the definition of v left Laplace transform

0 o0
Fovi (mmi(n)) = [ P @)do = [ ey (—p)dp ®9)
J, ;

Note the differences and similarities between Laplace transformations (31) and (39) that
yields same definition of —m;(-y) Laplace transform in p but applied to different quantities.
Furthermore, the regularity properties of —m;(vy) Laplace transform are inherited from ¢;
(Im[g;] < 0) according to (24)-(25).

With reference to Fig.1.(a) and its caption, analyzing and expanding g4 (—m;(7y)) in
(38), we rephrase the functional equations into

Vi Yot (17) = —vi - T(y) - P hpy (—mi(y), —mt+7), i=1,2 (40)

In (40), T(+y) is the one reported at (35) for region 1, P = diag{1, —1,1, —1} is needed for
v = —X» in region 2 with respect to v = Xj inregion 1, $,+(17) is the 1 Laplace transform
of tangent-to-face-o field components reported in (33) and ¢4 (—m;(y), — 71 + ) is the
—m;(7) Laplace transform of tangent-to-face-b field components (i.e. at ¢ = —7 + ) in
local-to-face-b Cartesian (z, X5, Y2) coordinates and global cylindrical coordinates (z, p, ¢)
of Fig. 1.(a)
Por (—mi(y), —m+7) = [|E2(X2,0), Ex, (X2,0), Hz(X2,0), Hx, (Xa,0)|fe /MM X2y
0 (41)
[E=(p, =70 +7), Ep(0, =70 +7), Hz (0, =70+ ), Hp(p, =7t + ) ' /™0 dp

While considering wedge scattering problem with symmetry with respect to x axis,
in combination with region 1 of Fig.1.(a), we need to consider region 2 of Fig.1.(b) where
¥ — 7 — 7y with respect to region 2 of Fig.1.(a), i.e. for the same face a at ¢ = v we change

orientation of face b from ¢ = —m + 7y to ¢ = —v. The functional equations of region 2’
becomes

v Yot () = —0i - T(m =) - P oy (—mi(m =), —7), i=12 (42)
where

(43)
which is the —m; (7t — ) Laplace transform of tangent-to-face-b field components (i.e. now
at ¢ = —7) in local-to-face-b Cartesian (z, X3, Y2) coordinates and global cylindrical coordi-

nates (z,p, ¢) of Fig. 1.(b). Note that in (42) we have assumed: region 2’ is homogeneous
to region 1 yielding same u;, v; otherwise specific vectors would be needed. Eqgs. (42) are
functional equations that relate the Laplace transforms of combinations of field components
on the boundaries of the angular region 2 of Fig.1.(b) , i.e. faccou > 0,v = 0 (¢ = 0)
and face b u =0, v < 0 (¢ = —7). In (42), note the new dependence of T(-) (35) on 7T — v,
due to the effect of anisotropies while changing orientation of face b from — + ¢ to —7.
Furthermore, in case of symmetric media (A1, = —A34) we have m3z4(y) = my2(m —1y),
see (24)-(25).
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In general, the system of functional equations (32), (42) allow the analysis of angular
regions symmetric with respect to x axis that are at the base of the analysis of scattering
problems constituted by impenetrable and penetrable wedges surrounded /made by arbi-
trary linear media. In the following, to investigate practical scattering problem, we impose
boundary conditions at the faces of each angular region to the functional equations (32),
(42), yielding a system of GWHEs.

3. From Functional Equations to GWHESs and their Regularized Integral Representations
with Network Interpretation

Network representations of angular regions in isotropic media for electromagnetic
scattering have been extensively studied in multiple spectral domains in [17] using algebraic
and integral formalism. The proposed equations are effectively applied in several works
to practical wedge scattering problems, see [15,16] and references therein. Furthermore
network formalism has been effectively applied for complex canonical problems containing
angular and layers regions in isotropic media, see for instance double wedge [37], flanged
dielectric loaded waveguide [38], wedge over dielectric layer [36].

In arbitrary linear media, the system of functional equations (32), (42)

Vi Pot () = 0i - T(7) - Pay (—mi(7),7), i=3,4 (44)
v Potr () = —v; T(m—79) PPy (—m(m—7),—v), i=12

constitutes two system of network relations that links respectively spectral field components
in region 1 and region 2’ (Fig.1) via a sort of two port transmission relations in algebraic
form. Looking at the first system in (44), we have two combinations of $, (7) components
(33) related to two combinations of $,4 (—m;(7y),y) components (34), i.e., with reference
to Fig. 1.(a), tangential field components of face o related to tangential field components
of face a. A similar interpretation can be repeated for the second system in (44) about
region 2 with field components defined at face 0 and b, respectively in $,4 (17) (33) and
Pt (—mi(7r =), =) (43).

We further note that in equations (44) the components of the face 0 and the face a,b
are respectively functions of the spectral variables 7 and —m;(-) that are related together
via (24)-(25). We can reverse the role of the variables 57 and —m;(+) in the arguments of
the components of these faces. By this way we double the equations of the region 1, first
line of (44) reported also in (45), with the equations of the second line (45) that relate the
components of the face a (functions of the variable 77) with the components of the face o
(functions of —m;(+)). The second line of (45) is obtained defining region 1 as region 2’
(Fig. 1) after a clockwise rotation of an angle +1, yielding the following complete set of
equations for region 1:

Vi Yot (1) = 0i - T(7) - Pay (—mi(7),7), =34 (45)
viy, - Pat (1) = =0y, - Ty (T — ) - P ot (—mpy, (T — ), —7), i=12

In the second couple of the equations (45) we have used subscript Y; to make reference to a
rotated coordinated system (z, Xj, Y1) with respect to (z, x, i), see region 1 in Fig. 2.(a) and
related region 2’ in Fig. 2.(b). We note that the second couple of the equations in (45) are
easily derived from studying a classical region 2, see the second couple of the equations
in (44), but with modified definitions of the quantities v;y,, Ty, (77), m;y, (7) (from Ay, (7))
because of their dependence on constitutive tensorial parameters (g, u, ¢, {) of region 1

redefined in (z, X3, Y7) reference coordinate system, i.e. (gYI, P é‘Y ,C Yi),iseie for example
Th=h o =h =h

cos(y) —sin(y) 0
e, =R/ R, R, = Siné"r) coso(’r) 0 (46)
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Figure 2. (a) Angular region 1 of aperture 7y and delimited by faces a and o with original reference
Cartesian coordinate system z, x, y. The figure reports also the local-to-face-a Cartesian coordinate
systems Z; = z, X1, Y7. (b) Angular region 1 after a clockwise rotation of an angle y becomes a region
2’. The figure shows the reference systems of region 1 after rotation. (c) Angular region 2 of aperture
7 and delimited by faces b and o with original reference Cartesian coordinate system z,x,y. The
figure reports also the local-to-face-b Cartesian coordinate systems Zp = z, Xy, Y». (d) Angular region
2 after a clockwise rotation of an angle oy becomes a region 1'. The figure shows the reference systems
of region 2 after rotation.

due to a rotation of +.
The same rationale is applied to region 2 to double the equations of that region (second
line of (44), reported also in (47)) by obtaining:

Vv, - Pot (1) = Viv, - Ty (7) - Pot (—1iv, (7),7), 1=3,4 )
Vi Poy(n) = —vi - T(m—7) - P-Ppy (—mj(m—7),—7), i=1,2

In the first couple of the equations (47) we have used subscript Y, to make reference to a
rotated coordinated system (z, X, Y») with respect to (z, x, y), see region 2 Fig. 2.(c) and
related region 1" in Fig. 2.(d). We note that the first couple of the equations in (47) are
easily derived from studying a classical region 1, see the first couple of the equations in
(44), but with modified definitions of v;y,, Ty, (), My, () because of their dependence on

constitutive parameters (g, #, ¢, {) redefined in (z, X3, Y2) reference coordinate system, i.e.

