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Highlights:
What are the main findings?

• Developed a combined task scheduling and path planning framework for enabling optimized
and safe drone delivery services in an urban environment.

• Utilized a constrained optimization-based framework to allocate both parcel pick-up and delivery
tasks and re-charge tasks to a fleet of UAVs in an urban context. The energy efficiency, tasks’ due
dates, UAVs’ capabilities, and risks of the UAVs’ flyable paths are taken into account in the com-
bined double-chromosome evolutionary-based task scheduling and path planning methodology.

What are the implications of the main findings?

• The proposed approach combining task allocation and path planning offers both a scalable
optimization solution to the NP-hard problem addressed in this work (i.e., the drone delivery
problem) and a flexible tool adaptable to other scenarios and task types.

• Addressing the allocation of re-charge tasks along with the allocation of delivery tasks in the same
framework represents a comprehensive resolution approach to the drone delivery problem; also,
ensuring service persistency and, thanks to the risk-aware UAV route planner integrated to the
evolutionary-based task scheduling algorithm, feasibility of deployment in smart city context.

Abstract: In an efficient aerial package delivery scenario carried out by multiple Unmanned Aerial
Vehicles (UAVs), a task allocation problem has to be formulated and solved in order to select the
most suitable assignment for each delivery task. This paper presents the development methodology
of an evolutionary-based optimization framework designed to tackle a specific formulation of a
Drone Delivery Problem (DDP) with charging hubs. The proposed evolutionary-based optimization
framework is based on a double-chromosome task encoding logic. The goal of the algorithm is to find
optimal (and feasible) UAV task assignments such that (i) the tasks’ due dates are met, (ii) an energy
consumption model is minimized, (iii) re-charge tasks are allocated to ensure service persistency,
(iv) risk-aware flyable paths are included in the paradigm. Hard and soft constraints are defined
such that the optimizer can also tackle very demanding instances of the DDP, such as tens of package
delivery tasks with random temporal deadlines. Simulation results show how the algorithm’s
development methodology influences the capability of the UAVs to be assigned to different tasks
with different temporal constraints. Monte Carlo simulations corroborate the results for two different
realistic scenarios in the city of Turin, Italy.

Keywords: drone delivery; genetic algorithm; aerial robotics; urban air mobility; task scheduling;
energy optimization; intelligent transportation system; double-chromosome; drone operations; smart
transportation; safe path planning; drone delivery problem; smart cities; unmanned aerial vehicles
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1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, have become
increasingly popular in recent years due to their versatility and relatively low cost [1]. The
versatility of drones makes them a valid resource for a variety of both military [2] and
civilian applications [3,4]. The wide spectrum of civilian applications of drones in industries
includes, but is not limited to, agriculture [5], surveillance, mapping, monitoring [6],
aerial and subterranean inspection [7,8], and last-mile delivery [9], to state a few. In
agriculture, drones can be used for crop management, such as monitoring of crop health
and identification of areas that need irrigation or fertilizer. UAVs can be used to monitor
crowds at events, provide aerial surveillance of large areas, and even aid in search and
rescue operations. In mapping, drones can provide high-resolution aerial imaging that can
be used to create accurate 3D models of terrains, buildings, and other structures.

As far as last-mile delivery is concerned, drones have the potential to revolutionize
the delivery paradigm [10]. With the rise of e-commerce and the increasing demand for
faster and more efficient delivery services, drones have emerged as a promising solution
for enabling comprehensive aerial delivery services, decongesting traffic aeras, reducing
pollution due to trucks, etc. UAVs offer several advantages over traditional delivery
methods, including faster delivery times, reduced costs, and the ability to reach remote or
difficult-to-access areas [11]. Currently, drones are being designed and used for a range of
delivery applications, including delivery of small packages, medical supplies, and food [12].
Companies such as Amazon, UPS, and Google are heavily investing in so-called “drone
technology”, and several programs have been launched in different parts of the world to
test the feasibility of drone delivery.

As far as the drone delivery applications in urban environment are concerned, UAVs
offer unique benefits to parcel transportation services in smart city contexts [13–15]. Those
benefits can be summarized as follows:

• Enhancement of efficiency, environmental sustainability, and cost of the delivery ser-
vices. This is due to the capability of UAVs to avoid obstacles on the ground, fly direct
paths, reduce delivery times (particularly useful for medical sample transportation),
reduce the need for trucks and couriers, and reduce road traffic in congested urban
areas (thus improving air quality).

• Enhancement of data collection services. This is due to the on-board sensors of UAVs,
which can be used to collect real-time data such as traffic conditions information and
population density distribution. Such collected data can then be gathered and sent to
a smart city’s information network, consequently contributing to the development of
an adaptive and safe smart city infrastructure.

• Enhancement of the level of automation of logistics services. UAVs can collaborate
with other robotic systems and transportation services, predicting delivery routes,
exchanging data with automated warehouses, etc.

• Enhancement of the coverage of transportation services. By exploiting “drone technol-
ogy”, it is easier to reach areas with limited road access or heavily densely populated
areas. Also, in case of emergency conditions, UAVs can be used to deliver goods of
first necessity such as food, medicine, etc.

