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Abstract
Objective. Ultrafast ultrasound (UUS) imaging has been used to detect intramuscular mechanical
dynamics associated with single motor units (MUs). Detecting MUs from ultrasound sequences
requires decomposing a velocity field into components, each consisting of an image and a signal.
These components can be associated with putative MU activity or spurious movements (noise).
The differentiation between putative MUs and noise has been accomplished by comparing the
signals with MU firings obtained from needle electromyography (EMG). Here, we examined
whether the repeatability of the images over brief time intervals can serve as a criterion for
distinguishing putative MUs from noise in low-force isometric contractions. Approach. UUS
images and high-density surface EMG (HDsEMG) were recorded simultaneously from 99 MUs in
the biceps brachii of five healthy subjects. The MUs identified through HDsEMG decomposition
were used as a reference to assess the outcomes of the ultrasound-based components. For each
contraction, velocity sequences from the same eight-second ultrasound recording were separated
into consecutive two-second epochs and decomposed. To evaluate the repeatability of components’
images across epochs, we calculated the Jaccard similarity coefficient (JSC). JSC compares the
similarity between two images providing values between 0 and 1. Finally, the association between
the components and the MUs from HDsEMG was assessed.Main results. All the MU-matched
components had JSC> 0.38, indicating they were repeatable and accounted for about one-third of
the HDsEMG-detected MUs (1.8± 1.6 matches over 4.9± 1.8 MUs). The repeatable components
(JSC> 0.38) represented 14% of the total components (6.5± 3.3 components). These findings
align with our hypothesis that intra-sequence repeatability can differentiate putative MUs from
noise and can be used for data reduction. Significance. This study provides the foundation for
developing stand-alone methods to identify MU in UUS sequences and towards real-time imaging
of MUs. These methods are relevant for studying muscle neuromechanics and designing novel
neural interfaces.

© 2023 The Author(s). Published by IOP Publishing Ltd
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1. Introduction

Recently, neuromuscular imaging based on ultrafast
ultrasound (UUS) has evolved considerably, open-
ing new fronts in studying muscle contraction at the
single motor unit (MU) level [1–9]. High-resolution
imaging of active muscle tissue can provide spati-
otemporal mechanics of individual MU fibres, i.e. a
2D image with the location of the MU territory and
the time course of its displacement velocity. Hence,
the technique provides complementary information,
such as mechanical information with access to deep
muscles, to the standard electrophysiological tech-
niques for assessing single MU electrical proper-
ties, i.e. invasive needle electromyography (nEMG)
[10–12] and non-invasive surface EMG (sEMG)
[13, 14]. The added information on spatial and tem-
poral mechanics can foster basic studies on muscle
neuromechanics and force generation mechanisms
[15], along with providing biomarkers for myopathic
disorders [16–18], and innovative neural interfaces
relevant, e.g. in rehabilitation and prosthetic control
[19–21].

The methodology of identifying single MU activ-
ity in UUS recordings during isometric voluntary
contractions was recently proposed based on a two-
step approach [3]. First, the subtle intramuscular dis-
placement velocities were estimated [22], and then
these displacement velocities were decomposed into
multiple components. Each component comprises a
spatial map (2D image with the location of the com-
ponent, related to MU territory) and a temporal sig-
nal (time course of its displacement velocity, related
to MU spike train). To separate spurious compon-
ents (noise) from those associated with single MU
activation, a procedure based on temporal signal char-
acteristics was adopted and later validated against
single MU identification based on needle EMG [4].
It was found that a large proportion of the compon-
ents’ temporal twitch-by-twitch signals could not be
matched with MU firings [4, 6]. Two factors may
contribute to this relatively low agreement between
the two measures. The first is the heterogenic com-
position of linear and non-linear elastic tissue con-
stituents, causing a non-linear combination of MU
twitches. The second one concerns MU firing variab-
ility. Indeed, although the MU pool should be stable
during these contractions, the firing rate of MUs
varies, which has been shown to influence the tem-
poral twitch parameters, i.e. alter the temporal signal
(sequence of twitches) [15].