(EYZ,EYZ,EYZ,EYZ), see for example

cos(y) sin(y) O
e, =R '-eR, , R = —sig(v) cos()(v) (1J (48)
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due to a rotation of —7. 301

The sets of equations (45) and (47) constitute a complete set of functional equations s
that describe respectively region 1 and 2 of Fig. 3 where in case of symmetric media (i.e. 30
)‘1,2 = —)L3,4) we have Tﬂ3,4(’)/) = 1111,2(7'[ — ')/), see (24)-(25).

VA
@Z
@ O<y<m
v X1
a
Y
A
oy .
=0 xu
Y
b
Yi
X2
®

Figure 3. Two angular regions symmetric with respect to x axis of aperture angle 7y that represent
wedge problems immersed in arbitrary linear media, modeled by the complete sets of equations (45)
and (47).
394
In isotropic media, it is always possible to introduce the angular complex plane w and s

the KL transform method [17] where functional equations become two port admittance s
relations of Norton type respectively in integral and algebraic form using a unique complex s
plane. In arbitrary linear media, the definition of such complex planes is not possible, s
however a novel method the resorts to the following Cauchy decomposition formula in
—m(n) plane is introduced. This is a fundamental tool that allows description of angular o
region problems in arbitrary linear media without introducing further complex planes
except the initial Laplace transforms. In particular to get regularized integral equations from 42
GWHEg, it is not necessary to map the GWHEs into CWHEs with suitable transformations 40
before the application of Fredholm factorization (originally ideated and valid only for o
the CWHE). This revisited novel version of regularization procedure can be called direct s
Fredholm factorization method. 406

At the origin of this method we introduce the following generalized form of Cauchy s
decomposition formula in —m(#) plane (i.e. one of m;(-) that all depends on 7 and now s
we highlight the dependence on 7 for clarity) applied to an arbitrary F(—m(1)) asa e
generalization of standard Cauchy decomposition formula (i.e. the standard form is o

obtained by replacing —m () simply with 7): a1
S W 0 50 D
Folm)) = 55 | 7y + FE (), n € R (49)

where F*(—m(n)) is the non standard contribution of F, (—m(n)) in —m(#) plane. We w2
observe that, in general assuming lossy media, —m (1) is with positive imaginary part s
for n € R, i.e. located in the upper half-plane of complex plane 7, thus the application
of (49) on plus functions is justified (see for example Fig. 4 where we have assumed s
k =1—0.1j,y = 0.77 that yields a —m(t) for t € R path from right to left because of s
¥ > /2, on the contrary for v < 71/2 we get a similar path located in the upper half w7
plane but with opposite versus). We anticipate that the application of (49) to GWHEs  ss
with multiple propagation constants, i.e. multiple m;(#), is fundamental for developing a a1
solution in # plane, as (49) transforms the GWHEs into integral equations in the unique 4
complex plane 7. a1
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The complete sets of equations (45) for region 1 can be represented in the form

ATy (1) Eoz (17) + ALy (11)Eop (17) + Ax1 (17) Hoz (17) + A12(17) Hop (17) = B (1) Eaz (—m3) + B, (17) Eap (—m3) + Bu1 (17) Haz(—m3) + B1a(17) Hap (— 3
A%, (1)Eoz (17) + A5y (11) Eop (17) + A1 (1) Hoz (17) + A2 (17) Hop (17) = By, (17) Eaz(—a) + B, (17) Eap (—ma) + By1 (1) Haz (—my) + Ba (17) Hap (—my
A%y (1) Eaz (17) + A%y (1) Eap (17) + Az1(17) Haz (1) + As2(17) Hap (17) = BE; (17) Eoz(—mm1) + B3, (17) Eop (—m1) + B3y (17) Hoz (—m1) + B3a (17) Hop (—1m1
AE1(77)E02(77) + AEz(U)Eﬂp(’I) + Aq1 () Haz () + Az (1) Hap (1) = BE (1)Eoz(—m2) + 42(77)E0p(_m2) + By (17)Hoz(—m2) + B42(17)P(I508)(—m2

where face 0 and face a spectral field components are related together®.Moreover, the
complete set of equations for region 2 (47) has a similar representation. The imposition of
boundary conditions make these equations a well posed mathematical problem resulting
in a GWHE system. In particular if the region is surrounded by something modeled by

impenetrable impedance boundary conditions we establish relations among field compo-

nents on the boundary faces. On the contrary, if the region is surrounded by penetrable
regions, we establish continuity through tangent components to neighboring regions that
provide further functional equations (coupled together). In any case the type of completed
functional equations and constraints with boundary conditions remain always of the same
form and are a well posed mathematical problem of GWHE type.

As a simple example to illustrate the procedure, let us consider a problem constituted
by only region 1 with PEC boundary conditions filled by arbitrary linear media. In this

case we get
All(U)HDZ(U) + A12(77)H0p(’7) = Bn (U)HaZ(_’”?)) + BlZ(U)Hup(_WS)
A21(7)Hoz (17) + A22(17) Hop (17) = B21(17) Haz (—m4) + Baa (17) Hap (—1m4) 51)
Az1(11)Haz () + As2(1) Hap (1) = Ba1 () Hoz(—m1) + Bsa(17) Hop(—m1)
Ag1 (1) Haz(17) + Ag2 (1) Hap (17) = Baa (1) Hoz (—m2) + Baa (17) Hop(—1m12)

where in the LHS we have plus field unknowns in # and in the RHS we have minus
field unknowns in m;(). The apparent redundancy in (51) after imposition of boundary
condition is exploited to get integral representations only in terms of the field components
Hoz (1), Hop(17), Haz(17), Hap (1) in the unique complex plane 7 using (49). Furthermore the
application of the novel version of Fredholm factorization method allows to get regularized
integral equations. We assert that this procedure is applicable in general to GWHEs, not
only for the specific problem represented in this simple example. The application of (49) to

RHS of (51) yields

s az s Hll

An () Hoz () + Aray) Hop ) = 2000 | Sy + B0 | elhay 4 s (—ma) + H (—ma)
T az T Hﬂ

Aa (1) Hox 1) + Aza (1) Hop(07) = P32 | =ty + B0 | Sellday’ + 2o (—my) + HYp (—ma)
T 0z T Hﬂ

As1 (1) Haz (1) + Asa (1) Hop () = B2 f ’;,J,:if BS;HJ | Wﬁzfdans;(—mo + Hi (—my)

(52)

recalling that all occurrences of m; are functions of 7, i.e. m;(#). Integral equations (52)
are of singular type, for this reason we resort to Fredholm factorization method to get
regularized expressions. The procedure consists on y1; Cauchy smile contour integration
[19],[15] on both side of each equation and consequent mathematical elaboration. Focusing

3 Throughout the paper we assume in spectral equations the notation with two subscripts for the spectral field:
the first subscript is related to the considered face (0,4, b) and the second to the field component (z, x, ).
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the attention on the LHS for each term of each equation (52) we have, using dummy s

subscripts, the regularized expression 449
A(t)H A(t)—A(y
2%1]' [ (ttl;(t)dt — 2%] I (A1) tfﬂ)) dt—l— f
Tt ’Yloro Tt (53)
= o [ MO gr 4 A()H- () — Al HES ()

Focusing the attention on the RHS for each term of each equation (52) we have, using s
dummy subscripts and going back also to representation (51), the regularized expression s

B(HH B(t)-B B H
2%], [ wdt 2n] I (B(t) (Wt)) Hi(=m(t) g1 (ﬂ)f +
Tt Tt Tt
TT DH. (1) B(y
B 2”12 {o {o f m)( '77]+ma)) dt diy’ + 2_{0 7{ WdtHJr(n’)dﬂ’—l—n.s. terms
(54)
Given the expressions of m;(1) (24)-(25) with Im[m;(t)] < 0 in lossy media (Fig. 4.), (54) 2
requires the computation of 453
Me(p, 1) = / L dt (55)
S =+ m(®)

Y1t

that can be performed either numerically or analytically paying attention to the branch cuts 4z
of m(t). Furthermore in (54) we also need to consider n.s. singularities related to the field. s

The validity of the estimation of M,(7, %) extends to complex values of 1’ as long as s
1" does not cross the singularity line determined by —m(t) for t € R, as shown in Fig. 4. 457

10 T T T T

-2 1 1 1 1
-6 -4 -2 0 2 4 6
Relt]
Figure 4. Cauchy smile contour integration line ;; and example of —m(t) line for t € R, k =
1—0.1j,y = 0.7t (If v < 71/2 the behavior of —m(t) is with similar direction but opposite versus. To
intuitively understand this property in isotropic medium, use m definition in w plane and apply the
formula for aperture angle that are supplementary.)

