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Abstract
An analytic derivation of the relevant dispersion relation for vertical displacements in shaped
tokamak plasmas is presented, valid for arbitrary values of the ellipticity parameter. The theory
is developed within the framework of the reduced ideal-MHD model. A nearby, perfectly
conducting wall can provide passive feedback stabilization of vertical displacements on the
ideal-MHD timescale. The mechanism for passive stabilization relies on image currents induced
on the metallic wall. However, if the plasma extends to the magnetic separatrix, where magnetic
X-points are located, as in the case of a divertor tokamak configuration, perturbed axisymmetric
currents carried by the plasma in the vicinity of the X-points are triggered. It is shown that these
X-point currents can provide passive feedback stabilization, even in the absence of a nearby
wall. X-point currents are excited due to the resonant nature of magnetic X-points with respect
to toroidal axisymmetric perturbations. An intermediate case, where the plasma boundary is
located just inside the magnetic separatrix, is also analyzed, providing additional insight into the
stabilization mechanism.

Keywords: MHD plasma stability, tokamaks, impact of divertor X-points, axisymmetric modes,
vertical displacements

(Some figures may appear in colour only in the online journal)

1. Introduction

Present-day tokamak experiments adopt plasma shaping and
magnetic divertor configurations in order to optimize fusion
performance, and also to reduce the adverse effects of
plasma–wall interactions, as experimental and theoretical
studies have confirmed [1–9]. Plasma shaping, and in partic-
ular cross-section elongation, requires careful design of the
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plasma-facing components and feedback control by currents
flowing in external coils in order to avoid vertical displacement
events, which may endanger the machine’s integrity and safe
operation [10–16]. Hence, plasma vertical stability has been
the subject of several analytic and numerical investigations, of
which [17–30] are a sample.

Typically, in these investigations, the plasma is modeled
by ideal-MHD, with boundary conditions representing nearby
ideal or resistive wall and external feedback currents. The
basic idea is that eddy currents flowing along the surface of
the wall, and/or along ad hoc metallic conductors facing the
plasma, can lead to passive stabilization of the ideal-MHD
vertical instability. Passive stabilization is essential, because
if somehow vertical displacements were allowed to grow on
the Alfvénic timescale, magnetic fluxes generated by external
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currents placed outside the wall of the vacuum chamber for
active feedback control would not have the time to penetrate
the wall and counter the fast-growing ideal-MHD instability.
Once passive stabilization of the ideal-MHD vertical instabil-
ity is achieved, vertical displacements may still grow on the
resistive wall timescale. For this relatively slow growth, active
stabilization bymeans of feedback currents flowing in external
coils becomes feasible.

Magnetic divertor configurations are also an important fea-
ture of present-day tokamak experiments [1, 2]. For these con-
figurations, the last closed flux surface is a magnetic separatrix
with, typically, either one (single-null) or two (double-null) X-
point(s) (more complex configurations with multiple X-points
have also been explored [31]). These are points on the plasma
poloidal cross-section, or magnetic field lines when viewed in
three dimensions, where the poloidal magnetic field vanishes
and the confining magnetic field is purely toroidal. Vertical
displacements, on the other hand, are axisymmetric perturb-
ations with toroidal mode number n= 0. Therefore, a vertical
displacement perturbation is resonant at the X-point(s) of a
magnetic divertor configuration, in the sense that this perturb-
ation, regardless of its poloidal modulation, is constant along
the toroidal field line going through the X-point. Mathemat-
ically, the resonance condition is represented by the criterion
Beq ·∇χ= 0, where χ is a generic axisymmetric perturbation
and Beq the equilibrium magnetic field. This criterion is trivi-
ally fulfilled at the X-points, since the toroidal mode number is
n= 0, and the poloidal component of the equilibriummagnetic
field, Bp, vanishes at such points.

As a consequence of the X-point resonance, axisymmet-
ric current sheets localized along the separatrix are likely to
form. This process, which leads to current sheet formation in
the proximity of magnetic X-points, has been studied in the
context of astrophysical plasmas (see, e.g. [32, 33]), as well
as in connection with fundamental laboratory plasma experi-
ments (see, e.g. [34]), and is well known to researchers work-
ing in magnetic fusion (e.g. [28, 35–37]). However, as far as
we are aware, [38, 39] are the first articles where the resonant
interaction between n= 0 modes and the X-point(s) of a mag-
netic divertor configuration was addressed analytically within
the framework of a tokamak plasma. Experimental evidence
of n= 0 perturbations and current sheets at X-points have been
observed in tokamak experiments such as the Joint European
Torus (JET) [40–43]. Current sheets have also been observed
in numerical simulations of the vertical instability in toka-
maks, with advanced numerical codes that are able to treat cor-
rectly the X-point geometry, such as M3D-C1, NIMROD and
JOREK [10, 30, 44]. However, analytic understanding of why
these current sheets form, and more importantly, the impact
they have on the stability of vertical displacements, was not
clarified in those numerical works. A caveat of our analysis is
that it is restricted to ideal-MHD, while real plasmas are resist-
ive, and the cited numerical works took plasma resistivity into
account. Thus, while current sheet formation near magnetic X-
points is a robust prediction that can bemade within the frame-
work of ideal-MHD, our work also suggests that plasma elec-
trical resistivity in a narrow boundary layer along the magnetic

separatrix, in addition to wall resistivity, may have a profound
impact on the stability of n= 0 vertical displacements.

The main result of [39] is that the current sheets that form
along the tokamak divertor separatrix are capable of suppress-
ing the vertical instability on the ideal-MHD timescale, thus
providing effective passive stabilization of these modes, even
in the absence of a nearby wall and/or ad hoc plasma-facing
components. The purpose of this article is to extend the ana-
lysis of [39], by providing a more detailed analytic derivation,
and to shed additional light on the mechanism leading to the
ideal-MHD stabilization of vertical modes as a consequence
of the X-point resonance.

This article is organized as follows. In section 2, an
heuristic derivation of ideal-MHD vertical stability theory
is presented, assuming a rigid vertical displacement of the
plasma and in the absence of magnetic X-point effects.
Section 3 outlines the model equations and the initial equi-
librium configuration. In section 4, we consider the situation
where the plasma terminates on an elliptical boundary well
within the magnetic separatrix containing the X-points. This
configuration, which corresponds to the one first treated in the
pioneering work of [17], leads to the conclusion that vertical
displacements in elongated tokamak plasmas are ideal-MHD
unstable, unless a conducting wall is located relatively close
to the elliptical plasma boundary. Therefore, this situation is
more appropriately referred to as the limiter tokamak scen-
ario. In section 5, the plasma is assumed to extend to the diver-
tor magnetic separatrix and the impact of the X-point reson-
ance is analyzed. It is found that vertical displacements are
stable on the ideal-MHD timescale thanks to current sheets
that form along the magnetic separatrix, even in the absence
of a wall. Section 6 discusses the intermediate case, where
the wall is absent and the plasma terminates close to the mag-
netic separatrix, however leaving the X-points in the vacuum
region. This scenario is studied in order to understand, from
a mathematical point of view, how the condition for ideal-
MHD marginal stability for the no-wall case can be obtained.
Conclusions are presented in section 7. In order to improve
the readability of the main text, many mathematical details
are provided in the appendixes. Units adopted in this article
are c.g.s.

2. Heuristics

In this section we derive, in an heuristic way, the relevant
dispersion relation for a vertical displacement perturbation,
assuming the latter to correspond to a rigid shift of the current-
carrying plasma, and on the basis of a simplified toy model.
The impact of the X-points is not considered in this section,
but it will be discussed in section 5.

Let us consider the equilibrium of three rectilinear current
wires, as shown in figure 1(a). At equilibrium, the plasma
wire carrying the current IP is located at y= 0, while two
equal external wires, each carrying a current IExt, are located
at y=±l. Note that we take the y-axis as the vertical direc-
tion. The currents flow along the z-direction, which mimics
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Figure 1. Schematic of the heuristic model for vertical instability.

the toroidal direction of a tokamak configuration. All three
currents are taken to be positive. The external wires are fixed
in space, while the plasma wire is free to move along the y-
direction. Figure 1(a) also sketches the magnetic flux surfaces
produced by the three current wires. A vacuum is assumed to
surround the three wires, and therefore, no current is allowed
to flow through the magnetic X-points. This configuration is
taken to mimic, at a very essential level, the magnetic double-
null equilibrium of a straight tokamak bounded by a magnetic
divertor separatrix. Clearly, as we have already pointed out,
the more realistic case where the plasma extends to the mag-
netic separatrix and currents are allowed to flow through the
X-points obviously cannot be treated by this toy model, and
will be discussed in section 5.

The equation of motion for the plasma wire is (in c.g.s.
units):

µ ÿ=
4 IP IExt
c2

y
l2 − y2

, (1)

where µ is the linear mass density, c is the speed of light, and
an over-dot signifies the time derivative. We neglect self and
mutual induction currents. Thus, IP and IExt remain constant
as the plasma wire is displaced. For small y≪ l, the solution
of equation (1) is:

y= y0 e
γH t, (2)

where y0 is an initial displacement, and

γH =
1
l

√
4 IP IExt
µc2

(3)

is an inertial growth rate.
At this stage, no particular relation exists between the cur-

rents IP and IExt and the distance l. However, if instead of a
plasma wire we consider a diffused plasma column with a uni-
form current density extending, on the Oxy cross-section, up
to an elliptical magnetic surface with minor semi-axis a and

major semi-axis b contained within the magnetic separatrix,
then, according to the equilibrium solution in [45], a relation-
ship is established:

IExt
IP

=
b− a
b+ a

l2

a2 + b2
. (4)

When equation (4) is used in equation (3), the exponential
growth rate of the vertical displacement becomes:

γH =

(
b− a
a+ b

)1/2( 1
a2 + b2

)1/2 2 IP

(µc2)1/2
. (5)

Therefore, the relevant growth rate depends only on the plasma
current IP and on the parameters a and b, but does not depend
on the distance l, nor on the value of the external currents.