In contrast to the temporal firing characteristics,
the location of MU fibres within the muscle cross-
section should represent an invariant feature during
constant force and isometric contractions. It follows
that components with a stable spatial map through-
out the contraction are more likely to be associated
with actual MU activations. Hence, we hypothesise
that the spatial repeatability of a component across

short epochs (intra-sequence repeatability) is a fea-
ture associated withMU activity andmay be used as a
criterion for data reduction of the initial decomposed
components.

In this study, we aimed to identify intra-
sequence spatially repeatable components and exam-
ine whether repeatability can be used to separateMUs
from noise in stable low-force isometric contractions.
For this purpose, we decomposed displacement velo-
city images in consecutive two-second epochs from
eight-second UUS recordings of the biceps brachii
muscle. We quantified the repeatability of the com-
ponents’ spatial map across epochs and examined
whether the repeatable components were associ-
ated with actual MU activity. To this end, we used
a set of reference MUs identified with an independ-
ent and validated decomposition method (HDsEMG
decomposition [23]), applied to experimental signals
detected simultaneously with the ultrasound images.
Finally, we determined whether the analysis based on
two-second intervals (required to assess the repeatab-
ility) affects the number ofMU-matched components
compared with the decomposition of the recordings’
full length (eight seconds).

2. Methods

2.1. Experimental protocol
A total of 99 MUs was extracted from five subjects
(31 ± 6 years, three males, and two females) who
performed three low-level isometric constant-force
elbow flexions to activate the biceps brachii muscle
(from 2% to 10% of the maximum voluntary con-
traction). Since we focus on the MU and not the
subject per se, the number of MUs can be seen as
the sample size. It is important to include both male
and female participants, as it has previously been
found that surface EMG has limitations in identify-
ing MUs due to the differences in volume conduction
[24]. In contrast, UUS has a deeper penetration and
therefore does not have this issue. The details of the
experimental protocol are reported in Carbonaro et al
[6]. Briefly, for each contraction, eight-second-long
UUS recordings (Verasonics Vantage 128, Verasonics
Inc., Kirkland, WA) were recorded simultaneously
[25] with HDsEMG (MEACS, LISiN, Politecnico di
Torino, Turin, Italy [26]). A grid of 64 surface-
EMG electrodes transparent to ultrasounds (8 × 8,
10 mm inter-electrode distance [27]) was placed
on the muscle belly with the ultrasound transducer
(L11-5v, 7.81 MHz centre frequency, 31.25 MHz
sampling rate, and 2500 Hz frame rate) positioned
between the fourth and the fifth row of electrodes;
i.e. transversally with respect to the muscle fibres’
direction (figure 1(A)). The study was conducted fol-
lowing the Declaration of Helsinki and approved by
the Regional Ethics Committee. Informed consent
was obtained from all subjects.
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Figure 1. Illustration of the ultrasound data processing and identification of repeatable spatial maps. (A) Experimental setup with
simultaneous ultrafast ultrasound (UUS) and high-density surface electromyography (HDsEMG) recordings. Reproduced from
[6]. CC BY 4.0. (B) Eight-second recordings using UUS (40× 40 mm, 2500 Hz) plane wave imaging. (C) The recordings were
divided into seven partially overlapping epochs of two seconds each. (D) A sub-region was selected within the HDsEMG
detection volume (20× 40 mm). (E) Tissue velocity images were estimated. (F) The velocity images were divided into five
region-of-interests (ROIs), i.e. 20× 20 mm each. (G) Each ROI was decomposed into 25 components, i.e. 25 temporal signals
(‘S’) and 25 spatial maps (‘A’). (H) The spatial maps were clustered and processed to generate a binary map, with zeros being the
background and ones being the largest intensity of the territory. (I) The binary maps were used for calculating the Jaccard
similarity coefficient (JSC) for each component in the epoch (second to the seventh) with the first epoch as a reference. The
maximal JSC was retained for each epoch, and then the mean JSC (based on the maximal JSC for all epochs) was calculated.
(J) Then, spike-triggered averaging of the components’ temporal signal was performed using the motor unit (MU) spike trains
instants from the (K). HDsEMG decomposition.