On the other hand, there are also technical challenges such as short battery life, limited
payload capacity, and susceptivity to turbulent weather conditions that have not been
completely addressed yet to make drone delivery a reliable and scalable option. Also, as
drone technology advances along with its potential application in the context of smart
cities and, more generally, populated environments, concerns about safety [16], security,
privacy, and noise pollution arise, threatening the feasibility of deployment of the drone
technology itself. As such, international regulatory entities such as the FAA and ENAC
are focusing on developing regulatory frameworks that mitigate the risk of malfunctions
and mid-air collisions, which pose the main threat of damage to people and property [17].
Five main regulatory aspects are currently being targeted: (i) occupancy of the airspace by
UAVs, (ii) definition of operational limits, (iii) administrative procedures leading to UAVs’
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flight authorization, (iv) pilot licensing, and (v) authorization regarding data collection.
Furthermore, the social acceptance of drone operations in populated environments also
plays a crucial role in the implementation of large-scale UAV-based services (such as aerial
delivery with UAVs), and is currently being studied mainly by means of surveys and
questionnaires [18].

Despite the aforementioned challenges, the potential benefits of drone delivery in
urban air mobility contexts are significant. By reducing the need for delivery trucks and
other vehicles, drones have the potential to significantly reduce traffic congestion and
carbon emissions, making them a more sustainable and environmentally friendly option.
As the technology continues to advance and regulation become more supportive, drone
delivery is likely to become a more common sight in the skies in the years to come [19]. Thus,
optimizing UAV mission management, scheduling operations, and service optimization [20]
represent key challenges for the efficient deployment of scalable drone-based delivery
services in the upcoming smart cities of the next decades.

Scheduling operations in a fleet of UAVs can be primarily seen as a task assignment
problem. Being the task assignment problem for the Drone Delivery Problem (DDP), an
NP-hard combinatorial optimization problem, several optimization approaches have been
developed in the literature such as genetic algorithms [21], market-based algorithms [22],
particle swarm optimization algorithms, and neural network-based algorithms. Refer
to [23–26] for comprehensive reviews of task assignment algorithms and optimization
approaches for networks of UAVs. In general, each drone can be assigned to one or multiple
tasks, and the goal of the task assignment algorithm is to efficiently allocate tasks to the
different drones of the fleet, taking into account task requirements, UAV capabilities, etc.

The task scheduling problem for UAV networks is deeply interconnected to the path
planning problem [27]. Especially when considering drone applications in the complex
context of urban environments, task allocation and path planning mutually influence
each other. For instance, the best allocation may be influenced by the available drone
route, and the drone path may depend on the characteristics of the task being assigned.
Therefore, the integration of those two components (i.e., task allocation and route planning)
is fundamental for the development of safe, efficient, and feasible drone operations in
urban environments [28].

The problem addressed in this work is a pick-up and delivery DDP with charging
hubs and task due dates. In this paper, we propose a development methodology of a
double-chromosome evolutionary-based task planning and optimization framework for a
safe and energy efficient aerial package delivery system. The proposed framework aims
to optimize the distribution of tasks among a fleet of UAVs with the goal of minimizing
the overall energy consumption while ensuring the tasks’ delivery due dates are met.
We advance the state-of-the-art by proposing a genetic-based optimization framework
that generates both delivery and recharge task schedules for UAVs, with optimal task
execution velocity and minimum risk paths that connect the points in the operational
area. The risk-aware path planning method adopted in this work is modularly integrated
into the task scheduling approach, thereby reducing the computational complexity of the
algorithm. The main contributions of this work are (i) the formalization a multi-objective
aerial package delivery problem based on multi-rotor UAVs, (ii) the development of an
evolutionary-based approach to allocate heterogeneous tasks to a heterogeneous fleet of
UAVs, (iii) the integration into the genetic-based algorithm of both an energy-aware task
execution velocity optimizer and a risk-aware path planner for feasibility of deployment in
urban environments. The proposed framework is evaluated with two real world scenarios
in the city of Turin, Italy.

The aim of this work is to cover the literature gap in the field of combined task
scheduling and safe path planning by providing a scalable and modular solution to the
aforementioned interconnected problems. In particular, the proposed solution addresses
the challenges that arise when developing combined task allocation and path planning
approaches. Such challenges are related to (i) the high computational complexity of multi-
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objective optimization problems with many variables and constraints, (ii) the issues of
safety and regulatory compliance, and (iii) the adaptability of the method to dynamic
conditions such as variations in the map of the operational area and variations in the task
set to be allocated.

To the best extent of our knowledge, a comprehensive evolutionary-based task schedul-
ing algorithm combined with a risk-aware path planning approach for solving a complex
and multi-objective drone delivery problem like the one formulated in this work is absent
in the literature.

This paper is organized as follows. A literature review of state-of-the-art methods
addressing the drone delivery problem in terms of task scheduling and route planning is
presented in Section 2. Section 3 presents the problem formulation. Section 4 describes
the development of the double-chromosome evolutionary-based scheduling framework.
The path planning methodology integrated to the task scheduling algorithm is discussed
in Section 5. Simulation results are presented in Section 6. Our conclusions are drawn in
Section 7.

2. Related Work

A literature review of optimal scheduling (and planning) approaches for the aerial
drone delivery problem is presented in the following paragraphs.

