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Abstract
Vertical Displacement Oscillatory Modes (VDOM), with frequency in the Alfvén range, are
natural modes of oscillation of magnetically confined laboratory plasmas with elongated
cross-section. These axisymmetric modes arise from the interaction between the plasma current,
which is in equilibrium with currents flowing in external coils, and perturbed currents induced
on a nearby conducting wall. The restoring force exerted by these perturbed currents on the
vertical motion of the plasma column leads to its oscillatory behavior. An analytic model for
VDOM was proposed by (Barberis et al 2022 J. Plasma Phys. 88 905880511) based on an
idealized ‘straight tokamak’ equilibrium with uniform equilibrium current density. This article
introduces the first numerical simulations of VDOM in a realistic JET tokamak configuration,
using the extended-MHD code NIMROD and drawing comparisons with Global Alfvén
Eigenmodes (GAE). The results show qualitative agreement with analytic predictions regarding
mode frequency and radial structure, supporting the identification of VDOM as a fundamental
oscillation mode in tokamak plasmas. VDOM and GAE are modeled in a representative JET
discharge, where axisymmetric perturbations with toroidal mode number n = 0 driven unstable
by fast ions were observed. The two modes are examined separately using a forced oscillator
within the NIMROD code, which enables a comparison of their characteristics and helps
identify the experimentally observed mode possibly as a GAE.

a www.nimrodteam.org.
b See Maggi et al 2024 (https://doi.org/10.1088/1741-4326/ad3e16) for JET Contributors.
∗

Authors to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

1741-4326/24/126064+14$33.00 Printed in the UK 1 © 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA

https://doi.org/10.1088/1741-4326/ad7ed2
https://orcid.org/0000-0002-1030-7642
https://orcid.org/0000-0002-3625-6417
https://orcid.org/0000-0002-7882-6369
https://orcid.org/0000-0002-8192-8411
https://orcid.org/0000-0002-7302-085X
https://orcid.org/0000-0001-7006-4876
https://orcid.org/0000-0001-7686-0742
mailto:tommaso.barberis@polito.it
mailto:francesco.porcelli@polito.it
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/ad7ed2&domain=pdf&date_stamp=2024-11-4
www.nimrodteam.org
https://doi.org/10.1088/1741-4326/ad3e16
https://creativecommons.org/licenses/by/4.0/


Nucl. Fusion 64 (2024) 126064 T. Barberis et al

Keywords: MHD waves, numerical simulation of MHD modes,
axisymmetric modes in toroidally confined plasmas, tokamak vertical stability

(Some figures may appear in colour only in the online journal)

1. Introduction

Tokamak plasmas with non-circular cross sections are known
to be prone to an instability involving axisymmetric modes
with toroidal mode number n= 0, which, if uncontrolled, can
result in Vertical Displacement Events (VDE) and plasma cur-
rent disruptions [1, 2]. Passive feedback stabilization can be
achieved by using a nearby wall and plasma-facing compon-
ents, as demonstrated in the original work by Laval et al [3].
The appropriate dispersion relation for the realistic case of a
resistive wall surrounding the plasma is cubic [4, 5]. Two roots
correspond to stable, weakly damped oscillations, with a fre-
quency near the poloidal Alfvén frequency and a damping rate
of the order of the inverse of the resistive wall time. The third
one requires active feedback stabilization to be completely
suppressed [6–9] as it would otherwise grow on the resistive
wall time [4, 10–16] (or even faster, with a time proportional
to a fractional power of wall resistivity when the condition of
ideal MHD marginal stability is satisfied [17]).

Recent analytic work focused on the oscillatory solutions of
the cubic dispersion relation, whichwere referred to asVertical
Displacement Oscillatory Modes (VDOM) [5]. This work was
motivated by the observation of high frequency n= 0 modes
in JET [18, 19], with frequency in the Alfvén range. In [18],
it was proposed that the observed n= 0 modes were Global
Alfvén Eigenmodes (GAE) [20] driven unstable by their res-
onant interaction with energetic ions, having energies in the
MeV range, produced by auxiliary heating (combined NBI
and ICRH) or by fusion reactions. While GAE remain a dis-
tinct possibility for the interpretation of the mentioned JET
observations, it was pointed out in [5, 21] that an alternative
possibility exists, as VDOM also oscillate in the Alfvén fre-
quency range and therefore may also interact with fast ion
orbits. GAE and VDOM are two different types of normal
modes of a magnetically confined plasma, the former being
internal modes, which can exist for different values of the tor-
oidal mode number n, with frequency close to the minimum
of the Alfvén continuum spectrum, while the latter are n= 0
external modes interacting with currents induced on the wall
of the confining vacuum chamber by the vertical motion of
the plasma. Other differences between the two modes involve
their different spatial structure and their different sensitivity to
details of safety factor q profile, plasma ellipticity, and plasma-
wall distance. Given the apparent ease with which these modes
can be destabilized by fusion alpha particles, both VDOM and
GAE are likely to play an important role in future tokamak
experiments where burning fusion plasmas will be produced.

