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H I G H L I G H T S

Data-Driven SOH Estimation exploiting charging events.
Robust across different fast charging protocols.
Robust with respect to SOC estimation errors.
Validation on extended dataset.
Low-computational-effort suitable for online BMS.
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A B S T R A C T

In this work, a data-driven estimation method is developed to estimate the battery state of health (SOH),
exploiting SOH features that can be obtained during fast-charging events. A newly expanded experimental
dataset with six cells, cycled 1200 to 1800 times until 70% SOH is reached, is used and made available.
Our investigation focuses on the variability that can be encountered in charging events due to different
charging protocols (particularly for fast charging) and partial charging events. In particular, we investigated
nine different SOH features, introducing novel formulations to increase their flexibility with respect to different
charging events. Then, we assessed the practical implementability of these features and employed correlation
and feature importance analyses to identify the most effective. Finally, we developed a linear regression model
for SOH estimation using the selected features as inputs. The model shows an RMS prediction error as low
as 1.09% over the battery lifetime and a maximum error no greater than 3.5% until SOH falls below 80%,
corresponding to the end-of-life for automotive applications. The estimator is also shown to be robust against
significant errors of the state of charge (SOC) input value (as high as 5%), ensuring it will perform well even
when SOC is not accurately known.
1. Introduction

One of the most prominent technological challenges to the deploy-
ment of electric vehicles is the performance of battery packs, which
degrades over time. This results in a noticeable reduction in range and
energy efficiency as the vehicle age increases. Since limited battery
longevity and range have long been understood to be among the
most crucial factors impacting customer acceptance of electric vehicles
(EV) [1,2], upcoming regulations are expected to set new requirements
on battery durability, such as the recently agreed upon limits as part of
the Euro 7 package in the European Union [3].

∗ Corresponding author.
E-mail address: federico.miretti@polito.it (F. Miretti).

As a result, the issue of battery aging is a cause of great concern and
is being addressed by many researchers in the industry and academia.
State of health (SOH) estimation algorithms attempt to quantify the
battery degradation, typically in terms of capacity fading [4]. These
algorithms are developed as part of the battery management system
(BMS) both in vehicular and stationary applications for safety and
diagnostic purposes, informing the user or operator when the battery
degradation has reached a level that would hamper its application,
and, therefore, a battery replacement is needed. Furthermore, accu-
rate knowledge of the SOH enables the deployment of smart control
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strategies that maximize lifetime. Indeed, it is possible to develop
ealth-conscious battery management systems which adopt control

strategies that prolong battery life, e.g., optimizing its thermal man-
agement [5,6], charging events [7] and cell balancing [8]. Similarly,
ealth-conscious energy management strategies have been developed

for fuel-cell electric vehicles [9] and for hybrid-electric vehicles [10–
13], both of which require a battery as a key component.

Existing SOH estimation algorithms broadly fall into two differ-
ent categories: model-based and data-driven. Model-based approaches
typically use Kalman filters [14] or other types of observers [15],
combining available measurements (such as the terminal voltage) with
a state dynamics model, which is typically based on electrochemical
models, e.g., Doyle-Fuller-Newman models and Single Particle Models,
or equivalent circuit models (ECM). These approaches offer the highest
interpretability since they directly model the physical behavior of
battery cells. Data-driven approaches on the other hand do not rely
on any physical model and rather attempt to directly link available
measurements to the SOH, using statistical methods or machine learn-
ing [16]; therefore, they require an experimental dataset [17], which
should be large enough to train the data-driven model. One of the main
disadvantages of the data-driven models is that they tend to perform
poorly when used in operating conditions that vary significantly from
those covered in the training dataset. To address this weakness, it
is important to both carefully design the experimental campaign to
generate a wide training dataset and to ensure that the model is
tested over conditions similar to training, leading to reliable estimation.
Finally, hybrid methods that combine model-based with data-driven
approaches have been developed to retain their benefits and mitigate
their weaknesses.

As mentioned above, data-driven methods are most reliable if
trained and used with a repeatable duty cycle. This explains why
ignificant attention has been devoted to the charging phase of electric
ehicles rather than the actual driving. If a full charging sequence is
onsidered, the current and voltage profiles are typically very effective

features of the state of health [18]. Unfortunately, a full charging phase
is rarely performed in real operation, whereas partial charging events
re frequent. Therefore, data-driven approaches based on charging
equences require the definition of informative features that can be
valuated from partial charging profiles [19].

Another work [20] proposes an SOH estimation approach con-
sidering the CC phase of a typical CC–CV charging event. Unlike
other techniques, the constant current charging stage is divided into
hort segments. Then, a single health indicator, corresponding to the
harging capacity plus a correction term for the initial charging volt-
ge, is extracted within each short segment. Finally, a kernel ridge

regression-based estimator is used. Other approaches rely on the in-
cremental capacity [21] took a different approach: the incremental
capacity curves were obtained from the CC phase of a CC–CV charging
vent, and a portion of the IC curve which is expected to contain a
eak is discretized to generate features for an LSTM (Long short-term

memory network), a type of recurrent neural network.
Unfortunately, all these works only consider one charging protocol

CC–CV charging) and were only tested with low C-rates. Also, these
ethods can only be used if the CC charging phase is present and

ufficiently long. Finally, none of these works attempt to compare
ifferent kinds of health indicators, which is one of the contributions
f our work.

In real-life operation, the characteristics of different charging pro-
tocols must be taken into account for a SOH estimation algorithm.
Since fast-charging procedures are based on the use of high C-rate
currents, the charging voltage profiles are quite different from the
ones obtained at lower currents. As previously mentioned, most of
he published works, such as those mentioned earlier, are designed
or the low C-rate constant current–constant voltage (CC–CV) charging
trategy; therefore, they have limited applications for electric vehicles.

n contrast, fewer works address the complicated problem of SOH

2 
estimation for fast-charging applications. Even these, however, fail to
account for the high variability in charging protocols, which hinders
heir application in real-world scenarios where the electric vehicle can
e charged using different fast-charging protocols.