An operation management method is proposed in [29], showing that modularity
can help in optimizing delivery time and energy consumption in a drone-based delivery
system. An adaptive large neighborhood search metaheuristic is proposed in [30] for
coordinated truck and drones’ pick-up and delivery schedules. The work in [31] proposes
a multi-objective stochastic model for a drone delivery scheduling problem, and a real
dataset from the city of Singapore is used to validate the model. The optimization model
presented in [32] minimizes the distance traveled by the drone to complete pick-up and
delivery schedules, synchronizing with docking charge stations. The effects of battery,
charging speed, drone weight, and battery capacity on a drone delivery scheduling model
is investigated in [33] for a real scenario in South Korea. A large neighborhood search
approach optimizes trajectories, depot locations, and battery allocation in [34] for a UAV-
based humanitarian logistics mission. A set of scheduling algorithms based on dispatching
rules, randomization, and iterative methods are proposed in [35], showing the capability
of minimizing the total time of the supply chain process with UAVs. A novel bi-objective
optimization problem for drone pick-up and delivery of medical samples is addressed
in [36], and a heuristic algorithm based on NSGA-II is proposed. The work in [37] proposes
a Stochastic Event Scheduling (SES) framework to allocate on-demand meal delivery tasks
with stochastic due dates to a UAV-based Intelligent Transportation System (ITS). Solutions
are optimized with a sub-optimal local search algorithm based on simulated annealing. A
combined task scheduling and flight path planning MILP approach is developed in [38] to
perform strategic planning of drone deliveries with a Battery Consumption Rate (BCR)-
aware feature. The output of the algorithm (based on both a variable preprocessing
approach and a primal and dual bound generation method) is the minimum number of
UAVs (and their flight paths) needed to execute the task set, ensuring their safe return
before consuming their battery life. A sensitivity analysis to assess the impact of wind on
drone delivery schedules is conducted in [39], and a UAV scheduling model considering
the role of the wind is proposed. A Simulated Annealing-based Two-phase Optimization
(SATO) approach is developed in [40] to solve a drone pick-up and delivery problem
where the top areas of buildings are exploited as parcel pick-up and delivery locations
to be visited by the UAVs. In the first phase, task allocation is performed by means of
an Improved Variable Neighborhood Descent (IVND) algorithm. Secondly, a local search
algorithm is implemented for the computation of the paths connecting the drones and
the locations to be visited. A coupled approach for Multi-Agent Pick-up and Delivery
(MAPD) is also proposed in [41], but with task assignment being informed by delivery
costs instead of by lower-bound estimates, which usually occurs in the literature. The



Smart Cities 2024, 7 2846

work in [42] implements an improved Particle Swarm Optimization (PSO) algorithm to
solve a combinatorial optimization problem in the fields of logistics and UAVs, i.e., the
Vehicle Routing Problems with Time Windows (VRPTW), with multiple constraints. A two-
phase stochastic programming model for a cooperative multiple task assignment problem
with stochastic UAV velocity and task due date is formulated in [43], and a genetic-based
algorithm is implemented to solve the formulated NP-hard problem. Then, starting from
the feasible solution, a path coordinator computes the flight paths considering the task
requirements. The problem of “dynamic multiple assignments in multi-dimensional space”
for UAV swarms in logistics is tackled in [44], allocating tasks and planning 3D paths
dynamically. The solution consists of multiple approaches merged together, including
Hungarian and cross-entropy Monte Carlo techniques. With the aim of enhancing the
delivery range associated with drone operations, an alternative drone delivery framework
cooperating with a public transportation network is studied in [45]. The work focuses on
computing feasible drone paths (considering the battery life) by means of a label setting
algorithm. The fact that the public transportation network is a stochastic time-dependent
network is also taken into account in the proposed stochastic model. A market-based
approach is developed in [46] to tackle a multi-UAV task assignment problem with multiple
constraints. The cost of the bid of each UAV is determined by means of a multi-layer cost
computation method, with one layer for each constraint. The work in [47] proposes a
combined task scheduling and risk-aware path planning architecture to enable a safe,
persistent, and energy-efficient drone pick-up and delivery system. Both parcel delivery
tasks and re-charge tasks are allocated using a multi-auctioneer auction-based algorithm,
which is highly scalable and capable of assigning also high priority dynamic delivery
tasks. The work by [48] develops a MAPD algorithm with task planning, path planning,
and deadlock avoidance (based on the “reserving dummy paths” method) capabilities.
The MAPD algorithm firstly computes a task sequence for each agent, then plans paths
according to these task sequences. A Uniform Distribution K-means (UD-K) algorithm is
employed to decompose tasks into multiple task groups for a multi-UAV urban delivery
problem in [49]. This is performed to reduce the complexity of the task allocation problem.
Secondly, a Bidirectional–Adaptive Potential Field–Rapidly exploring Random Tree star
(Bi-APF-RRT*) algorithm computes the distance matrix for the task group, and a Monte
Carlo Tree Search (MCTS) algorithm is used to assign tasks with the objective of minimizing
the total distance traveled by the UAVs. A three-phase Adaptive Large Neighborhood
Search (ALNS) approach is proposed in [50] to solve a multi-trip Drone Routing Problem
with Variable Flight Speeds (DRP–VFS). The approach also considers also how payload and
velocity influence the energy efficiency of the aerial delivery system. An energy efficient
task allocation method is also proposed in [51] by means of a MCTS algorithm. The work
in [52] investigates the possibility of forming teams of UAVs in order to allocate parcel
delivery tasks and overcome the payload capacity of each UAV.

