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ABSTRACT

Comparison between the analytic theory of n¼ 0 vertical displacement modes in magnetically confined plasmas of fusion interest and numerical
simulations using the extended-MHD code NIMROD is presented. Agreement between analytic and numerical results is highly satisfactory.
Differences are interpreted to be caused mostly by the different wall shape and by the presence of a halo plasma surrounding the hot plasma
adopted in NIMROD. A numerical study of vertical displacement oscillatory modes [Barberis et al., J. Plasma Phys. 88, 905880511 (2022)] is
presented. Axisymmetric X-point currents supported by the halo plasma are discussed. The article provides a successful benchmark and a useful
starting point for future numerical investigations of n¼ 0 modes using more realistic tokamak geometry and plasma equilibria.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (http://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0184340

I. INTRODUCTION

Vertical, axisymmetric modes with toroidal mode number n¼ 0
are of concern for the safe operation of tokamak plasma discharges, as
these modes, if growing uncontrolled, may lead to vertical displace-
ment events (VDE) and plasma current disruptions. Therefore, a con-
siderable amount of work has been dedicated to the study of this
problem1–8 (references quoted above are a non-exhaustive sample). In
general, active feedback control systems have been developed, which
under normal circumstances can prevent the occurrence of VDE.9–14

Recently, there has been renewed interest in the theory of n¼ 0
modes, prompted by the observation of saturated, high frequency
n¼ 0 oscillations in the JET tokamak.15,16 Analytic theory work, which
was possible on the basis of simplified plasma equilibria and geometry,
indicated that magnetic X-points, which are intrinsic in modern toka-
mak plasmas with divertor configurations, can have a significant
impact on the dynamics of these modes.17,18 In addition, a new type of
n¼ 0 mode, dubbed19 vertical displacement oscillatory mode
(VDOM), which could be driven unstable by resonant interaction with
fast ion orbits,20 was proposed. Clearly, the treatment of more realistic
equilibria requires numerical work. It must be pointed out that treating
X-point effects on n¼ 0 perturbations is challenging from the numeri-
cal point of view, since the toroidal field line going through a magnetic

X-point is resonant, in the sense that Beq � k ¼ 0 for n¼ 0 at magnetic
X-points, with k being the perturbation wavevector and Beq being the
equilibriummagnetic field.

The purpose of this article is to provide a numerical benchmark
between analytic theory and linear, initial value simulations performed
by means of the extended-MHD code NIMROD.21 Some preliminary
tests of the numerical model for n¼ 0 vertical modes with NIMROD
have already been presented in Ref. 22, with this manuscript providing
a more complete and more detailed benchmark. The benchmark will
include scenarios where n¼ 0 oscillations are either unstable according
to ideal-MHD, or executing stable oscillations with a frequency close
to the poloidal Alfv�en frequency. In these numerical simulations, we
will mostly stay away from the difficult numerical treatment of X-
point effects, in the sense that the hot plasma density is assumed to
vanish before the magnetic separatrix is actually reached. Nevertheless,
evidence of X-point effects can be seen in the simulations presented in
this article, as the X-points actually lie in a low-density, high-resistivity
halo plasma, rather than in vacuum. Thus, X-point effects manifest
themselves through the appearance of X-point currents carried by the
halo plasma.

In order to better clarify the scope of the present article, we point
out that four different scenarios come to mind for the occurrence of
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n¼ 0 modes in tokamak plasmas. These modes can appear as follows:
(1) Unstable vertical displacement perturbations, potentially leading to
VDE;1–8 (2) Stable, vertical displacement oscillatory modes
(VDOMs),14,19 with a frequency of the order of the poloidal Alfv�en fre-
quency (a few hundred kHz in a tokamak such as JET), which could
be driven unstable by fast ions;20 (3) Global Alfv�en eigenmodes23

(GAE), also with a frequency of the order of the poloidal Alfv�en fre-
quency, typically somewhat higher than the VDOM frequency,
depending on details of the q profile; and (4) Geodesic acoustic modes
(GAM),24,25 with a relatively low frequency of the order of the sound
wave frequency (e.g., a few tens of kHz in a tokamak plasma such as
JET). GAE and GAM may also be driven unstable by fast ions.15,26 In
this article, we will be dealing only with the first two types of n¼ 0 per-
turbations, i.e., unstable vertical displacements and VDOMs. Also, fast
ions physics, which could lead to VDOM destabilization, is not
included in this article.