2.2. UUS and HDsEMG data processing
The radio frequency UUS data comprised 20 000
frames (2176 × 128 pixels, i.e. approximately
53× 40mm). After traditional delay-and-sum beam-
forming, each eight-second dataset was processed in
two-second epochs [3, 4] with one-second overlap-
ping ([0:2] s, [1:3] s, …, [5:7] s, [6:8] s) resulting in
seven sub-datasets of two seconds (figure 1(C)). Each
pixel in each sub-dataset was filtered over time with
a 1D median filter with the order equal to 10 ms
[3, 4]. The image was cropped to 20 × 40 mm
(850 × 128 pixels) [6, 7] (figure 1(D)). For each
epoch, displacement velocity images were calculated
using 2D autocorrelation velocity tracking [22, 28]
with 1 mm in-depth and a sliding window of 10 ms
(figure 1(E)). The temporal evolution of each pixel in
the velocity images was high pass filtered at 3Hz using
3rd order Butterworth filter (zero-phase) to atten-
uate slow movements not associated with muscle
contraction [3]. Finally, the velocity images were
down-sampled to 63 × 128 pixels, corresponding
to approximately 0.3× 0.3 mm per pixel.

HDsEMG signals were bandpass filtered (20–
400 Hz) and decomposed into individual MU spike
trains [23] (figure 1(K)). The spike trains were edited
[29] and resampled at the ultrasound frame rate.
MU action potential (MUAP) amplitude distribu-
tions and their centroids were calculated using the
longitudinal single differential MUAP decomposed
from HDsEMG [30]. Considering that the mediolat-
eral surface covered by the HDsEMG grid is larger

than that of the ultrasound transducer (figure 1(A)),
all the centroids with the mediolateral coordinate
outside the ultrasound field of view were truncated
to the position of the first or last element of the probe
(i.e. element 1 or 128).

2.3. Spatiotemporal decomposition of
displacement velocity images
As described in previous papers, the displacement
velocity images were processed over five partially
overlapping region of interest (ROI) of 20 × 20 mm
(5 mm increments) [4, 6, 8] (figure 1(F)). We
used spatiotemporal independent component ana-
lysis (stICA) [31] withα= 1.0 [8] to obtain 25 spatial
components (spatial maps) and corresponding tem-
poral components (temporal signals) per ROI [4, 8]
(figure 1(G)).Hence, we obtained 125 spatiotemporal
ultrasound components for each recording.

To generate a binary map suitable for comparison
across epochs, we used the k-means algorithm
(figure 1(H)). We used five clusters based on
Euclidean distance because it provided an automatic
robust way (empirically) of thresholding each decom-
posed spatial component regardless of the distribu-
tion of pixel values (see discussion and figure S2 in
the supplementary materials). The cluster with the
highest intensity values was assumed to be the loc-
alised spatial region (territory) of interest (figure S2
in the supplementary materials). Given this cluster, a
binary map was generated. Objects with less than 25

3
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connected pixels (∼1.5× 1.5 mm2) were removed to
remove noisy pixels at other regions in the image.

2.4. Repeatability analysis: selecting similar spatial
maps across epochs
A Jaccard similarity coefficient (JSC) criterion based
on the binary maps was used to select a set of similar
spatial maps across different time epochs. The JSC is
a metric used for comparing the similarity between
two binary images, where pixel values can be equal
to one, which highlights the object, or zero, which
represents the background. Here, the 2D MU territ-
ory is the object consisting of the ones in the image,
whereas the pixels outside the territory are assumed
to be zeros. The JSC is defined as the ratio between
the area of overlap of ones between the two images and
the area of ones from both images combined. JSC values
range from 0 (no overlap between the objects, which
means the two images are not similar) to 100% or 1
(the two objects are perfectly overlapped and coin-
cide).