The expressions (53), (54) are regularized integral terms since their kernels are compact, s
moreover, they respectively include n.s. terms of field components in # and —m;. The s
detailed proof of this assertion is to be performed for specific problems. However, while 40
numerically implementing the method, we observe that one of the main difficulties resides s
in the correct estimation of kernel functions A(7), B(y7) for the presence of multivalued s
functions that need particular attention in their definition and calculation. 463
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For simplicity and compactness of discussion we will examine the properties of in- 4
tegral equations in the simple case of a PEC wedge immersed in an isotropic medium s
in following section 5.2. Eq. (51) yields a 4x4 system of Fredholm integral equations e
of second kind by utilizing (52), (53), and (54). This system is expressed in terms of s
Hoz(17), Hop(17), Haz(17), Hap(17). It is important to highlight that the system only depends s
on the spectral variable #, ensuring that functions do not rely on m; outside of the integra- 4
tion sign. This property is fundamental to avoid analysis of unknowns defined in different o
complex planes (7 and multiple m;) that are correlated through cumbersome improper
sheet properties. a2

4. Asymptotic Estimation of Field in the Angular Region 473

Once the spectra at the faces of the angular region is obtained we can estimate the 4
asymptotic behaviour of far field inside the angular region. ats
Going back to the solution of (26) in Section 2 for region 1 reported at (28), we have 476

o

2 4
Py(7,0) =) Cie Moy, Y uiv; - /e_/\vi('mv_ ") psa(v')d0', v > 0 (56)
i=1 i=3

%

From the homogeneous portion of solution in (56) we get the definitions of arbitrary
coefficient in terms of field components at v = 0 (face o0): a8

i Py(,0)=Ci, i =1,2 (57)

The particular integrals in (56) are terms related to face a via s, (v). Due to linearity of
the problem we apply superposition principle and we can interpret (56) as the result of an s
equivalent theorem where 9y (77, v) is represented through equivalent sources at face 0 and
a. Similarly the spectral field in region 1 can be considered as result of the analysis of a 4
rotated region 2, Fig. 2.(b) in Section 3, yielding 483

d . S
— 2o P (1,0) = Mr—y (=joto, =j11) - ¥ (1, 0) + $so(v), 0 <0 (58)

where we note y — 7 — 7 that it will impact on all terms of the solution as already reported s
in in Section 3: u;y,, viy,, Aiy,, Miy, and field components. The solution takes the form a5

2 it ,
Uy, Uiy, - /e_AW"Yl(”_W(v_U Vpso(v)dv', v < 0
1

1= v

4
J’Yl(ﬂl v) = Z Cie—/\yi}’l(ﬂ—')/) Uui)ﬁ _
i=3

(59)
where now v = —x of Fig. 2.(b) different from v = X of Fig. 2.(a). From the homogeneous s
portion of solution in (59) we get the definitions of arbitrary coefficient in terms of field s
components at v = 0 (face a): 488
Oiy; - l[~Jy1(77, 0) = Ci, i= 3,4 (60)

The particular integrals in (59) are terms related to face o via 1s,(v). Due to linearity of the 4o
problem we again apply superposition principle and we can interpret (59) as the result of a0
an equivalent theorem where y1 (7, v) is represented through equivalent sources at face a 1o
and o. 492

Using superposition principle and considering only homogeneous portions of (56) and a9
(59) we can represent the complete field without the particular integrals. Each contribution
originated from (56) and (59) is a spectral component that can be Fourier/Laplace inversely 45
transformed in the physical domain (u,v) and they represent respectively the fields from s
equivalent currents distributed in half-planes (respectively face 0 and face a). The applica-
tion of asymptotic representation of fields for each component in a unique global system 45
of cylindrical coordinate provides the estimation of field in terms of classical GTD for the 40
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angular region 1 but as superposition of GTD for two half-planes (face o and face a), like
in Kirchhoff representations. This procedure will be detailed examined in the practical
examples reported in the following sections and it is a fundamental tool to estimate GTD
directly in Fourier/Laplace domain for angular region filled by arbitrarily linear media
where GTD in w plane is not available (as commonly done in isotropic angular region).
Indeed the computation of GTD for an angular region filled by arbitrarily linear media is
here proposed by resorting to the computation of GTD in two half-plane problems.

An alternative way to obtain far field is based on the computation of spectral field
for any azimuthal direction ¢, by splitting the angular region into two subregions at any
observation angle ¢ (subregion A0 < ¢’ < ¢ and subregion B ¢ < ¢’ < 7). Once obtained
face spectra at ¢ = 0, y for the entire angular region as proposed in the previous sections,
we then relate the spectra at ¢ to the ones of the two faces by using the functional equations
of the two subregions. These g-parametric spectral representations of field spectra allow
asymptotic evaluation of far field at any ¢. We observe that the functional equations are
written in terms of continuous field components at the boundary faces of the angular region,
see section 4. This property can be interpreted as a novel and original form of electromagnetic
equivalence theorem in spectral domain in the context of angular region problems filled by an
arbitrary linear medium.

5. Validation of the Novel Regularization Procedure with a Simple Example: Direct
Fredholm Factorization applied to the PEC Wedge in Isotropic Region

In order to validate the procedure from a mathematical point of view, let us first
demonstrate efficacy for the simple case of a PEC angular region 1 (Fig. 2.(a),(b)) filled by
an isotropic medium where closed form WH solution is available. We have for region 1
from

m=m;(t—y) =mjo(y) = —ncosy+¢siny, i=1,2 &= /k2— a2 —7? (61)

72 Xol] 72 Xol]
—2 wee ——2 T we
i _ @) ot @)
Uy = wel |, up = wel , Uz = wed |, ug = wel (62)
0 1 0 1
1 0 1 0
_ | Z4ag  _agy 1 — 2oy R—af 1
1= 2w ue Zwoyé 0 3 |02= _2w0y§ T 2wpe 2 0 (63)
va = |- Etag %y g 1| g, =| Mo ki—of 1 0
3= 2wpc " 2wucg 2 |47 | 2ou¢ 2wpc 2

the following functional equations [41] (first two equations in (45)):

— o Eop(17) + (7% — k) Eoz(17) + kEZoHop (17)
= —aoNEqp(—m) — [Z sin(y) + cos(v) (k* — )| Egz(—m) (64)
+kEZoHap(—m) — sin(7y)aokZoHpz (—m)
(k? — a3) Eop (17) + ot Eoz (17) + kG Zo Hoz (17)
= (k* — &) Eap(—m) + ato[cos () — sin(7)¢] Eaz(—m) (65)
+kZ, [sin (7)1 + cos(y)¢] Haz (—m)

At normal incidence («, = 0) we get
—CEoz(1) + kZoHOp(U) = —[nsin(y) + & cos(v)|Eaz(—m) + kZoHap(_m) (66)

kEop (1) + §ZoHoz(17) = kEap(—m) + Z,[5 sin(7y) + & cos(y)| Haz(—m) (67)
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where we notice decoupling of equations (66)-(67) respectively for E, and H, polarization.
The imposition of PEC boundary on functional equations (66)-(67) condition yields the
GWHEs

Hop(17) = Hap(—m) (68)
§Hoz(17) = [17sin(y) + ¢ cos(y)]|Haz(—m) (69)

with plus/minus filed unknowns respectively in 7, m. We notice that the regularity proper-
ties of the problem depends on the multi-valued function ¢ = \/k? — 5% (due to physical
reason) [15] that defines proper and improper sheets of # plane.