The high variability of charging protocols is particularly present
n fast-charging applications. Indeed, since higher C-rates lead to a

faster aging process, different fast-charging protocols have been pro-
osed in the literature attempting to speed up the overall charging
ate while inhibiting the lithium deposition, which is understood to
e the primary cause of aging in charging operations [22]. Examples

of non-standard fast-charging protocols are the multi-stage charging
currents (MSCC) protocols [23] and pulse charging (PC) profiles, which
lternate charging currents to discharging [24] or rest [25] pulses.

Therefore, it is important to develop robust features and algorithms
that can be applied to any charging profile for real-world SOH estima-
ion. However, most of the works tackle the SOH estimation problem
uring fast-charging by assessing the estimation model capability over a
ingle fast-charging protocol. The authors of [26] use a long short-term

memory neural network that takes as input the current, voltage, and
temperature signals to estimate SOH with the data collected during the
battery charging process. The model is trained and tested using only
measurements from the constant current charging phase.

Some works [27,28] attempt to formulate more general SOH fea-
tures that can be computed for an MSCC fast-charging protocol fea-
turing the same phases but with different durations and current levels
for each constant-current phase; all these works appear to rely on the
popular MIT database provided by the authors of [29].

However, enhancing the robustness of the SOH estimation algorithm
over completely different fast-charging profiles characterized by differ-
ent charging phases has rarely been explored. The authors of [30] test
their estimation algorithm on the MIT dataset with newly collected data
on a different MSCC profile, whereas the authors of [31] combined the

IT dataset with data collected on CC–CV charging profiles. Both works
describe feature engineering methods that are adaptable to different
charging protocols. However, both models are then trained with the
data from the cells cycled with one charging protocol and tested on
cells charged with the same protocol. Furthermore, only CC–CV and
multi-stage profiles are considered, disregarding PC protocols.

In summary, several issues still exist in the existing research on
he capacity estimation of LIBs for fast-charging applications. First,
ost existing health features are extracted from complete charging

equences. Second, the robustness of capacity estimation is rarely evalu-
ted experimentally over different fast-charging protocols, i.e., CC–CV,
SCC, and PC protocols, characterized by different charging phases.
ost existing methods are validated based on the charging profiles

f CC–CV charging current or on one multi-phase charging protocol
haracterized by different C-rate and duration of each phase, and even
hese works train and test their model on the same charging protocol.
inally, the aging datasets used in previous works are mainly laboratory
ests that do not mimic real-world driving scenarios and are not truly
epresentative of the aging phenomena affecting batteries in EVs.

1.1. Article contributions

The main objective of this work is to develop a SOH estimation
method that can be applied to completely different fast-charging proto-
cols and partial charging events in EV real-world scenarios. Hence, this
work investigates charging protocol-independent health features to be
employed for SOH estimation.

The main contributions of this study can be summarized as follows:

• Development of a SOH estimation method that applies to par-
tial charging events and a variety of fast-charging protocols.
The main novelty of this method is the use of reformulated SOH
features as inputs to a machine learning model to estimate the
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SOH. Taking inspiration from health features formulated in pre-
vious works, particular care was devoted to deriving features that
are applicable in real-world automotive applications, regardless of
the charging protocol and working with partial charging events.
Moreover, the features are analyzed based on their applicability
in real-world scenarios, highlighting the requirements for their
use. After assessing their correlation with SOH, the most effective
features are selected through the Minimum Redundancy Maxi-
mum Relevance (MRMR) algorithm, and a linear regression model
is used to estimate the SOH for cells characterized by different
fast-charging protocols.

• Analysis of the robustness of the method in the presence
of state of charge (SOC) estimation errors. Since some of the
proposed SOH features are computed relying on SOC knowledge,
which is not known but must be estimated in real-world applica-
tions, the SOH estimation is also carried out considering different
SOC estimation errors for the feature extraction.

• A new dataset. The 4-cell dataset of [18,32], and [33] is further
expanded in this work by including two additional cells. The
proposed algorithm is tested on the new dataset which reproduces
EV real-world driving scenarios characterized by different fast-
charging protocols and discharging driving cycles of a plug-in
hybrid electric vehicle. Therefore, the aging mechanisms affecting
EV batteries’ operation are realistically induced.

2. Methods

2.1. Battery aging dataset

Fast-charging profiles provide significant information about the ag-
ing status of a battery cell [34]. In this work, we considered four 3Ah
Samsung 30T cells, plus two other cells tested posterior that will be
vailable in the open data source [35] soon. The test is composed of five
ifferent charging profiles, represented in Fig. 1 and described in [18],

claimed to impact the battery lifespan positively: constant current (CC)
performed on two cells (Figs. 1a, 1b, 1g, and 1h), boost constant current
(BC) (Figs. 1c and 1i), pulse boost protocol with 0.1s negative pulse
(BCNP 0.1s) (Figs. 1d and 1j), pulse boost protocol with 1s negative
pulse (BCNP 1s) (Figs. 1e and 1k), and pulse boost protocol with rest
(BCR) (Figs. 1f and 1l). The two cells CC and CC2 are charged with
he same constant current charging protocol using a C-rate of 6C in the

constant current phase. It is worth noting that the rest and negative
pulses for the BCR and BCNP 0.1s cells, respectively, are not visible
rom Fig. 1. This is because the battery’s experimental data (including
oth charging and driving cycles) was recorded at a frequency of 1 Hz,
hich is too low to capture the short duration (0.1s) of the rest and
egative pulses [32]. To clearly observe these pulses, the initial fast
harging performed under the BCNP and BCR protocols was separately
ecorded in [32] at a high logging rate (50 Hz).

Each cell is charged with the respective charging profile from 10%
OC to 80% SOC using the same mean current (C-rate of 2.8C). The
ast charge occurs before the cell reaches the maximum voltage of 4.2
; then, the constant voltage (CV) charging mode is activated to avoid
amage to the battery. After each charging phase, the cell is depleted
ack to 10% SOC using repeated drive cycles.

As the cells age, the charging time needed to reach the designed
OC, i.e., 80%, is reduced due to the lower cell capacity. In later

aging stages, this trend is inverted for some cells due to the longer
V charging phase, where the current is reduced to avoid the over-

voltage condition. Indeed, the upper voltage limit of 4.2 V is reached
aster as the cells age due to the lower cell capacity and higher internal
esistance. The information on the charging profiles is used to formulate

ome of the SOH features presented in the next section.