This article aims to contribute to a more realistic
assessment of the nature of VDOM, whose theoretical

understanding is at present less developed than that of GAE.
Indeed, VDOM were studied in [5, 21] using analytic theory
within the framework of very simplified plasma models. In
particular, small perturbations of a straight tokamak equilib-
rium were considered; both the equilibrium current density
and plasma density profiles were assumed to be uniform in
space up to a convenient elliptical flux surface, representing
the plasma boundary, and going abruptly to zero beyond that
boundary. Furthermore, the assumption of a uniform current
density, or equivalently of a constant q profile, excluded the
possibility of describing VDOM together with GAE in the
simplified analytic model, as the Alfvén continuum spectrum
can be expected to play no role for a constant q. The ana-
lytic work of [5, 21] also neglected possible effects related
to plasma triangularity (in addition to ellipticity), as well as
up-down asymmetry, as in the case of a single-null divertor
configuration (up-down symmetry requires double-null), and
the possible role of a halo plasma in the open field line region
beyond the magnetic separatrix.

The analytic results reported in [5] were verified numeric-
ally in [22] using the extended-MHD NIMROD code [23],
adopting the same idealized equilibrium configuration
assumed in analytic work. This successful comparison
between analytic theory and numerical results provided a use-
ful benchmark and a solid starting point for the more realistic
toroidal simulations presented in this article.

We consider here a representative JET discharge, shot
#102371, where n= 0 modes were observed as shown by
figure 1. This discharge accelerated neutral beam injected ions
with third harmonic ion cyclotron resonance heating up to
MeV energies. The powerwaveforms of theNBI and ICRH are
shown in figure 2, along with other important plasma paramet-
ers. The plasma was heated with 6 MW of neutral beam injec-
tion, which began at 8 s. From 9 s, the ICRH power ramped up
to 5 MW. The acceleration of the beam ions up to MeV ener-
gies increased the neutron yield by an order of magnitude. The
plasma density increased from 8 s as theD beam injection fuels
the plasma, as the line integrated electron density timetrace
demonstrates. The discharge used a magnetic field of 2.3 T at
the magnetic axis and a plasma current of 2 MA. The meas-
ured temperature shown in figure 2 indicates the presence of
sawtooth activity.

As illustrated in figure 1, the n = 0 activity is associated
with sawtooth crashes, and the modes seem to be driven dur-
ing the first part of the sawtooth ramp following the crash.
This behavior is linked to a significant feature of n = 0 per-
turbations, affecting both Vertical Displacement Oscillatory
Modes (VDOM) and GAE. To destabilize an n = 0 per-
turbation through wave-particle interaction, the distribution
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Figure 1. Phase magnetic spectrogram showing toroidal numbers of
the modes excited in JET pulse #102371.

Figure 2. From top to bottom: temporal evolution of DD neutron
rate; NBI and ICRH power waveforms; electron temperature
measured by multi-channel ECE at different radii; line-integrated
electron density measured with interferometer with the vertical
line-of-sight through the magnetic axis in JET pulse #102371.

function of the energetic particles must exhibit a positive
energy gradient, as described in [19, 21], or a significant
anisotropy in velocity space. As suggested in [19] and further
elaborated in [24], sawtooth crashes occurring on timescales
shorter than, or comparable with the slowing down time of fast
ions may result in a distribution function with ∂F/∂E> 0.
This mechanism is analogous to the one discussed for NBI
blips in DIII-D [25].

We point out that our goal here is to present for the first
time the characteristic signatures of VDOM as they appear in
a numerical simulation of a realistic tokamak geometry, rather
than to provide detailed modelling of a set of JET discharges,
which will be the subject of a future publication. Our simula-
tion indicates that two n= 0 oscillatory modes with Alfvénic
frequencies can be found. Among these modes, identified as
a VDOM and a GAE, the latter has a frequency comparable
to the experimentally observed mode. Therefore we are led to

identify the n= 0 oscillation of figure 1 as a GAE. Also, no
attempt is made in this article to include in the numerical sim-
ulations the fast ion drive for either VDOM or GAE. Work is
in progress to extend the kinetic-MHDmodule in NIMROD to
include the type of fast ion distribution functions that may be
responsible for the destabilization of n= 0 modes as observed
in JET experiments. Due to the fact that our modeling does
not include the main physical drive, the simulated modes will
be damped. In order to study their properties in our simulation
framework, we minimize the possible damping mechanisms
associated with dissipative effects, focusing only on the mode
structure and frequency dependence rather than destabilization
thresholds.

This article is organized as follows. In section 2, VDOM
analytic results are briefly presented, and a comparison
between VDOM and GAE is discussed. In section 3, the main
characteristics of the NIMROD code and the general setup
for NIMROD linear simulations are discussed. Following a
carefully selected initial perturbation, oscillatory plasma beha-
viour is observed. Fast Fourier Transform techniques reveal
the presence of two distinct n= 0 normal modes in the Alfvén
frequency range. Based on these results, section 4 describes
the resonant plasma response to driven oscillator perturba-
tion that mimics an antenna. By sweeping the frequency of
the oscillator, we excite and study separately the two modes
without relying on special initial conditions. The two distinct
modes found in section 3 are interpreted as VDOM and GAE.
Conclusions are reported in section 5.

2. Summary of VDOM analytic results and
comparison with GAE

In this section we briefly summarize for the sake of com-
pleteness the main results of the analytic theory of VDOM,
as discussed in [5]. A comparison between VDOM and n= 0
GAE [18, 20] is presented at the end of the section.