3. Problem Statement: Drone Pick-Up and Delivery Problem (DDP) with Charging Hubs

The task scheduling problem addressed in this work consists of allocating a set of
delivery tasks to a fleet of UAVs. Each delivery task consists of the transportation of a
payload mass from a pick-up location to a delivery location within a delivery time window
in a populated urban context. The main goal is to allocate all of the delivery tasks while
minimizing the total energy required by the fleet of UAVs to complete all tasks. Refer to
the “nomenclature” section at the end of the manuscript for the complete list of symbols
adopted in this work.
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The energy consumption model subject to minimization in Equation (1) takes into
account the energy required by a small multi-rotor UAV to resist the drag in forward
flight and the weight of the UAV itself, with the assumption of small tilt angles during
the flight and negligible wind velocity, as in [53]. The constraint defined in Equation (2)
suggests that the energy consumption related to the execution of delivery task tj by UAV
i does not exceed the maximum energy in the battery of UAV i. Equation (3) suggests
that the optimal task execution velocity vi

j shall not exceed the maximum speed of UAV i.
Equation (4) defines the constraint on the delivery time window of task tj, such that the

total task execution time tt
i
j

(
vi

j

)
does not exceed the task’s due date TDD j. The optimization

variable of the optimization problem defined above is vi
j, while all the other parameters are

constants. The parameters are updated according to both the task and the UAV type for
which the optimization problem is solved.

Secondly, the sub-problem of scheduling charge tasks is addressed with the aim of
minimizing the impact on the delivery process, i.e., the flight time needed by the UAV
to visit the nearest charging hub. Recharging tasks are defined by a charge hub location
within the operational area, upon reaching which the drone’s battery is swapped with a
fully charged one by an operator in negligible time. The recharge task allocation is enabled
whenever a UAV does not have sufficient energy in the battery to perform the next assigned
task. Since the delivery framework formulated in this work only considers the phase of
forward flight of the UAVs, the duration of the drone’s battery swapping phase can be
neglected, together with the duration of take-off and landing phases. In the case of recharge
tasks, the optimization problem is defined as follows:

min
(
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Subject to the following constraints:
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Note that the symbols adopted for charge tasks are the same as the ones adopted for
delivery tasks, but (since no payload is transported by UAV i visiting charge station j)
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L2
i
j = 0 and mp j = 0 in case of charge tasks. Equation (5) minimizes the flight time tt

i
j

(
vi

j

)
of UAV i to the charge hub j. Equation (6) suggests that the UAV reaches the charge station
without exceeding the residual energy in the battery. Again, the optimization variable of
the optimization problem defined above is vi

j, while all the other parameters are constants.
For the sake of clarity, it is hereby specified that the subscript j refers to task j, while the
superscript i refers to UAV i.

The optimization problem formulated in Equations (1)–(4) ensures that the estimated
energy consumption for task execution is minimized, while respecting the task’s due date
and the UAV constraints of battery life and maximum speed. The optimization problem
formulated in Equations (5)–(7) ensures that the impact of recharge task execution on the
delivery process is minimized (minimization of flight time to the charge hub in Equation
(5)), while the UAV constraints of battery life and maximum speed are respected. The
safety of the risk-aware flyable paths (L1 and L2) is addressed independently from the
optimization problem, as discussed in Section 5.

The addressed DDP is defined with some simplifying assumptions such as constant
UAV speed throughout task execution, constant flight altitude, no idle time in between
tasks, and straight UAV trajectory for both energy and task execution time estimation.
Figure 1 shows a simple instance of the problem.
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Figure 1. Snapshot of a simplified example in a portion of the city of Turin (Italy), with three delivery
tasks, one charge hub, and a fleet of four UAVs.

4. Double-Chromosome Evolutionary Task Scheduling Algorithm

A Genetic Algorithm (GA) is a type of optimization algorithm inspired by the pro-
cesses of natural selection and genetics [54]. It starts with a population of potential solutions
to a problem and iteratively improves them by applying a set of genetic operations such
as selection, crossover, and mutation. The process begins with the creation of an initial
population of potential solutions. Each solution is represented as a string of values, called
chromosomes, which can be thought of as the candidate solution’s genes. These chro-
mosomes are evaluated according to some fitness function, which determines how well
they solve the problem. The genetic operators then begin to act on the population. The
selection operator chooses the fittest individuals from the population and allows them to
reproduce by generating offsprings. The crossover operator combines the chromosomes
of two individuals to create a new individual, while the mutation operator modifies an
individual’s chromosome in a random way to introduce new genetic material [55]. The new
population of individuals produced by these operators is then evaluated, and the process
is repeated until a satisfactory solution is found or some stopping criterion is met. The
reason why GAs are well-suited to solve NP-hard problems is that they are able to search
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broad portions of the solution space efficiently. NP-hard problems are those that cannot
be solved in polynomial time, and traditional optimization techniques such as brute force
methods become computationally infeasible as the problem size increases. GAs are able
to effectively search large portions of the solution space by exploring multiple solutions
simultaneously and avoiding becoming stuck in local optima prematurely. The ability
to maintain a diverse population of potential solutions also helps preventing premature
convergence to preliminary sub-optimal solutions [56]. Overall, GAs are a powerful and
flexible optimization tool that can be applied to a wide range of problems, including those
that are NP-hard, such as the DDP addressed in this work.