3 
Table 1
SOH features and symbols.

SOH features Symbol

Constant current charging time 𝑡CC,nor m
Constant voltage charging time 𝑡CV
SOC at CC/CV transition 𝑆 𝑂 𝐶CC−CV
Voltage slope at the beginning of CC charging 𝑑 𝑉

𝑑 𝑡 in,CC,nor m
Voltage slope at the end of CC charging 𝑑 𝑉

𝑑 𝑡 end,CC,nor m
Average voltage over constant current charging 𝑉av,nor m
Ah throughput
Mileage
Mean temperature during charging

2.2. SOH features

To develop an accurate and practical estimation model, the features
of the model must be carefully selected. One of the main objectives
of this work is to identify the features that are most correlated with
SOH and exhibit good robustness across different fast-charging profiles
for EV applications; furthermore, particular care was placed on the
practical availability of these features in a real operating scenario.

In this section, the nine SOH features investigated in this work are
resented and reported in Table 1. Of these nine features, seven are

extracted from a single charging phase. As discussed in the Introduc-
tion, these features are expected to be very reliable in predicting SOH
because they are evaluated under the relatively repeatable conditions
of the charging phases with respect to the driving phases. In addition to
these, two cumulative features that are very commonly considered for
SOH estimation were also included in our analysis: the vehicle mileage
and the Ah throughput, evaluated over the entire vehicle lifetime.
Note that, for ease of notation, we used the subscript CC to denote
the charging phase that precedes the CV phase for all the charging
protocols, whether this phase is indeed a constant current phase or not.

2.2.1. Constant current charging time 𝑡CC,nor m
The constant current charging time 𝑡CC,nor m represents the time

required to charge the battery from an initial state of charge 𝑆 𝑂 𝐶∗

to a final voltage 𝑉 ∗, divided by the corresponding charging time for a
fresh cell. Mathematically, 𝑡CC,nor m can be written as follows:

𝑡CC,nor m =
𝑡CC

𝑡CC,f r esh
(1)

𝑡CC = 𝑡(𝑆 𝑂 𝐶 = 𝑆 𝑂 𝐶∗) − 𝑡(𝑉 = 𝑉 ∗) (2)

where 𝑡CC,f r esh is the value of 𝑡CC that was measured for a fresh cell and
𝑆 𝑂 𝐶∗ and 𝑉 ∗ are tuning parameters for this feature. Fig. 2 provides a
graphical representation of how to compute the 𝑡CC,nor m for an aged
ell1 over one specific charging profile depicted in black. First, the

time 𝑡CC intercurring between the 𝑆 𝑂 𝐶∗ (blue points in the figure)
and the 𝑉 ∗ (red points) is measured for the aged cell; then, using the
first charging cycle of the same cell (depicted in gray), the 𝑡CC,f r esh is
computed. Finally, the time is normalized through (1) to obtain 𝑡CC,nor m.
Through this formulation, the feature can be computed for partial
constant current charging profiles that start with an 𝑆 𝑂 𝐶 < 𝑆 𝑂 𝐶∗ and
end with a voltage 𝑉 > 𝑉 ∗, where 𝑆 𝑂 𝐶∗ < 𝑆 𝑂 𝐶(𝑉 = 𝑉 ∗): hence, the
whole charging curve is not needed to obtain the feature. It is worth
specifying that the charging segment length must be selected to satisfy
the requirement 𝑆 𝑂 𝐶∗ < 𝑆 𝑂 𝐶(𝑉 = 𝑉 ∗).

This is similar to other features found in the literature, where the
ime needed to raise the battery voltage from a starting value to a final

value is used instead [31,36]; that feature was reported to be a powerful
SOH feature, highly correlated with capacity fading. However, that
formulation was found to be ineffective with our dataset, as shown

1 In this case, we consider the BC cell, but the procedure is the same also
for the other charging profiles.
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Fig. 1. Charging current and voltage profiles for all cells. Current profiles for protocols (a): constant current; (b): constant current 2; (c): boost constant current; (d) pulse boost
with 0.1s negative pulse; (e) pulse boost with 1s negative pulse; (f) pulse boost with rest. Voltage profiles for protocols (g): constant current; (h): constant current; (i): boost
constant current; (j) pulse boost with 0.1s negative pulse; (k) pulse boost with 1s negative pulse; (l) pulse boost with rest.
by the results in the Supplementary material. Fig. S1a, Fig. S1b, and
Fig. S1c show that the time of constant current charging computed
through the formulation of [31,36] from a minimum voltage of 3.6 V,
3.8 V, and 3.9 V, respectively, becomes less correlated with the SOH as
the minimum voltage increases. On the other hand, the time of constant
current charging computed through our formulation shows a higher
correlation with SOH for 𝑆 𝑂 𝐶∗ values of 11%, 20%, and 30%, as shown
in Fig. S2a, Fig. S2b, and Fig. S2c, respectively.

Working with our dataset, we found that the formulation of the
feature proposed in [31,36] has a strong correlation with SOH only
if the considered period includes at least part of the early, steeper
portion of the voltage curve. Therefore, a low initial voltage threshold
should be selected to obtain good results. However, this is potentially
misleading because the very first part of the charging phase could be
included as well. At the very beginning of the charging phase, the
4 
voltage values are greatly influenced by the internal resistance, which
is highly dependent on SOC. Therefore, this feature is only effective if
the charging sequences always start at the same SOC; in other words,
the feature does not adapt to partial charging events. To work around
this problem, we replaced the initial voltage threshold with an initial
SOC threshold; in this way, the initial threshold is not dependent on
the internal resistance.