Analytic work was carried out within the framework of the
linearized, reduced ideal MHDmodel [26], in the low-beta (=
plasma pressure/magnetic pressure) approximation, neglect-
ing toroidal effects and assuming a resistive wall. An ideal-
ized, up-down symmetric straight tokamak equilibrium for a
plasma with elliptical cross-section, uniform plasma and cur-
rent densities dropping abruptly to zero (as step functions) at
the elliptical plasma boundary, was adopted. The cross-section
of the confining wall was also assumed to be an ellipse con-
focal to the elliptical plasma boundary. In the VDOM regime,
where the wall is sufficiently close to the plasma boundary
to provide passive feedback stabilization of vertical displace-
ments on the ideal MHD time scale, magnetic X-points asso-
ciated with the elongated plasma cross-section lie outside the
confining vacuum chamber, and so X-point effects on n= 0
modes [27, 28] were disregarded in the analytic treatment of
VDOM.

Under these circumstances, adopting elliptical coordinates,
normal mode analysis reveals that the most interesting VDOM
has a mode structure corresponding to mode numbers n= 0,
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m= 1, where m is the elliptical angle mode number. The
VDOM parity and radial structure correspond to a rigid ver-
tical shift of the plasma column, whereby ‘rigid’ refers to the
property that the vertical flow radial profile has a nearly con-
stant amplitude from the magnetic axis to the plasma edge.
A return flow is concentrated in the region where the plasma
density drops to zero, giving rise to a vorticity layer at the
elliptical plasma boundary. We may expect that the mode
structure will be less rigid for more realistic plasma and cur-
rent density profiles, and that the return flow will involve a
finite region close to the plasma edge.

With these simplifying assumptions, and assuming perturb-
ations depending on time as exp(−iωt), with ω = iγ a com-
plex eigenfrequency, a cubic dispersion relation for VDOM
was derived in [5]:

γ3 +
γ2

(1− ê0D)τηw
+ γγ2∞

D− 1
1− ê0D

− γ2∞
(1− ê0D)τηw

= 0,

(1)
where τηw is the resistive wall time,

γ∞ =
2κ

κ2 + 1

(
κ− 1
κ

)1/2

τ−1
A , (2)

is the ideal MHD growth rate of n= 0 vertical displace-
ments in the no-wall limit, the relevant Alfvén time is defined
as τA = (4πϱm)1/2/B ′

p, with B ′
p the on-axis radial derivat-

ive of the poloidal magnetic field, κ= b/a is the elongation
of the elliptical plasma boundary having a and b as minor
andmajor semi-axes, respectively, ê0 = e0κ/(κ+ 1), and e0 =
(κ2 − 1)/(κ2 + 1) is the ellipticity of the plasma boundary.
The geometric wall parameter, D, is defined as

D

(
κ,

b
bw

)
=

κ2 + 1

(κ− 1)2

1−

[
1− κ2 − 1

κ2

(
b
bw

)2
] 1

2

 .

(3)
This parameter depends on the elongation, κ, and on the
plasma-wall distance, represented by the parameter b/bw,
where bw is the major semi-axis of the elliptical wall.
Confocality between the plasma boundary and thewall implies
that b2w − a2w = b2 − a2. In the no-wall limit, b/bw → 0,D van-
ishes. When the wall touches the plasma boundary, b/bw = 1
andD reaches its maximum value, which is always larger than
unity. D= 1 when the wall is at the critical distance from the
plasma, corresponding to the condition of idealMHDmarginal
stability for vertical displacements in the presence of pass-
ive feedback stabilization provided by a perfectly conducting
wall. For the specific geometry assumed in the analytic treat-
ment, it was found in [3, 17] that the ideal marginal stability
condition, D= 1, corresponds to the wall intercepting the X-
points of this idealized, up-down symmetric double-null con-
figuration. When D> 1, the magnetic X-points lie outside of
the vacuum chamber and the ideal MHD vertical mode is sup-
pressed by passive wall stabilization.

If the wall is perfectly conducting, τηw →∞, the dispersion
relation reduces to a quadratic, with solutions:

γ2 =
1−D
1− ê0D

γ2∞. (4)

The VDOM regime corresponds to values of D> 1, such that
γ2 is negative and

ω =±ω0 =±
[
D− 1
1− ê0D

]1/2
γ∞, (5)

is a real quantity; ω0 corresponds to the VDOM oscillation
frequency. Inspection of equations (2), (3) and (5) reveals that
the VDOM frequency depends mainly on the Alfvén time,
scaling with (B ′

p/ϱm)
1/2, the elongation κ, and the plasma-

wall distance b/bw. An important consideration regarding the
analytic dispersion relation is related to the parameter D. The
analytic expression in equation (3) is only applicable for con-
focal elliptical plasma boundary and wall. Because the shape
and relative distance of the wall greatly impact this geomet-
rical parameter, our simplified model cannot provide a reliable
pre-estimate of the value of D corresponding to the realistic
JET wall shape. An important consequence is that, based on
the simplified analytic model, ideal vertical stability (D> 1)
requires that the magnetic X-points lie outside the toroidal
chamber. In contrast, the JET configuration explored in the
subsequent sections features a single null, with one of the X-
points located inside the toroidal chamber. Nevertheless, the
stabilization of the ideal vertical instability, and hence the
existence of VDOM, is ensured on JET, even when one X-
point is inside the toroidal chamber, because the JETwall is on
average closer to the plasma boundary than the analytic estim-
ate based on a confocal wall.