This article is organized as follows. In Sec. II, we briefly review
analytic theory results on unstable vertical displacements and VDOMs
that are up for comparison with the numerical simulations presented
in Sec. IV. In Sec. III, we recall the main features of the NIMROD
code. Differences between the assumptions and approximations used
in the analytic model and the physics underlining the NIMROD code
are highlighted. The straight tokamak equilibrium adopted in analytic
theory and in NIMROD simulations is presented. In all linear
NIMROD simulations discussed in this article, the confining wall is
taken as ideally conducting. Results are presented in Sec. IV, subdi-
vided into five subsections. Subsection IVA considers the no-wall
limit, where vertical displacements are ideal-MHD unstable, with a
growth rate that depends on plasma ellipticity. In Subsection IVB, we
present wall position scans at fixed values of plasma ellipticity. As the
wall is moved closer to the plasma, the ideal-MHD vertical instability
is suppressed (passive wall stabilization) and the n¼ 0 perturbation
transitions into stable VDOMs. Subsection IVC presents the results
obtained by scanning plasma elongation (plasma triangularity is not
considered in this article) at fixed wall position, showing again the
transition from ideally unstable vertical displacements to stable
VDOMs. Subsection IVD focuses on oscillatory modes. Subsection
IVE examines the question of X-point currents carried by the halo
plasma. Conclusions are presented in Sec. V.

II. ANALYTIC RESULTS

In this section, we briefly summarize the analytic results on verti-
cal modes and VDOMs obtained in Refs. 17–19, 22, and 27, limiting
our considerations to those results that are relevant for the numerical
benchmarking presented in this article. The magnetic field is repre-
sented as B ¼ e/ �rwþ B/ e/, where e/ is the unit vector along the
ignorable toroidal direction, and B/ is constant. The plasma flow is
represented as v ¼ e/ �ruþ v/ e/. Neglecting toroidal curvature
effects, an idealized, low-beta, straight tokamak equilibrium is
assumed, with an equilibrium, toroidal current density of the type
Jeq ¼ J0Hðwb � weqÞ, where H(x) is the Heaviside (unit step) function,
weqðx; yÞ is the equilibrium magnetic flux function, and weq ¼ wb
¼ const is an elliptical flux surface with minor semiaxis a and major
semiaxis b representing the plasma boundary. Beyond the plasma
boundary, the density also drops to zero, and, therefore, in analytic
work, the magnetic X-points associated with this elongated equilib-
rium are assumed to lie in vacuum. The plasma and vacuum regions
are bounded by a resistive wall, which is also modeled as an ellipse,

with major and minor semiaxes bw and aw, respectively, confocal with
the elliptical plasma boundary, i.e., b2w � a2w ¼ b2 � a2. It is also
assumed that equilibrium flows are absent.

The normal mode analysis for n¼ 0 modes is carried out on the
basis of the linearized, reduced ideal-MHD model.28 In the low-beta
limit that is standard for tokamak plasmas, velocity flows and magnetic
field perturbations along the toroidal direction decouple from the
perpendicular dynamics. Thus, the model equations further reduce to
a two-field model for the variables w and u. It is convenient to intro-
duce elliptical coordinates ðl; hÞ, which are related to Cartesian coor-
dinates through the transformation relations x ¼ AsinhðlÞ cosðhÞ and
y ¼ AcoshðlÞ sinðhÞ, with A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � a2
p

. The elliptical plasma
boundary corresponds to l ¼ lb, such that a ¼ Asinhlb and
b ¼ Acoshlb.

In the plasma region inside the elliptical boundary, the relevant
solution for the equilibrium flux function, satisfyingr2w�

eq ¼ JeqðweqÞ,
after proper normalization is best written in terms of Cartesian com-
ponents as

w�
eqðx; yÞ ¼

1
2

x2

b2
þ y2

a2

� �
: (1)

The elliptical boundary l ¼ lb corresponds to the magnetic surface
with constant weq ¼ wb ¼ 1=2. In the vacuum region outside the ellip-

tical boundary, where l > lb, the equilibrium flux weq ¼ wþ
eq satisfies

r2wþ
eq ¼ 0. The superscripts “� ” and “þ ” indicate the plasma and

vacuum regions, respectively. As we assume no equilibrium current
sheets, weq and its derivative along the normal to the boundary must be
continuous across the boundary. The relevant analytic solution is29,30

wþ
eqðl; hÞ ¼

1
2
þ a2 l� lb þ

e0
2
sinh½2ðl� lbÞ� cosð2hÞ

� �
; (2)

with a2 ¼ ab=r20 ,

e0 ¼ j2 � 1
j2 þ 1

(3)

the ellipticity of the plasma boundary, and j ¼ b=a its elongation.
Magnetic flux surfaces weqðl; hÞ ¼ const exhibit a magnetic separatrix
at weqðl; hÞ ¼ wX ¼ lb a

2, with X-points located at l ¼ lX ¼ 2lb
and h ¼ hX ¼ p=26np.