The formulation of the charging time proposed in this work was
developed to eliminate its dependence on the SOC value at the begin-
ning of charging. Moreover, to increase the robustness of this feature
with respect to different C-rates, 𝑡CC was normalized with respect to the
feature computed for the fresh cell 𝑡CC,f r esh, as shown in Eq. (1); without
this normalization, different C-rates would produce largely different
values for 𝑡 .
CC
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Fig. 2. Voltage profiles of the fresh (light gray) and aged (dark gray) BC cell. The
ed line is the value of 𝑉 ∗. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

For all cells, 𝑡CC,nor m tends to decrease as the cell ages due to
he lower cell capacity. Moreover, a very high correlation between

the feature and SOH is visible in the first subplot of Fig. 3a for all
the battery cells, showing its effectiveness. Fig. 3 shows the feature
btained with 𝑆 𝑂 𝐶∗ = 20% and 𝑉 ∗ = 4.1 V.

2.2.2. Constant voltage charging time 𝑡CV
The duration of the constant voltage charging phase until a final

SOC value is reached 𝑆 𝑂 𝐶∗∗. As the cell ages, its ohmic resistance
undergoes a significant increase, leading to higher voltage values given
the same current and SOC. As a consequence, the upper voltage limit
is reached earlier, leading to the activation of CV charging mode and
n increase in the value of the 𝑡CV feature [37]. The results shown in

Fig. 3b are calculated considering 𝑆 𝑂 𝐶∗∗ = 80%. It should be noted
that, contrary to 𝑡CC, this feature cannot be normalized with respect to
the fresh cell value due to the null value of the feature for the fresh
cell.

2.2.3. SOC at CC/CV transition 𝑆 𝑂 𝐶CC−CV
The SOC value is observed at the transition from the constant cur-

rent to the constant voltage phase. Due to the higher internal resistance
and lower capacity, 𝑆 𝑂 𝐶CC−CV decreases as the cell ages, as shown in
Fig. 3c. Unfortunately, this novel feature did not prove to show a strong
orrelation with SOH for our dataset; furthermore, it could be highly

susceptible to errors in SOC estimation.

2.2.4. Voltage slope at the beginning of CC charging 𝑑 𝑉
𝑑 𝑡 in,CC,nor m

The slope of the voltage curve at the beginning of charging. At
the beginning of charging, the battery voltage rises very quickly due
o the increase in ohmic voltage. Hence, 𝑑 𝑉

𝑑 𝑡 in,CC
indirectly quantifies

the internal resistance at the beginning of the charging phase. In this
work, the application of this feature, originally proposed in [37], is
extended to fast-charging and different C-rates thanks to the following
formulation:

𝑑 𝑉
𝑑 𝑡 in,CC

= 𝛥𝑉
𝛥𝑡

(3)

𝛥𝑡 = 𝛥𝑡in,0 ⋅
𝐼2.8𝐶
𝐼𝑚𝑒𝑎𝑛

(4)

𝑑 𝑉
𝑑 𝑡 in,CC,nor m =

𝑑 𝑉
𝑑 𝑡 in,CC

𝑑 𝑉
𝑑 𝑡 in,CC,f r esh

(5)

where 𝛥𝑉 is the voltage increase experienced over the corrected time
step 𝛥𝑡. This corrected time step was deemed necessary to guarantee
5 
the robustness of the feature with respect to different current profiles.
In essence, it is a normalization of a fixed time step 𝛥𝑡in,0 with respect to
the mean measured current 𝐼𝑚𝑒𝑎𝑛; 𝐼2.8𝐶 instead is a constant parameter
corresponding to a nominal discharge current at 2.8C.

Moreover, the slope at the beginning is normalized to the slope
obtained with the fresh cell 𝑑 𝑉

𝑑 𝑡 in,CC,f r esh. In Fig. 3d, the results show
the 𝑑 𝑉

𝑑 𝑡 in,CC,nor m computed with 𝛥𝑡in,0 = 10 s. The main limitation of
this feature is that it can be used only when the charging phase starts
from the same SOC, due to the dependence of the ohmic resistance from
SOC.

2.2.5. Voltage slope at the end of CC charging 𝑑 𝑉
𝑑 𝑡 end,CC,nor m

The slope of the voltage curve at the end of the charging phase
receding the CV phase. The 𝑑 𝑉

𝑑 𝑡 end,CC
feature overcomes the limit of the

revious one since it is not dependent on the SOC at the beginning of
he charging event. The following formulation was adopted to compute
he feature:

𝑑 𝑉
𝑑 𝑡 end,CC

= 𝛥𝑉
𝛥𝑡

(6)

𝛥𝑡 = 𝛥𝑡end,0 ⋅
𝐼2.8𝐶
𝐼𝑚𝑒𝑎𝑛

(7)

𝑑 𝑉
𝑑 𝑡 end,CC,nor m =

𝑑 𝑉
𝑑 𝑡 end,CC

𝑑 𝑉
𝑑 𝑡 end,CC,f r esh

(8)

Although in [37] a high correlation with SOH was reported when using
low current charging profiles, this feature appears to lose its efficacy in
fast-charging applications as shown in Fig. 3e, where it is computed
onsidering 𝛥𝑡end,0 = 400 s.

2.2.6. Average voltage over constant current charging 𝑉av,nor m
The average voltage observed between an initial SOC 𝑆 𝑂 𝐶∗ and a

final voltage value 𝑉 ∗. As a descriptive statistic of the voltage charging
curve [34], 𝑉av increases along with cell aging due to the higher internal
resistance. Also, in this case, the feature is normalized with respect to
the fresh cell value 𝑉av,f r esh as follows:

𝑉av,nor m =
𝑉av

𝑉av,f r esh
(9)

The normalized average voltage 𝑉av,nor m exhibits a strong correlation
with capacity fading across various charging protocols, as shown in
Fig. 3f, competing closely with the normalized charging time 𝑡CC,nor m
for the title of the best SOH feature.

2.2.7. Ah throughput
The total capacity that the battery delivers or stores. Ah throughput

s a cumulative SOH feature that is computed by Coulomb counting,
.e., by integrating the absolute value of cell current over time, and
as been widely used as a SOH feature [38]. However, this cannot

always be measured reliably in an EV; a single fault occurrence in the
BMS or current sensors throughout the whole vehicle lifetime, if not
repaired immediately, could alter its value in an unrecoverable manner.
The high correlation between this feature and SOH is clearly shown in
Fig. 3g.