The VDOM characteristic properties presented above have
been obtained using a simplified straight tokamak equilib-
rium. The purpose of the present article is to verify whether
these properties remain qualitatively true when a more real-
istic tokamak configuration is considered. Assuming that this
will be the case, a comparison between VDOM and GAE can
be presented. GAE are mainly internal modes, while VDOM
are external modes. The GAE radial structure is such that
the perturbed poloidal flow peaks near the minimum of the
n= 0 continuum spectrum, while the VDOM radial structure
is largely insensitive to the q profile. Both modes are global,
but with a different parity with respect to the poloidal angle.
The GAE perturbed flow has an even parity, corresponding
to a side-to-side motion of the plasma core along the equat-
orial plane of the toroidal configuration. TheVDOMperturbed
flow has an odd parity, corresponding to a nearly rigid-shift,
up-down vertical motion of the plasma core. Both GAE and
VDOM frequencies scale as the inverse of the Alfvén time,
i.e. ω ∝ (B ′

p/ϱm)
1/2. The GAE frequency is close to the min-

imum of the n= 0 continuum spectrum, which depends on the
q profile, and only weakly depends on plasma-wall distance.
By contrast, the VDOM frequency depends on plasma-wall
distance, while it is largely insensitive to details of the q pro-
file. This comparison between GAE and VDOM is summar-
ized in table 1.
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Table 1. Comparison between VDOM and GAE.

VDOM GAE

• External mode.
• Global, odd parity with respect to poloidal angle.
• Nearly rigid shift, up-down vertical motion, radial structure weakly dependent

on q profile.

• Alfvénic frequency dependent on plasma elongation and plasma-wall distance,
weakly dependent on q profile details.

• Internal mode.
• Global, even parity with respect to poloidal angle.
• Poloidal flow peaking near minimum of n= 0

Alfvén continuum, radial structure depends on q
profile.

• Alfvénic frequency close to the minimum of the
n= 0 Alfvén continuum.

If finite wall resistivity is retained, then, in the relevant limit
ω0τηw >> 1, VDOM oscillations are weakly damped, with a
damping rate of the order of the inverse resistive wall time
(except at ideal MHD marginal stability, D= 1, where the
damping rate is stronger, scalingwith a fractional power of res-
istivity [17]). A third root with zero oscillation frequency can
be obtained from equation (1), which corresponds to a purely
growing solution reaching a finite amplitude on the resistive
wall time scale. As mentioned in the Introduction, this zero-
frequency root could develop into a VDE and requires active
feedback stabilization to be suppressed. A discussion of this
zero-frequency solution is outside the scope of this article.

3. Linear simulations with NIMROD [23]

The simulations described in this article advance the linear-
ized version of the standard non-linear single-fluid resistive
MHD equations (6)–(9) in toroidal geometry using the 3D ini-
tial value code NIMROD:

∂n
∂t

+∇· (nv) =∇·D∇n (6)

mn

(
∂

∂t
+ v ·∇

)
v=

1
µ0

(∇×B)×B

−∇p+∇· νρ∇v (7)

∂

∂t
p+ v ·∇p=−Γp∇· v (8)

∂B
∂t

=−∇× [ηe (∇×B)− v×B]

+κdivb∇∇·B. (9)

In these equations, n and m are respectively particle dens-
ity and ion mass. The total pressure of electrons and ions
is p, v is the center-of-mass plasma velocity, Γ = 5/3 is
the adiabatic coefficient used in the adiabatic heat flux clos-
ure and B is the magnetic field. Explicit diffusive terms are
included in the model: the density diffusivity D, kinetic vis-
cosity ν, electrical diffusivity coefficient ηe (= resistivity
over the vacuum permeability µ0), and κdivb is a diffusivity
coefficient used to control the ∇·B error in the induction
equation. The code employs high-order quadrilateral finite ele-
ments for modelling the poloidal plane and pseudo-spectral

techniques for the periodic axisymmetric direction. NIMROD
can efficiently advance both linear and nonlinear extended-
MHD equations, with implicit or semi-implicit time-advance
methods to address the temporal stiffness associated with mul-
tiple time scales. For this study, we utilized only the linearized
model implementation to evolve the n = 0 toroidal harmonic
perturbation.

The results presented in the following sub-sections report
linear NIMROD simulations using the EFIT [29, 30] recon-
structed equilibrium of JET shot #102371 at time t= 11.00
s, which was constrained using polarimetry measurements.
The equilibrium pressure and safety factor provided by EFIT
are shown in figures 3(a) and (b), respectively. The profile
are computed at a time during a sawtooth ramp, when the n
= 0 activity is present. It should be noted that the q profile
falls below unity. While the VDOM structure is expected to
be largely insensitive to the q profile, the GAE dependence
is restricted towards the edge close to the minimum of the
Alfvén continuum. Thus, for both modes we do not expect
strong effects due to the q profiles changes in the core due to
sawtooth activity, which are not considered in the following.

Figure 3(c) shows our best fit of the equilibrium electron
density profile. The on-axis value of the electron density is
n0 = 5.2× 1019 m−3. The experimentally measured value of
the effective charge, Zeff = 1.75, was also used to evaluate the
plasma mass density. The plasma in the open field line region
is represented using a ‘halo’ plasma model, with low density
and high resistivity. In particular, the plasma density profile is
uniform in the open field line region with a value of nhalo =
5× 1017m−3.

Although some level of dissipation is required to ensure
the proper convergence of the numerical scheme, we do not
attempt to simulate realistic tokamak dissipative parameters.
Both resistivity and viscosity are assumed to be constant and
areminimized inside the ‘hot’ region tomimic an ideal plasma.
The primary reason for this procedure is the absence of the
energetic particle drive, as discussed in the Introduction, which
is necessary for the destabilization of both GAE and VDOM.
The dissipative terms mainly influence the damping rate of the
modes, but have less impact on the mode structure and fre-
quency, which are the focus of this work.

