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On a Novel Calderón Preconditioning Strategy
Based on High-Order Quasi-Helmholtz Projectors
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(1) Politecnico di Torino, Turin, Italy
(2) IMT Atlantique, Brest, France

Abstract—The first of Calderón identities indicates that the op-
erator of the electric field integral equation (EFIE) can potentially
act as a preconditioner for itself. However, the discretization of
this preconditioning operator via the boundary element method
(BEM) requires constructing a dual space commonly defined on
a barycentric refinement of the orginal mesh. This contribution
introduces a novel Calderón strategy that leverages high-order
quasi-Helmholtz projectors. Unlike the standard strategies, which
are based on barycentric refinements, a dual space is obtained
by combinating functions of higher order. This strategy allows
the development of a discretization of the Calderón identity
that is suitable for arbitrary order. The well-conditioning of the
proposed formulation is investigated, and numerical results are
presented to corroborate the theory.

Index Terms—Electric field integral equation (EFIE), bound-
ary element method (BEM), high-order, Calderón identity, quasi-
Helmholtz projectors

I. INTRODUCTION

The electric field integral equation (EFIE) allows the mod-
eling of scattering and radiation problems from perfectly
electrically conducting (PEC) objects [1]. Its discretization
via the boundary element method (BEM) leads to a matrix
system to be solved for finding the numerical solution’s
underlying expansion coefficients. In that context, a high-
order discretization strategy [2] can be pursued to generate
faster convergence rates to the physical solution with respect
to the size of the system. Concurrently, ensuring a low
condition number is desirable feature to ensure numerical
accuracy and stability of the process and reduce the number
of iterations when using iterative solvers [3]. Unfortunately,
matrices arising from the discretization of the EFIE are known
to suffer from h-refinement and low-frequency breakdowns.
For these reasons, preconditioning the EFIE has been a widely
investigated topic that has received considerable attention over
the past decades (see [3] and references therein). Among the
different possible strategies, this work focuses on techniques
based on quasi-Helmholtz decompositions [3], [4] and on
the Calderón identities [5]–[7]. Some relationships between
these two approaches have been explored and most require
the construction of a dual space [7], [8] for the discretization
of the Calderón identity.

In this contribution, we propose a different strategy using
a normalized version of the high-order quasi-Helmholtz pro-
jectors [4] to effectively construct the dual space. Similarly to
what was done in [6], in the case of barycentric refinement,
the solenoidal and non-solenoidal contributions of the GWP
functions of order p are rotated and respectively mapped onto

the non-solenoidal and solenoidal contributions of the GWP
functions of order higher than p. Numerical experiments on
canonical geometries showcase the stable condition numbers
of the new formulation in the h-refinement and low-frequency
regimes.

II. BACKGROUND AND NOTATION

Consider a closed and simply connected triangular mesh
of E edges, C cells, and V vertices modeling the boundary
surface Γ of a PEC object. Given the incident electric field
Einc that impinges on Γ, the EFIE allows finding the induced
surface current density J and reads T J = −η−1n̂ × Einc,
with T = jk Ts − (jk)−1 Th, where

(TsJ) (r) = n̂×
∫
Γ

G(r, r′)J(r′) dS(r′) , (1)

(ThJ) (r) = n̂× gradΓ

∫
Γ

G(r, r′)divΓJ(r
′) dS(r′) , (2)

and where n̂ is the outgoing normal vector to Γ, η is the
characteristic impedance of the medium, gradΓ, curlΓ :=
n̂ × gradΓ, and divΓ are the surface gradient, surface curl
and surface divergence operators, respectively, and G(r, r′) is
the Green’s function. We define ⟨f , g⟩ =

∫
Γ
f(r)·g(r) dS(r),

where f and g are scalar or vector functions, as well as the
associated Gram matrix between two sets of (scalar or vector)
functions {f i}