We can rewrite γH in terms of more familiar plasma para-
meters. For a cylindrical plasma column with an elliptical
cross-section, the linear mass density µ should be replaced by
µ→ πabϱm, where ϱm is the volume mass density. We intro-
duce the ellipticity parameter:

e0 =
b2 − a2

b2 + a2
. (6)

If we assume e0 to be small, then a≈ b, 2 IP ≈ caBp(a), and
the growth rate takes the form:

γH =
e0 1/2 vA

a
, (7)

where vA = Bp(a)/(4πϱm)
1/2 is the familiar Alfvén velocity

based on the poloidal magnetic field. The inverse of γH is of
the order of the characteristic Alfvén time. This is indeed a
very fast growth time. For instance, if we take a hydrogen
plasmawith e0 = 0.2, a= 1m,Bp(a) = 1 T, and number dens-
ity n= 1020m−3, we find γ−1

H ≈ 1 µs.
The ideal vertical instability is suppressed in the presence

of a perfectly conducting wall, provided this wall is not too
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far away from the plasma. We can understand the stabiliza-
tion mechanism in the following way. When the plasma cur-
rent is displaced from its equilibrium position, image currents
are induced at the wall, as shown schematically in figure 1(b).
The sign of these currents is such that the corresponding forces
oppose the motion of the plasma wire. From an heuristic point
of view, this effect can be conveniently mimicked by two cur-
rents of opposite sign, ±δI, carried by the two external wires,
and added to the external currents IExt (see figure 1(c)). The
currents ±δI can be thought of as driven by an induced e.m.f.
proportional to ẏ. In the perfectly conducting limit,

δİ=
DIExt ẏ
l

, (8)

where D is a dimensionless proportionality constant. In the
actual tokamak problem, the parameter D depends on the wall
geometry (and on other passive stabilization components even-
tually placed inside the vacuum chamber). Including the effect
of the perturbed external currents±δI, the equation of motion
for the plasma wire becomes:

µc2 ÿ= 4 IP IExt
y

l2 − y2
− 4 IP δI

l
l2 − y2

= 4 IP IExt (1−D)
y
l2
,

(9)

where we have taken y≪ l in the second of equations (9). Sta-
bility is obtained for:

D⩾ 1. (10)

In this limit, an initial displacement of the plasma wire from its
equilibrium position results in oscillatory motion with a char-
acteristic frequency:

ωH =±
√
D− 1γH. (11)

In [17] (and in section 4 of this article), the geometrical
factor D is determined analytically for the case of confocal
elliptical plasma and wall cross-sections, and a uniform equi-
librium current density distribution up to the elliptical plasma
boundary. The following expression is found:

D=
b2 + a2

(b− a)2
bw− aw
bw

, (12)

where a, b, aw and bw are the minor and major semi-axes of
the confocal plasma and wall elliptical cross-sections, respect-
ively, with b2 − a2 = b2w− a2w. According to the equilibrium
adopted in [17] and in this article, the marginal stability condi-
tion, D= 1, corresponds to the situation where the wall ellipt-
ical cross-section intercepts the magnetic X-points; values of
D> 1 that are necessary for passive wall stabilization are such
that the magnetic X-points lie outside the vacuum chamber.

We also present an alternative derivation of the dispersion
equation (9) that relaxes the assumption that the plasma cur-
rent is simply a filament, but instead makes full use of the
equilibrium solution for the equilibrium flux functionψeq(x,y)
derived in [45] (see also the next section). We assume once

again that the relevant perturbation corresponds to a rigid shift
of the entire plasma column. Suppose that the plasma displaces
rigidly in the y-direction by a distance ξ. In the plasma frame,
this is equivalent to displacing the two external current fila-
ments in the negative y-direction by the same distance. Sup-
pose that the current in the filament at y= l− ξ is IExt− δI,
whereas the current in the filament at −y= l− ξ is IExt+ δI.
The net force per unit length acting on the filaments due to the
plasma is:

ffil =− (IExt− δI)
c

∇ψP(l− ξ, 0)− (IExt+ δI)
c

∇ψP(−l− ξ, 0),

(13)

where ψP(x,y) is the magnetic flux generated by the currents
flowing in the plasma. Following the derivation in appendix A,
we obtain an equation for ξ̂ = ξ/l,

d2ξ̂

d̂t2
− ξ̂ =−δÎ, (14)

wherewe have normalized δÎ= δI/IExt and t̂= γH t, with γH as
given in equation (7). Thus, in the absence of feedback, δÎ= 0,
the result in equation (2) is recovered. With feedback, if we set
δÎ= D ξ̂ as in equation (8), the stabilization criterion D> 1 is
also recovered.

As we shall see, the value of γH obtained heuristically in
this section, as well as the passive stabilization criterion (10),
with the parameter D given by equation (12), agree perfectly
well with those obtained by the more detailed normal mode
analysis of section 4, where the plasma density drops to zero
outside the elliptical boundary. This result is no longer valid
if the plasma density remains finite around the magnetic X-
points, as shown in section 5 and first discussed in [38, 39].

3. Model equations, plasma equilibrium, linearized
model

The model adopted in this work is the standard reduced ideal-
MHD model (see, e.g. [46]), where the reduction is based on
the low-β tokamak ordering (β = plasma pressure/magnetic
pressure). The magnetic field is represented asB= ez×∇ψ+
Bz ez, where ez is the unit vector along the z-direction, and Bz is
assumed to be nearly constant. We also assume that all phys-
ical quantities are independent of the z coordinate. The plasma
flow is represented as v= ez×∇φ.

The reduced ideal-MHDmodel equations in dimensionless
form, for the magnetic flux function ψ, the stream function φ,
and non-constant mass density ϱ, are:

∂ψ

∂t
+ [φ,ψ] = 0, (15)

∂

∂t
∇· (ϱ∇φ)+ 1

2

[
ϱ,(∇φ)2

]
+U [φ,ϱ] + [φ,U] = [ψ,J] ,

(16)

where the brackets are defined as [χ,η] = ez ·∇χ×∇η, with
χ and η two generic scalar fields, J=∇2ψ is the normalized
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current density, andU=∇2φ is the normalized flow vorticity.
Space and time are normalized as r̂= r/r0, where

r0 =
[
2a2b2/(a2 + b2)

]1/2
(17)

is a convenient equilibrium scale length, and t̂= t/τA, where
τA = (4 πρm)1/2/B ′

p is the relevant Alfvén time and B ′
p the

radial derivative of the poloidal magnetic field at the mag-
netic axis. The dimensionless fields are normalized as ψ̂ =
ψ/(B ′

pr20), φ̂= (τA/r02)φ; the normalized plasma density
is ϱ̂= ϱm/ϱm0, with ϱm0 the density on the magnetic axis.
In order to simplify the notation, over-hats are dropped in
equations (15) and (16), and in the following.

At equilibrium, the fields are independent of time, and equi-
librium plasma flows are assumed to be absent. Thus, (15) and
(16) reduce to:

[ψeq,Jeq] = 0, (18)

where the subscript ‘eq’ denotes equilibrium quantities. The
general solution of (18) satisfies:

J= Jeq(ψeq) =∇2ψeq. (19)

As discussed in section 2, the occurrence of the vertical
instability does not depend on details of the equilibrium cur-
rent density profile, Jeq, but on finite ellipticity, e0, and on
the total current carried by plasma, IP. Therefore, in order to
allow for analytic work, a flat equilibrium current density pro-
file can be chosen, as in [17, 38], where the total plasma cur-
rent is uniformly distributed within a region delimited by a
convenient elliptical flux surface with minor and major semi-
axes a and b, respectively. The area of this region is S= πab,
hence IP = πabJeq. We introduce elliptical coordinates (µ,θ),
where:

x= Asinh(µ)cos(θ); y= Acosh(µ)sin(θ), (20)

with A=
√
b2 − a2. The convenient elliptical flux surface cor-

responds to µ= µb, where a= Asinhµb and b= Acoshµb.
In section 4, the elliptical surface µ= µb will correspond to
the actual plasma boundary. However, in sections 5 and 6, the
plasma will extend beyond this convenient flux surface. Thus,
consistent with the normalization introduced above, we take
Jeq(µ) = 2H(µb−µ), where H(x) is the Heaviside unit step
function. Since the ellipse µ= µb is a magnetic flux surface
(this is not true for all other µ = const ellipses), it can also be
stated that the equilibrium current density is a function of the
equilibrium flux, ψeq; hence, (19) is satisfied. In other words,
we can also take Jeq = 2H(ψb−ψeq), where ψb is the value of
the equilibrium flux at the plasma boundary.

Based on the analysis of [45], it can be shown that the solu-
tion, ψeq, of the equilibrium problem, in the limit where the
parameter ε= [(a2 + b2)/l2]e0 is small, reduces to Gajewski’s
solution [47], represented as follows. For µ < µb, the solu-
tion of ∇2ψ−

eq = 2 that satisfies the regularity condition at the

magnetic axis, and that reduces to a constant at the flux surface
µ= µb, in Cartesian coordinates is given by:

ψ−
eq(x,y) =

1
2

(
x2

a2
+
y2

b2

)
. (21)

Here, and in the remainder of this article, we take the sub-
script ‘−’ to indicate the representation of scalar fields in the
region inside the convenient elliptical surface. In this region,
the equilibrium magnetic flux surfaces are nested ellipses with
constant elongation, κ= b/a. As we stated above, confocal
ellipses withµ= const are not flux surfaces, except for the spe-
cial one corresponding toµ= µb, whereψeq(x,y) = ψb = 1/2.

For µ > µb, the solution of the vacuum equation ∇2ψ+
eq =

0, subject to the boundary conditions that the equilib-
rium magnetic flux ψeq(µ,θ) and its normal derivative
∂ψeq/∂n= n ·∇ψeq be continuous across the surface µ= µb,
is best obtained in elliptical coordinates:

ψ+
eq =

1
2
+α2{µ−µb+

1
2
e0 sinh[2(µ−µb)]cos(2 θ)},

(22)

with α2 = ab/r20 = (1− e20)
−1/2 and e0 the ellipticity para-

meter defined in equation (6). The subscript ‘+’ indicates
the representation of scalar fields in the region outside the
convenient elliptical surface. The special flux surface defined
by ψeq(µ,θ) = ψX = µbα

2 is the magnetic separatrix, with X-
points located at µ= µX = 2µb, θ = θX = (π/2), (π/2 ±π).
Gajewski’s solution approximates well the complete solution
given in [45] up to values of |x| and |y| much smaller than l,
which, for ε≪ 1, include the separatrix region.

Finally, let ψ(µ,θ, t) = ψeq(µ,θ)+ ψ̃(µ,θ)eγ t and
φ(µ,θ, t) = φ̃(µ,θ)eγ t, where the over-tilde denotes small
perturbations. To first order in perturbed quantities, the ideal-
MHD equations (15) and (16) give rise to the linearized model
equations:

γ ψ̃+ [φ̃,ψeq] = 0, (23)

γ∇· (ϱeq∇φ̃) =
[
ψ̃,Jeq

]
+
[
ψeq, J̃

]
. (24)

In the following sections, we shall seek analytic solutions
of equations (23) and (24).