As the formulated DDP is a complex and multi-objective problem, the main reasons
for developing a GA-based approach to solve it can be summarized as follows:

• Capability of incorporating different constraints (battery life, due date constraints,
payload capacity) into the optimization process.

• Capability of exploring a broad set of solutions, thereby being able to find solutions to
the highly constrained DDP with different objectives.

• Ease of flexibility of the objective function, thereby being easily applicable to different
problem formulations (which may occur due to regulative and commercial aspects).

• Ease of adaptability to dynamic changes in the service requirements (both UAVs and
tasks’ parameters) since the population of solutions evolves at every iteration.

• High potential of finding innovative solutions which, for a DDP, may be limited to the
intuitiveness of traditional greedy approaches.

• Independence from a rigorous mathematical formulation of the problem, which is
very challenging in drone delivery scenarios.

• Independence from gradient data (the objective function based on Et is nonlinear).

Algorithm 1 shows the main body of the proposed double-chromosome genetic al-
gorithm with rce = 0. In the double-chromosome encoding logic, the first chromosome
CI represents the task delivery sequence, while the second chromosome CI I encodes the
cut positions in CI . In CI , each gene represents the index of a delivery task. To ensure the
validity of the solution, the genes in chromosome I must be unique, and the total number
of genes is equal to NT . The value of any gene in CI I must not be smaller than the values
of the genes that precede it. Additionally, the number of genes in CI I is set to NU − 1 to
ensure that the task delivery sequence in CI is partitioned into NU subsequences.

Algorithm 1. Genetic-based task allocation framework (rce = 0)

create random P with NP individuals
while termination condition is not met do
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At each iteration of the GA, in order to explore broader regions of the solution space,
an opposite population is created based on the principle of opposition-based learning,
i.e., the opposite of a weak attribute is a strong attribute. For each integer zi in CI of an
individual, the opposite is defined as z′i = a + b − zi, with i ∈ [0, NT ], a = 0, b = NT . As an
example, if CI = (1, 7, 0, 4, 5, 3, 6, 2), then C′

I = (6, 0, 7, 3, 2, 4, 1, 5). The crossover operator
creates an offspring chromosome from a pair of parent chromosomes. In this case, the
Partial Mapped Crossover (MPC) operator is adopted with probability pc. Algorithm 2
shows how P undergoes the MPC operator. Figure 2 show a schematic representation of
the operation. Algorithm 3 illustrates the logic behind the mutation operator. Different
mutations are applied to each pair of chromosomes. CI is subject to flip, swap, and slide
mutations, while CI I undergoes the regenerate mutation. Examples of slide, flip, and swap
mutations are reported in Figure 3, Figure 4, and Figure 5, respectively. The regenerate
mutation operator randomly regenerates each gene of chromosome CI I while satisfying the
constraints of CI I itself.

Algorithm 2. Crossover in population P

for i = 1 → NP do
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end

Algorithm 3. Mutation in population P

for ∀ group of Z = 8 individuals in P do
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To ensure that the final solution satisfies the constraints imposed by the problem, each
individual in P and POPP undergoes a feasibility check. While the payload constraint is
considered hard, meaning that all solutions must respect it, the delivery time constraint
can be either hard or soft depending on the parameter mdw. The feasibility check is
performed after mutation and crossover operations, which increase the diversity and
randomness of individuals in the population. In this way, it is possible to find feasible
individuals even when starting from unfeasible ones. Individuals that do not satisfy the
constraints are removed from the respective population and do not undergo the subsequent
selection process. Algorithm 4 shows how charge tasks are added to an individual. Only
delivery tasks are present in CI , and charge tasks are added to create a feasible solution.
The assigned charge tasks are not considered in the subsequent rounds of the genetic
algorithm and are not subject to crossover and mutation operations. For each UAV, the
algorithm runs through each task in the task list one at a time, and after calculating the
energy required for the task to be completed, it checks whether there is sufficient energy
in the UAV’s battery. If the battery level is sufficient for task completion, the energy
required for the task is subtracted from the battery level and the position of the UAV is
updated with the final position of the task. If the battery level is not sufficient, a charge
task is added before the assigned delivery task, and the position is updated accordingly.

Algorithm 4. Insert charge tasks in individual I

Decode CI and CI I of I in the task list of each UAV
for i = 1 → NU do
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The individuals’ evaluation phase is designed to minimize the total energy required by
the fleet of UAVs to execute all of the assigned tasks. The fitting function J to be minimized
is defined as follows:
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ξ = 1 in case of mdw = 1, while ξ = p−1
ot if mdw = 0. With the parameter ξ included in

the fitness function, it is possible to prioritize the energy consumption with respect to the
compliance to all task due dates, i.e., the algorithm can tackle a very demanding task set in
terms of delivery due dates.

Then, an offspring population is created by merging individuals from both P and
POPP. Specifically, half of the individuals are randomly selected from P, and the remaining
half from POPP. nbest individuals with the highest fitness scores from both populations
are automatically included in the new population P′. The remaining individuals in P′ are
selected according to a roulette wheel technique: each individual is assigned to a selection
probability proportional to its fitness value. The termination condition is defined as either
ni = nmax or ∆J < ε, in the last nconv iterations.