Small perturbations, denoted by an over-tilde, are assumed to
vary as

~uðl; h; tÞ ¼ ûðlÞ cos h expðctÞ;
~wðl; h; tÞ ¼ ŵðlÞ sin h expðctÞ;

with c ¼ �ix a complex eigenvalue. After straightforward deriva-
tion,18 we find the following solution for the stream function within
the region bounded by the elliptical surface l ¼ lb:

ûðlÞ ¼ c n a
sinh l
sinhlb

; (4)

which corresponds to a rigid vertical shift of the plasma column with
constant amplitude n. The corresponding perturbed magnetic flux is

ŵðlÞ ¼ � n
b
coshl
coshlb

: (5)
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The eigenvalue c in the so-called thin wall limit satisfies the cubic dis-
persion relation19,27

c3 þ c2

ð1� ê0DÞsgw þ cc21
D� 1
1� ê0D

� c21
ð1� ê0DÞsgw ¼ 0; (6)

where

c1 ¼ 2j
j2 þ 1

j� 1
j

� �1=2

s�1
A

¼ 1� e0ð Þ1=2½1þ e0 � 1� e20
� �1=2�1=2s�1

A ; (7)

where sA ¼ ð4pqmÞ1=2=B0
p is the relevant Alfv�en time, with B0

P being
the radial derivative of the poloidal magnetic field on the magnetic
axis, sgw is the resistive wall time, ê0 ¼ e0j=ðjþ 1Þ, and

D j;
b
bw

� �
¼ j2 þ 1

ðj� 1Þ2 1� 1� j2 � 1
j2

b
bw

� �2
" #1=2

8<
:

9=
; (8)

is a geometrical wall parameter, which depends on the elongation j
and on the distance between the plasma and the wall represented by
the parameter b=bw. Three relevant limits for Dðj; b=bwÞ are (i) the
no-wall limit, where b=bw ! 0 and D ! 0; (ii) the circular plasma
limit,22 j ! 1, where D in Eq. (8) diverges as Dðj; b=bwÞ
� 2ðb=bwÞ2=ðj� 1Þ; finally, the limit where the wall approaches the
plasma boundary, b=bw ! 1, and D reaches its maximum value (for a
given elongation j), Dðj; b=bwÞ ! Dmax ¼ ðj2 þ 1Þ=½jðj� 1Þ�,
which is always larger than unity.

In the ideal wall limit, sgw ! 1, two terms of the dispersion
relation (6) vanish, one solution of the cubic dispersion relation is sim-
ply c¼ 0, and the other two solutions have real c2, which is positive
for D< 1, corresponding to the regime where vertical displacements
are ideally unstable, and negative when D> 1, corresponding to the
VDOM regime. Thus, in this limit,

c20 ¼
1� D
1� ê0D

c21: (9)

Clearly, c1 corresponds to the ideal-MHD growth rate of the vertical
displacement in the no-wall limit, D ! 0. When D> 1, it is conve-
nient to introduce x ¼ ic. Then, vertical displacements growing on
the ideal-MHD time scale are suppressed by passive wall stabilization,
and the VDOM solution is recovered, whose oscillation frequency is

x ¼ 6x0 ¼ 6
D� 1
1� ê0D

	 
1=2
c1: (10)

Ideal-MHD marginal stability corresponds to D¼ 1. For the particular
wall and plasma geometry assumed by our analytic model, D equals
unity when the elliptical wall intercepts the X-points of the equilibrium
flux function (corresponding to the up–down symmetric double-null
divertor configuration). Indeed, it can be easily checked27 that
Dðj; b=bwÞ ¼ 1 when bw¼ bX, where

bX ¼ j2 þ 1

jðj2 � 1Þ1=2
b (11)

is the vertical distance of the X-points from the magnetic axis.
Plots of x2s2A as function of j and b=bw are shown in Sec. IV

here below.

Considering finite wall resistivity in the relevant limits D> 1 and
x0sgw � 1, one finds that the two oscillatory roots, x � 6x0, are
weakly damped by wall resistivity, while the zero-frequency root is
purely growing on the resistive wall time scale. In tokamak experi-
ments, active feedback stabilization by means of external currents is
used to suppress the n¼ 0 resistive wall mode. However, in this article,
we focus our attention on the two other roots of the n¼ 0 dispersion
relation in the limit of an ideal wall.