I
i=1 and

{
gj

}J

j=1
denoted by Gf ,g ∈ RI×J

with components [Gf ,g]ij = ⟨f i, gj⟩.
The EFIE is then discretized by employing GWP div-

conforming basis functions within a Petrov-Galerkin pro-
cedure. Denoting {ψ(p)

i }Np

i=1 the set of GWP basis func-
tions of order p, with Np = p(p + 1)C + (p + 1)E,
the resulting matrix system of size Np reads Tpjp =
ep, with Tp = jkTp|s + (jk)−1Tp|h, [Tp|s]ij = ⟨n̂ ×
ψ

(p)
i , Tsψ(p)

j ⟩, [Tp|h]ij = −⟨n̂ × ψ(p)
i , Thψ(p)

j ⟩, and [e]i =

−η−1⟨n̂ × ψi, n̂ × Einc⟩. We finally consider a normal-
ization of the EFIE that consists in orthonormalizing the
basis, which become T̃pj̃p = ẽp, with T̃p = jkT̃p|s +

(jk)−1T̃p|h, and where T̃p|s = G
−1/2

ψ(p),ψ(p)Tp|sG
−1/2

ψ(p),ψ(p) ,

T̃p|h = G
−1/2

ψ(p),ψ(p)Tp|hG
−1/2

ψ(p),ψ(p) , j̃p = G
1/2

ψ(p),ψ(p)jp, and

ẽp = G
−1/2

ψ(p),ψ(p)ep.

III. NORMALIZED HIGH-ORDER QUASI-HELMHOLTZ
PROJECTORS

Consider the two finite element spaces of order p + 1
continuous and order p discontinuous scalar functions, to
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which we respectively associate the sets of basis functions
{λ(p+1)

i }Lp

i=1 and {σ(p)
i }Sp

i=1, with Lp = p(p−1)C/2+pE+V
and Sp = (p + 1)(p + 2)C/2. These basis functions can be,
for instance, based on Lagrange interpolatory functions [2].
This allows defining the normalized non-solenoidal (Star)
transformation matrix [4]

Σ̃p = G
−1/2

ψ(p),ψ(p)GdivΓψ(p),σ(p)G
−1/2

σ(p),σ(p) , (3)

and the normalized solenoidal (Loop) transformation matrix

Λ̃p = G
−1/2

ψ(p),ψ(p)Gψ(p),curlΓλ(p+1)G
−1/2

λ(p+1),λ(p+1) . (4)

We then define the normalized quasi-Helmholtz projectors
PΣ̃

p = Σ̃p

(
Σ̃T

p Σ̃p

)+
Σ̃T

p , PΛ̃
p = Λ̃p

(
Λ̃T

p Λ̃p

)+
Λ̃T

p , where
“+” denotes the Moore-Penrose pseudo-inverse. By construc-
tion, these projectors are orthogonal to each other, yielding
PΛ̃

pP
Σ̃
p = 0, and, in conjunction, the following property holds

PΛ̃
p T̃p|h = T̃p|hP

Λ̃
p = 0 . (5)

IV. PRECONDITIONING THE EFIE WITH THE NOVEL
CALDERÓN STRATEGY

In this work, we exploit the Calderón identity T 2 =
− 1

4I + K2, where I is the identity operator and K is the
compact operator defined in [5]. This is an integral operator
of the second kind that is known to have a bounded spectrum.
Nevertheless, the discretization of the Calderón identity re-
quires the definition of a space that is dual to the GWP space
of order p.

Leveraging the normalized high-order quasi-Helmholtz pro-
jectors, we first build a transformation matrix that provides the
desired mapping of GWP functions of order r > p to a space
that is dual to the GWP functions of order p. On the one
hand, the non-solenoidal functions of order p are rotated and
then mapped onto the solenoidal functions of order r via the
transformation matrix

Θ̃Λ̃
r,p = PΛ̃

r G̃
mix

r,p PΣ̃
p . (6)

with the normalized mixed-Gram matrix

G̃
mix

r,p = G
−1/2

ψ(r),ψ(r)Gψ(r),n̂×ψ(p)G
−1/2

ψ(p),ψ(p) . (7)

On the other hand, the solenoidal functions of order p are
rotated and then mapped onto the GWP functions of order r
via the transformation matrix

Θ̃Σ̃
r,p = G̃

mix

r,p PΛ̃
p . (8)

Moreover, the following property holds

PΛ̃
r Θ̃

Σ̃
r,p = 0 , (9)

which implies that Θ̃Σ̃
r,p actually maps the rotated solenoidal

functions of order p onto the non-solenoidal functions of order
r. This also implies that(

Θ̃Σ̃
r,p

)T

Θ̃Λ̃
r,p = 0 . (10)
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Fig. 1. Spectra of the matrices in (12). Results are obtained for the simulation
of the unit sphere at 106 Hz with p = 2 and h = 0.30 m.