5.1. Classical Solution of the GWHEs of the problem in Different Complex Planes

In order to illustrate and validate in the following subsection the new direct Fredholm
factorization procedure of Section 3, in this subsection we present the classical WH solution
of (68) and (69) obtained in closed form [15] with the help of: a specialized mapping, the
factorization and the decomposition with the extraction of source terms such as Geometrical
Optics (GO) fields for plane wave illumination. We also clarify in this subsection important
properties related to different complex planes (including angular complex plane w) where
the problem and the solutions are represented.

The specialized mapping is

n= —kcos(larceos(—Z)) (70)

introduced for the first time in [11] and extensively used in isotropic wedge scattering
problems as reported in [15]-[16]. The mapping transforms plus unknowns in # plane and
minus unknowns in m plane (61) into respectively plus and minus unknowns in 7j plane,
yielding Classical Wiener-Hopf Equations in the new complex plane 7:

Hop+(77) = Hap+(—17) (71)
GHoz+(17) = [7sin(7) + & cos(7)|Haz+ (—77) (72)
where ¢ and # becomes functions of 7 and
_ 4 1
m= kcos(narccos< k) +’y> (73)

From this point, the solution proceeds as for CWHEs thus with factorization, decomposition
and application fo Liouville’s Theorem, considering plane wave illumination at E, and H,
polarization respectively with incident waves:

. . - : 1 9EL(p,9) ko : -
i — £ pikpcos(o—g,) g ___t 9\ K — o) ek cos(9—@o)
E:(p, ¢) = Eoe Hplor9) = =000 oy (o= go)e E
| (74)
‘ - _ 4 1 9Hi(p, 9) ko : ~
i — g pfkocos(p—9,) Ei — 2\09) _ — 0. )efko cos(9—ao)
H;(p, ¢) = Hoe » Eo(p, ) iwep 0 e Sin(@ —@o)e H,
(75)

Due to PEC boundary conditions, we obtain the following GO source terms tangential
respectively to face a and o of angular region 1

E, . E, . : B
HYO(p, 0) = =227 sin o0 <%, HFO(p,7) =27 sin(y — go)e/*” cos(r=go)(76)
0 0

HSO(PI 0) = ZHoejkPCOS(%), HZGO(P,’)/) — 2Hoejkpcos('yfq)o) (77)
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that in spectral domain, according to Laplace transforms (33) and (34), become

—2jE,sing, .co —2jE,sin(y — ¢o)

HGO _ , HSO (—m) = 78
op ( ) ZU(’?_T]U) ap ( ) Zo<m_mg) ( )

2jH, —2jH

GO(,y — <] GO(_ .\ _ <o
HEU) = o0, HE(om) = 25 )
with 17, = —kcos @o, my, = kcos(y — ¢,). In 7j plane (70), the pole 7, is mapped into
flo = —kcos(—7 o). In the following, we assume ¢, < 7/2 to locate 7, in the upper

half-plane of complex plane 7 yileding non-standard plus unknowns; generalization is
straightforward yielding an 7, in the 77-lower half-plane while /2 < ¢, < 7.

Focusing the attention on E; polarization, due to the simplicity of equation (71), we
observe the absence of need of factorization, thus we perform decomposition to highlight
non-standard contribution in the plus unknown Ho, (77) constituted of HOC;O(U) =R/(n—

10) (78) to be mapped into 7 plane (70) yielding Hg)o(ﬁ ) =T/(y —1,). We obtain:

T T
H, 7) ——— =H —7) — 80
op+(77) 7— 1o ap+( 1) — (80)
with
dij mE, . 7 —2jE,sing, dif 7 8in 2 9o
T=RI| = "0 gin"g, R="ZMPo A1 _T7 770 (g
dnly, ]’Y Zo ’Y% Zo dil,, v singo (81)

Due to regularity and asymptotic behavior of LHS and RHS of (80), applying Liouville’s
Theorem, (80) is equal to zero, thus we get simple closed form solutions:

_ T _ T
Hoe )= =gy M= 5,

(82)

Solutions (82) can be mapped into 7 plane using the inverse mapping of (70)

o T Ui
7= —kcos(v arccos(—k)) (83)

We recall that the regularity properties of the problem (68)-(69) in # plane depends on the
multi-valued function ¢ = \/k? — 572 (due to physical reason) and now, after the application
of the mapping (70), on the multi-valued function ¥ = \/k? — 772 in 7] plane through log
representation of arccos(—7/k), see section 3.4 of [15]. Contrary to (70), the transformation
(83) requires particular attention since it maps 7 into # for 0 < y < 7t without covering the
entire proper sheet of # plane defined by ¢ function. For this reason, portion of # proper
sheet falls into improper sheet of 7 plane and, since the closed form solution is obtained in
7 plane, this solution must be considered correct (not offending) only in the proper sheet of
7] also after applying the transformation (83). To easily control proper/improper sheets of

1 and 77 plane we can resort to their visualization in complex plane w (y = —k cos w, thus
7 = —kcos %w) and m = kcos(w + v)). The w plane shows the proper sheets of both

planes (77, 7) in a unique plane. In particular, for real w the proper segments originated from
n and 7j (respectively related to ¢ and x) are —71 < w < 0 and —y < w < 0, see section 3.4
of [15]. This means that the closed form solution obtained in the proper sheet of 7 is not

valid in the entire proper sheet of # plane but only in a portion due to the properties of (83).

Let us now consider the CWHE of H, polarization (72):

G(7)Hoz+(7) = Haz+ (—17), G(77) =&/n (84)
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with n = —ysin(7y) — & cos(y) = Vk? — m?. According to [40], we have the factorization

R e e R e R s I

Confirming the same assumption ¢, < 7/2 for simplicity, 7, is located in the 77 upper
half-plane, yielding a non standard plus unknown H,, (7) constituted by the source non
standard component H$C () = Ry /(17 — 7o) (79) that in 7 plane becomes:

) dij _sinZg, .
HSO () = —-, TH:RHﬁ — 2jH, 170 Ry = 2jH, (86)
o

7 — o v sing,
Applying factorization and decomposition to (84) we get

G4 () Hozt () — G (7o) HSC (1) = G~ (1) Haz+ (—77) — G4 (o) HZ () (87)

Due to regularity and asymptotic behavior of LHS and RHS of (87), applying Liouville’s
Theorem, (87) is equal to zero, thus we get simple closed form solutions:

Hozt (1) = GM(7) G (70) HSC (71), Hazt (—77) = G- ()G () HEC (1) (88)

Again the closed form solutions (88) at H, polarization obtained in the proper sheet of 77
plane can be mapped into # plane using the inverse mapping (83), but we need to consider
these solutions valid only for 77 values belonging to the proper sheet of 7j plane. Moreover
this property can be ascertained by checking that (68)-(69) (provided the solutions in 77) are
enforced only for 7 values belonging to the proper sheet of 77 plane.

In order to obtain solutions valid in the entire proper sheet of # plane or beyond (i.e.
also in the improper sheet) we need to resort to analytical continuation technique that, in
case of unique propagation constant as in isotropic media problem, can be implemented via
representation of GWHEs (e.g (68)-(69)) into the w complex plane as difference equations,
see examples in [15]-[16]. Another option is to describe the problem with unique propa-
gation constant directly in w plane where the concept of proper and improper sheets of 7
and 7 planes are expanded periodically into w plane with an alternative vision of Riemann
sheets. In this case the closed form solutions corresponding to (88) are (89) are valid in the
entire w plane as opposed to approximate solutions obtained with line numerical integra-
tion located in a particular sheet in either 7 or w plane. In this last case, which take origins
from classical implementation of Fredholm factorization [16], again we need to resort to
difference equations for analytical continuation.