4. Normal mode analysis: limiter tokamak scenario

In this section, we consider the convenient elliptical surface
µ= µb to actually correspond to the plasma boundary. There-
fore, the X-points are in the vacuum region, where µ > µb.
We assume a constant plasma density profile up to the ellipt-
ical boundary at µ= µb, and zero outside that boundary: ϱeq =
H(µb−µ), with H(x) the unit step function. As shown in
figure 2, we denote the plasma region by the symbol Ω, while
vacuum occupies region ∆ and the V-regions (the meanings
of regions V± and V ′

± will be discussed in the next section).
Let us assume for a moment that, in region Ω (with the

exclusion of its boundary), the inertial term in equation (24)
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Figure 2. Equilibrium magnetic structure.

is negligible, either because the growth rate γ2 is small or,
more appropriately for the calculation that follows, because
the vorticity∇2φ̃ vanishes. Therefore, the perturbed flux satis-
fies [ψeq, J̃] = 0. There are two possibilities: either J̃= J̃(ψeq),
or J̃= 0. We discard the first possibility, as it gives rise to
a spurious additional part of the equilibrium current density.
Therefore, using elliptical coordinates, we conclude that inside
region Ω, ∇2ψ̃− = h−2(∂2µ + ∂2θ)ψ̃

− = 0, where h= |∇µ|=
|∇θ| is the metric element for elliptical coordinates, and we
have used the short-hand notation ∂µ = ∂/∂µ (and similar).

The general solution for ψ̃− can be written as a summa-
tion, over integer elliptical mode numbers m, of products of
exponential functions of mµ and sinusoidal functions of mθ.
However, as discussed in [17], on the basis of the ideal-MHD
energy principle, the most unstable solution corresponds to
elliptical mode number m= 1; furthermore, it is odd in θ and
even in µ. Thus, the solution of interest is:

ψ̃− = ψ1Acoshµsinθ = ψ1y, (25)

where ψ1 is a constant amplitude.
The flux-freezing equation (23), in Cartesian coordinates,

is:

γψ̃+
y
b2
∂φ̃

∂x
− x
a2
∂φ̃

∂y
= 0. (26)

Consistent with the solution for ψ̃−, we find:

φ̃(µ,θ) = γξAsinhµcosθ = γξx, (27)

where we have introduced the constant displacement amp-
litude ξ, and ψ1 =−ξ/b2. As we can see, solution (27) corres-
ponds to a rigid vertical displacement of constant amplitude ξ,
and the perturbed flux can also be written as:

ψ̃−(µ,θ) =−ξ
b
coshµ
coshµb

sinθ. (28)

Also note that the vorticity Ũ=∇2 φ̃= 0, as we anticip-
ated. An interesting feature of the solution we have obtained
is that both ψ̃ and φ̃ involve a single m= 1 harmonic in the
elliptic angle θ, while, if polar coordinates were used instead,
a large number of poloidal harmonics would be coupled
together.

In the vacuum region, where µ > µb, the perturbed flux
satisfies ∇2ψ̃+ = 0. Assuming, at first, that the ideal wall is
placed at infinity, the relevant solution that decays to zero
at infinity, and such that ψ̃+ = ψ̃− at the elliptical boundary
µ= µb, is:

ψ̃+(µ,θ) =−(ξ/b)e−(µ−µb) sinθ. (29)

The perturbed flux is continuous across the elliptical bound-
ary, but its derivative is discontinuous, giving rise to a current
sheet,

J̃(µ,θ) = j̃b(θ)δ(µ−µb) = h−2
(
∂µψ̃

+ − ∂µψ̃
−
)
µb

δ(µ−µb),

(30)

where δ(x) is the Dirac delta function. A short calculation
provides the modulation of the current sheet with respect to
the elliptical angle:

j̃b(θ) =
2(a+ b)
b2(a2 + b2)

ξ sinθ
1+ e0 cos2θ

, (31)

where we have used h2(µ,θ) = A2(cosh2µ+ cos2θ)/2.
The final step is to obtain the dispersion relation for γ2. Let

us consider the perturbed equation of motion, equation (24).
Each of the three terms in this equation is proportional to a
delta function centered at µ= µb. We point out that the bracket
terms appearing on the r.h.s. can each be expressed in terms
of a divergence; for instance, [ψ̃,Jeq] =∇· [(ez ×∇ψ̃)Jeq].
An expedient way to obtain the value of γ2 is to multiply
equation (24) by the scale factor h2, and integrate across

6
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the elliptical boundary over a narrow layer of infinitesimal
width,

lim
δµ→0

ˆ µb+δµ

µb−δµ

h2 γ∇· (ϱ∇φ̃)dµ

= lim
δµ→0

{ˆ µb+δµ

µb−δµ

h2
[
ψ̃,Jeq

]
dµ+

ˆ µb+δµ

µb−δµ

h2
[
ψeq, J̃

]
dµ

}
.

(32)

The three terms in (32) are evaluated separately as follows:

lim
δµ→0

ˆ µb+δµ

µb−δµ

h2 γ∇· (ϱ∇φ̃)dµ

= γ lim
δµ→0

ˆ µb+δµ

µb−δµ

[∂µ (ϱ∂µφ̃)+ ∂θ (ϱ∂θφ̃)]dµ

=−γ ϱ(∂µφ̃)µ−
b
, (33)

lim
δµ→0

ˆ µb+δµ

µb−δµ

h2
[
ψ̃,Jeq

]
dµ

= lim
δµ→0

ˆ µb+δµ

µb−δµ

h2∇· (Jeq ez×∇ψ̃)dµ= Jeq(∂θψ̃
−)µb

(34)

lim
δµ→0

ˆ µb+δµ

µb−δµ

h2
[
ψeq, J̃

]
dµ

= lim
δµ→0

ˆ µb+δµ

µb−δµ

h2∇· (J̃ez×∇ψeq)dµ

=
d
dθ

[
j̃b(θ)(∂µψeq)µb

]
. (35)

Balancing the three terms:

−γ ∂φ̃
∂µ

∣∣∣∣
µ−
b

= Jeq
∂ψ̃−

∂θ

∣∣∣∣∣
µb

+
d
dθ

[
j̃b(θ)

∂ψeq
∂µ

∣∣∣∣
µb

]
. (36)

Note that each of the three terms is proportional to cosθ. Sub-
stituting the explicit expressions of ψ̃ and φ̃, we obtain the
dispersion relation,

γ2 =
r40
a2b2

(
1− a

b

)
τ−2
A , (37)

where, for the sake of clarity, physical dimensions for the
growth rate, γ, and for the plasma semi-axes, a and b, have
been reintroduced. In terms of the ellipticity parameter, e0,
equation (37) can also be written as:

γ2 = (1− e0)

(
1+ e0 −

√
1− e20

)
τ−2
A ≡ γ2∞. (38)

We point out that this result is valid for arbitrary values
of e0 in the interval 0 ⩽ e0 ⩽ 1. In the limit e0 = 0, where
the plasma boundary becomes circular, the growth rate van-
ishes, as it should. Neutral stability is obtained also for e0 = 1,
corresponding to the case where the plasma cross-section has
an infinite elongation, but also a vanishing area, for a fixed

value of a or b. Instability is found for any positive value of
e0 < 1. In the limit of small ellipticity, the growth rate reduces
to γ ≈ e1/20 τ−1

A , in full agreement with the heuristic result
obtained in equation (7).

If a perfectly conducting wall is present, passive feedback
stabilization of the vertical mode can be obtained, depending
on the distance between the plasma boundary and the wall. As
was done in [17], we assume that thewall is also elliptical, with
coordinate µ= µw ⩾ µb (if µw = µb, the wall coincides with
the plasma boundary). Thus, the wall and plasma boundary are
confocal ellipses, and therefore b2 − a2 = b2w− a2w, where bw
and aw are, respectively, the major and minor semi-axes of the
elliptical wall cross-section.

The dispersion relation with passive feedback stabiliza-
tion can be obtained as follows. The solutions (27) and (28)
in the Ω-region are unaffected by the presence of the wall,
except, as we shall see, for a redefinition of the displace-
ment amplitude, ξ. On the other hand, the vacuum solu-
tion for ψ̃ is modified, as the perturbed flux must van-
ish on the perfectly conducting wall. In the vacuum region,
the solution of interest is ψ̃+(µ,θ) = {c0 exp [−(µ−µb)]+
c1 exp [+(µ−µb)]}sinθ, with c0 and c1 integration constants
to be determined by the conditions that the perturbed flux is
continuous at µ= µb and vanishes at µ= µw. In a physically
more meaningful way, we prefer to represent the vacuum solu-
tion as:

ψ̃+(µ,θ) =−ξ∞
b

exp [−(µ−µb)]sinθ+
ξext
b

coshµ
coshµb

sinθ,

(39)

where ξ∞ is the amplitude of the rigid vertical displacement in
the limit where the wall is moved to infinity, and the term pro-
portional to ξext represents the contribution to the perturbed
flux due to the image currents that form on the wall when
this is at a finite distance from the plasma boundary. Continu-
ity of flux at the plasma boundary requires that ξ = ξ∞ − ξext,
and so the actual vertical displacement ξ is reduced, as com-
pared with the no-wall case, by the amount ξext. The condition
ψ̃+(µw,θ) = 0 implies that:

ξext
ξ∞

=
1+ exp(2µb)
1+ exp(2µw)

. (40)

Let us now replace the wall-modified vacuum solution
in the expression (30) for the current sheet. Instead of
equation (30), we obtain:

j̃b(θ) =
2(a+ b)
b2(a2 + b2)

ξ∞ sinθ
1+ e0 cos2θ

. (41)

Finally, using equations (39)–(41) in equation (36), we
obtain the dispersion relation modified by the presence of the
ideal wall:

γ2 = γ2∞
1−D

1−De0b/(a+ b)
, (42)

7
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where

D=
(a+ b)
be0

ξext
ξ∞

, (43)

and γ∞ is the growth rate (38) found in the limitD→ 0, where
the wall is at infinity. A short calculation (see appendix B)
shows that expression (43) for the parameterD is exactly equi-
valent to that in equation (12). Therefore, apart from an extra
term in the denominator of equation (42) proportional to e0,
which can be neglected in the limit of small ellipticity, the dis-
persion relation (42) agrees perfectly well with equation (11)
obtained heuristically in section 2 when ellipticity is small.