Specifically, the 25 spatial maps of the first two-
second epoch for each ROI were regarded as reference
maps (figure 1(I)). JSCs were calculated between each
referencemap and the 25 maps obtained from each of
the remaining six epochs. For each epoch, the map
with the highest JSC was retained. This procedure
provided, for each reference map, a selection of six
spatial mapsmaximally similar to it. Themean spatial
map andmean JSC (indicating the level of repeatabil-
ity of a component) were then computed using the
selected maps. In total, 25 mean spatial maps were
identified for each of the five ROIs (125 mean spatial
maps, including all five ROIs).

2.5. Association of selected similar components
withMUs fromHDsEMG
We studied the association between the ultrasound
components selected in the previous paragraph
and the characteristics of individual MUs identified
through HDsEMG decomposition. To this end, we
considered the temporal signal corresponding to the
selected spatial maps and the firing pattern of the
MUs identified from HDsEMG.

The temporal signals of each set of selected com-
ponents were spike-triggered averaged (figure 1(J))
using the spike train of individual MUs identified
from HDsEMG (figure 1(K)). This procedure was
applied to all the combinations of selected ultra-
sound components and HDsEMG MUs, leading to
a large set of putative twitches (figure 1(J)). Only
those whose peak-to-peak amplitude exceeded a
noise threshold were retained among these putat-
ive twitches. Among this subset, the pair (ultra-
sound component—HDsEMG MU) leading to the
highest twitch amplitude was called theMU-matched
component.

The noise threshold was calculated based on a
three-step approach. First, we generated 125 tem-
poral components of coloured Gaussian-distributed
noise (5–30 Hz bandwidth of white noise) and 100
random spike trains (mean firing rates between 8
and 20 Hz and standard deviation of 15% of the
mean inter-pulse interval [32]). Second, we calcu-
lated the spike-triggered averaging using the gen-
erated components and spike trains and calculated
the peak-to-peak amplitudes of these ‘average noise-
twitch’ (in the supplementary materials, figure S3
shows the distribution of all the amplitudes calculated
with this procedure). Note that each triggered win-
dow was standardised with mean zero and standard
deviation equal to one (z-score), making the spike-
triggered averaging amplitude independent. Third,
the threshold value was computed as the mean plus
three standard deviations of the peak-to-peak amp-
litudes of all random components and spike trains
(figure S3). Hence, the noise threshold is set as
an ‘outlier’ of the peak-to-peak noise amplitude
distribution.

2.6. Number of matched components withMUs
fromHDsEMG: intra and full sequence approach
We intended to assess whether the analysis
on two-second intervals, required to assess the
repeatability, affected the number of MU-matched
components. Therefore, we compared the num-
ber of MU-matched components found with the
intra-sequence repeatability approach with the com-
ponents decomposed from the stICA applied over
the full sequence recording [4]. In both approaches,
the matching with HDsEMG MUs was performed
using the same method described in the previous
paragraph.

2.7. Statistical analysis
We calculated descriptive statistics associated with
the components (epochs and full sequence) and the
MUs decomposed from HDsEMG. The quality of
identified MUs from HDsEMG was quantified using
the pulse-to-noise ratio (PNR) [33]. Based on the
matched components with MU, we calculated the
area, equivalent diameter (square root of 4 × Area/π
as in [3]), and depth of the centroid of the com-
ponent below the skin. In addition, the distance
between the mediolateral centroids of the spatial
map (based on the binary map) and MUAP spatial
distribution (based on the spike-triggered average on
the HDsEMG signals using the MU spike trains [30])
for eachmatched component andMUwas calculated.

We tested the pairwise difference between the
number of MU-matched components between the
intra-sequence repeatability and the full sequence
approach using a two-sided Wilcoxon signed rank
test. In addition, we tested the difference in median

4



J. Neural Eng. 20 (2023) 046016 R Rohlén et al

Figure 2. Examples of repeatable spatial maps from two repeatable components (#1 to #2) and one non-repeatable component
(#3) of the same recording and region-of-interest (ROI) based on the Jaccard similarity coefficient (JSC). The first two-second
epoch is the reference (defined as reference).

JSC andnormalised peak-to-peak amplitude, respect-
ively, between the MU- and non-MU-matched com-
ponents using the Mann–Whitney U test. The signi-
ficance level was set to 0.05.