So far, the analytic results described above assume that the X-
points of the equilibrium flux function lie in vacuum. If the hot plasma
density extends to the magnetic separatrix, axisymmetric X-point cur-
rents can be driven. It was shown in Ref. 17 that these currents can
suppress the growth of vertical displacements on the ideal-MHD
Alfv�en time scale, even if the ideal wall is moved to infinity (D¼ 0).
From the numerical point of view, this requires a very accurate treat-
ment of the plasma response in the vicinity of the magnetic X-points,
which will be the subject of a future publication. Nevertheless, in Sec.
IV of this article, where the X-points are modeled to lie in a low-
density, high-resistivity halo plasma, we will show evidence of the exis-
tence of X-point currents carried by the halo plasma.

III. STRAIGHT TOKAMAK EQUILIBRIUM
AND THE NIMROD CODE

NIMROD is a parallel three-dimensional initial value code capa-
ble of simulating various ideal and non-ideal MHD phenomena in
magnetically confined plasmas for both toroidal and linear configura-
tions.21 It uses high order quadrilateral finite element for the poloidal
plane and pseudospectral technique in the periodic axisymmetric
direction. NIMROD can advance both linear and nonlinear extended
MHD equations using implicit/semi-implicit time-advance methods to
handle multi-time scales temporal stiffness. The simulations presented
in this article advance the linearized version of the single fluid resistive
MHD equations

@n
@t

þr � nvð Þ ¼ r �Drn; (12)

mn
@

@t
þ v � r

� �
v ¼ 1

l0
r� Bð Þ � B�rpþr � �qrv; (13)

3
2

@

@t
þ v � r

� �
T ¼ �nTr � v; (14)

@B
@t

¼ �r� ½ge r� Bð Þ � v � B� þ jdivbrr � B; (15)

with particle density n and ion massm, v is the center-of-mass velocity
of plasma, p is the total pressure of electrons and ions, T is the single
fluid temperature, and the magnetic field is denoted by B. Several
explicit diffusive terms are also included: the density diffusivity D ,
kinetic viscosity �, electrical diffusivity coefficient ge (¼resistivity over
the vacuum permeability l0), and in the induction equation, jdivb, a
diffusivity used to control ther � B error.

For simplicity of NIMROD implementation, the analytic straight
tokamak is represented by a Cartesian rectangular domain in the
poloidal plane and a single toroidal n¼ 0 mode in the axisymmetric z-
direction. This differs from the confocal elliptical wall in the analytic
model. Instead, the four sides of the rectangular simulation domain are
constrained by imposing the confocal condition, b2w � a2w ¼ b2 � a2,
so that the half-height, bw, and the half width, aw, of the rectangular

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 31, 023904 (2024); doi: 10.1063/5.0184340 31, 023904-3

VC Author(s) 2024

 18 M
arch 2024 16:17:04

pubs.aip.org/aip/php


boundary match the major and minor axes of a confocal elliptical
boundary. The rectangular simulation domain circumscribes the ana-
lytic confocal ellipse and as such, for equal values of the parameter
b=bw, the simulation domain is larger than the analytic one. As we will
discuss in Sec. IV, this difference in domain geometry is a likely source
of discrepancy between the numeric and analytic results, particularly
as the wall is brought closer and the difference in area more
pronounced.

The analytic equilibrium for a straight tokamak reviewed in Sec.
II is implemented as the NIMROD equilibrium fields. The force bal-
ance relation in a linear plasma column takes the following form in the
flux coordinate:

d
dw

B2
z

2l0
þ pðwÞ

" #
¼ �JzðwÞ ¼ �J0: (16)

The axial magnetic field Bz is uniform and constant throughout the
domain. The Heaviside plasma current density JzðwÞ ¼ J0 is a uniform
finite value within the hot plasma and zero outside. The pressure
profile is a linear function of flux: pðwÞ ¼ p0ð1� w=wbÞ
¼ J0wbð1� w=wbÞ. Note that wb (the hot plasma boundary) is not
the separatrix. The magnetic geometry is elongated by two external
currents Iext located equidistant above and below the plasma:
Iext ½dðx; y � lÞ þ dðx; y þ lÞ�, located outside the simulation domain.
Plasma density is no ¼ 1:0� 1019m�3 inside the elliptical plasma
boundary and ramped down to the halo density nhwith a hyperbolic tan-
gent function: nðwÞ ¼ nh þ ðno � nhÞ½1� tanh½rðw� wbÞ=wb��=2,
where r controls the width of the transition. The equilibrium satisfies the
force-balance relation (16) up to the input numerical tolerance and is
preserved throughout the linear simulations, i.e., only the perturbed
n¼ 0 component is advanced in time.