Equation (42) indicates that passive feedback stabilization
is obtained for values of D> 1. The maximum D value is
found when the wall coincides with the plasma boundary. As
a numerical example, take aw = a, bw = b and b/a= 1.4. In
this case, D= 5.3. Note that in this limit, where µw → µb,
the vertical mode is purely oscillatory, with a frequency ω =
±(Dmax− 1)1/2γ∞, but also, the amplitude of the displace-
ment, ξ = ξ∞ − ξext, goes to zero, as ξext → ξ∞. As the wall is
placed further away from the plasma boundary, the value of D
decreases monotonically and the vertical mode remains purely
oscillatory for as long asD remains larger than unity. The mar-
ginal stability value,D= 1, is obtained when µw = 2µb, which
corresponds to the case where the wall intercepts the X-points,
as shown in figure 3 and in appendix B. Values of D< 1, for
which no passive feedback stabilization is possible, are found
when the X-points lie inside the volume bounded by the wall,
i.e. inside the tokamak vacuum chamber, while the plasma
boundary is well inside the magnetic separatrix. We point out
that this result is in perfect agreement with that obtained by
Laval et al [17] on the basis of the ideal-MHD energy prin-
ciple. We note that the conclusion, that passive wall stabiliz-
ation is possible only if the X-points are located outside the
vacuum chamber, is valid for the casewhere the plasma bound-
ary and thewall are confocal ellipses, but may not be true when
the shape of the wall follows more closely the shape of the
plasma boundary. On the other hand, the dispersion relation
for ideal-MHD vertical displacements given by equation (42),
valid in the ‘limiter tokamak scenario’ for arbitrary values of
the ellipticity parameter e0, together with its detailed normal
mode derivation, are shown in this article for the first time.

5. Normal mode analysis: divertor tokamak
scenario

Next, we consider the case where the plasma is bounded by
the magnetic divertor separatrix, which therefore represents
the last closed flux surface. In this case, the plasma density
extends to the separatrix, and axisymmetric modes are reson-
ant at the X-points. As a consequence, perturbed current sheets
are driven in the vicinity of the X-points and along the mag-
netic separatrix [39]. In this article, we extend the analysis of
[39] by providing a more detailed mathematical derivation and
additional information.

We remark that a current sheet always forms at the plasma
boundary. Indeed, this was the case for the limiter tokamak

Figure 3. Neutrally stable case for the ideal wall stabilization of
vertical instability. The wall is represented by the red curve
intercepting the X-points.

scenario treated in the previous section. However, if the plasma
extends to the magnetic separatrix, the effect of the current
sheet at the plasma boundary changes from destabilizing, as
for the limiter case, to stabilizing, as was shown in [39] and
detailed in the analysis that follows.

We assume a uniform density profile, up to the magnetic
separatrix, where the density drops rapidly to zero: ϱeq(ψeq) =
H(ψX−ψeq). The equilibrium current density, on the other
hand, is the same as that adopted in the previous section,
i.e. Jeq = 2H(ψb−ψeq), where ψeq = ψb = 1/2 corresponds
to the convenient elliptical surface, µ= µb, which now should
not be confused with the plasma boundary at ψeq = ψX.

In order to obtain the relevant dispersion relation, we follow
a procedure similar to the one adopted in the previous section.
In particular, the rigid-shift solution for the stream function, φ̃,
given by equation (27), is now valid all the way to the separat-
rix. Consequently, the perturbed flux in region Ω of figure 2
is still given by equation (28), while, in region ∆, it takes a
different form, since the expressions for the equilibrium flux,
ψeq, are different in the two regions. In order to obtain ψ̃∆,
we use the flux-freezing condition (23), expressed in elliptical
coordinates:

γψ̃+
1
h2

(
∂φ̃

∂µ

∂ψeq
∂θ

− ∂φ̃

∂θ

∂ψeq
∂µ

)
= 0. (44)

8
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After a straightforward calculation (see appendix C for
details), we obtain:

ψ̃∆(µ,θ) =
ξ

b
sinh(µ− 2µb)

sinhµb
sinθ. (45)

Thus, the perturbed flux in region∆ is a solution of the Laplace
equation, J̃∆ =∇2ψ̃∆ = 0, corresponding to a current-free
perturbation. It still involves a single m= 1 harmonic in the
elliptical angle θ. The important aspect is that the solution
we have obtained satisfies the ideal-MHD constraint at the X-
points, ψ̃(µX,θX) = 0. Moreover, ψ̃ is continuous at the ellipt-
ical surface, but its first derivative is discontinuous, and so a
perturbed current sheet is still present there: the term [ψeq, J̃]
in equation (24) generates a delta function, δ(µ−µb), at the
elliptical surface, which, however, is exactly canceled by the
other delta-function term arising from [ψ̃,Jeq]. Indeed,

Jeq
∂ψ̃

∂θ

∣∣∣∣∣
µb

+
d
dθ

[
j̃(θ)

∂ψeq
∂µ

∣∣∣∣
µb

]

=−2 ξ0 cosθ+
a2 + b2

a2b2
ξ0 cosθ = 0. (46)

In the latter equation, the semi-axes a and b are normalized to
r0, therefore, (a2 + b2)/(a2b2) = 2.

In the vacuum regions, denoted by the letter V in figure 2,
the perturbed flux ψ̃V also satisfies the Laplace equation,
whose general solution with the appropriate parity in the angle
θ, and decaying to zero at infinity (we consider here only the
no-wall case), is:

ψ̃V(µ,θ) = (ξ/b)
∑
m,odd

cme
−m(µ−µb) sinmθ. (47)

In principle, the coefficients cm are determined by continuity
with the perturbed flux ψ̃∆ at the magnetic separatrix. How-
ever, this turns out to be an analytically difficult task (see also
the next section): the plasma boundary, ψeq = ψX, is not a
constant-µ coordinate surface, and a simple analytic expres-
sion for µ as a function of θ along the separatrix cannot be
obtained. As a consequence, an infinite number of harmonics
in the elliptical angle, θ, are coupled on that surface and into
the vacuum solution.

This difficulty is resolved if ψ̃ in regions ∆ and V± is
expressed in flux coordinates:

u= α−2[ψ+
eq(µ,θ)−ψX], (48)

v= θ− π

2
+
e0
2
cosh[2(µ−µb) ]sin(2 θ), (49)

where ψ+
eq is given by equation (22). Since ∇2u= 0 and

∂θu=−∂µv, coordinates (u, v) are harmonic and orthogonal
in regions ∆ and V± (but not in region Ω, and so we
will not use them in that region). The separatrix corres-
ponds to u= 0 and, at the X-points, v= 0,±π. On the ellipt-
ical boundary, u= ub =−µb+(e0/2)sinh(2µb) and v= θ−
π/2+(e0/2)sin(2 θ). With reference to figure 2, u is negat-
ive in regions∆, V− and V ′

−, and positive in regions V+ and
V ′

+; v ranges from −∞ to +∞.

In region ∆, the solution of ∇2ψ̃∆ = 0 can now be
expressed as:

ψ̃∆(u,v) =
ξ

b

∞∑
m,odd

[αm cosh(mu)+βm sinh(mu)]cos(mv).

(50)

The summation involves odd integers only. Note that, at the
X-points, ψ̃∆(u= 0,v= 0,π)∝

∑
αm = 0.

The coefficients αm and βm can be determined as fol-
lows. We exploit the fact that the convenient elliptical surface
between regions Ω and ∆ is special, in that both µ= µb and
u= ub are constant on that surface. Then, we set ψ̃∆(ub,v) =
ψ̃∆(µb,θ), and ∂uψ̃∆(ub,v) = ∂µψ̃∆(µb,θ)/(∂µu)|µb , where
use has been made of (∂θu)|µb = 0. When made explicit, these
relations provide a set of two equations for the determination
of the coefficients in (50):

∞∑
m,odd

[αm cosh(mub)+βm sinh(mub)]cos(mv) =−sinθ,

(51)
∞∑

m,odd

m [αm sinh(mub)+βm cosh(mub)]cos(mv)

=
b
a

sinθ
1+ e0 cos2 θ

. (52)

By taking the inverse Fourier transforms of these relations (see
appendixD), we obtainαm = am+ bm,βm =−am+ bm, where
am and bm are given as:

am =−emub

2m

∑
j=±1

(
b
a
+ j

)
J m−j

2

(me0
2

)
, (53)

bm =
e−mub

2m

∑
j=±1

(
b
a
− j

)
J m−j

2

(me0
2

)
, (54)

and Jν(x) are Bessel functions of integer order (sincem is odd).
One of the essential mathematical aspects of this solution

is that the perturbed magnetic flux develops a singularity at
the X-points. Indeed, let us consider the perturbed flux on the
separatrix, u= 0, as a function of v:

ψ̃∆(0,v) =
ξ

b

∞∑
m,odd

αm cos(mv). (55)

The leading asymptotic behavior of the Fourier coefficients for
large values of m (see, e.g. [48]) is:

αm ∼ bm ∼ p/m3/2, (56)

where

p= [π sinh2(µb) tanh(2µb)]
−1/2 = α[(a2 + b2)/πa2]1/2e1/20 ,

(57)

is a positive constant. Thus, the Fourier spectrum for the per-
turbed flux along the separatrix never decays exponentially
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for m→∞, which is indicative of singular behavior. Indeed,
consistent with αm ∼ p/m3/2 for large m, it follows that (see
appendix E):

ψ̃∆(0,v)∼−ξ
b
p

√
π

2
v1/2 as v→ 0+, (58)

∂ψ̃∆(0,v)
∂u

∣∣∣∣∣
u=0

∼ ξ

b
p
2

√
π

2
v−1/2 as v→ 0+. (59)

This behavior can also be found by direct expansion of ψ̃∆

for u= 0 and small v, using equations (48) and (49). As a res-
ult, more and more Fourier harmonics are needed in order to
properly represent the perturbed flux in the vicinity of the X-
points. This is an important difference with respect to the case
we treated in the previous section, where only one Fourier har-
monic in the elliptical angle θ was sufficient. From a mathem-
atical point of view, wemay argue that this explains the change
in behavior, from unstable to stable (as we shall see shortly), of
the rigid shift vertical displacement, when the plasma extends
to themagnetic separatrix (and the no-wall case is considered).