3. Results

Out of 20 recordings, 99 MUs (4.9 ± 1.8 MUs per
recording) were identified by decomposingHDsEMG
signals having a PNR of 27.4± 3.1 dB. The MUs had
stable spike trains over the eight-second recordings
with firing rates of 12.3± 2.1 Hz.

We observed various degrees of intra-sequence
repeatability across the 125 ultrasound components
per recording, as shown by the large variability of JSC
values (figure S1 in supplementarymaterial). Figure 2
depicts two examples of repeatable components (high
mean JSC) and one non-repeatable component (low
mean JSC) from one ROI of a representative subject
recording.

3.1. Association of selected similar components
withMUs fromHDsEMG
The scatterplot of figure 3 shows the relationship
between JSC values and the amplitude of the (spike-
triggered averaged) putative twitches from all sub-
jects and trials. Each data point in figure 3 repres-
ents an ultrasound component and an HDsEMGMU
that provided the putative twitch with the highest
amplitude. Those below the noise thresholds (grey
dots in figure 3) were discarded among these data
points. In some instances, the above threshold putat-
ive twitches (coloured dots in figure 3) was obtained
by combining the same MU and different ultra-
sound components. In these cases, the combination
leading to the highest putative twitch was retained
(MU-matched components, red circles in figure 3).
The MU-matched components had a higher JSC
than the non-MU-matched (grey dots) components
(0.61 ± 0.12 vs 0.26 ± 0.26; p < 0.001) (figure 3).

Noteworthy, the MU-matched components had a
mean JSC always greater than 0.38, suggesting good
repeatability (figure 2). In addition, defining the com-
ponents as repeatable using this empirical threshold
of 0.38, each recording had 6.5± 3.3 repeatable com-
ponents.

Figure 4 shows three representative examples
illustrating the spatial agreement betweenMUAP dis-
tributions and spatial maps of theMU-matched com-
ponents together with the corresponding velocity
twitches obtained with spike trigger averaging over all
the MU firings of all epochs.

MU-matched components were spatially (medio-
laterally) adjacent to theMUAPdistribution (table 1),
as demonstrated by themediolateral distance between
the centroid of the MUAP distributions and the
centroid of the spatial maps (5.35± 5.17mm,N = 35
MU). The centroids of the mean spatial maps were
distributed across the whole field of view with depths
between 2.90 mm and 14.01 mm (table 1). In addi-
tion, theMU-matched components had a diameter of
4.03 ± 1.28 mm, similar to previously reported find-
ings of MU territory size using scanning-EMG [34].

3.2. Number of matched components withMUs
fromHDsEMG: intra and full sequence approach
The intra-sequence analysis led to 35 MU-matched
components, i.e. 35.4% of the MUs identified by
HDsEMG (table S1, supplementary material). By
decomposing the full eight-second UUS, we found
36 matches, i.e. 36.4% of the MUs identified by
HDsEMG. We found no difference in the number of
matched MUs across all recordings concerning the
two approaches (p= 0.9844).

4. Discussion

This study investigated whether the spatial repeatab-
ility of components extracted from UUS sequences
can be used as a criterion to separate muscle tissue

5
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Figure 3. Relationship between Jaccard similarity coefficient (JSC) and putative twitches with the highest spike-triggered averaged
twitch amplitude. Grey dots are the putative twitches below the noise threshold that were discarded. The red circles correspond to
the 35 MU-matched components. All the MU-matched components have JSC over 0.38 (i.e. repeatable). Orange dots refer to
multiple components associated with the same MU (e.g. twisting/split territory, duplicate components, etc, see figure 5).