In the following simulations, the grid resolution is (mx,my)
= (60,90) with polynomial degree = 3 and the timestep∆t=
10−7 s. The grid is flux aligned with 60 radial points and 90
points along the poloidal direction. More details on the finite
element grid construction can be found in [23]. We used grid
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Figure 3. EFIT equilibrium pressure profile (a), and safety factor
(b); best fit of the experimental electron density profile (c), as
functions of normalized flux. The separatrix is at ψ= 1.

point packing for improved numerical convergence at the X-
point region and close to the plasma boundary, at which the
resistivity value jumps from the nearly ideal value in the ‘hot’
plasma to the high resistivity of the halo region. The relat-
ive low value of the timestep is required in order to properly
resolve the Alfvénic oscillatory modes.

The simulation boundary is assumed to be an ideal conduct-
ing wall. In NIMROD, the ideal conducting wall is implemen-
ted with vanishing normal components of the perturbed mag-
netic field at the simulation boundary. In some of our simula-
tions, we have used the actual shape of the JET wall. However,

Figure 4. Oscillatory behaviour of the magnetic energy in response
to a ‘vertical push’, in the time interval between t= 0.3 ms and
t= 0.6 ms.

most cases use a simplified wall where the wall is located at
a constant distance, δW, from the plasma separatrix. The two
types of wall shapes used yield similar simulation results (see
section 3.1. below).

The simulations presented in this section describe the
plasma response to an initial perturbation in velocity corres-
ponding to a rigid vertical shift of the plasma, dubbed ‘vertical
push’ in the following. The oscillatory behaviour of all relev-
ant perturbed fields follows the initial vertical push. Figure 4
shows the behaviour of the magnetic energy as a function of
time. Weak damping of the oscillatory behaviour is observed.
The careful choice of initial perturbation is necessary, because
VDOM are stable modes, and therefore different initial con-
ditions lead to a mix of different oscillatory modes. The res-
ulting interference would cause a rapid decay of all modes,
including the VDOM. This problem is overcome in the next
section, where a different method to drive the perturbation is
examined.

Figure 5 shows contour plots of tangential and normal com-
ponents, with respect to the equilibrium flux surfaces, of the
perturbed magnetic field. Figure 6 shows the contour plots of
perturbed pressure. Both plots are taken at time t= 0.5 ms in
the simulation, corresponding to a minimum of the magnetic
energy oscillation (the last time shown in figure 4). An m= 1
mode structure is evident in the perturbed fields; the pres-
sure perturbation shows the up-down feature characteristic of
VDOM.

Fast Fourier Transform (FFT) has been employed to ana-
lyze the temporal behaviour of the plasma response. Thewhole
linear simulation time of 1 ms has been considered to compute
the discrete Fourier Transform (DFT) with the efficient FFT
algorithm [31]. The FFT signal of the magnetic energy time
trace is shown in figure 7. A dominant peak in the FFT signal
can be identified at frequency flow = 184 kHz, while a second-
ary peak indicates the presence of a second subdominant mode
at frequency fhigh = 311 kHz. This indicates the presence of
two Alfvén-frequency normal modes with n= 0 that are both
excited in response to the initial vertical push. The simultan-
eous presence of the two modes gives rise to interference. The
space and time dependence of the plasma response cannot be
separated in this case. As the two modes are damped in time
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Figure 5. Magnetic field perturbation in response to a ‘vertical
push’. (a) Tangential, and (b) normal B-components with respect to
the equilibrium flux surfaces. A main m= 1 structure, expected for
the VDOM, can be identified.

at different rates, the contour plots of figures 5 and 6 change
in time, and the coherent mode structure is lost.

3.1. Wall position scan

In the following, scans of the wall position and of the density
profiles reveal similarities and different behaviours of the two
modes.

As discussed in section 2, the VDOM frequency depends
on the distance between the plasma and the wall, while the
GAE frequency does not. A scan of thewall position highlights
the different behaviour of the two modes. The frequency as a
function of the distance between the separatrix and the wall,
δW, is plotted in figure 8. As the wall is pushed further away
from the plasma boundary to δW ≈ 0.23 m, the frequency of
the higher-frequency mode is almost unaffected, while the fre-
quency of the lower-frequency mode changes by more than
10%, its oscillation frequency varying from 189 kHz to 170
kHz. The actual shape of the JET wall in the simulation yields

Figure 6. Pressure perturbation, p̃, in response to a ‘vertical push’,
showing the up-down structure characteristic of the VDOM.
Overlayed is displayed the grid showing the radial grid point
packing at the plasma boundary and poloidal angle grid point
packing at the X-point.

Figure 7. FFT signal (absolute value) of the oscillating magnetic
energy in simulation (‘vertical push’). Two peaks can be identified:
a dominant one at 184 kHz, and a secondary one at 311 kHz.

equivalent results to the simplified wall at a plasma-wall dis-
tance δW ≈ 0.11 m, as indicated in figure 8(a) by the green
line, representing the actual wall results.

