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Quasi-Dual Formulation of Homogenized Integral
Equation for Metasurfaces

Margaux Bruliard and Giuseppe Vecchi
Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, ITALY

Abstract—The impedance boundary condition (IBC) is a well
known and convenient approximation of metasurfaces. When
used with the Integral Equation formulation (MoM) it leads to the
Electric Field Integral Equation-IBC (EFIE-IBC) format. While
very convenient, this formulation has conditioning issues when
the surface impedance has inductive values. In this communica-
tion, we present an approximate formulation that employs the
dual of the EFIE and the admittance; this formulation is shown
to improve the conditioning problem of the EFIE-IBC.

Index Terms—Metasurfaces, Integral Equations, Impedance
Boundary Conditions

I. INTRODUCTION

Metasurfaces are widely used in a variety of field-
manipulation devices because of their ability to generate
specific behavior [1]. Their sub-wavelength patterning implies
an intrinsically multiscale modeling problem to accurately
represent both the unit-cells (sub-wavelength details) and
the overall macro-scale structure. To simplify these models,
surface Impedance Boundary Conditions (IBC) are commonly
used at the macroscopic level. This is even more relevant in
design issues, as the IBC allows decoupling the design at the
macroscopic level (profile of the surface impedance) and at
the microscopic, unit-cell level.

The EFIE-IBC for impenetrable metasurfaces (a.k.a.
opaque, or one-sided) was shown to be severely ill-conditioned
in [2] for inductive values of the impedance; the problem was
solved there by employing penetrable impedance sheets (a.k.a.
transparent, or two-sided), which allowed to safely address
most metasurface antenna problems with a metasurface sheet
on top of a grounded slab (for which the transparent sheet is
capacitive to guide TM waves). However, the ill-conditioning
remains for inductive sheets, e.g., in meta-screens [3]. The
conditioning issue has been tackled by several authors. The
work in [4] employs a self-dual approach that effectively
solves the problem for impenetrable scatterers of finite thick-
ness; the method hinges on the magnetic field integral operator,
and thus its advantages are lost for thin planar structures.
The case of thin planar structures has been addressed in [5]
employing a spatial filtering approach.

Here, we address this problem via a more analytical ap-
proach, inspired by the work in [4]; recognizing the root of the
problem in the inductive nature of the problematic impedance
sheet, we formulate the problem in such a way as to use
the corresponding admittance, whose imaginary part has an
opposite sign with respect to the impedance.

In order to do so, we based our reasoning on the physical
topological properties of an inductive screen for unit cells
of non-resonant (electrically small) size; in this case, the

inductive response implies holes in a metal (PEC) screen.
We also consider an electrically large IBC plate; under the
approximation that a (large) finite plate may be (for on-surface
fields) be approximated as an infinite screen, the problem is
conveniently phrased in terms of the usual integral equation
for apertures in an infinite PEC screen, [6], [7, e.g.], usually
called HFIE (the H instead of M is used to avoid confusion
into the MFIE which is totally different). In the latter, the
unknown is a magnetic current, and involves the same EFIE
operator (H field radiated by magnetic currents); for an IBC,
it will dually involve the surface admittance.

II. FORMULATION

In order to address the core of the problem, we consider
here a single layer of transparent thin open planar structure
(denoted Σ) in free space; also, we restrict our analysis to
isotropic (scalar) metasurfaces. For a transparent textured sur-
face composed of infinitely thin, perfectly conducting metals,
the IBC approximation [2] is a local averaging resulting in the
usual relationship between the electric field and the magnetic
field jump,

n̂×Eavg(r) = n̂× (Ze
s · (n̂× (H+ −H−))) (r) r ∈ Σ

(1)
where Ze

s is called the surface impedance. Use of the standard
integral equation process to this boundary condition leads to a
modified Electric Field Integral Equation called EFIE-IBC for
the equivalent surface electric current J = n̂× (H+ −H−),

n̂× L(η0J)(r) + zes n̂× η0J(r) = n̂×Einc(r) r ∈ Σ

(2)
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where zes is the surface impedance normalized to the free
space impedance, Ze

s = zesη0. Only the Electric Field Integral
Operator (EFIO) L is involved, as the Magnetic Field Integral
Operator vanishes on planar surfaces.

From the Method of Moment solution method, we dis-
cretize our unknown J into a linear combination of Rao-
Wilton-Glisson (RWG) functions [8], and we use the classical
Galerkin test method to define the standard matrix problem[

LΛ + zesG
Λ
]
· [η0JΛ] = V E (5)

where, L is the tested EFIE operator, GΛ is the Gram matrix
associated to the RWG basis, and V E denotes the right-hand
vector of the linear system.



An observation of the evolution of EFIE-IBC matrix prob-
lem conditioning (in figure 1) illustrates the impact of Ze

s

adding into the system. As alluded in the Introduction, to
address this problem we consider the dual of our IBC plate,
under the approximation of being electrically large. It results
into an infinitely PEC screen with an aperture of the size of the
plate, represented by an equivalent magnetic current. For this,
using the standard HFIE procedure [6], [7] the homogenized
boundary condition in (1) becomes the following modified
HFIE [

LΛ + yms GΛ
]
· [Ma] = η0V

H (6)

where Y m
s = yms /η0 is the (magnetic) equivalent admittance

resulting from the condition (1). This equation will be called
HFIE-ABC in the following, where ABC stands for Admit-
tance Boundary Condition. Its duality to the EFIE-IBC is
apparent.

Fig. 1: Conditioning analysis of the EFIE-IBC and HFIE-ABC matrices
problem, for a certain range of pure reactive isotropic IBC values Zs = jXs

In the standard HFIE the equivalence theorem application
(“shorting” of holes) implies that the total scattered field
includes the reflection from the screen; the standard approx-
imation is the PO windowing of the incident field. Here we
improve that by adding the field reflected by a finite size PEC
plate.

III. APPLICATION EXAMPLE

To illustrate our model, we use as an example a square XY
IBC plate of length side 2λ0×2λ0, surrounded by vacuum and
illuminated by an incident plane wave The surface patterning
is represented by an isotropic inductive IBC with Ze

s = 33j;
this value corresponds to a realizable structure, an inductive
grid with circular holes with cell size of 1/6 wavelength.

The structure is meshed into 1152 triangles, that will
represent both the plate, for the standard EFIE-IBC, and the
aperture computation for (6). The results of our approach are
presented in figure 2 for both the E and H-planes.
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Fig. 2: Total scattered field for Far-Field comparison between standard EFIE-
IBC and the new HFIE-ABC formulation for normal incidence and TM
polarization; (a) E-plane, (b) H-plane.
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