Figure 4. Three representative matches between repeatable components and the motor units (MUs). The upper panels show the
MU action potentials and the centroid of the EMG distribution (red ‘+’). In this representation, only the four columns of the
EMG grid superimposed on the ultrasound probe (blue rectangle) are shown. The middle panels show the mean spatial map of
the repeatable component and the corresponding mean JSC. Finally, lower panels depict the spike-triggered averaged velocity
twitch (black line) based on the triggered signals from all seven epochs (grey lines) and the corresponding peak-to-peak
amplitude. The vertical dotted lines corresponded to the firing instants of the MUs identified from HDsEMG decomposition and
used for the triggering.

displacements associated with single MU activation
from noise during stable low-force isometric
contractions. First, we decomposed displacement
velocity sequences from consecutive two-second
epochs of eight-second UUS recordings. Then, we
quantified the repeatability of the components’ spa-
tial map across epochs and examined whether there
was an association between the repeatability level
and the degree of matching with reference MUs

identified through HDsEMG decomposition. Finally,
we investigated whether this intra-sequence approach
using short epochs affects the number of matched
MUs by comparing it with the decomposition of the
recordings’ full length (eight seconds). We obtained
three main findings: (1) all the MU-matched com-
ponents had a JSC larger than 0.38 and accounted
for about one-third of the HDsEMG-detected MU,
(2) the components with JSC > 0.38 represented

6
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Table 1. Descriptive statistics about the motor unit-matched
repeatable components.

MU-matched repeatable components N = 35

Jaccard similarity coefficient, JSC
0.61± 0.13
(0.38; 0.89)

Amplitude (n.u)
1.35± 0.49
(0.76; 2.64)

Centroid-to-centroid (EMG-UUS) (mm)
5.35± 5.17
(0.01; 15.83)

Depth (mm)
9.47± 2.40
(2.90; 14.01)

Diameter (mm)
4.03± 1.28
(1.45; 7.25)

Area (mm2)
14.06± 8.71
(1.66; 41.30)

Mean± SD (min; max), MU=motor unit,

EMG= electromyography, UUS= ultrafast ultrasound,

n.u.= normalised units.

approximately 14% of the 125 initial components
from each recording, and (3) the number of MU-
component matches did not differ between the intra-
and full-sequence approaches. These findings imply
that spatially repeatable components from UUS are
associated with MU activity in human isometric con-
tractions, where the UUS decompositionmethod can
identify possible MU activity in recordings as short
as two seconds.

About 14% of the spatiotemporal components
identified applying stICA to UUS sequences were
matched with MUs decomposed independently from
HDsEMG. A common characteristic of all the MU-
matched components was the high JSC (figure 3) of
their spatial maps. This evidence suggests that spatial
repeatability across a short epoch is a relevant fea-
ture useful to identify putative MUs and implement
data reduction methods on the initial set of ultra-
sound components. This result confirms the initial
hypothesis, i.e. since the location of the MU fibres
is an invariant feature of the MU during stable iso-
metric contractions, repeatable spatial maps are more
likely to be associated with actual MUs. Whether this
hypothesis applies to conditions other than isomet-
ric or constant force contractions likely depends on
how MU territory is represented in the ultrasound
scanning plane and how this representation changes
during a contraction. For instance, muscle shape
changes occurring during dynamic contractions may
lead to a shift or a shape change of the area where
MU fibres’ activation induces movement within
the muscle cross-section, i.e. within the ultrasound
scanning plane. This would clearly undermine the
assumption of MU territory spatial invariance, which
is the basis for our hypothesis. Although to a lesser
extent, similar variations in MU territory representa-
tion can also occur during isometric contractions, for
instance, during force-varying contractions, fatiguing
contractions or any condition inducing a progressive

MU recruitment or de-recruitment. Further studies
are required to quantify the effects of these factors on
UUS decomposition.