. 2jH, 7 cscw sin 7% o 2jH, 7 cscw sin 7% %
w) = , w) = —
oz+ (W) —k~y cos % + kv cos ”ff” az+ (W) kv cos % + kv cos ”;’)0 ®9)

5.2. Regularized Integral Equation Method for the Direct Solution of the GWHEs in Angular
Regions (Direct Fredholm Factorization)

Following the procedure of Section 3, that are simplified because of isotropic medium,
we duplicate the equations. For E, polarization we have

Hop(17) = Hap(—m)

Hup(*l) = Hop(_m) ©0)

while for H, polarization we have

‘:Hoz(ﬂ) = [77 Sln(’)/) + (;ICOS(’)/)]HQZ(—WZ) (91)
$Haz(n) = [n7sin(7y) + & cos(y)]Hoz (—m)
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with m = m(n) defined in (61). Notice that, applying (70) to each of (90)-(91), the duplicated
equations assumes same CWHE forms, with just a replacement of 77 with —7.
Both systems of equations can be considered a particular case of

G()E+ (1) = H(p) X (—m) ©92)
Ga(17) X+ () = Ha(n)Fy (—m)

that are suitable to describe more general cases. To describe the procedure, for simplicity,
let us assume that F, (1) is a non-standard plus # unknown while X (—m) is a standard
minus m unknown; generalization is possible with a little effort.

Applying the Cauchy decomposition formula (49) to the unknowns defined in —m (1)

I 93)
Xi(=m) = g | ', n €R
from (92) we obtain a system of integral equations
[ee) X ’
G(n)F+ () = 25 H(y) [ reahdy’
o L (94)

Golo) X ) = gy Haln) | SEeusd’ + H ) PE(—m(r)

that are not a system of Fredholm integral equations of second kind (non-compact kernel).
To regularize (94) we follow the procedure presented in section 3. Performing a smile
integration of (94), after mathematical manipulation, we have on the LHSs respectively

N GEL(H) 3y — G(n)Es () + 2%] | wdt — G(y)F(y)

j = 1
" Ga(1) X (t T X, (t %)
o |t = Go(n) X (n) + 15 I (ol =Calr)Xe 1) gy
Tt
and on the RHSs respectively
1 1 H(t)]o Xi(n') 7 / IN !
— [ == dn'dt = M(n, 7 )X d 96
znj’m Zn]t_ﬂ,oo 17’+m(t) Ul (27_[].)2700 (77 77) +(77) n (96)
and
w |t L rmndt = Gl | MaGr ) O
Tt —®
o0 97)
H, ns F5(—m(t
L B s (e :%f MAIFE Cmtt) gy | B | EEC )
Tt —® Tt
where
_ H(1) _ [ _HO—H() 1
M) = J o = J mntrenmd O S g 4t
Tt - Tt (98)

_ Ha(t) _ Hy(t)—Ha(77) 1
Maln1') = | i =, waitrentndt  Han) | et
A ,7
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Figure 5. Vertical branch cuts I'y » of m(t) originated in branch point +k assuming lossy medium (for
visibility k = 1 — j), and smile contour integration line y1; and frown contour integration line y,; with
corresponding warped contours A1 and A, wrapped around the vertical branch cuts I'y and I',. Note
that y1; and <y assume in the figure different observation points for indentation.

Merging (95) and (96)-(98) we get FIEs

I - o [ M s

(99)

T (Ha(t)=Ha () F2* (=m (1)) H, FIE(—m(t))
+om J - dt + 272’})7f eyt
1t
(100)
We observe that from a computational point of view, the regularized FIEs (99) and
(100) are particular efficient due to the presence of compact kernels integrated along the
real axis except for the smile integration included in (98)

1

N T m@)"

(101)

Me(77,77/)=/(t_

it

The evaluation of integral (101) can be effectively performed by warping the smile contour
71t in the lower half complex plane ¢ into the integration path A; wrapped around the
vertical branch cut I'y of m(t) (61) originated in branch point +k, see Fig. 5. By collapsing
the A onto I'; we get

1

Me(n,1') :/rlA((t—n)(n’er(t))dt (102)
where
1 )= — 4./(k —t)(k+t)sin(y) 103)

Al (t=m) (" +m(t) (t =) [=k> +2(£? +1?) — 4tn’ cos(7) + k? cos(27)]

Assuming t = k — jv (v > 0) the representation (102) is quickly numerically conver-
gent. A closed form expression of (102) is obtainable after considering:
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1. selection of branch cut I'y as the line t = ku (with real u > 1) with consequent change s

of A1 and use of mapping t = ku under integration sign, 644
2. expansion of (103) with minimal denominator, 645
3. careful mathematical manipulation of multivalued functions. 646
We get 647
. Feo(ua (7)) Foo(u3(17"))
M(n,1) = —2 ( Feo(u1(n7)) _ +
= O Gy = ) o) ) el o) ) w500 ) = ) o) )
with 648
Foo(u) = julog(2) — V1 —u?log(—u+ jv1—u?) (105)
and the poles 649
"cosy — \/k2 —n2siny "cosy + \/kZ —n2siny
ur () = n/k, ua(n') = 1 ) = 1 —
(106)
Let us now go back to particular cases and consider equations for H, polarization (91) es
for a PEC angular region 1 written in the form (92) with the following definitions 651

4
nsin(7y) + &cos(7y)’

Fi (1) = Hoz (17), X+ (1) = Haz(17), G(17) = Ga(17) = H(n7) = Ha(y7) =1

(107)
The set of FIEs (99)-(100) simplifies: in particular M(17,17") = Ma(17,7") = Me(17,17") o2
and reduces to (102). Eq. (99)-(100) respectively becomes the system of FIEs 653
1 [ (G() = G)) Hox(t)
G(17)Hoz(17) + 271]._/ = dt = (271] /Me 1,1 )Haz (" )dn' +s1(n) ~ (108)
and 654
1 TG -GuHe(M,, _ 1 ] NE
Gl Hex(n) + 7 | o = (27{].)2[0 M1, 1" Ho () +52()  (109)
with ( ( )) 655
1 HE(—m(t
1) = GUNHE(), saln) = 5 [ 2= (110)
Tt
Let us focus the attention on the source term (110) and, for simplicity, assume that only s
F+ () = Hoz(%) is non-standard: 657
2jH,
FI(y) = H () = (111)
/Al

with 17, = —kcos(¢,), 0 < @, < 71/2 and k with small losses (k = k, — jk;, k; << k;). From e
(111), according to —m (1) properties, see also Fig. 4, HS(—m(1)) shows in the proper s
lower half complex plane 7 poles originated by the zeros of (1) + 1, (in m plane we have s
the pole m, = —1#,). The poles can be related to GO waves, i.e. connected to the last couple s
of reflections from faces a and o that create shadow boundaries, for instance see [14]. For s
example if ¢, < 7 — 7y, we have one reflection from face a and one reflection from face s
o reflected again by face a. In fact, from a mathematical point of view, in this case we e
have that the pole m, is related to the poles #,; = —kcos(y — ¢,) (reflection from face a) s
and 7,ar0 = —kcos(y + ¢o) (reflection from a after o) associated to incoming azimuthal s
directions y F ¢, with respect to reference face g, i.e. incoming directions 27y F ¢, with e
respect to face 0. However, we also need to note that residues of poles in the selected test e
problems are related always only to incident field. It means that the primary spectra of o
H!'$(—m(n)) in (110) is more similar to a replica of incident spectrum for 7,4, #raro, Similarly o7
to what has been described in [17] in w plane. 671
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Indeed, the integrand of source term (110) also exhibits the branch cut of —m(#) thus
we estimate (110) by warping 71; into A4

RH RHO

1 [ HE(=m(t))
S = — dt + + 112
2(’7) Zﬂ])\/ t—n N—HWra 1 — Hraro 112
1
where R, and R, are respectively the residues of H,;(—m (%)) in #y, and #raro:
2iH, Ty .