A simple instance of the DDP formulated in this work is used to show how the
proposed scheduling approach works. The simple scenario consists of five pick-up and
delivery tasks to be allocated to a fleet of two UAVs. Two charge hubs are located within
the operational area. The due date of each task is randomly assigned between 0 and 3 h.

Figure 6a shows the UAV task assignments related to the final solution of Algorithm
1 (mdw = 0) for the simple scenario. The execution of a delivery task is represented by
means of a continuous line connecting the pick-up location to the delivery location, while
dotted lines represent the movement of the UAVs from their initial locations to either the
delivery tasks’ pick-up locations or the recharge hubs’ locations. Figure 6b shows the
evolution of the fitness function J at each iteration of the double-chromosome genetic task
scheduling algorithm.
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Figure 6. (a) Graph-based representation of the final schedule related to the solution of Algorithm 1
with mdw = 0 with a simple instance of the DDP. (b) Evolution of the fitness function J at each
iteration of Algorithm 1 with mdw = 0.

Algorithm 5 shows the main body of the proposed GA with rce = 1. Four different
versions are implemented in total: Algorithm 1 with mdw = 1 or mdw = 0, and Algorithm 5
with mdw = 1 or mdw = 0.
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Algorithm 5. Genetic-based task allocation framework (rce = 1)

create random P with NP individuals
while termination condition is not met do
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5. Risk-Aware Path Planning Methodology

In the proposed evolutionary-based task allocation framework, the paths connecting
the UAVs’ position to the tasks’ position are computed by a risk-aware path planner with
the aim of demonstrating the potential capability of deployment in urban context. To
achieve this, the risk-aware path planning method proposed in [57] is adopted. This
method involves a two-step procedure with the generation of a risk map followed by a risk-
aware path planning algorithm that searches for the minimum risk path while minimizing
the overall risk and the flight time. As described in [58], the risk map is a two-dimensional
location-based map, where each element represents a specific location and is associated
with a risk value. The risk value is computed using a probabilistic ground risk assessment
approach that estimates the expected frequency of fatalities after a ground impact accident.
The risk map depends on the UAV type (mass, dimensions, and maximum flight speed, and
other parameters). Thus, a risk map must be computed for each UAV type, including the
mass of the payload. After generating the risk map, the risk-aware path planning approach
utilizes the RRT* algorithm [59] to compute the minimum risk path. RRT* explores the
search space, constructing an asymptotically optimal tree, and the near-optimal solution
is the branch of the tree that connects the start and goal locations. The method is used to
minimize the overall risk and the flight time. The risk is expressed in fatalities per hour,
and is proportional to the flight time. Before passing the safe paths’ length as constant
parameters to the task scheduling framework, the average risk of the minimum risk paths
is compared to an Equivalent Level of Safety (ELOS) [60], to determine if the resulting
paths are sufficiently safe or not.

As demonstrated in [57,58], the proposed risk-aware path planning methodology
is able to search for the minimum risk path in the risk map and is a promising tool for
risk-informed decision making. However, the resulting risk and the safe path computed
depend on the operational area and UAV type.

The risk computed by the risk map is proportional to the number of people exposed
to crash and the estimated kinetic energy at impact. Consequently, the risk is higher in
areas with a high population density and in open spaces, i.e., areas where people are
completely exposed to a possible crash of the UAV. This trend can be observed in the risk
maps of Figure 6, in which the risk is higher in the Turin city center and, in particular, in
correspondence with the main squares and large busy roads.

On the other hand, the risk depends on the involved kinetic energy at impact and,
intuitively, is proportional with the UAV mass and velocity.
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For this reason, the adoption of a heterogeneous fleet of drones allows for the selection
of the UAV best suited to the characteristics of the area being flown over. Strictly speaking,
lighter UAVs are suitable for flying over high-risk areas (city centers and busy roads), while
heavier UAVs are more suitable for flying over suburban areas or, in any case, where there
is a lower risk.

As far as the scalability to larger urban areas is concerned, being the risk map generated
by computing the risk for each cell (i.e., location) in the map, the computational complexity
increases proportionally to the number of cells and, therefore, with the dimension of the
map. However, the resolution of the risk map can be adequately modified to manage large
urban areas without making the method intractable, as demonstrated in [10].

A larger urban environment also implies an increase in the computational complexity
of the risk-aware path planning algorithm, which operates on the map. As discussed in [59],
the computational complexity of RRT* can be approximated to O(zlog z), with z being the
number of nodes sampled within the risk map. Consequently, the path planning algorithm
requires more nodes to obtain an optimal path, but the algorithm is still able to provide
solutions within a reasonable computation time.

6. Simulation Results

The algorithms are implemented in Python 3 and tested with two complex scenarios,
representing real-world situations with tens of tasks and a few UAVs. The optimization
problems formulated for estimating the optimal tasks’ execution velocities are solved using
the Phyton’s constrained optimization tool (scipy.optimize). The characteristics of the fleet
are reported in Table 1. For every UAV, FM is set to 0.9, cd is set to 0.3, η is set to 0.9, and the
air density is set to 1.23 kg/m3. The maximum payload capacity of each UAV is assumed
to be equal to its mass.