2.2.8. Mileage
Distance traveled by the vehicle. Generally, battery life is repre-

sented by the number of cycles, which is deeply connected with battery
aging. However, in actual usage of an EV, the equivalent full cycle
umber does not have much practical significance and convenience for

measuring the health of the battery pack; instead, mileage can be used
as a substitute measure of cycle number, with a similar meaning of Ah
hroughput [39]. In this work, Ah throughput and mileage have the

same trend over the battery lifetime due to the periodicity of the driving
cycles discharging profiles, as shown in Figs. 3g and 3h.
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Fig. 3. Values of the SOH features computed for all the tested charging profiles, represented as a function of SOH. (a): constant current charging time 𝑡CC,nor m. (b): constant voltage
harging time 𝑡CV. (c): SOC at CC/CV transition 𝑆 𝑂 𝐶CC−CV. (d): voltage slope at the beginning of CC charging 𝑑 𝑉

𝑑 𝑡 in,CC,nor m. (e): voltage slope at the end of CC charging 𝑑 𝑉
𝑑 𝑡 end,CC,nor m.

(f): average voltage over constant current charging 𝑉av,nor m. (g): Ah throughput. (h): Mileage. (i): mean temperature during charging.
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2.2.9. Mean temperature during charging
The mean temperature over a single charging procedure. As the cell

ages, the battery Joule losses increase, given the same charging profile,
eading to higher cell temperatures. Therefore, the mean temperature
ver a charging procedure exhibits an increasing trend, given the same
nvironment temperature, as shown in Fig. 3i. Real-life applicability of

this feature is limited by the fact that its behavior is related to ambient
temperature.

To map the relationship between mileage and SOH, extensive data
is needed. Since collecting this data from real-world vehicles is too
ime-consuming, a more practical approach is to use a high-fidelity

vehicle model to generate realistic battery current profiles. Relying on
hese current profiles, much shorter lab experiments based on realistic

driving conditions can be carried out. This latter approach is the one
used to generate the dataset in this paper.

3. Results and discussion

3.1. Analysis of the features

3.1.1. Practical considerations
As mentioned in the previous section, every feature has its limita-

tions and most of them cannot be computed in every possible charg-
ng condition. Indeed, a few requirements must be met to correctly
ompute each feature, as summarized in Table 2.
6 
For example, the 𝑑 𝑉
𝑑 𝑡 in,CC,nor m feature, due to the dependence of the

nternal resistance with SOC, depends on the SOC at the beginning
f the charging phase. Therefore, an SOH estimation model using this
eature must trained with charging sequences having the same initial
OC, and can then only be used if a charging sequence starts at that
ame SOC. This requirement is particularly restrictive in real-world
cenarios since the user can charge the battery starting from very
ifferent SOC values.

On the other hand, the other requirements are more easily satisfied
n real-world conditions: due to the high C-rate of fast-charging profiles,
he charging CV mode is usually activated during charging; SOC needs
o be generally estimated by BMS to predict the vehicle range; 𝑆 𝑂 𝐶∗,
∗, and 𝑆 𝑂 𝐶∗∗ can be selected so as to cover a wide range of charging

vents based on the expected driver behavior.

3.1.2. Correlation analysis
A regression analysis was carried out to assess the correlation

between the previously introduced SOH features and SOH, providing
some important indications of the most effective features that need to
be selected as inputs of the estimation model. The Pearson correlation
coefficient was used to quantify the correlation between SOH features
and SOH. Pearson correlation analysis is typically adopted in statis-
tics to measure the degree of correlation between two variables. The
Pearson correlation coefficient 𝑝 is calculated as the quotient of the
𝑥,𝑦
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Table 2
Requirements needed for the features to be computed and used in an SOH estimation model.

SOH features Requirements

Charging starts from the
same SOC

Charging does not start in
CV mode and voltage
reaches upper limit

SOC is known or estimated Charging starts with
𝑆 𝑂 𝐶 ≤ 𝑆 𝑂 𝐶∗ and ends
with 𝑉 ≥ 𝑉 ∗

Charging ends with
𝑆 𝑂 𝐶 ≥ 𝑆 𝑂 𝐶∗∗

𝑡CC,nor m ✓ ✓

𝑡CV ✓ ✓

𝑆 𝑂 𝐶CC−CV ✓ ✓
𝑑 𝑉
𝑑 𝑡 in,CC,nor m ✓ ✓
𝑑 𝑉
𝑑 𝑡 end,CC,nor m ✓

𝑉av,nor m ✓ ✓

Ah throughput
Mileage
Mean temperature during
charging
Fig. 4. Pearson coefficients for all the SOH features.

covariance and standard deviation between the input variables 𝑥 and a
response variable 𝑦:

𝑝𝑥,𝑦 =
cov(𝑥, 𝑦)
𝜎𝑥𝜎𝑦

(10)

where cov(𝑥, 𝑦) is the covariance of 𝑥 and y, while 𝜎𝑥 and 𝜎𝑦 are the
standard deviation of 𝑥 and y, respectively. The Pearson coefficient
can range between −1 and 1, and the closer the absolute value of the
correlation coefficient is to 1, the stronger the correlation is. While pos-
itive values represent a positive correlation, negative values represent
a negative correlation.

Using all features derived from the raw data as input for the SOH
estimation model can result in a decrease in accuracy due to the
presence of erroneous data or overfitting. Therefore, outliers2 were
removed before performing the analysis.

The results of the correlation analysis are shown in Fig. 4. All
features exhibit a strong linear correlation with SOH, as evidenced
by Pearson coefficients with absolute values exceeding 0.85. The only
exceptions are the final slope 𝑑 𝑉

𝑑 𝑡 end,CC,nor m and mean temperature with
coefficients equal to −0.28 and −0.66, respectively. As expected from
the graphical results of Fig. 3, the most highly correlated features are
the constant current charging time and the average voltage. It is worth
noting that, in our tests, the normalization of these features with respect

2 The outliers were defined as elements different more than three standard
deviations from the mean value.
7 
to the fresh cell is necessary to obtain a high correlation with SOH in
the different fast-charging profiles.