The wall scan suggests that the higher-frequency mode is a
GAE, while the lower-frequency mode is a VDOM. However,
further analysis is needed before this conclusion can be con-
firmed. In the scenario where the wall position matches the
plasma boundary (δW = 0), the theoretical model outlined in
section 2 predicts an infinite frequency for the VDOM, with
the displacement reducing to zero due to the absence of a
vacuum region allowing for rigid plasma oscillations. On the
other hand, our simulation reveals a somewhat different, albeit
not completely unexpected behavior. As shown in the follow-
ing sections, the realistic geometry leads to a mode structure
that is rigid-like only in a more core-localized area. When the
wall closes in on the plasma boundary, causing the vacuum
region to shrink, the compressed plasma against the ideal wall
induces a return flow not only in the halo plasma but also

7
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Figure 8. Frequency of high and low frequency modes as function
δW. The dashed green line in (a) corresponds to the actual JET wall
distance and shape. (b) Plots the two frequencies normalized to their
maximum values, indicating percentage variations.

within the hot plasma region. When the plasma boundary and
wall coincide, the mode retains some VDOM characteristics.
However, this return flow becomes strongly localized in the
hot plasma region, leading to an edge perturbation with an
amplitude comparable with the main rigid-like structure in the
core.

3.2. Density profile scan

The frequency of Alfvén modes scales as the inverse of the
square root of the plasma density. Here, we consider the
effect of changing the density profile in NIMROD simula-
tions, effectively changing the volume-averaged plasma dens-
ity. Figure 9 illustrates the various density profiles considered
in the density scan. Throughout all profiles, the on-axis and
halo region density values are kept constant at n0 = 5.2×
1019 and nhalo = 5.0× 1017. The profiles follow n(ψ) = (n0 −
nhalo)(1−ψp1)p2 + nhalo. By adjusting the parameter p1 while
keeping p2 = 0.96 constant, we vary the volume-averaged
density.

Figure 10 shows that the frequency of the two n= 0 modes
follows the same decreasing trend with increasing density.
As represented in figure 10(b), the normalized frequency is

Figure 9. Density profiles as functions of normalized flux. Each
profile is associated to its volume averaged value, n, normalized to
the one of the experimental best fit (solid black curve, same as in
figure 3(c)).

Figure 10. Frequency of high and low frequency modes as a
function of the normalized volume averaged density, n: (a) plots the
two frequencies in kHz; (b) plots the two frequencies normalized to
their values at n= 1; the 1/

√
n dependence is shown by the dashed

green line.

proportional to 1/
√
n, as expected for Alfvénic oscillations.

It should be noted that the profile will likely have an effect
in determining the extent of the rigid-like structure of the
VDOM. However, further exploration of this is beyond the
scope of the present manuscript.
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4. Driven oscillator perturbation

To study the two oscillatory modes found in section 3
separately, an alternate perturbation is implemented in the
NIMROD code. Instead of an initial ‘vertical push’, the tem-
perature evolution equation has been modified to include a
time-dependent oscillatory term:

3
2

(
∂

∂t
+ v ·∇

)
T=−T∇· v+Asin(2π f0t)

× exp

[
(r− r0)

2
+(z− z0)

2

∆2
0

]
(10)

where f 0 is the driven oscillation frequency for the temperat-
ure, and A is the amplitude of the driving term. A Gaussian
function with width∆0 localizes the oscillator perturbation in
space around r0,z0 in the poloidal plane. This forced oscilla-
tion for the temperature mimics the injection of a wave from an
external antenna. Scanning the oscillator frequency, it is then
possible to look for resonances in the plasma response asso-
ciated with plasma normal modes. All other fields have zero
initial perturbation.

These simulations use r0 = 2.8 m, z0 = 1.71 m and ∆0 =
0.5 m. The oscillator is localized in the open field line region.
This ensures that the driven mode structure remains independ-
ent of the oscillator’s radial position and avoids any spuri-
ous contributions from the oscillator itself. The amplitude A
determines the amplitude of the saturated normal modes.

4.1. Low frequency mode

With the same simulation parameter of section 3, we perform
a scan in the oscillator frequency, f 0, in the neighborhood of
the low frequency signal identified by FFT. Figure 11 shows
the amplitude of the saturated oscillations for the normal com-
ponent of the perturbed magnetic field, normalized to the off-
resonance minimum amplitude value (blue dot at f 0 = 190
kHz). For values of f 0 close to 183 kHz, the saturated value
increases by more than an order of magnitude. The mode fre-
quency and damping can be evaluated assuming the following
resonance condition for a generic quantity Y:

Y=
C

(ω0 −ω)− iγ
(11)

where C is a constant, ω0 = 2π f0, with ω0 the frequency of the
forcing term, ω is the frequency of the normal mode, and γ is
its damping rate. The amplitude can be fitted by a Lorentzian
function:

|Y|= C√
(ω0 −ω)

2
+ γ2

(12)

where ω and γ are related to the peak and the width of the
Lorentzian.

Figure 11 shows the resonance peak is found for mode fre-
quency f = 183.5 kHz; the damping rate is γ =−1240s−1.

Figure 11. Normalized amplitude of the normal component of the
perturbed magnetic field as a function of oscillator frequency f 0 in
the neighbourhood of flow. Blue dots, corresponding to numerical
results, are fitted by the red curve assuming the resonant
condition (12), with ω0 = 1153× 103, γ =−1.240× 103 and
C= 58.72.