Table 1. Characteristics of the fleet of UAVs.

UAV Type m [kg] Ar [m2] Ad [m2] vmax [m/s] EMAX [MJ]

A 1 0.2 0.4 16 0.68
B 2 0.28 0.6 19 0.9
C 3 0.36 0.8 20 1.17
D 4 0.44 1 22 1.43

The tasks set is selected from a set of NT = 40 points in the operational environment:
a portion of the city of Turin, as in Figure 1. The extremities of the operational area in
terms of latitude and longitude are defined as [45.0379◦, 45.0743◦] and [7.6146◦, 7.6894◦],
respectively. The task set is homogenously divided in 5 payload weight classes: 0.5, 1, 2, 3,
and 4 kg. Additionally, NC = 4 charging hubs are defined in the operational environment.
NU is set to 8, with 2 UAVs per type. The genetic algorithm is configured such that both
pm and pc are set to 0.3, NP = 30, the number of elite individuals selected for the next
generation is set to 5 (nbest = 5), the convergence threshold nconv is set to 8, the energy
tolerance between the last solutions (ε) is set to 300 J, and nmax is set to 20.

The path planner is launched prior to the task allocation algorithm to reduce the
computational burden. The path planner computes the distances of the safe paths between
the points and saves them in a matrix (triangular with zero diagonal) that is accessed by
the scheduling algorithm.

In order to both justify the use of the risk-aware path planner and demonstrate its
effectiveness; Figure 7 shows some notable examples of risk maps and minimum risk paths.
For the aforementioned examples, we have selected the area in Figure 1 because it includes
heterogeneous areas: the city center with high population density; a suburban hilly area
with low population density; and the presence of a river that represents the natural corridor
for a low-risk route.
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The risk map depends on the type of drone used and the payload carried, since the
kinetic energy on impact depends on the mass. UAV A provides a lower level of risk in
the map compared to UAV C, and, in addition, the payload of 2 kg further increases the
risk. Changes in the risk maps lead to different routes computed using the risk-aware path
planning approach that searches for an optimal path minimizing the risk and flight time.

The maximum and minimum risk in the risk maps, as well as the average risk and
the total length of each path in Figure 7 are reported in Table 2. Observing the results in
Table 2, the minimum risk paths are obviously longer than the minimum distance paths,
but they involve a decidedly lower risk.

Table 2. Risk values and other parameters of risk maps and paths in Figure 6.

UAV Type
Risk Map Min. Risk Path Min. Distance Path

Max Risk
[h−1]

Min Risk
[h−1]

Av. Risk
[h−1]

Distance
[m]

Av. Risk
[h−1]

Distance
[m]

UAV A 3.72·10−6 2.17·10−8 1.42·10−7 3654.8 6.44·10−7 2541.6
UAV C 2.99·10−5 1.72·10−7 1.07·10−6 3919.9 3.37·10−6 2542.3

UAV C with
2.0 kg of Payload 4.21·10−5 2.40·10−7 1.43·10−6 4041.88 5.17·10−6 2539.2

Two scenarios are considered: scenario A involves random assignment (between 0
and 3 h) of the delivery window to each task, and scenario B assumes a uniform delivery
window of 5 h for all tasks. Each scenario is tested using all four versions of the algorithm,
i.e., with all the combinations of the binary parameters mdw and rce. The results are reported
in terms of mean value ϑ and standard deviation for 20 Monte Carlo simulations. The
results in terms of well-defined solution quality parameters (ETOT , pot, nchar, ni, ttot) are
presented in Tables 3 and 4.

Table 3. Results of Monte Carlo simulations for scenario A.

mdw/rce
ETOT [MJ]

µ ± ϑ
pot

µ ± ϑ
nchar
µ ± ϑ

ni
µ ± ϑ

ttot [s]
µ ± ϑ

1/0 0 0 0 0 0
0/0 15.79 ± 0.52 0.857 ± 0.030 4 ± 0 8.9 ± 4 2690 ± 1549
1/1 0 0 0 0 0
0/1 16.09 ± 0.60 0.879 ± 0.017 4 ± 0 9 ± 5.2 527 ± 340
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Table 4. Results of Monte Carlo simulations for scenario B.

mdw/rce
ETOT [MJ]

µ ± ϑ
pot

µ ± ϑ
nchar
µ ± ϑ

ni
µ ± ϑ

ttot [s]
µ ± ϑ

1/0 15.06 ± 0.6 1 ± 0 4 ± 0 7.8 ± 3.4 2428 ± 1375
0/0 14.79 ± 0.46 1 ± 0 4 ± 0 8.2 ± 3.2 2354 ± 1503
1/1 15.50 ± 0.62 1 ± 0 4 ± 0 7.4 ± 3.2 347 ± 341
0/1 15.70 ± 0.81 1 ± 0 4 ± 0 8.8 ± 3.6 373 ± 199

It should be noted that the versions of genetic algorithm with mdw = 1 aim to assign
all tasks to the entire fleet, and if a solution satisfying delivery time and payload constraints
cannot be found, the algorithms will return no output. This is why the versions with
mdw = 1 do not produce any result for scenario A, which represents a scenario with “hard”
constraints. However, versions with mdw = 0 achieve a delivery success rate of 86% and
88%, denoting that the total energy consumption can be minimized by delivering most of
the parcels within the available delivery time window.