Next, we are going to construct the vacuum solution in
regions V. In V+, the flux coordinate, u, is positive and not
bounded, 0< u<+∞, while v is not cyclic,−∞< v<+∞.
The vacuum solution ψ̃V+

is no longer periodic in v, and its rel-
evant symmetry is odd with respect to reflections π/2− v↔
π/2+ v. The general solution to the Laplace equation that is

consistent with the above conditions and is regular at infinity
is:

ψ̃V+
(u,v) =

ξ

b

ˆ +∞

0
dte−tuα(t)sin

[
t
(π
2
− v

)]
. (60)

Likewise, in V−, u is negative and not bounded,−∞< u< 0,
and v is not cyclic, −∞< v<+∞. The vacuum solution,
ψ̃V− , is not periodic in v, and its relevant symmetry is even
with respect to reflections v↔−v. The general solution to the
Laplace equation that is consistent with the conditions con-
sidered above and is regular at infinity is given as:

ψ̃V−(u,v) =
ξ

b

ˆ +∞

0
dtetuβ(t)cos(tv), (61)

As for the solutions in V ′
+ and V ′

−, symmetry consideration
lead to:

ψ̃V ′
+
(u,v) =

ξ

b

ˆ +∞

0
dte−tuα(t)sin

[
t
(π
2
+ v

)]
, (62)

ψ̃V ′
−
(u,v) =−ξ

b

ˆ +∞

0
dtetuβ(t)cos [t(±π− v)] , (63)

where the± sign in ψ̃V ′
−
are taken on the positive and negative

sides of the branch cut along the negative direction of y-axis.
Imposing flux continuity at the separatrix, from theV+ side,

yields:

ˆ ∞

0
dtα(t)sin

[
t
(π
2
− v

)]
=



ˆ ∞

0
dtβ(t)cos(tv) for −∞< v⩽ 0

∞∑
m,odd

αm cos(mv) for 0 ⩾ v⩽ π

−
ˆ ∞

0
dtβ(t)cos[t(π− v)] for π ⩾ v<+∞

, (64)

and from the V ′
+ side,

ˆ ∞

0
dtα(t)sin

[
t
(π
2
+ v

)]
=



ˆ ∞

0
dtβ(t)cos(tv) for 0 ⩽ v<+∞

∞∑
m,odd

αm cos(mv) for −π ⩽ v⩽ 0

ˆ ∞

0
dtβ(t)cos[t(−π− v)] for −∞< v⩽−π

. (65)

Clearly, the two conditions are equivalent, as they should be, under the transformation (v↔−v). Substituting v̄= π/2− v
into (64) leads to:

ˆ ∞

0
dtα(t)sin[tv̄] =



ˆ ∞

0
dtβ(t)cos

[
t
(π
2
− v̄

)]
for π/2< v̄<+∞

∞∑
m,odd

αm cos
[
m
(π
2
− v̄

)]
for −π/2< v̄< π/2

−
ˆ ∞

0
dtβ(t)cos

[
t
(π
2
+ v̄

)]
for −∞< v̄<−π/2

. (66)

10



Plasma Phys. Control. Fusion 64 (2022) 105002 A Yolbarsop et al

Applying an inverse sine Fourier transform leads to the fol-
lowing relation between α(t), β(t) and αm (see appendix F):

α(t) =
2
π t

cos
(π t
2

)v. p.ˆ ∞

0
dt ′

t ′2β(t ′)

t2 − t ′2
−

∞∑
m,odd

m2αm
t2 −m2


+ sin

(π t
2

)
β(t). (67)

In order to determine the functions α(t) and β(t), we
observe that, because of continuity along the magnetic sep-
aratrix, the perturbed flux approaching the X-points from
region V+ and from region ∆ must have the same behavior
as function of the v coordinate. Investigation of (67) indicates
that consistency with the continuity condition requires (see
appendix G):

β(t)∼ q

t3/2
+ o(t−3/2) as t→∞, (68)

α(t)∼ 1
t3/2

[(p
2
− q

)
cos

(π t
2

)
+
(p
2
+ q

)
sin

(π t
2

)]
+ o(t−3/2) as t→∞. (69)

Therefore, the asymptotic behavior of the perturbed flux along
the separatrix, approaching the X-points from regions V+ and
V−, can be expressed as:

ψ̃V+
(0,v)∼


−ξ
b
p

√
π

2
v1/2 for v→ 0+

−2
ξ

b
q

√
π

2
|v|1/2 for v→ 0−

, (70)

∂ψ̃V+
(0,v)

∂u
∼


−ξ
b
q

√
π

2
v−1/2 for v→ 0+

−ξ
b
p
2

√
π

2
|v|−1/2 for v→ 0−

. (71)

Similarly,

ψ̃V−(0,v)∼−2
ξ

b
q

√
π

2
|v|1/2 for v→ 0−, (72)

∂ψ̃V−(0,v)

∂u
∼ ξ

b
q

√
π

2
|v|1/2 for v→ 0−. (73)

Another mathematical aspect that is central to our analysis,
and that leads to the determination of the constant parameter
q in equations (68) and (69), is that the perturbed flux along
the separatrix, ψ̃V+

(0,v), in the vicinity of the upper X-point
at v= 0, can be written as the sum of even and odd functions
of v,

ψ̃V+
(0,v) = ψ̃even(v)+ ψ̃odd(v). (74)

With reference to equation (69), we point out that the even
function ψeven(v) arises from the term proportional to sinπt/2,
while the odd function ψodd(v) arises from the term propor-
tional to cosπt/2. The two functions can be considered as
independent solutions, and so they can be discussed separ-
ately. Clearly, for the even mode, q= p/2, while for the odd
mode, q=−p/2. Analogous conclusions can be obtained if
the lower X-point at v= π is considered instead.

We have obtained asymptotic relations for the perturbed
flux in all four regions surrounding the X-point. Thus, the per-
turbed current density along the separatrix, in the vicinity of
the X-points, can be determined from J̃(u,v) = |∇u|2(∂2u +
∂2v )ψ̃. Obviously, the perturbed current vanishes everywhere
except on the separatrix. Therefore, we can set J̃(u,v) =
jX(v)δ(u). It follows from (59), (71) and (73), that, for both
even and odd solutions,

jX(v)∼−2e0
ab

√
π

2

(p
2
+ q

) ξ

b
|v|1/2 as v→ 0, (75)

where use has been made of the fact that, near the upper X-
point, |∇u|2(0,v)∼ (2e0/ab)v, which can be easily obtained
by direct expansion in the vicinity of X-point (see appendixH).
Clearly, for the solution for the perturbed flux that is odd as a
function of v near the upper X-point at v= 0, q=−p/2 and
the current sheet vanishes altogether. A current sheet is found
only for the even-ψ̃ solution, for which p/2+ q= p.

The asymptotic behavior of the stream function, φ̃(0,v),
along the magnetic separatrix and in the vicinity of the X-point
can also be easily worked out. We find:

φ̃(0,v)∼−γ ξ
√
ab
e0
v1/2, as v→ 0+, (76)

∂φ̃(0,v)
∂u

∼−1
2
γ ξ

√
ab
e0
v−1/2 as v→ 0+. (77)

Note that also the stream function presents a similar type
of square-root singularity as a function of v approaching the
upper X-point at v= 0, as it should, as this guarantees that the
inertial term in the perturbed equation of motion (24) can bal-
ance the force density term [ψeq, J̃].

Finally, the dispersion relation can be obtained from the
plasma equation of motion, following a procedure that is
similar to the one used in section 4, equations (32)–(36).
Equation (24) can be written as γ∇· (ϱ∇φ̃) =∇· (J̃ez×
∇ψeq). We integrate with respect to u over a narrow interval
across the separatrix between regions∆ andV+, in the vicinity
of the upper X-point, where v is positive and small:

lim
δu→0

ˆ δu

−δu
du |∇u|−2∇· (J̃ez×∇ψeq) =

djX
dv

dψeq
du

∣∣∣∣
u=0

,

(78)
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lim
δu→0

γ

ˆ δu

−δu
du |∇u|−2∇· (ϱ∇φ̃) =−γ(∂uφ̃)u=0−

∼ γ2
ξ

b
a1/2 b3/2

2e1/20

v−1/2 as v→ 0+. (79)

Note that, as we anticipated below equation (77), a consistent
behavior is found, as both terms in equations (78) and (79) are
proportional to v−1/2. Balancing the two terms, we obtain:

γ2 =−2

√
πa
2b

(
q+

p
2

)(
1− e20

)1/2
e3/20 ω2

A, (80)

where ωA = τ−1
A and dimensions have been reintroduced for

reasons of clarity.
The following considerations can be drawn at this stage. For

the odd-parity solution, q=−p/2, the n= 0 mode is neutrally
stable with γ= 0 and no current sheet develops at the magnetic
separatrix. The stream function also vanishes in this limit, as
φ̃∝ γ. This solution can be consideredmerely as a redefinition
of the equilibrium, with the current-carrying plasma shifted
vertically by a distance ξ and the equilibrium current density
modified by current sheets located at the elliptical flux surface
µ= µb.

For the even-parity solution, q=+p/2, a current sheet
develops at the separatrix. Evidently, this is sufficient to neut-
rally stabilize the n= 0mode, which in this case oscillates with
a real frequency:

ω =±iγ =±
[
2(1+κ2)

κ

]1/4
e0ωA, (81)

where equation (57) has been used for the parameter p∝ e1/20 ,
and κ= b/a. For typical elongations of present-day tokamak
experiments, for instance, κ= 1.5, which corresponds to e0 =
0.4, one finds ω ≈ 0.6ωA. Assuming a hydrogen plasma with
a= 1 m, Bp

′
= 1 T m−1, and number density n= 1020m−3,

we find ω ≃ 200 kHz. Since ωA is the Alfvén frequency based
on the poloidal magnetic field and e0 < 1, the mode frequency
falls below the Alfvén continuum spectrum and therefore is
unaffected by continuum damping. The even-parity mode can
be destabilized by the resonant interaction with fast particle
orbits [38, 49] and becomes a possible candidate for the
interpretation of finite-amplitude n= 0 fluctuations recently
observed in JET experiments [42, 43].

6. Searching for ideal-MHD marginal stability

As we have seen, current sheets always form at the plasma
boundary, where the density drops to zero. When the plasma
boundary coincides with the convenient elliptical surface
at µ= µb (or, equivalently, u= ub =−µb+(e0/2)sinh2µb),
vertical displacements were found in section 4 to be

Figure 4. Equilibrium magnetic structure for the case where the
plasma boundary, u= uc, is located inside the separatrix.

ideal-MHD unstable, unless a nearby metallic wall provid-
ing passive stabilization was present. By contrast, when the
boundary coincides with the magnetic separatrix at u= 0, ver-
tical displacements were found in section 5 to be ideal-MHD
stable even in the absence of a nearby wall. Evidently, the
nature of the current sheet changes significantly as the plasma
boundary approaches the magnetic separatrix. We conjecture
that a flux surface u= umarg < 0 exist, such that, when the
plasma boundary is at u= umarg, marginal ideal-MHD sta-
bility against vertical perturbations is obtained. Finding the
value of umarg requires numerical work, which is beyond the
scope of the present article. However, in the following, we
provide further physical insight into the properties of the dis-
persion relation as the plasma boundary approaches the mag-
netic separatrix.