H"(—m = — = e , T, = —2jH, 113
oz( (U)) m(_n) + 176 m(_’?) + 7o Mo JHo ( )

d 2iH,
Ra,ao Tmo dl = % (114)

m HraMraro Ccos 7y + 2_n2
U NraMraro

Using the same passage that in (102) for (101) to (112), we get

1 HECm)  H 1 __H,
m/ M X L T g M) 1)

thus
H,

R R
s2(1) = == Me(,170) + -— -

+
N — Nra N — Yraro
The final set of FIEs for H, polarization when illuminated by a plane wave with 0 <
@o < 71/2 are then (108)-(109) (a specialization of (99)-(100)) with sources s1»(77) defined
and calculated in (110), (111), (116). Note that s1(17) and s,(77) are respectively a spectral
component defined in 7 plane of Hy;(17) and H,z(7), i.e. with the reference coordinate
system of face o and face a.

Let us now examine the convergence properties of FIEs (108)-(109) to get accurate
numerical results [47]. According to classical Fredholm factorization method [19], the
regularization procedure provides compact kernels of the type reported in LHS of (108)-
(109), i.e. square integrable. The further integral operator reported on the RHS of (108)-(109)
in terms of M, (7, 17) is related to coupling term between the spectra of delimiting faces. This
kernel is again compact because (101) shows that M, (7, 4’) is never singular as 57 # t and
" # m(t) and, (104) shows that M, (1, %") is square integrable according to its asymptotic
behavior in terms of (106). Similar considerations can be repeated to more complex and
general cases of angular region immersed in/made of arbitrary linear media.

(116)

5.3. Implementation of Numerical Example and Validation of Direct Fredholm Factorization

Let us consider region 1 of Fig. 1 of aperture angle /2 < v < m, filled by a
homogeneous isotropic medium with propagation constant k (k = k, — jk;, k; << k;)
and terminated by PEC boundary condition. The angular region is illuminated by a H,
polarized plane wave with incoming direction ¢, (0 < ¢, < 7t — 7) and intensity H,. The
spectral solution (Hy:(77), Haz (1)) can be provided by the system of FIEs (108)-(109). Due
to the convergence properties of the kernel [47], simple sample and hold approximation
is enforced with truncation of integration intervals at +A and integration step &, such
that A/h € N. We tested our novel direct FIE solution against the classical exact closed
form solution provided in subsection 5.1 in # and w planes respectively (88) and (89).
Furthermore we compared asymptotic results in terms of GTD coefficients. We examine
in detail the case where v = 0.7, k = 1— 0.1, H, = 1A/m, ¢, = 0.17. Since we have
0 < ¢, < m— 1y, GO field is constituted by incident, face a reflected and double reflected
(from face o0 and then from face a) waves and only the plus spectral unknown along face
0,1.e. Hpz(77), is non standard in the WH formulation (91), as reported in the example of
previous subsection. To enhance the convergence of the approximate FIE solution given
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by (108)-(109), we warp the integration line constituted by the real axis into a straight line 7
located in the 1st and 3rd quadrant of the complex plane at an angle § with respect to 7
the real axis (the singularities of the kernel and the sources are located in the 2nd and 4th 7o
quadrant, see §5.3, §5.4 of [16]): e

w(t) =texp, teR,0<0 < /2 (117)

According to the physical parameters of the test problem we have #,, = 0.309017 — 2
0.0309017§, #raro = 0.809017 — 0.0809017j, both located in the lower half plane, thus consid- s
ered in (116). The discretization of (108)-(109) by sample and hold with A, i yields a linear 74

system of equation of dimensions 2(2(A/h) + 1) 715
d.+K -M ’ H ’ s
=G " =G = —oz | | 21 (118)
_Me gc T K || Hez 52

where the diagonal matrix d G the matrix K . and the matrix MQ contain respectively s

sample of G(7), %ﬁ(q) and M, (17, 7"), while the vectors H,,, H,,, s, S, contain samples
respectability Hoz (1), Haz(17), 51(17), s2(7). Note that M  is the coupling matrix that is much s
weaker than the remaining terms. The sampled solution allow to build a representation of 79
H,. (1), Haz(17) substituting them into the integral part of (108)-(109): 720

Hoz,az(ﬂ) — h ALl [Gil(rl)c(lxt(hl)) - 117 oz,uz(at(hi)) n thl(;/]) A/h

_ oy (hi 020z (0 (hi “11)s
2 L, i ()~ ) 7;;1%(’7' t(hi)) Haz,oz (¢ (hi)) + G (17)51,2(17)
(119)

These approximate expressions of Hy;(17), Hsz (1) are valid for analytic continuation 7
in the proper sheet of 77 plane useful to correctly estimate fields in physical domain through 7
asymptotics of half-planes as discussed in Section 4. This property limits the requirement 73
to know the spectra only in the proper sheet as acquired in the procedure, that is a novelty 7
and a progress with respect to classical Fredholm factorization combined with spectral 7
mapping in GWHE wedge problems. 726

To highlight the performance of the method, we compare the spectra along the real  7r
axis of 7 plane and the segment of # plane useful for asymptotics according to Steepest 7
Descent Path (SDP) method that in isotropic medium corresponds to # = —kcosw with 720
—71 < w < 0, i.e the segment that connect —k with k. 730

To study convergence of the method we have selected physical parameters of region 71
1 with an aperture angle v = 0.77r and plane wave illumination at H, polarization with 7
H, = 1A/m, 9o = 01m, k = 1 —j0.1. We selected quadrature parameters 5 < A <
40, 0.2 < h <£0.25, 8 = 0.1 such that A/h € N. Numerical results are provided in Fig. 6 7
along the segment for asymptotic estimation. From the figure we notice that along the s
segment we have a degradation of spectral solution near w = —7r,0 which correspond 7
to = k, —k. We recall that the solution of FIEs have been obtained by simple sample 7
and hold quadrature and estimation of M, (7, 7’) that saturate precision in particular near s
7 = k, —k (the branch point 7 = —k is a local offending singularity for the plus spectra s
that should not appear while 7 = k is related to physical structural properties of the 7o
problem). Improvement would be obtained with specialized quadrature (and method of 7a
moments) capable of taking into account non algebraic behavior such as branch points 7
[48,49]. However, the scope of the present method is to get very simple, fast and convergent s
solution that cannot incorporate sophisticated quadratures. Furthermore, we observe that 7
the lack on precision near 17 = k, —k is mitigated while computing asymptotics since plus s
spectral unknowns are multiplied by sin w providing locally smoothing errors. However, s

while the offending 7 = —k is a very local perturbation, the physical 77 = k is more present 7
as it is physical. 748
To recover the quality of solution near w = —7,0 (7 = k, —k) we resort to spectral o

considerations based on the properties of the original GWHEs formulation (91). Egs.
(91) can be applied to the approximate solutions obtained from the FIEs to get a new s
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|H,.(—k cosw)| |H,.(—k cosw)]
80 ‘ ‘ ‘ 80 ‘ ‘ ‘
exact exact
A=5,n=0.2 A=5,1=0.2
A=10,h=0.1 A=10,h=0.1
60 A=40,h=0.025 60 A=40,h=0.025
40 40
20 20
0 : 0 : : :
- -37/4 -m/2 -m/4 0 - -37/4 -m/2 -m/4 0
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i

- -3ml4 -/2 -m/4 0 - -3m/4 -7/2 -m/4 0
w w

Figure 6. On top, plots of absolute value of the spectral solutions |H,.(—k cosw)| and |H,.(—k cosw)]
obtained as exact solution and with the FIE approximation for different A, h. On bottom correspond-
ing relative errors between the exact solution and the FIE solutions for different A, I in log;, scale.
We observe a degradation of spectral solution near w = —7t,0 which correspond to # = k, —k. The
branch point # = —k is an offending singularity for the plus spectra while 1 = k is related to physical
structural properties of the problem.

representations of plus spectra from the FIE approximated spectra. This application allows
to obtain spectra near w = —7,0 (7 = k, —k) that takes origin from other portion of # plane
according to m(1). This procedure is particularly effective and valid because m () with 7
in the proper sheet is a portion of the proper sheet of # plane. To demonstrate this property
is particular effective to rewrite (in this simplified isotropic problem) (91) in w plane:

Hyz(—kcosw) = %Huz(—k cos(w + 7))

Sk (120)
Hpo(—kcosw) = %Hoz(—kms(w +9))
with {(—kcosw) = —ksinw, —n = —ksin(w + 7). We notice that —7 < w < 0 on the

LHS corresponds to —7m + 9 < w < 7 on the RHS due to (m = kcos(w + 1)), where
the unknowns are correctly computed. This methodology (named iteration) re-imposes
GWHEs on the initial FIE approximate spectra and it shifts the lack of precision to a region
where the spectral solution is good yielding an homogenization of the error level, see Fig.
7. In the figure we have reported the exact solution and approximate solutions obtained
from the quadrature of FIE with A = 40,h = 0.025, from the quadrature of FIE with
A = 40,h = 0.025 plus the application of (91), and from the application of (91) to the
sources sources of FIE ignoring integrals terms, i.e. using Hoz02(17) = +G~1(17)s12(77).
Note that, considering (91), the map in (120) is only limited, thus we cannot interpret
this procedure as a first iteration on the application of contraction theorem. In fact from our
studies, successive iterations do not yield any benefit in the convergence of the solution.
This is also justified by the fact in w plane the multiple applications of (120) correspond to
recursive equations/difference equations that further shift spectra in w plane, navigating
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replica of proper and improper sheet, see [17], [15]. Moreover, we exclude also that the map
can compensate all physical behavior of the problem starting from roughly approximate
solutions. In Fig. 7 we show the importance of the quality of starting spectra originated
from the solution of FIE before the application of (120). We finally observe that while the

|sinwH,,(—k cosw)| |sinwH,,(—k cosw)|

25 ‘ ‘ ‘ 25
exact exact
FIE FIE
20 f GO+iter 1 20 GO-+iter | ]
FIE+iter FIE+iter
15
10
5
L L 0 L L L
- -37/4 -m/2 -m/4 0 -T -37/4 -m/2 -m/4 0
w w
3 rel.err. log,, scale 3 rel.err. logy, scale
FIE FIE
2r GO-+iter | 4 2 GO+iter
FIE+iter FIE+iter

-1/2 -/4 0 T -3n/4 -m/2 -/4 0

w w

- 3n/4

Figure 7. On top, plots of absolute value of the spectral solutions |sinw Hy,(—kcosw)| and
| sinw Hgz (—kcosw)| obtained as exact solution and with 1) the FIE with A = 40,h = 0.025, 2)
the FIE plus the application of on iteration of (91) (FIE+iter), 3) the application of (91) to the source
terms of the FIE (GO+iter). On bottom corresponding relative errors between the exact solution and
the approximated solutions. We observe an improvement of solution near w = —, 0 once we apply
an iteration of (91) to the approximate solution from FIE yielding an homogenization of error.

FIE provide good spectra except near the branch cuts, the iteration (91) enforce the correct
modeling of structural spectral properties such as the branch cuts.

To further compare the solutions and validate the proposed procedure we compute
the GTD diffraction coefficients as outlined in Section 4 by asymptoptics. Using superposi-
tion we can compute the diffraction by applying asymptotics individually to the spectral
solutions at faces 0 and a considering only homogeneous terms in (56), (59) taking care of
the different reference coordinates (see discussion at Sections 3- 4 while considering region
1 characterized by <y as a region 2’ characterized by 7t — 7, see Fig. 2, (45), (59)):

2
1,0 2 e MilM Py, v >0 (121)
ey, szyl Pyi(n,0)e Ty 0 <0 (122)
Let us start from the inversion of face o contribution (121):
Pie(u,0) = oo [ Fo(0)e My (123)
Yy 27-[ B, Yy
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According to coordinate mapping (18), from (16) and (23), we have 785

—)\71(7) v—jnu = —jycosyv—jgisinyv—jy(x —vcosy) = —j(nx+¢gyy), i = 1,2 (124)

with §; = ¢, i = 1,2 thus 786

1
IIJ;"’(X, ) = 271/ Zv, Py (17,0)uie” ](’7”@)0117 (125)

with B, the Bromwich contour (over all singularities) whose asymptotic estimation at far 7
field is composed of GO terms (captured poles) and GTD diffracted component (due to 7

saddle point with the application of SDP method) in global cylindrical coordinate: 789
ho,gtd k i 2 ~
Py, "5 (0, 9) = %e_ﬂkp_”/‘l) Y vi - Py(kcos @,0)u;sin | ¢| (126)
i=1

that for our test problem (region 1 with PEC faces at H, polarization) reduces to the third 7
component 791

k. H,(k cos .
v )8 = i g) = | [t Bl g a2

according to definition of tﬁy(iy, v) (3) and u;, v; reported at (62)-(63). We get the GTD 1

diffraction coefficient component due to face o 793
otd _ kHoz(kcos ¢) sin ||
Now we repeat the procedure starting from the inversion of face a contribution (122) 7
using notation of Fig. 2.(b): 795
Yisn0) = 5 [ @500 iy (129
Y1\*/ 27T . B, Y1\'/»
According to coordinate mapping 79
X1 =u+wvcos(rt—1y), Y1 =vsin(mr —7) (130)
we have from (16) and (23) 797
—Ayiy, (T = ¥) v —jnu = +jncosy v+ jé;sinyo —jy(X; +vcosy) = —jnXy +jé;Y1, i = 3,4
(131)
with §; = ¢, i = 3,4 thus 798
P (X, 1) = / Z Viv, - Py (17, 0) iy, e 15T gy (132)
with B, the Bromwich contour whose asymptotic estimation at far field is composed of GO 7
terms and GTD diffracted component in global cylindrical coordinate: 800
ho,gtd k _ i(ko—7m/4) 4 ~ .
P 9) =y [ Y iy, - Pya(kcos(p — 7),0)umiy, sinfp — | (133)
i=3
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Figure 8. GTD diffraction coefficient (absolute value and phase) for the test problem under consid-
eration: ¢ = 0.771 and plane wave illumination at H, polarization with H, = 1A/m, ¢, = 0.17,
k =1 —j0.1. In the figure we have reported the exact GTD together with the ones obtained following
the FIE approximate estimation of the spectra without and with the application of an iteration, and
selecting A = 20,h = 0.05,60 = 0.1.

that for our test problem (region 1 with PEC faces at H, polarization) reduces to the third
component

k _iteo— H,. (k — )
llﬂ?i’gtd(P,(P)[?ﬁ] = Hgéd(Pr(P) = \/;e jikp—rn/4) Haz( COZ((p 7)) sin|p —y| (134)

according to definition of ‘i’y(’?/ v) (3) and u;y, = u;, viy, = v; reported at (62)-(63). Note
the invariance of u;y, = u;, vjy, = v; in the rotation of reference system that is allowable
only in isotropic regions otherwise for arbitrary linear media more complex procedure is
required for their definitions, see Section 2.