The normalization of the different features with respect to the
fresh cell enhances the robustness of the features against the different
charging protocols. Indeed, the voltage slope at the beginning of CC
charging 𝑑 𝑉

𝑑 𝑡 in,CC
, and the average voltage 𝑉av have a significantly lower

correlation than their normalized version. The Pearson coefficient for
the 𝑑 𝑉

𝑑 𝑡 in,CC
go from −0.76 to −0.91 for 𝑑 𝑉

𝑑 𝑡 in,CC,nor m; the Pearson coef-
ficients for the 𝑉av go from −0.88 to −0.96 for 𝑉av,nor m. On the other
hand, the normalization of the time of constant current charging and
the voltage slope at the end of CC charging do not provide particular
advantages in terms of correlation for this particular dataset. However,
this approach could be beneficial for other datasets.

3.1.3. Feature selection
Instead of using all available feature variables in the data, only a

subset of features was selected to be used in the estimation model.
Feature selection leads to several advantages, i.e., reduction of the com-
putational cost, and improvement of the regression accuracy. Moreover,
using fewer features also requires less training data.

In this work, feature selection was carried out through the Mini-
mum Redundancy Maximum Relevance (MRMR) algorithm [40]. The
MRMR relies on the concept of mutual information of two variables,
ranking the features to minimize the redundancy of the feature set and
maximize the relevance of the feature set to the response variable. The
mutual information 𝐼 of the input 𝑥 and response 𝑦 variables is defined
based on their joint probabilistic distribution 𝑝(𝑥, 𝑦) and the respective
marginal probabilities 𝑝(𝑥) and 𝑝(𝑦):

𝐼(𝑥, 𝑦) =
∑

𝑖,𝑗
𝑝(𝑥 = 𝑥𝑖, 𝑦 = 𝑦𝑗 ) log

( 𝑝(𝑥 = 𝑥𝑖, 𝑦 = 𝑦𝑗 )
𝑝(𝑥 = 𝑥𝑖) ⋅ 𝑝(𝑦 = 𝑦𝑗 )

)

(11)

Since the mutual information quantifies the similarity between the two
variables, the idea of minimum redundancy is to select the features that
are mutually maximally dissimilar, leading to a better representation
of the entire dataset. The minimum redundancy condition is achieved
through the minimization of 𝑊𝑆 , defined as follows:

𝑊𝑆 = 1
|𝑆|

∑

𝑥,𝑧∈𝑆
𝐼(𝑥, 𝑧) (12)

where 𝑆 denotes the subset of features, and |𝑆| is the number of
features in 𝑆. Once again, mutual information is used to quantify the
relevance of 𝑆 with respect to the response variable 𝑦. Hence, the
maximum relevance condition is satisfied by maximizing the value of
𝑉𝑆 , which is defined as:

𝑉𝑆 = 1
|𝑆|

∑

𝑥∈𝑆
𝐼(𝑥, 𝑦) (13)

The MRMR feature set is obtained by optimizing the conditions in
Eqs. (12) and (13), simultaneously. To achieve this goal, the features
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are ranked based on their mutual information quotient (MIQ) value
which, for feature 𝑥, is computed as:

MIQ𝑥 =
𝑉𝑥
𝑊𝑥

=
𝐼(𝑥, 𝑦)

1
|𝑆|

∑

𝑧∈𝑆 𝐼(𝑥, 𝑧)
(14)

MRMR ranks all the features in ascending order according to their
MIQ. The features were ranked by the MRMR as follows:

1. 𝑡CC,nor m,
2. Mileage,
3. 𝑆 𝑂 𝐶CC−CV,
4. 𝑉av,nor m,
5. 𝑑 𝑉

𝑑 𝑡 in,CC,nor m,
6. 𝑡CV,
7. 𝑑 𝑉

𝑑 𝑡 end,CC,nor m,
8. Ah throughput,
9. Temperature.

By the correlation analysis, 𝑡CC,nor m emerges as the best feature.
However, as shown in the ranking, the MRMR enables drawing differ-
ent conclusions from the simpler correlation analysis based on Pearson
coefficients. Indeed, powerful features with high Pearson coefficients,
such as 𝑉av,nor m and Ah throughput, are placed in lower ranks. This
is because they also have a high mutual correlation with 𝑡CC,nor m and

ileage, respectively. In other words, if a model is trained using 𝑡CC,nor m
nd mileage as features, then adding 𝑉av,nor m does not add significant
nformation that was not already captured by 𝑡CC,nor m and mileage.

3.2. Application of the features to an SOH estimation model

The main workflow of our SOH estimation algorithm is depicted
in Fig. 5. During the charging phase, the time, current, voltage, SOC,
and temperature signals are recorded. Then, once the charging phase
ends, each SOH feature is extracted, provided that the phase meets
the corresponding requirements summarized in Table 2. It is worth
noting that the computation of these SOH features is straightforward
and computationally light for any BMS. Afterward, the most effective
features are selected as inputs to the linear regression model; finally,
the linear regression model is used to estimate the SOH.

3.2.1. Linear regression model(s)
Due to its low computational complexity and its easy implementabil-

ity in vehicle BMS, we selected the linear regression model as the
SOH estimation model to exploit the high linear correlation between
SOH features and SOH. Moreover, compared to more complex ML
lgorithms, the linear regression model is characterized by few tuning
arameters and can better generalize with a small number of training
amples. Therefore, since our dataset is made of only six cells, the linear
egression model seems the most appropriate solution. However, it is
orth specifying that, if the linear correlation between the features and

apacity fade was weaker, more complex machine learning algorithms
ould be used instead of linear regression to map the non-linear
elationship between the features and SOH.

In order to test the effectiveness of the SOH features discussed so
far, we developed four SOH estimation models using linear regression;
hese four different models differ in the number of features that were
onsidered, ranging from one to four. The exact features to be used

were selected based on the feature importance ranking discussed in the
previous section.

To evaluate their robustness with respect to different fast-charging
rotocols, the models were trained using the experimental data from
wo protocols (CC and BCNP 0.1s) and tested on the remaining four
rotocols (CC2, BC, BCNP 1s, and BCR), as reported in Table 3. The
arameters of the linear regression models were obtained using the

least square method through the MATLAB function fitlm [41]. The
8 
Table 3
Training and testing cells for the linear regression model.