Interestingly, the versions with rce = 0, which add charging tasks at each iteration
of the GA rather than just at the end, provides the minimum energy solution. However,
the energy savings are only about 2.5%, which may not be significant compared to the
increase of 600% in execution time, with respect to the versions with rce = 1. Analogous
considerations can be drawn from the results related to scenario B, where, because of larger
and uniform delivery time window for all tasks, we have a solution with all versions of
the GA.

The results obtained with both the implementation of the aforementioned simulation
campaigns and the analysis of the solution quality parameters (for all variants of the
proposed GA-based framework) enabled the following conclusions:

• The proposed architecture successfully tackled the formulated DDP with real-world
instances of the problem itself. The Monte Carlo simulations corroborated the validity
of the approach.

• The algorithm was able to tackle scenarios with “hard” constraints, i.e., tens of de-
livery tasks with random deadlines. This is due to the conceptualization of the
mdw binary variable, which enabled the possibility of considering late schedules as
feasible solutions.

• The integration of the risk-aware path planning approach into the GA-based solution
did not increase the computational complexity of the proposed GA. This is because
the UAV-task route planning approach is a pre-processing approach with respect to
the scheduling algorithm (all of the paths for each possible UAV-task assignment are
computed twice: with and without payload). Therefore, the approach is scalable with
respect to the number of UAVs, number of tasks, and dimension of the operational area.

• The decoupled scheduling of delivery tasks and recharge tasks does not decrease
significantly the level of optimality of the final schedules (about 2%), but decreases
about 600% of the algorithm’s execution time. This means that adding a greedy
strategy when solving a complex combinatorial optimization problem, such as the
DDP of this work, within the proposed genetic framework can be preferred over the
mere development of a standard genetic approach.

7. Conclusions

This paper offers a thorough examination of the development of a double-chromosome
evolutionary-based optimization framework for planning efficient and safe drone deliveries.
The addressed NP-hard problem consists of scheduling delivery tasks with time deadline
constraints to a fleet of UAVs in urban environments. Secondly, the problem of scheduling
recharge tasks is also addressed to ensure feasibility and persistency of service. The
algorithm can both tackle complex scenarios with tens of delivery tasks with random
temporal deadlines and minimize the energy consumption of the aerial fleet. A risk-aware
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path planner is included in the framework, ensuring the evaluation of safe UAV paths. The
proposed approach combines task allocation and, as a pre-processing phase, path planning,
offering a scalable solution to the NP-hard DDP addressed in this work. The proposed
framework is demonstrated to be a flexible tool adaptable to other urban air mobility
scenarios, task types, and diverse urban operational areas. The complete task planning
methodology based on the genetic algorithm can enable safe, persistent, and energy efficient
drone delivery services; thereby presenting itself as a valid candidate software tool for
enhancing the sustainability and efficiency of UAV-based intelligent transportation systems
in the smart cities of the future. The simulation results based on Monte Carlo simulations,
which refer to real world instances of the DDP in the city of Turin, Italy, corroborate the
validity of the proposed optimization framework.

The comparison of the performance of the proposed framework with other optimiza-
tion approaches will be addressed in future works. Also, a MILP model of the addressed
problem will be developed and solved using a commercial optimization software such
as CPLEX.
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Nomenclature

m UAV mass
mP Payload mass
η Efficiency factor for energy consumption estimation
ρ Air density
Ar Total rotor disk area
cd UAV drag coefficient
v UAV task execution velocity
Eav UAV available energy in the battery
g Gravity acceleration
Ad UAV cross section with respect to the direction of motion
vMAX UAV maximum speed
TDD Delivery task due date
Ti First time instant at which the UAV is available for task execution
tt Task execution time
t Task
Et UAV estimated energy consumption for task execution
L1 Path length from UAV location to parcel pick-up location
L2 Path length from parcel pick-up location to parcel delivery location
rcn Lest distant charge hub with respect to the UAV location
FM Figure of Merit
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EMAX UAV maximum energy stored in the battery
NT Number of delivery tasks
NU Number of UAVs
NC Number of available charging hubs
ETOT Total estimated energy consumption associated with the solution
pot Percentage of tasks in the solution delivered within the due date
ni Total number of iterations of the genetic algorithm
ttot Total execution time of the genetic algorithm
J Fitting function of the genetic algorithm

rce
Binary variable representing whether the charging tasks allocation takes place at the end
of the delivery task allocation (rce = 1) or not (rce = 0)

mdw
Binary variable representing whether the delivery tasks’ due dates are mandatory
(mdw = 1) or not (mdw = 0)

δ Random variable: δ ∈ {R : 0 ≤ δ ≤ 1}
ε Tolerance for accepting the solution of the genetic algorithm as optimal
nbest Number of individuals with highest fitness for the next generation
nchar Number of charging tasks in the final solution
nconv Number of iterations for establishing convergence with respect to ε

nmax Maximum number of iterations of the genetic algorithm
P Population of solutions
P′ Offspring population of solutions
POPP Population of opposite individuals with respect to P
pc Crossover probability
pm Mutation probability
NP Maximum number of individuals in the population
NP′ Maximum number of individuals in the opposite population
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