About one-third of MUs decomposed from
HDsEMG matched with repeatable ultrasound com-
ponents. This is similar to the number of successful
identifications found in previous studies. It has been
previously associated with differences in detection
volume and characteristics of two detection systems
(EMG and ultrasound) [4, 6, 35]. In addition to the
characteristics of the two measuring techniques, it is
worth noting that the measured system is expected
to be non-linear due to the heterogenic compos-
ition of linear and non-linear elastic constituents.
Already at 5%–10% MVC, many MUs are active
and may suppress or distort the triggered twitch
amplitude. Another aspect to consider is that, in
this study, we found more repeatable ultrasound
components for each recording (6.5 ± 3.3) than
HDsEMG MUs (4.9 ± 1.8). Although ultrasound
provides a larger field of view and higher spatial res-
olution than HDsEMG, it remains unclear whether
these unmatched repeatable components are MUs
and whether they identify different MUs in the whole
activeMU population. In the present study, the num-
ber of successful identifications may have been biased
by one subject for which our matching criteria led to
no matched MUs. This case was most likely due to
the poor quality of the displacement velocity images.
The exclusion of this subject would have increased the
percentage of MU-matches from 35.4% to 42.7% for
the intra-sequence repeatability approach and from
36.4% to 43.9% for the original decomposition over
the full sequence (table S1, supplementary material).

Decomposing displacement velocity images into
components using stICA over partially overlapping
windows likely resulted in component duplicates.
Figure 5(a) shows two examples of duplicates in
which three different components decomposed in
three consecutive ROIs showed an amplitude of
the twitches (related to the same MU firings) over
the noise threshold. In this case, the component
providing the highest twitch amplitude was selec-
ted and regarded as the MU-matched component.
Moreover, it is worth noting that the stICA approach
we used assumes spatial independence to decom-
pose the dataset [31, 36]. For this reason, it may split
MU territories into separate components if the MU
activation results in complex movements, e.g. due
to the interaction between active and passive tissue
[37, 38] or tissue rotation due to so-called MU
twisting [1, 7]. All these examples of duplicate com-
ponents are now separated and contribute to the
above-threshold components in figure 3 (small
orange points). In future studies, components
belonging to the same MU may be merged consider-
ing the spatial overlay or a correlation approach based
on, e.g. the temporal signals.
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Figure 5. Examples of multiple components associated with the same MU. (A) Two examples of three different components
(belonging to different ROIs) with a similar spatial map (active region) matched with the same MUs. In this case, the three
components were merged into the same repeatable component. (B) Two examples of possible twisting MUs. The MUs were
matched with two components showing active regions close to each other and the average twitches showing opposite profiles.
Green twitches are negative (movements towards the probe/skin), and blue twitches, on the contrary, are positive (movements
away from the probe/skin).

This study also found that MUs have a twist-
ing property (figure 5(B)), as observed in previous
research [1, 7]. Here, two components (matched with
the same MU) are spatially separated in two regions
of activation (blue and green spots in figure 5(B))
close to each other with inverted twitch shapes (blue
and green twitches in figure 5(B)). The shape of the
twitch is related to the direction of the movement
with the green twitches are negative (i.e. towards the
probe/up), while the blue ones are positive (i.e. away
from the probe/down). Interestingly, theMU twisting
may deeper explain observations done with several
MMG techniques reflecting the deflections of muscle
surface for isolated MUs in rats [39] and human
muscles [40]. To further understand the deformation
of the muscle fibres during a contraction, we should
consider 3D imaging as we will likely have out-of-
plane motion.

Although finding repeatable components requires
eight seconds with the intra-sequence approach
herein proposed, the results of this study confirm pre-
vious studies that the UUS decomposition method
can identify possible MU activity in recordings as
short as two seconds [4]. Identifying MUs from a
short sequence is an advantage over other methods,
such as spike-triggered averaging [9], which requires
longer recordings due to other simultaneously act-
ive MUs and the motion of non-muscular structures
hiding large parts of the movement caused by the
target MU. Therefore, the blind source separation
approach provides advantages compared to the spike-
triggered averaging approach, such as lower memory
and storage requirements and potential for, e.g. real-
time imaging [41] and dynamic contractions applic-
ations. For these applications, future studies must
consider the lower bound in terms of the recording

duration to identify MUs and improve the classific-
ation of components into MUs or non-MUs using
robust features or training a classifier. For example,
the Gaussian-like 2D distribution of velocities repor-
ted in this work for the most repeatable compon-
ents and similar to what has been found in previous
studies [1, 4, 6, 7], may be a feature for the classifica-
tion of a component as aMU. Thus, having a classifier
for MU/non-MU-associated components enables the
UUS approach to be stand-alone from HDsEMG.