NIMROD does not support a vacuum model and instead utilizes
a “halo” plasma model to represent the analytic vacuum. The “halo”
plasma is a cold region with low density and high resistivity, ghalo; a
few orders of magnitude difference from hot core plasma. This “halo”
plasma fills the entire domain outside of the hot plasma (see Fig. 1),
both between the hot plasma and separatrix and throughout the open
field line region. A measure of the halo resistivity is represented by the
dimensionless Lundquist number, Shalo ¼ sR=sA / g�1

halo, where the
resistive diffusion time sR ¼ ab=ghalo with a being the semi-minor axis
and b the semi-major axis, and the Alfv�en time sA ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l0qm0ab
p

=B0

with B0 and qm0 being the magnetic field and mass density at the mag-
netic axis.

IV. NUMERICAL RESULTS ON THE LINEAR STABILITY
OF n50 MODES

In this section, we present the benchmark comparison between
the analytic theory results summarized in Sec. II and NIMROD
numerical simulations. In numerical work, the wall is assumed to be
ideal. In NIMROD, ideal conducting walls are implemented by enforc-
ing vanishing normal components of the perturbed magnetic field at
the wall.

First, we will compare unstable vertical displacements and scans
of wall position and ellipticity. Then, we will consider vertical displace-
ment oscillatory modes (VDOMs). In analytic work, where vacuum
fills the space between the plasma boundary and the wall, and in the
absence of dissipation and fast ions, VDOMs are undamped, purely
oscillatory modes. In NIMROD, where finite dissipation is usually

required for numerical stability, and a low-density, high-resistivity
halo plasma is used instead of vacuum, some degree of damping is
always found. This damping is shown to saturate to small values when
the halo plasma approach vacuum parameters.

In most simulations presented, the grid resolution is (mx,my)
¼ (360,360) with polynomial degree¼ 3 and the time step Dt ¼ 0:5sA.
The density diffusion sD=sA � Oð102Þ (sD ¼ ab=D); viscosity
s�=sA � Oð104Þ (s� ¼ ab=�); resistivity S � Oð106Þ inside the
elliptical plasma; and r � B diffusion sjdivb=sA � Oð10�1Þ (sjdivb
¼ ab=jdivb) are found sufficient for numerical convergence. However,
in some cases, as indicated below, a more refined mesh was necessary
to obtain convergence.

A. No-wall ellipticity scan

This first scan examines the growth rate of the plasma unbound
by any conducting wall, i.e., the no-wall limit, as the plasma ellipticity
is varied. NIMROD with conducting wall boundaries does not simu-
late the analytic no-wall limit directly. Instead, for each value of ellip-
ticity, NIMROD estimates the no-wall growth rate by performing
successive simulations moving the domain boundary further away
until a saturated value for the growth rate is obtained. As shown in
Fig. 2(b), the no-wall growth rate for e0 ¼ 0:3 is reached in simulation
for values of bw 	 6b. For e0 ¼ ½0:2� 0:6�, the wall parameter b=bw
necessary for convergence are in the range (0.13, 0.19).

Figure 2(a) shows good agreement between NIMROD linear sim-
ulations and analytic results. However, agreement is better at larger
values of ellipticity. For e0 ¼ 0:1, the growth rate is not quite

FIG. 1. Flux contours in the rectangular simulation domain with the Heaviside cur-
rent density in red bound by an ellipse with semiaxes (a,b), showing the extent of
the hot plasma. Note that the hot plasma ends before the separatrix, with X-points
located above and below the hot plasma. A cold, highly resistive halo plasma fills
the region between the hot plasma boundary and the perfectly conducting rectangu-
lar wall. The three different types of wall used in our work, for b=bw ¼ 0:4, are also
shown in the figure a confocal elliptical wall, denoted by the blue dashed ellipse; the
green dotted rectangle, with bw=b ¼ aw=a; and the outer black solid rectangle with
b2w � a2w ¼ b2 � a2 as for the confocal elliptical wall. For this particular figure,
j ¼ 2:0:
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converged. The highest value b=bw ¼ 0:13 was used. Convergence is
constrained by the need to include and resolve the X-points in the ever
increasing domain. As ellipticity is decreased and approaches 0, the X-
points retreat away from the plasma and approach infinity, requiring
ever larger simulation domains, the majority of which is then com-
posed of halo plasma and open field lines. Values of e0 < 0:1 become
computationally prohibitive; the e0¼ 0 circular limit is numerically out
of reach.

The growth rate in every run is calculated only after the perturbed
fields have reached a pure exponentially growing phase after an initial
transient. A typical example for the perturbed x-component of the
magnetic field, ~Bx , from an unstable run is plotted in Fig. 3.