Let us consider the situation where the plasma boundary
is at a magnetic flux surface, u= uc < 0, located between
the convenient elliptical surface and the magnetic separatrix:
0> uc > ub. A generic flux surface u= uc is shown in figure 4.
Region∆ is now the region between the elliptical surface (the
contour of regionΩ) and the plasma boundary at u= uc, while
region V

′
denotes the vacuum region between the plasma

12
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Figure 5. Fourier coefficients λm/|λ1|, normalized to the absolute
value of λ1, plotted against the Fourier mode number m for two
values of uc. Note that only λ1 is negative.

boundary and the magnetic separatrix. In regions Ω and ∆
we can keep on using the solutions for the perturbed flux, ψ̃,
and for the perturbed stream function, φ̃, that were found in
section 5. Thus, the solution for ψ̃∆ in region ∆ expressed in
flux coordinates (u, v) is given by equation (50), with Fourier
coefficients αm and βm fully determined by equations (53) and
(54). On the plasma boundary, the perturbed flux has a modu-
lation in v given by:

ψ̃∆(uc,v) =
ξ

b

∞∑
m,odd

λm(uc)cos(mv), (82)

whereλm = αm cosh(muc)+βm sinh(muc). Figure 5 shows the
Fourier coefficientsλm as functions ofm for a fixed value of the
ellipticity parameter, e0 = 0.05, corresponding to ub =−1.34,
and two negative values of u: uc1 =−1.0 and uc2 =−0.1. As
we can see, the Fourier spectrum extends up to m= mmax ∼
|uc|−1 when |uc|< 1. This statement can also be confirmed by
analytic asymptotic expansion of the coefficients λm, which
shows that λm → αm ∼ (p/m3/2)exp(muc), and so the Four-
ier spectrum extends to infinity when uc → 0. It is important
to note that λ1 is negative, while all other λm with m> 1 are
positive.

The following conclusion can be drawn at this stage. For
values of |uc|⩾ 1, the perturbed flux and stream function are
dominated by the single m= 1 harmonic in the flux coordin-
ate angle v, which, within the region bounded by the flux sur-
face u= uc, can be approximated by the elliptical angle θ. In
this case, it can be shown analytically that vertical displace-
ments are ideal-MHD unstable in the absence of a nearby
wall. The situation changes when |uc|< 1. In this case, more
and more Fourier harmonics in the Fourier series for ψ̃∆

must be included in the analysis and the nature of the dis-
persion relation changes significantly. Since λ1 is negative,
while all other Fourier coefficients λm with m> 1 are posit-
ive, we expect that additional Fourier harmonics will give a
stabilizing contribution to the relevant dispersion relation. In
particular, we expect vertical displacements to become ideal-
MHD stable, even in the absence of a nearby wall, for negative
values of uc larger than umarg (i.e. approaching the magnetic
separatrix at u= 0), with the value of |umarg|< 1 depending in
turn on the ellipticity parameter e0.

The perturbed flux in the vacuum regions V± and V
′
satis-

fies∇2ψ̃ = 0. The solution in elliptical coordinates that decays
to zero for µ→∞ (no wall) is given by equation (47), where
the summation involves only odd integers. Now, we are con-
fronted with the task of determining the coefficients cm. We
proceed as follows. The vacuum solutions in region V

′
can

also be expressed in (u, v) coordinates as:

ψ̃V ′(u,v) =
ξ

b

∞∑
m,odd

{γm cosh[m(u− ub)]

+ ηm sinh[m(u− ub)]}cos(mv). (83)

This expression is similar to the one in equation (50); how-
ever, the coefficients γm and ηm differ from αm and βm. In
order to determine these coefficients, as well as the cm coeffi-
cients, we note that ψ̃V ′(µ,θ) and ψ̃V ′(u,v) have equal values
on points in region V

′
. There is nothing wrong with extend-

ing these functions to region ∆ and all the way to the ellipt-
ical surface µ= µb, which is also a constant u= ub surface.
Therefore, we can use the relations ψ̃V ′(ub,v) = ψ̃V ′(µb,θ),
and ∂uψ̃V ′(ub,v) = ∂µψ̃V ′(µb,θ)/(∂µu)|µb . A third relation
we can use is continuity of the perturbed flux on the plasma
boundary u= uc:

αm cosh(muc)+βm sinh(muc) = γm coshm(uc− ub)

+ ηm sinhm(uc− ub). (84)

After relatively straightforward algebra, we arrive at the set
of three coupled equations:

γm =
1
m

∞∑
n,odd

ncnA
n
m, (85)

ηm =− 1
m

∞∑
n,odd

ncnB
n
m, (86)

λm(uc) = γm coshm(uc− ub)+ ηm sinhm(uc− ub). (87)

In these equations,

Anm =
∑
j=±1

j J m−jn
2

(me0
2

)
, (88)
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Bnm =
∑
j=±1

J m−jn
2

(me0
2

)
, (89)

and the coefficients λm(uc), which depend on αm and βm, are
defined below equation (82). Combining these equations, we
finally arrive at:

mλm(uc) = cosh [m(uc− ub)]
∞∑
n,odd

ncnA
n
m

− sinh [m(uc− ub)]
∞∑
n,odd

ncnB
n
m. (90)

Equation (90) is an infinite set of linear equations that, in prin-
ciple, can be used to determine the coefficients cn, and hence
γm and ηm. In practice, the procedure works if we can truncate
the series up to nmax = mmax, where the value of mmax is dis-
cussed below equation (82). Then, equation (90) reduces to a
set of (mmax+ 1)/2 equations for the (nmax+ 1)/2 unknown
quantities c1, c3, . . ., cnmax .

The dispersion relation for γ2 can be obtained from the
plasma equation of motion, following a procedure that is sim-
ilar to the one used in section 4. After straightforward algebra,
we obtain:

−γ ∂φ̃∆

∂u

∣∣∣∣
u−c

=
dj̃c(v)
dv

dψeq
du

∣∣∣∣
uc

, (91)

where j̃c(v) = |∇u|2[∂uψ̃V(uc,v)− ∂uψ̃∆(uc,v)]. The stream
function in region ∆ corresponds to the rigid shift, which,
in elliptical coordinates, is given by equation (27). In (u, v)
coordinates,

φ̃(u,v) = γξ0ab
∞∑

m,odd

(
gme

−mu+ kme
mu
)
sin(mv), (92)

where the coefficients gm and km can be determined following
the same procedure that led to the determination of the coeffi-
cients αm and βm; see equations (51) and (52). After straight-
forward algebra, we obtain:

gm =
emub

2m

∑
j=±1

(
j
b
a
− 1

)
J m−j

2

(me0
2

)
, (93)

km =−e−mub

2m

∑
j=±1

(
1+ j

b
a

)
J m−j

2

(me0
2

)
. (94)

Putting all these pieces together, we can obtain a dispersion
relation for γ2 as a function of uc. However, the determination
of the Fourier coefficients appearing in the dispersion relation
requires numerical work and will be the subject of a future

publication. What we can conclude at this stage is that, for as
long as |uc| ∼ 1 and a single harmonic in the angle θ (or equi-
valently in the angle v) can be used for a good approximation of
the fields φ̃ and ψ̃, analytic work is relatively simple, and this
will result in unstable vertical displacements when the confin-
ing metallic wall is moved beyond the X-points. The change
in sign of γ2, leading to ideal-MHD stable vertical displace-
ments, is mathematically associated with the fact that more
and more Fourier harmonics in θ (and in v) become important
as |uc| becomes smaller and smaller. Analytic work is also pos-
sible when u= uc = 0; this case was treated in section 5 and
resulted in stable vertical displacements even in the absence of
a nearby wall.

7. Conclusion

This article contains three main results. First, we have shown
that a rigid-shift displacement is indeed the analytic solu-
tion for the normal mode analysis of axisymmetric n= 0
modes. This result has been obtained on the basis of the
linearized, reduced ideal-MHD model, starting from a relat-
ively simple ‘straight tokamak’ equilibrium. Our result for
the growth rate of ideal-MHD unstable vertical displacements,
valid for arbitrary values of the ellipticity parameter e0, is
given in equation (38). In the limit of small e0, the growth rate
scales as γ ∼ e1/20 τ−1

A , where τA is the relevant Alfvén time.
With feedback stabilization, the n= 0 mode becomes oscillat-
ory in nature, with a frequency ω ∼ e1/20 ωA, where ωA = τ−1

A .
This is what we have called in section 4 the ‘limiter toka-
mak scenario’ for n= 0 vertical modes. We have also shown
that the small ellipticity limit of the obtained dispersion rela-
tion is in perfect agreement with that obtained by a simpli-
fied heuristic model that treats the plasma current, as well
as the external currents, as three parallel current filaments.
These results, however, are correct only as long as the plasma
does not extend to the magnetic separatrix, where magnetic X-
points are located, i.e. as long as the X-point resonance can be
neglected.

Secondly, for the more relevant case where the plasma does
extend to the magnetic separatrix (the ‘divertor tokamak scen-
ario’ discussed in section 5), the resonant nature of the mag-
netic X-points with respect to axisymmetric perturbations is
analyzed in detail. It is found that vertical displacements are
stable, at least on ideal-MHD time scales, without any need for
passive stabilization elements (which could easily be included
in our model by changing the boundary conditions for the
perturbed flux in the vacuum regions V±). The stabilization
mechanism is a direct consequence of the ideal MHD flux-
freezing constraint on the X-points. Indeed, as also discussed
in [39], the theory discussed in this article presents analo-
gies with the physics of current sheet formation during the
evolution of internal kink modes [35, 36], and with the mag-
netic island coalescence problem [37]. In these works, the
ideal-MHD constraint causes magnetic flux to pile up near
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the X-points, leading to perturbed localized currents and a sta-
bilizing effect in the ideal-MHD limit. For the island coales-
cence problem, it was found that a chain of magnetic islands
becomes ideal-MHD unstable when the island width exceeds
a critical threshold. In any case, flux pile-up prevents any
further nonlinear evolution for both unstable internal kinks
and island coalescence, unless the ideal-MHD constraint is
relaxed, e.g. by resistivity. In our problem, vertical displace-
ments are found to be linearly stable in the ideal-MHD limit,
when the mode resonance at the equilibrium X-points of the
divertor separatrix is properly taken into account. As a con-
sequence, axisymmetric perturbed currents are excited in the
vicinity of the magnetic X-points, and these currents carried
by the plasma are capable of providing passive feedback sta-
bilization of vertical displacements on the ideal-MHD times-
cale, even in the absence of a nearby metallic wall. Results for
the ‘divertor tokamak scenario’ were presented in [39]; how-
ever, mathematical details are provided in this article for the
first time.