Figure 12. (a) Magnetic energy time trace for forced oscillator
frequency at resonance, f0 = 183.5 kHz; (b) same as in the previous
panel, zoomed in the time interval between t= 0.4 ms and t= 0.5
ms. In (a) only the envelope of the fast oscillatory behaviour is
evident, due to the time range of the plot. The envelope of the
oscillatory behaviour of the magnetic energy is shown for
off-resonant frequencies of the forced oscillator in (c) for f 0 = 180
kHz and (d) for f 0 = 187 kHz.

The frequency corresponds to the main peak of the FFT signal
in figure 7.

Figure 12 shows the time traces of the magnetic energy
for resonant and off-resonant oscillator frequencies, respect-
ively. When the oscillator resonates with the mode, a growing
oscillatory pattern is obtained. The envelope of the oscillation
initially grows and then saturates in time at t> 4.0 ms. For
the off-resonant cases, we observe a clear beating between the
oscillator frequency f 0 and the mode frequency f, with beating
frequency fb = |f − f0|. For t> 4.0 ms, the beating dies away,
leaving only a constant amplitude oscillation at the forcing fre-
quency f 0.

The level of dissipation in the system affects the damping
of the mode, and consequently, it determines the width and
the amplitude of the resonant peak in the plasma response, as
shown in figure 13. An increase of the viscosity parameter by
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Figure 13. Same as in figure 11, but for a viscosity value 20 times
larger.

20 times leads to a damping rate γ =−11.8× 103 s−1. For this
case, the fitting parameters for equation (12) are: ω0 = 1154×
103, γ =−11.79× 103 and C= 48.20, showing a γ increase
of approximately 10 times.

Selecting carefully the oscillator perturbation frequency f 0
it is then possible to study separately the structure of the two
modes found in section 3. This requires the forced oscillator
frequency to be resonant with the mode, i.e. close to the peak
described by the fitting Lorentzian of equation (12), thus max-
imizing the plasma response. Under these conditions, choos-
ing f0 = 183.5 kHz for the low frequency mode, am= 1 mode
structure in the magnetic perturbation develops, and an up-
down symmetric perturbation in pressure is established, as
shown in figures 14 and 15, which are characteristic of the
VDOM described in section 2. The mode structure appears to
be more core localized with respect to the theoretical descrip-
tion, because both plasma density and current density pro-
files used in the simulations are peaked, while analytic theory
assumed flat profiles for the sake of simplicity.

Finally, the perturbed velocity vector plot of figure 16
shows a nearly rigid vertical plasma displacement in the region
where the mode is localized.

To analyze the structure of the low frequency mode in more
detail, figure 17 plots the perturbed momentum in the vertical
direction along horizontal and vertical slices; from the mag-
netic axis to the plasma edge. The normalized distances along
these slices are denoted by x and y in the figure. Along the hori-
zontal slice, the perturbedmomentum is the poloidal flowmul-
tiplied by the plasma density, nṼθ. The perturbed momentum
exhibits a nearly rigid shift structure in the core region, chan-
ging sign as the plasma edge is approached. In analytic the-
ory, as discussed in section 2, the return flow is a thin layer
localized at the plasma boundary, as a consequence of the
step-function profiles for plasma mass and current densities
and of the incompressibility of the perturbation ∇· v= 0. In
our simulations, the return flow exhibits a finite spatial extent
inside the plasma. This behavior is consistent with the con-
dition ∇· v= 0. The region in which the return flow propag-
ates is affected by the finite gradient of the density profile in
the plasma, deviating from the assumption of a uniform pro-
file of the theoretical model. A more in-depth analysis of this

Figure 14. Perturbed magnetic field components at t= 4.4 ms for
forced oscillator frequency at resonance, f0 = 183.5 kHz. (a)
Tangential, and (b) normal B-components with respect to the
equilibrium flux surfaces.

feature is planned for a future publication. Along the vertical
slice, figure 17(b), the vertical component of the perturbed
momentum is the radial flow multiplied by the plasma density,
n0Ṽr, which is nearly constant in the plasma core and decreases
monotonically to zero at the plasma edge.

The mode structure obtained for the low frequency mode
exhibits the important characteristics associated with the
VDOM, as highlighted in table 1. The non-uniform plasma and
current density profiles considered in the numerical simulation
have an important impact on the mode structure. However, a
global, nearly rigid shift structure is maintained in the plasma
core, while a return flow is localized around the plasma edge.
The lower mode frequency depends on the plasma-wall dis-
tance, as shown by figure 8, and scales inversely with the
square root of the plasma density, as shown by figure 10. These
results allow us to conclude that the low-frequency mode is
indeed a Vertical Displacement Oscillatory Mode. This is the
first time that the VDOM is identified in a simulation using
realistic tokamak geometry.

10
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Figure 15. Perturbed pressure at t= 4.4 ms for forced oscillator
frequency at resonance, f0 = 183.5 kHz. Overlayed is displayed the
grid showing the radial grid point packing at the plasma boundary
and poloidal angle grid point packing at the X-point.

Figure 16. Vector plot of ṽ at t= 4.4 ms for forced oscillator
frequency at resonance, f0 = 183.5 kHz.

4.2. High frequency mode

The same analysis is now repeated for the higher-frequency
mode, scanning the forced oscillator frequency in the neigh-
bourhood of fhigh. Figure 18 shows the amplitude of the satur-
ated oscillations for the normal component of the perturbed
magnetic field, normalized to the off-resonance minimum
amplitude value (blue dot at f 0 = 320 kHz). A resonance is
found at the frequency obtained by the FFT analysis of the
plasma response following a ‘vertical push’. The fit of the res-
onance condition equation (12) reveals a resonant frequency
f = 311.4 kHz and a mode damping rate γ =−1060s−1.