Figure 4(a) shows perturbed pressure contours and Fig. 4(b) 2D
arrow plots indicating the direction of the perturbed velocity projected
onto a poloidal cross section. The pressure contours show a clear
m¼ 1 signature caused by the upward movement of the plasma

column. The arrow plot indicates the direction of flow in the poloidal
plane. Within the hot plasma, all arrows point upward, consistent with
a nearly rigid vertical shift of the entire plasma and in very good agree-
ment with the mode structure obtained analytically. Outside the hot
plasma, in the halo region, the arrows show the direction of the return
flow. In analytic theory, where vacuum is assumed instead of halo
plasma, the return flow is concentrated on the plasma boundary, giv-
ing rise to localized vorticity sheets.

B. Wall position scan

We next examine the impact of moving the wall closer to the
plasma. The results of a confocal wall scan is presented for two plasma
elongations, j ¼ 2:0 and 1.4, corresponding to ellipticity values
e0 ¼ 0:6 and e0 ¼ 0:32, respectively. For these two scans, we preserve
the confocal constraints (b2w � a2w ¼ b2 � a2) applied to the rectangu-
lar domain boundary. Figure 5, the confocal wall scan, plots the square
of the normalized frequency vs wall parameter, b=bw, and shows agree-
ment between NIMROD and analytic theory. Positive values (shown
in circles) indicate oscillating modes. Negative values (shown in trian-
gles) indicate growing modes. The no-wall limit corresponds to values
of b=bw ! 0, while the wall touches the plasma when b=bw ¼ 1. The
zero crossing of the analytic theory curve (green line) indicates transi-
tion between purely oscillating and purely growing mode, which
occurs at bw¼ bX, with bX the vertical distance of the X-points from
the magnetic axis. In other words, marginal stability (x2 ¼ 0) occurs
when the confocal elliptical wall intercepts the X-points. Starting from
small values of b=bw, the growth rate, c ¼ �ix, decreases as the wall is
brought closer to the plasma (increasing b=bw), until the wall
approaches the X-point. With the proximity of the wall to the X-point,
the mode becomes marginal, and then transitions to a purely oscillat-
ing mode for values of b=bw > b=bX , as the wall is brought within the
X-points, i.e., as the X-points lie outside the simulation domain.

In the simulations, the transition from the unstable growing
mode to stable oscillatory mode does not occur exactly when the rect-
angular wall intercepts the X-points, as in analytic theory. We also

FIG. 2. (a) Comparison of the normalized growth rate vs plasma ellipticity shows agreement between NIMROD simulations and the analytic no-wall limit. (b) The growth rate
gradually saturates to the analytical no-wall value with increasing wall-plasma distance (e0 ¼ 0:3).

FIG. 3. Time history of the perturbed field ~Bx for the unstable no-wall case with
e0 ¼ 0:3. After an initial transients, pure exponential growth is observed.
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note that numerical points lie slightly below the analytic curve, and
that this discrepancy is more pronounced at larger values of b=bw,
where the wall is closer to the plasma boundary. We believe that this is
due to the use of the rectangular simulation domain, which has a larger
area than the analytic confocal elliptical boundary for equal values of
the parameter b=bw. Therefore, the rectangular wall is on average a bit
further away from the plasma boundary than the equivalent confocal
elliptical wall. Hence, the stabilizing effect exerted by the rectangular
wall is a little weaker and the growth rate found numerically is indeed
a bit larger (i.e., smaller negative x2) than the analytic result.

To test this idea, in Fig. 6 we present another wall scan for
j ¼ 2:0, where we adopted a self-similar wall, as shown in Fig. 1 as
green dashed-dotted rectangle, i.e., bw=b ¼ aw=a, instead of the confo-
cal constraint. Again, we see agreement between simulation and ana-
lytic theory. As expected, the numerical results for the self-similar wall
lie slightly above the analytic curve, whereas in the prior two wall scans

with confocal walls, the simulation results lie below the analytic curve.
Again, the discrepancy is larger at larger values of b=bw. We believe
that this is due to the fact that, in this case, the self-similar wall is on
average closer to the plasma than the confocal wall for equal values of
b=bw, and so the stabilizing influence of the wall is larger in this case.

C. Plasma elongation scan at fixed plasma-wall
distance

A scan of the plasma elongation is performed for values of j
between j¼ 1 and j¼ 2 (e0 between 0 and 0.6), with wall parameter
fixed at b=bw ¼ 0:25. Figure 7 shows the squared normalized fre-
quency plotted against j; oscillatory cases are denoted by circles and
unstable cases by triangles. The zero crossing of the analytic curve
occurs for the value of j ¼ jX corresponding to the elliptical wall
intersecting the X-points. This value can be obtained from Eq. (11),

FIG. 4. Perturbed pressure and plasma flow arrows plotted on equilibrium flux contours show the vertical rigid shift of the plasma. (a) Perturbed pressure. (b) Direction of per-
turbed flow.