Finally, we get the GTD diffraction coefficient component due to face a

gtd oy _ kHaz(kcos(¢ — 7)) sin|g — 7|
Diaz (@) = i, (135)
The complete GTD coefficient is just the sum for superposition of (128) and (135):
d d d
Df;: (9) = Dfioz (#) + D (9) (136)

Fig. 8 shows GTD diffraction coefficient for the test problem under consideration: y = 0.77
and plane wave illumination at H, polarization with H, = 1A/m, ¢, = 0.1, k =1 — jO.1.
In the figure we have reported the exact GTD coefficient in term of absolute value and phase
together with the ones obtained following the FIE approximate estimation of the spectra
without and with the application of an iteration, and selecting A = 20,1 = 0.05,0 = 0.1.
Fig. 9 shows the corresponding relative error on the GTD diffraction coefficient in log,
scale. We note, as expected, that the solution with the iteration is correct while the one
without the iteration lacks in estimation near the faces of the angular regions, i.e. face o
for ¢ = 0 and face a for ¢ = 7 because related respectively to the spectra of Hy, () near
7 = k (128) and of Hy; (1) near 5 = k (135) (y = k correspond to w = —7 and it is a
physical branch cut). Note also that the spectra of Ho;(17), Haz(17) near n = —k (w = 0) is
not used for GTD computation, thus the lack of possible precision in the offending branch
point does not impact on the solution. Moreover, the change of slope and level of the
relative error in Fig. 9 is obtained by the reported algorithm to improve the quality of the
approximate solution given by the direct application of Fredholm factorization. In fact
FIE+iteration implements the computation of GTD diffraction coefficient (136) via (128) and
(135) where the spectra Hy,(—k cos w) and Hy;(—k cos w) are obtained by enforcing (120)
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rel.err.Dy,(¢) logy, scale
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FIE

FIE+iter
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®

Figure 9. Relative error on GTD diffraction coefficient in log;, scale corresponding to results of Fig. 8.

on the approximate spectra obtained by the direct application of Fredholm factorization. s
This procedure mixes spectral resolution properties of the two faces, improving the quality e
of the spectra in particular recovering the degradation of spectral resolution near w = 7,0, s
ie. n= k, —k. 829

Finally, we comment that the direct implementation of FIE in w plane yields high &0
precision results in isotropic angular region problem [16] that exceeds the precision of the s
current procedure in terms of spectra; however we recall that the scope of the present work sz
is to present an effective procedure to compute diffraction implementable in problems s

where w plane cannot be defined as in arbitrarily linear media. 834
6. An Example of Application of the Functional Equations in Complex Media: 835
Scattering from a PEC Half-Plane in Gyrotropic Medium 836

The scattering of a plane electromagnetic wave at normal incidence by a perfectly e
conducting semi-infinite screen embedded in a homogeneous gyrotropic medium (such as s
plasma) is presented in this section with the scope to validate the proposed method, the s
functional equations and WH equations in non isotropic media. Since our formulation is s«
in terms of field components we have selected as comparative studies [21,22,26,27] with  sa
respect to other works that employ definitions in terms of potentials. We have selected in s«
particular the work [21] where the distinguished axis of the electric gyrotropic medium is s
parallel to the edge of the halfplane, i.e. as in plasma with uniform magnetic field impressed e
along the edge direction. This medium enforces in our reference system of coordinates ss
(z,x,y) a tensorial electric permittivity 846

&3 0 0
0 €1 +jea (137)
0 *]'82 €1

lien
I

with z as distinguished axis and y = y,I, ¢ = { = 0. As reported in [21] this vector e
problem is separable into two equiﬁlent scalar proBlems for E; (H-mode) and H, (E-mode) s
polarizations. 849

By applying the procedure described in previous Section 2 and with simplified def- s
initions of the quantities reported in Appendix A we obtain (progressive, regressive) s
eigenvalues 852

Ma=H\n?—kj =%jC1, Aoa=£\/n?>—k ==£j5 (138)

with k3 = w?pee/e1 = kie/e1, k5 = wlpoes = kieys, €1 = €i/€0, € = €5 — €5, ko = W\ /Eollo. 53
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The corresponding eigenvectors u;, from which we easily compute also the reciprocal
vectors v; by inversion, are

0 ygw O o yow
j(=ean+teqjéy) Eoz _ [(eante1jér) 082
up = Si‘f , U = 0 , Uz = 15“1 , Ug = 0 (139)
0 1 0 1

The problem shows simplification because of v = 7, see for instance the impact of the
anisotropies on (35) or

m=mi(m—7y)=mi(y)=n i=12 (140)

However, we keep the procedure as general as possible, extendable to wedge problems,
obtaining from (27) and (31)

T Haz si [Haz i Egz17 si

Psat (—mi(7)) = | Eazcos(7),Eqp + W%‘?M’Hﬂz cos(7) — W’Hﬂp - foilar;m
(141)

From here on we omit the spectral dependence in field components for compactness of

formulae. Applying (32) we get in explicit form the following two functional equations for

region 1:

Epxwe + Hoz81€1 + jiHozea = Haz[sin(y)(ne1 — jG1€2) + cos(y)(G1€1 + jiea)] + Eapew
(142)
Hox,uow - Eoz(:z = Hap,uow (143)

Similarly the procedure can be repeated for region 2. The complete set of equations high-
lights the decoupling of E, from H, polarization. Applying the PEC boundary conditions
on the faces we get respectively for E, na H, polarizations after some manipulations:

H, H,
{ Hoe =" 7

_Eoz€2 — H”P HbP (144)

How 2 2

{ Eoxwe + Hoz81€1 + jiiHoze2 = Haz[sin(7y) (17e1 — jG1€2) + cos(y)(C1e1 + jnea)]
—Eoxwe + Hoz8181 — jitHoze2 = Hy [sin(y) (€1 + jG1€2) + cos(7)(Gr1e1 — 17782)]( )

145
Now we impose v = 7, i.e. the angular regions are defined for the half-plane problem.
From (144) we notice that E, polarization behaves as half-plane problems immersed in
classical isotropic regions [40] but with propagation constant k3 = w?u,e3 = kg3, i-e.
network represetation with characteristic impedance Zg, = wy, /&2, confirming [21].

With further mathematical manipulating of (145) we get

_2Hoz + 721'&”'7“}882 = Haz + Hbz

22126
2on§1“’5€111 H : H (146)
S Zazg T bz

The second equation of (146) shows the same WH kernel of eq. (25) in [21]

Gyl = G nts (B onh)dytd kel /e—n? (147)

201 weeq A/ﬂwsel Zstl

except for multiplication by a scalar. Moreover it is easily recognizable from the numerator
the characteristic pole of surface wave phenomenon identified also in [21]. Solutions of the
problem can be achieved with approximate techniques validated in previous sections or
via classical procedure as in [21] but this item goes beyond the scope of this paper.
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7. Conclusions

Spectral methods (such as SM,KL,WH) are well consolidated fundamental and effec-
tive tools for the correct and precise analysis of electromagnetic diffraction problems with
one propagation constant, although not immediately applicable to multiple propagation
constant problems.

In this paper we propose a comprehensive theoretical package in spectral domain
with all necessary mathematical tools that, for the first time, extends the possibilities of
spectral analysis to electromagnetic problems involving wedges immersed in an arbitrary
linear medium, extendable to multiple penetrable angular regions. The theory is presented
in an exhaustive way showing theoretical background, implementation and validation.
The methodology is based on transverse equations for layered angular structures, the
characteristic Green’s function procedure, the Wiener-Hopf technique and the novel direct
Fredholm factorization method that reduces GWHEs with multiple propagation constants
to integral representations in a unique complex plane. Validation-through-examples is
applied, starting from demonstrating effectiveness of direct Fredholm factorization applied
to GWHEs in the scattering from a PEC wedge immersed in an isotropic medium and,
ending with validation of functional equations of angular regions in arbitrary linear media
with the analysis of a PEC half-plane immersed in particular anisotropic media. While
numerically implementing the method, we observe that one of the main difficulties resides
in the correct estimation of kernel functions for the presence of multivalued functions that
need particular attention in their definition and calculation.

The proposed equations are interpreted using network formalism, providing a sys-
tematic perspective in particular for the analysis of complex scattering problems where the
complexity of the geometry is broken into subdomains of canonical shape among which
the angular regions immersed in/made of arbitrarily linear media.

The work presents significant advancements in the spectral analysis of electromagnetic
problems from different mathematical, physical and engineering aspects: a first spectral
method capable to handle scattering in arbitrary linear media with multiple propagation
constants, a novel solution procedure of GWHEs in particular with multiple propagation
constants (the Direct Fredholm Factorization), the network interpretation of spectral func-
tional equations and related integral representations for angular regions filled by arbitrary
linear media, the computation of the field at each point within the angular region avoiding
spectral analytical extension and, the improvement of quality of approximate spectral
solutions re-imposing GWHEs (named iteration).

The theoretical package is validated and ready for future applications.
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