Finally, we have discussed the scenario where the plasma
boundary is located near the magnetic separatrix, but does not
extend to include the magnetic X-points. The analysis shows
that a rigid-shift displacement is still the analytic solution for
the normal mode analysis of axisymmetric n= 0 modes. Not-
ing that current sheets always form at the plasma boundary,
where the plasma density drops to zero, it is shown that the
nature of the boundary current sheet changes significantly as
the plasma boundary approaches the magnetic separatrix. It is
argued that a magnetic surface u= umarg < 0 (with u= 0 cor-
responding to the magnetic separatrix) must exist, such that,
when the plasma boundary coincides with this magnetic sur-
face, vertical displacements are marginally stable according to
ideal-MHD and in the absence of a nearby wall. Finding the
actual value of umarg requires numerical work and will be the
subject of a future publication.

The resonant behavior of n= 0 modes at the X-points
of a tokamak magnetic separatrix is an ideal-MHD prop-
erty. Therefore, it is reasonable that it must be studied first
according to the ideal-MHD model. Future work will con-
sider extended-MHD effects, but this article, together with its
shorter version in [39], represents the starting point for future
developments. The most important, and perhaps surprising,
result of our work is that, when the plasma density extends
to the magnetic separatrix, vertical displacements are found
to be stable, on ideal-MHD time scales, without any need for
a passive stabilization wall. The stabilization mechanism is a
direct consequence of the ideal-MHD flux-freezing constraint
on the X-points, which leads to current sheets localized along
the magnetic separatrix, exerting a force capable of pushing
back the plasma in its vertical motion. This also suggests
that plasma electrical resistivity in a narrow boundary layer
along the magnetic separatrix, in addition to wall resistivity,
may have a profound impact on the stability of n= 0 vertical
displacements.
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Appendix A. Alternative derivation of the heuristic
dispersion relation in equation (9)

The magnetic flux generated by a z-directed current filament
located at the origin of the x–y plane and carrying a current
IP is:

ψP(x,y) =
IP
c
ln
(
x2 + y2

)
. (A.1)

It follows from equation (13) that the y-directed force per
unit length acting on the two external current filaments is:

ffil x =−2 IP (IExt− δI)
c2

1
l− ξ

+
2 IP (IExt+ δI)

c2
1

l+ ξ

=−4 IP IExt
c2

ξ

l2 − ξ 2
+

4 IP δI
c2

l
l2 − ξ 2

. (A.2)

Hence, the equation of motion of the plasma filament, which
experiences an equal and opposite force per unit length for
each filaments, is:

µξ̈ =−ffil x, (A.3)

which yields:

µξ̈ =
4 IP IExt
c2

ξ

l2 − ξ 2
− 4 IP δI

c2
l

l2 − ξ 2
. (A.4)

Defining t̂= γH t, where γH is specified in equation (3), as well
as ξ̂ = ξ/l, and δÎ= δI/IExt, we obtain equation (14) in the
limit |ξ̂| ≪ 1.
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Appendix B. Geometrical factor D for ideal elliptical
wall stabilization

For confocal ellipses, the following relations hold:

aw = Asinhµw, bw = Acoshµw, (B.1)

a= Asinhµb, b= Acoshµb. (B.2)

It follows that:

e2µb =
b+ a
b− a

, (B.3)

e2µw =
bw+ aw
bw− aw

. (B.4)

Making use of (B.3), (B.4), (6) and (40), relation (43)
becomes:

D=
a+ b
be0

ξext
ξ∞

=
b2 + a2

(b− a)2
bw− aw
bw

. (B.5)

In the neutral stability case, where the wall intercepts the X-
points, we have µw = 2µb. Substituting into the expressions
above and with the help of (B.1) and (B.3), we can easily show
that D= 1 in this case.

Appendix C. Derivation of equation (45) for ψ̃∆ (µ, θ)

From flux-freezing condition (44) and the equilibrium mag-
netic flux (22), we can write:

ψ̃∆(µ,θ) =−ξ0
1

cosh2 µ+ cos2 θ
sinθ

sinhµb

× [sinhµcosh2µb − sinh2(µ−µb)coshµ

−sinh(µ− 2µb)cos2θ]

=−ξ0
1

cosh2 µ+ cos2 θ
sinθ

sinhµb

× [−sinh(µ− 2µb)cosh2µ

−sinh(µ− 2µb)cos2θ]

= ξ0
sinh(µ− 2µb)

sinhµb
sinθ. (C.1)

This is the result presented by (45).

Appendix D. Determination of the Fourier
coefficients αm and βm, and their asymptotic
behaviors

Applying the inverse Fourier transform to (51) and (52) yields:

ame
−mub + bme

mub =− 2
π

ˆ π

0
dvb sinθ cos(mvb) (D.1)

−ame−mub + bme
mub =

2 coth(µb)
mπ

ˆ π

0

sin(θ)cos(mvb)
1+ e0 cos(2 θ)

dvb.

(D.2)

For convenience, define Am and Bm as follows:

Am =

ˆ π

0
dvb sinθ cos(mvb)

=
1
m

ˆ 3π/2

π/2
sinθ sin

{
m
[
θ− π

2
+
e0
2
sin(2 θ)

]}
dθ

=
1
2 m

ˆ π

0

{
cos

[
(m− 1)θ− me0

2
sin(2 θ)

]
−cos

[
(m+ 1)θ− me0

2
sin(2 θ)

]}
dθ

Bm =

ˆ π

0

sin(θ)cos(mvb)
1+ e0 cos(2 θ)

dvb

=

ˆ 3π/2

π/2
sin(θ)cos(mvb)dθ

=
1
2

ˆ π

0

{
cos

[
(m− 1)θ− me0

2
sin(2 θ)

]
+ cos

[
(m+ 1)θ− me0

2
sin(2 θ)

]}
dθ

Using a well-known integral representation for Bessel func-
tions of the first kind:ˆ π

0
dθ cos

[
(m± 1)θ− me0

2
sin(2 θ)

]
=

1
2

ˆ 2 π

0
dxcos

[
m± 1
2

x− me0
2

sinx

]
= πJ m±1

2

(me0
2

)
. (D.3)

Hence,

Am =
π

2 m

∑
j=±1

j J m−j
2

(me0
2

)
(D.4)

Bm =
π

2

∑
j=±1

J m−j
2

(me0
2

)
(D.5)

Finally, substituting above expressions into (D.1) and (D.2)
yields the results in equations (53) and (54).

To obtain the asymptotic behavior of am and bm for large
m, we proceed as follows. Let υ = (m− 1)/2 and υ ′ = (m+
1)/2, and introduce α1 and α2, as:

sechα1 = e0

(
1+

1
2υ

)
, (D.6)

sechα2 = e0

(
1− 1

2υ ′

)
. (D.7)

In the limit m→+∞, let us denote the deviations of α1 and
α2 from αb by δ1 and δ2 respectively, so that α1 = αb− δ1 and
α2 = αb+ δ2. Thus,

sechα1 =
1

cosh(αb− δ1)
≈ e0(1+ tanhαbδ1), (D.8)
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sechα2 =
1

cosh(αb+ δ2)
≈ e0(1− tanhαbδ2). (D.9)

Comparing (D.6)–(D.9) leads to:

δ1 =
1
2υ

cothαb, δ2 =
1
2υ ′ cothαb. (D.10)

Finally, making use of the formula (9.3.2) in [48],

Jυ(υ sechα)∼
eυ(tanhα−α)

√
2πυ tanhα

as υ→+∞. (D.11)

The asymptotic behavior of bm can be obtained from the
above relations as:

bm ∼ e−mub

2m

[(
b
a
− 1

)
eυ(tanhα1−α1)

√
2πυ tanhα1

+

(
b
a
+ 1

)
eυ

′(tanhα2+α2)

√
2πυ ′ tanhα2

]
,

as υ→+∞. (D.12)

Now, as m→+∞, υ = υ ′ = m/2, and tanhα1 = tanhα2 =
tanhαb, while terms up to O(δ are retained in the numerator;
hence

bm ∼ e−mub

2m
1√

πm tanhαb

[(
b
a
− 1

)
eυ(tanhαb−αb−e20 δ1+δ1)

+

(
b
a
+ 1

)
eυ

′(tanhαb−αb+e20 δ2−δ2)

]
=

1

2m3/2
√
π tanhαb

[(
b
a
− 1

)
e−(tanhαb−αb)/2−(e20 cothαb−cothαb)/2

+

(
b
a
+ 1

)
e(tanhαb−αb)/2+(e20 cothαb−cothαb)/2

]
.

Since the following relation holds,

−1
2
tanhαb−

e20
2
cothαb+

1
2
cothαb = 0, (D.13)

we obtain:

bm ∼ 1

2m3/2
√
π tanhαb sinhµb

∼ p

m3/2
as m→+∞.

(D.14)

Appendix E. Asymptotic behavior of ψ̃∆ (0, v) and
∂ψ̃∆ (0, v)/∂u

We neglect the factor ξ/b in (55), for convenience, and make
use of the result in (56). Thus,

dψ̃∆(0,v)
dv

=−
∞∑

m,odd

mαm cos(mv)

∼
∞∑

m,odd

p

m1/2
cos(mv) as v→ 0+

∼ p
2
√
v

∞∑
m,odd

cos(mv)

(mv)1/2
2 v as v→ 0+

∼ p
2
√
v

ˆ ∞

0

cosx
x1/2

dx as v→ 0+

∼ p
2

√
π

2
v−1/2 as v→ 0+ (E.1)

Integrating the above relation leads to (58).
Similarly,

∂ψ̃∆

∂u

∣∣∣∣∣
u=0

=
∞∑

m,odd

mγm cos(mv)

∼ p
2

√
π

2
v−1/2 as v→ 0+. (E.2)

Appendix F. Relationship between α(t) and β(t)

Solving for α(t) by applying inverse Fourier transform to (66)
yields:

α(t) =
2
π


ˆ π/2

0
dvsin(t v)

∞∑
m,odd

αm cos
[
m
(π
2
− v

)]

+

ˆ ∞

π/2
dvsin(t v)

ˆ ∞

0
dt ′β(t ′)cos

[
t ′
(π
2
− v

)]}

=−2 t
π

cos
(π
2
t
) ∞∑
m,odd

αm
t2 −m2

+
2 t
π

ˆ ∞

0
dt ′β(t ′)

cos(πt/2)− cos(πt ′/2)

t2 − t ′2

+
2
π

ˆ ∞

0
dt ′β(t ′)

{
sin

(π
2
t ′
)ˆ ∞

0
dvsin(t v)sin(t ′ v)

+cos
(π
2
t ′
)ˆ ∞

0
dvsin(t v)cos(t ′ v)

}
. (F.1)

By using following Fourier transform identities,

ˆ ∞

0
dvsin(t v)sin(t ′ v) =

π

2
[δ(t− t ′)− δ(t+ t ′)] (F.2)

ˆ ∞

0
dvsin(t v)cos(t ′ v) =

(
t

t2 − t ′2

)
, (F.3)
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we obtain:

α(t) =
2 t
π

cos
(π
2
t
)v.p.ˆ ∞

0
dt ′

β(t ′)

t2 − t ′2
−

∞∑
m,odd

αm
t2 −m2


+ sin

(π
2
t
)
β(t). (F.4)

Finally, using the continuity condition at X-points in the
form

ψ̃(0,0) =
ˆ ∞

0
dtβ(t) =

∞∑
m,odd

αm, (F.5)

we arrive at the expression given by (67).