FIG. 5. Confocal wall scan (b2w � a2w ¼ b2 � a2) plots the square of the normalized frequency vs wall parameter b=bw for j¼ 2.0 (left panel) and j¼ 1.4 (right panel),
showing agreement between NIMROD and analytic theory. Positive values (circles) indicate oscillating modes. Negative values (triangles) indicate growing modes. The zero
crossing of the analytic theory curve (green line) occurs for b=bw ¼ b=bX , where the domain boundary intersects the X-points.
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where specifically we set b=bX ¼ b=bw ¼ 0:25, yielding jX � 1:12.
Agreement between analytic theory and numerical results is excellent,
as the wall at bw ¼ 4b is relatively far from the plasma, and so the
effect due to the difference between elliptical and rectangular wall is
negligible in this case.

D. VDOMs: Vertical displacement oscillatory modes

As the conducting wall is brought closer to the plasma, so that
the X-points lie beyond the wall and outside the integration domain,
the mode transitions from unstable to a stable oscillatory mode. These
stable oscillations were dubbed VDOMs, which stands for vertical dis-
placement oscillatory modes.19

Here, we examine one such stable oscillatory case. Figure 8(a)
shows the time history of perturbed fields: velocity (~vy), magnetic field
(~Bx), density (~n), temperature (~T ), and Fig. 8(b) midplane profiles of

vertical momentum per unit mass, n0~vy , at several times during a sin-
gle period, for j¼ 1.4 and b=bw ¼ 0.55. The single oscillation period is
denoted by the yellow bar in the time history. The normalized oscilla-
tion frequency is xsA ¼ 0:31.

The time slices of the midplane profile show that the n¼ 0 oscilla-
tion is mostly confined to within the hot plasma, with a perturbed mass
flow that well approximates the rigid-shift vertical oscillation found in
analytic work. Note that the plasma extends to x=b ¼ a=b � 0:7.

Recall that NIMROD does not support a true vacuum, but
instead employs a low-density, high-resistivity halo plasma in the
region surrounding the hot plasma. As a result, consistent with the
flow patterns shown in Fig. 4(b), a return flow is carried by the halo
plasma, which guarantees near-incompressibility,r � v ¼ 0. However,
owing to the low halo density, the return mass flow carried by the halo
plasma is very small compared with the mass flow in the hot plasma.

FIG. 6. A self-similar wall scan (b=bw ¼ a=aw ) plots the square of the normalized
frequency vs wall parameter b=bw , showing agreement between analytic theory and
NIMROD simulations.

FIG. 7. Plasma elongation scan, with wall parameter fixed at b=bw ¼ 0:25, plots
the square of the normalized frequency vs elongation, showing agreement between
analytic theory and NIMROD.

FIG. 8. Time history of perturbed fields: velocity (~v y ), magnetic field (~Bx ), density (~n), temperature (~T ); midplane profiles of vertical momentum per unit mass at several times
during a single oscillation period (denoted by the yellow bar in the time history); j¼ 1.4 and b=bw ¼ 0.55. The plasma motion is well approximated by a vertical rigid shift.
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Simulations show that the oscillation is damped due to the finite
halo density and resistivity. Figure 9(a) is a scan of halo plasma density
nh and Fig. 9(b) Lundquist number Shalo vs damping. For the halo den-
sity scan, the Lundquist number is fixed at Shalo¼ 0.4. A converged
damping rate is approached for nh < Oð1017Þm�3. For the Lundquist
number scan, we fix the density at nh ¼ 1� 1017m�3. A converged
damping rate is approached for Shalo < Oð10�1Þ.

These simulations required a more refined mesh with (mx,my)
¼ (480,480) and polynomial degree¼ 3.

E. X-point currents

Here, we discuss an ideal-MHD unstable n¼ 0 vertical displace-
ment mode with j¼ 2.0 and b=bw ¼ 0.4 and focus on the currents
that form in response to the growing vertical motion of the plasma.
Figure 10(a) shows perturbed surface currents at the plasma boundary,
as predicted by analytic work. The surface current density is very

narrow, a consequence of having chosen a step-function equilibrium
current density with a sharp drop at the plasma boundary.

Of greater interest to us are the X-point currents, as we believe
that this is an interesting result with potential consequences on X-
point topology and plasma edge MHD activity. Figure 10(a) shows a
2D color plot and Fig. 10(b) 1D profiles along the lower vertical mid-
plane at x¼ 0 of the perturbed axial current density, ~J z normalized by
the value of perturbed ~vy at the origin. The color plot shows both sur-
face and X-point currents, having opposite polarity, as expected. The
1D profiles of ~J z are drawn for different values of the halo Lundquist
number. These profiles become sharper and narrower as halo resistiv-
ity is reduced, which is in qualitative agreement with analytic predic-
tions.17 More specifically, as shown in Ref. 17, the perturbed X-point
current density becomes a delta function peaked at the resonant X-
point in the limit of vanishing resistivity.