After defining the mapping matrix

Θ̃r,p = Θ̃Λ̃
r,p + Θ̃Σ̃

r,p , (11)

we propose the following preconditioned formulation

T̃r,pT̃pj̃p = T̃r,pẽp , (12)

with the preconditioner

T̃r,p = Θ̃T
r,pT̃rΘ̃r,p . (13)

Furthermore, we establish from (5) that

T̃r|hΘ̃
Λ̃
r,p = 0 , (14)

Θ̃Σ̃
r,pT̃p|h = 0 . (15)

Consequently, by developing (12) and setting (14) and (15)
we get

T̃r,pT̃p = Θ̃T
r,pT̃r|sΘ̃

Λ̃
r,pT̃p|h + Θ̃T

r,pT̃r|hΘ̃
Σ̃
r,pT̃p|s

− k2Θ̃T
r,pT̃r|sΘ̃r,pT̃p|s

(16)

which indicates that the proposed formulation does not suffer
from low-frequency breakdown on simply connected geome-
tries. Furthermore, numerical experiments (a subset of which
are presented in Section V) show that choosing r = p + 2
leads to a stable discretization.

V. NUMERICAL RESULTS

To illustrate the effects of the preconditioning on the spec-
trum of the EFIE, we display in Fig. 1 the singular values
of the matrices involved in (12). The experiment is done for
simulation of the unit sphere at 1 MHz with p = 2 and
average cell diameter h = 0.30 m. We firstly observe that
the EFIE matrices Tp and Tr,p exhibit analogous spectra
characterized by an interchange between solenoidal (small
singular values) and non-solenoidal (high singular values)
contributions. Secondly, the preconditioned matrix Tr,pTp has
a spectrum similar to that of − 1

4Θ̃
T
r,pG̃

mix

r,p , while the singular
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Fig. 2. Condition number as a function of the average cell diameter inverse.
Results are obtained for the simulation of the unit sphere at 106 Hz.

10 -6 10 -4 10 -2 10 0 10 2 10 4 10 6 10 8

Frequency (Hz)

10 0

10 5

10 10

10 15

10 20

C
on

di
ti

on
 N

um
be

r

p=1 p=2p=0

Fig. 3. Condition number as a function of the frequency. Results are obtained
for the simulation of the unit sphere with h = 0.30 m.

values of the remainder Cr,p := Tr,pTp + 1
4Θ̃

T
r,pG̃

mix

r,p are
sensibly smaller.

In addition, we computed the condition number as a func-
tion of h in Fig. 2 (with frequency f = 1 MHz), and as a
function of the frequency f in Fig. 3 (with h = 0.30 m). In
both experiments, we observe that the preconditioned matrix
has a condition number that is almost constant, while the orig-
inal matrix has a condition number that grows quadratically
as h and as f tend towards zero.

Finally, we show the performance of the proposed strategy
in terms of the number of iterations carried out by iterative
solvers for finding the solution of the matrix system. For this
study, we employ the transpose free quasi-minimal residual
(TFQMR) solver [9]. Fig. 4 displays the residual norm as
a function of the number of iterations when simulating at
3 GHz a 0.18 m section of coil of 55 mm diameter that
is meshed with triangles of average diameter h = 20 mm.
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Fig. 4. Residual error of the iterates as a function of the number of iterations
of TFQRM and surface current density (in A/m) obtained for p = 2.

When leveraging the new strategy, the number of iterations of
TFQMR is substantially lower than when solving the original
formulation and varies little with regards to the order and size
of the system.
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