A k-means algorithm with five clusters was used
to generate binary maps from the spatial maps (out-
put fromdecomposition algorithm) suitable for com-
paring the output between epochs. Five clusters
were selected based on empirical observations that
provided a robust and automatic way of threshold-
ing the spatial map (figure S2 in the supplement-
ary materials). We found that the spatial maps have
pixel background values of slightly negative, slightly
positive, and zero. The territory of interest has a
range of positive values, much higher than the back-
ground, with the maximum value around the peak
with decreasing values to the border. If we consider
an extreme case where all the background pixels are
zero, and thus one cluster. Then the territory will
be divided into the remaining four clusters. Since we
only take the cluster with the highest centroid value
(figure S2 in the supplementarymaterials), wewill get
a few pixels in the selected cluster, which will then be
compared to the selected centroid of the other two-
second windows. However, we can see that the range
of diameters of the selected clusters (table 1) is feas-
ible regarding the expected size of a MU territory
[34], which indicates that our selection is reasonable.
Nevertheless, this parameter could be optimised fur-
ther to improve the spatial repeatability values and
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possibly numbers. That being said, it will not change
the interpretation of our results, i.e. spatially repeat-
able components from UUS are associated with MU
activity in human isometric contractions.

The fundamental signal obtained with the UUS
is related to the force generated by muscle fibres.
It should be comparable to forces generated during
an unfused tetanic contraction in isometric condi-
tions. This implies that we detect the subtle oscilla-
tions and no single twitch-like shapes, as they will
likely have a duration exceeding the average inter-
spike interval. Therefore, the amplitude and time
parameters of the twitch-like shapes should be sens-
itive to preceding inter-spike intervals [42, 43]. That
being said, it is possible to decompose these subtle
oscillations obtained by UUS into twitch-like shapes
[15]. However, we used spike-triggered averaging to
get an average twitch, with every twitch normalised
with mean zero and standard deviation equal to 1.
We expect a causal relationship between the depol-
arisations along the fibre and the displacement due
to the electromechanical coupling. Although a spike-
triggered averaged twitch is interesting per se, we
use the peak-to-peak spike-triggered averaged amp-
litudes to select which of all the decomposed compon-
ents are associated with a MU.

While the study shows that spatially repeatable
components fromUUS are associated withMU activ-
ity in human isometric contractions, there are limita-
tions. The UUS-based method relies on HDsEMG as
a reference, which is limited to superficial MUs and
sensitive to a thick subcutaneous fat layer [24, 44].
Future studies may consider an invasive EMG refer-
ence, such as fine-wire or thin-film multi-electrodes,
to overcome this limitation [45]. Also, no technique
can provide the full MU population, even in an
optimal case.Moreover, we assume thatMU activities
can be linearly summed together in the velocity field.
However, recent findings have observed non-linear
summations [46]. Nevertheless, it should only affect
the estimated temporal signals and not the spatial loc-
ation of theMU during stable isometric contractions.

In conclusion, this study investigated the associ-
ation of intra-sequence repeatable components with
individual MU activity. We found that (1) spatial
repeatability can be used as a data reduction to select
putativeMU activity during stable isometric contrac-
tions, and (2) the UUS decomposition method can
identify possible MU activity in two-second record-
ings equally well as in eight-second recordings. These
findings provide a foundation for developing stand-
alone methods to identify MU in UUS and repres-
ent a step towards real-time imaging of active MU
territories.
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[44] Minetto M A, Botter A, Šprager S, Agosti F, Patrizi A,
Lanfranco F and Sartorio A 2013 Feasibility study of
detecting surface electromyograms in severely obese patients
J. Electromyogr. Kinesiol. 23 285–95

[45] Muceli S, Poppendieck W, Holobar A, Gandevia S,
Liebetanz D and Farina D 2022 Blind identification of the
spinal cord output in humans with high-density electrode
arrays implanted in muscles Sci. Adv. 8 eabo5040

[46] Lubel E, Sgambato B G, Rohlén R, Ibáñez J,
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