Battery cell Charging protocol Number of total cycles Training or testing

CC Constant current
charging (2.8C)

1908 Training

CC2 Constant current
charging

1876 Testing

BC Boost constant
current

1908 Testing

BCNP 0.1s Pulse boost protocol
with 0.1s negative
pulse

1730 Training

BCNP 1s Pulse boost protocol
with 1s negative
pulse

1876 Testing

BCR Pulse boost protocol
with rest

1876 Testing

estimates and the estimation error obtained with the trained models
on the test data are shown in Figs. 6a, 6b, 6c, and 6d using different
set of features for the CC2, BC, BCNP 1s, and BCR cells, respectively,
and in Fig. 7.

Overall, all models reach reasonable accuracy, with the estimation
error always remaining well below 10%. Another conclusion that ap-
pears to hold true for all protocols is that a significant improvement
in accuracy can be obtained by using two features, whereas additional
features produce only minor improvements. Protocol BCR exhibits a
somewhat more complex behavior, as the model with one feature
appears to be more accurate in starting from a SOH of approximately
0%. This seems to be coincidental: the model underestimates the state
f health of the fresh cell and then underestimates the rate of aging,
hich produces the illusion of better accuracy with a moderately aged

ell as the two errors balance each other.
Furthermore, some notable differences are visible between the dif-

ferent charge protocols and between the early aging phase and the
end-of-life. As long as the SOH remains above 80%, the estimation
error of all models remains below 5%. If we restrict our attention
to the models with at least two features, this error is even smaller
and is always below 3.5%, and all these models exhibit consistent
error patterns with a general tendency to overestimate SOH. When
SOH drops below 80%, however, the models exhibit a more erratic
behavior. Again considering only the models with at least two features,
the models remain consistent among themselves in their estimations
but significantly lose their accuracy with respect to the test data. For
the CC2 protocol, the models still show a somewhat regular tendency
to overestimate SOH; they are however unable to predict the two dips
that can be seen in the experimental profile. For the BC and BCNP 1s,
on the other hand, the models predict a sharp increase in the rate of
aging which is not visible in the real SOH profile; in general, the highest
estimation errors are seen for SOH below 80%. Differently from the
previous range, the models underestimate rather than underestimate
the SOH. Finally, when tested on the BCR protocol, the models predict
an unlikely increase in the SOH. This situation (BCR protocol, SOH
below 80%) is where the absolute worst accuracy is achieved, with
estimation errors as high as 9% due to a significant overestimation of
the SOH.

In summary, a significant degradation in the model performance
was observed for all models when considering the boost charging
profiles (i.e. BC, BCNP 1s, and BCR) after the state of health decreased
below 80%. For practical applications, this may not be a major issue as
this value is the threshold that is typically considered as the end-of-life
for automotive applications. Nonetheless, it is important to assess the
underlying causes. First, all models show this behavior regardless of
the number of features; this suggests the feature that is common to all
models, 𝑡CC,nor m, is responsible. The reason was found to be in the way
this value is calculated for the boost charging profiles, which may be
susceptible to an irregular pattern after a certain SOH threshold; Fig. 2
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Fig. 5. SOH estimation workflow.
Fig. 6. SOH estimation results using different sets of features on the testing cells(a): constant current 2, (b): boost constant current, (c) pulse boost with 1s negative pulse, and
(d): pulse boost with rest.
helps to illustrate the issue as it manifests for the BC protocol. For a
relatively new cell, the value of 𝑉 ∗ is reached during the second CC
phase with a lower current. As the cell ages, the time at which 𝑉 ∗ is
reached decreases smoothly. Under a certain SOH threshold, however,
9 
the highest voltage reached in the first CC phase reaches and exceeds
𝑉 ∗; from this moment on, 𝑉 ∗ will be first encountered in the first CC
phase. Furthermore, this transition causes a sharp change in the 𝑡CC,nor m
feature, which is not due to an actual (significant) change of the SOH.
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Fig. 7. SOH estimation results on the testing cells using different sets of features.

In practice, this phenomenon was observed at around 80% SOH, which
s consistent with the previously observed loss in accuracy.

In conclusion of the feature analysis, the two best features, i.e.,
𝑡CC,nor m and mileage, should be selected as inputs to the linear regres-
sion model.

To prove the applicability of the estimation method to different
ortions of the charging curve, the effectiveness of the SOH estimation
as assessed when computing the 𝑡𝐶 𝐶 ,𝑛𝑜𝑟𝑚 feature for different 𝑆 𝑂 𝐶∗

nd 𝑉 ∗ values. As shown in Table 4, the RMSE of the SOH estimation
oes not significantly change for the different 𝑆 𝑂 𝐶∗ and 𝑉 ∗, proving

the indicator to be robust against partial charging. Indeed, the length
of the charging segment does not appear to affect the results in a
consistent manner: we cannot conclude that longer charging segments
lead to more accurate estimates, or vice versa. It is worth noting that
the missing values in the table correspond to tests where the SOC at 𝑉 ∗

is greater than the 𝑆 𝑂 𝐶∗ at least for one charging phase. Indeed, the
feature cannot be computed for all the combinations of 𝑉 ∗ and 𝑆 𝑂 𝐶∗.

3.2.2. Robustness to SOC error
The results in the previous section assumed perfect knowledge of

the battery’s state of charge, which was obtained by Coulomb counting.
lthough Coulomb counting is reliable in laboratory conditions, its ef-

ectiveness is hindered in real applications due to different factors [42],
e.g., lower sensor accuracy. In real operation, the SOC is provided by
the SOC estimation algorithm, which is of course inherently subject
to its own estimation error. This error has an impact on the SOH
estimation models introduced in the previous section. For example,
𝑡CC,nor m, which was used by all models, relies on knowledge of the SOC.

For this reason, an assessment of the SOH estimation models with
espect to errors in the SOC estimates was deemed appropriate. For
his analysis, we restricted our attention to the model that was deemed
ore promising when trading off accuracy and complexity, i.e. the
odel using two features (𝑡CC,nor m and mileage). The previous tests
ere repeated while artificially introducing an offset error in the SOC

anging from −5% to 5%, as shown in Figs. 8a, 8b, 8c, and 8d for the
CC2, BC, BCNP 1s, and BCR cells, respectively.