Figure 17. Vertical component of the perturbed momentum, plotted
in (a) along a horizontal slice, and in (b) along a vertical slice, for
different times during one oscillation.

Figure 18. Normalized amplitude of the normal component of the
perturbed magnetic field as a function of oscillator frequency f 0 in
the neighbourhood of fhigh. Blue dots, corresponding to numerical
results, are fitted by the red curve, assuming the resonant
condition (12).

The mode structure near resonance (f0 = 311.5 kHz) is
shown in figures 19 and 20. The higher frequency mode
presents an orthogonal mode parity with respect to the lower
frequency one. The vector plot of figure 21 shows a perturbed
flow, oscillating inward and outward along the equatorial mid-
plane, localized in the plasma core, together with a return pol-
oidal flow in the outer region of the plasma. In figure 22, 1D
plots of the horizontal component of the perturbed momentum
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Figure 19. Perturbed magnetic field components at t= 4.5 ms for
forced oscillator frequency at resonance, f0 = 311.5 kHz. (a)
Tangential, and (b) normal B-components with respect to the
equilibrium flux surfaces.

along horizontal and vertical slices are shown. Themode struc-
ture is global with a strong peak of the poloidal flow, Ṽθ, close
to the plasma edge. This peak is located close to the minimum
of the n= 0 Alfvén continuum, and the frequency value at the
minimumof the spectrum compares well with the one obtained
for the mode.

These features are characteristic of the n= 0 GAE, as
described in table 1, leading to the identification of the high-
frequency mode in our NIMROD simulation as a GAE.

5. Conclusions

We have presented the first numerical simulations of Vertical
Displacement Oscillatory Modes (VDOM) in realistic toka-
mak geometry. The numerically resolved characteristics of
VDOM are in very good qualitative agreement with those
found previously by analytic work based on an idealized
straight tokamak equilibrium. These simulations provide con-
clusive evidence that VDOM are natural modes of oscillations
of tokamak plasmas. These modes are damped by wall res-
istivity and by plasma collisional processes such as viscosity.

Figure 20. Perturbed pressure at t= 4.5 ms for forced oscillator
frequency at resonance, f0 = 311.5 kHz. Overlayed is displayed the
grid showing the radial grid point packing at the plasma boundary
and poloidal angle grid point packing at the X-point.

Figure 21. Vector plot of the perturbed velocity ṽ at t= 4.5 ms for
forced oscillator frequency at resonance, f0 = 311.5 kHz.

Therefore, they are not typically observed in tokamak exper-
iments under normal operation conditions, but may be driven
unstable by MeV fast ions, as suggested in [21].

As a reference scenario for our numerical simulations,
we have chosen the equilibrium profiles from JET discharge
#102371, where n= 0 modes driven unstable by energetic
ions were indeed observed. Our simulations indicate the pres-
ence of two distinct Alfvén modes as possible candidates
for the interpretation of JET observations: a lower-frequency
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Figure 22. Horizontal component of the perturbed momentum,
plotted in (a) along a horizontal slice, and in (b) along a vertical
slice, for different times during one oscillation.

n= 0 mode, with a frequency of about 180 kHz, that we have
identified as a VDOM, and a higher-frequency n= 0 mode,
with a frequency of about 310 kHz, that we have identified as
a GAE.

An expedient way to investigate dampedmodes in a numer-
ical simulation of a tokamak plasma, used here for the first time
in NIMROD simulations, has been to introduce forced oscil-
lations of the perturbed plasma temperature with a prescribed
value of the forcing frequency. When the oscillator frequency
matches that of a plasma normal mode, a resonance occurs,
which allows the normal mode to grow to a finite amplitude
and to be fully resolved numerically. In this way, we can study
the normal mode, without relying on carefully selected initial
conditions, which facilitates the identification of its distinctive
physical properties.

The n= 0 mode observed in JET discharge #102371 was
excited with a frequency 320 kHz. Thus, if the numerically
resolved mode frequency is taken as the only indicator for
comparisonwith experimental data, we are led to conclude that
the mode observed in JET shot#102371 is a GAE. However,
both GAE and VDOM could be excited in future tokamak
experiments, depending on specific plasma conditions. As
we have already remarked in the Introduction, our goal in
this article is to present, for the first time, the characteristic

signatures of VDOM as they appear in a numerical simula-
tion of a realistic tokamak configuration, rather than to provide
detailed modelling of particular JET discharges, which will be
the subject of a future publication.

Two distinct Alfvén modes were also observed in previous
numerical simulations of JET discharges using the MISHKA
code [18]; the frequencies of the twomodes differed by a factor
of about 1.5. The higher-frequency mode was interpreted as
a GAE, and the even parity flow found by MISHKA is con-
sistent with the NIMROD simulations presented in this art-
icle. The lower-frequency mode was interpreted as an odd-
parity GAE. We note that the MISHKA simulations described
in [18] lack the open field line region and conducting wall. If,
in our NIMROD simulations, we move the perfectly conduct-
ing wall to coincide with the plasma last-closed flux surface,
the VDOM changes somewhat its characteristics, acquiring a
space structure that resembles more closely that of the odd-
parity Alfvénmode found byMISHKA. Therefore, we suspect
that the odd-parity GAE found by MISHKA and the VDOM
found by NIMROD are the same mode. The possible unifica-
tion of these two interpretations will be considered in a future
paper.
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