There is, however, an important difference between our
NIMROD simulations and the analytic work. In these NIMROD

FIG. 9. A scan of halo plasma density nh and Lundquist number Shalo vs damping rate, k ¼ �ImðxÞ.

FIG. 10. (a) Contour plots of the perturbed current density, ~Jz , show current formation at the X-points and surface currents along the hot plasma boundary. (b) Profiles of nor-
malized ~J z=~v y0 along a vertical line segment through the lower X-point [shown by black dashed line in part (a)]; the X-point location is denoted by the dotted line, for different
values of Shalo; ~v y0 is the value of perturbed ~v y at the origin. The peak of the X-point current density increases with increasing Shalo. In both panels, j ¼ 2:0 and b=bw0:4.
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simulations, the X-points lie in a halo plasma and the X-point current
is sensitive to halo resistivity and halo density. By contrast, in analytic
work,17 the X-points lie in a vacuum.

Figure 11 shows the behavior of the growth rate as a function of
halo resistivity. In a relatively narrow range, we find that the growth
rate decreases as the Lundquist number increases. This suggests a sta-
bilizing effect from the X-point currents on vertical displacements, but
this effect is found to be modest in these simulations. We may expect a
more pronounced effect in situations where the hot plasma extends to
the X-points and the magnetic separatrix.17 The growth rate saturates
both at the lower end and at the upper end of the resistivity scan. The
saturated growth rate at low values of the Lundquist number (high
resistivity), where the halo resistivity approximates vacuum, is in good
agreement with analytic prediction.18,19 The saturated growth rate at
the higher end has no analytic comparison, as halo effects, which were
not considered in analytic work, are important in determining that sat-
urated values.

V. CONCLUSIONS

The main result of this article is that we have successfully repro-
duced recent analytic results on n¼ 0 modes using the extended-MHD
code NIMROD. The agreement between analytic theory and numerical
results is very satisfactory, providing a successful benchmark and a useful
starting point for future numerical investigations of n¼ 0 modes using
more realistic tokamak geometry and plasma equilibria. Differences
between analytic and numerical results have been interpreted as due
mostly to the different shape of the wall used in analytic work vs
NIMROD simulation, and the fact that NIMROD adopts a low-density,
high-resistivity halo plasma in lieu of vacuum assumed in analytic work.

When ideal-MHD vertical displacements are passively stabilized
due to the proximity of the ideal wall, vertical displacement oscillatory
modes, dubbed VDOMs in Ref. 19, are found. In the present simula-
tions, VDOMs are weakly damped, due to low values of plasma and
halo resistivity. Viscosity and other dissipative terms also affect the
damping rate, but at the low values of these parameters used in the
simulations (see Sec. IV, before Sec. IVA), their effects on damping is
negligibly small. The VDOM frequency is Alfv�enic, and for realistic

values of the wall parameter D defined in Eq. (8), it falls slightly below
the poloidal Alfv�en frequency, which should make these modes
immune from continuum damping when an actual toroidal geometry
with realistic equilibrium current density profiles is considered.
VDOMs are of great interest as they can be driven unstable by their
resonant interaction with fast ions. Indeed, we have proposed20 that
recent observations15,16 of n¼ 0 modes on JET tokamak experiments
with a significant energetic ion population can be interpreted as fast-
ion-driven vertical modes. Work is in progress studying recent JET
discharges to test this hypothesis. Ongoing linear toroidal simulations,
using the NIMROD code, aim to extend our analysis to more realistic
plasma geometries and profiles, starting from reconstructed equilibria
of the relevant JET discharges. We point out that these JET discharges
are single-null configurations, and yet, especially as far as VDOMs are
concerned, preliminary NIMROD simulations are in good qualitative
agreement with what is reported in the present article. These results
will be presented in a future publication.

This article also discusses for the first time numerical results
related to the occurrence of axisymmetric X-point currents. In this
article, X-point currents are supported by the halo plasma. In future
work, where we plan to extend the hot plasma to the magnetic separa-
trix, X-point currents may become more pronounced, leading to a
more significant impact on the topology of the X-point region, as the
analytic work of Refs. 17 and 18 suggests. We point out that treating
X-point effects on n¼ 0 perturbation is numerically challenging, since
the toroidal field line going through a magnetic X-point is resonant (in
the sense that Beq � k ¼ 0 at magnetic X-points), which is the reason
why axisymmetric current sheets localized near X-points are to be
expected.
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