Table 5 shows the root mean square value of the estimation error for
each charging protocol, with different values of the injected SOC error.
As expected, the estimation accuracy is indeed affected by the presence
10 
of an error in the SOC; nevertheless, the accuracy of the model remains
satisfying. Furthermore, injecting an SOC error produces consistent
errors in the SOH estimation, without altering the overall prediction
trends of the model. This is clearly visible in Fig. 8, which shows the
SOH predictions and estimation errors that were thus obtained on the
test charging protocols. This robustness is likely attributable to the use
of the mileage, which is not affected by the SOC error, as the second
input feature. Moreover, the simplicity of linear regression over other
data-driven algorithms allows one to obtain accurate results, avoid-
ing the tendency towards over-fitting typical of other more complex
machine learning models.

4. Conclusion

Prior works have demonstrated the effectiveness of data-driven SOH
estimation methods when exploiting SOH features that can be easily
calculated during charging events. However, these studies are limited
in their practical applicability as they fail to account for the wide vari-
ability that can be experienced in real-world operation, focusing instead
on full charging events in a lab environment. Moreover, few studies
consider fast-charging events and different charging protocols. In this
study, we investigated nine SOH features, some of which are based
on novel formulations that we modified to improve their flexibility
for different charging events, and developed a linear regression model
to test them using a dataset that includes six different fast-charging
rotocols.

We found that a linear regression model, which combines one
eature extracted from the charging profile (𝑡CC,nor m) and one easily
vailable cumulative feature (the vehicle’s mileage), achieves reason-
ble accuracy when tested on fast-charging protocols that are different

from the training protocols. We also found that, owing to its simple and
interpretable structure, the linear regression model is also robust with
espect to errors in SOC estimation (which affects the 𝑡CC,nor m feature).
he study also discusses the relative importance of the nine SOH
eatures based on the results of a correlation and a feature importance
nalysis.

Our results suggest that exploiting charging events is in fact a
practical approach to monitor the SOH of an EV battery pack, even
when considering fast-charging and different charging protocols; our
work also provides some novel SOH features3 that can be effectively
valuated and used even for partial charging events, which are very

common in real-world operation.
Nonetheless, this work can be improved in different aspects in future

esearch. Even if the proposed features are flexible to a wide range of
harging events, they are still not applicable to all charging situations;
onetheless, different features might complement each other. Future
ork could therefore focus on developing two or more separate SOH
stimation models with different features. After a charging event is
ompleted, the prediction of the model for which the most reliable fea-
ures were available could be selected. Furthermore, we acknowledge
hat, at present, fast charging is only a limited portion of the whole bat-
ery usage time, although this is expected to grow with the development

of EV charging infrastructures. Nevertheless, the method proposed in
this work can complement other SOH estimation algorithms based on
the more common slow charging. Indeed, by integrating SOH esti-
mations from different methods across various charging/discharging
phases, a more accurate and reliable SOH estimation could be achieved.
Moreover, the estimation method has not been tested over the realistic
scenario where different charging protocols occur randomly throughout
the battery’s lifetime, due to the lack of experimental data. Nonetheless,
the estimation method should be able to provide accurate results even
for such a complex scenario. Once the aging campaign (or vehicle us-
age) begins, it is crucial to identify the charging protocol used for each
charging phase and normalize the health features with respect to the
feature value obtained for the fresh cell cycled with the corresponding
protocol.

3 or rather, novel formulations of commonly used features.
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Table 4
Root mean square error of the SOH estimation using time of constant current charging and mileage as inputs to the linear regression model,
using different values of 𝑆 𝑂 𝐶∗ and 𝑉 ∗ to define the time of constant current charging.

Protocol 𝑉 ∗ 𝑆 𝑂 𝐶∗ RMSE, %

CC2

4.0 V (≈ 15%–60%)
10% 1.62
20% –
30% –

4.05 V (≈ 20%–70%)
10% 1.38
20% 1.35
30% –

4.1 V (≈ 30%–75%)
10% 1.51
20% 1.47
30% 1.35

4.15 V (≈ 35%–80%)
10% 1.35
20% 1.31
30% 1.19

BC

4.0 V (≈ 15%–60%)
10% 1.48
20% –
30% –

4.05 V (≈ 20%–70%)
10% 1.38
20% 1.35
30% –

4.1 V (≈ 30%–75%)
10% 1.51
20% 1.47
30% 1.35

4.15 V (≈ 35%–80%)
10% 1.35
20% 1.31
30% 1.19

BCNP 1s

4.0 V (≈ 15%–60%)
10% 1.62
20% –
30% –

4.05 V (≈ 20%–70%)
10% 1.73
20% 1.79
30% –

4.1 V (≈ 30%–75%)
10% 1.78
20% 1.87
30% 1.88

4.15 V (≈ 35%–80%)
10% 1.56
20% 1.61
30% 1.61

BCR

4.0 V (≈ 15%–60%)
10% 3.34
20% –
30% –

4.05 V (≈ 20%–70%)
10% 3.07
20% 3.14
30% –

4.1 V (≈ 30%–75%)
10% 3.63
20% 3.76
30% 3.97

4.15 V (≈ 35%–80%)
10% 3.71
20% 3.90
30% 4.13
Table 5
Root mean square error (%) of the SOH estimation for different SOC errors over all the tested cells
using time of constant current charging and mileage as inputs to the linear regression model.

SOC error (%) Test cell

CC2 BC BCNP 1s BCR

−5 1.64 2.17 1.84 3.14
−2.5 1.06 1.75 1.75 3.41
−1 0.99 1.56 1.80 3.61
0 1.09 1.47 1.87 3.76
+1 1.29 1.41 1.96 3.91
+2.5 1.69 1.39 2.15 4.16
+5 2.48 1.55 2.55 4.60
11 
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Fig. 8. SOH estimation results considering different SOC errors and using time of constant current charging and mileage as inputs to the linear regression model on the testing
cells (a): constant current 2, (b): boost constant current, (c) pulse boost with 1s negative pulse, and (d): pulse boost with rest.
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