Appendix G. Asymptotic behavior of α(t) and β(t)

We first derive (69) from relations (67) and (68). For conveni-
ence, (67) can be rewritten in the following form:

α(t) =
2
πt3

cos
(π
2
t
)[

v.p.
ˆ ∞

0
dt ′

t ′2β(t ′)
1− (t ′/t)2

−
∞∑

m,odd

m2αm
1− (m/t)2

+ sin
(π
2
t
)
β(t).

(G.1)

We observe that, at t=+∞, the integral and the infinite
sum terms diverge due to (56) and (68). Therefore, the asymp-
totic form ofα(t), for finite but large t, can be obtained through
replacing αm and β(t) with their respective asymptotic forms,
(56) and (68). Thus,

α(t)∼ 2
πt3

cos
(π
2
t
)[

q v.p.
ˆ ∞

0
dt ′

t ′1/2

1− (t ′/t)2

−p
∞∑

m,odd

m1/2

1− (m/t)2


+

q

t3/2
sin

(π
2
t
)

as t→∞. (G.2)

The integral term in (G.2) admits a direct evaluation as:

I1 =
2q
πt3

cos
(π
2
t
)
v.p.
ˆ ∞

0
dt ′

t ′1/2

1− (t ′/t)2
=− q

t3/2
cos

(π
2
t
)
,

(G.3)

where use has been made of the following relation:

v. p.
ˆ ∞

0

xa−1

1− xb
dx=

π

b
cot

(aπ
b

)
(a< b).

On the other hand, the infinite sum term in (G.2), denoted
by S(t) in the following, can be evaluated using the

Euler–Maclaurin formula to convert the summation into an
integral. Before doing so, for convenience, we rewrite S(t) as:

S(t) =− 2p
πt3

cos
(π
2
t
) ∞∑
m,odd

m1/2

1− (m/t)2

=
2p
πt3

∞∑
m=1

m1/2

1− (m/t)2
sin

[π
2
(t−m)

]
sin

(π
2
m
)
, (G.4)

where the infinite sum in the first line is taken over all odd
numbers, whereas the one in the second line is over all positive
integers, due to the fact that sin(πm/2) vanishes for all even
values of m. For simplicity, we introduce two functions, I2(t)
and f (x), defined as follows:

I2(t) =
∞∑
m=1

m1/2

1− (m/t)2
sin

[π
2
(t−m)

]
sin

(π
2
m
)

(G.5)

and

f(x) =
x1/2

1− (x/t)2
sin

[π
2
(t− x)

]
sin

(π
2
x
)
. (G.6)

The Euler–Maclaurin formula for a well-behaved integrand
has the following form:

∞∑
k=n

f(x)∼
ˆ ∞

n
f(x)dx+

f(n)
2

−
∞∑
k=1

B2 k

(2 k)!
f(2 k−1) ′

(n),

(G.7)

where B2 k is the Bernoulli number. Therefore, it follows from
(G.5)–(G.7) that:

I2(t) =
∞∑
m=1

f(m)∼
ˆ ∞

0
f(x)dx−

ˆ 1

0
f(x)dx+

f(1)
2

−
∞∑
k=1

B2 k

(2 k)!
f(2 k−1) ′

(1). (G.8)

A straightforward calculation yields:

−
ˆ 1

0
f(x)dx+

f(1)
2

−
∞∑
k=1

B2 k

(2 k)!
f(2 k−1) ′

(1)∼O(1)sin
(π
2
t
)

+O(1)cos
(π
2
t
)
, (G.9)

and

ˆ ∞

0
f(x)dx=

ˆ ∞

0

x1/2

1− (x/t)2
sin

[π
2
(t− x)

]
sin

(π
2
x
)
dx

= t3/2
ˆ ∞

0

y1/2

1− y2
sin

[π
2
t(1− y)

]
sin

(π
2
ty
)
dy.

(G.10)
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Let

I3(t) =
ˆ ∞

0

y1/2

1− y2
sin

[π
2
t(1− y)

]
sin

(π
2
ty
)
dy

=
1
2

ˆ ∞

0

y1/2

1− y2

{
cos

[π
2
t(2y− 1)

]
− cos

(π
2
t
)}

.

(G.11)

In order to evaluate I3(t), we introduce a complex function,
g(z), defined as follows:

g(z) =
z1/2

1− z2

[
eiπ t(2z−1)/2 − eiπt/2

]
. (G.12)

Integrating g(z) along the contour shown in figure G1, yields¸
C g(z)dz= 0. Furthermore, in the limit R→∞, since the
integration along the arc Γ vanishes,

´
Γ
g(z)dz→ 0, we

obtain:
ˆ ∞

0
g(x)dx=

ˆ i∞

0
g(z)dz. (G.13)

Using the Laplace method for the asymptotic evaluation of the
integral, we find:

I3(t) =
1
2
Re
ˆ ∞

0
g(x)dx=

1
2
Re
ˆ i∞

0
g(z)dz

=
1
2
sin

(π
2
t− π

4

)ˆ ∞

0

x1/2

1+ x2
e−πtxdx

+

√
2π
4

sin
(π
2
t+

π

4

)
∼ 1

2
sin

(π
2
t− π

4

) ∞∑
n=0

(−1)n
ˆ ∞

0
x1/2+2 ne−πtxdx

+

√
2π
4

sin
(π
2
t+

π

4

)
as t→∞. (G.14)

Finally, evaluating the integral in equation (G.14), we obtain:

I3(t)∼
1
2
sin

(π
2
t− π

4

) ∞∑
n=0

(−1)n
Γ(3/2+ 2 n)
(πt)3/2+2 n

+

√
2π
4

sin
(π
2
t+

π

4

)
as t→∞. (G.15)

According to (G.4)–(G.15), the asymptotic form for S(t)
becomes:

S(t)∼ p

2t3/2
sin

(π
2
t
)
+

p

2t3/2
cos

(π
2
t
)

as t→∞.

(G.16)

Finally, from (G.2), (G.3) and (G.16), we obtain the asymp-
totic relation of α(t) as t→∞ as follows:

α(t)∼ p/2+ q

t3/2
sin

(π
2
t
)
+
p/2− q

t3/2
cos

(π
2
t
)

as t→∞.

(G.17)

Next, we show that the asymptotic expression for β(t),
given by equation (68), is consistent with the expression for

Figure G1. Contour of integration for the complex function g(z).

α(t) obtained above. The proof is based on the fact that the
perturbed flux must be continuous along the separatrix at the
X-points. In region V−, from (61), we have:

dψ̃V−(0,v)

dv
=−
ˆ ∞

0
tβ(t)sin(tv)dv∼−q

ˆ ∞

0

sin(tv)
t1/2

dt

∼
√
π

2
q√
|v|

as v→ 0−. (G.18)

Integrating the above equation with respect to variable v leads
to equation (72). Similarly, we obtain:

∂ψ̃V−

∂u

∣∣∣∣∣
u=0

=

ˆ ∞

0
tβ(t)cos(tv)dt

∼ q

√
π

2
|v|−1/2 as v→ 0−. (G.19)

In region V+, according to (60), the asymptotic behaviors of
ψ̃V+ and ∂ψ̃V+/∂u approaching the upper X-point on the sep-
aratrix, u= 0, can be obtained as follows:

d ψ̃V+(0,v)

dv
=−
ˆ ∞

0
tα(t)sin

(π
2
t
)
sin(tv)dt

−
ˆ ∞

0
tα(t)cos

(π
2
t
)
cos(tv)dt

∼−
(p
2
+ q

)ˆ ∞

0

1
t1/2

sin2
(π
2
t
)
sin(tv)dt

−
(p
2
− q

)ˆ ∞

0

1
t1/2

sin
(π
2
t
)
cos

(π
2
t
)
sin(tv)dt

−
(p
2
+ q

)ˆ ∞

0

1
t1/2

sin
(π
2
t
)
cos

(π
2
t
)
cos(tv)dt

−
(p
2
− q

)ˆ ∞

0

1
t1/2

cos2
(π
2
t
)
cos(tv)dt as v→ 0

∼−1
2
sign(v)

(p
2
− q

)√π

2
|v|−1/2

− 1
2

(p
2
+ q

)√π

2
|v|−1/2, (G.20)
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as v→ 0, where we have used the asymptotic relation of α(t)
given by (G.17). Then, integrating (G.20) with respect to v
yields (70).

Similarly, we have

∂ψ̃V+

∂u

∣∣∣∣∣
u=0

=−
ˆ ∞

0
tα(t)sin

(π
2

)
cos(tv)dt

+

ˆ ∞

0
tα(t)cos

(π
2

)
sin(tv)dt

∼−1
2

(p
2
+ q

)√π

2
|v|−1/2

+
1
2
sign(v)

(p
2
− q

)√π

2
|v|−1/2 as v→ 0.

(G.21)

In view of (58), (70) and (72), it is clear that the perturbed
magnetic flux is continuous along the separatrix at the X-
points. It follows that the asymptotic expressions of α(t) and
β(t) are consistent with each other.

Appendix H. Scale factor of (u, v) in the vicinity of
the X-point

The coordinates of an arbitrary point in the vicinity of the
upper X-point can be expressed as µ= 2µb− δ, θ = π+ θ ′

with δ and θ ′ small quantities. Substituting these coordinates
in (48) and (49), and retaining terms that are at most quadratic
in δ and θ ′, we obtain:

u≈ e0 sinh(2µb)(θ
′2 − δ2) (H.1)

v≈ 2e0 sinh(2µb)θ
′δ, (H.2)

and therefore

(u2 + v2)1/2 = e0 sinh2µb(δ
2 + θ ′2) (H.3)

Expanding the scale factor h(u,v) = |∇u|2 = |∇v|2 in the
vicinity of the upper X-point, we obtain:

h(u,v) =≈ 4e0
a2 + b2

(δ2 + θ ′2). (H.4)

Comparing equations (H.3) and (H.4), we obtain:

h(u,v)≈ 2e0
ab

(u2 + v2)1/2. (H.5)
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